51
|
Saberi Riseh R, Vatankhah M, Hassanisaadi M, Kennedy JF. Chitosan/silica: A hybrid formulation to mitigate phytopathogens. Int J Biol Macromol 2023; 239:124192. [PMID: 36996949 DOI: 10.1016/j.ijbiomac.2023.124192] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Long-term and indiscriminate use of synthetic pesticides to mitigate plant pathogens have created serious issues of water health, soil contamination, non-target organisms, resistant species, and unpredictable environmental and human health hazards. These constraints have forced scientists to develop alternative plant disease management strategies to reduce synthetic chemical' dependency. During the last 20 years, biological agents and resistance elicitors have been the most important used alternatives. Silica-based materials/chitosan with a dual mode of action have been proposed as promising alternatives to prevent plant diseases through direct and indirect mechanisms. Moreover, the combined application of nano-silica and chitosan, due to their controllable morphology, high loading capacity, low toxicity, and efficient encapsulation, act as suitable carriers for biological agents, pesticides, and essential oils, making them proper candidates for mitigation of phytopathogens. Based on this potential, this literature study reviewed the silica and chitosan properties and their function in the plant. It also assessed their role in the fighting against soil and aerial phytopathogens, directly and indirectly, as novel hybrid formulations in future managing platforms.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 771897111, Iran.
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 771897111, Iran
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 771897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
52
|
Shelar A, Nile SH, Singh AV, Rothenstein D, Bill J, Xiao J, Chaskar M, Kai G, Patil R. Recent Advances in Nano-Enabled Seed Treatment Strategies for Sustainable Agriculture: Challenges, Risk Assessment, and Future Perspectives. NANO-MICRO LETTERS 2023; 15:54. [PMID: 36795339 PMCID: PMC9935810 DOI: 10.1007/s40820-023-01025-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 05/14/2023]
Abstract
Agro seeds are vulnerable to environmental stressors, adversely affecting seed vigor, crop growth, and crop productivity. Different agrochemical-based seed treatments enhance seed germination, but they can also cause damage to the environment; therefore, sustainable technologies such as nano-based agrochemicals are urgently needed. Nanoagrochemicals can reduce the dose-dependent toxicity of seed treatment, thereby improving seed viability and ensuring the controlled release of nanoagrochemical active ingredients However, the applications of nanoagrochemicals to plants in the field raise concerns about nanomaterial safety, exposure levels, and toxicological implications to the environment and human health. In the present comprehensive review, the development, scope, challenges, and risk assessments of nanoagrochemicals on seed treatment are discussed. Moreover, the implementation obstacles for nanoagrochemicals use in seed treatments, their commercialization potential, and the need for policy regulations to assess possible risks are also discussed. Based on our knowledge, this is the first time that we have presented legendary literature to readers in order to help them gain a deeper understanding of upcoming nanotechnologies that may enable the development of future generation seed treatment agrochemical formulations, their scope, and potential risks associated with seed treatment.
Collapse
Affiliation(s)
- Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Shivraj Hariram Nile
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Science, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse, 10589, Berlin, Germany
| | - Dirk Rothenstein
- Institute for Materials Science, University of Stuttgart, 70569, Stuttgart, Germany
| | - Joachim Bill
- Institute for Materials Science, University of Stuttgart, 70569, Stuttgart, Germany
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Manohar Chaskar
- Faculty of Science and Technology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Science, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Rajendra Patil
- Department of Technology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| |
Collapse
|
53
|
Bionanotechnology in Agriculture: A One Health Approach. Life (Basel) 2023; 13:life13020509. [PMID: 36836866 PMCID: PMC9964896 DOI: 10.3390/life13020509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Healthy eating habits are one of the requirements for the health of society. In particular, in natura foods are increasingly encouraged, since they have a high concentration of nutrients. However, these foods are often grown in the presence of agrochemicals, such as fertilizers and pesticides. To increase crop productivity and achieve high vigor standards in less time, farmers make excessive use of agrochemicals that generate various economic, environmental, and clinical problems. In this way, bionanotechnology appears as an ally in developing technologies to improve planting conditions, ranging from the health of farmers and consumers to the production of new foods and functional foods. All these improvements are based on the better use of land use in synergy with the lowest generation of environmental impacts and the health of living beings, with a view to the study and production of technologies that take into account the concept of One Health in its processes and products. In this review article, we will address how caring for agriculture can directly influence the quality of the most desired foods in contemporary society, and how new alternatives based on nanotechnology can point to efficient and safe solutions for living beings on our planet.
Collapse
|
54
|
Kumar S, Sharma SK, Dhaka AK, Bedwal S, Sheoran S, Meena RS, Jangir CK, Kumar D, Kumar R, Jat RD, Meena AK, Gaber A, Hossain A. Efficient nutrient management for enhancing crop productivity, quality and nutrient dynamics in lentil (Lens culinaris Medik.) in the semi-arid region of northern India. PLoS One 2023; 18:e0280636. [PMID: 36763612 PMCID: PMC9916625 DOI: 10.1371/journal.pone.0280636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 01/05/2023] [Indexed: 02/11/2023] Open
Abstract
Various faulty farming practices and low-performance cultivars selection are reducing crop yields, factor productivity, and soil fertility. Therefore, there is an urgent need to achieve better nutrient dynamics and sustainable production by selecting more nutrient-responsive cultivars using efficient nutrient management. The present experiment aimed to enhance crop productivity, seed quality, nutrient efficiency, and soil nutrient dynamics through efficient nutrient management under different lentil cultivars. The experiment was laid out in a split-plot design, assigning three cultivars (viz. Sapna, Garima, and HM-1) in the main plots and ten nutrient management practices in the sub-plots, replicating them thrice. Results revealed that cultivar HM-1 recorded significantly higher seed yield (1.59-1.61 Mg ha-1) and the uptake of N (67.2-67.6 kg ha-1), P (6.8-7.0 kg ha-1), K (13.8-13.9 kg ha-1), Zn (60.4-61.1 g ha-1), and Fe (162.5-165.2 g ha-1) in seed compared to Sapna and Garima. Also, the cultivar HM-1 was more efficient in terms of partial factor productivity for NPK (PFP; 24.27-24.59 kg kg-1), partial nutrient balance (PNB; 2.09-2.13 kg kg-1) and internal utilisation efficiency (IUE; 11.64-11.85 kg kg-1). The study showed that the lentil cultivar HM-1 could be successfully grown by substituting 50% RDN with organic manures, i.e., vermicompost, without compromising crop productivity and soil fertility, thereby sustaining soil-human-environment health.
