51
|
Keller MB, Sørensen TH, Krogh KBRM, Wogulis M, Borch K, Westh P. Activity of fungal β-glucosidases on cellulose. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:121. [PMID: 32670408 PMCID: PMC7350674 DOI: 10.1186/s13068-020-01762-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Fungal beta-glucosidases (BGs) from glucoside hydrolase family 3 (GH3) are industrially important enzymes, which convert cellooligosaccharides into glucose; the end product of the cellulolytic process. They are highly active against the β-1,4 glycosidic bond in soluble substrates but typically reported to be inactive against insoluble cellulose. RESULTS We studied the activity of four fungal GH3 BGs on cellulose and found significant activity. At low temperatures (10 ℃), we derived the approximate kinetic parameters k cat = 0.3 ± 0.1 s-1 and K M = 80 ± 30 g/l for a BG from Aspergillus fumigatus (AfBG) acting on Avicel. Interestingly, this maximal turnover is higher than reported values for typical cellobiohydrolases (CBH) at this temperature and comparable to those of endoglucanases (EG). The specificity constant of AfGB on Avicel was only moderately lowered compared to values for EGs and CBHs. CONCLUSIONS Overall these observations suggest a significant promiscuous side activity of the investigated GH3 BGs on insoluble cellulose. This challenges the traditional definition of a BG and supports suggestions that functional classes of cellulolytic enzymes may represent a continuum of overlapping modes of action.
Collapse
Affiliation(s)
- Malene B. Keller
- Department of Geosciences and Natural Resource Management, University of Copenhagen, 23 Rolighedsvej, 1958 Frederiksberg, Denmark
- Department of Science and Environment, Roskilde University, 1 Universitetsvej, 4000 Roskilde, Denmark
| | - Trine H. Sørensen
- Department of Science and Environment, Roskilde University, 1 Universitetsvej, 4000 Roskilde, Denmark
- Novozymes A/S, 2 Biologiens Vej, 2800 Kgs. Lyngby, Denmark
| | | | - Mark Wogulis
- Novozymes Ltd, 1445 Drew Ave, Davis, CA 95618 USA
| | - Kim Borch
- Novozymes A/S, 2 Biologiens Vej, 2800 Kgs. Lyngby, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 221 Søltofts Plads, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
52
|
Abstract
Mesostructured silica nanoparticles offer a unique opportunity in the field of biocatalysis thanks to their outstanding properties. The tunable pore size in the range of mesopores allows for immobilizing bulky enzyme molecules. The large surface area improves the catalytic efficiency by increasing enzyme loading and finely dispersing the biocatalyst molecules. The easily tunable pore morphology allows for creating a proper environment to host an enzyme. The confining effect of mesopores can improve the enzyme stability and its resistance to extreme pH and temperatures. Benefits also arise from other peculiarities of nanoparticles such as Brownian motion and easy dispersion. Fossil fuel depletion and environmental pollution have led to the need for alternative sustainable and renewable energy sources such as biofuels. In this context, lignocellulosic biomass has been considered as a strategic fuel source. Cellulases are a class of hydrolytic enzymes that convert cellulose into fermentable sugars. This review is intended to survey the immobilization of cellulolytic enzymes (cellulases and β-glucosidase) onto mesoporous silica nanoparticles and their catalytic performance, with the aim to give a contribution to the urgent action required against climate change and its impacts, by biorefineries’ development.
Collapse
|
53
|
Kumla J, Suwannarach N, Sujarit K, Penkhrue W, Kakumyan P, Jatuwong K, Vadthanarat S, Lumyong S. Cultivation of Mushrooms and Their Lignocellulolytic Enzyme Production Through the Utilization of Agro-Industrial Waste. Molecules 2020; 25:molecules25122811. [PMID: 32570772 PMCID: PMC7355594 DOI: 10.3390/molecules25122811] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022] Open
Abstract
A large amount of agro-industrial waste is produced worldwide in various agricultural sectors and by different food industries. The disposal and burning of this waste have created major global environmental problems. Agro-industrial waste mainly consists of cellulose, hemicellulose and lignin, all of which are collectively defined as lignocellulosic materials. This waste can serve as a suitable substrate in the solid-state fermentation process involving mushrooms. Mushrooms degrade lignocellulosic substrates through lignocellulosic enzyme production and utilize the degraded products to produce their fruiting bodies. Therefore, mushroom cultivation can be considered a prominent biotechnological process for the reduction and valorization of agro-industrial waste. Such waste is generated as a result of the eco-friendly conversion of low-value by-products into new resources that can be used to produce value-added products. Here, we have produced a brief review of the current findings through an overview of recently published literature. This overview has focused on the use of agro-industrial waste as a growth substrate for mushroom cultivation and lignocellulolytic enzyme production.
Collapse
Affiliation(s)
- Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (N.S.); (K.J.); (S.V.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (N.S.); (K.J.); (S.V.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanaporn Sujarit
- Division of Biology, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, Pathumthani 12110, Thailand;
| | - Watsana Penkhrue
- School of Preclinic, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
- Center of Excellence in Microbial Technology for Agricultural Industry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pattana Kakumyan
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Kritsana Jatuwong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (N.S.); (K.J.); (S.V.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Santhiti Vadthanarat
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (N.S.); (K.J.); (S.V.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (N.S.); (K.J.); (S.V.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Correspondence: ; Tel.: +668-1881-3658
| |
Collapse
|
54
|
Méndez-Líter JA, Nieto-Domínguez M, Fernández de Toro B, González Santana A, Prieto A, Asensio JL, Cañada FJ, de Eugenio LI, Martínez MJ. A glucotolerant β-glucosidase from the fungus Talaromyces amestolkiae and its conversion into a glycosynthase for glycosylation of phenolic compounds. Microb Cell Fact 2020; 19:127. [PMID: 32522206 PMCID: PMC7288487 DOI: 10.1186/s12934-020-01386-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 06/04/2020] [Indexed: 12/23/2022] Open
Abstract
Background The interest for finding novel β-glucosidases that can improve the yields to produce second-generation (2G) biofuels is still very high. One of the most desired features for these enzymes is glucose tolerance, which enables their optimal activity under high-glucose concentrations. Besides, there is an additional focus of attention on finding novel enzymatic alternatives for glycoside synthesis, for which a mutated version of glycosidases, named glycosynthases, has gained much interest in recent years. Results In this work, a glucotolerant β-glucosidase (BGL-1) from the ascomycete fungus Talaromyces amestolkiae has been heterologously expressed in Pichia pastoris, purified, and characterized. The enzyme showed good efficiency on p-nitrophenyl glucopyranoside (pNPG) (Km= 3.36 ± 0.7 mM, kcat= 898.31 s−1), but its activity on cellooligosaccharides, the natural substrates of these enzymes, was much lower, which could limit its exploitation in lignocellulose degradation applications. Interestingly, when examining the substrate specificity of BGL-1, it showed to be more active on sophorose, the β-1,2 disaccharide of glucose, than on cellobiose. Besides, the transglycosylation profile of BGL-1 was examined, and, for expanding its synthetic capacities, it was converted into a glycosynthase. The mutant enzyme, named BGL-1-E521G, was able to use α-d-glucosyl-fluoride as donor in glycosylation reactions, and synthesized glucosylated derivatives of different pNP-sugars in a regioselective manner, as well as of some phenolic compounds of industrial interest, such as epigallocatechin gallate (EGCG). Conclusions In this work, we report the characterization of a novel glucotolerant 1,2-β-glucosidase, which also has a considerable activity on 1,4-β-glucosyl bonds, that has been cloned in P. pastoris, produced, purified and characterized. In addition, the enzyme was converted into an efficient glycosynthase, able to transfer glucose molecules to a diversity of acceptors for obtaining compounds of interest. The remarkable capacities of BGL-1 and its glycosynthase mutant, both in hydrolysis and synthesis, suggest that it could be an interesting tool for biotechnological applications.
Collapse
Affiliation(s)
- Juan Antonio Méndez-Líter
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Manuel Nieto-Domínguez
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Beatriz Fernández de Toro
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Andrés González Santana
- Glycochemistry and Molecular Recognition Group, Instituto de Química Orgánica General (IQOG-CSIC), Calle Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Alicia Prieto
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Juan Luis Asensio
- Glycochemistry and Molecular Recognition Group, Instituto de Química Orgánica General (IQOG-CSIC), Calle Juan de la Cierva, 3, 28006, Madrid, Spain
| | - Francisco Javier Cañada
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Laura Isabel de Eugenio
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María Jesús Martínez
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
55
|
Mohamad Sobri MF, Abd-Aziz S, Abu Bakar FD, Ramli N. In-Silico Characterization of Glycosyl Hydrolase Family 1 β-Glucosidase from Trichoderma asperellum UPM1. Int J Mol Sci 2020; 21:ijms21114035. [PMID: 32512945 PMCID: PMC7311958 DOI: 10.3390/ijms21114035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 11/16/2022] Open
Abstract
β-glucosidases (Bgl) are widely utilized for releasing non-reducing terminal glucosyl residues. Nevertheless, feedback inhibition by glucose end product has limited its application. A noticeable exception has been found for β-glucosidases of the glycoside hydrolase (GH) family 1, which exhibit tolerance and even stimulation by glucose. In this study, using local isolate Trichoderma asperellum UPM1, the gene encoding β-glucosidase from GH family 1, hereafter designated as TaBgl2, was isolated and characterized via in-silico analyses. A comparison of enzyme activity was subsequently made by heterologous expression in Escherichia coli BL21(DE3). The presence of N-terminal signature, cis-peptide bonds, conserved active site motifs, non-proline cis peptide bonds, substrate binding, and a lone conserved stabilizing tryptophan (W) residue confirms the identity of Trichoderma sp. GH family 1 β-glucosidase isolated. Glucose tolerance was suggested by the presence of 14 of 22 known consensus residues, along with corresponding residues L167 and P172, crucial in the retention of the active site's narrow cavity. Retention of 40% of relative hydrolytic activity on ρ-nitrophenyl-β-D-glucopyranoside (ρNPG) in a concentration of 0.2 M glucose was comparable to that of GH family 1 β-glucosidase (Cel1A) from Trichoderma reesei. This research thus underlines the potential in the prediction of enzymatic function, and of industrial importance, glucose tolerance of family 1 β-glucosidases following relevant in-silico analyses.
Collapse
Affiliation(s)
- Mohamad Farhan Mohamad Sobri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; (M.F.M.S.); (S.A.-A.)
