51
|
Elbasan F, Arikan B, Ozfidan-Konakci C, Tofan A, Yildiztugay E. Hesperidin and chlorogenic acid mitigate arsenic-induced oxidative stress via redox regulation, photosystems-related gene expression, and antioxidant efficiency in the chloroplasts of Zea mays. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108445. [PMID: 38402801 DOI: 10.1016/j.plaphy.2024.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/29/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
The ubiquitous metalloid arsenic (As), which is not essential, can be found extensively in the soil and subterranean water of numerous nations, raising substantial apprehensions due to its impact on both agricultural productivity and sustainability. Plants exposed to As often display morphological, physiological, and growth-related abnormalities, collectively leading to reduced productivity. Polyphenols, operating as secondary messengers within the intricate signaling networks of plants, assume integral functions in the acquisition of resistance to diverse environmental stressors, including but not limited to drought, salinity, and exposure to heavy metals. The pivotal roles played by polyphenols in these adaptive processes underscore their profound significance in plant biology. This study aims to elucidate the impact of hesperidin (HP) and chlorogenic acid (CA), recognized as potent bioactive compounds, on maize plants exposed to As. To achieve this objective, the study examined the physiological and biochemical impacts, including growth parameters, photosynthesis, and chloroplastic antioxidants, of HP (100 μM) and CA (50 μM) on Zea mays plants exposed to arsenate stress (AsV, 100 μM - Na2HAsO4⋅7H2O). As toxicity led to reductions in fresh weight (FW) and dry weight (DW) by 33% and 26%, respectively. However, the application of As+HP and As + CA increased FW by 22% and 40% and DW by 14% and 17%, respectively, alleviating the effects of As stress. As toxicity resulted in the up-regulation of PSII genes (psbA and psbD) and PSI genes (psaA and psaB), indicating a potential response to the re-formation of degraded regions, likely driven by the heightened demand for photosynthesis. Exogenous HP or/and CA treatments effectively counteracted the adverse effects of As toxicity on the photochemical quantum efficiency of PSII (Fv/Fm). H2O2 content showed a 23% increase under As stress, and this increase was evident in guard cells when examining confocal microscopy images. In the presence of As toxicity, the chloroplastic antioxidant capacity can exhibit varying trends, with either a decrease or increase observed. After the application of CA and/or HP, a significant increase was observed in the activity of GR, APX, GST, and GPX enzymes, resulting in decreased levels of H2O2 and MDA. Additionally, the enhanced functions of MDHAR and DHAR have modulated the redox status of ascorbic acid (AsA) and glutathione (GSH). The HP or CA-mediated elevated levels of AsA and GSH content further contributed to the preservation of redox homeostasis in chloroplasts facing stress induced by As. In summary, the inclusion of HP and CA in the growth medium sustained plant performance in the presence of As toxicity by regulating physiological and biochemical characteristics, chloroplastic antioxidant enzymes, the AsA-GSH cycle and photosynthesis processes, thereby demonstrating their significant potential to confer resistance to maize through the mitigation of As-induced oxidative damage and the safeguarding of photosynthetic mechanisms.
Collapse
Affiliation(s)
- Fevzi Elbasan
- Selcuk University, Faculty of Science, Department of Biotechnology, 42250, Konya, Turkey.
| | - Busra Arikan
- Selcuk University, Faculty of Science, Department of Biotechnology, 42250, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Necmettin Erbakan University, Faculty of Science, Department of Molecular Biology and Genetics, 42090, Konya, Turkey.
| | - Aysenur Tofan
- Selcuk University, Faculty of Science, Department of Biotechnology, 42250, Konya, Turkey.
| | - Evren Yildiztugay
- Selcuk University, Faculty of Science, Department of Biotechnology, 42250, Konya, Turkey.
| |
Collapse
|
52
|
Ru C, Hu X, Wang W. Nitrogen mitigates the negative effects of combined heat and drought stress on winter wheat by improving physiological characteristics. PHYSIOLOGIA PLANTARUM 2024; 176:e14236. [PMID: 38454803 DOI: 10.1111/ppl.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 03/09/2024]
Abstract
Extreme drought stress is often accompanied by heat stress after anthesis in winter wheat. Whether nitrogen (N) can mitigate the damage caused by combined stress on wheat plants by regulating root physiological characteristics is still unclear. Thus, this study aimed to study the effects of combined heat and drought stress on photosynthesis, leaf water relations, root antioxidant system, osmoregulatory, and yield in wheat to reveal the physiological mechanism of N regulating the adverse impacts of combined stress on wheat. Heat and drought stress markedly reduced photosynthesis, leaf water content, root vitality, and bleeding sap. The combination of heat and drought strengthens these changes. Within a certain stress range, the increase in soluble sugar and proline contents and the activities of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase under combined stress effectively alleviated the oxidative damage. Compared with those under high N application (N3), wheat plants under low N application (N1) maintained higher yield and yield components under combined stress; the number of grains per spike, 1000-grain weight, and yield increased by 13.65%, 9.07%, and 15.33%, respectively, under N1 compared with those under N3 treatment, which may be attributed to the greater maintenance of photosynthesis, leaf water status, root vitality, and antioxidant and osmoregulation capacities. In summary, reduced N application mitigated the damage caused by combined heat and drought stress in wheat by improving root physiological characteristics and enhanced adaptability to combined stress, which is an appropriate strategy to compensate for yield losses.
Collapse
Affiliation(s)
- Chen Ru
- School of Engineering, Anhui Agricultural University, Hefei, China
| | - Xiaotao Hu
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, China
| | - Wene Wang
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Yangling, China
| |
Collapse
|
53
|
Kamoun H, Feki K, Tounsi S, Jrad O, Brini F. The thioredoxin h-type TdTrxh2 protein of durum wheat confers abiotic stress tolerance of the transformant Arabidopsis plants through its protective role and the regulation of redox homoeostasis. PROTOPLASMA 2024; 261:317-331. [PMID: 37837550 DOI: 10.1007/s00709-023-01899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
The thioredoxins (Trxs) are ubiquitous and they play a crucial role in various biological processes like growth and stress response. Although the functions of Trxs proteins are described in several previous reports, the function of the isoform Trxh2 of durum wheat (Triticum durum L.), designated as TdTrxh2, in abiotic stress response still unknown. Thus, we aimed in this study the functional characterization of TdTrxh2 through its expression in yeast cells and Arabidopsis plants. Sequence analysis revealed that TdTrxh2 protein shared the conserved redox site with the other Trxh from other plant species. Under various abiotic stresses, TdTrxh2 was up-regulated in leaves and roots of durum wheat. Interestingly, we demonstrated that TdTrxh2 exhibit protective effect on LDH activity against various treatments. Besides, the expression of TdTrxh2 in yeast cells conferred their tolerance to multiple stresses. Moreover, transgenic Arabidopsis expressing TdTrxh2 showed tolerance phenotype to several abiotic stresses. This tolerance was illustrated by high rate of proline accumulation, root proliferation, low accumulation of reactive oxygen species like H2O2 and O2·-, and high antioxidant CAT and POD enzymes activities. All these findings suggested that TdTrxh2 promotes abiotic stress tolerance through the redox homoeostasis regulation and its protective role.
Collapse
Affiliation(s)
- Hanen Kamoun
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), BP1177, 3018, Sfax, Tunisia
| | - Kaouthar Feki
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), BP1177, 3018, Sfax, Tunisia
| | - Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), BP1177, 3018, Sfax, Tunisia
| | - Olfa Jrad
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), BP1177, 3018, Sfax, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), BP1177, 3018, Sfax, Tunisia.
| |
Collapse
|
54
|
Kang SM, Adhikari A, Kwon EH, Gam HJ, Jeon JR, Woo JI, Lee IJ. Influence of N-Acetylglucosamine and Melatonin Interaction in Modeling the Photosynthetic Component and Metabolomics of Cucumber under Salinity Stress. Int J Mol Sci 2024; 25:2844. [PMID: 38474090 DOI: 10.3390/ijms25052844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The application of N-acetylglucosamine (GlcNAc) and melatonin (Mel) in agriculture could be a promising avenue for improving crop resilience and productivity, especially under challenging environmental conditions. In the current study, we treated the cucumber plant with GlcNAc and Mel solely and combinedly under salt stress (150 mM) then studied photosynthetic attributes using the transient OJIP fluorescence method. The results showed that the combination of GlcNAc × Mel significantly improved the plant morphological attributes, such as root and shoot biomass, and also improved chlorophyll and photosynthetic components. The mineral elements such as K, Mg, Ca, and P were significantly elevated, whereas a lower influx of Na was observed in GlcNAc × Mel treated cucumber shoots. A significant reduction in abscisic acid was observed, which was validated by the reduction in proline content and the increase in stomatal conductance (Gs), transpiration rate (E), and substomatal CO2 concentration (Ci). Furthermore, the activities of antioxidants such as polyphenol and flavonoid were considerably improved, resulting in a decrease in SOD and CAT with GlcNAc × Mel treatment. In addition, GlcNAc × Mel treatment dropped levels of the toxic radical Malondialdehyde (MDA) and elevated amino acids in cucumber shoots. These findings suggest that the combination of GlcNAc × Mel could be an effective elicitor for modeling plant metabolism to confer stress tolerance in crops.
Collapse
Affiliation(s)
- Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Arjun Adhikari
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ho-Jun Gam
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jin Ryeol Jeon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-In Woo
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
55
|
Wang N, Wang X, Chen L, Liu H, Wu Y, Huang M, Fang L. Biological roles of soil microbial consortium on promoting safe crop production in heavy metal(loid) contaminated soil: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168994. [PMID: 38043809 DOI: 10.1016/j.scitotenv.2023.168994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Heavy metal(loid) (HM) pollution of agricultural soils is a growing global environmental concern that affects planetary health. Numerous studies have shown that soil microbial consortia can inhibit the accumulation of HMs in crops. However, our current understanding of the effects and mechanisms of inhibition is fragmented. In this review, we summarise extant studies and knowledge to provide a comprehensive view of HM toxicity on crop growth and development at the biological, cellular and the molecular levels. In a meta-analysis, we find that microbial consortia can improve crop resistance and reduce HM uptake, which in turn promotes healthy crop growth, demonstrating that microbial consortia are more effective than single microorganisms. We then review three main mechanisms by which microbial consortia reduce the toxicity of HMs to crops and inhibit HMs accumulation in crops: 1) reducing the bioavailability of HMs in soil (e.g. biosorption, bioaccumulation and biotransformation); 2) improving crop resistance to HMs (e.g. facilitating the absorption of nutrients); and 3) synergistic effects between microorganisms. Finally, we discuss the prospects of microbial consortium applications in simultaneous crop safety production and soil remediation, indicating that they play a key role in sustainable agricultural development, and conclude by identifying research challenges and future directions for the microbial consortium to promote safe crop production.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangxiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongjie Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yanfang Wu
- Palm Eco-Town Development Co., Ltd., Zhengzhou 450000, China
| | - Min Huang
- Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
56
|
Ghouri F, Shahid MJ, Zhong M, Zia MA, Alomrani SO, Liu J, Sun L, Ali S, Liu X, Shahid MQ. Alleviated lead toxicity in rice plant by co-augmented action of genome doubling and TiO 2 nanoparticles on gene expression, cytological and physiological changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168709. [PMID: 37992838 DOI: 10.1016/j.scitotenv.2023.168709] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023]
Abstract
Lead is a very toxic and futile heavy metal for rice plants because of its injurious effects on plant growth and metabolic processes. Polyploidy or whole genome doubling increases the ability of plants to withstand biotic and abiotic stress. Considering the beneficial effects of nanoparticles and tetraploid rice, this research was conducted to examine the effectiveness of tetraploid and titanium dioxide nanoparticles (TiO2 NPs) in mitigating the toxic effects of lead. A diploid (E22-2x) and it's tetraploid (T-42) rice line were treated with Pb (200 μM) and TiO2 NPs (15 mg L-1). Lead toxicity dramatically reduced shoot length (16 % and 4 %) and root length (17 % and 9 %), biological yield (55 % and 36 %), and photosynthetic activity, as evidenced by lower levels of chlorophyll a and b (30 % and 9 %) in E-22 and T-42 rice cultivars compared to the control rice plants, respectively. Furthermore, lead toxicity amplified the levels of reactive oxygen species (ROS), such as malondialdehyde and H2O2, while decreasing activities of all antioxidant enzymes, such as superoxidase, peroxidase, and glutathione predominately in the diploid cultivar. Transmission electron microscopy and semi-thin section observations revealed that Pb-treated cells in E22-2x had more cell abnormalities than T-42, such as irregularly shaped mitochondria, cell wall, and reduced root cell size. Polyploidy and TiO2 reduced Pb uptake in rice cultivars and expression levels of metal transporter genes such as OsHMA9 and OsNRAMP5. According to the findings, genome doubling alleviates Pb toxicity by reducing Pb accumulation, ROS, and cell damage. Tetraploid rice can withstand the toxic effect of Pb better than diploid rice, and TiO2 NPs can alleviate the toxic impact of Pb. Our study findings act as a roadmap for future research endeavours, directing the focus toward risk management and assessing long-term impacts to balance environmental sustainability and agricultural growth.