Collapse
Affiliation(s)
- Sandeep Kumar
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, India
- Department of Agronomy, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
- * E-mail: (SK); (AH)
| | - Surender Kumar Sharma
- Department of Agronomy, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Anil Kumar Dhaka
- Department of Agronomy, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Sandeep Bedwal
- Department of Soil Science, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Seema Sheoran
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, India
| | - Ram Swaroop Meena
- Department of Agronomy, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | | | - Dinesh Kumar
- ICAR-India Institute of Soil and Water Conservation, Research Centre, Datia, Madhya Pradesh, India
| | - Rakesh Kumar
- Department of Microbiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Ram Dhan Jat
- Department of Agronomy, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Ajit Kumar Meena
- Department of Soil Science and Agricultural Chemistry, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, India
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
- * E-mail: (SK); (AH)
| |
Collapse
|
55
|
Jirakkakul J, Khoiri AN, Duangfoo T, Dulsawat S, Sutheeworapong S, Petsong K, Wattanachaisaereekul S, Paenkaew P, Tachaleat A, Cheevadhanarak S, Prommeenate P. Insights into the genome of Methylobacterium sp. NMS14P, a novel bacterium for growth promotion of maize, chili, and sugarcane. PLoS One 2023; 18:e0281505. [PMID: 36749783 PMCID: PMC9904496 DOI: 10.1371/journal.pone.0281505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
A novel methylotrophic bacterium designated as NMS14P was isolated from the root of an organic coffee plant (Coffea arabica) in Thailand. The 16S rRNA sequence analysis revealed that this new isolate belongs to the genus Methylobacterium, and its novelty was clarified by genomic and comparative genomic analyses, in which NMS14P exhibited low levels of relatedness with other Methylobacterium-type strains. NMS14P genome consists of a 6,268,579 bp chromosome, accompanied by a 542,519 bp megaplasmid and a 66,590 bp plasmid, namely pNMS14P1 and pNMS14P2, respectively. Several genes conferring plant growth promotion are aggregated on both chromosome and plasmids, including phosphate solubilization, indole-3-acetic acid (IAA) biosynthesis, cytokinins (CKs) production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, sulfur-oxidizing activity, trehalose synthesis, and urea metabolism. Furthermore, pangenome analysis showed that NMS14P possessed the highest number of strain-specific genes accounting for 1408 genes, particularly those that are essential for colonization and survival in a wide array of host environments, such as ABC transporter, chemotaxis, quorum sensing, biofilm formation, and biosynthesis of secondary metabolites. In vivo tests have supported that NMS14P significantly promoted the growth and development of maize, chili, and sugarcane. Collectively, NMS14P is proposed as a novel plant growth-promoting Methylobacterium that could potentially be applied to a broad range of host plants as Methylobacterium-based biofertilizers to reduce and ultimately substitute the use of synthetic agrochemicals for sustainable agriculture.
Collapse
Affiliation(s)
- Jiraporn Jirakkakul
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Ahmad Nuruddin Khoiri
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Thanawat Duangfoo
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Sudarat Dulsawat
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Sawannee Sutheeworapong
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Kantiya Petsong
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Department of Food Technology, Faculty of Technology, Khon Kaen University, Khon Kaen, Thailand
| | - Songsak Wattanachaisaereekul
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Prasobsook Paenkaew
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Anuwat Tachaleat
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Supapon Cheevadhanarak
- Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Peerada Prommeenate
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
56
|
Mishra A, Singh L, Singh D. Unboxing the black box-one step forward to understand the soil microbiome: A systematic review. MICROBIAL ECOLOGY 2023; 85:669-683. [PMID: 35112151 PMCID: PMC9957845 DOI: 10.1007/s00248-022-01962-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Soil is one of the most important assets of the planet Earth, responsible for maintaining the biodiversity and managing the ecosystem services for both managed and natural ecosystems. It encompasses large proportion of microscopic biodiversity, including prokaryotes and the microscopic eukaryotes. Soil microbiome is critical in managing the soil functions, but their activities have diminutive recognition in few systems like desert land and forest ecosystems. Soil microbiome is highly dependent on abiotic and biotic factors like pH, carbon content, soil structure, texture, and vegetation, but it can notably vary with ecosystems and the respective inhabitants. Thus, unboxing this black box is essential to comprehend the basic components adding to the soil systems and supported ecosystem services. Recent advancements in the field of molecular microbial ecology have delivered commanding tools to examine this genetic trove of soil biodiversity. Objective of this review is to provide a critical evaluation of the work on the soil microbiome, especially since the advent of the NGS techniques. The review also focuses on advances in our understanding of soil communities, their interactions, and functional capabilities along with understanding their role in maneuvering the biogeochemical cycle while underlining and tapping the unprecedented metagenomics data to infer the ecological attributes of yet undiscovered soil microbiome. This review focuses key research directions that could shape the future of basic and applied research into the soil microbiome. This review has led us to understand that it is difficult to generalize that soil microbiome plays a substantiated role in shaping the soil networks and it is indeed a vital resource for sustaining the ecosystem functioning. Exploring soil microbiome will help in unlocking their roles in various soil network. It could be resourceful in exploring and forecasting its impacts on soil systems and for dealing with alleviating problems like rapid climate change.