- School of Bioprocess Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Arau 02600, Perlis, Malaysia
| | - Suraini Abd-Aziz
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; (M.F.M.S.); (S.A.-A.)
| | - Farah Diba Abu Bakar
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia;
| | - Norhayati Ramli
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; (M.F.M.S.); (S.A.-A.)
- Correspondence: ; Tel.: +60-3-9769-1948
| |
Collapse
|
56
|
Giovannoni M, Gramegna G, Benedetti M, Mattei B. Industrial Use of Cell Wall Degrading Enzymes: The Fine Line Between Production Strategy and Economic Feasibility. Front Bioeng Biotechnol 2020; 8:356. [PMID: 32411686 PMCID: PMC7200985 DOI: 10.3389/fbioe.2020.00356] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Cell Wall Degrading Enzymes (CWDEs) are a heterogeneous group of enzymes including glycosyl-hydrolases, oxidoreductases, lyases, and esterases. Microbes with degrading activities toward plant cell wall polysaccharides are the most relevant source of CWDEs for industrial applications. These organisms secrete a wide array of CWDEs in amounts strictly necessary for their own sustenance, nonetheless the production of CWDEs from wild type microbes can be increased at large-scale by using optimized fermentation strategies. In the last decades, advances in genetic engineering allowed the expression of recombinant CWDEs also in lab-domesticated organisms such as E. coli, yeasts and plants, dramatically increasing the available options for the large-scale production of CWDEs. The optimization of a CWDE-producing biofactory is a hard challenge that biotechnologists tackle by testing different expression strategies and expression-hosts. Although both the yield and production costs are critical factors to produce biomolecules at industrial scale, these parameters are often disregarded in basic research. This review presents the main characteristics and industrial applications of CWDEs directed toward the cell wall of plants, bacteria, fungi and microalgae. Different biofactories for CWDE expression are compared in order to highlight strengths and weaknesses of each production system and how these aspects impact the final enzyme cost and, consequently, the economic feasibility of using CWDEs for industrial applications.
Collapse
Affiliation(s)
- Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanna Gramegna
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
57
|
Monteiro LMO, Vici AC, Pinheiro MP, Heinen PR, de Oliveira AHC, Ward RJ, Prade RA, Buckeridge MS, Polizeli MDLTDM. A Highly Glucose Tolerant ß-Glucosidase from Malbranchea pulchella (MpBg3) Enables Cellulose Saccharification. Sci Rep 2020; 10:6998. [PMID: 32332833 PMCID: PMC7181827 DOI: 10.1038/s41598-020-63972-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
β-glucosidases catalyze the hydrolysis β-1,4, β-1,3 and β-1,6 glucosidic linkages from non-reducing end of short chain oligosaccharides, alkyl and aryl β-D-glucosides and disaccharides. They catalyze the rate-limiting reaction in the conversion of cellobiose to glucose in the saccharification of cellulose for second-generation ethanol production, and due to this important role the search for glucose tolerant enzymes is of biochemical and biotechnological importance. In this study we characterize a family 3 glycosyl hydrolase (GH3) β-glucosidase (Bgl) produced by Malbranchea pulchella (MpBgl3) grown on cellobiose as the sole carbon source. Kinetic characterization revealed that the MpBgl3 was highly tolerant to glucose, which is in contrast to many Bgls that are completely inhibited by glucose. A 3D model of MpBgl3 was generated by molecular modeling and used for the evaluation of structural differences with a Bgl3 that is inhibited by glucose. Taken together, our results provide new clues to understand the glucose tolerance in GH3 β-glucosidases.
Collapse
Affiliation(s)
- Lummy Maria Oliveira Monteiro
- Faculdade de Medicina de Ribeirão Preto. Universidade de São Paulo. Bandeirantes Av., 3.900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Ana Claudia Vici
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Universidade de São Paulo. Bandeirantes Av., 3.900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Matheus Pinto Pinheiro
- Laboratório Nacional de Biociência (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil
| | - Paulo Ricardo Heinen
- Faculdade de Medicina de Ribeirão Preto. Universidade de São Paulo. Bandeirantes Av., 3.900, 14049-900, Ribeirão Preto, SP, Brazil
| | | | - Richard John Ward
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Universidade de São Paulo. Bandeirantes Av., 3.900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Rolf Alexander Prade
- Department of Microbiology and Molecular Genetics. Oklahoma State University, Stillwater, USA
| | - Marcos S Buckeridge
- Instituto de Biociências, Universidade de São Paulo. Matão Street, 277, 05508-090, São Paulo, SP, Brazil
| | - Maria de Lourdes Teixeira de Moraes Polizeli
- Faculdade de Medicina de Ribeirão Preto. Universidade de São Paulo. Bandeirantes Av., 3.900, 14049-900, Ribeirão Preto, SP, Brazil. .,Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Universidade de São Paulo. Bandeirantes Av., 3.900, 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
58
|
Cai L, Xu S, Lu T, Lin D, Yao S. Salt-tolerant mechanism of marine Aspergillus niger cellulase cocktail and improvement of its activity. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2019.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
59
|
Anandharaj M, Lin YJ, Rani RP, Nadendla EK, Ho MC, Huang CC, Cheng JF, Chang JJ, Li WH. Constructing a yeast to express the largest cellulosome complex on the cell surface. Proc Natl Acad Sci U S A 2020; 117:2385-2394. [PMID: 31953261 PMCID: PMC7007581 DOI: 10.1073/pnas.1916529117] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cellulosomes, which are multienzyme complexes from anaerobic bacteria, are considered nature's finest cellulolytic machinery. Thus, constructing a cellulosome in an industrial yeast has long been a goal pursued by scientists. However, it remains highly challenging due to the size and complexity of cellulosomal genes. Here, we overcame the difficulties by synthesizing the Clostridium thermocellum scaffoldin gene (CipA) and the anchoring protein gene (OlpB) using advanced synthetic biology techniques. The engineered Kluyveromyces marxianus, a probiotic yeast, secreted a mixture of dockerin-fused fungal cellulases, including an endoglucanase (TrEgIII), exoglucanase (CBHII), β-glucosidase (NpaBGS), and cellulase boosters (TaLPMO and MtCDH). The confocal microscopy results confirmed the cell-surface display of OlpB-ScGPI and fluorescence-activated cell sorting analysis results revealed that almost 81% of yeast cells displayed OlpB-ScGPI. We have also demonstrated the cellulosome complex formation using purified and crude cellulosomal proteins. Native polyacrylamide gel electrophoresis and mass spectrometric analysis further confirmed the cellulosome complex formation. Our engineered cellulosome can accommodate up to 63 enzymes, whereas the largest engineered cellulosome reported thus far could accommodate only 12 enzymes and was expressed by a plasmid instead of chromosomal integration. Interestingly, CipA 2B9C (with two cellulose binding modules, CBM) released significantly higher quantities of reducing sugars compared with other CipA variants, thus confirming the importance of cohesin numbers and CBM domain on cellulosome complex. The engineered yeast host efficiently degraded cellulosic substrates and released 3.09 g/L and 8.61 g/L of ethanol from avicel and phosphoric acid-swollen cellulose, respectively, which is higher than any previously constructed yeast cellulosome.
Collapse
Affiliation(s)
- Marimuthu Anandharaj
- Biodiversity Research Center, Academia Sinica, 11529 Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, 11529 Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, 40227 Taichung, Taiwan
| | - Yu-Ju Lin
- Biodiversity Research Center, Academia Sinica, 11529 Taipei, Taiwan
| | | | | | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, 11529 Taipei, Taiwan
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, 40227 Taichung, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 40227 Taichung, Taiwan
| | - Jan-Fang Cheng
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA 94598
| | - Jui-Jen Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, 402 Taichung, Taiwan;
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, 11529 Taipei, Taiwan;
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, 11529 Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, 40227 Taichung, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637
| |
Collapse
|
60
|
Zhang X, Ma B, Liu J, Chen X, Li S, Su E, Gao L, Li H. β-Glucosidase genes differentially expressed during composting. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:174. [PMID: 33088344 PMCID: PMC7570026 DOI: 10.1186/s13068-020-01813-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Cellulose degradation by cellulase is brought about by complex communities of interacting microorganisms, which significantly contribute to the cycling of carbon on a global scale. β-Glucosidase (BGL) is the rate-limiting enzyme in the cellulose degradation process. Thus, analyzing the expression of genes involved in cellulose degradation and regulation of BGL gene expression during composting will improve the understanding of the cellulose degradation mechanism. Based on our previous research, we hypothesized that BGL-producing microbial communities differentially regulate the expression of glucose-tolerant BGL and non-glucose-tolerant BGL to adapt to the changes in cellulose degradation conditions. RESULTS To confirm this hypothesis, the structure and function of functional microbial communities involved in cellulose degradation were investigated by metatranscriptomics and a DNA library search of the GH1 family of BGLs involved in natural and inoculated composting. Under normal conditions, the group of non-glucose-tolerant BGL genes exhibited higher sensitivity to regulation than the glucose-tolerant BGL genes, which was suppressed during the composting process. Compared with the expression of endoglucanase and exoglucanase, the functional microbial communities exhibited a different transcriptional regulation of BGL genes during the cooling phase of natural composting. BGL-producing microbial communities upregulated the expression of glucose-tolerant BGL under carbon catabolite repression due to the increased glucose concentration, whereas the expression of non-glucose-tolerant BGL was suppressed. CONCLUSION Our results support the hypothesis that the functional microbial communities use multiple strategies of varying effectiveness to regulate the expression of BGL genes to facilitate adaptation to environmental changes.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030 China
| | - Bo Ma
- School of Animal Medicine, Northeast Agricultural University, Harbin, 150030 China
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, 150030 China
| | - Jiawen Liu
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030 China
| | - Xiehui Chen
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030 China
| | - Shanshan Li
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030 China
| | - Erlie Su
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030 China
| | - Liyuan Gao
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030 China
| | - Hongtao Li
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin, 150030 China
| |
Collapse
|
61
|
In silico Approach to Elucidate Factors Associated with GH1 β-Glucosidase Thermostability. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.4.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
62
|
Shen Y, Li Z, Huo YY, Bao L, Gao B, Xiao P, Hu X, Xu XW, Li J. Structural and Functional Insights Into CmGH1, a Novel GH39 Family β-Glucosidase From Deep-Sea Bacterium. Front Microbiol 2019; 10:2922. [PMID: 31921083 PMCID: PMC6933502 DOI: 10.3389/fmicb.2019.02922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/04/2019] [Indexed: 01/07/2023] Open
Abstract
Glucosidases play key roles in many diseases and are limiting enzymes during cellulose degradation, which is an important part of global carbon cycle. Here, we identified a novel β-glucosidase, CmGH1, isolated from marine bacterium Croceicoccus marinus E4A9T. In spite of its high sequence and structural similarity with β-xylosidase family members, CmGH1 had enzymatic activity toward p-nitrophenyl-β-D-glucopyranoside (p-NPG) and cellobiose. The Km and Kcat values of CmGH1 toward p-NPG were 0.332 ± 0.038 mM and 2.15 ± 0.081 min–1, respectively. CmGH1 was tolerant to high concentration salts, detergents, as well as many kinds of organic solvents. The crystal structure of CmGH1 was resolved with a 1.8 Å resolution, which showed that CmGH1 was composed of a canonical (α/β)8-barrel catalytic domain and an auxiliary β-sandwich domain. Although no canonical catalytic triad residues were found in CmGH1, structural comparison and mutagenesis analysis suggested that residues Gln157 and Tyr264 of CmGH1 were the active sites. Mutant Q157E significantly increased its hydrolase activity up to 15-fold, whereas Y264E totally abolished its enzymatic activity. These results might provide new insights into understanding the different catalytic mechanism during evolution for β-glucosidases and β-xylosidases.
