51
|
|
52
|
Numerical density of oligodendrocytes and oligodendrocyte clusters in the anterior putamen in major psychiatric disorders. Eur Arch Psychiatry Clin Neurosci 2020; 270:841-850. [PMID: 32060609 DOI: 10.1007/s00406-020-01108-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
There is increasing evidence to support the notion that oligodendrocyte and myelin abnormalities may contribute to the functional dysconnectivity found in the major psychiatric disorders. The putamen, which is an important hub in the cortico-striato-thalamo-cortical loop, has been implicated in a broad spectrum of psychiatric illnesses and is a central target of their treatments. Previously we reported a reduction in the numerical density of oligodendrocytes and oligodendrocyte clusters in the prefrontal and parietal cortex in schizophrenia. Oligodendrocyte clusters contain oligodendrocyte progenitors and are involved in functionally dependent myelination. We measured the numerical density (Nv) of oligodendrocytes and oligodendrocyte clusters in the putamen in schizophrenia, bipolar disorder (BPD) and major depressive disorder (MDD) as compared to healthy controls (15 cases per group). Optical disector was used to estimate the Nv of oligodendrocytes and oligodendrocyte clusters. A significant reduction in both the Nv of oligodendrocytes (- 34%; p < 0.01) and the Nv of oligodendrocyte clusters (- 41%; p < 0.05) was found in the schizophrenia group as compared to the control group. Sexual dimorphism for both measurements was found only within the control group. The Nv of oligodendrocytes was significantly lower in male schizophrenia cases as compared to the male control cases. However, the Nv of oligodendrocyte clusters was significantly lower in all male clinical cases as compared to the male control group. The data suggest that lowered density of oligodendrocytes and oligodendrocyte clusters may contribute to the altered functional connectivity in the putamen in subjects with schizophrenia.
Collapse
|
53
|
Bøen E, Hummelen B, Boye B, Elvsåshagen T, Malt UF. Borderline patients have difficulties describing feelings; bipolar II patients describe difficult feelings. An alexithymia study. Acta Psychiatr Scand 2020; 142:203-214. [PMID: 32594515 DOI: 10.1111/acps.13204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Apparent similarities between borderline personality disorder (BPD) and bipolar II disorder (BIP-II) contribute to clinical difficulties in distinguishing between the disorders. Here, we aimed to explore how subjective Difficulties with the Identification and Description of Feelings (DIDF), a major constituent of the alexithymia construct and assessed as a part of the Toronto Alexithymia Scale (TAS), are related to relationship problems and health complaints in these groups. METHODS Twenty-two patients with BPD; 22 patients with BIP-II; and 23 healthy controls (HC) completed TAS. Health complaints, including symptoms associated with mood swings, were assessed with the Giessener Subjective Complaints List (Giessener Beschwerdebogen-GBB), and relationship problems with the Health of the Nation Outcome scale, Relationship item (HoNOSR). Bivariate correlations were run. RESULTS Both patient groups had high DIDF and GBB scores. In BPD only, there was a significant positive correlation between DIDF and HoNOSR. In BIP-II only, there was a significant positive correlation between DIDF and GBB total score. In BIP-II, DIDF correlated highly with those GBB subscales assessing symptoms typically occurring during bipolar mood swings (cardiovascular and gastrointestinal symptoms, exhaustion). CONCLUSION Our results suggest that in BPD, high DIDF scores represent genuine problems with identifying and describing emotions which are expected to correlate with relationship problems. In BIP-II, high DIDF scores could potentially represent difficulties with understanding the unpredictable symptoms of bipolar mood swings. The findings suggest that difficulties with identifying and describing feelings in patients should be carefully explored to increase the validity of the diagnostic evaluation.
Collapse
Affiliation(s)
- E Bøen
- Psychosomatic and CL Psychiatry, Clinic for Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - B Hummelen
- Department of Research and Development, Clinic for Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - B Boye
- Psychosomatic and CL Psychiatry, Clinic for Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Department of Behavioural Medicine, University of Oslo, Oslo, Norway
| | - T Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - U F Malt
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
54
|
Yang L, Zhou Y, Jia H, Qi Y, Tu S, Shao A. Affective Immunology: The Crosstalk Between Microglia and Astrocytes Plays Key Role? Front Immunol 2020; 11:1818. [PMID: 32973758 PMCID: PMC7468391 DOI: 10.3389/fimmu.2020.01818] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence demonstrates the critical role of the immune response in the mechanisms relating to mood disorders, such as major depression (MDD) and bipolar disorder (BD). This has cast a spotlight on a specialized branch committed to the research of dynamics of the fine interaction between emotion (or affection) and immune response, which has been termed as “affective immunology.” Inflammatory cytokines and gut microbiota are actively involved in affective immunology. Furthermore, abnormalities of the astrocytes and microglia have been observed in mood disorders from both postmortem and molecular imaging studies; however, the underlying mechanisms remain elusive. Notably, the crosstalk between astrocyte and microglia acts as a mutual and pivotal intermediary factor modulating the immune response posed by inflammatory cytokines and gut microbiota. In this study, we propose the “altered astrocyte-microglia crosstalk (AAMC)” hypothesis which suggests that the astrocyte-microglia crosstalk regulates emotional alteration through mediating immune response, and thus, contributing to the development of mood disorders.
Collapse
Affiliation(s)
- Linglin Yang
- Department of Psychiatry, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Honglei Jia
- Department of Student Affairs, Zhejiang University School of Medicine, Hangzhou, China
| | - Yadong Qi
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
55
|
Song H, Chon MW, Ryu V, Yu R, Lee DK, Lee H, Lee W, Lee JH, Park DY. Cortical Volumetric Correlates of Childhood Trauma, Anxiety, and Impulsivity in Bipolar Disorder. Psychiatry Investig 2020; 17:627-635. [PMID: 32571005 PMCID: PMC7385221 DOI: 10.30773/pi.2019.0305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/17/2020] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE More recently, attention has turned to the linkage between childhood trauma and emotional dysregulation, but the evidence in bipolar disorder (BD) is limited. To determine neurobiological relationships between childhood trauma, current anxiety, and impulsivity, we investigated cortical volumetric correlates of these clinical factors in BD. METHODS We studied 36 patients with DSM-5 BD and 29 healthy controls. Childhood trauma, coexisting anxiety, and impulsivity were evaluated with the Korean version-Childhood Trauma Questionnaire (CTQ), the Korean version-Beck Anxiety Inventory (BAI), and the Korean version-Barratt Impulsiveness Scale (BIS). Voxel-based morphometry (VBM) was used to assess gray matter volume (GMV) alterations on the brain magnetic resonance imaging (MRI). Partial correlation analyses were conducted to examine associations between the GMV and each scale in the BD group. RESULTS Childhood trauma, anxiety, and impulsivity were interrelated in BD. BD patients revealed significant inverse correlations between the GMV in the right precentral gyrus and CTQ scores (r=-0.609, p<0.0003); between the GMV in the left middle frontal gyrus and BAI scores (r=-0.363, p=0.044). Moreover, patients showed similar tendency of negative correlations between the GMV in the right precentral gyrus and BIS scores; between the GMV in the left middle frontal gyrus and CTQ scores. CONCLUSION The present study provides evidence for a neural basis between childhood trauma and affect regulations in BD. The GMV alterations in multiple frontal lobe areas may represent neurobiological markers for anticipating the course of BD.
Collapse
Affiliation(s)
- Hyehyun Song
- Department of Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Myong-Wuk Chon
- Department of Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Vin Ryu
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Rina Yu
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Dong-Kyun Lee
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Hyeongrae Lee
- Department of Mental Health Research, National Center for Mental Health, Seoul, Republic of Korea
| | - Wonhye Lee
- Department of Clinical Psychology, National Center for Mental Health, Seoul, Republic of Korea
| | - Jung Hyun Lee
- Department of Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Dong Yeon Park
- Department of Mood Disorders, National Center for Mental Health, Seoul, Republic of Korea
| |
Collapse
|
56
|
Tamura JK, McIntyre RS. Current and Future Vistas in Bipolar Disorder. Curr Behav Neurosci Rep 2020. [DOI: 10.1007/s40473-020-00202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
57
|
Kidnapillai S, Wade B, Bortolasci CC, Panizzutti B, Spolding B, Connor T, Crowley T, Jamain S, Gray L, Leboyer M, Berk M, Walder K. Drugs used to treat bipolar disorder act via microRNAs to regulate expression of genes involved in neurite outgrowth. J Psychopharmacol 2020; 34:370-379. [PMID: 31913086 DOI: 10.1177/0269881119895534] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The drugs commonly used to treat bipolar disorder have limited efficacy and drug discovery is hampered by the paucity of knowledge of the pathophysiology of this disease. This study aims to explore the role of microRNAs in bipolar disorder and understand the molecular mechanisms of action of commonly used bipolar disorder drugs. METHODS The transcriptional effects of bipolar disorder drug combination (lithium, valproate, lamotrigine and quetiapine) in cultured human neuronal cells were studied using next generation sequencing. Differential expression of genes (n=20) and microRNAs (n=6) was assessed and the differentially expressed microRNAs were confirmed with TaqMan MicroRNA Assays. The expression of the differentially expressed microRNAs were inhibited to determine bipolar disorder drug effects on their target genes (n=8). Independent samples t-test was used for normally distributed data and Kruskal-Wallis/Mann-Whitney U test was used for data not distributed normally. Significance levels were set at p<0.05. RESULTS We found that bipolar disorder drugs tended to increase the expression of miR-128 and miR-378 (p<0.05). Putative target genes of these microRNAs targeted pathways including those identified as "neuron projection development" and "axonogenesis". Many of the target genes are inhibitors of neurite outgrowth and neurogenesis and were downregulated following bipolar disorder drug combination treatment (all p<0.05). The bipolar disorder drug combination tended to decrease the expression of the target genes (NOVA1, GRIN3A, and VIM), however this effect could be reversed by the application of microRNA inhibitors. CONCLUSIONS We conclude that at a transcriptional level, bipolar disorder drugs affect several genes in concert that would increase neurite outgrowth and neurogenesis and hence neural plasticity, and that this effect is mediated (at least in part) by modulation of the expression of these two key microRNAs.
Collapse
Affiliation(s)
| | - Ben Wade
- Centre for Molecular and Medical Research, Deakin University, Geelong, VIC, Australia
| | - Chiara C Bortolasci
- Centre for Molecular and Medical Research, Deakin University, Geelong, VIC, Australia
| | - Bruna Panizzutti
- Laboratory of Molecular Psychiatry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Briana Spolding
- Centre for Molecular and Medical Research, Deakin University, Geelong, VIC, Australia
| | - Timothy Connor
- Centre for Molecular and Medical Research, Deakin University, Geelong, VIC, Australia
| | - Tamsyn Crowley
- Centre for Molecular and Medical Research, Deakin University, Geelong, VIC, Australia.,Bioinformatics Core Research Facility (BCRF), Deakin University, Geelong, VIC, Australia
| | | | - Laura Gray
- Centre for Molecular and Medical Research, Deakin University, Geelong, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | | | - Michael Berk
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,Orygen, National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
| | - Ken Walder
- Centre for Molecular and Medical Research, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
58
|
Shonibare DO, Patel R, Islam AH, Metcalfe AWS, Fiksenbaum L, Kennedy JL, Freeman N, MacIntosh BJ, Goldstein BI. Preliminary study of structural magnetic resonance imaging phenotypes related to genetic variation in Interleukin-1β rs16944 in adolescents with Bipolar Disorder. J Psychiatr Res 2020; 122:33-41. [PMID: 31918351 DOI: 10.1016/j.jpsychires.2019.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/13/2019] [Accepted: 12/30/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Bipolar disorder (BD), among the most heritable psychiatric conditions, is associated with increased pro-inflammatory blood markers and pro-inflammatory gene expression in post-mortem brain. We therefore examined the effects of pro-inflammatory single nucleotide polymorphism interleukin-1β (IL-1β) rs16944 on brain structure in adolescents with BD and healthy control (HC) adolescents. METHODS T1-weighted 3-T magnetic resonance imaging data were acquired for 38 adolescents with BD and 32 HC adolescents (14-20 years). Using FreeSurfer, a priori regions of interest analyses, examining hippocampus, amygdala, dorsolateral prefrontal cortex (DLPFC), and caudal anterior cingulate cortex, were complemented by exploratory whole-brain vertex-wise analyses. General linear models assessed the association between IL-1β rs16944 and the ROIs, controlling for sex, age, and intracranial volume. RESULTS There was an IL-1β rs16944 polymorphism-by-diagnosis interaction effect on the DLPFC; T-carriers with BD had greater surface area compared to non-carriers with BD. Whereas, HC T-carriers had smaller DLPFC volume compared to HC non-carriers. In vertex-wise analyses, similar interactions were evident in a pars triangularis surface area cluster and a lateral occipital cortex volume cluster. Whole-brain analyses also yielded a main effect of IL-1β rs16944 polymorphism, whereby T-carriers had greater lateral occipital cortex surface area and volume. CONCLUSIONS The IL-1β rs16944 polymorphism is associated with neurostructural phenotypes in cognitive and visual regions that subserve functions, including facial recognition and response inhibition, which are known to be aberrant in BD. Future studies are warranted to evaluate whether the observed rs16944-related structural differences are relevant to neurocognitive function, functional neuroimaging phenotypes and IL-1β protein levels.