Collapse
Affiliation(s)
- Apurva Mishra
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, 201002, India
- Environmental Biotechnology and Genomics Division, , CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Lal Singh
- Environmental Biotechnology and Genomics Division, , CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Dharmesh Singh
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Trogerstrasse 30, 81675, Munich, Bavaria, Germany.
| |
Collapse
|
57
|
Maria SB, Krystyna P, Monika L, Aleksandra J, Patrycja T, Kornelia K, Aleksandra BB, Joanna Ś, Piotr J, Katarzyna P, Agnieszka K. Natural compounds derived from Brassicaceae plants as an alternative to synthetic fungicides and their influence on soil fungus diversity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:317-327. [PMID: 35866526 DOI: 10.1002/jsfa.12143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/26/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The study aimed to develop a new formulation based on active substances of natural origin to protect plant seedlings against fungal pathogens, and to evaluate the effect of this formulation on fungal communities in arable soil. RESULTS Coating seeds of common crop plants with a p-coumaric acid (p-CA)-based preparation resulted in a significant reduction in the growth of most of the tested pathogens. When applied to soil, both the p-CA-based formulation and Porter 250 EC had a similar overall effect on soil fungal communities and significantly altered the structure of fungal communities at all of the times examined. Shifts in the fungal community composition concerned less than 2% of the total number of amplicon sequence variants (ASVs). The strongest impact of the formulations on soil microbiota was recorded at the fourth week of treatment. Two ASVs assigned to Botrytis and Chromelosporium, known as plant pathogens, and an unidentified ASV from Diversisporales encompassing the arbuscular mycorrhizal fungi (AMF), were significantly depleted in soil samples treated with p-CA in comparison with Porter 250 EC. CONCLUSION The p-CA-based preparation has the potential to be used as an alternative to synthetic fungicides. It shows a similar effect to Porter 250 EC on the organization of soil communities, determining changes in the character of the communities of fungi in general, at any given time. Moreover, p-CA caused a reduction in ASVs belonging to Botrytis and Chromelosporium (plant pathogens) and ASVs of Diversisporales (containing arbuscular mycorrhizal fungi) in comparison with the commercial compound that was analyzed. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Swiontek Brzezinska Maria
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Pałubicka Krystyna
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Latos Monika
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Janik Aleksandra
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Tarnawska Patrycja
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Krajnik Kornelia
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Burkowska-But Aleksandra
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Świątczak Joanna
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| | - Jedziniak Piotr
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Pulawy, Poland
| | - Pietruszka Katarzyna
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Pulawy, Poland
| | - Kalwasińska Agnieszka
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, 87-100, Poland
| |
Collapse
|
58
|
Ruuskanen S, Fuchs B, Nissinen R, Puigbò P, Rainio M, Saikkonen K, Helander M. Ecosystem consequences of herbicides: the role of microbiome. Trends Ecol Evol 2023; 38:35-43. [PMID: 36243622 DOI: 10.1016/j.tree.2022.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
Non-target organisms are globally exposed to herbicides. While many herbicides - for example, glyphosate - were initially considered safe, increasing evidence demonstrates that they have profound effects on ecosystem functions via altered microbial communities. We provide a comprehensive framework on how herbicide residues may modulate ecosystem-level outcomes via alteration of microbiomes. The changes in soil microbiome are likely to influence key nutrient cycling and plant-soil processes. Herbicide-altered microbiome affects plant and animal performance and can influence trophic interactions such as herbivory and pollination. These changes are expected to lead to ecosystem and even evolutionary consequences for both microbes and hosts. Tackling the threats caused by agrochemicals to ecosystem functions and services requires tools and solutions based on a comprehensive understanding of microbe-mediated risks.
Collapse
Affiliation(s)
- Suvi Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland; Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | - Benjamin Fuchs
- Biodiversity Unit, University of Turku, FI-20014 Turku, Finland
| | - Riitta Nissinen
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Pere Puigbò
- Department of Biology, University of Turku, FI-20014 Turku, Finland; Nutrition and Health Unit, Eurecat Technology Centre of Catalonia, Reus, Catalonia, Spain; Department of Biochemistry and Biotechnology, Rovira I Virgili University, Tarragona, Catalonia, Spain
| | - Miia Rainio
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Kari Saikkonen
- Biodiversity Unit, University of Turku, FI-20014 Turku, Finland
| | - Marjo Helander
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
59
|
Agyekum DVA, Kobayashi T, Dastogeer KMG, Yasuda M, Sarkodee-Addo E, Ratu STN, Xu Q, Miki T, Matsuura E, Okazaki S. Diversity and function of soybean rhizosphere microbiome under nature farming. Front Microbiol 2023; 14:1130969. [PMID: 36937301 PMCID: PMC10014912 DOI: 10.3389/fmicb.2023.1130969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Nature farming is a farming system that entails cultivating crops without using chemical fertilizers and pesticides. The present study investigated the bacterial and fungal communities in the rhizosphere of soybean grown in conventional and nature farming soils using wild-type and non-nodulating mutant soybean. The effect of soil fumigant was also analyzed to reveal its perturbation of microbial communities and subsequent effects on the growth of soybean. Overall, the wild-type soybean exhibited a better growth index compared to mutant soybean and especially in nature farming. Nodulation and arbuscular mycorrhiza (AM) fungi colonization were higher in plants under nature farming than in conventionally managed soil; however, fumigation drastically affected these symbioses with greater impacts on plants in nature farming soil. The rhizosphere microbiome diversity in nature farming was higher than that in conventional farming for both cultivars. However, the diversity was significantly decreased after fumigation treatment with a greater impact on nature farming. Principal coordinate analysis revealed that nature farming and conventional farming soil harbored distinct microbial communities and that soil fumigation significantly altered the communities in nature farming soils but not in conventional farming soils. Intriguingly, some beneficial microbial taxa related to plant growth and health, including Rhizobium, Streptomyces, and Burkholderia, were found as distinct microbes in the nature farming soil but were selectively bleached by fumigant treatment. Network analysis revealed a highly complex microbial network with high taxa connectivity observed under nature farming soil than in conventional soil; however, fumigation strongly broke it. Overall, the results highlighted that nature farming embraced higher microbial diversity and the abundance of beneficial soil microbes with a complex and interconnected network structure, and also demonstrated the underlying resilience of the microbial community to environmental perturbations, which is critical under nature farming where chemical fertilizers and pesticides are not applied.