Collapse
Affiliation(s)
- Yanfang Shen
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences, Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Zhengyang Li
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences, Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Ying-Yi Huo
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Luyao Bao
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences, Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Baocai Gao
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences, Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Peng Xiao
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences, Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Xiaojian Hu
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences, Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Xue-Wei Xu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Department of Neurology, School of Life Sciences, Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| |
Collapse
|
63
|
Challacombe JF, Hesse CN, Bramer LM, McCue LA, Lipton M, Purvine S, Nicora C, Gallegos-Graves LV, Porras-Alfaro A, Kuske CR. Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis. BMC Genomics 2019; 20:976. [PMID: 31830917 PMCID: PMC6909477 DOI: 10.1186/s12864-019-6358-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 12/01/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The dominant fungi in arid grasslands and shrublands are members of the Ascomycota phylum. Ascomycota fungi are important drivers in carbon and nitrogen cycling in arid ecosystems. These fungi play roles in soil stability, plant biomass decomposition, and endophytic interactions with plants. They may also form symbiotic associations with biocrust components or be latent saprotrophs or pathogens that live on plant tissues. However, their functional potential in arid soils, where organic matter, nutrients and water are very low or only periodically available, is poorly characterized. RESULTS Five Ascomycota fungi were isolated from different soil crust microhabitats and rhizosphere soils around the native bunchgrass Pleuraphis jamesii in an arid grassland near Moab, UT, USA. Putative genera were Coniochaeta, isolated from lichen biocrust, Embellisia from cyanobacteria biocrust, Chaetomium from below lichen biocrust, Phoma from a moss microhabitat, and Aspergillus from the soil. The fungi were grown in replicate cultures on different carbon sources (chitin, native bunchgrass or pine wood) relevant to plant biomass and soil carbon sources. Secretomes produced by the fungi on each substrate were characterized. Results demonstrate that these fungi likely interact with primary producers (biocrust or plants) by secreting a wide range of proteins that facilitate symbiotic associations. Each of the fungal isolates secreted enzymes that degrade plant biomass, small secreted effector proteins, and proteins involved in either beneficial plant interactions or virulence. Aspergillus and Phoma expressed more plant biomass degrading enzymes when grown in grass- and pine-containing cultures than in chitin. Coniochaeta and Embellisia expressed similar numbers of these enzymes under all conditions, while Chaetomium secreted more of these enzymes in grass-containing cultures. CONCLUSIONS This study of Ascomycota genomes and secretomes provides important insights about the lifestyles and the roles that Ascomycota fungi likely play in arid grassland, ecosystems. However, the exact nature of those interactions, whether any or all of the isolates are true endophytes, latent saprotrophs or opportunistic phytopathogens, will be the topic of future studies.
Collapse
Affiliation(s)
- Jean F Challacombe
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Present address: Colorado State University, College of Agricultural Sciences, 301 University Ave, Fort Collins, CO, 80523, USA.
| | - Cedar N Hesse
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Horticultural Crops Research, USDA ARS, Corvallis, OR, USA
| | - Lisa M Bramer
- Applied Statistics & Computational Modeling, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Lee Ann McCue
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | - Mary Lipton
- Applied Statistics & Computational Modeling, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Samuel Purvine
- Applied Statistics & Computational Modeling, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carrie Nicora
- Applied Statistics & Computational Modeling, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | | | - Cheryl R Kuske
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
64
|
Crystal Structure of a GH3 β-Glucosidase from the Thermophilic Fungus Chaetomium thermophilum. Int J Mol Sci 2019; 20:ijms20235962. [PMID: 31783503 PMCID: PMC6929035 DOI: 10.3390/ijms20235962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022] Open
Abstract
Beta-glucosidases (β-glucosidases) have attracted considerable attention in recent years for use in various biotechnological applications. They are also essential enzymes for lignocellulose degradation in biofuel production. However, cost-effective biomass conversion requires the use of highly efficient enzymes. Thus, the search for new enzymes as better alternatives of the currently available enzyme preparations is highly important. Thermophilic fungi are nowadays considered as a promising source of enzymes with improved stability. Here, the crystal structure of a family GH3 β-glucosidase from the thermophilic fungus Chaetomium thermophilum (CtBGL) was determined at a resolution of 2.99 Å. The structure showed the three-domain architecture found in other β-glucosidases with variations in loops and linker regions. The active site catalytic residues in CtBGL were identified as Asp287 (nucleophile) and Glu517 (acid/base). Structural comparison of CtBGL with Protein Data Bank (PDB)-deposited structures revealed variations among glycosylated Asn residues. The enzyme displayed moderate glycosylation compared to other GH3 family β-glucosidases with similar structure. A new glycosylation site at position Asn504 was identified in CtBGL. Moreover, comparison with respect to several thermostability parameters suggested that glycosylation and charged residues involved in electrostatic interactions may contribute to the stability of the enzyme at elevated temperatures. The reported CtBGL structure provides additional insights into the family GH3 enzymes and could offer new ideas for further improvements in β-glucosidases for more efficient use in biotechnological applications regarding cellulose degradation.
Collapse
|
65
|
Green Production and Biotechnological Applications of Cell Wall Lytic Enzymes. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9235012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
: Energy demand is constantly growing, and, nowadays, fossil fuels still play a dominant role in global energy production, despite their negative effects on air pollution and the emission of greenhouse gases, which are the main contributors to global warming. An alternative clean source of energy is represented by the lignocellulose fraction of plant cell walls, the most abundant carbon source on Earth. To obtain biofuels, lignocellulose must be efficiently converted into fermentable sugars. In this regard, the exploitation of cell wall lytic enzymes (CWLEs) produced by lignocellulolytic fungi and bacteria may be considered as an eco-friendly alternative. These organisms evolved to produce a variety of highly specific CWLEs, even if in low amounts. For an industrial use, both the identification of novel CWLEs and the optimization of sustainable CWLE-expressing biofactories are crucial. In this review, we focus on recently reported advances in the heterologous expression of CWLEs from microbial and plant expression systems as well as some of their industrial applications, including the production of biofuels from agricultural feedstock and of value-added compounds from waste materials. Moreover, since heterologous expression of CWLEs may be toxic to plant hosts, genetic strategies aimed in converting such a deleterious effect into a beneficial trait are discussed.
Collapse
|
66
|
Xia X, Dai Y, Wu H, Liu X, Wang Y, Yin L, Wang Z, Li X, Zhou J. Kombucha fermentation enhances the health-promoting properties of soymilk beverage. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103549] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
67
|
Yin B, Gu H, Mo X, Xu Y, Yan B, Li Q, Ou Q, Wu B, Guo C, Jiang C. Identification and molecular characterization of a psychrophilic GH1 β-glucosidase from the subtropical soil microorganism Exiguobacterium sp. GXG2. AMB Express 2019; 9:159. [PMID: 31576505 PMCID: PMC6773797 DOI: 10.1186/s13568-019-0873-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
The products of bacterial β-glucosidases with favorable cold-adapted properties have industrial applications. A psychrophilic β-glucosidase gene named bglG from subtropical soil microorganism Exiguobacterium sp. GXG2 was isolated and characterized by function-based screening strategy. Results of multiple alignments showed that the derived protein BglG shared 45.7% identities with reviewed β-glucosidases in the UniProtKB/Swiss-Prot database. Functional characterization of the β-glucosidase BglG indicated that BglG was a 468 aa protein with a molecular weight of 53.2 kDa. The BglG showed the highest activity in pH 7.0 at 35 °C and exhibited consistently high levels of activity within low temperatures ranging from 5 to 35 °C. The BglG appeared to be a psychrophilic enzyme. The values of Km, Vmax, kcat, and kcat/Km of recombinant BglG toward ρNPG were 1.1 mM, 1.4 µg/mL/min, 12.7 s−1, and 11.5 mM/s, respectively. The specific enzyme activity of BglG was 12.14 U/mg. The metal ion of Ca2+ and Fe3+ could stimulate the activity of BglG, whereas Mn2+ inhibited the activity. The cold-adapted β-glucosidase BglG displayed remarkable biochemical properties, making it a potential candidate for future industrial applications.
Collapse
|
68
|
Kang L, Zhang X, Wang R, Liu C, Yi L, Liu Z, Zhang Z, Yuan S. β-Glucosidase BGL1 from Coprinopsis cinerea Exhibits a Distinctive Hydrolysis and Transglycosylation Activity for Application in the Production of 3-O-β-d-Gentiobiosyl-d-laminarioligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10744-10755. [PMID: 31525900 DOI: 10.1021/acs.jafc.9b04488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We previously reported that β-glucosidase BGL1 at low concentration (15 μg mL-1) from Coprinopsis cinerea exhibited hydrolytic activity only toward laminarioligosaccharides but not toward cellooligosaccharides and gentiobiose. This study shows that BGL1 at high concentration (200 μg mL-1) also hydrolyzed cellobiose and gentiobiose, which accounted for only 0.83 and 2.05% of its activity toward laminaribiose, respectively. Interestingly, BGL1 at low concentration (1.5 μg mL-1) showed transglycosylation but BGL1 at high concentration (200 μg mL-1) did not. BGL1 utilizes only laminarioligosaccharides but not glucose, gentiobiose, and cellobiose to synthesize the higher oligosaccharides. BGL1 transferred one glucosyl residue from substrate laminarioligosaccharide to another laminarioligosaccharide as an acceptor in a β(1 → 3) or β(1 → 6) fashion to produce higher laminarioligosaccharides or 3-O-β-d-gentiobiosyl-d-laminarioligosaccharides. The BGL1-digested laminaritriose exhibited approximately 90% enhancement in the anti-oxidant activity compared to that of untreated laminaritriose, implying a potential application of BGL1-based transglycosylation for the production of high value-added rare oligosaccharides.