Collapse
Affiliation(s)
- Daniel O Shonibare
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Ronak Patel
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Alvi H Islam
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada
| | - Arron W S Metcalfe
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada
| | - Lisa Fiksenbaum
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - James L Kennedy
- Department of Psychiatry, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Natalie Freeman
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Physical Sciences Research Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada.
| |
Collapse
|
59
|
Millischer V, Matheson GJ, Martinsson L, Römer Ek I, Schalling M, Lavebratt C, Backlund L. AKT1 and genetic vulnerability to bipolar disorder. Psychiatry Res 2020; 284:112677. [PMID: 31810747 DOI: 10.1016/j.psychres.2019.112677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 11/26/2022]
Abstract
AKT1 encodes a serine/threonine kinase that has as one of its best-known substrates glycogen synthase kinase-3 (GSK3), a primary target for lithium. AKT1 has been previously been implicated as a vulnerability gene for bipolar disorder (BD). We aimed to associate genetic variants in the AKT1 gene with subgroups of BD. BD patients from a Swedish cohort (N = 831) were phenotyped in regards to their psychotic episodes according to mood-congruence in depression and manias, and compared to controls (N = 1,496). All participants were genotyped for SNPs in AKT1 previously implicated to have a role: rs3730358, rs1130214 and rs3803300. None of the effects reported in earlier studies were statistically significant, including the association between rs3803300 and BD without any psychotic symptoms, rs3803300 and mood-congruent psychosis, rs3803300 and the combined groups, as well as the association between the haplotypes formed by rs3730358 and rs1130214 and risk for BD. In a Bayesian analysis, all Bayes' Factors using default priors supported the null hypothesis in the replication set by a factor of between 5 and 1300 times. Analysis of genome wide association data did not reveal any association between BD and the AKT1 region. We conclude AKT1 is less likely to be a vulnerability gene in BD.
Collapse
Affiliation(s)
- Vincent Millischer
- Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | - Granville J Matheson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center for Psychiatric Research and Education, Stockholm City Council, Sweden
| | - Lina Martinsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center for Psychiatric Research and Education, Stockholm City Council, Sweden
| | - Inger Römer Ek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center for Psychiatric Research and Education, Stockholm City Council, Sweden
| | - Martin Schalling
- Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Catharina Lavebratt
- Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Backlund
- Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Center for Psychiatric Research and Education, Stockholm City Council, Sweden
| |
Collapse
|
60
|
van den Ameele S, van Nuijs AL, Lai FY, Schuermans J, Verkerk R, van Diermen L, Coppens V, Fransen E, de Boer P, Timmers M, Sabbe B, Morrens M. A mood state-specific interaction between kynurenine metabolism and inflammation is present in bipolar disorder. Bipolar Disord 2020; 22:59-69. [PMID: 31398273 DOI: 10.1111/bdi.12814] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Cytokines are thought to contribute to the pathogenesis of psychiatric symptoms by kynurenine pathway activation. Kynurenine metabolites affect neurotransmission and can cause neurotoxicity. We measured inflammatory markers in patients with bipolar disorder (BD) and studied their relation to kynurenine metabolites and mood. METHODS Patients with BD suffering from an acute mood episode were assigned to the depressive (n = 35) or (hypo)manic (n = 32) subgroup. Plasma levels of inflammatory markers [cytokines, C-reactive protein] and kynurenine metabolites [tryptophan (TRP), kynurenine (KYN), 3-hydroxykynurenine (3-HK), quinolinic acid (QA), kynurenic acid (KYNA)] were measured on 6 time points during 8 months follow-up. Biological marker levels in patients were compared to controls (n = 35) and correlated to scores on mood scales. Spearman correlations and linear mixed models were used for statistical analysis. RESULTS Twenty patients of the manic subgroup, 29 of the depressive subgroup, and 30 controls completed the study. The manic subgroup had a rapid remission of mood symptoms, but in the depressive subgroup subsyndromal symptoms persisted. No differences in inflammation were found between groups. A strong correlation between tumor necrosis factor-α and KYN, KYN/TRP, 3-HK and QA (ρ > 0.60) was specific for the manic group, but only at baseline (during mania). The depressive subgroup had a lower neuroprotective ratio (KYNA/3-HK, P = .0004) and a strong association between interferon-y and kynurenine pathway activation (P < .0001). KYNA was low in both patient groups versus controls throughout the whole follow-up (P = .0008). CONCLUSIONS Mania and chronic depressive symptoms in BD are accompanied by a strong interaction between inflammation and a potentially neurotoxic kynurenine metabolism.
Collapse
Affiliation(s)
- Seline van den Ameele
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Scientific Institute for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Hospital Duffel - VZW Emmaüs, Duffel, Belgium.,Department of Psychiatry, CHU Brugmann, Brussels, Belgium
| | - Alexander Ln van Nuijs
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Foon Yin Lai
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium.,Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Jeroen Schuermans
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Scientific Institute for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Hospital Duffel - VZW Emmaüs, Duffel, Belgium
| | - Robert Verkerk
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Linda van Diermen
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Scientific Institute for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Hospital Duffel - VZW Emmaüs, Duffel, Belgium
| | - Violette Coppens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Scientific Institute for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Hospital Duffel - VZW Emmaüs, Duffel, Belgium
| | - Erik Fransen
- StatUa Centre for Statistics, University of Antwerp, Antwerp, Belgium
| | - Peter de Boer
- Janssen Research and Development, A Division of Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Maarten Timmers
- Janssen Research and Development, A Division of Janssen Pharmaceutica N.V., Beerse, Belgium.,Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Bernard Sabbe
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Scientific Institute for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Hospital Duffel - VZW Emmaüs, Duffel, Belgium
| | - Manuel Morrens
- Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Scientific Institute for Neuropsychiatric and Psychopharmacological Studies (SINAPS), University Psychiatric Hospital Duffel - VZW Emmaüs, Duffel, Belgium
| |
Collapse
|
61
|
Wilkowska A, Szałach Ł, Cubała WJ. Ketamine in Bipolar Disorder: A Review. Neuropsychiatr Dis Treat 2020; 16:2707-2717. [PMID: 33209026 PMCID: PMC7670087 DOI: 10.2147/ndt.s282208] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/10/2020] [Indexed: 12/25/2022] Open
Abstract
Bipolar disorder (BD) is a psychiatric illness associated with high morbidity, mortality and suicide rate. It has neuroprogressive course and a high rate of treatment resistance. Hence, there is an unquestionable need for new BD treatment strategies. Ketamine appears to have rapid antidepressive and antisuicidal effects. Since most of the available studies concern unipolar depression, here we present a novel insight arguing that ketamine might be a promising treatment for bipolar disorder.
Collapse
Affiliation(s)
- Alina Wilkowska
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Łukasz Szałach
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Wiesław J Cubała
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
62
|
Jesudas BR, Nandeesha H, Menon V, Allimuthu P. Relationship of elevated neural cell adhesion molecule 1 with interleukin-10 and disease severity in bipolar disorder. Asian J Psychiatr 2020; 47:101849. [PMID: 31704596 DOI: 10.1016/j.ajp.2019.101849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022]
Abstract
Neural plasticity and inflammation are known to play a role in the pathogenesis of Bipolar disorder. The data related to markers of neural plasticity in bipolar disorder are limited. The objective of the study was to assess the levels of neural cell adhesion molecule 1 (NCAM 1) and interleukin-10 and their association with disease severity in bipolar disorder. 40 bipolar disorder I patients with acute manic symptoms and 40 age matched controls were enrolled in the study. Neural cell adhesion molecule 1 and interleukin-10 (IL-10) levels were assessed in both the groups. NCAM 1 and interleukin-10 levels were significantly increased in bipolar disorder when compared with controls. There was significant positive correlation of Young Mania Rating score with NCAM 1 (r = 0.538, p = < 0.001) in patients with BD. Multi variate analysis revealed that IL-10 (p = 0.021) was lower in controls by 0.012 ng/L and NCAM 1(p = 0.048) was lower in controls by 0.002 ng/L compared to BD cases and this difference was statistically significant. Based on the findings we conclude that neural cell adhesion molecule 1 is increased and associated with disease severity in bipolar disorder.
Collapse
Affiliation(s)
- Blessed Raj Jesudas
- Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | | | | | - Priya Allimuthu
- Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
63
|
Abstract
Objectives: The present study evaluated early visual processing, in terms of the contrast sensitivity function (CSF), in bipolar disorder (BPD) patients.Methods: Data were recorded in 17 healthy participants and 17 outpatients with type 1 BPD, from 20 to 45 years of age. The CSF was measured at spatial frequencies of 0.2, 0.6, 3.1, 8.0, 16.0 and 20.0 cycles per degree (cpd) using Gabor patches and a two-alternative, forced-choice, logarithmic staircase method. The groups were matched for gender, age and level of education.Results: The CSF differed between groups. Patients with BPD had lower discrimination at spatial frequencies of 0.2 cpd (P < 0.001), 0.6 cpd (P < 0.001), 16.0 cpd (P < 0.001) and 20.0 cpd (P < 0.001) compared with healthy subjects. No differences were observed at 3.1 cpd (P > 0.05) and 8.0 cpd (P > 0.05). This visual impairment was related both to longer duration of illness and to greater severity of manic symptoms.Conclusions: The differences in visual processing were pronounced in patients with BPD, which justifies further investigations of the pathophysiological mechanisms that are involved in sensorial alterations.
Collapse
Affiliation(s)
- Thiago P Fernandes
- Department of Psychology, Perception, Neuroscience and Behaviour Laboratory, Joao Pessoa, Brazil
| | - Steven M Silverstein
- Department of Psychiatry Division of Schizophrenia Research, Rutgers University Behavioural Health Care, Piscataway, NJ, USA
| | - Natalia L Almeida
- Department of Psychology, Perception, Neuroscience and Behaviour Laboratory, Joao Pessoa, Brazil
| | - Natanael A Santos
- Department of Psychology, Perception, Neuroscience and Behaviour Laboratory, Joao Pessoa, Brazil
| |
Collapse
|
64
|
Functional magnetic resonance spectroscopy in patients with schizophrenia and bipolar affective disorder: Glutamate dynamics in the anterior cingulate cortex during a working memory task. Eur Neuropsychopharmacol 2019; 29:222-234. [PMID: 30558824 DOI: 10.1016/j.euroneuro.2018.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/25/2018] [Accepted: 12/01/2018] [Indexed: 12/16/2022]
Abstract
The glutamate system is implicated in the pathophysiology of schizophrenia and mood disorders. Using functional magnetic resonance spectroscopy (1H-fMRS), it is possible to monitor glutamate dynamically in activated brain areas and may give a closer estimate of glutamatergic neurotransmission than standard magnetic resonance spectroscopy. 14 patients with schizophrenia, 15 patients with bipolar disorder II (BPII) and 14 healthy volunteers underwent a 15 min N-back task in a 48s block design during 1H-fMRS acquisition. Data from the first, second and third 16s group of 8 spectra for each block were analysed to measure levels of glutamate and Glx (glutamate + glutamine), scaled to total creatine (TCr), across averaged 0-back and 2-back conditions. A 6 × 3 repeated-measures analysis of variance (rmANOVA) demonstrated a significant main effect of time for Glx/TCr (P = 0.022). There was a significant increase in Glu/TCr (P = 0.004) and Glx/TCr (P < 0.001) between the final spectra of the 0-back and first spectra of the 2-back condition in the healthy control group only. 2 × 2 rmANOVA revealed a significant time by group interaction for Glx/TCr (P = 0.019) across the 0-back condition, with levels reducing in healthy controls and increasing in the schizophrenia group. While healthy volunteers showed significant increases in glutamatergic measures between task conditions, the lack of such a response in patients with schizophrenia and BPII may reflect deficits in glutamatergic neurotransmission. Abnormal increases during periods of relatively low executive load, without the same dynamic modulation as healthy volunteers with increasing task difficulty, further suggests underlying abnormalities of glutamatergic neurotransmission in schizophrenia.
Collapse
|
65
|
Koga N, Ogura J, Yoshida F, Hattori K, Hori H, Aizawa E, Ishida I, Kunugi H. Altered polyunsaturated fatty acid levels in relation to proinflammatory cytokines, fatty acid desaturase genotype, and diet in bipolar disorder. Transl Psychiatry 2019; 9:208. [PMID: 31455761 PMCID: PMC6711984 DOI: 10.1038/s41398-019-0536-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/20/2019] [Indexed: 12/04/2022] Open
Abstract
Inflammation and altered polyunsaturated fatty acid (PUFA) levels have been implicated in bipolar disorder (BD). A recent genome-wide association study identified a locus in the fatty acid desaturase (FADS) gene cluster conferring susceptibility to BD. In this study, we examined PUFA levels in patients with BD in relation to proinflammatory cytokines, FADS genotype, and dietary habits. We enrolled 83 patients with BD and 217 healthy controls who underwent plasma PUFA measurement. A subsample of 65 patients and 90 controls underwent plasma interleukin (IL)-6 and tumor necrosis factor alpha (TNFα) measurement, and three FADS single nucleotide polymorphisms (SNPs) were genotyped. Information on fish consumption was obtained by a self-reported diet history questionnaire. In comparing PUFA levels between patients and controls, significant differences were found for all 7 PUFAs tested. Specifically, n-3 eicosapentaenoic acid (EPA) level was decreased, and n-6 arachidonic acid level was increased in the patients (p < 0.0001 for both). Plasma IL-6 and TNFα levels were both significantly increased in the patients. Plasma EPA level was negatively correlated with IL-6 and TNFα levels. The FADS genotype, which was associated with increased n-6 PUFA levels, was also associated with marked elevation in TNFα levels. Less frequent fish intake was associated with low EPA and high IL-6 level. Taken together, our results provide strong evidence for altered plasma PUFA and proinflammatory cytokine levels in patients with BD. Furthermore, FADS genotype and fish consumption may contribute not only to altered PUFA levels but also to inflammation in BD.