Collapse
Affiliation(s)
- Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Munazzam Jawad Shahid
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Minghui Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Azam Zia
- Department of Computer Science, University of Agriculture, Faisalabad 38800, Pakistan
| | - Sarah Owdah Alomrani
- Department of Biology, College of Science and Arts, Najran University, Najran 66252, Saudi Arabia
| | - Jingwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
57
|
Pereira AM, Martins AO, Batista-Silva W, Condori-Apfata JA, Silva VF, Oliveira LA, Andrade ES, Martins SCV, Medeiros DB, Nascimento VL, Fernie AR, Nunes-Nesi A, Araújo WL. Differential content of leaf and fruit pigment in tomatoes culminate in a complex metabolic reprogramming without growth impacts. JOURNAL OF PLANT PHYSIOLOGY 2024; 293:154170. [PMID: 38271894 DOI: 10.1016/j.jplph.2024.154170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
Although significant efforts to produce carotenoid-enriched foods either by biotechnology or traditional breeding strategies have been carried out, our understanding of how changes in the carotenoid biosynthesis might affect overall plant performance remains limited. Here, we investigate how the metabolic machinery of well characterized tomato carotenoid mutant plants [namely crimson (old gold-og), Delta carotene (Del) and tangerine (t)] adjusts itself to varying carotenoid biosynthesis and whether these adjustments are supported by a reprogramming of photosynthetic and central metabolism in the source organs (leaves). We observed that mutations og, Del and t did not greatly affect vegetative growth, leaf anatomy and gas exchange parameters. However, an exquisite metabolic reprogramming was recorded on the leaves, with an increase in levels of amino acids and reduction of organic acids. Taken together, our results show that despite minor impacts on growth and gas exchange, carbon flux is extensively affected, leading to adjustments in tomato leaves metabolism to support changes in carotenoid biosynthesis on fruits (sinks). We discuss these data in the context of our current understanding of metabolic adjustments and carotenoid biosynthesis as well as regarding to improving human nutrition.
Collapse
Affiliation(s)
- Auderlan M Pereira
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Auxiliadora O Martins
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - William Batista-Silva
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Jorge A Condori-Apfata
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Victor F Silva
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Leonardo A Oliveira
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Eduarda Santos Andrade
- Setor de Fisiologia Vegetal - Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-000, Brazil
| | - Samuel C V Martins
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - David B Medeiros
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Vitor L Nascimento
- Setor de Fisiologia Vegetal - Departamento de Biologia, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-000, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam Golm, Germany
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
58
|
Janejobkhet J, Pongprayoon W, Obsuwan K, Jaiyindee S, Maksup S. Multifaceted response mechanisms of Oryza sativa L. 'KDML105' to high arsenite and arsenate stress levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13816-13832. [PMID: 38265595 DOI: 10.1007/s11356-024-32122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Toxicity resulting from high levels of inorganic arsenic (iAs), specifically arsenite (AsIII) and arsenate (AsV), significantly induces oxidative stress and inhibits the growth of rice plants in various ways. Despite its economic importance and significance as a potent elite trait donor in rice breeding programmes, Khao Dawk Mali 105 (KDML105) has received limited attention regarding its responses to As stress. Therefore, this study aimed to comprehensively investigate how KDML105 responds to elevated AsIII and AsV stress levels. In this study, the growth, physiology, biochemical attributes and levels of As stress-associated transcripts were analysed in 45-day-old rice plants after exposing them to media containing 0, 75, 150, 300 and 600 µM AsIII or AsV for 1 and 7 days, respectively. The results revealed that AsIII had a more pronounced impact on the growth and physiological responses of KDML105 compared to AsV at equivalent concentrations. Under elevated AsIII treatment, there was a reduction in growth and photosynthetic efficiency, accompanied by increased levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Notably, the total contents of antioxidants, such as proline, phenolics and flavonoids in the shoot, increased by 8.1-fold, 1.4-fold and 1.6-fold, respectively. Additionally, the expression of the OsABCC1 gene in the roots increased by 9.5-fold after exposure to 150 µM AsIII for 1 day. These findings suggest that KDML105's prominent responses to As stress involve sequestering AsIII in vacuoles through the up-regulation of the OsABCC1 gene in the roots, along with detoxifying excessive stress in the leaves through proline accumulation. These responses could serve as valuable traits for selecting As-tolerant rice varieties.
Collapse
Affiliation(s)
- Juthathip Janejobkhet
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Wasinee Pongprayoon
- Department of Biology, Faculty of Science, Burapha University, Chon Buri, 20131, Thailand
| | - Kullanart Obsuwan
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Supakit Jaiyindee
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Sarunyaporn Maksup
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
59
|
Yuce M, Yildirim E, Ekinci M, Turan M, Ilhan E, Aydin M, Agar G, Ucar S. N-acetyl-cysteine mitigates arsenic stress in lettuce: Molecular, biochemical, and physiological perspective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108390. [PMID: 38373369 DOI: 10.1016/j.plaphy.2024.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/21/2024]
Abstract
Agricultural land contaminated with heavy metals such as non-biodegradable arsenic (As) has become a serious global problem as it adversely affects agricultural productivity, food security and human health. Therefore, in this study, we investigated how the administration of N-acetyl-cysteine (NAC), regulates the physio-biochemical and gene expression level to reduce As toxicity in lettuce. According to our results, different NAC levels (125, 250 and 500 μM) significantly alleviated the growth inhibition and toxicity induced by As stress (20 mg/L). Shoot fresh weight, root fresh weight, shoot dry weight and root dry weight (33.05%, 55.34%, 17.97% and 46.20%, respectively) were decreased in plants grown in As-contaminated soils compared to lettuce plants grown in soils without the addition of As. However, NAC applications together with As stress increased these growth parameters. While the highest increase in shoot fresh and dry weight (58.31% and 37.85%, respectively) was observed in 250 μM NAC application, the highest increase in root fresh and dry weight (75.97% and 63.07%, respectively) was observed in 125 μM NAC application in plants grown in As-polluted soils. NAC application decreased the amount of ROS, MDA and H2O2 that increased with As stress, and decreased oxidative damage by regulating hormone levels, antioxidant and enzymes involved in nitrogen metabolism. According to gene expression profiles, LsHIPP28 and LsABC3 genes have shown important roles in reducing As toxicity in leaves. This study will provide insight for future studies on how NAC applications develop resistance to As stress in lettuce.
Collapse
Affiliation(s)
- Merve Yuce
- Atatürk University, Faculty of Agriculture, Department of Horticulture, Erzurum, Turkey.
| | - Ertan Yildirim
- Atatürk University, Faculty of Agriculture, Department of Horticulture, Erzurum, Turkey
| | - Melek Ekinci
- Atatürk University, Faculty of Agriculture, Department of Horticulture, Erzurum, Turkey
| | - Metin Turan
- Yeditepe University, Faculty of Economy and Administrative Sciences, Department of Agricultural Trade and Management, Istanbul, Turkey
| | - Emre Ilhan
- Erzurum Technical University, Faculty of Science, Department of Molecular Biology and Genetics, 25050, Erzurum, Turkey
| | - Murat Aydin
- Atatürk University, Faculty of Agriculture, Department of Agricultural Biotechnology, Erzurum, Turkey
| | - Guleray Agar
- Atatürk University, Faculty of Science, Department of Biology, Erzurum, Turkey
| | - Sumeyra Ucar
- Erzurum Technical University, Faculty of Science, Department of Molecular Biology and Genetics, 25050, Erzurum, Turkey
| |
Collapse
|
60
|
Fodor J, Nagy JK, Király L, Mészáros K, Bányai J, Cséplő MK, Schwarczinger I, Künstler A. Heat Treatments at Varying Ambient Temperatures and Durations Differentially Affect Plant Defense to Blumeria hordei in a Resistant and a Susceptible Hordeum vulgare Line. PHYTOPATHOLOGY 2024; 114:418-426. [PMID: 37665321 DOI: 10.1094/phyto-06-23-0191-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Our previous research showed that a powdery mildew resistant barley line (MvHV07-17) maintains its resistance to Blumeria hordei (Bh) even if plants are exposed to a long-term high temperature of 35°C for 120 h before Bh inoculation, whereas such high temperature pretreatment further increases susceptibility to infection in the susceptible barley line MvHV118-17. In the present study, we extended this approach using short-term high-temperature water treatment (49°C for 30 s) to determine how it affects powdery mildew resistance in these barley lines. We found that this short-term heat shock (HS) impaired plant defense responses, as reflected by development of Bh colonies and visible necrotic spots on leaves of MvHV07-17, which does not develop visible symptoms upon Bh inoculation under optimal growth conditions. In contrast, both HS and long-term heat stress enhanced susceptibility to Bh in MvHV118-17 plants. These results were supported by the measurement of Bh biomass using a qPCR method. Furthermore, microscopic examinations showed that HS elevated the rate of successful Bh penetration events and the spread of cell death in the surrounding mesophyll area and allowed for colony formation and sporulation in resistant barley, whereas early and effective plant defense responses, such as papilla formation and single-cell epidermal hypersensitive response, were significantly reduced. Furthermore, we found that the accumulation of hydrogen peroxide in both resistant and susceptible barley was correlated with susceptibility induced by HS and long-term heat-stress. This study may contribute to a better understanding of plant defense responses to Bh in barley exposed to heat. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- József Fodor
- Department of Plant Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, ELKH, H-1022, Budapest, Hungary
| | - Judit Kolozsváriné Nagy
- Department of Plant Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, ELKH, H-1022, Budapest, Hungary
| | - Lóránt Király
- Department of Plant Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, ELKH, H-1022, Budapest, Hungary
| | - Klára Mészáros
- Cereal Breeding Department, Agricultural Institute, Centre for Agricultural Research, ELKH, H-2462, Martonvásár, Hungary
| | - Judit Bányai
- Cereal Breeding Department, Agricultural Institute, Centre for Agricultural Research, ELKH, H-2462, Martonvásár, Hungary
| | - Mónika Károlyiné Cséplő
- Cereal Breeding Department, Agricultural Institute, Centre for Agricultural Research, ELKH, H-2462, Martonvásár, Hungary
| | - Ildikó Schwarczinger
- Department of Plant Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, ELKH, H-1022, Budapest, Hungary
| | - András Künstler
- Department of Plant Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, ELKH, H-1022, Budapest, Hungary
| |
Collapse
|
61
|
Zhang X, Zhang J, He J, Li M, Matsushita N, Geng Q, Lian C, Zhang S. Physiological and Transcriptome Responses of Pinus massoniana Seedlings Inoculated by Various Ecotypes of the Ectomycorrhizal Fungus Cenococcum geophilum during the Early Stage of Drought Stress. J Fungi (Basel) 2024; 10:71. [PMID: 38248980 PMCID: PMC10817269 DOI: 10.3390/jof10010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The impact of drought stress on plant growth in arid regions is a critical concern, necessitating the exploration of strategies to enhance plant drought resistance, particularly during the early stages of drought stress. This study focuses on the ectomycorrhizal fungus Cenococcum geophilum, renowned for its extensive genetic diversity and broad host compatibility, making it a crucial ally for host plants facing external stresses. We utilized Pinus massoniana seedlings inoculated with different ecotypic strains of C. geophilum under drought stress. The results showed that the inoculation of most strains of C. geophilum enhanced the drought resistance of P. massoniana seedlings under the early stages of drought stress, by influencing the water content, photosynthesis, accumulation of osmotic adjustment substances, and antioxidant enzyme activities in both shoots and roots of seedlings. Transcriptome analysis showed that mycorrhizal seedlings mainly regulated energy metabolism and reduction-oxidation reaction to resist early drought stress. Notably, the level of drought resistance observed in mycorrhizal seedlings was irrespective of the level of drought tolerance of C. geophilum strains. This study contributes essential data for understanding the drought response mechanisms of mycorrhizal P. massoniana seedlings inoculated by distinct C. geophilum ecotypes and guidance on selecting candidate species of ectomycorrhizal fungi for mycorrhizal afforestation in drought areas.
Collapse
Affiliation(s)
- Xiaohui Zhang
- International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (J.Z.); (J.H.); (M.L.)
| | - Jinyan Zhang
- International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (J.Z.); (J.H.); (M.L.)
| | - Juan He
- International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (J.Z.); (J.H.); (M.L.)
| | - Mingtao Li
- International Joint Laboratory of Forest Symbiology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (J.Z.); (J.H.); (M.L.)
| | - Norihisa Matsushita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan;
| | - Qifang Geng
- College of Forestry, Shandong Agricultural University, No. 61 Daizong Street, Taian 271018, China;
| | - Chunlan Lian
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Tokyo 188-0002, Japan
| | - Shijie Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhuhoucun, Zhongshanmen, Xuanwu District, Nanjing 210014, China
| |
Collapse
|
62
|
Gaucher M, Juillard A, Nguyen BH, Viller N, Ernenwein C, Marion D, Brisset MN, Bakan B. Formulated hydroxy fatty acids from fruit pomaces reduce apple scab development caused by Venturia inaequalis through a dual mode of action. FRONTIERS IN PLANT SCIENCE 2024; 14:1322638. [PMID: 38259942 PMCID: PMC10800985 DOI: 10.3389/fpls.2023.1322638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024]
Abstract
The outermost hydrophobic layer of plants, i.e. the cuticle, is mainly composed of cutin, a polyester of hydroxy fatty acids with reported eliciting and/or antimicrobial activities for some of them. By-products of the fruit processing industry (fruit pomaces), often strongly enriched in cuticular material, are therefore a potential source of bioactive compounds for crop protection against pathogen attack. We investigated the utilization of tomato and apple pomaces in the development of a cutin-based biocontrol solution against apple scab, a major apple disease caused by Venturia inaequalis. Several cutin monomer extracts obtained through different strategies of depolymerization and purification were first compared for their ability to induce a targeted set of defense genes in apple seedlings after foliar application. After a step of formulation, some extracts were chosen for further investigation in planta and in vitro. Our results show that formulated cutin monomers could trigger a significant transcriptome reprogramming in apple plants and exhibit an antifungal effect on V. inaequalis. Cutin monomers-treated apple seedlings were significantly protected against infection by the apple scab agent. Altogether, our findings suggest that water-dispersed cutin monomers extracted from pomaces are potential new bio-based solutions for the control of apple scab.