Collapse
Affiliation(s)
- Liqin Kang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , PR China
| | - Xingwei Zhang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , PR China
| | - Rui Wang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , PR China
| | - Cuicui Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , PR China
| | - Lin Yi
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences , Soochow University , Suzhou , Jiangsu , 215021 , China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , PR China
| | - Zhenqing Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences , Soochow University , Suzhou , Jiangsu , 215021 , China
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science , Nanjing Normal University , Nanjing 210023 , PR China
| |
Collapse
|
69
|
Characterization of a glucose tolerant β-glucosidase from Aspergillus unguis with high potential as a blend-in for biomass hydrolyzing enzyme cocktails. Biotechnol Lett 2019; 41:1201-1211. [DOI: 10.1007/s10529-019-02724-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/17/2019] [Indexed: 12/18/2022]
|
70
|
Bahrpaima K, Fatehi P. Preparation and Coagulation Performance of Carboxypropylated and Carboxypentylated Lignosulfonates for Dye Removal. Biomolecules 2019; 9:biom9080383. [PMID: 31434221 PMCID: PMC6723465 DOI: 10.3390/biom9080383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 01/15/2023] Open
Abstract
In this work, 1-carboxypropyled (1-CPRLS) and 5-carboxypentyled lignosulfonates (5-CPELS) were synthesized using 2-chlorobutanoic acid and 6-chlorohexanoic acid as carboxylate group donors via SN1 and SN2 mechanisms, respectively. 1-Carboxypropyl and 5-carboxypentyl lignosulfonates with the charge densities of −3.45 and −2.94 meq g−1 and molecular weights of 87,900 and 42,400 g·mol−1 were produced, respectively, under mild conditions. The carboxylate content and degree of substitution (DS) of the 1-CPRLS product were 2.37 mmol·g−1 and 0.70 mol·mol−1, while those of 5-CPELS products were 2.13 mmol·g−1 and 0.66 mol·mol−1, respectively. The grafting of carboxypropyl and carboxypentyl groups to lignosulfonate was confirmed by Fourier transform infrared (FT-IR) and nuclear magnetic resonance (1H-NMR and 13C-NMR) spectroscopies. In addition, 1-CPRLS and 5-CPELS were applied as coagulants for removing ethyl violet (EV) dye from a simulated solution, and their performance was related to their charge densities and molecular weights. Furthermore, fundamental discussion is provided on the advantages of (1) producing 1-CPRLS and (2) the superior properties and performance of 1-CPRLS to carboxyethylated lignosulfonate.
Collapse
Affiliation(s)
- Khatereh Bahrpaima
- Department of Chemical Engineering, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Pedram Fatehi
- Department of Chemistry, Firoozabad Branch, Islamic Azad University, Firoozabad 74719-13113, Iran.
| |
Collapse
|
71
|
Ausanio G, Califano V, Costantini A, Perretta G, Aronne A, Pepe GP, Sannino F, Vicari LRM. Matrix-assisted pulsed laser evaporation of β-glucosidase from a dopa/quinone target. Enzyme Microb Technol 2019; 132:109414. [PMID: 31731961 DOI: 10.1016/j.enzmictec.2019.109414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/23/2019] [Accepted: 08/19/2019] [Indexed: 01/09/2023]
Abstract
β-glucosidase (BG) plays a key role in determining the efficiency of the enzymatic complex cellulase for the degradation of cellulose into sugars. It hydrolyses the cellobiose, an inhibitor of the enzymatic complex. Therefore, the immobilization of BG is a great challenge for the industrial application of cellulases. Cellulases usually contains a BG amount insufficient to avoid inhibition by cellobiose. Here the BG was immobilized by matrix assisted pulsed laser evaporation (MAPLE) technique. The frozen matrix was composed of water, water/m-DOPA and water/m-DOPA/quinone. The effect of the excipients on the final conformation of the enzyme after the MAPLE processing was determined. The enzyme secondary structure was studied by FTIR analysis. The catalytic performances of the deposited films were tested in the cellobiose hydrolysis reaction. The results demonstrate that the presence of the oxidized form of m-DOPA, the O-quinone form, can protect the protein native structure, with the laser inducing little or no damage. In fact, only the samples deposited from this target preserved the secondary structure of the polypeptide chain and allowed a complete hydrolysis of cellobiose for four consecutive runs, showing a high operational stability of the biocatalyst.
Collapse
Affiliation(s)
- Giovanni Ausanio
- SPIN-CNR Sede di Napoli, Complesso di Monte Sant'Angelo, 80126 Napoli, Italy; Department of Physics "Ettore Pancini", Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy
| | | | - Aniello Costantini
- Department of Chemical Engineering, Materials and Industrial Production, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy
| | | | - Antonio Aronne
- Department of Chemical Engineering, Materials and Industrial Production, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy
| | - Giovanni Piero Pepe
- SPIN-CNR Sede di Napoli, Complesso di Monte Sant'Angelo, 80126 Napoli, Italy; Department of Physics "Ettore Pancini", Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy
| | - Filomena Sannino
- Department of Agricultural Sciences Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Na, Italy
| | - Luciano R M Vicari
- SPIN-CNR Sede di Napoli, Complesso di Monte Sant'Angelo, 80126 Napoli, Italy; Department of Physics "Ettore Pancini", Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli, Italy
| |
Collapse
|
72
|
Yang X, Ma Y, Li L. β-Glucosidase from tartary buckwheat immobilization on bifunctionalized nano-magnetic iron oxide and its application in tea soup for aroma and flavonoid aglycone enhancement. Food Funct 2019; 10:5461-5472. [PMID: 31406968 DOI: 10.1039/c9fo00283a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
β-Glucosidase (BG) was immobilized on the surface of bifunctionalized nano-magnetic iron oxide with silica and amine groups (Fe3O4@SiO2-NH2). The aroma and flavonoid aglycone enhancement effect of BG in tea soup was investigated. The immobilized BG-synthesized nanocomposite morphology and structure were characterized by using different analytical techniques, including Fourier transform infrared spectroscopy and scanning electron microscopy. The immobilized BG showed enhanced pH and temperature endurance at an optimum pH of 5.0 and temperature of 65 °C. After seven cycles of reuse, immobilized BG showed 51.8% initial activity. Immobilized-BG treatment in green tea and black tea soup elevated the aroma content by approximately 16% and 48%, respectively. In addition, flavonoid aglycones, such as myricetin, kaempferol, and quercetin, in green tea and black tea soup increased by approximately 65- and 5-fold, respectively. These results suggested that immobilized BG showed excellent potential in the enhancement of aroma and effectively hydrolyzed the flavonoid glycosides to release flavonoid aglycones in tea soup. Hence, this study provides a green and sustainable approach for the tea industry to efficiently enhance tea soup properties.
Collapse
Affiliation(s)
- Xilian Yang
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Yunnan 650500, China.
| | - Yanli Ma
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Yunnan 650500, China.
| | - Lirong Li
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, 727 Jingming South Road, Chenggong District, Yunnan 650500, China.
| |
Collapse
|
73
|
Paula CCPDE, Montoya QV, Meirelles LA, Farinas CS, Rodrigues A, Seleghim MHR. High cellulolytic activities in filamentous fungi isolated from an extreme oligotrophic subterranean environment (Catão cave) in Brazil. AN ACAD BRAS CIENC 2019; 91:e20180583. [PMID: 31365652 DOI: 10.1590/0001-3765201920180583] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/10/2018] [Indexed: 01/08/2023] Open
Abstract
Isolation and screening of new fungal strains from extreme and understudied environments, such as caves, is a promising approach to find higher yields enzyme producers. Cellulolytic fungal strains isolated from a Brazilian cave were evaluated for their enzymatic production after submerged (SmF) and solid-state fermentation (SSF). After SmF, three strains were selected for their high enzymatic activities: Aspergillus ustus for endoglucanase (4.76 U/mg), Talaromyces bruneus for β-glucosidase (11.71 U/mg) and Aspergillus sp. (CBMAI 1926) for total cellulase (1.70 U/mg). After SSF, these strains, showed better yields compared to the reference strain Aspergillus niger 3T5B8. Aspergillus sp. (CBMAI 1926) stood out as a new species that expressed activity of total cellulases (0.10 U/mg) and low protein concentration (0.44 mg/mL). In conclusion, these isolated strains have a more efficient and promising cellulolytic enzyme complex that can be used in fermentation and saccharification processes with a lower protein concentration and a higher enzymatic activity than the reference strain. Therefore, beside the new genetic material characterized, our study highlights the benefits of cave extreme environments exploitation to find new potentially valuable strains.