Collapse
Affiliation(s)
- Norie Koga
- 0000 0004 1763 8916grid.419280.6Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan ,Department of Psychiatry, Yamanashi University Graduate School of Medicine, Yamanashi, Japan
| | - Jun Ogura
- 0000 0004 1763 8916grid.419280.6Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Fuyuko Yoshida
- 0000 0004 1763 8916grid.419280.6Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kotaro Hattori
- 0000 0004 1763 8916grid.419280.6Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan ,0000 0004 1763 8916grid.419280.6Department of Bioresources, Medical Genome Center, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroaki Hori
- 0000 0004 1763 8916grid.419280.6Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan ,0000 0000 9832 2227grid.416859.7Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Emiko Aizawa
- 0000 0004 1763 8916grid.419280.6Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan ,0000 0001 0943 978Xgrid.27476.30Department of Human Life Science, Nagoya University of Economics, Aichi, Japan
| | - Ikki Ishida
- 0000 0004 1763 8916grid.419280.6Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|
66
|
Lozupone M, La Montagna M, D'Urso F, Daniele A, Greco A, Seripa D, Logroscino G, Bellomo A, Panza F. The Role of Biomarkers in Psychiatry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:135-162. [PMID: 30747421 DOI: 10.1007/978-3-030-05542-4_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Psychiatric illnesses are cognitive and behavioral disorders of the brain. At present, psychiatric diagnosis is based on DSM-5 criteria. Even if endophenotype specificity for psychiatric disorders is discussed, it is difficult to study and identify psychiatric biomarkers to support diagnosis, prognosis, or clinical response to treatment. This chapter investigates the innovative biomarkers of psychiatric diseases for diagnosis and personalized treatment, in particular post-genomic data and proteomic analyses.
Collapse
Affiliation(s)
- Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Maddalena La Montagna
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Francesca D'Urso
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Greco
- Geriatric Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Davide Seripa
- Geriatric Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Giancarlo Logroscino
- Neurodegenerative Disease Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy.,Department of Clinical Research in Neurology, University of Bari Aldo Moro, Lecce, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Francesco Panza
- Neurodegenerative Disease Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy. .,Geriatric Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy. .,Department of Clinical Research in Neurology, University of Bari Aldo Moro, Lecce, Italy.
| |
Collapse
|
67
|
Autobiographical memory deficits in remitted patients with bipolar disorder I: The effect of impaired memory retrieval. Psychiatry Res 2019; 278:281-288. [PMID: 31254877 DOI: 10.1016/j.psychres.2019.06.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/02/2023]
Abstract
Autobiographical memory (AM) has been studied extensively in different psychiatric disorders. However, less is known about AM in bipolar disorder (BD). Aim of the present study was to investigate BD patients' ability to recall episodic and semantic autobiographical memories after controlling for the effect of other possible neurocognitive deficits. Participants included 30 clinically remitted outpatients with BD type I and 30 healthy controls, matched for age, gender and educational level. Autobiographical memory was examined by the Questionnaire of Autobiographical Memory. Premorbid intellectual functioning, verbal memory, verbal fluency, attention and working memory were also assessed. Bipolar patients were impaired in both episodic and semantic AM, compared with healthy individuals. Deficits involved recall of memories from childhood-adolescence, early adulthood and recent life. Additionally, patients were impaired in verbal memory compared with controls. Differences between study groups in both episodic and semantic AM remained significant even after controlling for the effect of verbal memory deficits. Remitted BD-I patients showed deficits in recalling personal episodic memories and facts dating to three different life periods. These deficits were independent of patients' lower verbal memory performance. Additional research is required to gain a better understanding of the pattern and the mechanisms underlying AM impairment in BD.
Collapse
|
68
|
Influence of adjuvant Coenzyme Q10 on inflammatory and oxidative stress biomarkers in patients with bipolar disorders during the depressive episode. Mol Biol Rep 2019; 46:5333-5343. [DOI: 10.1007/s11033-019-04989-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/19/2019] [Indexed: 12/17/2022]
|
69
|
Valvassori SS, Dal-Pont GC, Resende WR, Varela RB, Lopes-Borges J, Cararo JH, Quevedo J. Validation of the animal model of bipolar disorder induced by Ouabain: face, construct and predictive perspectives. Transl Psychiatry 2019; 9:158. [PMID: 31164628 PMCID: PMC6548776 DOI: 10.1038/s41398-019-0494-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
A particular challenge in the development of a bipolar disorder (BD) model in animals is the complicated clinical course of the condition, characterized by manic, depressive and mixed mood episodes. Ouabain (OUA) is an inhibitor of Na+/K+-ATPase enzyme. Intracerebroventricular (ICV) injection of this drug in rats has been regarded a proper model to study BD by mimic specific manic symptoms, which are reversed by lithium (Li), an important mood stabilizer drug. However, further validation of this experimental approach is required to characterize it as an animal model of BD, including depressive-like behaviors. The present study aimed to assess manic- and depressive-like behaviors, potential alteration in the hypothalamic-pituitary-adrenal (HPA) system and oxidative stress parameters after a single OUA ICV administration in adult male Wistar rats. Moreover, we evaluated Li effects in this experimental setting. Data show that OUA ICV administration could constitute a suitable model for BD since the injection of the drug triggered manic- and depressive-like behaviors in the same animal. Additionally, the OUA model mimics significant physiological and neurochemical alterations detected in BD patients, including an increase in oxidative stress and change in HPA axis. Our findings suggest that decreased Na+/K+-ATPase activity detected in bipolar patients may be linked to increased secretion of glucocorticoid hormones and oxidative damage, leading to the marked behavioral swings. The Li administration mitigated these pathological changes in the rats. The proposed OUA model is regarded as suitable to simulate BD by complying with all validities required to a proper animal model of the psychiatric disorder.
Collapse
Affiliation(s)
- Samira S. Valvassori
- 0000 0001 2150 7271grid.412287.aTranslational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
| | - Gustavo C. Dal-Pont
- 0000 0001 2150 7271grid.412287.aTranslational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
| | - Wilson R. Resende
- 0000 0001 2150 7271grid.412287.aTranslational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
| | - Roger B. Varela
- 0000 0001 2150 7271grid.412287.aTranslational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
| | - Jéssica Lopes-Borges
- 0000 0001 2150 7271grid.412287.aTranslational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
| | - José Henrique Cararo
- 0000 0001 2150 7271grid.412287.aTranslational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil
| | - João Quevedo
- 0000 0001 2150 7271grid.412287.aTranslational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC Brazil ,0000 0000 9206 2401grid.267308.8Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX USA ,0000 0000 9206 2401grid.267308.8Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX USA ,0000 0001 2291 4776grid.240145.6Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX USA
| |
Collapse
|
70
|
He Z, Lu F, Sheng W, Han S, Long Z, Chen Y, Luo W, Yu Y, Nan X, Ouyang A, Cui Q, Chen H. Functional dysconnectivity within the emotion-regulating system is associated with affective symptoms in major depressive disorder: A resting-state fMRI study. Aust N Z J Psychiatry 2019; 53:528-539. [PMID: 30813750 DOI: 10.1177/0004867419832106] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Major depressive disorder (MDD) can be characterized as a multidimensional and system-level disorder. The neuropathophysiological abnormalities have been reported to be distributed in emotion regulation system, involving the prefrontal cortex (PFC), limbic and striatum in convergent studies. Decrease of positive affect and increase of negative affect are recognized as a hallmark of MDD. However, the dysfunctions in affective processing in MDD within the emotion regulation system remains largely unclear. In this study, our goals are to characterize the dysconnectivity pattern within this system and explore the relationships between this kind of dysconnectivity pattern and affective symptoms, which might help us better look into the neuropathophysiological mechanisms underlying MDD. METHODS A total of 34 MDD and 34 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (rsfMRI). The alterations in functional connectivity (FC) within the emotion regulation system and their relationships with affective symptoms were explored. RESULTS Compared with HCs, MDD patients showed aberrant FC within this system. Importantly, deceased FC was mainly involved in the prefrontal-limbic system, while elevated FC was observed in the prefrontal-striatum system. In the MDD group, decreased FC of right posterior hippocampus-left dorsolateral prefrontal cortex (dlPFC) was negatively associated with the negative affect scores and Hamilton Depression Rating Scale scores and the FC of left ventral striatum-left dlPFC was significantly negatively related with the positive affect scores. CONCLUSIONS These findings demonstrated that MDD showed characteristic pathological alterations of the emotion regulation system. Dysconnectivity within prefrontal-limbic system might be more related to the dysregulation of negative affect, whereas dysconnectivity within prefrontal-striatum system might influence more on positive affect processing. The decrease in positive affect and increase in negative affect in MDD might have different pathological basis. These results could help better understand the dysconnectivity pattern in the emotion-regulating system underlying depression.
Collapse
Affiliation(s)
- Zongling He
- 1 The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,2 Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Fengmei Lu
- 1 The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,2 Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Sheng
- 2 Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shaoqiang Han
- 2 Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiliang Long
- 2 Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuyan Chen
- 2 Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Luo
- 1 The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Yu
- 1 The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyu Nan
- 3 School of Public Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Aili Ouyang
- 1 The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Cui
- 3 School of Public Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- 1 The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,2 Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
71
|
Sneeboer MAM, Snijders GJLJ, Berdowski WM, Fernández-Andreu A, van Mierlo HC, Berdenis van Berlekom A, Litjens M, Kahn RS, Hol EM, de Witte LD. Microglia in post-mortem brain tissue of patients with bipolar disorder are not immune activated. Transl Psychiatry 2019; 9:153. [PMID: 31127084 PMCID: PMC6534632 DOI: 10.1038/s41398-019-0490-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/10/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Genetic, epidemiological, and biomarker studies suggest that the immune system is involved in the pathogenesis of bipolar disorder (BD). It has therefore been hypothesized that immune activation of microglia, the resident immune cells of the brain, is associated with the disease. Only a few studies have addressed the involvement of microglia in BD so far and a more detailed immune profiling of microglial activation is lacking. Here, we applied a multi-level approach to determine the activation state of microglia in BD post-mortem brain tissue. We did not find differences in microglial density, and mRNA expression of microglial markers in the medial frontal gyrus (MFG) of patients with BD. Furthermore, we performed in-depth characterization of human primary microglia isolated from fresh brain tissue of the MFG, superior temporal gyrus (STG), and thalamus (THA). Similarly, these ex vivo isolated microglia did not show elevated expression of inflammatory markers. Finally, challenging the isolated microglia with LPS did not result in an increased immune response in patients with BD compared to controls. In conclusion, our study shows that microglia in post-mortem brain tissue of patients with BD are not immune activated.
Collapse
Affiliation(s)
- Marjolein A M Sneeboer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands.
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands.
| | - Gijsje J L J Snijders
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
| | - Woutje M Berdowski
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
| | - Alba Fernández-Andreu
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
| | - Hans C van Mierlo
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
| | - Amber Berdenis van Berlekom
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
| | - Manja Litjens
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
- Neuroimmunology, Netherlands Institute for Neuroscience, an Institute of The Royal Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), 3584 CG, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|
72
|
Melloni EMT, Poletti S, Vai B, Bollettini I, Colombo C, Benedetti F. Effects of illness duration on cognitive performances in bipolar depression are mediated by white matter microstructure. J Affect Disord 2019; 249:175-182. [PMID: 30772745 DOI: 10.1016/j.jad.2019.02.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cognitive deficits are a core feature of bipolar disorder (BD), and persist during the euthymic phase. White matter (WM) microstructural abnormalities are widely considered a structural marker of BD. Features of illness chronicity, such as illness duration and number of mood episodes, have been associated with worsening of both clinical profile and brain structural alterations. This study examined the role of WM integrity as a possible mediator between illness duration and cognitive performances in a sample of BD patients. METHODS We assessed 88 inpatients affected by a depressive episode in course of type I BD for verbal memory, visual memory, working memory, visuospatial constructional abilities, psychomotor coordination, executive functions, processing speed, and verbal fluency. White matter integrity was evaluated through FA measurements derived using the Enhancing Neuro Imaging Genetics Through Meta-Analysis (ENIGMA)-DTI protocol. RESULTS The effect of illness duration on processing speed, verbal memory, and visual memory was mediated by the FA values of bilateral anterior corona radiata, bilateral corona radiata, genu of corpus callosum, and fornix, adjusting for age, sex, education and lithium treatment (p < 0.05). LIMITATIONS Potential interaction factors were not examined in this study. CONCLUSIONS This is the first study to show the role of WM integrity as a mediator of the negative effect of illness duration on cognitive performances. Our data provide new insight into the neuroprogressive hypothesis of BD.