Collapse
Affiliation(s)
- Matthieu Gaucher
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Anthony Juillard
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Bao-Huynh Nguyen
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Noémie Viller
- INRAE, Biopolymers Interactions Assemblies, Nantes, France SDP Rovensa Company, Laon, France
| | | | - Didier Marion
- INRAE, Biopolymers Interactions Assemblies, Nantes, France SDP Rovensa Company, Laon, France
| | | | - Bénédicte Bakan
- INRAE, Biopolymers Interactions Assemblies, Nantes, France SDP Rovensa Company, Laon, France
| |
Collapse
|
63
|
Avalbaev A, Fedyaev V, Lubyanova A, Yuldashev R, Allagulova C. 24-Epibrassinolide Reduces Drought-Induced Oxidative Stress by Modulating the Antioxidant System and Respiration in Wheat Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:148. [PMID: 38256702 PMCID: PMC10818601 DOI: 10.3390/plants13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024]
Abstract
Brassinosteroids (BRs) represent a group of plant signaling molecules with a steroidal skeleton that play an essential role in plant adaptation to different environmental stresses, including drought. In this work, the effect of pretreatment with 0.4 µM 24-epibrassinolide (EBR) on the oxidant/antioxidant system in 4-day-old wheat seedlings (Triticum aestivum L.) was studied under moderate drought stress simulated by 12% polyethylene glycol 6000 (PEG). It was revealed that EBR-pretreatment had a protective effect on wheat plants as evidenced by the maintenance of their growth rate, as well as the reduction in lipid peroxidation and electrolyte leakage from plant tissues under drought conditions. This effect was likely due to the ability of EBR to reduce the stress-induced accumulation of reactive oxygen species (ROS) and modulate the activity of antioxidant enzymes. Meanwhile, EBR pretreatment enhanced proline accumulation and increased the barrier properties of the cell walls in seedlings by accelerating the lignin deposition. Moreover, the ability of EBR to prevent a drought-caused increase in the intensity of the total dark respiration and the capacity of alternative respiration contributes significantly to the antistress action of this hormone.
Collapse
Affiliation(s)
- Azamat Avalbaev
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 Pr. Oktyabrya, Ufa 450054, Russia; (A.L.); (R.Y.); (C.A.)
| | - Vadim Fedyaev
- Institute of Nature and Human, Ufa University of Sciences and Technology, 32 Zaki Validi, Ufa 450076, Russia;
| | - Alsu Lubyanova
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 Pr. Oktyabrya, Ufa 450054, Russia; (A.L.); (R.Y.); (C.A.)
| | - Ruslan Yuldashev
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 Pr. Oktyabrya, Ufa 450054, Russia; (A.L.); (R.Y.); (C.A.)
| | - Chulpan Allagulova
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 Pr. Oktyabrya, Ufa 450054, Russia; (A.L.); (R.Y.); (C.A.)
| |
Collapse
|
64
|
Raza HZ, Shah AA, Noreen Z, Usman S, Zafar S, Yasin NA, Sayed SRM, Al-Mana FA, Elansary HO, Ahmad A, Farzana Habib, Aslam M. Calcium oxide nanoparticles mitigate lead stress in Abelmoschus esculentus though improving the key antioxidative enzymes, nutritional content and modulation of stress markers. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108171. [PMID: 38029614 DOI: 10.1016/j.plaphy.2023.108171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Lead (Pb) is thought to be one of most injurious metals on the earth. Lead stress in plants enhances synthesis of highly toxic reactive oxygen species (ROS). During present research, impact of calcium-oxide nanoparticles (CaO-NPs) was observed on antioxidative defense mechanism in Abelmoschus esculentus plants prone to Pb stress. A CRD experiment was employed with 5 replicates having four treatments (T0 = Control, T1 = Pb stress (200 ppm), T2 = CaO-NPs and T3 = Pb + CaO-NPs). Pb-stressed seedlings exhibited decreased root growth, shoot growth, chlorophyll concentration and biomass accumulation. Moreover, higher synthesis of hydrogen-peroxide (H2O2), malondialdehyde (MDA) and electrolyte leakage (EL) resulting in cellular injuries were noted in plants growing in Pb spiked conditions. Similarly, stressed plants showed higher accumulation of total soluble sugar and proline content besides elevated activity of antioxidative enzymes counting catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX). On the contrary side, CaO-NPs alleviated the Pb induced phytotoxicity through improving activity of antioxidative enzymes. The elevated activity of antioxidant enzymes reduced biosynthesis of H2O2 and MDA which was revealed through the increased growth parameters. In addition, CaO-NPs persuaded enhancement in plant defence machinery by decreased chlorophyll deprivation and augmented the uptake of plant nutrients including K and Ca content. Hence, CaO-NPs can be potent regulators of the antioxidative enzymes and stress markers to ameliorate abiotic stresses.
Collapse
Affiliation(s)
- Hafiz Zulqurnain Raza
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Zahra Noreen
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sheeraz Usman
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sadia Zafar
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | | | - Shaban R M Sayed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Fahed A Al-Mana
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hosam O Elansary
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh, 11451, Saudi Arabia; Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Aqeel Ahmad
- Institute of Geographic Sciences and Natural Resources Research (IGSNRR), Chinese Academy of Sciences, Beijing, 100101, China
| | - Farzana Habib
- Pakistan Institute of Technology for Minerals and Advanced Engineering Materials, PCSIR Laboratories Complex, Lahore, 54600, Pakistan.
| | - Muhammad Aslam
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| |
Collapse
|
65
|
Mansoor S, Mir MA, Karunathilake EMBM, Rasool A, Ştefănescu DM, Chung YS, Sun HJ. Strigolactones as promising biomolecule for oxidative stress management: A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108282. [PMID: 38147706 DOI: 10.1016/j.plaphy.2023.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Strigolactones, which are a group of plant hormones, have emerged as promising biomolecules for effectively managing oxidative stress in plants. Oxidative stress occurs when the production of reactive oxygen species (ROS) exceeds the plant's ability to detoxify or scavenge these harmful molecules. An elevation in reactive oxygen species (ROS) levels often occurs in response to a range of stressors in plants. These stressors encompass both biotic factors, such as fungal, viral, or nematode attacks, as well as abiotic challenges like intense light exposure, drought, salinity, and pathogenic assaults. This ROS surge can ultimately lead to cellular harm and damage. One of the key ways in which strigolactones help mitigate oxidative stress is by stimulating the synthesis and accumulation of antioxidants. These antioxidants act as scavengers of ROS, neutralizing their harmful effects. Additionally, strigolactones also regulate stomatal closure, which reduces water loss and helps alleviate oxidative stress during conditions of drought stress or water deficiencies. By understanding and harnessing the capabilities of strigolactones, it becomes possible to enhance crop productivity and enable plants to withstand environmental stresses in the face of a changing climate. This comprehensive review provides an in-depth exploration of the various roles of strigolactones in plant growth, development, and response to various stresses, with a specific emphasis on their involvement in managing oxidative stress. Strigolactones also play a critical role in detoxifying ROS while regulating the expression of genes related to antioxidant defense pathways, striking a balance between ROS detoxification and production.
Collapse
Affiliation(s)
- Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | - Mudasir A Mir
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology Kashmir (SKUAST-K), Shalimar, Srinagar, J&K, 190025, India
| | - E M B M Karunathilake
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | - Aatifa Rasool
- Department of Fruit Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology Kashmir (SKUAST-K), Shalimar, Srinagar, J&K, 190025, India
| | - Dragoş Mihail Ştefănescu
- Department of Biology and Environmental Engineering, University of Craiova, A.I.Cuza 13, 200585, Craiova, Romania
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | - Hyeon-Jin Sun
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
66
|
Salih H, Bai W, Liang Y, Yang R, Zhao M, Muhammd SM, Zhang D, Li X. ROS scavenging enzyme-encoding genes play important roles in the desert moss Syntrichia caninervis response to extreme cold and desiccation stresses. Int J Biol Macromol 2024; 254:127778. [PMID: 37926320 DOI: 10.1016/j.ijbiomac.2023.127778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/14/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Abiotic stress is one of the major environmental constraints limiting plant growth. Syntrichia caninervis is one of the unique plant models that can cope with harsh environments. Reactive oxygen species (ROS) are a vital signaling molecule for protecting plants from oxidative stress, but research on ROS in S. caninervis is limited. Here, we identified 112 ROS genes in S. caninervis, including 40 GSTs, 51 PODs, 9 SODs, 6 CATs, 3 GPXs and 3 APXs families. GO and KEGG analyses showed that ROS genes are involved in responses to various stimuli and phenylpropanoid biosynthesis. ROS genes contain many stress-responsive and hormonal cis-elements in their promoter regions. More ROS genes were induced by cold stress than desiccation stress, and both conditions changed the transcript abundances of several ROS genes. CAT and POD, H2O2, MDA, and GSH were also induced under biotic stress, specifically CAT activity. The results indicated that the ScCAT genes and their activities could be strongly associated with the regulation of ROS production. This is the first systematic identification of ROS genes in S. caninervis and our findings contribute to further research into the roles of ScROS adjustment under abiotic stress while also providing excellent genetic resources for plant breeding.
Collapse
Affiliation(s)
- Haron Salih
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000 Urumqi, China
| | - Wenwan Bai
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqing Liang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000 Urumqi, China
| | - RuiRui Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingqi Zhao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Surayya Mustapha Muhammd
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000 Urumqi, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000 Urumqi, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000 Urumqi, China.
| |
Collapse
|
67
|
Kosanić M, Petrovic N, Šeklić D, Živanović M, Kokanović M. Bioactivities and Medicinal Value of the Fruiting Body Extracts of Laetiporus sulphureus and Meripilus giganteus Polypore Mushrooms (Agaricomycetes). Int J Med Mushrooms 2024; 26:17-26. [PMID: 38305259 DOI: 10.1615/intjmedmushrooms.2023051297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
In the present investigation methanol and acetone extracts of basidiocarps of mushrooms Laetiporus sulphureus and Meripilus giganteus were evaluated for their antimicrobial, cytotoxic and antioxidant/prooxidant effects. The antimicrobial potential was determined by the microdilution method against ten microorganisms. Cytotoxic effects were evaluated by MTT test, while changes of the redox status parameters (superoxide anion radical, nitrites and reduced glutathione) were determined spectrophotometrically on a human colorectal cancer cell line and human health fibroblasts cells. The results were measured 24 and 72 h after the treatment. Tested extracts exhibited moderate antimicrobial activity with MIC values from 0.004 to 20 mg/mL. The maximum antimicrobial activity was found in the methanol extracts of the M. giganteus against Bacillus subtilis, which was better than positive control. The acetone extract of M. giganteus with IC5072h = 13.36 μg/mL showed significant cytotoxic effect with strong cell selectivity (selectivity index = 37.42) against cancer human colorectal cancer cells. The tested extracts, especially M. giganteus acetone extract, induced an increase in oxidative stress parameters in tested cell lines, but significantly heightened it in human colorectal cancer cells. The obtained results suggest that these extracts, especially M. giganteus acetone extract, can be proposed as a novel source of nutraceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Marijana Kosanić
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34 000 Kragujevac, Serbia
| | - Nevena Petrovic
- Faculty of Science, Department of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, 34 000, Kragujevac, Serbia
| | - Dragana Šeklić
- Institute for Information Technologies, Department of Science, University of Kragujevac, Kragujevac, Serbia
| | - Marko Živanović
- Institute for Information Technologies, Department of Science, University of Kragujevac, Kragujevac, Serbia
| | - Mihajlo Kokanović
- BioIRC - Bioengineering Research and Development Center, Kragujevac, Serbia
| |
Collapse
|
68
|
Xia J, Wang Z, Liu S, Fang X, Hakeem A, Fang J, Shangguan L. VvATG6 contributes to copper stress tolerance by enhancing the antioxidant ability in transgenic grape calli. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:137-152. [PMID: 38435851 PMCID: PMC10902227 DOI: 10.1007/s12298-024-01415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/08/2023] [Accepted: 01/25/2024] [Indexed: 03/05/2024]
Abstract
Autophagy, a conserved degradation and reuse process, plays a crucial role in plant cellular homeostasis during abiotic stress. Although numerous autophagy-related genes (ATGs) that regulate abiotic stress have been identified, few functional studies have shown how they confer tolerance to copper (Cu) stress. Here, we cloned a novel Vitis vinifera ATG6 gene (VvATG6) which was induced by 0.5 and 10 mM Cu stress based on transcriptomic data, and transgenic Arabidopsis thaliana, tobacco (Nicotiana tabacum), and grape calli were successfully obtained through Agrobacterium-mediated genetic transformation. The overexpression of VvATG6 enhanced the tolerance of transgenic lines to Cu. After Cu treatment, the lines that overexpressed VvATG6 grew better and increased their production of biomass compared with the wild-type. These changes were accompanied by higher activities of antioxidant enzymes and a lower accumulation of deleterious malondialdehyde and hydrogen peroxide in the transgenic plants. The activities of superoxide dismutase, peroxidase, and catalase were enhanced owing to the elevation of corresponding antioxidant gene expression in the VvATG6 overexpression plants under Cu stress, thereby promoting the clearance of reactive oxygen species (ROS). Simultaneously, there was a decrease in the levels of expression of RbohB and RbohC that are involved in ROS synthesis in transgenic plants under Cu stress. Thus, the accelerated removal of ROS and the inhibition of its synthesis led to a balanced ROS homeostasis environment, which alleviated the damage from Cu. This could benefit from the upregulation of other ATGs that are necessary for the production of autophagosomes under Cu stress. To our knowledge, this study is the first to demonstrate the protective role of VvATG6 in the Cu tolerance of plants. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01415-y.