Collapse
Affiliation(s)
- Caio C P DE Paula
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Departamento de Ecologia e Biologia Evolutiva, Rodovia Washington Luiz, Km 235, 13565-905 São Carlos, SP, Brazil
| | - Quimi V Montoya
- Universidade do Estado de São Paulo "Júlio de Mesquita Filho", Instituto de Biociências de Rio Claro, Departamento de Bioquímica e Microbiologia, Av. 24A, 1515, 13506-900 Rio Claro, SP, Brazil
| | - Lucas A Meirelles
- Universidade do Estado de São Paulo "Júlio de Mesquita Filho", Instituto de Biociências de Rio Claro, Departamento de Bioquímica e Microbiologia, Av. 24A, 1515, 13506-900 Rio Claro, SP, Brazil
| | - Cristiane S Farinas
- Empresa Brasileira de Pesquisa Agropecuária/Embrapa - Instrumentação, Rua XV de Novembro, 1452, 13560-970 São Carlos, SP, Brazil
| | - André Rodrigues
- Universidade do Estado de São Paulo "Júlio de Mesquita Filho", Instituto de Biociências de Rio Claro, Departamento de Bioquímica e Microbiologia, Av. 24A, 1515, 13506-900 Rio Claro, SP, Brazil
| | - Mirna H R Seleghim
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Departamento de Ecologia e Biologia Evolutiva, Rodovia Washington Luiz, Km 235, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|
74
|
Califano V, Costantini A, Silvestri B, Venezia V, Cimino S, Sannino F. The effect of pore morphology on the catalytic performance of β-glucosidase immobilized into mesoporous silica. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2018-1202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
β-Glucosidase (BG) was immobilized by adsorption on wrinkled silica nanoparticles (WSNs) and on tannic acid-templated mesoporous silica nanoparticles (TA-MSNPs). The effect induced by a different morphology of the pores of the sorbent on the catalytic performance of β-glucosidase was investigated. A complete textural and morphological characterization of the two samples was performed by Brunauer–Emmett–Teller (BET) method, Fourier Transform Infrared (FT-IR) and transmission electron microscopy (TEM). The results demonstrated that the catalytic performance of the immobilized enzyme depends on the pores size of sorbent but a key factor is the pores morphology. In fact, the BG immobilized on WSNs and TA-MSNPs (BG/WSNs and BG/TA-MSNPs) shows in both cases good catalytic performances in cellobiose hydrolysis, but the catalyst with the best performance is BG/WSNs, in which the support exhibits a central-radial pore structure and a hierarchical trimodal micro-mesoporous pore size. This peculiar morphology allows the enzyme to settle in a place where the interactions with the walls are maximized, increasing its conformational rigidity. Furthermore, the enzyme is prevalently collocated in the interior of pore so that the pores are not completely capped.
Collapse
Affiliation(s)
| | - Aniello Costantini
- Department of Chemical Engineering, Materials and Industrial Production , Università degli Studi di Napoli Federico II , P.le Tecchio 80 , 80125 Naples , Italy
| | - Brigida Silvestri
- Department of Chemical Engineering, Materials and Industrial Production , Università degli Studi di Napoli Federico II , P.le Tecchio 80 , 80125 Naples , Italy
| | - Virginia Venezia
- Department of Chemical Engineering, Materials and Industrial Production , Università degli Studi di Napoli Federico II , P.le Tecchio 80 , 80125 Naples , Italy
| | - Stefano Cimino
- Istituto Ricerche Combustione CNR , P.le Tecchio 80, 80125 , Naples , Italy
| | - Filomena Sannino
- Department of Agricultural Sciences , Università degli Studi di Napoli Federico II , Via Università 100 , 80055 Portici (Na) , Italy
| |
Collapse
|
75
|
Libardi N, Soccol CR, Tanobe VOA, Vandenberghe LPDS. Definition of Liquid and Powder Cellulase Formulations Using Domestic Wastewater in Bubble Column Reactor. Appl Biochem Biotechnol 2019; 190:113-128. [PMID: 31301011 DOI: 10.1007/s12010-019-03075-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/05/2019] [Indexed: 12/18/2022]
Abstract
Raw domestic wastewater was used as a culture medium for cellulase production in a bubble column reactor (6.2 UFP/mL, 64.6 U/L h) using the strain Trichoderma harzianum TRIC03-LPBII. Cellulases presented optimum pH and temperature between 4 and 5 and 50 and 70 °C, respectively. Enzymatic extract was concentrated through ultrafiltration and then a cellulolytic formulation was prepared with the addition of sorbitol (50% w/v) and benzoic acid (0.05% w/v). High cellulase stability of around 100% was reached after 30 days at 4 °C. The concentrated extract was also dried in a spray-dryer with the addition of maltodextrin at 20% (w/v), resulting in powder enzymatic formulation with 85% stability after 60 days. With these characteristics, the liquid and powder cellulase products have potential to be used in different industrial applications.
Collapse
Affiliation(s)
- Nelson Libardi
- Departamento de Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná-UFPR, Curitiba, PR, 81531-980, Brazil
| | - Carlos Ricardo Soccol
- Departamento de Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná-UFPR, Curitiba, PR, 81531-980, Brazil
| | - Valcineide O A Tanobe
- Departamento de Engenharia de Bioprocessos e Biotecnologia, Universidade Federal do Paraná-UFPR, Curitiba, PR, 81531-980, Brazil
| | | |
Collapse
|
76
|
Konar S, Sinha SK, Datta S, Ghorai PK. Probing the Effect of Glucose on the Activity and Stability of β-Glucosidase: An All-Atom Molecular Dynamics Simulation Investigation. ACS OMEGA 2019; 4:11189-11196. [PMID: 31460219 PMCID: PMC6648728 DOI: 10.1021/acsomega.9b00509] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/10/2019] [Indexed: 05/11/2023]
Abstract
β-Glucosidase (EC 3.2.1.21) plays an essential role in the removal of glycosyl residues from disaccharide cellobiose to produce glucose during the hydrolysis of lignocellulosic biomass. Although there exist a few β-glucosidase that are tolerant to large concentrations of glucose, these enzymes are typically prone to glucose inhibition. Understanding the basis of this inhibition is important for the production of cheaper biofuels from lignocellulose. In this study, all-atom molecular dynamics simulation at different temperatures and glucose concentrations was used to understand the molecular basis of glucose inhibition of GH1 β-glucosidase (B8CYA8) from Halothermothrix orenii. Our results show that glucose induces a broadening of the active site tunnel through residues lining the tunnel and facilitates the accumulation of glucose. In particular, we observed that glucose accumulates at the tunnel entrance and near the catalytic sites to block substrate accessibility and inhibit enzyme activity. The reduction of enzyme activity was also confirmed experimentally through specific activity measurements in the presence of 0-2.5 M glucose. We also show that the increase in glucose concentrations leads to a decrease in the number of water molecules inside the tunnel to affect substrate hydrolysis. Overall, the results help in understanding the role of residues along the active site tunnel for the engineering of glucose-tolerant β-glucosidase.
Collapse
Affiliation(s)
- Sukanya Konar
- Department
of Chemical Sciences, Protein Engineering Laboratory, Department
of Biological Sciences, Centre for Advanced Functional Materials, and Centre for Climate
Change and Environmental Sciences, Indian
Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Sushant K. Sinha
- Department
of Chemical Sciences, Protein Engineering Laboratory, Department
of Biological Sciences, Centre for Advanced Functional Materials, and Centre for Climate
Change and Environmental Sciences, Indian
Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Supratim Datta
- Department
of Chemical Sciences, Protein Engineering Laboratory, Department
of Biological Sciences, Centre for Advanced Functional Materials, and Centre for Climate
Change and Environmental Sciences, Indian
Institute of Science Education and Research Kolkata, Mohanpur 741246, India
- E-mail: (S.D.)
| | - Pradip Kr. Ghorai
- Department
of Chemical Sciences, Protein Engineering Laboratory, Department
of Biological Sciences, Centre for Advanced Functional Materials, and Centre for Climate
Change and Environmental Sciences, Indian
Institute of Science Education and Research Kolkata, Mohanpur 741246, India
- E-mail: (P.K.G.)
| |
Collapse
|
77
|
Srivastava N, Rathour R, Jha S, Pandey K, Srivastava M, Thakur VK, Sengar RS, Gupta VK, Mazumder PB, Khan AF, Mishra PK. Microbial Beta Glucosidase Enzymes: Recent Advances in Biomass Conversation for Biofuels Application. Biomolecules 2019; 9:E220. [PMID: 31174354 PMCID: PMC6627771 DOI: 10.3390/biom9060220] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023] Open
Abstract
The biomass to biofuels production process is green, sustainable, and an advanced technique to resolve the current environmental issues generated from fossil fuels. The production of biofuels from biomass is an enzyme mediated process, wherein β-glucosidase (BGL) enzymes play a key role in biomass hydrolysis by producing monomeric sugars from cellulose-based oligosaccharides. However, the production and availability of these enzymes realize their major role to increase the overall production cost of biomass to biofuels production technology. Therefore, the present review is focused on evaluating the production and efficiency of β-glucosidase enzymes in the bioconversion of cellulosic biomass for biofuel production at an industrial scale, providing its mechanism and classification. The application of BGL enzymes in the biomass conversion process has been discussed along with the recent developments and existing issues. Moreover, the production and development of microbial BGL enzymes have been explained in detail, along with the recent advancements made in the field. Finally, current hurdles and future suggestions have been provided for the future developments. This review is likely to set a benchmark in the area of cost effective BGL enzyme production, specifically in the biorefinery area.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| | - Rishabh Rathour
- Department of Bioengineering, Integral University, Lucknow 226026, India.
| | - Sonam Jha
- Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Karan Pandey
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| | - Manish Srivastava
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India.
| | - Vijay Kumar Thakur
- Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK.
| | - Rakesh Singh Sengar
- Department of Agriculture Biotechnology, College of Agriculture, Sardar Vallabhbhai Patel, University of Agriculture and Technology, Meerut 250110, U.P., India.
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, Tallinn University of Technology, 12618 Tallinn, Estonia.
| | | | - Ahamad Faiz Khan
- Department of Bioengineering, Integral University, Lucknow 226026, India.
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
| |
Collapse
|
78
|
Discovery of processive catalysis by an exo-hydrolase with a pocket-shaped active site. Nat Commun 2019; 10:2222. [PMID: 31110237 PMCID: PMC6527550 DOI: 10.1038/s41467-019-09691-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/22/2019] [Indexed: 11/08/2022] Open
Abstract
Substrates associate and products dissociate from enzyme catalytic sites rapidly, which hampers investigations of their trajectories. The high-resolution structure of the native Hordeum exo-hydrolase HvExoI isolated from seedlings reveals that non-covalently trapped glucose forms a stable enzyme-product complex. Here, we report that the alkyl β-d-glucoside and methyl 6-thio-β-gentiobioside substrate analogues perfused in crystalline HvExoI bind across the catalytic site after they displace glucose, while methyl 2-thio-β-sophoroside attaches nearby. Structural analyses and multi-scale molecular modelling of nanoscale reactant movements in HvExoI reveal that upon productive binding of incoming substrates, the glucose product modifies its binding patterns and evokes the formation of a transient lateral cavity, which serves as a conduit for glucose departure to allow for the next catalytic round. This path enables substrate-product assisted processive catalysis through multiple hydrolytic events without HvExoI losing contact with oligo- or polymeric substrates. We anticipate that such enzyme plasticity could be prevalent among exo-hydrolases. Enzyme substrates and products often diffuse too rapidly to assess the catalytic implications of these movements. Here, the authors characterise the structural basis of product and substrate diffusion for an exo-hydrolase and discover a substrate-product assisted processive catalytic mechanism.