Collapse
Affiliation(s)
| | - Sara Poletti
- University Vita-Salute San Raffaele, Milano, Italy
| | - Benedetta Vai
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Irene Bollettini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | | | | |
Collapse
|
73
|
He Z, Sheng W, Lu F, Long Z, Han S, Pang Y, Chen Y, Luo W, Yu Y, Nan X, Cui Q, Chen H. Altered resting-state cerebral blood flow and functional connectivity of striatum in bipolar disorder and major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:177-185. [PMID: 30500413 DOI: 10.1016/j.pnpbp.2018.11.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/26/2018] [Accepted: 11/15/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Clinically distinguishing bipolar disorder (BD) from major depressive disorder (MDD) during depressive states is difficult. Neuroimaging findings suggested that patients with BD and those with MDD differed with respect to the gray matter volumes of their subcortical structures, especially in their striatum. However, whether these disorders have different effects on functionally striatal neuronal activity and connectivity is unclear. METHODS Arterial spin labeling and resting-state functional MRI was performed on 25 currently depressive patients with BD, 25 depressive patients with MDD, and 34 healthy controls (HCs). The functional properties of striatal neuronal activity (cerebral blood flow, CBF) and its functional connectivity (FC) were analyzed, and the results from the three groups were compared. The result of the multiple comparisons was corrected on the basis of the Gaussian Random Field theory. RESULTS The patients with BD and those with MDD both had higher CBF values than the HCs in the right caudate and right putamen. The hyper-metabolism of right striatum in BD patients was associated with increased average duration per depressive episode. The two disorders showed commonly increased FC between the striatum and dorsolateral prefrontal cortex, whereas the altered FC of the striatum with precuneus/cuneus was observed only in patients with BD. CONCLUSIONS Patients with BD and those with MDD had a common deficit in their prefrontal-limbic-striatal circuits. The altered striato-precuneus FC can be considered as a marker for the differentiation of patients with BD from those with MDD.
Collapse
Affiliation(s)
- Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wei Sheng
- Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhiliang Long
- Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shaoqiang Han
- Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yajing Pang
- Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuyan Chen
- Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wei Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yue Yu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyu Nan
- Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qian Cui
- School of Public Administration, University of Electronic Science and Technology of China, Chengdu, China.
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China; Center for Information in BioMedicine, Key laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
74
|
Wilkowska A, Cubała WJ. Clozapine As Transformative Treatment In Bipolar Patients. Neuropsychiatr Dis Treat 2019; 15:2901-2905. [PMID: 31632038 PMCID: PMC6790347 DOI: 10.2147/ndt.s227196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/19/2019] [Indexed: 01/21/2023] Open
Abstract
Clozapine is an atypical antipsychotic used in treatment-resistant bipolar disorder. There is evidence for its anti-suicidal, anti-aggressive properties and efficacy in substance use comorbidities. Despite guidelines, the drug is used in 1.5% of bipolar patients only. Considering its effectiveness in treatment-resistant cases as well as its epigenetic effects it may become transformative treatment in bipolar disorder impacting the clinical course and psychosocial burden of the disease.
Collapse
Affiliation(s)
- Alina Wilkowska
- Department of Psychiatry, Medical University of Gdańsk, Gdańsk, Poland
| | - Wiesław J Cubała
- Department of Psychiatry, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
75
|
Ask TF, Lugo RG, Sütterlin S. The Neuro-Immuno-Senescence Integrative Model (NISIM) on the Negative Association Between Parasympathetic Activity and Cellular Senescence. Front Neurosci 2018; 12:726. [PMID: 30369866 PMCID: PMC6194361 DOI: 10.3389/fnins.2018.00726] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022] Open
Abstract
There is evidence that accumulated senescent cells drive age-related pathologies, but the antecedents to the cellular stressors that induce senescence remain poorly understood. Previous research suggests that there is a relationship between shorter telomere length, an antecedent to cellular senescence, and psychological stress. Existing models do not sufficiently account for the specific pathways from which psychological stress regulation is converted into production of reactive oxygen species. We propose the neuro-immuno-senescence integrative model (NISIM) suggesting how vagally mediated heart rate variability (HRV) might be related to cellular senescence. Prefrontally modulated, and vagally mediated cortical influences on the autonomic nervous system, expressed as HRV, affects the immune system by adrenergic stimulation and cholinergic inhibition of cytokine production in macrophages and neutrophils. Previous findings indicate that low HRV is associated with increased production of the pro-inflammatory cytokines IL-6 and TNF-α. IL-6 and TNF-α can activate the NFκB pathway, increasing production of reactive oxygen species that can cause DNA damage. Vagally mediated HRV has been related to an individual's ability to regulate stress, and is lower in people with shorter telomeres. Based on these previous findings, the NISIM suggest that the main pathway from psychological stress to individual differences in oxidative telomere damage originates in the neuroanatomical components that modulate HRV, and culminates in the cytokine-induced activation of NFκB. Accumulated senescent cells in the brain is hypothesized to promote age-related neurodegenerative disease, and previous reports suggest an association between low HRV and onset of Alzheimer's and Parkinson's disease. Accumulating senescent cells in peripheral tissues secreting senescence-associated secretory phenotype factors can alter tissue structure and function which can induce cancer and promote tumor growth and metastasis in old age, and previous research suggested that ability to regulate psychological stress has a negative association with cancer onset. We therefore conclude that the NISIM can account for a large proportion of the individual differences in the psychological stress-related antecedents to cellular senescence, and suggest that it can be useful in providing a dynamic framework for understanding the pathways by which psychological stress induce pathologies in old age.
Collapse
Affiliation(s)
- Torvald F. Ask
- Research Group on Cognition, Health, and Performance, Institute of Psychology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Ricardo G. Lugo
- Research Group on Cognition, Health, and Performance, Institute of Psychology, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Stefan Sütterlin
- Faculty of Health and Welfare Sciences, Østfold University College, Halden, Norway
- Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
76
|
Rowland T, Perry BI, Upthegrove R, Barnes N, Chatterjee J, Gallacher D, Marwaha S. Neurotrophins, cytokines, oxidative stress mediators and mood state in bipolar disorder: systematic review and meta-analyses. Br J Psychiatry 2018; 213:514-525. [PMID: 30113291 PMCID: PMC6429261 DOI: 10.1192/bjp.2018.144] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND A reliable biomarker signature for bipolar disorder sensitive to illness phase would be of considerable clinical benefit. Among circulating blood-derived markers there has been a significant amount of research into inflammatory markers, neurotrophins and oxidative stress markers.AimsTo synthesise and interpret existing evidence of inflammatory markers, neurotrophins and oxidative stress markers in bipolar disorder focusing on the mood phase of illness. METHOD Following PRISMA (Preferred Reporting Items for Systematic reviews and Meta-analyses) guidelines, a systematic review was conducted for studies investigating peripheral biomarkers in bipolar disorder compared with healthy controls. We searched Medline, Embase, PsycINFO, SciELO and Web of Science, and separated studies by bipolar mood phase (mania, depression and euthymia). Extracted data on each biomarker in separate mood phases were synthesised using random-effects model meta-analyses. RESULTS In total, 53 studies were included, comprising 2467 cases and 2360 controls. Fourteen biomarkers were identified from meta-analyses of three or more studies. No biomarker differentiated mood phase in bipolar disorder individually. Biomarker meta-analyses suggest a combination of high-sensitivity C-reactive protein/interleukin-6, brain derived neurotrophic factor/tumour necrosis factor (TNF)-α and soluble TNF-α receptor 1 can differentiate specific mood phase in bipolar disorder. Several other biomarkers of interest were identified. CONCLUSIONS Combining biomarker results could differentiate individuals with bipolar disorder from healthy controls and indicate a specific mood-phase signature. Future research should seek to test these combinations of biomarkers in longitudinal studies.Declaration of interestNone.
Collapse
Affiliation(s)
- Tobias Rowland
- IHR Academic Clinical Fellow in Psychiatry, Mental Health and Wellbeing, Warwick Medical School, University of Warwick, UK
| | - Benjamin I. Perry
- NIHR Academic Clinical Fellow in Psychiatry, Mental Health and Wellbeing, Warwick Medical School, University of Warwick, UK
| | - Rachel Upthegrove
- Senior Clinical Lecturer in Psychiatry, Institute of Clinical Sciences, School of Clinical and Experimental Medicine, University of Birmingham, UK
| | - Nicholas Barnes
- Professor of Neuropharmacology, Institute of Clinical Sciences, School of Clinical and Experimental Medicine, University of Birmingham, UK
| | - Jayanta Chatterjee
- Consultant Psychiatrist, Affective Disorders Service, Caludon Centre, Coventry, UK
| | - Daniel Gallacher
- Research Associate in Medical Statistics, WMS Population, Evidence and Technologies, Warwick Medical School, University of Warwick, UK
| | - Steven Marwaha
- Reader in Psychiatry, Mental Health and Wellbeing, Warwick Medical School, University of Warwick,UK,Correspondence: Steven Marwaha, Mental Health and Wellbeing, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
77
|
Morchiladze MM, Silagadze TK, Silagadze ZK. Visceral theory of sleep and origins of mental disorders. Med Hypotheses 2018; 120:22-27. [PMID: 30220335 DOI: 10.1016/j.mehy.2018.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/12/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
Visceral theory of sleep states that the same brain neurons, which process external information in wakefulness, during sleep switch to the processing of internal information coming from various visceral systems. Here we hypothesize that a failure in the commutation of exteroceptive and interoceptive information flows in the brain can manifest itself as a mental illness.
Collapse
Affiliation(s)
| | | | - Zurab K Silagadze
- Novosibirsk State University and Budker Institute of Nuclear Physics, 630 090 Novosibirsk, Russia.
| |
Collapse
|
78
|
Syan SK, Smith M, Frey BN, Remtulla R, Kapczinski F, Hall GBC, Minuzzi L. Resting-state functional connectivity in individuals with bipolar disorder during clinical remission: a systematic review. J Psychiatry Neurosci 2018; 43:298-316. [PMID: 30125243 PMCID: PMC6158027 DOI: 10.1503/jpn.170175] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/21/2017] [Accepted: 01/19/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bipolar disorder is chronic and debilitating. Studies investigating resting-state functional connectivity in individuals with bipolar disorder may help to inform neurobiological models of illness. METHODS We conducted a systematic review with the following goals: to summarize the literature on resting-state functional connectivity in bipolar disorder during clinical remission (euthymia) compared with healthy controls; to critically appraise the literature and research gaps; and to propose directions for future research. We searched PubMed/MEDLINE, Embase, PsycINFO, CINAHL and grey literature up to April 2017. RESULTS Twenty-three studies were included. The most consistent finding was the absence of differences in resting-state functional connectivity of the default mode network (DMN), frontoparietal network (FPN) and salience network (SN) between people with bipolar disorder and controls, using independent component analysis. However, 2 studies in people with bipolar disorder who were positive for psychosis history reported DMN hypoconnectivity. Studies using seed-based analysis largely reported aberrant resting-state functional connectivity with the amygdala, ventrolateral prefrontal cortex, cingulate cortex and medial prefrontal cortex in people with bipolar disorder compared with controls. Few studies used regional homogeneity or amplitude of low-frequency fluctuations. LIMITATIONS We found heterogeneity in the analysis methods used. CONCLUSION Stability of the DMN, FPN and SN may reflect a state of remission. Further, DMN hypoconnectivity may reflect a positive history of psychosis in patients with bipolar disorder compared with controls, highlighting a potentially different neural phenotype of psychosis in people with bipolar disorder. Resting-state functional connectivity changes between the amygdala, prefrontal cortex and cingulate cortex may reflect a neural correlate of subthreshold symptoms experienced in bipolar disorder euthymia, the trait-based pathophysiology of bipolar disorder and/or a compensatory mechanism to maintain a state of euthymia.