Collapse
Affiliation(s)
- Jiaxin Xia
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, Jiangsu 210095 China
| | - Zicheng Wang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, Jiangsu 210095 China
- Pingxiang Agricultural Science Research Center, Pingxiang, Jiangxi 337099 China
| | - Siyu Liu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, Jiangsu 210095 China
| | - Xiang Fang
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, Jiangsu 210095 China
- School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu 212499 China
| | - Abdul Hakeem
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, Jiangsu 210095 China
| | - Jinggui Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, Jiangsu 210095 China
| | - Lingfei Shangguan
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095 China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, Jiangsu 210095 China
| |
Collapse
|
69
|
Chwil M, Matraszek-Gawron R, Kostryco M, Różańska-Boczula M. Nutritionally Important Pro-Health Active Ingredients and Antioxidant Properties of Fruits and Fruit Juice of Selected Biennial Fruiting Rubus idaeus L. Cultivars. Pharmaceuticals (Basel) 2023; 16:1698. [PMID: 38139824 PMCID: PMC10747748 DOI: 10.3390/ph16121698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Raspberry fruits are an important source of many biologically active chemical compounds exerting nutritional and pro-health effects. The study presents a comparative analysis of nutritionally important bioactive chemical compounds-polyphenols; flavonoids, including anthocyanins; vitamin C; amino acids; fatty acids; and primary metabolites-contained in the fruits of three biennial fruiting cultivars, R. idaeus 'Glen Ample', 'Laszka', and 'Radziejowa', i.e., common cultivars in Poland and Europe. The antioxidant activity of fresh fruits and juice was determined with five methods. The analyses revealed the strong free radical scavenging potential of the fruits and juice, confirmed by the high concentration of nutrients, e.g., polyphenols, anthocyanins, vitamin C, amino acids, and fatty acids. The antioxidant activity of the juice determined with the ferric reducing antioxidant power (FRAP) and OH radical methods was from 2.5 to 4.0 times higher than that of the fruits. The following orders of total polyphenol contents were established in the analyzed cultivars: 'Glen Ample' < 'Laszka' < 'Radziejowa' in the fruits and 'Glen Ample' < 'Radziejowa' < 'Laszka' in the juice. The highest antioxidant activity was exhibited by the 'Radziejowa' fruits. Given their high content of dietary fiber, the fruits of the analyzed raspberry cultivars can be consumed by dieting subjects. The concentrations of vitamin C (28-34 mg/100 g) and anthocyanins (20-34 mg/100 g) indicate the biological and pharmacological activity of these fruits. The main unsaturated fatty acids in the fruits were gamma-linoleic acid (C18:2n6c) and alpha-linolenic acid (C18:3n3), which neutralize excess free radicals. The amino acids nutritionally essential to humans were dominated by leucine, arginine, and phenylalanine. This is the first comparative analysis of the antioxidant activity of fruits and juice and the contents of selected active compounds in the fruits of biennial fruiting cultivars of R. idaeus, i.e., a highly commercialized crop in Europe.
Collapse
Affiliation(s)
- Mirosława Chwil
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland;
| | - Renata Matraszek-Gawron
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland;
| | - Mikołaj Kostryco
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland;
| | - Monika Różańska-Boczula
- Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| |
Collapse
|
70
|
Peng M, Wang G, Zhu S. Cold-stored mulberry leaves affect antioxidant system and silk proteins of silkworm (Bombyx mori) larva. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7673-7682. [PMID: 37431698 DOI: 10.1002/jsfa.12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/16/2023] [Accepted: 07/11/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Cold storage has been widely used to maintain the quality of vegetables, but whether eating cold-stored vegetables affects health remains unknown. RESULTS This study used silkworms as an animal model to evaluate the effects of nutrient changes in cold-stored mulberry leaves (CSML) on health. Compared with fresh mulberry leaves (FML), CSML contained lower vitamin C, soluble sugars and proteins, and higher H2 O2 , suggesting decreased antioxidant ability and nutrition. The CSML did not obviously affect larval survival rate, body weight or dry matter rate, cocoon shape, weight and size, or final rates of cluster and cocooning relative to the FML, suggesting CSML did not alter overall growth and development. However, the CSML increased the initial rates of cluster and cocooning and upregulated BmRpd3, suggesting CSML shortened larval lifespan and enhanced senescence. CSML upregulated BmNOX4, downregulated BmCAT, BmSOD and BmGSH-Px and increased H2 O2 in silkworms, suggesting CSML caused oxidative stress. CSML upregulated ecdysone biosynthesis and inactivation genes and elevated ecdysone concentration in silkworms, suggesting that CSML affected hormone homeostasis. CSML upregulated apoptosis-related genes, downregulated sericin and silk fibroin genes and decreased sericin content rate in silkworms, suggesting oxidative stress and protein deficiency. CONCLUSION Cold storage reduced nutrition and antioxidant capability of mulberry leaves. CSML did not influence growth and development of silkworm larva, but affected health by causing oxidative stress and reducing protein synthesis. The findings show that the ingredient changes in CSML had negative effects on health of silkworms. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miaomiao Peng
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Guang Wang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shijiang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
71
|
Kaziuk FD, Furlanetto ALDDM, Dos Santos ALW, Floh EIS, Donatti L, Merlin Rocha ME, Fortes F, Martinez GR, Cadena SMSC. The metabolic response of Araucaria angustifolia embryogenic cells to heat stress is associated with their maturation potential. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:1010-1027. [PMID: 37743049 DOI: 10.1071/fp22272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/30/2023] [Indexed: 09/26/2023]
Abstract
Araucaria angustifolia is a critically endangered species and its distribution can be affected by an increase in temperature. In this study, we evaluated the effects of heat stress (30°C) on Araucaria angustifolia cell lines responsive (SE1) and non-responsive (SE6) to the development of somatic embryos. The viability of both cell lines was reduced by heat stress and mitochondria were the organelles most affected. Heat stress for 24h increased the reactive oxygen species (ROS) levels in SE1 cells, followed by a reduction at 48 and 72h. In SE6 cells, an increase occurred after 24 and 48h of stress, returning to control levels at 72h. H2 O2 levels were increased after 24h for both SE1 and SE6 cells, being higher for SE6. Interestingly, at 48 and 72h, H2 O2 levels decreased in SE1 cells, while in SE6, the values returned to the control levels. The respiration of SE6 cells in the presence of oxidisable substrates was inhibited by heat stress, in agreement with the high lipid peroxidation levels. The AaSERK1 gene was identified in both cultures, with greater expression in the SE1 line. Heat stress for 24 and 48h increased gene expression only in this cell line. The activity of peroxidase, superoxide dismutase and enzymes of the glutathione/ascorbate cycle was increased in both cell lines subjected to heat stress. Catalase activity was increased only in SE6 cells at 72h of exposure. These results show that responsive SE1 cells can modulate ROS levels more efficiently than SE6 when these cells are stressed by heat. This ability may be related to the maturation capacity of these cells.
Collapse
Affiliation(s)
- Fernando Diego Kaziuk
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | - Lucelia Donatti
- Department of Cellular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Maria Eliane Merlin Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Fabiane Fortes
- Department of Biology, State University of Paraná, União da Vitória, Paraná, Brazil
| | - Glaucia Regina Martinez
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | |
Collapse
|
72
|
Han L, Gu H, Lu W, Li H, Peng WX, Ling Ma N, Lam SS, Sonne C. Progress in phytoremediation of chromium from the environment. CHEMOSPHERE 2023; 344:140307. [PMID: 37769918 DOI: 10.1016/j.chemosphere.2023.140307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
As chromium (Cr) in ecosystems affects human health through food chain exposure, phytoremediation is an environmentally friendly and efficient way to reduce chromium pollution in the environment. Here, we review the mechanism of absorption, translocation, storage, detoxification, and regulation of Cr in plants. The Cr(VI) form is more soluble, mobile, and toxic than Cr(III), reflecting how various valence states of Cr affect environmental risk characteristics, physicochemical properties, toxicity, and plant uptake. Plant root's response to Cr exposure leads to reactive oxygen species (ROS) generation and apoptosis. Cell wall immobilization, vacuole compartmentation, interaction of defense proteins and organic ligand with Cr, and removal of reactive oxygen species by antioxidants continue plant life. In addition, the combined application of microorganisms, genetic engineering, and the addition of organic acids, nanoparticles, fertilization, soil amendments, and other metals could accelerate the phytoremediation process. This review provides efficient methods to investigate and understand the complex changes of Cr metabolism in plants. Preferably, fast-growing, abundantly available biomass species should be modified to mitigate Cr pollution in the environment as these green and efficient remediation technologies are necessary for the protection of soil and water ecology.
Collapse
Affiliation(s)
- Lingzhuo Han
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiping Gu
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenjie Lu
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hanyin Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Wan-Xi Peng
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science & Marine Environment, 21030, Universiti Malaysia Terengganu, Malaysia; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde, DK-4000, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
73
|
Hunpatin OS, Yuan G, Nong T, Shi C, Wu X, Liu H, Ning Y, Wang Q. The Roles of Calcineurin B-like Proteins in Plants under Salt Stress. Int J Mol Sci 2023; 24:16958. [PMID: 38069281 PMCID: PMC10707636 DOI: 10.3390/ijms242316958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Salinity stands as a significant environmental stressor, severely impacting crop productivity. Plants exposed to salt stress undergo physiological alterations that influence their growth and development. Meanwhile, plants have also evolved mechanisms to endure the detrimental effects of salinity-induced salt stress. Within plants, Calcineurin B-like (CBL) proteins act as vital Ca2+ sensors, binding to Ca2+ and subsequently transmitting signals to downstream response pathways. CBLs engage with CBL-interacting protein kinases (CIPKs), forming complexes that regulate a multitude of plant growth and developmental processes, notably ion homeostasis in response to salinity conditions. This review introduces the repercussions of salt stress, including osmotic stress, diminished photosynthesis, and oxidative damage. It also explores how CBLs modulate the response to salt stress in plants, outlining the functions of the CBL-CIPK modules involved. Comprehending the mechanisms through which CBL proteins mediate salt tolerance can accelerate the development of cultivars resistant to salinity.
Collapse
Affiliation(s)
- Oluwaseyi Setonji Hunpatin
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guang Yuan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tongjia Nong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuhan Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haobao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
| | - Yang Ning
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.S.H.); (G.Y.); (T.N.); (C.S.); (X.W.); (H.L.)
| |
Collapse
|
74
|
Al-Huqail AA, Rizwan A, Zia-Ur-Rehman M, Sakit Al-Haithloul HA, Alghanem SMS, Usman M, Majid N, Hamoud YA, Rizwan M, Abeed AA. Effect of exogenous application of biogenic silicon sources on growth, yield, and ionic homeostasis of maize (Zea mays L.) crops cultivated in alkaline soil. CHEMOSPHERE 2023; 341:140019. [PMID: 37657700 DOI: 10.1016/j.chemosphere.2023.140019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Salinity has emerged as a major threat to food security and safety around the globe. The crop production on agricultural lands is squeezing due to aridity, climate change and low quality of irrigation water. The present study investigated the effect of biogenic silicon (Si) sources including wheat straw biochar (BC-ws), cotton stick biochar (BC-cs), rice husk feedstock (RH-fs), and sugarcane bagasse (SB), on the growth of two consecutive maize (Zea mays L.) crops in alkaline calcareous soil. The application of SB increased the photosynthetic rate, transpiration rate, stomatal conductance, and internal CO2 concentration by 104, 100, 55, and 16% in maize 1 and 140, 136, 76, and 22% in maize 2 respectively. Maximum yield (g/pot) of cob, straw, and root were remained as 39.5, 110.7, and 23.6 while 39.4, 113.2, and 23.6 in maize 1 and 2 respectively with the application of SB. The concentration of phosphorus (P) in roots, shoots, and cobs was increased by 157, 173, and 78% for maize 1 while 96, 224, and 161% for maize 2 respectively over control by applying SB. The plant cationic ratios (Mg:Na, Ca:Na, K:Na) were maximum in the SB applied treatment in maize 1 and 2. The study concluded that the application of SB on the basis of soluble Si, as a biogenic source, remained the best in alleviating the salt stress and enhancing the growth of maize in rotation. The field trials will be more interesting to recommend the farmer scale.
Collapse
Affiliation(s)
- Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ali Rizwan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan.
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan.
| | | | | | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Naveeda Majid
- Global Centre for Environmental Remediation (GCER), College of Science, Engineering and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for High Performance Soils (Soil CRC), Callaghan, NSW 2308, Australia
| | - Yousef Alhaj Hamoud
- College of Hydrology and Water Recourses, Hohai University, Nanjing, Jiangsu, 210098, China
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Pakistan.
| | - AmanyH A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
75
|
Huang R, Zhang H, Chen H, He L, Liu X, Zhang Z. The determination of the biological function of bacterial pink pigment and Fusarium chlamydosporum on alfalfa ( Medicago sativa L.). Front Microbiol 2023; 14:1285961. [PMID: 37928657 PMCID: PMC10620923 DOI: 10.3389/fmicb.2023.1285961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023] Open
Abstract
Bacterial pigment is one of the secondary metabolites produced by bacteria and has functions that are yet to be understood in relation to soil-borne pathogenic fungi and plants in mutualistic processes. The study evaluates the growth, photosynthetic, and physiological characteristics of alfalfa after interacting with different concentrations of Cp2 pink pigment and Fusarium chlamydosporum. The findings showed that Cp2 pink pigment has the ability to inhibit the growth of alfalfa, with the inhibition ratio gradually increasing with rising concentration. F. chlamydosporum inhibited the growth of alfalfa, which reduced the photosynthetic physiological response and elevated antioxidant enzymes, which are typically manifested by yellowing leaves and shortened roots. Under the combined effect of Cp2 pink pigment and F. chlamydosporum, increasing concentrations of Cp2 pink pigment intensified the symptoms in alfalfa and led to more pronounced growth and physiological response. This indicates that the Cp2 pink pigment is one of the potential virulence factors secreted by the Erwinia persicina strain Cp2, which plays an inhibitory role in the interactions between F. chlamydosporum and alfalfa, and also has the potential to be developed into a plant immunomodulator agent.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenfen Zhang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Ministry of Science and Technology, Pratacultural College, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
76
|
Zhou L, Ye L, Pang B, Hou Y, Yu J, Du X, Gu L, Wang H, Zhu B. Overexpression of ApHIPP26 from the Hyperaccumulator Arabis paniculata Confers Enhanced Cadmium Tolerance and Accumulation to Arabidopsis thaliana. Int J Mol Sci 2023; 24:15052. [PMID: 37894733 PMCID: PMC10606507 DOI: 10.3390/ijms242015052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Cadmium (Cd) is a toxic heavy metal that seriously affects metabolism after accumulation in plants, and it also causes adverse effects on humans through the food chain. The HIPP gene family has been shown to be highly tolerant to Cd stress due to its special domain and molecular structure. This study described the Cd-induced gene ApHIPP26 from the hyperaccumulator Arabis paniculata. Its subcellular localization showed that ApHIPP26 was located in the nucleus. Transgenic Arabidopsis overexpressing ApHIPP26 exhibited a significant increase in main root length and fresh weight under Cd stress. Compared with wild-type lines, Cd accumulated much more in transgenic Arabidopsis both aboveground and underground. Under Cd stress, the expression of genes related to the absorption and transport of heavy metals underwent different changes in parallel, which were involved in the accumulation and distribution of Cd in plants, such as AtNRAMP6 and AtNRAMP3. Under Cd stress, the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase) in the transgenic lines were higher than those in the wild type. The physiological and biochemical indices showed that the proline and chlorophyll contents in the transgenic lines increased significantly after Cd treatment, while the malondialdehyde (MDA) content decreased. In addition, the gene expression profile analysis showed that ApHIPP26 improved the tolerance of Arabidopsis to Cd by regulating the changes of related genes in plant hormone signal transduction pathway. In conclusion, ApHIPP26 plays an important role in cadmium tolerance by alleviating oxidative stress and regulating plant hormones, which provides a basis for understanding the molecular mechanism of cadmium tolerance in plants and provides new insights for phytoremediation in Cd-contaminated areas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (L.Z.); (L.Y.); (B.P.); (Y.H.); (J.Y.); (X.D.); (L.G.)