Collapse
|
79
|
Benedetti M, Vecchi V, Betterle N, Natali A, Bassi R, Dall'Osto L. Design of a highly thermostable hemicellulose-degrading blend from Thermotoga neapolitana for the treatment of lignocellulosic biomass. J Biotechnol 2019; 296:42-52. [PMID: 30885654 DOI: 10.1016/j.jbiotec.2019.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 01/06/2023]
Abstract
The biological conversion of lignocellulose into fermentable sugars is a key process for the sustainable production of biofuels from plant biomass. Polysaccharides in plant feedstock can be valorized using thermostable mixtures of enzymes that degrade the cell walls, thus avoiding harmful and expensive pre-treatments. (Hyper)thermophilic bacteria of the phylum Thermotogae provide a rich source of enzymes for such industrial applications. Here we selected T. neapolitana as a source of hyperthermophilic hemicellulases for the degradation of lignocellulosic biomass. Two genes encoding putative hemicellulases were cloned from T. neapolitana genomic DNA and expressed in Escherichia coli. Further characterization revealed that the genes encoded an endo-1,4-β-galactanase and an α-l-arabinofuranosidase with optimal temperatures of ˜90 °C and high turnover numbers during catalysis (kcat values of ˜177 and ˜133 s-1, respectively, on soluble substrates). These enzymes were combined with three additional T. neapolitana hyperthermophilic hemicellulases - endo-1,4-β-xylanase (XynA), endo-1,4-β-mannanase (ManB/Man5A) and β-glucosidase (GghA) - to form a highly thermostable hemicellulolytic blend. The treatment of barley straw and corn bran with this enzymatic cocktail resulted in the solubilization of multiple hemicelluloses and boosted the yield of fermentable sugars by up to 65% when the complex substrates were further degraded by cellulases.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Valeria Vecchi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Nico Betterle
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Alberto Natali
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Luca Dall'Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
80
|
Andrades DD, Graebin NG, Ayub MA, Fernandez-Lafuente R, Rodrigues RC. Physico-chemical properties, kinetic parameters, and glucose inhibition of several beta-glucosidases for industrial applications. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
81
|
Cross-Linking with Polyethylenimine Confers Better Functional Characteristics to an Immobilized β-glucosidase from Exiguobacterium antarcticum B7. Catalysts 2019. [DOI: 10.3390/catal9030223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
β-glucosidases are ubiquitous, well-characterized and biologically important enzymes with considerable uses in industrial sectors. Here, a tetrameric β-glucosidase from Exiguobacterium antarcticum B7 (EaBglA) was immobilized on different activated agarose supports followed by post-immobilization with poly-functional macromolecules. The best result was obtained by the immobilization of EaBglA on metal glutaraldehyde-activated agarose support following cross-linking with polyethylenimine. Interestingly, the immobilized EaBglA was 46-fold more stable than its free form and showed optimum pH in the acidic region, with high catalytic activity in the pH range from 3 to 9, while the free EaBglA showed catalytic activity in a narrow pH range (>80% at pH 6.0–8.0) and optimum pH at 7.0. EaBglA had the optimum temperature changed from 30 °C to 50 °C with the immobilization step. The immobilized EaBglA showed an expressive adaptation to pH and it was tolerant to ethanol and glucose, indicating suitable properties involving the saccharification process. Even after 9 cycles of reuse, the immobilized β-glucosidase retained about 100% of its initial activity, demonstrating great operational stability. Hence, the current study describes an efficient strategy to increase the functional characteristics of a tetrameric β-glucosidase for future use in the bioethanol production.
Collapse
|
82
|
Thermal and operational deactivation of Aspergillus fumigatus β-glucosidase in ethanol/water pretreated wheat straw enzymatic hydrolysis. J Biotechnol 2019; 292:32-38. [DOI: 10.1016/j.jbiotec.2019.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/25/2018] [Accepted: 01/06/2019] [Indexed: 01/13/2023]
|
83
|
Cai LN, Xu SN, Lu T, Lin DQ, Yao SJ. Directed expression of halophilic and acidophilic β-glucosidases by introducing homologous constitutive expression cassettes in marine Aspergillus niger. J Biotechnol 2019; 292:12-22. [DOI: 10.1016/j.jbiotec.2018.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/18/2018] [Accepted: 12/29/2018] [Indexed: 01/31/2023]
|
84
|
Geronimo I, Ntarima P, Piens K, Gudmundsson M, Hansson H, Sandgren M, Payne CM. Kinetic and molecular dynamics study of inhibition and transglycosylation in Hypocrea jecorina family 3 β-glucosidases. J Biol Chem 2019; 294:3169-3180. [PMID: 30602567 DOI: 10.1074/jbc.ra118.007027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Indexed: 01/09/2023] Open
Abstract
β-Glucosidases enhance enzymatic biomass conversion by relieving cellobiose inhibition of endoglucanases and cellobiohydrolases. However, the susceptibility of these enzymes to inhibition and transglycosylation at high glucose or cellobiose concentrations severely limits their activity and, consequently, the overall efficiency of enzyme mixtures. We determined the impact of these two processes on the hydrolytic activity of the industrially relevant family 3 β-glucosidases from Hypocrea jecorina, HjCel3A and HjCel3B, and investigated the underlying molecular mechanisms through kinetic studies, binding free energy calculations, and molecular dynamics (MD) simulations. HjCel3B had a 7-fold higher specificity for cellobiose than HjCel3A but greater tendency for glucose inhibition. Energy decomposition analysis indicated that cellobiose has relatively weak electrostatic interactions with binding site residues, allowing it to be easily displaced by glucose and free to inhibit other hydrolytic enzymes. HjCel3A is, thus, preferable as an industrial β-glucosidase despite its lower activity caused by transglycosylation. This competing pathway to hydrolysis arises from binding of glucose or cellobiose at the product site after formation of the glycosyl-enzyme intermediate. MD simulations revealed that binding is facilitated by hydrophobic interactions with Trp-37, Phe-260, and Tyr-443. Targeting these aromatic residues for mutation to reduce substrate affinity at the product site would therefore potentially mitigate transglycosidic activity. Engineering improved variants of HjCel3A and other structurally similar β-glucosidases would have a significant economic effect on enzymatic biomass conversion in terms of yield and production cost as the process can be consequently conducted at higher substrate loadings.
Collapse
Affiliation(s)
- Inacrist Geronimo
- From the Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046
| | - Patricia Ntarima
- the Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium, and
| | - Kathleen Piens
- the Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium, and
| | - Mikael Gudmundsson
- the Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 750 07 Uppsala, Sweden
| | - Henrik Hansson
- the Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 750 07 Uppsala, Sweden
| | - Mats Sandgren
- the Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 750 07 Uppsala, Sweden
| | - Christina M Payne
- From the Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046, .,the Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 750 07 Uppsala, Sweden
| |
Collapse
|
85
|
Zhou Y, Li X, Yan D, Addai Peprah F, Ji X, Fletcher EE, Wang Y, Wang Y, Gu J, Lin F, Shi H. Multifunctional elastin-like polypeptide renders β-glucosidase enzyme phase transition and high stability. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:157. [PMID: 31249620 PMCID: PMC6589881 DOI: 10.1186/s13068-019-1497-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/11/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND In the enzymatic conversion of biomass, it becomes an important issue to efficiently and cost-effectively degrade cellulose into fermentable glucose. β-Glucosidase (Bgluc), an essential member of cellulases, plays a critical role in cellulosic biomass degradation. The difficulty in improving the stability of Bgluc has been a bottleneck in the enzyme-dependent cellulose degradation. The traditional method of protein purification, however, leads to higher production cost and a decrease in activity. To simplify and efficiently purify Bgluc with modified special properties, Bgluc-tagged ELP and His with defined phase transitions was designed to facilitate the process. RESULTS Here, a novel binary ELP and His tag was fused with Bgluc from termite Coptotermes formosanus to construct a Bgluc-linker-ELP-His recombinant fusion protein (BglucLEH). The recombinant plasmid Bgluc expressing a His tag (BglucH) was also constructed. The BglucLEH and BglucH were expressed in E. coli BL21 and purified using inverse transition cycling (ITC) or Ni-NTA resin. The optimum salt concentration for the ITC purification of BglucLEH was 0.5 M (NH4)2SO4 and the specific activity of BglucLEH purified by ITC was 75.5 U/mg for substrate p-NPG, which was slightly higher than that of BglucLEH purified by Ni-NTA (68.2 U/mg). The recovery rate and purification fold of BglucLEH purified by ITC and Ni-NTA were 77.8%, 79.1% and 12.60, 11.60, respectively. The results indicated that purification with ITC was superior to the traditional Ni-NTA. The K m of BglucLEH and BglucH for p-NPG was 5.27 and 5.73 mM, respectively. The K ca t/K m (14.79 S-1 mM-1) of BglucLEH was higher than that of BglucH (12.10 S-1 mM-1). The effects of ELP tag on the enzyme activity, secondary structure and protein stability were also studied. The results showed that ELP tag did not affect the secondary structure or enzyme activity of Bgluc. More importantly, ELP improved the protein stability in harsh conditions such as heating and exposure to denaturant. CONCLUSION The Bgluc-linker-ELP-His system shows wide application prospect in maintaining the activity, efficient purification and improving the stability of Bgluc. These properties of BglucLEH make it an interesting tool to reduce cost, to improve the efficiency of biocatalyst and potentially to enhance the degradation of lignocellulosic biomass.
Collapse
Affiliation(s)
- Yang Zhou
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Xiaofeng Li
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Dandan Yan
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Frank Addai Peprah
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Xingqi Ji
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Emmanuella Esi Fletcher
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Yanwei Wang
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Yingying Wang
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001 People’s Republic of China
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013 People’s Republic of China
| |
Collapse
|
86
|
Cao L, Li S, Huang X, Qin Z, Kong W, Xie W, Liu Y. Enhancing the Thermostability of Highly Active and Glucose-Tolerant β-Glucosidase Ks5A7 by Directed Evolution for Good Performance of Three Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13228-13235. [PMID: 30488698 DOI: 10.1021/acs.jafc.8b05662] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A high-performance β-glucosidase for efficient cellulose hydrolysis needs to excel in thermostability, catalytic efficiency, and resistance to glucose inhibition. However, it is challenging to achieve superb properties in all three aspects in a single enzyme. In this study, a hyperactive and glucose-tolerant β-glucosidase Ks5A7 was employed as the starting point. Four rounds of random mutagenesis were then performed, giving rise to a thermostable mutant 4R1 with five amino acid substitutions. The half-life of 4R1 at 50 °C is 8640-fold that of Ks5A7 (144 h vs 1 min). Meanwhile, 4R1 had a higher specific activity (374.26 vs 243.18 units·mg-1) than the wild type with a similar glucose tolerance. When supplemented to Celluclast 1.5L, the mutant significantly enhanced the hydrolysis of pretreated sugar cane bagasse, improving the released glucose concentration by 44%. With excellent performance in thermostability, activity, and glucose tolerance, 4R1 will serve as an exceptional catalyst for industrial applications.