Collapse
Affiliation(s)
- Dominic V. A. Agyekum
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tatsuyuki Kobayashi
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Khondoker M. G. Dastogeer
- Department of Plant Pathology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Michiko Yasuda
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Elsie Sarkodee-Addo
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Safirah T. N. Ratu
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Qicong Xu
- International Nature Farming Research Center, Nagano, Japan
| | - Takaaki Miki
- International Nature Farming Research Center, Nagano, Japan
| | - Eri Matsuura
- College of Agriculture, Ibaraki University, Mito, Japan
| | - Shin Okazaki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Japan
- *Correspondence: Shin Okazaki,
| |
Collapse
|
60
|
Zunino P. Native microbiomes in danger: Could One Health help to cope with this threat to global health? INTERNATIONAL JOURNAL OF ONE HEALTH 2022. [DOI: 10.14202/ijoh.2022.178-184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Planetary health faces an emergency associated with global change. Climate change, the increase in world population and urban concentration, the hyperintensification of productive systems, and the associated changes in land use, among other factors, are generating a risky substrate for global health deterioration. The emergence of the coronavirus disease 2019 pandemic is an example of the problems that this situation can provoke. Several researchers and health professionals have addressed the role of microorganisms, particularly bacteria, in promoting global health, mainly in the past decades. However, global changes have contributed to the extinction of a wide array of bacterial species and the disruption of microbial communities that support the homeostasis of humans, animals, and the environment. The need to protect the diversity and richness of native microbiomes in biotic and abiotic environments is crucial but has been frequently underestimated. The "One Health" approach, based on integrating traditionally unconnected fields such as human, animal, and environmental health, could provide a helpful framework to face this challenge. Anyway, drastic political decisions will be needed to tackle this global health crisis, in which the preservation of native microbial resources plays a critical role, even in preventing the risk of a new pandemic. This review aims to explain the importance of native microbiomes in biotic and abiotic ecosystems and the need to consider bacterial extinction as a crucial problem that could be addressed under a One Health approach.
Collapse
Affiliation(s)
- Pablo Zunino
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay
| |
Collapse
|
61
|
Sreelatha S, Kumar N, Rajani S. Biological effects of Thymol loaded chitosan nanoparticles (TCNPs) on bacterial plant pathogen Xanthomonas campestris pv. campestris. Front Microbiol 2022; 13:1085113. [PMID: 36620059 PMCID: PMC9815552 DOI: 10.3389/fmicb.2022.1085113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Engineered nanomaterials can provide eco-friendly alternatives for crop disease management. Chitosan based nanoparticles has shown beneficial applications in sustainable agricultural practices and effective healthcare. Previously we demonstrated that Thymol loaded chitosan nanoparticles (TCNPs) showed bactericidal activity against Xanthomonas campestris pv campestris (Xcc), a bacterium that causes black rot disease in brassica crops. Despite the progress in assessing the antibacterial action of TCNPs, the knowledge about the molecular response of Xcc when exposed to TCNPs is yet to be explored. In the present study, we combined physiological, spectroscopic and untargeted metabolomics studies to investigate the response mechanisms in Xcc induced by TCNPs. Cell proliferation and membrane potential assays of Xcc cells exposed to sub-lethal concentration of TCNPs showed that TCNPs affects the cell proliferation rate and damages the cell membrane altering the membrane potential. FTIR spectroscopy in conjunction with untargeted metabolite profiling using mass spectrometry of TCNPs treated Xcc cells revealed alterations in amino acids, lipids, nucleotides, fatty acids and antioxidant metabolites. Mass spectroscopy analysis revealed a 10-25% increase in nucleic acid, fatty acids and antioxidant metabolites and a 20% increase in lipid metabolites while a decrease of 10-20% in amino acids and carbohydrates was seen in in TCNP treated Xcc cells. Overall, our results demonstrate that the major metabolic perturbations induced by TCNPs in Xcc are associated with membrane damage and oxidative stress, thus providing information on the mechanism of TCNPs mediated cytotoxicity. This will aid towards the development of nano- based agrochemicals as an alternative to chemical pesticides in future.
Collapse
|
62
|
Sharma S, Rana VS, Rana N, Sharma U, Gudeta K, Alharbi K, Ameen F, Bhat SA. Effect of Organic Manures on Growth, Yield, Leaf Nutrient Uptake and Soil Properties of Kiwifruit ( Actinidia deliciosa Chev.) cv. Allison. PLANTS (BASEL, SWITZERLAND) 2022; 11:3354. [PMID: 36501392 PMCID: PMC9741236 DOI: 10.3390/plants11233354] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
In recent decades, organic kiwifruit farming has come up as a feasible method for high-quality kiwi production without using chemical fertilizers. The primary objective of this research was to investigate how the sole application of organic and the combined application of organic manures affected the growth, yields, and quality of Allison kiwifruit, as well as the soil's physicochemical characteristics. The field trial was conducted on cv. Allison to determine the efficacy of organic manures (OM) on growth, nutrient absorption, production and soil health. The experiment involved eight treatments, viz.: T1: 100% Dairy manure (DM); T2: 100% Vermicompost (VC); T3: 100% chicken manure (CM); T4: 50% DM + 50% CM; T5: 50% DM + 50% VC; T6: 50% CM + 50% VC; T7: DM + CM + VC in equal proportions; and T8: Recommended nutrients inorganic NPK + 40 kg DM. A randomized complete block design comprising three replicas was used in this investigation. The use of inorganic fertilizers (NPK) in combination with DM enhanced Spad Values Chlorophyll, fruit production, leaf number, leaf area, and stem diameter while also improving the soil's chemical characteristics. The flower initiation was recorded with DM and Vermicompost (50:50). Furthermore, when compared to inorganic fertilizer treatment, OM treatment significantly improved fruit quality by improving fruit chemical composition in terms of soluble solids contents and leaf nutrient status, as well as improving soil's physical properties with DM and Vermicompost (50:50). The study's outcome revealed that OM had a significant impact on flowering time, fruit SSC, leaf nutritional status, and soil physical characteristics. In comparison to organic treatments, recommended fertilizer dosages (NPK + DM) improved plant growth, fruit yield, and soil chemical characteristics.