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (L.Z.); (L.Y.); (B.P.); (Y.H.); (J.Y.); (X.D.); (L.G.)
| |
Collapse
|
77
|
Bhadra T, Mahapatra CK, Hosenuzzaman M, Gupta DR, Hashem A, Avila-Quezada GD, Abd_Allah EF, Hoque MA, Paul SK. Zinc and Boron Soil Applications Affect Athelia rolfsii Stress Response in Sugar Beet ( Beta vulgaris L.) Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3509. [PMID: 37836249 PMCID: PMC10575046 DOI: 10.3390/plants12193509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023]
Abstract
Generation of reactive oxygen species (ROS) constitutes an initial defense approach in plants during pathogen infection. Here, the effects of the two micronutrients, namely, zinc (Zn) and boron (B), on enzymatic and non-enzymatic antioxidant properties, as well as malondialdehyde (MDA) contents in leaves and roots challenged with Athelia rolfsii, which cause root rot disease, were investigated. The findings revealed that Zn and B application to the potting soil alleviated the adverse effect of A. rolfsii on sugar beet plants and increased the chlorophyll content in leaves. The increased enzymatic antioxidant activities such as catalase (CAT), peroxidase (POX), and ascorbate peroxidase (APX), and non-enzymatic antioxidants such as ascorbic acid (AsA) were observed in Zn applied plants compared to both uninoculated and inoculated control plants. A significant rise in CAT activity was noted in both leaves (335.1%) and roots (264.82%) due to the Zn2B1.5 + Ar treatment, in comparison to the inoculated control plants. On the other hand, B did not enhance the activity of any one of them except AsA. Meanwhile, A. rolfsii infection led to the increased accumulation of MDA content both in the leaves and roots of sugar beet plants. Interestingly, reduced MDA content was recorded in leaves and roots treated with both Zn and B. The results of this study demonstrate that both Zn and B played a vital role in A. rofsii tolerance in sugar beet, while Zn enhances antioxidant enzyme activities, B appeared to have a less pronounced effect on modulating the antioxidant system to alleviate the adverse effect of A. rolfsii.
Collapse
Affiliation(s)
- Tamalika Bhadra
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (T.B.); (C.K.M.)
| | - Chandan Kumar Mahapatra
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (T.B.); (C.K.M.)
| | - Md. Hosenuzzaman
- Department of Soil Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.H.); (M.A.H.)
| | - Dipali Rani Gupta
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (D.R.G.)
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.H.)
| | | | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (E.F.A.)
| | - Md. Anamul Hoque
- Department of Soil Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (M.H.); (M.A.H.)
| | - Swapan Kumar Paul
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (T.B.); (C.K.M.)
| |
Collapse
|
78
|
Wang H, Li Q, Zhang Z, Ayepa E, Xiang Q, Yu X, Zhao K, Zou L, Gu Y, Li X, Chen Q, Zhang X, Yang Y, Jin X, Yin H, Liu ZL, Tang T, Liu B, Ma M. Discovery of new strains for furfural degradation using adaptive laboratory evolution in Saccharomyces cerevisiae. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132090. [PMID: 37480608 DOI: 10.1016/j.jhazmat.2023.132090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
In industrial production, the excessive discharge of furfural can pose harm to soil microorganisms, aquatic animals and plants, as well as humans. Therefore, it is crucial to develop efficient and cost-effective methods for degrading furfural in the environment. Currently, the use of Saccharomyces cerevisiae for furfural degradation in water has shown effectiveness, but there is a need to explore improved efficiency and tolerance in S. cerevisiae for this purpose. In this study, we isolated and evolved highly efficient furfural degradation strains, namely YBA_08 and F60C. These strains exhibited remarkable capabilities, degrading 59% and 99% furfural in the YPD medium after 72 h of incubation, significantly higher than the 31% achieved by the model strain S288C. Through analysis of the efficient degradation mechanism in the evolutionary strain F60C, we discovered a 326% increase in the total amount of NADH and NADPH. This increase likely promotes faster furfural degradation through intracellular aldehyde reductases. Moreover, the decrease in NADPH content led to a 406% increase in glutathione content at the background level, which protects cells from damage caused by reactive oxygen species. Mutations and differential expression related to cell cycle and cell wall synthesis were observed, enabling cell survival in the presence of furfural and facilitating rapid furfural degradation and growth recovery. Based on these findings, it is speculated that strains YBA_08 and F60C have the potential to contribute to furfural degradation in water and the production of furfuryl alcohol, ethanol, and FDCA in biorefinery processes.
Collapse
Affiliation(s)
- Hanyu Wang
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China; College of Life Science, Leshan Normal University, Leshan, Sichuan 614000, China; Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan 614000, China
| | - Qian Li
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Zhengyue Zhang
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Ellen Ayepa
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Quanju Xiang
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Xiumei Yu
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Ke Zhao
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Likou Zou
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Yunfu Gu
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Qiang Chen
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Xiaoping Zhang
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Yaojun Yang
- College of Life Science, Leshan Normal University, Leshan, Sichuan 614000, China; Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, College of Life Science, Leshan Normal University, Leshan, Sichuan 614000, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Z Lewis Liu
- The US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Bioenergy Research Unit, 1815 N University Street, Peoria, IL 61604, USA
| | - Tianle Tang
- Key Laboratory of Tropical Transitional Medicine of Ministry of Education, Hainan Medical University, No.3 Xueyuan Road, Haikou, Hainan 571199, China.
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, China; Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, 413 90 Göteburg, Sweden.
| | - Menggen Ma
- Institute of Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China; Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China.
| |
Collapse
|
79
|
Jalil S, Alghanem SMS, Al-Huqail AA, Nazir MM, Zulfiqar F, Ahmed T, Ali S, H A Abeed A, Siddique KHM, Jin X. Zinc oxide nanoparticles mitigated the arsenic induced oxidative stress through modulation of physio-biochemical aspects and nutritional ions homeostasis in rice (Oryza sativa L.). CHEMOSPHERE 2023; 338:139566. [PMID: 37474036 DOI: 10.1016/j.chemosphere.2023.139566] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Zinc oxide nanoparticles (nZn) have emerged as vital agents in combating arsenic (As) stress in plants. However, their role in mitigation of As induced oxidative stress is less studied. Therefore, this study aimed to assess the comparative role of nZn and ZnO in alleviating As toxicity in rice genotype "9311". The results of this study revealed that nZn demonstrated superior efficacy compared to ZnO in mitigating As toxicity. This superiority can be attributed to the unique size and structure of nZn, which enhances its ability to alleviate As toxicity. Exposure to As at a concentration of 25 μM L-1 led to significant reductions in shoot length, root length, shoot dry weight, and root dry weight by 39%, 51%, 30%, and 46%, respectively, while the accumulation of essential nutrients such as magnesium (Mg), potassium (K), iron (Fe), manganese (Mn), and zinc (Zn) decreased by 25%-47% compared to the control plants. Additionally, As exposure resulted in stomatal closure and structural damage to vital cellular components such as grana thylakoids (GT), starch granules (SG), and the nucleolus. However, the application of nZn at a concentration of 30 mg L-1 exhibited significant alleviation of As toxicity, resulting in a reduction of As accumulation by 54% in shoots and 62% in roots of rice seedlings. Furthermore, nZn demonstrated the ability to scavenge reactive oxygen species (ROS) like hydrogen peroxide (H2O2) and superoxide anion (O2.-), while significantly promoted the gas exchange parameters, chlorophyll content (SPAD value), fluorescence efficiency (Fv/m) and antioxidant enzyme activities under As-induced stress. These findings highlight the potential of nZn in mitigating the adverse impacts of As contamination in rice plants. However, further research is necessary to fully comprehend the underlying mechanisms responsible for the protective effects of nZn and to determine the optimal conditions for their application in real-world agricultural settings.
Collapse
Affiliation(s)
- Sanaullah Jalil
- The Advanced Seed Institute, The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Suliman M S Alghanem
- Biology Department, College of Science, Qassim University, Burydah, 52571, Saudi Arabia
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia
| | | | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Temoor Ahmed
- Xianghu Laboratory, Hangzhou, 311231, PR China; Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Sharafat Ali
- The Advanced Seed Institute, The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Petrth, WA, 6001, Australia
| | - Xiaoli Jin
- The Advanced Seed Institute, The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
80
|
Cao Z, Ma X, Lv D, Wang J, Shen Y, Peng S, Yang S, Huang J, Sun X. Synthesis of chitin nanocrystals supported Zn 2+ with high activity against tobacco mosaic virus. Int J Biol Macromol 2023; 250:126168. [PMID: 37553033 DOI: 10.1016/j.ijbiomac.2023.126168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
Chitin is a kind of natural nitrogenous organic polysaccharide. It contains antibacterial and antiviral properties, and it can induce plant disease resistance and promote plant growth. However, its application is constrained due to its insolubility and intricate molecular structure. Tobacco mosaic disease is caused by tobacco mosaic virus (TMV) infection, which seriously harms tobacco production. Zinc-containing chemical agents are commonly used to control tobacco mosaic disease, but overuse of chemical agents will cause serious environmental pollution. In this study, a novel nanomaterial (ChNC@Zn) was prepared by using chitin nanocrystals loaded with Zn2+, which has the function of inducing disease resistance to plants and reducing virus activity. When the Zn2+ concentration of ChNC@Zn is 105.6 μg/mL, it shows higher resistance to TMV than Lentinan (LNT). ChNC@Zn can improve the enzymes activities of peroxidase (POD) and catalase (CAT) in tobacco, and reduce the damage of reactive oxygen species (ROS) caused by TMV infection, thereby inducing resistance to TMV in tobacco. Besides, it can promote the growth of tobacco. As a result, ChNC@Zn can exhibit strong antiviral activity at low Zn2+ concentration and minimize the pollution of Zn2+ to the environment, which has high potential application value in the control of virus disease.
Collapse
Affiliation(s)
- Zhe Cao
- College of Plant Protection, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Xiaozhou Ma
- College of Plant Protection, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Dashu Lv
- Technology Center, China Tobacco Guizhou Industrial Co., Ltd., Guiyang 550000, China
| | - Jing Wang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yang Shen
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Shiqi Peng
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Shenggang Yang
- Technology Center, China Tobacco Guizhou Industrial Co., Ltd., Guiyang 550000, China
| | - Jin Huang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
81
|
Mohamadzadeh M, Janmohammadi M, Abbasi A, Sabaghnia N, Ion V. Physiochemical response of Cicer arietinum to zinc-containing mesoporous silica nanoparticles under water stress. BIOTECHNOLOGIA 2023; 104:263-273. [PMID: 37850114 PMCID: PMC10578114 DOI: 10.5114/bta.2023.130729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 10/19/2023] Open
Abstract
Chickpea is an important food legume cultivated in semiarid regions, where water scarcity and nutrient deficiencies negatively affect crop production. This study aimed to investigate the effect of zinc and silicon from different sources, including bulk and nanostructures, on various biochemical traits of chickpea plants grown under field conditions in Maragheh, Northwest Iran. The main experimental factor consisted of three soil moisture levels: irrigation to 90% of field capacity (FC), 60% FC, and 30% FC. The subplots were assigned for foliar application of different fertilizers: control (distilled water), zinc sulfate (ZnSO), silicon dioxide nanoparticles (SiO2 NPs), ZnSO + SiO2 NPs, and zinc-containing mesoporous silica nanoparticles (MSNPs -Zn). The results showed that although decreased soil moisture had a negative impact on several biochemical processes, foliar application of Zn and Si in both conventional bulk and nanostructure significantly affected plant antioxidant system, plasma membrane integrity, and the concentrations of photosynthetic pigments and compatible solutes. However, the most inducing effects on catalase, ascorbate peroxidase, guaiacol peroxidase, superoxide dismutase, and anthocyanin were observed with the foliar spray of MSNPs-Zn and ZnSO + SiO2 under 60% FC. Moreover, foliar spray of MSNPs-Zn alleviated the negative effects of water deficit stress on photosynthetic pigments (chlorophyll a /b and carotenoid content). Water stress significantly induced the accumulation of free proline in the leaves. Overall, the results indicated that foliar spray of MSNPs -Zn, especially under 60% FC, improved the plant's defense system, scavenged reactive oxygen species, and enhanced the accumulation and stability of pigments, thereby mitigating the effects of drought stress.