Collapse
Affiliation(s)
- Sabrina K Syan
- From the MiNDS Neuroscience Graduate Program, McMaster University (Syan, Frey, Kapczinski, Hall, Minuzzi); the Women's Health Concerns Clinic (Syan, Frey, Remtulla, Minuzzi); the Mood Disorders Program, St. Joseph's Healthcare (Frey, Kapczinski, Minuzzi); the Department of Psychiatry and Behavioural Neurosciences, McMaster University (Smith, Frey, Kapczinski, Minuzzi, Smith); and the Department of Psychology, Neuroscience and Behaviour, McMaster University (Hall), Hamilton, Ontario, Canada
| | - Mara Smith
- From the MiNDS Neuroscience Graduate Program, McMaster University (Syan, Frey, Kapczinski, Hall, Minuzzi); the Women's Health Concerns Clinic (Syan, Frey, Remtulla, Minuzzi); the Mood Disorders Program, St. Joseph's Healthcare (Frey, Kapczinski, Minuzzi); the Department of Psychiatry and Behavioural Neurosciences, McMaster University (Smith, Frey, Kapczinski, Minuzzi, Smith); and the Department of Psychology, Neuroscience and Behaviour, McMaster University (Hall), Hamilton, Ontario, Canada
| | - Benicio N Frey
- From the MiNDS Neuroscience Graduate Program, McMaster University (Syan, Frey, Kapczinski, Hall, Minuzzi); the Women's Health Concerns Clinic (Syan, Frey, Remtulla, Minuzzi); the Mood Disorders Program, St. Joseph's Healthcare (Frey, Kapczinski, Minuzzi); the Department of Psychiatry and Behavioural Neurosciences, McMaster University (Smith, Frey, Kapczinski, Minuzzi, Smith); and the Department of Psychology, Neuroscience and Behaviour, McMaster University (Hall), Hamilton, Ontario, Canada
| | - Raheem Remtulla
- From the MiNDS Neuroscience Graduate Program, McMaster University (Syan, Frey, Kapczinski, Hall, Minuzzi); the Women's Health Concerns Clinic (Syan, Frey, Remtulla, Minuzzi); the Mood Disorders Program, St. Joseph's Healthcare (Frey, Kapczinski, Minuzzi); the Department of Psychiatry and Behavioural Neurosciences, McMaster University (Smith, Frey, Kapczinski, Minuzzi, Smith); and the Department of Psychology, Neuroscience and Behaviour, McMaster University (Hall), Hamilton, Ontario, Canada
| | - Flavio Kapczinski
- From the MiNDS Neuroscience Graduate Program, McMaster University (Syan, Frey, Kapczinski, Hall, Minuzzi); the Women's Health Concerns Clinic (Syan, Frey, Remtulla, Minuzzi); the Mood Disorders Program, St. Joseph's Healthcare (Frey, Kapczinski, Minuzzi); the Department of Psychiatry and Behavioural Neurosciences, McMaster University (Smith, Frey, Kapczinski, Minuzzi, Smith); and the Department of Psychology, Neuroscience and Behaviour, McMaster University (Hall), Hamilton, Ontario, Canada
| | - Geoffrey B C Hall
- From the MiNDS Neuroscience Graduate Program, McMaster University (Syan, Frey, Kapczinski, Hall, Minuzzi); the Women's Health Concerns Clinic (Syan, Frey, Remtulla, Minuzzi); the Mood Disorders Program, St. Joseph's Healthcare (Frey, Kapczinski, Minuzzi); the Department of Psychiatry and Behavioural Neurosciences, McMaster University (Smith, Frey, Kapczinski, Minuzzi, Smith); and the Department of Psychology, Neuroscience and Behaviour, McMaster University (Hall), Hamilton, Ontario, Canada
| | - Luciano Minuzzi
- From the MiNDS Neuroscience Graduate Program, McMaster University (Syan, Frey, Kapczinski, Hall, Minuzzi); the Women's Health Concerns Clinic (Syan, Frey, Remtulla, Minuzzi); the Mood Disorders Program, St. Joseph's Healthcare (Frey, Kapczinski, Minuzzi); the Department of Psychiatry and Behavioural Neurosciences, McMaster University (Smith, Frey, Kapczinski, Minuzzi, Smith); and the Department of Psychology, Neuroscience and Behaviour, McMaster University (Hall), Hamilton, Ontario, Canada
| |
Collapse
|
79
|
Transdiagnostic and diagnosis-specific dynamic functional connectivity anchored in the right anterior insula in major depressive disorder and bipolar depression. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:7-15. [PMID: 29608925 DOI: 10.1016/j.pnpbp.2018.03.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/16/2018] [Accepted: 03/24/2018] [Indexed: 11/22/2022]
Abstract
Dysfunctional and abnormal functional connectivity in the right anterior insula (rAI) may underlie the pathophysiology of depression episode in bipolar disorder (BD) and of major depressive disorder (MDD). In this study, we examined the dynamic functional connectivity (dFC) of the rAI of 30 patients with BD, 30 patients with MDD, and 30 healthy controls. In the functional separation of rAI, the right dorsal AI (rdAI) and ventral AI (rvAI) were defined as seed regions. Sliding-window correlation of rAI subregions was implemented to measure the variance of dFC. BD and MDD shared abnormality in dFC, such as the decreased dFC between the rvAI and right ventrolateral prefrontal cortex. Others were disorder-specific and included MDD-related increases in dFC between the rvAI and right precuneus, temporal pole, and left dorsolateral prefrontal cortex. This observation is in stark contrast to BD-related increases in the dFC between the rdAI and left inferior parietal lobule and right middle occipital gyrus. The abnormal dFC of rAI shared by BD and MDD supports the importance of rAI in the common pathophysiology of these disorders. Meanwhile, disorder-specific abnormalities that attribute to the dorsal and ventral divisions of rAI can be used as biomarkers to differentiate BD from MDD.
Collapse
|
80
|
Fernández A, Al-Timemy AH, Ferre F, Rubio G, Escudero J. Complexity analysis of spontaneous brain activity in mood disorders: A magnetoencephalography study of bipolar disorder and major depression. Compr Psychiatry 2018; 84:112-117. [PMID: 29734005 DOI: 10.1016/j.comppsych.2018.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE The lack of a biomarker for Bipolar Disorder (BD) causes problems in the differential diagnosis with other mood disorders such as major depression (MD), and misdiagnosis frequently occurs. Bearing this in mind, we investigated non-linear magnetoencephalography (MEG) patterns in BD and MD. METHODS Lempel-Ziv Complexity (LZC) was used to evaluate the resting-state MEG activity in a cross-sectional sample of 60 subjects, including 20 patients with MD, 16 patients with BD type-I, and 24 control (CON) subjects. Particular attention was paid to the role of age. The results were aggregated by scalp region. RESULTS Overall, MD patients showed significantly higher LZC scores than BD patients and CONs. Linear regression analyses demonstrated distinct tendencies of complexity progression as a function of age, with BD patients showing a divergent tendency as compared with MD and CON groups. Logistic regressions confirmed such distinct relationship with age, which allowed the classification of diagnostic groups. CONCLUSIONS The patterns of neural complexity in BD and MD showed not only quantitative differences in their non-linear MEG characteristics but also divergent trajectories of progression as a function of age. Moreover, neural complexity patterns in BD patients resembled those previously observed in schizophrenia, thus supporting preceding evidence of common neuropathological processes.
Collapse
Affiliation(s)
- Alberto Fernández
- Department of Psychiatry, Faculty of Medicine, Complutense University, Madrid, Spain; Laboratory of Cognitive and Computational Neuroscience, Centre for Biomedical Technology (CTB), Technical University and Complutense University, Madrid, Spain.
| | - Ali H Al-Timemy
- Biomedical Engineering Department, Al-Khwarizmi College of Engineering, University of Baghdad, Iraq; Centre for Robotics and Neural Systems (CRNS), Cognitive Institute, Plymouth University, PL4 8AA, United Kingdom
| | - Francisco Ferre
- Department of Psychiatry, Faculty of Medicine, Complutense University, Madrid, Spain; Psychiatry Department, Gregorio Marañón University Hospital, Madrid, Spain
| | - Gabriel Rubio
- Department of Psychiatry, Faculty of Medicine, Complutense University, Madrid, Spain; Psychiatry Department, 12 de Octubre University Hospital, Madrid, Spain
| | - Javier Escudero
- School of Engineering, Institute for Digital Communications, The University of Edinburgh, Edinburgh EH9 3FB, United Kingdom
| |
Collapse
|
81
|
Smagula SF, Krafty RT, Thayer JF, Buysse DJ, Hall MH. Rest-activity rhythm profiles associated with manic-hypomanic and depressive symptoms. J Psychiatr Res 2018; 102:238-244. [PMID: 29705489 PMCID: PMC6005763 DOI: 10.1016/j.jpsychires.2018.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 04/05/2018] [Accepted: 04/18/2018] [Indexed: 11/23/2022]
Abstract
Rest-activity rhythm (RAR) disturbances are associated with mood disorders. But there remains a need to identify the particular RAR profiles associated with psychiatric symptom dimensions. Establishing such profiles would support the development of tools that track the 24-h sleep-wake phenotypes signaling clinical heterogeneity. We used data-driven clustering to identify RAR profiles in 145 adults aged 36-82 years (mean = 60, standard deviation = 9). Then we evaluated psychiatric symptom dimensions (including positive and negative affect, depressive, manic-hypomanic, panic-agoraphobic, and substance use symptoms) associated with these empirically-derived RAR profiles. Clustering identified three sub-groups characterized, on average, by: (1) earlier and more robust RARs ("earlier/robust," n = 55, 38%); (2) later and irregular RARs ("later/irregular," n = 31, 21%); and (3) later RARs and a narrower active period ("later/narrower," n = 59, 41%). Compared with the "earlier/robust" group: the "later/irregular" group had higher levels of lifetime manic-hypomanic symptoms (β (standard error) = 0.80 (0.22) higher standardized symptom units, p = 0.0004) and lifetime depression symptoms (β (standard error) = 0.73 (0.21) higher standardized symptom units, p = 0.0009); the "later/narrower" group had more lifetime depression symptoms (β (standard error) = 0.48 (0.18) higher standardized symptom units, p = 0.0076). These associations persisted after adjustments for sleep continuity and duration, suggesting that RARs are distinct behavioral correlates of clinical heterogeneity. Longitudinal studies are needed to confirm whether RAR characteristics contribute to the risk of manic and/or depressive episodes, and whether they reflect the consequences of psychiatric disturbance (e.g., on quality of life or disability). Opportunities to monitor or intervene on objectively-assessed RARs could facilitate better mental health related outcomes.
Collapse
Affiliation(s)
- Stephen F Smagula
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Robert T Krafty
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julian F Thayer
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Daniel J Buysse
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Martica H Hall
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
82
|
de Abreu MS, Giacomini ACVV, Zanandrea R, Dos Santos BE, Genario R, de Oliveira GG, Friend AJ, Amstislavskaya TG, Kalueff AV. Psychoneuroimmunology and immunopsychiatry of zebrafish. Psychoneuroendocrinology 2018; 92:1-12. [PMID: 29609110 DOI: 10.1016/j.psyneuen.2018.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022]
Abstract
Despite the high prevalence of neural and immune disorders, their etiology and molecular mechanisms remain poorly understood. As the zebrafish (Danio rerio) is increasingly utilized as a powerful model organism in biomedical research, mounting evidence suggests these fish as a useful tool to study neural and immune mechanisms and their interplay. Here, we discuss zebrafish neuro-immune mechanisms and their pharmacological and genetic modulation, the effect of stress on cytokines, as well as relevant models of microbiota-brain interplay. As many human brain diseases are based on complex interplay between the neural and the immune system, here we discuss zebrafish models, as well as recent successes and challenges, in this rapidly expanding field. We particularly emphasize the growing utility of zebrafish models in translational immunopsychiatry research, as they improve our understanding of pathogenetic neuro-immune interactions, thereby fostering future discovery of potential therapeutic agents.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Ana C V V Giacomini
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Postgraduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, Brazil; Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, Brazil
| | - Rodrigo Zanandrea
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Bruna E Dos Santos
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | | | - Ashton J Friend
- Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Tamara G Amstislavskaya
- Research Institute of Physiology and Basic Medicine SB RAS, and Department of Neuroscience, Novosibirsk State University, Novosibirsk, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia; ZENEREI Research Center, Slidell, LA, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Russian Research Center for Radiology and Surgical Technologies, Pesochny, Russia; Laboratory of Translational Biopsychiatry, Research Institute of Physiology and Basic Medicine SB RAS, Novosibirsk, Russia.