Collapse
Affiliation(s)
- Sunny Sharma
- Department of Fruit Science, College of Horticulture, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan 173230, India
| | - Vishal Singh Rana
- Department of Fruit Science, College of Horticulture, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan 173230, India
| | - Neerja Rana
- Department of Basic Sciences, College of Forestry, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan 173230, India
| | - Umesh Sharma
- Department of Tree Improvement and Genetic Resources, College of Forestry, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan 173230, India
| | - Kasahun Gudeta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
- Department of Applied Biology, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
63
|
Nanoparticles of magnesium oxyhydroxide and copper oxide: Synthesis and evaluation of their in vitro fungicidal activity on the fungus Omphalia sp. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
64
|
Association of Physcion and Chitosan Can Efficiently Control Powdery Mildew in Rosa roxburghii. Antibiotics (Basel) 2022; 11:antibiotics11111661. [PMID: 36421305 PMCID: PMC9686512 DOI: 10.3390/antibiotics11111661] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Powdery mildew is an extremely serious disease of all Rosa roxburghii production regions in China and frequently causes 30~40% of economic losses. Natural products are considered excellent alternatives to chemical fungicides. In this work, we investigated the efficacy of physcion used together with chitosan controls R. roxburghii powdery mildew and impacts its resistance, growth, yield, and quality. The results reveal that the foliar application of 12.5 mg L−1 0.5% physcion aqueous solutions (AS) + 250 mg L−1 chitosan efficiently controlled powdery mildew with the efficacies of 92.65% and 90.68% after 7 d and 14 d, respectively, which conspicuously (p < 0.05) higher than 83.62% and 80.43% of 25 mg L−1 0.5% physcion AS, as well as 70.75% and 77.80% of 500 mg L−1 chitosan. Meanwhile, this association prominently ameliorated the resistant and photosynthetic capabilities of R. roxburghii. Simultaneously, this association was more efficient than physcion or chitosan alone for ameliorating the yield and quality of R. roxburghii. This work emphasizes that the association of physcion and chitosan can be nominated as a natural, efficient and environmental-friendly alternative ingredient in controlling R. roxburghii powdery mildew and ameliorating its resistant, photosynthesis, yield, and quality.
Collapse
|
65
|
Regus F, Laffont-Schwob I, Hamrouni R, Dupuy N, Farnet Da Silva AM. Using bibliometrics to analyze the state of art of pesticide use in vineyard agrosystems: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80123-80136. [PMID: 36192591 DOI: 10.1007/s11356-022-23285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The production of wine dates to ancient civilization and has heavily influenced different landscapes around the globe. Nowadays, wine is still an important sector in terms of land use and income source in many countries, more specifically in the European Mediterranean region. However, to control pests and regulate wine growth, the extensive use of pesticides is common. The effects and persistence of agrochemicals in the environment is well known and defined in scientific literature as well as the environmental and human health risks of these compounds. The purpose of this review was to do a state of art of worldwide production of academic literature using bibliometric principles and analysis to identify thematic areas of this type of agriculture, and its challenges in a changing world. For this review, the focus is on current practices to see what may evolve for more sustainable viticulture. It was found that the three main producers of wine, i.e., Spain, France, and Italy, are also three top producers of scientific literature on this topic. The use of bibliometric methodologies defined the main thematic areas on this subject as follows: soil-plant transfer of agrochemicals, heavy metal accumulation in vineyard soils, management practices in viticulture, water pollution transport, effects of viticulture on the living part of soil, sustainable alternatives to pesticides. We found that Spain, France, and Italy work the most on developing sustainable alternatives for agricultural practices; however, sustainable alternatives and practices were also the least developed thematic in general.
Collapse
Affiliation(s)
- Flor Regus
- Aix Marseille Univ, CNRS, IRD, Avignon Université, IMBE, Marseille, France
- Aix Marseille Univ, IRD, LPED, Marseille, France
| | | | - Rayhane Hamrouni
- Aix Marseille Univ, CNRS, IRD, Avignon Université, IMBE, Marseille, France
| | - Nathalie Dupuy
- Aix Marseille Univ, CNRS, IRD, Avignon Université, IMBE, Marseille, France
| | | |
Collapse
|
66
|
Lal B, Sengar SS, Singh R, Jhariya MK, Raj A. Hydrogeochemistry and groundwater quality assessment in Ambagarh Chowki, Chhattisgarh, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:43. [PMID: 36301354 DOI: 10.1007/s10661-022-10650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The current study was focused on hydrogeochemistry of Ambagarh chowki groundwater. The main aim of the study was to evaluate the water quality for drinking and irrigation uses, hydrogeochemistry of groundwater. For this purpose, various physicochemical parameters like pH, electrical conductivity (EC), total hardness (TH), chloride (Cl-), fluoride (F-), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), bicarbonate (HCO3-), and sulfate (SO42-) were analyzed. The major dominating ions in groundwater was found as cation Ca2+ > Mg2+ > Na+ > K+ and as anions in order of HCO3- > Cl- > SO42- > F-. The pH of sampled groundwater was ranged from neutral to alkaline in nature (7.0-8.8). Among, all-analyzed parameters in groundwater were safe for drinking purpose except few ions and bicarbonate content was also exceeding the permissible limit which was not suitable for drinking purpose. The potential health hazard element fluoride was varied from 0.1 to 2.2 mg/l and positively associated with the pH, Na+, and HCO3- content in groundwater. The drinking water quality index (WQI) was fluctuated between 12.22 and 185.56 and reported that most of the groundwater was suitable for drinking purpose except only one sample was unsuitable for drinking. Irrigation water quality assessment of the area was performed by evaluating as sodium adsorption ratio (SAR), permeability index (PI), Kelly ratio (KR), magnesium hazard ratio (MHR), percent sodium (%Na), potential salinity (PS), and residual sodium carbonate (RSC). Whereas most of the groundwater were good and suitable for irrigation use excluding PI (3.70%), MHR (40.74%), RSC (22.22%) and PS (7.41%) were unsuitable for continuous irrigation. Hydrogeochemistry of groundwater evaluated with correlation, Piper, Gibbs, and other geochemical analysis. The Piper trilinear diagram reflects the Ca (Mg)-HCO3- type water was mainly contributed approximately 90% of entire sampled groundwater. The different ions in groundwater were originated from the rock water interaction through silicate and carbonate weathering of minerals.