Collapse
Affiliation(s)
- Lichuang Cao
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , People's Republic of China
| | - Shuifeng Li
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , People's Republic of China
| | - Xin Huang
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , People's Republic of China
| | - Zongmin Qin
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , People's Republic of China
| | - Wei Kong
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , People's Republic of China
| | - Wei Xie
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences , Sun Yat-Sen University , Guangzhou , Guangdong 510006 , People's Republic of China
| | - Yuhuan Liu
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , People's Republic of China
| |
Collapse
|
87
|
Cellobiose fermentation by Saccharomyces cerevisiae: Comparative analysis of intra versus extracellular sugar hydrolysis. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
88
|
Chaves-Lopez C, Nguyen HN, Oliveira RC, Nadres ET, Paparella A, Rodrigues DF. A morphological, enzymatic and metabolic approach to elucidate apoptotic-like cell death in fungi exposed to h- and α-molybdenum trioxide nanoparticles. NANOSCALE 2018; 10:20702-20716. [PMID: 30398279 DOI: 10.1039/c8nr06470a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The present study compares for the first time the effects of h-MoO3 and α-MoO3 against two fungal strains: Aspergillus niger and Aspergillus flavus. The h-MoO3 nanoparticles were more toxic to both fungi than α-MoO3. The toxic effects of h-MoO3 were more pronounced toward A. flavus, which presented a growth inhibition of 67.4% at 200 mg L-1. The presence of the nanoparticles affected drastically the hyphae morphology by triggering nuclear condensation and compromising the hyphae membrane. Further analysis of the volatile organic compounds (VOCs) produced by both fungi in the presence of the nanomaterials indicated important metabolic changes related to programmed cell death. These nanomaterials induced the production of specific antifungal VOCs, such as β-Elemene and t-Cadinol, by the fungi. The production of essential enzymes involved in fungal metabolism, such as acid phosphatase, naphthol-As-BI-phosphohydrolase, β-galactosidase, β-glucosidase and N-acetyl-β-glucosaminidase, reduced significantly in the presence of the nanomaterials. The changes in enzymatic production and VOCs corroborate the fact that these nanoparticles, especially h-MoO3, exert changes in the fungal metabolism, triggering apoptotic-like cell death responses in these fungi.
Collapse
Affiliation(s)
- Clemencia Chaves-Lopez
- Facoltà di Bioscenze e Tecnologie Agroalimentari ed ambientali, Università degli Studi di Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | | | | | | | | | | |
Collapse
|
89
|
Costa S, Rugiero I, Larenas Uria C, Pedrini P, Tamburini E. Lignin Degradation Efficiency of Chemical Pre-Treatments on Banana Rachis Destined to Bioethanol Production. Biomolecules 2018; 8:biom8040141. [PMID: 30423995 PMCID: PMC6316140 DOI: 10.3390/biom8040141] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 01/13/2023] Open
Abstract
Valuable biomass conversion processes are highly dependent on the use of effective pretreatments for lignocellulose degradation and enzymes for saccharification. Among the nowadays available treatments, chemical delignification represents a promising alternative to physical-mechanical treatments. Banana is one of the most important fruit crops around the world. After harvesting, it generates large amounts of rachis, a lignocellulosic residue, that could be used for second generation ethanol production, via saccharification and fermentation. In the present study, eight chemical pretreatments for lignin degradation (organosolv based on organic solvents, sodium hypochlorite, hypochlorous acid, hydrogen peroxide, alkaline hydrogen peroxide, and some combinations thereof) have been tested on banana rachis and the effects evaluated in terms of lignin removal, material losses, and chemical composition of pretreated material. Pretreatment based on lignin oxidation have demonstrated to reach the highest delignification yield, also in terms of monosaccharides recovery. In fact, all the delignified samples were then saccharified with enzymes (cellulase and beta-glucosidase) and hydrolysis efficiency was evaluated in terms of final sugars recovery before fermentation. Analysis of Fourier transform infrared spectra (FTIR) has been carried out on treated samples, in order to better understand the structural effects of delignification on lignocellulose. Active chlorine oxidations, hypochlorous acid in particular, were the best effective for lignin removal obtaining in the meanwhile the most promising cellulose-to-glucose conversion.
Collapse
Affiliation(s)
- Stefania Costa
- Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Irene Rugiero
- Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Christian Larenas Uria
- Laboratorio de Biotecnología, Universidad Poilitécnica Salesiana, Av. Isabel La Católica N 23-52 y Madrid, Quito-Ecuador 170109, Quito, Ecuador.
| | - Paola Pedrini
- Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Elena Tamburini
- Department of Life Science and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
90
|
Sun J, Wang W, Yao C, Dai F, Zhu X, Liu J, Hao J. Overexpression and characterization of a novel cold-adapted and salt-tolerant GH1 β-glucosidase from the marine bacterium Alteromonas sp. L82. J Microbiol 2018; 56:656-664. [PMID: 30141158 DOI: 10.1007/s12275-018-8018-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
A novel gene (bgl) encoding a cold-adapted β-glucosidase was cloned from the marine bacterium Alteromonas sp. L82. Based on sequence analysis and its putative catalytic conserved region, Bgl belonged to the glycoside hydrolase family 1. Bgl was overexpressed in E. coli and purified by Ni2+ affinity chromatography. The purified recombinant β-glucosidase showed maximum activity at temperatures between 25°C to 45°C and over the pH range 6 to 8. The enzyme lost activity quickly after incubation at 40°C. Therefore, recombinant β-glucosidase appears to be a cold-adapted enzyme. The addition of reducing agent doubled its activity and 2 M NaCl did not influence its activity. Recombinant β-glucosidase was also tolerant of 700 mM glucose and some organic solvents. Bgl had a Km of 0.55 mM, a Vmax of 83.6 U/mg, a kcat of 74.3 s-1 and kcat/Km of 135.1 at 40°C, pH 7 with 4-nitrophenyl-β-D-glucopyranoside as a substrate. These properties indicate Bgl may be an interesting candidate for biotechnological and industrial applications.
Collapse
Affiliation(s)
- Jingjing Sun
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, P. R. China
| | - Wei Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, P. R. China
| | - Congyu Yao
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, P. R. China.,Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Fangqun Dai
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, P. R. China
| | - Xiangjie Zhu
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, P. R. China.,Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Junzhong Liu
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, P. R. China.,Laboratory for Marine Drugs and Bioproducts, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, P. R. China
| | - Jianhua Hao
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, P. R. China. .,Laboratory for Marine Drugs and Bioproducts, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, P. R. China. .,Jiangsu Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Lianyungang, 222005, P. R. China.
| |
Collapse
|
91
|
Takenaka M, Lee JM, Kahar P, Ogino C, Kondo A. Efficient and Supplementary Enzyme Cocktail from Actinobacteria and Plant Biomass Induction. Biotechnol J 2018; 14:e1700744. [PMID: 29981210 DOI: 10.1002/biot.201700744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 06/28/2018] [Indexed: 11/08/2022]
Abstract
Actinobacteria plays a key role in the cycling of organic matter in soils. They secret biomass-degrading enzymes that allow it to produce the unique metabolites that originate in plant biomass. Although past studies have focused on these unique metabolites, a large-scale screening of Actinobacteria is yet to be reported to focus on their biomass-degrading ability. In the present study, a rapid and simple method is constructed for a large-scale screening, and the novel resources that form the plant biomass-degrading enzyme cocktail are identified from 850 isolates of Actinobacteria. As a result, Nonomuraea fastidiosa secretes a biomass degrading enzyme cocktail with the highest enzyme titer, although cellulase activities are lower than a commercially available enzyme. So the rich accessory enzymes are suggested to contribute to the high enzyme titer for a pretreated bagasse with a synergistic effect. Additionally, an optimized cultivation method of biomass induction caused to produce the improved enzyme cocktail indicated strong enzyme titers and a strong synergistic effect. Therefore, the novel enzyme cocktails are selected via the optimized method for large-scale screening, and then the enzyme cocktail can be improved via the optimized production with biomass-induction.
Collapse
Affiliation(s)
- Musashi Takenaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodaicho 1-1, 657-8501 Kobe, Japan
| | - Jae M Lee
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodaicho 1-1, 657-8501 Kobe, Japan
| | - Prihardi Kahar
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodaicho 1-1, 657-8501 Kobe, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodaicho 1-1, 657-8501 Kobe, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodaicho 1-1, 657-8501 Kobe, Japan
| |
Collapse
|
92
|
Non-aqueous homogenous biocatalytic conversion of polysaccharides in ionic liquids using chemically modified glucosidase. Nat Chem 2018; 10:859-865. [DOI: 10.1038/s41557-018-0088-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/23/2018] [Indexed: 11/08/2022]
|
93
|
Chang JJ, Anandharaj M, Ho CY, Tsuge K, Tsai TY, Ke HM, Lin YJ, Ha Tran MD, Li WH, Huang CC. Biomimetic strategy for constructing Clostridium thermocellum cellulosomal operons in Bacillus subtilis. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:157. [PMID: 29930703 PMCID: PMC5991470 DOI: 10.1186/s13068-018-1151-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Enzymatic conversion of lignocellulosic biomass into soluble sugars is a major bottleneck in the plant biomass utilization. Several anaerobic organisms cope these issues via multiple-enzyme complex system so called 'cellulosome'. Hence, we proposed a "biomimic operon" concept for making an artificial cellulosome which can be used as a promising tool for the expression of cellulosomal enzymes in Bacillus subtilis. RESULTS According to the proteomic analysis of Clostridium thermocellum ATCC27405 induced by Avicel or cellobiose, we selected eight highly expressed cellulosomal genes including a scaffoldin protein gene (cipA), a cell-surface anchor gene (sdbA), two exoglucanase genes (celK and celS), two endoglucanase genes (celA and celR), and two xylanase genes (xynC and xynZ). Arranging these eight genes in two different orders, we constructed two different polycistronic operons using the ordered gene assembly in Bacillus method. This is the first study to express the whole CipA along with cellulolytic enzymes in B. subtilis. Each operon was successfully expressed in B. subtilis RM125, and the protein complex assembly, cellulose-binding ability, thermostability, and cellulolytic activity were demonstrated. The operon with a higher xylanase activity showed greater saccharification on complex cellulosic substrates such as Napier grass than the other operon. CONCLUSIONS In this study, a strategy for constructing an efficient cellulosome system was developed and two different artificial cellulosomal operons were constructed. Both operons could efficiently express the cellulosomal enzymes and exhibited cellulose saccharification. This strategy can be applied to different industries with cellulose-containing materials, such as papermaking, biofuel, agricultural compost, mushroom cultivation, and waste processing industries.