| |
Collapse
|
83
|
Çeri V, Aykutlu HC, Görker I, Akça ÖF, Tarakçıoğlu MC, Aksoy UM, Kaya H, Sertdemir M, İnce E, Kadak MT, Yalçın GY, Guliyev C, Bilgiç A, Çiftçi E, Tekin K, Tuna ZO, Oğuzdoğan B, Duman NS, Semerci B, Üneri ÖŞ, Karabekiroglu K, Mutluer T, Nebioglu M, Başgül ŞS, Naharcı Mİ, Maden Ö, Hocaoğlu Ç, Durmaz O, Usta H, Boşgelmez Ş, Puşuroğlu M, Eser HY, Kaçar M, Çakır M, Karatepe HT, Işık Ü, Kara H, Yeloğlu ÇH, Yazıcı E, Gündüz A, Karataş KS, Yavlal F, Uzun N, Yazici AB, Bodur Ş, Aslan EA, Batmaz S, Çelik F, Açıkel SB, Topal Z, Altunsoy N, Tulacı ÖD, Demirel ÖF, Çıtak S, Çak HT, Artık AB, Özçetin A, Özdemir I, Çelik FGH, Kültür SEÇ, Çipil A, Ay R, Arman AR, Yazıcı KU, Yuce AE, Yazıcı İP, Kurt E, Kaçar AŞ, Erbil N, Poyraz CA, Altın GE, Şahin B, Kılıç Ö, Turan Ş, Aydın M, Kuru E, Bozkurt A, Güleç H, İnan MY, Şevik AE, Baykal S, Karaer Y, Yanartaş O, Aksu H, Ergün S, Görmez A, Yıldız M, Bag S, Özkanoğlu FK, Caliskan M, Yaşar AB, Konuk E, Altın M, Bulut S, Bulut GÇ, Tulacı RG, Küpeli NY, Enver N, Tasci İ, Kani AS, Bahçeci B, Oğuz G, Şenyuva G, Ünal GT, Yektaş Ç, Örüm MH, Göka E, Gıca Ş, Şahmelikoğlu Ö, Dinç GŞ, Erşan S, Erşan E, Ceylan MF, Hesapçıoğlu ST, Solmaz M, Balcioglu YH, Cetin M, Tosun M, Yurteri N, Ulusoy S, Karadere ME, Kivrak Y, Görmez V. Symposium Oral Presentations. PSYCHIAT CLIN PSYCH 2018. [DOI: 10.1080/24750573.2018.1464274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Veysi Çeri
- Marmara University Pendik Research and Training Hospital, Child and Adolescent Psychiatry Clinic, Istanbul, Turkey
| | - Hasan Cem Aykutlu
- Department of Child and Adolescent Psychiatry, Trakya University School of Medicine, Edirne, Turkey
| | - Işık Görker
- Department of Child and Adolescent Psychiatry, Trakya University School of Medicine, Edirne, Turkey
| | - Ömer Faruk Akça
- Department of Child and Adolescent Psychiatry, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| | - Mahmut Cem Tarakçıoğlu
- Health Sciences University Kanuni Sultan Süleyman Research and Training Hospital, Istanbul, Turkey
| | - Umut Mert Aksoy
- Health Sciences University Kanuni Sultan Süleyman Research and Training Hospital, Istanbul, Turkey
| | - Heysem Kaya
- Department of Computer Engineering, Çorlu Faculty of Engineering, Namık Kemal University, Çorlu, Tekirdağ, Turkey
| | - Merve Sertdemir
- Department of Child and Adolescent Psychiatry, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| | - Ezgi İnce
- Department of Psychiatry, Istanbul University Istanbul School of Medicine, Istanbul, Turkey
| | - Muhammed Tayyib Kadak
- Department of Child and Adolescent Psychiatry, Istanbul University Cerrahpaşa School of Medicine, Istanbul, Turkey
| | | | | | - Ayhan Bilgiç
- Department of Child and Adolescent Psychiatry, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| | - Elvan Çiftçi
- Department of Psychiatry, Erenkoy Research and Training Hospital, Istanbul, Turkey
| | | | | | | | | | - Bengi Semerci
- Department of Psychology, Hasan Kalyoncu University, Gaziantep, Turkey
| | - Özden Şükran Üneri
- Department of Child and Adolescent Psychiatry, Yıldırım Beyazıt University School of Medicine, Ankara, Turkey
| | | | - Tuba Mutluer
- Koç University Hospital, Department of Child and Adolescent Psychiatry, Istanbul, Turkey
| | - Melike Nebioglu
- Health Sciences University, Haydarpaşa Numune Research and Training Hospital, Istanbul, Turkey
| | | | - Mehmet İlkin Naharcı
- Division of Geriatrics, Department of Internal Medicine, Health Sciences University, Ankara, Turkey
| | - Özgür Maden
- SBÜ Sultan Abdülhamid Han Education and Training Hospital, Department of Psychiatry, Istanbul, Turkey
| | - Çiçek Hocaoğlu
- Department of Psychiatry, Recep Tayyip Erdogan University School of Medicine, Rize, Turkey
| | - Onur Durmaz
- Erenköy Mental Health and Neurology Research and Training Hospital, Department of Psychiatry, Istanbul, Turkey
| | - Haluk Usta
- Erenköy Mental Health and Neurology Research and Training Hospital, Department of Psychiatry, Istanbul, Turkey
| | - Şükriye Boşgelmez
- Kocaeli Derince Research and Training Hospital, Psychiatry Clinic, Kocaeli, Turkey
| | | | - Hale Yapıcı Eser
- KOÇ University School of Medicine, Istanbul, Turkey
- KOÇ University Research Center FOR Translational Medicine (Kuttam), Istanbul, Turkey
- Koç University School of Medicine Department of Psychiatry, Istanbul, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Murat Kaçar
- Department of Child and Adolescent Psychiatry, Recep Tayyip Erdogan University School of Medicine, Rize, Turkey
| | - Mahmut Çakır
- Child Psychiatry Clinic, Health Sciences University, Amasya Research and Training Hospital, Amasya, Turkey
| | - Hasan Turan Karatepe
- Department of Psychiatry, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey
| | - Ümit Işık
- Department of Child and Adolescent Psychiatry, Yozgat State Hospital, Yozgat, Turkey
| | - Halil Kara
- Department of Child and Adolescent Psychiatry, Aksaray University Research and Training Hospital, Aksaray, Turkey
| | | | - Esra Yazıcı
- Department of Psychiatry, Sakarya University School of Medicine, Sakarya, Turkey
| | - Anıl Gündüz
- Health Sciences University, Haydarpaşa Numune Research and Training Hospital, Istanbul, Turkey
| | - Kader Semra Karataş
- Recep Tayyip Erdogan University School of Medicine Psychiatry Department, Rize, Turkey
| | - Figen Yavlal
- Department of Neurology, School of Medicine, Bahcesehir University, Istanbul, Turkey
- Department of Neurology, Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Necati Uzun
- Department of Child and Adolescent Psychiatry, Elazığ Psychiatry Hospital, Elazığ, Turkey
| | - Ahmet Bulent Yazici
- Department of Psychiatry, Sakarya University School of Medicine, Sakarya, Turkey
| | - Şahin Bodur
- Health Sciences University, Gulhane Research and Training Hospital, Child and Adolescent Psychiatry Clinic, Ankara, Turkey
| | - Esma Akpınar Aslan
- Department of Psychiatry, Gaziosmanpaşa University School of Medicine, Tokat, Turkey
| | - Sedat Batmaz
- Department of Psychiatry, Gaziosmanpasa University School of Medicine, Tokat, Turkey
| | - Feyza Çelik
- Department of Psychiatry, Dumlupınar University School of Medicine, Evliya Çelebi Research and Training Hospital, Kütahya, Turkey
| | - Sadettin Burak Açıkel
- Dr. Sami Ulus Research and Training Hospital, Child and Adolescent Psychiatry Department, Ankara, Turkey
| | | | | | | | - Ömer Faruk Demirel
- Department of Psychiatry, Cerrahpaşa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Serhat Çıtak
- Department of Psychiatry, Istanbul Medeniyet University, School of Medicine, Istanbul, Turkey
| | - Halime Tuna Çak
- Department of Child and Adolescent Psychiatry, Hacettepe University School of Medicine, Ankara, Turkey
| | - Abdül Baki Artık
- Department of Child and Adolescent Psychiatry, Hacettepe University School of Medicine, Ankara, Turkey
| | - Adnan Özçetin
- Department of Psychiatry, Duzce University School of Medicine, Duzce, Turkey
| | - Ilker Özdemir
- Giresun University Prof. Dr. A. İlhan Özdemir Research and Training Hospital, Giresun, Turkey
| | | | | | - Arif Çipil
- Health Sciences University, Haydarpaşa Numune Research and Training Hospital, Istanbul, Turkey
| | - Rukiye Ay
- Malatya Research and Training Hospital, Malatya, Turkey
| | - Ayşe Rodopman Arman
- Department of Child and Adolescent Psychiatry, Marmara University School of Medicine, Istanbul
| | - Kemal Utku Yazıcı
- Department of Child and Adolescent Psychiatry, Firat University School of Medicine, Elazig, Turkey
| | | | - İpek Perçinel Yazıcı
- Department of Child and Adolescent Psychiatry, Firat University School of Medicine, Elazig, Turkey
| | - Emel Kurt
- Psychiatry Clinic, Hisar Intercontinental Hospital, Istanbul, Turkey
| | - Anıl Şafak Kaçar
- Koc University, Research Center for Translational Medicine, Istanbul, Turkey
| | - Nurhan Erbil
- Department of Biophysics, Hacettepe University School of Medicine, Ankara, Turkey
| | - Cana Aksoy Poyraz
- Department of Psychiatry, Istanbul University Cerrahpaşa School of Medicine, Istanbul, Turkey
| | | | - Berkan Şahin
- Iğdır State Hospital, Child and Adolescent Psychiatry Clinic, Iğdır, Turkey
| | - Özge Kılıç
- Department of Psychiatry, Koç University Hospital, Istanbul, Turkey
| | - Şenol Turan
- Department of Psychiatry, Istanbul University Cerrahpaşa School of Medicine, Istanbul, Turkey
| | - Memduha Aydın
- Department of Psychiatry, Selçuk University School of Medicine, Konya, Turkey
| | - Erkan Kuru
- Özel Boylam Psychiatry Hospital, Ankara, Turkey
| | - Abdullah Bozkurt
- Department of Child and Adolescent Psychiatry, Konya Research and Training Hospital, Konya, Turkey
| | - Hüseyin Güleç
- Erenköy Mental Health and Neurology Research and Training Hospital, Department of Psychiatry, Istanbul, Turkey
| | | | - Ali Emre Şevik
- Department of Psychiatry, Çanakkale 18 Mart University School of Medicine, Çanakkale, Türkiye
| | - Saliha Baykal
- Department of Child and Adolescent Psychiatry, Namık Kemal University School of Medicine, Tekirdağ, Turkey
| | - Yusuf Karaer
- Department of Child and Adolescent Psychiatry, Hacettepe University School of Medicine, Ankara, Turkey
| | - Omer Yanartaş
- Department of Psychiatry, Marmara Medical School, Istanbul, Turkiye
| | - Hatice Aksu
- Department of Child and Adolescent Psychiatry, Adnan Menderes University School of Medicine, Aydın, Turkey
| | - Serhat Ergün
- Department of Psychiatry, Marmara University Pendik Research and Training Hospital, Istanbul, Turkey
| | - Aynur Görmez
- Department of Child and Adolescent Psychiatry, Istanbul Medeniyet University School of Medicine, Istanbul, Turkey
| | - Mesut Yıldız
- Department of Psychiatry, School of Medicine, Marmara University, Istanbul, Turkey
| | - Sevda Bag
- Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | | | - Mecit Caliskan
- Health Sciences University, Haydarpaşa Numune Research and Training Hospital, Istanbul, Turkey
| | - Alişan Burak Yaşar
- Health Sciences University, Haydarpaşa Numune Research and Training Hospital, Istanbul, Turkey
- Behavioral Sciences Institute, Istanbul, Turkey
| | - Emre Konuk
- Health Sciences University, Haydarpaşa Numune Research and Training Hospital, Istanbul, Turkey
- Behavioral Sciences Institute, Istanbul, Turkey
| | - Murat Altın
- Istinye University Hospital, Psychiatry Clinic, Istanbul, Turkey
| | - Serkut Bulut
- Psychiatry Clinic, Health Sciences University Sakarya Research and Training Hospital, Sakarya, Turkey
| | | | - Rıza Gökçer Tulacı
- Uşak University School of Medicine Research and Training Hospital, Uşak, Turkey
| | - Neşe Yorguner Küpeli
- Department of Psychiatry, Marmara University Pendik Research and Training Hospital, Istanbul, Turkey
| | - Necati Enver
- Department of Otolaryngology, Marmara University Pendik Research and Training Hospital, Istanbul, Turkey
| | - İlker Tasci
- Health Sciences University, Gulhane School of Medicine, Department of Internal Medicine, Ankara, Turkey
| | - Ayşe Sakallı Kani
- Marmara University Pendik Research and Training Hospital, Istanbul, Turkey
| | - Bülent Bahçeci
- Department of Psychiatry, Recep Tayyip Erdogan University, Rize, Turkey
| | | | | | - Gülşen Teksin Ünal
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey
| | - Çiğdem Yektaş
- Duzce University School of Medicine, Department of Child and Adolescent Psychiatry, Duzce, Turkey
| | - Mehmet Hamdi Örüm
- Department of Psychiatry, Adiyaman University School of Medicine, Adiyaman, Turkey
| | - Erol Göka
- SBÜ Ankara Numune Eğitim ve Araştırma Hastanesi
| | - Şakir Gıca
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey
| | - Özge Şahmelikoğlu
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey
| | - Gülser Şenses Dinç
- Department of Child and Adolescent Psychiatry, Ankara Children’s Hematology Oncology Research and Training Hospital, Ankara Turkey
| | - Serpil Erşan
- Cumhuriyet University Advanced Technology Research and Application Center, Sivas, Turkey
| | - Erdal Erşan
- Sivas Numune Hospital, Community Mental Health Center, Sivas, Turkey
| | - Mehmet Fatih Ceylan
- Department of Child and Adolescent Psychiatry, Yıldırım Beyazıt University School of Medicine, Ankara, Turkey
| | - Selma Tural Hesapçıoğlu
- Department of Child and Adolescent Psychiatry, Yıldırım Beyazıt University School of Medicine, Ankara, Turkey
| | - Mustafa Solmaz
- Health Sciences University Bagcilar Research and Training Hospital, Department of Psychiatry, Istanbul, Turkey
- Bakirkoy Prof. Mazhar Osman Training and Research Hospital for Psychiatry, Neurology, and Neurosurgery, Forensic Psychiatry Unit, Istanbul, Turkey
| | - Yasin Hasan Balcioglu
- Health Sciences University Bagcilar Research and Training Hospital, Department of Psychiatry, Istanbul, Turkey
- Bakirkoy Prof. Mazhar Osman Training and Research Hospital for Psychiatry, Neurology, and Neurosurgery, Forensic Psychiatry Unit, Istanbul, Turkey
| | | | - Musa Tosun
- Istanbul University Cerrahpaşa School of Medicine, Department of Child and Adolescent Psychiatry, Istanbul, Turkey
| | - Nihal Yurteri
- Duzce University School of Medicine, Department of Child and Adolescent Psychiatry, Duzce, Turkey
| | - Sevinc Ulusoy
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry and Neurology, Istanbul, Turkey
| | | | - Yüksel Kivrak
- Department of Psychiatry, Kafkas University School of Medicine, Kars, Turkey
| | - Vahdet Görmez
- Bezmialem Vakif University, Department of Child and Adolescent Psychiatry, Istanbul, Turkey
| |
Collapse
|
84
|
Excitatory and inhibitory synaptic dysfunction in mania: an emerging hypothesis from animal model studies. Exp Mol Med 2018; 50:1-11. [PMID: 29628501 PMCID: PMC5938027 DOI: 10.1038/s12276-018-0028-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/29/2017] [Indexed: 12/26/2022] Open
Abstract
Bipolar disorder (BD) is a common psychiatric disorder characterized by recurrent mood swings between depression and mania, and is associated with high treatment costs. The existence of manic episodes is the defining feature of BD, during which period, patients experience extreme elevation in activity, energy, and mood, with changes in sleep patterns that together severely impair their ability to function in daily life. Despite some limitations in recapitulating the complex features of human disease, several rodent models of mania have been generated and characterized, which have provided important insights toward understanding its underlying pathogenic mechanisms. Among the mechanisms, neuronal excitatory and inhibitory (E/I) synaptic dysfunction in some brain regions, including the frontal cortex, hippocampus, and striatum, is an emerging hypothesis explaining mania. In this review, we highlight recent studies of rodent manic models having impairments in the E/I synaptic development and function. We also summarize the molecular and functional changes of E/I synapses by some mood stabilizers that may contribute to the therapeutic efficacy of drugs. Furthermore, we discuss potential future directions in the study of this emerging hypothesis to better connect the outcomes of basic research to the treatment of patients with this devastating mental illness. Studies in rodents offer insights into bipolar disorder that may help understanding and treatment of this common and debilitating condition. Kihoon Han and colleagues at Korea University in Seoul review research using mice and rats to model the episodes of mania in patients with bipolar disorder. The research supports an emerging hypothesis implicating specific problems with nervous transmission in the brain in the onset of mania. The hypothesis suggests that the transmission of signals between particular nerve cells whose normal function is either to excite or to inhibit other nerve cells may be involved. It also indicates regions of the brain most involved in manic episodes. Changes at the affected nerve junctions—called synapses—brought about by mood-stabilizing drugs are examined. The hypothesis suggests new approaches to treatment options for researchers to explore.