Collapse
Affiliation(s)
- Bharat Lal
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, 284003, Uttar Pradesh, India
| | - Satendra Singh Sengar
- Department of Soil Science and Agricultural Chemistry, Indira Gandhi Krishi Vishwavidyalaya, Raipur, 492012, Chhattisgarh, India
| | - Ramanand Singh
- Department of Soil Science and Agricultural Chemistry, Indira Gandhi Krishi Vishwavidyalaya, Raipur, 492012, Chhattisgarh, India
| | - Manoj Kumar Jhariya
- Department of Farm Forestry, Sant Gahira Guru Vishwavidyalaya, Ambikapur, 497001, Chhattisgarh, India.
| | - Abhishek Raj
- Pt. Deendayal Upadhyay College of Horticulture & Forestry, Dr. Rajendra Prasad Central Agriculture University, Pusa, Samastipur, 848125, Bihar, India
| |
Collapse
|
67
|
Cui Z, Li Y, Zhang H, Qin P, Hu X, Wang J, Wei G, Chen C. Lighting Up Agricultural Sustainability in the New Era through Nanozymology: An Overview of Classifications and Their Agricultural Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13445-13463. [PMID: 36226740 DOI: 10.1021/acs.jafc.2c04882] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the concept of sustainable agriculture receiving increasing attention from humankind, nanozymes, nanomaterials with enzyme-like activity but higher environmental endurance and longer-term stability than natural enzymes, have enabled agricultural technologies to be reformative, economic, and portable. Benefiting from their multiple catalytic activities and renewable nanocharacteristics, nanozymes can shine in agricultural scenarios using enzyme engineering and nanoscience, acting as sustainable toolboxes to improve agricultural production and reduce the risk to agricultural systems. Herein, we comprehensively discuss the classifications of nanozymes applied in current agriculture, including peroxidase-like, oxidase-like, catalase-like, superoxide dismutase-like, and laccase-like nanozymes, as well as their biocatalytic mechanisms. Especially, different applications of nanozymes in agriculture are deeply reviewed, covering crop protection and nutrition, agroenvironmental remediation and monitoring, and agroproduct quality monitoring. Finally, the challenges faced by nanozymes in agricultural applications are proposed, and we expect that our review can further enhance agricultural sustainability through nanozymology.
Collapse
Affiliation(s)
- Zhaowen Cui
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Hui Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Peiyan Qin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Xiao Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| | - Chun Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100 Shaanxi, PR China
| |
Collapse
|
68
|
Petkova M, Gotcheva V, Dimova M, Bartkiene E, Rocha JM, Angelov A. Screening of Lactiplantibacillus plantarum Strains from Sourdoughs for Biosuppression of Pseudomonas syringae pv. syringae and Botrytis cinerea in Table Grapes. Microorganisms 2022; 10:2094. [PMID: 36363685 PMCID: PMC9696664 DOI: 10.3390/microorganisms10112094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 09/06/2023] Open
Abstract
Grapes (Vitis vinifera L.) are an essential crop for fresh consumption and wine production. Vineyards are attacked by several economically important bacterial and fungal diseases that require regular pesticide treatment. Among them, Pseudomonas syringae pv. syringae (Ps. syringae) and Botrytis cinerea (B. cinerea) infections cause huge economic losses. The fresh fruit market has shifted to functional natural foodstuffs with clear health benefits and a reduced use of chemicals along the production chain. Lactic acid bacteria (LAB) have a biopreservative effect and are applied to ensure food safety in response to consumers' demands. In the present study, the possibilities of using microorganisms with a potential antimicrobial effect against Ps. syringae and B. cinerea in the production of table grapes were investigated. LAB of the genus Lactiplantibacillus can be a natural antagonist of pathogenic bacteria and fungi by releasing lactic acid, acetic acid, ethanol, carbon dioxide and bacteriocins in the medium. The present study focuses on the characterization of nine Lactiplantibacillus plantarum (Lp. plantarum) strains isolated from spontaneously fermented sourdoughs. Species-specific PCR identified the isolated LAB for partial recA gene amplification with an amplicon size of 318 bp. RAPD-PCR analysis showed the intraspecific diversity of the individual strains. Thirteen plantaricin-like peptides (PlnA, PlnB, PlnC, PlnD, PlnEF, PlnG, PlnI, PlnJ, PlnK, PlnN, PlnNC8, PlnS, and PlnW) produced by isolated Lp. plantarum strains were detected by PCR with gene-specific primers. The key features for future industrial applications were their antimicrobial properties. The culture medium and cell-free supernatant (CFS) were used to establish in vitro antimicrobial activities of Lp. plantarum strains against Ps. syringae and B. cinerea, and inhibition of phytopathogen development was observed. The inhibitory effect of the CFS (cell-free supernatant) of all strains was assessed by infecting table grapes with these pathogens in in vivo experiments. Lp. plantarum Q4 showed the most effective suppression of the pathogens both in vitro and in vivo, which indicates its potential use as a biocontrol agent against berry rot and grey rot on grapes, caused by Ps. syringae and B. cinerea.
Collapse
Affiliation(s)
- Mariana Petkova
- Department of Microbiology and Environmental Biotechnology, Agricultural University, 12 Mendeleev Blvd., 4000 Plovdiv, Bulgaria
| | - Velitchka Gotcheva
- Department of Biotechnology, University of Food Technology, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
| | - Milena Dimova
- Department of Phytopathology, Agricultural University, 12 Mendeleev Blvd., 4000 Plovdiv, Bulgaria
| | - Elena Bartkiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-44307 Kaunas, Lithuania
| | - João Miguel Rocha
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4050-345 Porto, Portugal
- Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4050-345 Porto, Portugal
| | - Angel Angelov
- Department of Biotechnology, University of Food Technology, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
| |
Collapse
|
69
|
Tsegaye Z, Alemu T, Desta FA, Assefa F. Plant growth-promoting rhizobacterial inoculation to improve growth, yield, and grain nutrient uptake of teff varieties. Front Microbiol 2022; 13:896770. [PMID: 36338042 PMCID: PMC9633851 DOI: 10.3389/fmicb.2022.896770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/29/2022] [Indexed: 08/26/2023] Open
Abstract
Inoculation of plant growth-promoting rhizobacteria (PGPR) improves the growth, yield, and plant nutrient uptake, as well as rhizosphere fertility, without harming the environment and human health. This study aimed to examine the effect of either individual or consortium of PGP bacterial inoculation on the growth, yield, and grain nutrient uptake of teff varieties. Three potential PGPR strains (i.e., Pseudomonas fluorescens biotype G, Enterobacter cloacae ss disolvens, and Serratia marcescens ss marcescens) were used for this study. Field evaluation was carried out in RCBD with 5 treatments. Highly significant (P < 0.001) differences were observed among treatments for plant height (PH), panicle length (PL), number of the total spike (NTS), shoot dry weight (SDW), grain yield (GY), and straw yield (SY). There was also teff variety that significantly (P < 0.01) affects PL, SDW, and SY. However, the interaction effect of the two factors (treatment*variety) did not significantly influence teff agronomic traits and grain nutrient uptake. The highest PH (133.5 cm), PL (53.2), NTS (30.9), SDW (18.1 t/ha), SY (10.7 t/ha), and GY (2.7 t/ha) were observed on Dukem variety (Dz-01-974) inoculated with PGPR consortium. Wherein 2.2 fold increase was observed in grain yield per hectare over the control. Inoculation of PGPR consortium showed better performance in promoting plant growth, yield, and grain nutrient uptake of teff varieties compared with the individual PGP bacterial application, and PGPR consortium could be used as inoculants to enhance teff production and productivity.