Collapse
Affiliation(s)
- Jui-Jen Chang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 402 Taiwan
| | - Marimuthu Anandharaj
- Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529 Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Cheng-Yu Ho
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Kenji Tsuge
- Institute for Advanced Biosciences, Keio University, 403-1 Nipponkoku, Daihoji, Tsuruoka, Yamagata 997-0017 Japan
| | - Tsung-Yu Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Yu-Ju Lin
- Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Minh Dung Ha Tran
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529 Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227 Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529 Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227 Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 40227 Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637 USA
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227 Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 40227 Taiwan
| |
Collapse
|
94
|
Increasing of activity and thermostability of cold active butanol-tolerant endoglucanase from a marine Rhodococcus sp. under high concentrations of butanol condition. 3 Biotech 2018; 8:265. [DOI: 10.1007/s13205-018-1249-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/20/2018] [Indexed: 12/27/2022] Open
|
95
|
Burse A, Boland W. Deciphering the route to cyclic monoterpenes in Chrysomelina leaf beetles: source of new biocatalysts for industrial application? ACTA ACUST UNITED AC 2018; 72:417-427. [PMID: 28593879 DOI: 10.1515/znc-2017-0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022]
Abstract
The drastic growth of the population on our planet requires the efficient and sustainable use of our natural resources. Enzymes are indispensable tools for a wide range of industries producing food, pharmaceuticals, pesticides, or biofuels. Because insects constitute one of the most species-rich classes of organisms colonizing almost every ecological niche on earth, they have developed extraordinary metabolic abilities to survive in various and sometimes extreme habitats. Despite this metabolic diversity, insect enzymes have only recently generated interest in industrial applications because only a few metabolic pathways have been sufficiently characterized. Here, we address the biosynthetic route to iridoids (cyclic monoterpenes), a group of secondary metabolites used by some members of the leaf beetle subtribe Chrysomelina as defensive compounds against their enemies. The ability to produce iridoids de novo has also convergently evolved in plants. From plant sources, numerous pharmacologically relevant structures have already been described. In addition, in plants, iridoids serve as building blocks for monoterpenoid indole alkaloids with broad therapeutic applications. As the commercial synthesis of iridoid-based drugs often relies on a semisynthetic approach involving biocatalysts, the discovery of enzymes from the insect iridoid route can account for a valuable resource and economic alternative to the previously used enzymes from the metabolism of plants. Hence, this review illustrates the recent discoveries made on the steps of the iridoid pathway in Chrysomelina leaf beetles. The findings are also placed in the context of the studied counterparts in plants and are further discussed regarding their use in technological approaches.
Collapse
|
96
|
Paramjeet S, Manasa P, Korrapati N. Biofuels: Production of fungal-mediated ligninolytic enzymes and the modes of bioprocesses utilizing agro-based residues. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
97
|
Xu Y, Ye BC. GlnR and PhoP regulate β-glucosidases involved in cellulose digestion in response to nitrogen and phosphate availability. MICROBIOLOGY-SGM 2018; 164:779-789. [PMID: 29583114 DOI: 10.1099/mic.0.000654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The limited catalytic efficiency of cellulose-degrading enzymes restricts cellulose digestion. We investigated the transcriptional regulation of genes encoding key cellulose degrading enzymes, namely β-glucosidases, in the industrial actinobacterium Saccharopolyspora erythraea. We observed that the expression of most β-glucosidase-encoding genes was controlled by the availability of nitrogen and phosphate via their respective global regulators, namely GlnR and PhoP. Electrophoretic mobility shift assay demonstrated that GlnR and PhoP bound directly to the promoters of β-glucosidase-encoding genes. Deletion of glnR resulted in lower transcript levels and activity of β-glucosidases, leading to decreased bacterial growth on cellulose. Overexpression of glnR and phoP or nitrogen/phosphate starvation increased the transcript levels and total activity of β-glucosidases. Moreover, GlnR/PhoP-mediated cellobiose utilization was also observed in Streptomyces coelicolor A3(2). These findings provide insights into the regulatory roles played by GlnR and PhoP in coordinating nitrogen/phosphate metabolism and carbohydrate utilization, and indicate potential strategies for cellulose fermentation in the production of bio-based chemicals by actinobacteria.
Collapse
Affiliation(s)
- Ya Xu
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Bang-Ce Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, PR China.,Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
98
|
Sabbadin F, Pesante G, Elias L, Besser K, Li Y, Steele-King C, Stark M, Rathbone DA, Dowle AA, Bates R, Shipway JR, Cragg SM, Bruce NC, McQueen-Mason SJ. Uncovering the molecular mechanisms of lignocellulose digestion in shipworms. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:59. [PMID: 29527236 PMCID: PMC5840672 DOI: 10.1186/s13068-018-1058-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/21/2018] [Indexed: 05/13/2023]
Abstract
Lignocellulose forms the structural framework of woody plant biomass and represents the most abundant carbon source in the biosphere. Turnover of woody biomass is a critical component of the global carbon cycle, and the enzymes involved are of increasing industrial importance as industry moves away from fossil fuels to renewable carbon resources. Shipworms are marine bivalve molluscs that digest wood and play a key role in global carbon cycling by processing plant biomass in the oceans. Previous studies suggest that wood digestion in shipworms is dominated by enzymes produced by endosymbiotic bacteria found in the animal's gills, while little is known about the identity and function of endogenous enzymes produced by shipworms. Using a combination of meta-transcriptomic, proteomic, imaging and biochemical analyses, we reveal a complex digestive system dominated by uncharacterized enzymes that are secreted by a specialized digestive gland and that accumulate in the cecum, where wood digestion occurs. Using a combination of transcriptomics, proteomics, and microscopy, we show that the digestive proteome of the shipworm Lyrodus pedicellatus is mostly composed of enzymes produced by the animal itself, with a small but significant contribution from symbiotic bacteria. The digestive proteome is dominated by a novel 300 kDa multi-domain glycoside hydrolase that functions in the hydrolysis of β-1,4-glucans, the most abundant polymers in wood. These studies allow an unprecedented level of insight into an unusual and ecologically important process for wood recycling in the marine environment, and open up new biotechnological opportunities in the mobilization of sugars from lignocellulosic biomass.
Collapse
Affiliation(s)
- Federico Sabbadin
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD UK
| | - Giovanna Pesante
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD UK
| | - Luisa Elias
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD UK
| | - Katrin Besser
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD UK
| | - Yi Li
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD UK
| | - Clare Steele-King
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD UK
| | - Meg Stark
- Bioscience Technology Facility, Department of Biology, University of York, Heslington, York, YO10 5DD UK
| | - Deborah A. Rathbone
- Biorenewables Development Centre, 1 Hassacarr Close, Chessingham Park, Dunnington, York, YO19 5SN UK
| | - Adam A. Dowle
- Bioscience Technology Facility, Department of Biology, University of York, Heslington, York, YO10 5DD UK
| | - Rachel Bates
- Bioscience Technology Facility, Department of Biology, University of York, Heslington, York, YO10 5DD UK
| | - J. Reuben Shipway
- Marine Science Center, Northeastern University, Nahant, MA 01908 USA
| | - Simon M. Cragg
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry 1st St, Portsmouth, PO1 2DY UK
| | - Neil C. Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD UK
| | - Simon J. McQueen-Mason
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD UK
| |
Collapse
|
99
|
Structural and functional insights of β-glucosidases identified from the genome of Aspergillus fumigatus. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
100
|
Oh JM, Lee JP, Baek SC, Kim SG, Jo YD, Kim J, Kim H. Characterization of two extracellular β-glucosidases produced from the cellulolytic fungus Aspergillus sp. YDJ216 and their potential applications for the hydrolysis of flavone glycosides. Int J Biol Macromol 2018; 111:595-603. [PMID: 29339289 DOI: 10.1016/j.ijbiomac.2018.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/29/2017] [Accepted: 01/12/2018] [Indexed: 01/12/2023]
Abstract
A cellulolytic fungus YDJ216 was isolated from a compost and identified as an Aspergillus sp. strain. Two extracellular β-glucosidases, BGL1 and BGL2, were purified using ultrafiltration, ammonium sulfate fractionation, and High-Q chromatography. Molecular masses of BGL1 and BGL2 were estimated to be 97 and 45 kDa, respectively, by SDS-PAGE. The two enzymes eluted as one peak at 87 kDa by Sephacryl S-200 chromatography, and located at similar positions in a zymogram after intact gel electrophoresis, suggesting BGL1 and BGL2 might be monomeric and dimeric, respectively. Both enzymes showed similar enzymatic properties; they were optimally active at pH 4.0-4.5 and 60 °C, and had similar half-lives at 70 °C. Two enzymes also preferred p-nitrophenyl glucose (pNPG) with the same Km and hardly hydrolyzed cellobiose, suggesting both enzymes are aryl β-glucosidases. However, Vmax for pNPG of BGL1 (953.2 U/mg) was much higher than those of BGL2 (66.5U/mg) and other β-glucosidases reported. When tilianin (a flavone glycoside of acacetin) was reacted with both enzymes, inhibitory activity for monoamine oxidase, relating to oxidation of neurotransmitter amines, was increased closely to the degree obtained by acacetin. These results suggest that BGL1 and BGL2 could be used to hydrolyze flavone glycosides to improve their inhibitory activities.
Collapse
Affiliation(s)
- Jong Min Oh
- Department of Agricultural Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jae Pil Lee
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences Sunchon National University, Suncheon 57922, Republic of Korea
| | - Seung Cheol Baek
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences Sunchon National University, Suncheon 57922, Republic of Korea
| | - Seul Gi Kim
- Department of Agricultural Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Yang Do Jo
- Department of Agricultural Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jungho Kim
- Department of Agricultural Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hoon Kim
- Department of Agricultural Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea; Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|