Collapse
|
85
|
Corrêa-Velloso JC, Gonçalves MC, Naaldijk Y, Oliveira-Giacomelli Á, Pillat MM, Ulrich H. Pathophysiology in the comorbidity of Bipolar Disorder and Alzheimer's Disease: pharmacological and stem cell approaches. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:34-53. [PMID: 28476640 DOI: 10.1016/j.pnpbp.2017.04.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/28/2017] [Indexed: 12/22/2022]
Abstract
Neuropsychiatric disorders involve various pathological mechanisms, resulting in neurodegeneration and brain atrophy. Neurodevelopmental processes have shown to be critical for the progression of those disorders, which are based on genetic and epigenetic mechanisms as well as on extrinsic factors. We review here common mechanisms underlying the comorbidity of Bipolar Disorders and Alzheimer's Disease, such as aberrant neurogenesis and neurotoxicity, reporting current therapeutic approaches. The understanding of these mechanisms precedes stem cell-based strategies as a new therapeutic possibility for treatment and prevention of Bipolar and Alzheimer's Disease progression. Taking into account the difficulty of studying the molecular basis of disease progression directly in patients, we also discuss the importance of stem cells for effective drug screening, modeling and treating psychiatric diseases, once in vitro differentiation of patient-induced pluripotent stem cells provides relevant information about embryonic origins, intracellular pathways and molecular mechanisms.
Collapse
Affiliation(s)
- Juliana C Corrêa-Velloso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Maria Cb Gonçalves
- Departamento de Neurologia e Neurociências, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, São Paulo, SP 04039-032, Brazil
| | - Yahaira Naaldijk
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Ágatha Oliveira-Giacomelli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Micheli M Pillat
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
86
|
Pinto JV, Passos IC, Librenza-Garcia D, Marcon G, Schneider MA, Conte JH, Abreu da Silva JP, Lima LP, Quincozes-Santos A, Kauer-Sant’Anna M, Kapczinski F. Neuron-glia Interaction as a Possible Pathophysiological Mechanism of Bipolar Disorder. Curr Neuropharmacol 2018; 16:519-532. [PMID: 28847296 PMCID: PMC5997869 DOI: 10.2174/1570159x15666170828170921] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/26/2017] [Accepted: 08/24/2017] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence has shown the importance of glial cells in the neurobiology of bipolar disorder. Activated microglia and inflammatory cytokines have been pointed out as potential biomarkers of bipolar disorder. Indeed, recent studies have shown that bipolar disorder involves microglial activation in the hippocampus and alterations in peripheral cytokines, suggesting a potential link between neuroinflammation and peripheral toxicity. These abnormalities may also be the biological underpinnings of outcomes related to neuroprogression, such as cognitive impairment and brain changes. Additionally, astrocytes may have a role in the progression of bipolar disorder, as these cells amplify inflammatory response and maintain glutamate homeostasis, preventing excitotoxicity. The present review aims to discuss neuron-glia interactions and their role in the pathophysiology and treatment of bipolar disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Flávio Kapczinski
- Address correspondence to this author at the Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton-ON, Canada; Tel: +55 512 101 8845; E-mails: ,
| |
Collapse
|
87
|
Aizawa E, Tsuji H, Asahara T, Takahashi T, Teraishi T, Yoshida S, Koga N, Hattori K, Ota M, Kunugi H. Bifidobacterium and Lactobacillus Counts in the Gut Microbiota of Patients With Bipolar Disorder and Healthy Controls. Front Psychiatry 2018; 9:730. [PMID: 30713509 PMCID: PMC6346636 DOI: 10.3389/fpsyt.2018.00730] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022] Open
Abstract
Background: Although the pathophysiology of bipolar disorder remains elusive, growing evidence suggests the beneficial effects of Bifidobacterium and Lactobacillus in the gut microbiota on stress response and depressive symptoms. In the present study, we examined Bifidobacterium and Lactobacillus counts for association with bipolar disorder and serum cortisol levels. Methods: Bacterial counts in fecal samples were examined in 39 patients with bipolar disorder according to the Diagnostic and Statistical Manual of Mental Disorders, 4th edn. and 58 healthy controls using bacterial rRNA-targeted reverse transcription-quantitative polymerase chain reaction. Results: No significant difference was found in either bacterial counts between the two groups. However, we found a significantly negative correlation between Lactobacillus counts and sleep (ρ = -0.45, P = 0.01). Furthermore, a significant negative correlation was found between Bifidobacterium counts and cortisol levels (ρ = -0.39, P = 0.02) in the patients, although such a correlation was not found for Lactobacillus counts. Conclusions: Our results suggest that Bifidobacterium or Lactobacillus counts may not play a major role in the pathophysiology of bipolar disorder in our sample. However, the observed negative correlation between Lactobacillus counts and sleep and that between Bifidobacterium counts and serum cortisol levels point to the possible roles of these bacteria in sleep and stress response of the patients.
Collapse
Affiliation(s)
- Emiko Aizawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Human Life Science, Nagoya University of Economics, Aichi, Japan
| | | | | | | | - Toshiya Teraishi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Sumiko Yoshida
- Department of Psychiatry, National Center of Neurology and Psychiatry Hospital, Tokyo, Japan
| | - Norie Koga
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
88
|
Santos R, Charnay P. [Bipolar disorder: advances in the prediction of lithium response and development of new therapies using induced pluripotent stem cells]. Med Sci (Paris) 2017; 33:1048-1050. [PMID: 29261491 DOI: 10.1051/medsci/20173312010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Renata Santos
- École normale supérieure, Paris sciences et lettres, CNRS, Inserm, Institut de biologie de l'École normale supérieure (IBENS), 46, rue d'Ulm, F-75005 Paris, France - Laboratory of genetics, The Salk institute for biological studies, 10010 North Torrey pines road, La Jolla, CA 92037, États-Unis
| | - Patrick Charnay
- École normale supérieure, Paris sciences et lettres, CNRS, Inserm, Institut de biologie de l'École normale supérieure (IBENS), 46, rue d'Ulm, F-75005 Paris, France
| |
Collapse
|
89
|
An Oldie but Goodie: Lithium in the Treatment of Bipolar Disorder through Neuroprotective and Neurotrophic Mechanisms. Int J Mol Sci 2017; 18:ijms18122679. [PMID: 29232923 PMCID: PMC5751281 DOI: 10.3390/ijms18122679] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022] Open
Abstract
Lithium has been used for the treatment of bipolar disorder (BD) for the last sixty or more years, and recent studies with more reliable designs and updated guidelines have recommended lithium to be the treatment of choice for acute manic, mixed and depressive episodes of BD, along with long-term prophylaxis. Lithium’s specific mechanism of action in mood regulation is progressively being clarified, such as the direct inhibition on glycogen synthase kinase 3β, and its various effects on neurotrophic factors, neurotransmitters, oxidative metabolism, apoptosis, second messenger systems, and biological systems are also being revealed. Furthermore, lithium has been proposed to exert its treatment effects through mechanisms associated with neuronal plasticity. In this review, we have overviewed the clinical aspects of lithium use for BD, and have focused on the neuroprotective and neurotrophic effects of lithium.
Collapse
|
90
|
Plasma interleukin-6 in remitted early bipolar I disorder and subjects at high-risk for bipolar disorder. Asian J Psychiatr 2017; 30:212-213. [PMID: 28365164 DOI: 10.1016/j.ajp.2017.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/11/2017] [Accepted: 03/12/2017] [Indexed: 11/21/2022]
|
91
|
Fernandes TMP, Andrade SM, de Andrade MJO, Nogueira RMTBL, Santos NA. Colour discrimination thresholds in type 1 Bipolar Disorder: a pilot study. Sci Rep 2017; 7:16405. [PMID: 29180712 PMCID: PMC5703961 DOI: 10.1038/s41598-017-16752-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/16/2017] [Indexed: 11/09/2022] Open
Abstract
Although some studies have reported perceptual changes in psychosis, no definitive conclusions have been drawn about visual disturbances that are related to bipolar disorder (BPD). The purpose of the present study was to evaluate colour vision in BPD patients. Data were recorded from 24 participants: healthy control group (n = 12) and type 1 BPD group (n = 12). The participants were 20-45 years old and they were free from neurological disorders and identifiable ocular disease and had normal or corrected-to-normal visual acuity. Colour discrimination was evaluated using the Lanthony D-15d, Trivector and Ellipse tests, using a psychophysical forced-choice method. The relationship of visual measures to mood state and cognitive function was also investigated. The results showed that BPD patients had higher colour discrimination thresholds in the D15d (p < 0.001), Trivector (p < 0.001) and Ellipse (p < 0.01) tests compared with healthy controls. Linear regression analysis showed that mood state was related to colour discrimination. BPD individuals were not impaired in cognitive tasks. The present study provided new evidence of potential links between type 1 BPD and visual processing impairments. This research suggests a new direction for studies and the need for research in this field of study.
Collapse
Affiliation(s)
- Thiago Monteiro Paiva Fernandes
- Cognitive Neuroscience and Behaviour Program, Federal University of Paraiba, Joao Pessoa, Brazil.
- Perception, Neuroscience and Behaviour Laboratory, Federal University of Paraiba, Joao Pessoa, Brazil.
| | - Suellen Marinho Andrade
- Cognitive Neuroscience and Behaviour Program, Federal University of Paraiba, Joao Pessoa, Brazil
| | | | | | - Natanael Antonio Santos
- Cognitive Neuroscience and Behaviour Program, Federal University of Paraiba, Joao Pessoa, Brazil
- Perception, Neuroscience and Behaviour Laboratory, Federal University of Paraiba, Joao Pessoa, Brazil
| |
Collapse
|
92
|
Mechanisms Explaining Muscle Fatigue and Muscle Pain in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): a Review of Recent Findings. Curr Rheumatol Rep 2017; 19:1. [PMID: 28116577 DOI: 10.1007/s11926-017-0628-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Here, we review potential causes of muscle dysfunction seen in many patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) such as the effects of oxidative and nitrosative stress (O&NS) and mitochondrial impairments together with reduced heat shock protein production and a range of metabolic abnormalities. RECENT FINDINGS Several studies published in the last few years have highlighted the existence of chronic O&NS, inflammation, impaired mitochondrial function and reduced heat shock protein production in many patients with ME/CFS. These studies have also highlighted the detrimental effects of chronically elevated O&NS on muscle functions such as reducing the time to muscle fatigue during exercise and impairing muscle contractility. Mechanisms have also been revealed by which chronic O&NS and or impaired heat shock production may impair muscle repair following exercise and indeed the adaptive responses in the striated muscle to acute and chronic increases in physical activity. The presence of chronic O&NS, low-grade inflammation and impaired heat shock protein production may well explain the objective findings of increased muscle fatigue, impaired contractility and multiple dimensions of exercise intolerance in many patients with ME/CFS.
Collapse
|
93
|
Shaffer JJ, Johnson CP, Long JD, Fiedorowicz JG, Christensen GE, Wemmie JA, Magnotta VA. Relationship altered between functional T1ρ and BOLD signals in bipolar disorder. Brain Behav 2017; 7:e00802. [PMID: 29075562 PMCID: PMC5651386 DOI: 10.1002/brb3.802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/06/2017] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Functional neuroimaging typically relies on the blood-oxygen-level-dependent (BOLD) contrast, which is sensitive to the influx of oxygenated blood following neuronal activity. A new method, functional T1 relaxation in the rotating frame (fT1ρ) is thought to reflect changes in local brain metabolism, likely pH, and may more directly measure neuronal activity. These two methods were applied to study activation of the visual cortex in participants with bipolar disorder as compared to controls. METHODS Thirty-nine participants with bipolar disorder and 32 healthy controls underwent functional neuroimaging during a flashing checkerboard paradigm. Functional images were acquired in alternating blocks of BOLD and fT1ρ. Linear mixed-effect models were used to examine the relationship between these two functional imaging modalities and to test whether that relationship was altered in bipolar disorder. RESULTS BOLD and fT1ρ signal were strongly related in visual and cerebellar areas during the task in controls. The relationship between these two measures was reduced in bipolar disorder within the visual areas, cerebellum, striatum, and thalamus. CONCLUSIONS These results support a distinct mechanisms underlying BOLD and fT1ρ signals. The weakened relationship between these imaging modalities may provide a novel tool for measuring pathology in bipolar disorder and other psychiatric illnesses.