Collapse
Affiliation(s)
- Maryam Mohamadzadeh
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Mohsen Janmohammadi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Amin Abbasi
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Naser Sabaghnia
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Viorel Ion
- Department of Plant Sciences of the Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Bucharest, Bucharest, Romani
| |
Collapse
|
82
|
Qi J, Luo Y, Huang H, Lu S, Zhao F, Deng Z, Qiu Y. Molecular Mechanism of Response and Adaptation of Antioxidant Enzyme System to Salt Stress in Leaves of Gymnocarpos przewalskii. PLANTS (BASEL, SWITZERLAND) 2023; 12:3370. [PMID: 37836109 PMCID: PMC10574792 DOI: 10.3390/plants12193370] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
The antioxidant enzyme system is the main defense system responsible for maintaining cellular reactive oxygen species (ROS) homeostasis and normal plant growth and development after saline stress. In this study, we identified and characterized the members of the SOD, APX and CAT gene families of the antioxidant enzyme system in Gymnocarpos przewalskii, using plant physiology and molecular biology methods, and analyzed the pattern of enzyme activity in response to NaCl stress. It was found that seven, six and two genes of SOD, APX and CAT gene families, respectively, were expressed in the leaf tissue of G. przewalskii, in which most of the genes were significantly upregulated under NaCl stress, and the enzymatic activities were in accordance with the gene expression. Three positive selection sites in the GpCAT1 gene can increase the hydrophilicity of the GpCAT1 protein, increase the volume of the active site and increase the affinity for H2O2, thus improving the catalytic efficiency of GpCAT1. The results of the present study provide new insights for further investigations of the evolution and function of the SOD, APX and CAT gene families in G. przewalskii and their essential roles under salt stress, and the findings will be useful for revealing the molecular mechanism of salt tolerance and breeding of salt-tolerant plants.
Collapse
Affiliation(s)
| | - Yongzhong Luo
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (J.Q.); (H.H.); (S.L.); (F.Z.); (Z.D.); (Y.Q.)
| | | | | | | | | | | |
Collapse
|
83
|
Ali A, Mashwani ZUR, Raja NI, Mohammad S, Luna-Arias JP, Ahmad A, Kaushik P. Phytomediated selenium nanoparticles and light regimes elicited in vitro callus cultures for biomass accumulation and secondary metabolite production in Caralluma tuberculata. FRONTIERS IN PLANT SCIENCE 2023; 14:1253193. [PMID: 37810387 PMCID: PMC10556749 DOI: 10.3389/fpls.2023.1253193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023]
Abstract
Introduction Caralluma tuberculata holds significant importance as a medicinal plant due to its abundance of bioactive metabolites, which offer a wide range of therapeutic potentials. However, the sustainable production of this plant is challenged by overexploitation, changes in natural conditions, slow growth rate, and inadequate biosynthesis of bioactive compounds in wild populations. Therefore, the current study was conducted to establish an in vitro based elicitation strategy (nano elicitors and light regimes) for the enhancement of biomass and production of secondary metabolites. Methods Garlic clove extract was employed as a stabilizing, reducing, or capping agent in the green formulation of Selenium nanoparticles (SeNPs) and various physicochemical characterization analyses such as UV visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-Ray (EDX) Spectroscopy, fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) were performed. Furthermore, the effects of phytosynthesized SeNPs at various concentrations (0, 50, 100, 200, and 400 µg/L on callus proliferation and biosynthesis of medicinal metabolites under different light regimes were investigated. Results and discussion Cultures grown on Murashige and Skoog (MS) media containing SeNPs (100 µg/L), in a dark environment for two weeks, and then transferred into normal light, accumulated maximum fresh weight (4,750 mg/L FW), phenolic contents (TPC: 3.91 mg/g DW), flavonoid content (TFC: 2.04 mg/g DW) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) antioxidant activity (85%). Maximum superoxide dismutase (SOD: 4.36 U/mg) and peroxide dismutase activity (POD: 3.85 U/mg) were determined in those cultures exposed to SeNPs (100 µg/L) under complete dark conditions. While the callus cultures proliferate on media augmented with SeNPs (200 µg/L) and kept under dark conditions for two weeks and then shifted to normal light conditions exhibited the highest catalase (CAT: 3.25 U/mg) and ascorbate peroxidase (APx: 1.93 U/mg) activities. Furthermore, LC-ESI-MS/MS analysis confirmed the effects of SeNPs and light conditions that elicited the antidiabetic metabolites (cumarins, gallic acid, caffeic acid, ferulic acid, catechin, querctin and rutin). This protocol can be scaled up for the industrial production of plant biomass and pharmacologically potent metabolites using in vitro callus cultures of C. tuberculata.
Collapse
Affiliation(s)
- Amir Ali
- Department of Botany, Pir Mehr Ali Shah Arid (PMAS) Agriculture University Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Zia-ur-Rehman Mashwani
- Department of Botany, Pir Mehr Ali Shah Arid (PMAS) Agriculture University Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, Pir Mehr Ali Shah Arid (PMAS) Agriculture University Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Sher Mohammad
- Biotechnology Laboratory, Agricultural Research Institute (ARI) Tarnab, Peshawar, Pakistan
| | - Juan Pedro Luna-Arias
- Department of Cell Biology, and Nanoscience and Nanotechnology Ph.D. Program, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico, Mexico
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
84
|
Khan RAA, Alam SS, Najeeb S, Ali A, Ahmad A, Shakoor A, Tong L. Mitigating Cd and bacterial wilt stress in tomato plants through trico-synthesized silicon nanoparticles and Trichoderma metabolites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122041. [PMID: 37343915 DOI: 10.1016/j.envpol.2023.122041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/16/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
There has been a growing apprehension in recent years about the harmful effects of environmental pollutants on agricultural output, encompassing both living organisms and non-living factors that cause stress. In this study, the soil application of bulk silicon (Si), silicon nanoparticles (SiNPs) and Trichoderma metabolites (TM) were investigated alone or in combination for the management of an important abiotic stress i.e. Cd toxicity and biotic stress i.e. bacterial wilt (BW) in tomato plants. SiNPs were synthesized by Trichoderma and confirmed through XRD, FTIR, and Ranman spectrum analysis. Results showed that Si, SiNPs and TM were all effective treatments. The combine treatment of SiNPs and TM followed by SiNPs alone were superior over other treatments in mitigating Cd toxicity and reducing BW disease on tomato plants. The soil application of these treatments reduced the Cd toxicity by enhancing Cd-tolerance index, decreasing bioavailability of soil Cd, reducing Cd contents and translocation in plants, improving gaseous exchange, photosynthesis, and increasing the antioxidant enzyme activities and their transcriptions. These treatments significantly suppressed BW pathogen leading to the significant decrease in disease index and severity on plants. In vitro evaluation and scanning electron microscopic (SEM) analysis revealed that SiNPs and TM significantly disrupted the cellular morphology of BW pathogen Ralstonia solanacearum. Findings of this study proposes the possible use of SiNPs and TM in mitigating the Cd and BW stress in tomato plants and possibly in other crops.
Collapse
Affiliation(s)
- Raja Asad Ali Khan
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (Hainan University), Ministry of Education, Haikou, 570228, China
| | - Syed Sartaj Alam
- Department of Plant Pathology, The University of Agriculture, Peshawar, Pakistan
| | - Saba Najeeb
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Asad Ali
- Department of Plant Pathology, The University of Agriculture, Peshawar, Pakistan
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Awais Shakoor
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Liu Tong
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (Hainan University), Ministry of Education, Haikou, 570228, China.
| |
Collapse
|
85
|
Wang J, Liu B, Jin Z, Li L, Shen W. Argon-stimulated nitric oxide production and its function in alfalfa cadmium tolerance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122009. [PMID: 37307859 DOI: 10.1016/j.envpol.2023.122009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/23/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Recent results showed that argon may have great potential in both medicines (especially) and agriculture. However, how argon positively influences crop physiology remains elusive. Here, we observed that the stimulation of nitric oxide (NO) production upon cadmium (Cd) stress in hydroponic alfalfa root tissues was strengthened by argon-rich water and/or a NO-releasing compound. The pharmacological results further indicated that above potential source of NO stimulation achieved by argon might be attributed to NO synthase (NOS) and nitrate reductase (NR). Under hydroponic and pot conditions, the improvement of Cd tolerance elicited by argon, confirmed by the alleviation in the plant growth inhibition, oxidative damage, and Cd accumulation, was sensitive to the scavenger of NO. These results suggested a crucial role of argon-induced NO synthesis in response to Cd stress. Subsequent evidence showed that the improved iron homeostasis and increased S-nitrosylation were also dependent on argon-stimulated NO. Above results were matched with the transcriptional profiles of representative target genes involved in heavy metal detoxification, antioxidant defence, and iron homeostasis. Taken together, our results clearly indicated that argon-stimulated NO production contributes to Cd tolerance by favoring important defense strategies against heavy metal exposure.
Collapse
Affiliation(s)
- Jun Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Bowen Liu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhiwei Jin
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
86
|
Pintó-Marijuan M, Turon-Orra M, González-Betancort A, Muñoz P, Munné-Bosch S. Improved production and quality of peppers irrigated with regenerated water by the application of 24-epibrassinolide. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111764. [PMID: 37301327 DOI: 10.1016/j.plantsci.2023.111764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/20/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Water shortage for crop irrigation is reducing agricultural production worldwide and the use of sewage treatment plant (STP) water to irrigate horticultural fields is a solution to avoid the use of drinkable water in agriculture. In this study, two different genotypes of pepper (Red Cherry Small and Italian green) were irrigated with STP water, as an alternative to potable water. Moreover, the foliar application of a molecule with biostimulant properties (24-epibrassinolide; EBR) was tested as a strategy to ameliorate the production and quality of fruits. Both genotypes differed on their tolerance to the suffered oxidative stress due to their different salinity tolerance, but fruit commercial weight was reduced by 49% on the salt sensitive and by 37% on the salt tolerant. Moreover, ascorbic acid was also decreased by 37% after STP water irrigation in the Red Cherry Small peppers. However, EBR applications alleviated STP watering stress effects improving pepper plants fruit production and quality parameters, such as ascorbic acid and capsaicinoids. These results have important economic and environmental relevance to overcome present and future water deficiencies in the agricultural sector derived from climate change, guaranteeing the maintenance of production in peppers irrigated with STP water for a more sustainable agriculture following relevant circular economy actions.
Collapse
Affiliation(s)
- Marta Pintó-Marijuan
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain.
| | - Martina Turon-Orra
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Alba González-Betancort
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| |
Collapse
|
87
|
Shohani F, Hosseinin Sarghein S, Fazeli A. Simultaneous application of salicylic acid and silicon in aerial parts of Scrophularia striata L. in response to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107936. [PMID: 37647821 DOI: 10.1016/j.plaphy.2023.107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/03/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
Plants respond to water shortage by regulating biochemical pathways which result in the biosynthesis of osmotic compounds. Active metabolites and compatible osmolytes control the inhibition of oxygen free radicals and dehydration. The physiological response of scrophularia striata to drought stress, a factorial completely randomized design (FCRD) experiment was conducted in three replication. Drought stress was induced at two levels (100% and 50% field capacity), and salicylic acid (SA) and silicon (Si) and Ecotype were also used at two levels of (0 and 100 PPM), (0 and 1 g/L) and (Ilam and Abdanan) respectively. Data analysis results indicated that the H2O2 content, Malondialdehyde (MDA), glycine betaine (GB) and the activity of the enzyme glutathione reductase (GR; EC 1.6.4.2) of aerial parts increased during the entire stress exposure period. Although the SA + Si + stress + ecotype interaction increased the content of soluble carbohydrate s and the GR activity in aerial parts of Ilam and Abdanan ecotypes, this interaction led to a decrease in MDA, H2O2 in Ilam ecotypes. The interaction between the stress + SA + Si + ecotype led to an increase in the phenylalanine ammonialyase (PAL; EC 4.3.1.5) activity in the Abdanan ecotype, but no important difference was observed. As compared to the control treatment, the content of Polyphenol increased, The interaction between ecotype + stress + Si caused to increased the of proline content in the Abadanan ecotype. The results showed that the increase in antioxidant defense and compatible osmolytes due to the use of SA and Si can improve the drought tolerance in S.striata.
Collapse
Affiliation(s)
- Fariba Shohani
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran.
| | | | - Arash Fazeli
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Ilam University, Ilam, 6939177111, Iran.
| |
Collapse
|
88
|
Shah T, Khan Z, Asad M, Imran A, Khan Niazi MB, Alsahli AA. Alleviation of cadmium toxicity in wheat by strigolactone: Regulating cadmium uptake, nitric oxide signaling, and genes encoding antioxidant defense system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107916. [PMID: 37595403 DOI: 10.1016/j.plaphy.2023.107916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023]
Abstract
Cadmium (Cd) in the food system poses a serious threat to human health. The evidence on strigolactones-mediated alleviation of abiotic stress signaling and eliciting physiological modifications in plants is scarce. Therefore, this experiment was conducted to explore the role of exogenous applied strigolactone (SL) in alleviating the toxic effects of Cd and to unravel its physiological, biochemical, and molecular mechanisms in wheat. Excessive accumulation of Cd drastically reduces growth attributes (-15%), nitric oxide signaling, and photosynthetic pigments by increasing oxidative stress biomarkers. Foliar applied SL (4 μM) decreased the Cd-induced growth inhibition (+10%), lessened plant Cd contents (-38% and -36%), shielded chlorophyll pigments (+25%), and considerably decreased Cd-induced oxidative stress in wheat. Moreover, SL applied on wheat foliage remarkably enhanced shoot and root nitric oxide content (+122% and +156%) and nitric oxide synthase activity (104% and 92%) in wheat, efficiently mitigating the Cd-induced suppression of superoxide dismutase and peroxidase, elevating the expression of genes encoding antioxidant defense system. The results of the current research exhibit that SL (GR24) could be a potential candidate for detoxification of Cd by reducing Cd contents, elevating the expression of genes encoding antioxidant defense system, and protecting wheat plants from oxidative stress by indirectly reducing oxidative stress biomarkers andsubsequently contributing to decreasing the possible risk of Cd contamination.