Collapse
Affiliation(s)
- Zerihun Tsegaye
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Microbial Biodiversity Directorate, Ethiopian Biodiversity Institute, Addis Ababa, Ethiopia
| | - Tesfaye Alemu
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Feleke Adey Desta
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Fassil Assefa
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
70
|
Mustafa A, Brtnicky M, Hammerschmiedt T, Kucerik J, Kintl A, Chorazy T, Naveed M, Skarpa P, Baltazar T, Malicek O, Holatko J. Food and agricultural wastes-derived biochars in combination with mineral fertilizer as sustainable soil amendments to enhance soil microbiological activity, nutrient cycling and crop production. FRONTIERS IN PLANT SCIENCE 2022; 13:1028101. [PMID: 36275592 PMCID: PMC9583007 DOI: 10.3389/fpls.2022.1028101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The ever-increasing human population associated with high rate of waste generation may pose serious threats to soil ecosystem. Nevertheless, conversion of agricultural and food wastes to biochar has been shown as a beneficial approach in sustainable soil management. However, our understanding on how integration of biochar obtained from different wastes and mineral fertilizers impact soil microbiological indicators is limited. Therefore, in the present study the effects of agricultural (AB) and food waste derived (FWB) biochars with and without mineral fertilizer (MF) on crop growth and soil health indicators were compared in a pot experiment. In particular, the impacts of applied amendments on soil microbiological health indicators those related to microbial extracellular (C, N and P acquiring) enzymes, soil basal as well as different substrate induced respirations along with crop's agronomic performance were explored. The results showed that compared to the control, the amendment with AB combined with MF enhanced the crop growth as revealed by higher above and below ground biomass accumulation. Moreover, both the biochars (FWB and AB) modified soil chemical properties (pH and electric conductivity) in the presence or absence of MF as compared to control. However, with the sole application of MF was most influential strategy to improve soil basal and arginin-induced respiration as well as most of the soil extracellular enzymes, those related to C, N and P cycling. Use of FWB resulted in enhanced urease activity. This suggested the role of MF and FWB in nutrient cycling and plant nutrition. Thus, integration of biochar and mineral fertilizers is recommended as an efficient and climate smart package for sustainable soil management and crop production.
Collapse
Affiliation(s)
- Adnan Mustafa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Praha, Czechia
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Tereza Hammerschmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jiri Kucerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Agricultural Research, Ltd., Troubsko, Czechia
| | - Tomas Chorazy
- AdMaS Research Centre, Faculty of Civil Engineering, Brno University of Technology, Brno, Czechia
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Petr Skarpa
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Tivadar Baltazar
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Ondrej Malicek
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Agrovyzkum Rapotin, Ltd., Rapotin, Czechia
| |
Collapse
|
71
|
Raj A, Jhariya MK, Khan N, Banerjee A. Bioremediation of Problematic Soil for Sustainability. Microb Biotechnol 2022. [DOI: 10.1002/9781119834489.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
72
|
Cortese D, Mareco Da Silva MM, de Oliveira GS, Mussury RM, Fernandes MG. Repellency and Reduction of Offspring Emergence Potential of Some Botanical Extracts against Sitophilus zeamais (Coleoptera: Curculionidae) in Stored Maize. INSECTS 2022; 13:842. [PMID: 36135543 PMCID: PMC9502627 DOI: 10.3390/insects13090842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Botanical repellents are, usually, considered safe to control Sitophilus zeamais, the main pest of stored maize, as they do not leave toxic residues in food, in addition to having lower costs than chemical insecticides. The aim of this study was to evaluate the repellency potential and the reduction of emerged offspring of botanical extracts, of Schinus terebinthifolius, Ludwigia sericea, L. tomentosa, L. nervosa, L. longifolia, and use them as botanical insecticides for S. zeamais. For the repellency test, arenas were set up, containing 50 g of maize kernels exposed to aqueous extract, besides a control treatment. At the center of each arena, 100 insects were released. After 48 h, the proportion of insects in the treated grains was determined. To test the effects of the extracts on insect mating and egg-laying, free-choice and no-choice tests were performed. Insects in both tests remained for ten days for mating and egg-laying. After this period, insects were removed to evaluate the offspring emergence. Sixty days after grain infestation, the number of emerged insects was counted. All selected botanical extracts demonstrated repellent action against S. zeamais, even after 48 h of application. The L. nervosa aqueous extract significantly reduced the emergence of S. zeamais.