Collapse
Affiliation(s)
| | | | - Jeffrey D Long
- Department of Psychiatry University of Iowa Iowa City IA USA.,Department of Biostatistics University of Iowa Iowa City IA USA
| | - Jess G Fiedorowicz
- Department of Psychiatry University of Iowa Iowa City IA USA.,Department of Epidemiology University of Iowa Iowa City IA USA.,Department of Internal Medicine University of Iowa Iowa City IA USA
| | - Gary E Christensen
- Department of Electrical and Computer Engineering University of Iowa Iowa City IA USA.,Department of Radiation Oncology University of Iowa Iowa City IA USA
| | - John A Wemmie
- Department of Psychiatry University of Iowa Iowa City IA USA.,Department of Veterans Affairs Medical Center Iowa City IA USA.,Department of Molecular Physiology and Biophysics University of Iowa Iowa City IA USA.,Department of Neurosurgery University of Iowa Iowa City IA USA.,Iowa Neuroscience Institute University of Iowa Iowa City IA USA
| | - Vincent A Magnotta
- Department of Radiology University of Iowa Iowa City IA USA.,Department of Psychiatry University of Iowa Iowa City IA USA.,Department of Biomedical Engineering University of Iowa Iowa City IA USA
| |
Collapse
|
94
|
Oliveira J, Oliveira‐Maia AJ, Tamouza R, Brown AS, Leboyer M. Infectious and immunogenetic factors in bipolar disorder. Acta Psychiatr Scand 2017; 136:409-423. [PMID: 28832904 PMCID: PMC7159344 DOI: 10.1111/acps.12791] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Despite the evidence supporting the association between infection and bipolar disorder (BD), the genetic vulnerability that mediates its effects has yet to be clarified. A genetic origin for the immune imbalance observed in BD, possibly involved in the mechanisms of pathogen escape, has, however, been suggested in recent studies. METHOD Here, we present a critical review based on a systematic literature search of articles published until December 2016 on the association between BD and infectious/immunogenetic factors. RESULTS We provide evidence suggesting that infectious insults could act as triggers of maladaptive immune responses in BD and that immunogenetic vulnerability may amplify the effects of such environmental risk factors, increasing susceptibility to subsequent environmental encounters. Quality of evidence was generally impaired by scarce attempt of replication, small sample sizes and lack of high-quality environmental measures. CONCLUSION Infection has emerged as a potential preventable cause of morbidity in BD, urging the need to better investigate components of the host-pathogen interaction in patients and at-risk subjects, and thus opening the way to novel therapeutic opportunities.
Collapse
Affiliation(s)
- J. Oliveira
- Champalimaud Clinical CentreChampalimaud Centre for the UnknownLisboaPortugal,Centro Hospitalar Psiquiátrico de LisboaLisboaPortugal
| | - A. J. Oliveira‐Maia
- Champalimaud Clinical CentreChampalimaud Centre for the UnknownLisboaPortugal,Department of Psychiatry and Mental HealthCentro Hospitalar de Lisboa OcidentalLisboaPortugal,Champalimaud ResearchChampalimaud Centre for the UnknownLisboaPortugal,Faculdade de Ciências MédicasNOVA Medical SchoolUniversidade Nova de LisboaLisboaPortugal
| | - R. Tamouza
- Hôpital Saint LouisINSERM U1160Université Paris DiderotParisFrance,Fondation FondamentalCréteilFrance
| | - A. S. Brown
- Columbia University Medical CenterNew YorkNYUSA
| | - M. Leboyer
- Fondation FondamentalCréteilFrance,Department of PsychiatryAP‐HP, DHU PePSYHôpital Henri MondorUniversité Paris‐Est‐CréteilCréteilFrance,Translational PsychiatryINSERM U955CréteilFrance
| |
Collapse
|
95
|
Arjmand S, Behzadi M, Stephens GJ, Ezzatabadipour S, Seifaddini R, Arjmand S, Shabani M. A Brain on a Roller Coaster: Can the Dopamine Reward System Act as a Protagonist to Subdue the Ups and Downs of Bipolar Disorder? Neuroscientist 2017; 24:423-439. [DOI: 10.1177/1073858417714226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
One of the most interesting but tenebrous parts of the bipolar disorder (BD) story is the switch between (hypo)mania and depression, which can give bipolar patients a thrilling, but somewhat perilous, ‘ride’. Numerous studies have pointed out that there are some recognizable differences (either state-dependent or state-independent) in several brain regions of people with BD, including components of the brain’s reward system. Understanding the underpinning mechanisms of high and low mood statuses in BD has potential, not only for the development of highly specific and selective pharmaceutical agents, but also for better treatment approaches and psychological interventions to manage BD and, thus, give patients a safer ride. Herein, we review evidence that supports involvement of the reward system in the pathophysiology of mood swings, with the main focus on the mesocorticolimbic dopaminergic neural circuitry. Principally using findings from neuroimaging studies, we aim to signpost readers as to how mood alterations may affect different areas of the reward system and how antipsychotic drugs can influence the activity of these brain areas. Finally, we critically evaluate the hypothesis that the mesocorticolimbic dopamine reward system may act as a functional rheostat for different mood states.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mina Behzadi
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Gary J. Stephens
- School of Pharmacy, Reading University, Whiteknights, Reading, UK
| | - Sara Ezzatabadipour
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Rostam Seifaddini
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahrad Arjmand
- Department of Psychology, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Shabani
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
96
|
Kim YS, Yoon BE. Altered GABAergic Signaling in Brain Disease at Various Stages of Life. Exp Neurobiol 2017; 26:122-131. [PMID: 28680297 PMCID: PMC5491580 DOI: 10.5607/en.2017.26.3.122] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/06/2017] [Accepted: 05/15/2017] [Indexed: 01/21/2023] Open
Abstract
In the healthy brain, gamma-aminobutyric acid (GABA) is regulated by neurons and glia. This begs the question: what happens in the malfunctioning brain? There are many reasons why diseases occur, including genetic mutations, systemic problems, and environmental influences. There are also many ways in which GABA can become dysregulated, such as through alterations in its synthesis or release, and changes in systems that respond to it. Notably, dysregulation of GABA can have a large impact on the brain. To date, few reviews have examined brain diseases in which dysregulation of GABA is implicated as an underlying factor. Accordingly, the time is ripe for investigating alterations in GABAergic signaling that may play a role in changes in neuronal activity observed in the major brain disorders that occur during various stages of life. This review is meant to provide a better understanding of the role of GABA in brain health and contributor to social problems from a scientific perspective.
Collapse
Affiliation(s)
- Yoo Sung Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| | - Bo-Eun Yoon
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
97
|
Phillips C. Physical Activity Modulates Common Neuroplasticity Substrates in Major Depressive and Bipolar Disorder. Neural Plast 2017; 2017:7014146. [PMID: 28529805 PMCID: PMC5424494 DOI: 10.1155/2017/7014146] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/10/2017] [Accepted: 03/16/2017] [Indexed: 12/13/2022] Open
Abstract
Mood disorders (MDs) are chronic, recurrent mental diseases that affect millions of individuals worldwide. Although the biogenic amine model has provided some clinical utility, a need remains to better understand the interrelated mechanisms that contribute to neuroplasticity deficits in MDs and the means by which various therapeutics mitigate them. Of those therapeutics being investigated, physical activity (PA) has shown clear and consistent promise. Accordingly, the aims of this review are to (1) explicate key modulators, processes, and interactions that impinge upon multiple susceptibility points to effectuate neuroplasticity deficits in MDs; (2) explore the putative mechanisms by which PA mitigates these features; (3) review protocols used to induce the positive effects of PA in MDs; and (4) highlight implications for clinicians and researchers.
Collapse
|
98
|
Kim Y, Santos R, Gage FH, Marchetto MC. Molecular Mechanisms of Bipolar Disorder: Progress Made and Future Challenges. Front Cell Neurosci 2017; 11:30. [PMID: 28261061 PMCID: PMC5306135 DOI: 10.3389/fncel.2017.00030] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/01/2017] [Indexed: 12/15/2022] Open
Abstract
Bipolar disorder (BD) is a chronic and progressive psychiatric illness characterized by mood oscillations, with episodes of mania and depression. The impact of BD on patients can be devastating, with up to 15% of patients committing suicide. This disorder is associated with psychiatric and medical comorbidities and patients with a high risk of drug abuse, metabolic and endocrine disorders and vascular disease. Current knowledge of the pathophysiology and molecular mechanisms causing BD is still modest. With no clear biological markers available, early diagnosis is a great challenge to clinicians without previous knowledge of the longitudinal progress of illness. Moreover, despite recommendations from evidence-based guidelines, polypharmacy is still common in clinical treatment of BD, reflecting the gap between research and clinical practice. A major challenge in BD is the development of effective drugs with low toxicity for the patients. In this review article, we focus on the progress made and future challenges we face in determining the pathophysiology and molecular pathways involved in BD, such as circadian and metabolic perturbations, mitochondrial and endoplasmic reticulum (ER) dysfunction, autophagy and glutamatergic neurotransmission; which may lead to the development of new drugs.
Collapse
Affiliation(s)
- Yeni Kim
- Laboratory of Genetics, The Salk Institute for Biological StudiesLa Jolla, CA, USA; Department of Child and Adolescent Psychiatry, National Center for Mental HealthSeoul, South Korea
| | - Renata Santos
- Laboratory of Genetics, The Salk Institute for Biological StudiesLa Jolla, CA, USA; Ecole Normale Supérieure, PSL Research University, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Paris, France
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies La Jolla, CA, USA
| | - Maria C Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies La Jolla, CA, USA
| |
Collapse
|
99
|
Valvassori SS, Resende WR, Varela RB, Arent CO, Gava FF, Peterle BR, Dal-Pont GC, Carvalho AF, Andersen ML, Quevedo J. The Effects of Histone Deacetylase Inhibition on the Levels of Cerebral Cytokines in an Animal Model of Mania Induced by Dextroamphetamine. Mol Neurobiol 2017; 55:1430-1439. [PMID: 28168425 DOI: 10.1007/s12035-017-0384-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/04/2017] [Indexed: 01/12/2023]
Abstract
Studies have suggested the involvement of inflammatory processes in the physiopathology of bipolar disorder. Preclinical evidences have shown that histone deacetylase inhibitors may act as mood-stabilizing agents and protect the brain in models of mania and depression. The aim of the present study was to evaluate the effects of sodium butyrate (SB) and valproate (VPA) on behavioral changes, histone deacetylase activity, and the levels of cytokines in an animal model of mania induced by dextroamphetamine (d-AMPH). Wistar rats were first given d-AMPH or saline (Sal) for a period of 14 days, and then, between the 8th and 14th days, the rats were treated with SB, VPA, or Sal. The activity of histone deacetylase and the levels of cytokines (interleukin (IL) IL-4, IL-6, and IL-10 and tumor necrosis factor-alpha (TNF-α)) were evaluated in the frontal cortex and striatum of the rats. The administration of d-AMPH increased the activity of histone deacetylase in the frontal cortex. Administration of SB or VPA decreased the levels of histone deacetylase activity in the frontal cortex and striatum of rats. SB per se increased the levels of cytokines in both of the brain structures evaluated. AMPH increased the levels of cytokines in both of the brain structures evaluated, and VPA reversed this alteration. The effects of SB on d-AMPH-induced cytokine alterations were dependent on the brain structure and the cytokine evaluated. Despite VPA and SB having a similar mechanism of action, both being histone deacetylase inhibitors, they showed different effects on the levels of cytokines. The present study reinforces the need for more research into histone deacetylase inhibitors being used as a possible target for new medications in the treatment of bipolar disorder.
Collapse
Affiliation(s)
- Samira S Valvassori
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil. .,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Wilson R Resende
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Roger B Varela
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Camila O Arent
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil
| | - Fernanda F Gava
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil
| | - Bruna R Peterle
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gustavo C Dal-Pont
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil
| | - André F Carvalho
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Monica L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.,Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) Medical School, Houston, TX, USA.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) Medical School, Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
100
|
Sigitova E, Fišar Z, Hroudová J, Cikánková T, Raboch J. Biological hypotheses and biomarkers of bipolar disorder. Psychiatry Clin Neurosci 2017; 71:77-103. [PMID: 27800654 DOI: 10.1111/pcn.12476] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/04/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023]
Abstract
The most common mood disorders are major depressive disorders and bipolar disorders (BD). The pathophysiology of BD is complex, multifactorial, and not fully understood. Creation of new hypotheses in the field gives impetus for studies and for finding new biomarkers for BD. Conversely, new biomarkers facilitate not only diagnosis of a disorder and monitoring of biological effects of treatment, but also formulation of new hypotheses about the causes and pathophysiology of the BD. BD is characterized by multiple associations between disturbed brain development, neuroplasticity, and chronobiology, caused by: genetic and environmental factors; defects in apoptotic, immune-inflammatory, neurotransmitter, neurotrophin, and calcium-signaling pathways; oxidative and nitrosative stress; cellular bioenergetics; and membrane or vesicular transport. Current biological hypotheses of BD are summarized, including related pathophysiological processes and key biomarkers, which have been associated with changes in genetics, systems of neurotransmitter and neurotrophic factors, neuroinflammation, autoimmunity, cytokines, stress axis activity, chronobiology, oxidative stress, and mitochondrial dysfunctions. Here we also discuss the therapeutic hypotheses and mechanisms of the switch between depressive and manic state.
Collapse
Affiliation(s)
- Ekaterina Sigitova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tereza Cikánková
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|