Collapse
Affiliation(s)
- Tariq Shah
- Plant Science Research Unit United States Department for Agriculture -Agricultural Research Service, Raleigh, NC, USA; Department of Agronomy, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25130, Pakistan.
| | - Zeeshan Khan
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Muhammad Asad
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Ayesha Imran
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Muhammad Bilal Khan Niazi
- Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | | |
Collapse
|
89
|
Zhu C, Yi X, Yang M, Liu Y, Yao Y, Zi S, Chen B, Xiao G. Comparative Transcriptome Analysis of Defense Response of Potato to Phthorimaea operculella Infestation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3092. [PMID: 37687339 PMCID: PMC10490199 DOI: 10.3390/plants12173092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
The potato tuber moth (PTM), Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae), is one of the most destructive pests of potato crops worldwide. Although it has been reported how potatoes integrate the early responses to various PTM herbivory stimuli by accumulatively adding the components, the broad-scale defense signaling network of potato to single stimuli at multiple time points are unclear. Therefore, we compared three potato transcriptional profiles of undamaged plants, mechanically damaged plants and PTM-feeding plants at 3 h, 48 h, and 96 h, and further analyzed the gene expression patterns of a multitude of insect resistance-related signaling pathways, including phytohormones, reactive oxygen species, secondary metabolites, transcription factors, MAPK cascades, plant-pathogen interactions, protease inhibitors, chitinase, and lectins, etc. in the potato under mechanical damage and PTM infestation. Our results suggested that the potato transcriptome showed significant responses to mechanical damage and potato tuber moth infestation, respectively. The potato transcriptome responses modulated over time and were higher at 96 than at 48 h, so transcriptional changes in later stages of PTM infestation may underlie the potato recovery response. Although the transcriptional profiles of mechanically damaged and PTM-infested plants overlap extensively in multiple signaling pathways, some genes are uniquely induced or repressed. True herbivore feeding induced more and stronger gene expression compared to mechanical damage. In addition, we identified 2976, 1499, and 117 genes that only appeared in M-vs-P comparison groups by comparing the transcriptomes of PTM-damaged and mechanically damaged potatoes at 3 h, 48 h, and 96 h, respectively, and these genes deserve further study in the future. This transcriptomic dataset further enhances the understanding of the interactions between potato and potato tuber moth, enriches the molecular resources in this research area and paves the way for breeding insect-resistant potatoes.
Collapse
Affiliation(s)
- Chunyue Zhu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Xiaocui Yi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Miao Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Yiyi Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Yao Yao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Shengjiang Zi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| | - Bin Chen
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Guanli Xiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (C.Z.); (X.Y.); (M.Y.); (S.Z.); (Y.L.); (Y.Y.)
| |
Collapse
|
90
|
Kaur R, Chandra J, Varghese B, Keshavkant S. Allantoin: A Potential Compound for the Mitigation of Adverse Effects of Abiotic Stresses in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3059. [PMID: 37687306 PMCID: PMC10489999 DOI: 10.3390/plants12173059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023]
Abstract
Stress-induced alterations vary with the species of plants, the intensity and duration of the exposure, and stressors availability in nature or soil. Purine catabolism acts as an inherent defensive mechanism against various abiotic stresses and plays a pivotal role in the stress acclimatisation of plants. The intermediate metabolite of purine catabolism, allantoin, compensates for soil nitrogen deficiency due to the low carbon/nitrogen ratio, thereby maintaining nitrogen homeostasis and supporting plant growth and development. Allantoin accounts for 90% of the total nitrogenous compound in legumes, while it contributes only 15% in non-leguminous plants. Moreover, studies on a variety of plant species have reported the differential accumulation of allantoin in response to abiotic stresses, endowing allantoin as a stress modulator. Allantoin functions as signalling molecule to stimulate stress-responsive genes (P5CS; pyrroline-5-carboxylase synthase) and ROS (reactive oxygen species) scavenging enzymes (antioxidant). Moreover, it regulates cross-talk between the abscisic acid and jasmonic acid pathway, and maintains ion homeostasis by increasing the accumulation of putrescine and/or spermine, consequently enhancing the tolerance against stress conditions. Further, key enzymes of purine catabolism (xanthine dehydrogenase and allantoinase) have also been explored by constructing various knockdown/knockout mutant lines to decipher their impact on ROS-mediated oxidative injury in plants. Thus, it is established that allantoin serves as a regulatory signalling metabolite in stress protection, and therefore a lower accumulation of allantoin also reduces plant stress tolerance mechanisms. This review gives an account of metabolic regulation and the possible contribution of allantoin as a photo protectant, osmoprotectant, and nitrogen recycler to reduce abiotic-stress-induced impacts on plants.
Collapse
Affiliation(s)
- Rasleen Kaur
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India; (R.K.); (S.K.)
| | - Jipsi Chandra
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur 492 010, India;
| | - Boby Varghese
- Centre for Academic Success in Science and Engineering, University of KwaZulu-Natal, Durban 4001, South Africa
| | - S. Keshavkant
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India; (R.K.); (S.K.)
| |
Collapse
|
91
|
de Sousa GF, Silva MA, de Carvalho MR, de Morais EG, Benevenute PAN, Van Opbergen GAZ, Van Opbergen GGAZ, Guilherme LRG. Foliar Selenium Application to Reduce the Induced-Drought Stress Effects in Coffee Seedlings: Induced Priming or Alleviation Effect? PLANTS (BASEL, SWITZERLAND) 2023; 12:3026. [PMID: 37687273 PMCID: PMC10490047 DOI: 10.3390/plants12173026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023]
Abstract
This study aimed to investigate the role of Se supply in improving osmotic stress tolerance in coffee seedlings while also evaluating the best timing for Se application. Five times of Se foliar application were assessed during induced osmotic stress with PEG-6000 using the day of imposing stress as a default, plus two control treatments: with osmotic stress and without Se, and without osmotic stress and Se. Results demonstrated that osmotic stress (OS) promoted mild stress in the coffee plants (ψw from -1.5MPa to -2.5 MPa). Control plants under stress showed seven and five times lower activity of the enzymes GR and SOD compared with the non-stressed ones, and OS was found to further induce starch degradation, which was potentialized by the Se foliar supply. The seedlings that received foliar Se application 8 days before the stress exhibited higher CAT, APX, and SOD than the absolute control (-OS-Se)-771.1%, 356.3%, and 266.5% higher, respectively. In conclusion, previous Se foliar spray is more effective than the Se supply after OS to overcome the adverse condition. On the other hand, the post-stress application seems to impose extra stress on the plants, leading them to reduce their water potential.
Collapse
Affiliation(s)
- Gustavo Ferreira de Sousa
- Soil Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (G.F.d.S.); (M.A.S.); (E.G.d.M.); (P.A.N.B.); (G.A.Z.V.O.); (G.G.A.Z.V.O.)
| | - Maila Adriely Silva
- Soil Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (G.F.d.S.); (M.A.S.); (E.G.d.M.); (P.A.N.B.); (G.A.Z.V.O.); (G.G.A.Z.V.O.)
| | | | - Everton Geraldo de Morais
- Soil Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (G.F.d.S.); (M.A.S.); (E.G.d.M.); (P.A.N.B.); (G.A.Z.V.O.); (G.G.A.Z.V.O.)
| | - Pedro Antônio Namorato Benevenute
- Soil Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (G.F.d.S.); (M.A.S.); (E.G.d.M.); (P.A.N.B.); (G.A.Z.V.O.); (G.G.A.Z.V.O.)
| | - Gustavo Avelar Zorgdrager Van Opbergen
- Soil Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (G.F.d.S.); (M.A.S.); (E.G.d.M.); (P.A.N.B.); (G.A.Z.V.O.); (G.G.A.Z.V.O.)
| | | | - Luiz Roberto Guimarães Guilherme
- Soil Science Department, Federal University of Lavras, Lavras 37200-000, MG, Brazil; (G.F.d.S.); (M.A.S.); (E.G.d.M.); (P.A.N.B.); (G.A.Z.V.O.); (G.G.A.Z.V.O.)
| |
Collapse
|
92
|
Li L, Zhu Z, Liu J, Zhang Y, Lu Y, Zhao J, Xing H, Guo N. Transcription Factor GmERF105 Negatively Regulates Salt Stress Tolerance in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:3007. [PMID: 37631217 PMCID: PMC10459988 DOI: 10.3390/plants12163007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
The Ethylene Response Factor (ERF) transcription factors form a subfamily of the AP2/ERF family that is instrumental in mediating plant responses to diverse abiotic stressors. Herein, we present the isolation and characterization of the GmERF105 gene from Williams 82 (W82), which is rapidly induced by salt, drought, and abscisic acid (ABA) treatments in soybean. The GmERF105 protein contains an AP2 domain and localizes to the nucleus. GmERF105 was selectively bound to GCC-box by gel migration experiments. Under salt stress, overexpression of GmERF105 in Arabidopsis significantly reduced seed germination rate, fresh weight, and antioxidant enzyme activity; meanwhile, sodium ion content, malonic dialdehyde (MDA) content, and reactive oxygen species (ROS) levels were markedly elevated compared to the wild type. It was further found that the transcription levels of CSD1 and CDS2 of two SOD genes were reduced in OE lines. Furthermore, the GmERF105 transgenic plants displayed suppressed expression of stress response marker genes, including KIN1, LEA14, NCED3, RD29A, and COR15A/B, under salt treatment. Our findings suggest that GmERF105 can act as a negative regulator in plant salt tolerance pathways by affecting ROS scavenging systems and the transcription of stress response marker genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinming Zhao
- Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, MOE National Innovation Platform for Soybean Bio-Breeding Industry and Education Integration, Zhongshan Biological Breeding Laboratory, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (L.L.)
| | - Han Xing
- Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, MOE National Innovation Platform for Soybean Bio-Breeding Industry and Education Integration, Zhongshan Biological Breeding Laboratory, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (L.L.)
| | - Na Guo
- Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, MOE National Innovation Platform for Soybean Bio-Breeding Industry and Education Integration, Zhongshan Biological Breeding Laboratory, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (L.L.)
| |
Collapse
|
93
|
Mansoor S, Ali A, Kour N, Bornhorst J, AlHarbi K, Rinklebe J, Abd El Moneim D, Ahmad P, Chung YS. Heavy Metal Induced Oxidative Stress Mitigation and ROS Scavenging in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3003. [PMID: 37631213 PMCID: PMC10459657 DOI: 10.3390/plants12163003] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Although trace elements are essential for life, environmental contamination due to metal accumulation and overuse in various sectors, such as healthcare, agriculture, industry, and cosmetics, poses significant health concerns. Exposure of plants to heavy metals leads to the overproduction of reactive oxygen species (ROS) due to their ability to change mitochondrial membrane permeability and restrict the action of ROS clearance enzymes in the cellular antioxidant system. The interaction of ROS with cellular membranes, heavy-metal-induced interactions directly or indirectly with different macromolecules, and signaling pathways leads to the accumulation of environmental pollutants and oxidative stress in exposed organisms. The heavy metal-ROS-cell signaling axis affects various pathological processes such as ATP depletion, excess ROS production, mitochondrial respiratory chain damage, decoupling of oxidative phosphorylation, and mitochondrial death. This review focuses on discussing the toxic effects of different heavy metals on plants, with particular emphasis on oxidative stress, its consequences, and mitigation strategies.
Collapse
Affiliation(s)
- Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, Jeju 63243, Republic of Korea;
| | - Asif Ali
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK;
| | - Navneet Kour
- Division of Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu 180009, India
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, 20, 42119 Wuppertal, Germany;
- Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, 14558 Nuthetal, Germany
| | - Khadiga AlHarbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Jörg Rinklebe
- Laboratory of Soil and Groundwater Management, Institute of Foundation Engineering, Water and Waste Management, School of Architecture and Civil Engineering, University of Wuppertal, Pauluskirchstraße 7, 42285 Wuppertal, Germany;
| | - Diaa Abd El Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt;
| | - Parvaiz Ahmad
- Department of Botany, Government Degree College, Pulwama 192301, Jammu and Kashmir, India
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju 63243, Republic of Korea;
| |
Collapse
|
94
|
Karthick Raja Namasivayam S, Kumar S, Samrat K, Arvind Bharani RS. Noteworthy biocompatibility of effective microorganisms (EM) like microbial beneficial culture formulation with metal and metal oxide nanoparticles. ENVIRONMENTAL RESEARCH 2023; 231:116150. [PMID: 37209987 DOI: 10.1016/j.envres.2023.116150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
The present study evaluates the biocompatibility of silver and zinc oxide nanoparticles with various effective microorganisms (EM), like beneficial microbial formulations. The respective nanoparticle was synthesised by chemical reduction of metal precursor with reducer via simple route green technology principles. The synthesised nanoparticles were characterised by UV visible spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) studies, revealing highly stable, nanoscale particles with marked crystallinity. EM-like beneficial cultures composed of viable cells of Lactobacillus lactis, Streptomyces sp, Candida lipolytica, and Aspergillus oryzae were formulated with rice bran, sugarcane syrup, and groundnut cake. The respective formulation was inoculated into the nanoparticles amalgamated pots raised with green gram seedlings. Biocompatibility was determined by measuring plant growth parameters of a green gram at pre-determined periods associated with enzymatic antioxidants like catalase (CAT), superoxide dismutase (SOD), and glutathione S transferase (GST) levels. Most significantly, the expression level of these enzymatic antioxidants level was also investigated by quantitative real-time polymerase chain reaction (qRT-PCR). The impact of the soil conditioning effect on soil nutrients like nitrogen, phosphorous, potassium, organic carbon, soil enzymes glucosidases, and β-xylosidases activity was also studied. Among the formulation, rice bran-groundnut cake-sugar syrup formulation recorded the best biocompatibility. This formulation showed high growth promotion, soil conditioning effect and no impact on the oxidative stress enzymes genes that revealed the best compatibility of nanoparticles. This study concluded that biocompatible, eco-friendly formulations of microbial inoculants could be used for the desirable agro active properties that show extreme tolerance or biocompatibility to the nanoparticles. This present study also suggests the utilisation of the above said beneficial microbial formulation and metal-based nanoparticles with desirable agro active properties in a synergistic manner due to their high tolerance or compatibility towards the metal or metal oxide nanoparticles.
Collapse
Affiliation(s)
- S Karthick Raja Namasivayam
- Department of Research & Innovation, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India.
| | - Sharvan Kumar
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - K Samrat
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bangalore, 560054, Karnataka, India
| | | |
Collapse
|
95
|
Ramzan T, Shahbaz M, Maqsood MF, Zulfiqar U, Saman RU, Lili N, Irshad M, Maqsood S, Haider A, Shahzad B, Gaafar ARZ, Haider FU. Phenylalanine supply alleviates the drought stress in mustard (Brassica campestris) by modulating plant growth, photosynthesis, and antioxidant defense system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107828. [PMID: 37329687 DOI: 10.1016/j.plaphy.2023.107828] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Mustard (Brassica campestris L.) is a major oilseed crop that plays a crucial role in agriculture. Nevertheless, a number of abiotic factors, drought in particular, significantly reduce its production. Phenylalanine (PA) is a significant and efficacious amino acid in alleviating the adverse impacts of abiotic stressors, such as drought. Thus, the current experiment aimed to evaluate the effects of PA application (0 and 100 mg/L) on brassica varieties i.e., Faisal (V1) and Rachna (V2) under drought stress (50% field capacity). Drought stress reduced the shoot length (18 and 17%), root length (12.1 and 12.3%), total chlorophyll contents (47 and 45%), and biological yield (21 and 26%) of both varieties (V1 and V2), respectively. Foliar application of PA helped overcome drought-induced losses and enhanced shoot length (20 and 21%), total chlorophyll contents (46 and 58%), and biological yield (19 and 22%), whereas reducing the oxidative activities of H2O2 (18 and 19%), MDA concentration (21 and 24%), and electrolyte leakage (19 and 21%) in both varieties (V1 and V2). Antioxidant activities, i.e., CAT, SOD, and POD, were further enhanced under PA treatment by 25, 11, and 14% in V1 and 31, 17, and 24% in V2. Overall findings suggest that exogenous PA treatment reduced the drought-induced oxidative damage and improved the yield, and ionic contents of mustard plants grown in pots. It should be emphasized, however, that studies examining the impacts of PA on open-field-grown brassica crops are still in their early stages, thus more work is needed in this area.
Collapse
Affiliation(s)
- Tahrim Ramzan
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | | | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Rafia Urooj Saman
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Nian Lili
- College of Forestry, Gansu Agricultural University, Lanzhou, 730070, China
| | - Muhammad Irshad
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Sana Maqsood
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Arslan Haider
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Abdel-Rhman Z Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
96
|
Li Z, Ahammed GJ. Hormonal regulation of anthocyanin biosynthesis for improved stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107835. [PMID: 37348389 DOI: 10.1016/j.plaphy.2023.107835] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Due to unprecedented climate change, rapid industrialization and increasing use of agrochemicals, abiotic stress, such as drought, low temperature, high salinity and heavy metal pollution, has become an increasingly serious problem in global agriculture. Anthocyanins, an important plant pigment, are synthesized through the phenylpropanoid pathway and have a variety of physiological and ecological functions, providing multifunctional and effective protection for plants under stress. Foliar anthocyanin accumulation often occurs under abiotic stress including high light, cold, drought, salinity, nutrient deficiency and heavy metal stress, causing leaf reddening or purpling in many plant species. Anthocyanins are used as sunscreens and antioxidants to scavenge reactive oxygen species (ROS), as metal(loid) chelators to mitigate heavy metal stress, and as crucial molecules with a role in delaying leaf senescence. In addition to environmental factors, anthocyanin synthesis is affected by various endogenous factors. Plant hormones such as abscisic acid, jasmonic acid, ethylene and gibberellin have been shown to be involved in regulating anthocyanin synthesis either positively or negatively. Particularly when plants are under abiotic stress, several plant hormones can induce foliar anthocyanin synthesis to enhance plant stress resistance. In this review, we revisit the role of plant hormones in anthocyanin biosynthesis and the mechanism of plant hormone-mediated anthocyanin accumulation and abiotic stress tolerance. We conclude that enhancing anthocyanin content with plant hormones could be a prospective management strategy for improving plant stress resistance, but extensive further research is essentially needed to provide future guidance for practical crop production.
Collapse
Affiliation(s)
- Zhe Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, PR China; Henan Engineering Technology Research Center for Horticultural Crop Safety and Disease Control, Luoyang, 471023, PR China.
| |
Collapse
|
97
|
Alamer KH. Combined effect of trehalose and spermidine to alleviate zinc toxicity in Vigna radiata. 3 Biotech 2023; 13:288. [PMID: 37525633 PMCID: PMC10387031 DOI: 10.1007/s13205-023-03708-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/16/2023] [Indexed: 08/02/2023] Open
Abstract
Zinc toxicity is affecting the growth and yield of major crops plants throughout globe by reducing key metabolic processes. In this backdrop, experiments were conducted to evaluate the influence of exogenous supplementation of trehalose (500 µM Treh) and spermidine (500 µM Spd) in alleviating the damaging effects of zinc toxicity (100 µM ZnSO4) in Vigna radiata. Growth, chlorophyll and photosynthesis were reduced due to Zn toxicity; however, exogenous supplementation of trehalose and spermidine not only increased the parameters but also alleviated the decline to considerable levels. Toxicity of zinc increased H2O2, lipid peroxidation and electrolyte leakage by 100.43%, 84.53% and 134.64%, respectively, and application of trehalose and spermidine a reduction of 29.32%, 39.09% and 44.91%, respectively, over the zinc-treated plants. Application of trehalose and spermidine increased the activity of nitrate reductase and the content of nitrogen concomitant with alleviation of the decline caused due to zinc toxicity. The activity of antioxidant system enzymes superoxide dismutase, catalase and the enzymes of ascorbate-glutathione cycle was significantly enhanced due to trehalose and spermidine application. Proline, glycine betaine and activity of γ-glutamyl kinase increased maximally by 281.84%, 126.21% and 181.08%, respectively, in plants treated with zinc + trehalose + spermidine over control. Significant enhancement in the content of total phenols and flavonoids was observed due to the treatment of trehalose and spermidine individually as well as combinedly. Application of trehalose and spermidine reduced the content of methylglyoxal by up-regulating the activity of glyoxylase cycle enzymes. In addition under zinc toxicity conditions, the content of zinc declined in trehalose- and spermidine-treated plants.
Collapse
Affiliation(s)
- Khalid H. Alamer
- Biological Sciences Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh, 21911 Saudi Arabia
| |
Collapse
|
98
|
Mariri NG, Dikhoba PM, Mongalo NI, Makhafola TJ. GC-ToF-MS Profiling and In Vitro Inhibitory Effects of Selected South African Plants against Important Mycotoxigenic Phytopathogens. Life (Basel) 2023; 13:1660. [PMID: 37629517 PMCID: PMC10455341 DOI: 10.3390/life13081660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The harmful effects following the ingestion of mycotoxin-contaminated food include the induction of cancers, mutagenicity, immune suppression, and toxicities that target organs of the digestive, cardiovascular, and central nervous systems. Synthetic fungicides are generally associated with a high toxic residue in food and the development of excessive fungal resistance. This study aimed to determine the antifungal activities against mycotoxigenic fungi of selected South African plant leaves and potentially develop plant-derived bio-fungicides, and, furthermore, to explore the in vitro antioxidant activity and the phytochemical spectra of the compounds of the selected medicinal plant extracts. The extracts were tested for antifungal activity against phytopathogenic strains using a microdilution broth assay. Bauhinia galpinii extracts exhibited the lowest minimum inhibitory concentration (MIC) against C. cladospoides and P. haloterans at 24 h incubation periods. C. caffrum had good antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) with 50% inhibitory concentration (IC50) values of 0.013 mg/mL while B. galpini had IC50 values of 0.053 against free radicals of 2,2'-azinobis (3-ethylbenzthiazoline-6-suphonic acid (ABTS). The antimycotoxigenic and antioxidant activity exerted by both B. galpinii and C. caffrum may well be attributed to high TPC. In the GC-ToF-MS analysis, all the selected medicinal plants exhibited the presence of Hexadecanoic acid at varying % areas, while both B. galpinii and C. caffum exhibited the presence of lupeol at % area 2.99 and 3.96, respectively. The compounds identified, particularly the ones with higher % area, may well explain the biological activity observed. Although the selected medicinal plants exhibited a notable biological activity, there is a need to explore the safety profiles of these plants, both in vitro and in vivo.
Collapse
Affiliation(s)
- Ntagi Gerald Mariri
- Center for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa; (N.G.M.); (P.M.D.)
| | - Preachers Madimetja Dikhoba
- Center for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa; (N.G.M.); (P.M.D.)
| | - Nkoana Ishmael Mongalo
- College of Agriculture and Environmental Science (CAES), Laboratories, University of South Africa, Private BagX06, Florida 0710, South Africa
| | - Tshepiso Jan Makhafola
- Center for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa; (N.G.M.); (P.M.D.)
| |
Collapse
|
99
|
Zhao F, Wang Q, An X, Tan Q, Yun J, Zhang Y. Oxidative damage from repeated tissue isolation for subculturing causes degeneration in Volvariella volvacea. Front Microbiol 2023; 14:1210496. [PMID: 37547686 PMCID: PMC10397519 DOI: 10.3389/fmicb.2023.1210496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
The fungal fruiting body is the organized mycelium. Tissue isolation and mycelium succession are common methods of fungal species purification and rejuvenation in the production of edible mushrooms. However, repeated succession increases strain degeneration. In this study, we examined the effect of repeated tissue isolation from Volvariella volvacea fruitbodies on the occurrence of degeneration. The results showed that less than four times in succession improved production capacity, however, after 12 successions, the traits indicating strain degeneration were apparent. For instance, the density of aerophytic hyphae, hyphal growth rate and hyphal biomass were gradually reduced, while the hyphae branching was increased. Also, other degenerative traits such as prolonged production cycles and decreased biological efficiency became evident. In particular, after 19 successions, the strain degeneration became so severe no fruiting bodies were produces anymore. Meanwhile, with the increase in successions, the antioxidant enzyme activity decreased, reactive oxygen species (ROS) increased, the number of nuclei decreased, and the mitochondrial membrane potential decreased along with morphological changes in the mitochondria. This study showed that repeated tissue isolation increased oxidative damage in the succession strain due to the accumulation of ROS, causing cellular senescence, in turn, degeneration in V. volvacea strain.
Collapse
Affiliation(s)
- Fengyun Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qiaoli Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- Kangle County Special Agricultural Development Center, Linxia, Gansu, China
| | - XueMing An
- Lanzhou Institute of Biological Products Limited Liability Company, Lanzhou, Gansu, China
| | - Qiangfei Tan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Jianmin Yun
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yubin Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
100
|
Fu Y, Li P, Mounkaila Hamani AK, Wan S, Gao Y, Wang X. Effects of Single and Combined Drought and Salinity Stress on the Root Morphological Characteristics and Root Hydraulic Conductivity of Different Winter Wheat Varieties. PLANTS (BASEL, SWITZERLAND) 2023; 12:2694. [PMID: 37514308 PMCID: PMC10383927 DOI: 10.3390/plants12142694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Water shortages and crop responses to drought and salt stress are related to the efficient use of water resources and are closely related to food security. In addition, PEG or NaCl stress alone affect the root hydraulic conductivity (Lpr). However, the effects of combined PEG and NaCl stress on Lpr and the differences among wheat varieties are unknown. We investigated the effects of combined PEG and NaCl stress on the root parameters, nitrogen (N) and carbon content, antioxidant enzymes, osmotic adjustment, changes in sodium and potassium, and root hydraulic conductivity of Yannong 1212, Heng 4399, and Xinmai 19. PEG and NaCl stress appreciably decreased the root length (RL), root surface area (RS), root volume (RV), K+ and N content in shoots and roots, and Lpr of the three wheat varieties, while the antioxidant enzyme activity, malondialdehyde (MDA), osmotic adjustment, nonstructural carbon and Na+ content in shoots and roots, etc., remarkably remained increased. Furthermore, the root hydraulic conductivity had the greatest positive association with traits such as RL, RS, and N and K+ content in the shoots of the three wheat varieties. Moreover, the RL/RS directly and actively determined the Lpr, and it had an extremely positive effect on the N content in the shoots of wheat seedlings. Collectively, most of the root characteristics in the wheat seedlings decreased under stress conditions, resulting in a reduction in Lpr. As a result, the ability to transport nutrients-especially N-from the roots to the shoots was affected. Therefore, our study provides a novel insight into the physiological mechanisms of Lpr.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
- College of Agronomy, Tarim University, Alar 843300, China
| | - Penghui Li
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | | | - Sumei Wan
- College of Agronomy, Tarim University, Alar 843300, China
| | - Yang Gao
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Xingpeng Wang
- College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China
| |
Collapse
|