Collapse
Affiliation(s)
- Diaine Cortese
- Faculty of Agricultural Sciences, Federal University of Grande Dourados, Highway Dourados-Itahum, km 12, Dourados 79804-970, Mato Grosso do Sul, Brazil
| | - Matheus Moreno Mareco Da Silva
- Faculty of Agricultural Sciences, Federal University of Grande Dourados, Highway Dourados-Itahum, km 12, Dourados 79804-970, Mato Grosso do Sul, Brazil
| | - Gisele Silva de Oliveira
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Highway Dourados-Itahum, km 12, Dourados 79804-970, Mato Grosso do Sul, Brazil
| | - Rosilda Mara Mussury
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Highway Dourados-Itahum, km 12, Dourados 79804-970, Mato Grosso do Sul, Brazil
| | - Marcos Gino Fernandes
- Faculty of Agricultural Sciences, Federal University of Grande Dourados, Highway Dourados-Itahum, km 12, Dourados 79804-970, Mato Grosso do Sul, Brazil
| |
Collapse
|
73
|
Afridi MS, Javed MA, Ali S, De Medeiros FHV, Ali B, Salam A, Sumaira, Marc RA, Alkhalifah DHM, Selim S, Santoyo G. New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:899464. [PMID: 36186071 PMCID: PMC9524194 DOI: 10.3389/fpls.2022.899464] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/08/2022] [Indexed: 07/30/2023]
Abstract
Plant microbiome (or phytomicrobiome) engineering (PME) is an anticipated untapped alternative strategy that could be exploited for plant growth, health and productivity under different environmental conditions. It has been proven that the phytomicrobiome has crucial contributions to plant health, pathogen control and tolerance under drastic environmental (a)biotic constraints. Consistent with plant health and safety, in this article we address the fundamental role of plant microbiome and its insights in plant health and productivity. We also explore the potential of plant microbiome under environmental restrictions and the proposition of improving microbial functions that can be supportive for better plant growth and production. Understanding the crucial role of plant associated microbial communities, we propose how the associated microbial actions could be enhanced to improve plant growth-promoting mechanisms, with a particular emphasis on plant beneficial fungi. Additionally, we suggest the possible plant strategies to adapt to a harsh environment by manipulating plant microbiomes. However, our current understanding of the microbiome is still in its infancy, and the major perturbations, such as anthropocentric actions, are not fully understood. Therefore, this work highlights the importance of manipulating the beneficial plant microbiome to create more sustainable agriculture, particularly under different environmental stressors.
Collapse
Affiliation(s)
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Sher Ali
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), São Paulo, Brazil
| | | | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Salam
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Sumaira
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
74
|
Oyetunji O, Bolan N, Hancock G. A comprehensive review on enhancing nutrient use efficiency and productivity of broadacre (arable) crops with the combined utilization of compost and fertilizers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115395. [PMID: 35751241 DOI: 10.1016/j.jenvman.2022.115395] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Broadacre (arable) crops generally require a relatively higher nutrient input toward yield targets. The efficient use of nutrients in arable farmlands is very vital to this endeavor. It minimizes fertilizer input and adverse soil and environmental implications that may arise from the incremental use of fertilizers. It is understood that enhancing the natural capacity of the soil (i.e., the soil's physical, chemical, and biological quality), may effectively improve soil nutrient dynamics, availability, and efficient use by crops. The adoption of integrated nutrient management (INM) approaches such as the organic amendment of the soil in addition to fertilizer use has shown positive impacts on maintaining and recovering soil quality, hence lowering excessive fertilizer use in farmlands. Therefore, this review contextualized the effect of compost and fertilizer on nutrient use efficiency (NUE) and productivity of broadacre crops. The use of compost as an organic soil amendment material has shown some inherently unique advantages and beneficial impacts on soil health and fertility such as improved soil structure, nutrient retention, mobilization, and bioavailability. Several studies have explored these comparative advantages by either blending compost with chemical fertilizer before soil application or a co-application and have noted the observed amelioration of unfavorable soil conditions such as low porosity, high bulk density, low organic matter (OM), unfavorable pH, and cation exchange capacity (CEC), low biological activities with different doses of compost. Consequently, the co-utilization of composts and chemical fertilizers may become viable substitutes for chemical fertilizers in maintaining soil fertility, improving NUE, and crop yield in farmlands. The review further described the comparative environmental and economic implications of adopting the combined utilization of compost and fertilizers in farmlands.
Collapse
Affiliation(s)
- Oluwadunsin Oyetunji
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia; CRC for High Performance Soils, Callaghan, Australia.
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Greg Hancock
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
75
|
Bergsma S, Euverink GJW, Charalampogiannis N, Poulios E, Janssens TKS, Achinas S. Biotechnological and Medical Aspects of Lactic Acid Bacteria Used for Plant Protection: A Comprehensive Review. BIOTECH 2022; 11:biotech11030040. [PMID: 36134914 PMCID: PMC9497054 DOI: 10.3390/biotech11030040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022] Open
Abstract
The use of chemical pesticides in agriculture goes hand in hand with some crucial problems. These problems include environmental deterioration and human health complications. To eliminate the problems accompanying chemical pesticides, biological alternatives should be considered. These developments spark interest in many environmental fields, including agriculture. In this review, antifungal compounds produced by lactic acid bacteria (LABs) are considered. It summarizes the worldwide distribution of pesticides and the effect of pesticides on human health and goes into detail about LAB species, their growth, fermentation, and their antifungal compounds. Additionally, interactions between LABs with mycotoxins and plants are discussed.
Collapse
Affiliation(s)
- Simon Bergsma
- Faculty of Science and Engineering; University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Correspondence: (S.B.); (S.A.)
| | - Gerrit Jan Willem Euverink
- Faculty of Science and Engineering; University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | - Efthymios Poulios
- 4th Department of Surgery, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, Chaidari, 12462 Athens, Greece
| | | | - Spyridon Achinas
- Faculty of Science and Engineering; University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Correspondence: (S.B.); (S.A.)
| |
Collapse
|
76
|
Zhou Z, Liu W, Wang H, Yang J. The Impact of Environmental Regulation on Agricultural Productivity: From the Perspective of Digital Transformation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10794. [PMID: 36078511 PMCID: PMC9518484 DOI: 10.3390/ijerph191710794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
China's goal of becoming a strong agricultural country cannot be achieved without the modernization and digital transformation of the agricultural sector. Presently, China's agriculture has ushered in the era of digital economy transformation. The digital transformation of agriculture has played a huge role in improving agricultural productivity, promoting sustainable development of China's agricultural economy, and achieving sustainable development goals. The deep integration of digital economy and agricultural economy has become an important issue of The Times. This study uses a two-way fixed-effects model and an instrumental variable method to examine the impact of environmental regulation on agricultural total factor productivity. Using the method of mechanism analysis, the conduction path of improving agricultural productivity under the means of environmental regulation is discussed. Therefore, the visualization analysis results based on the panel data of Chinese agricultural enterprises from 2011 to 2019 show that the distribution of digital transformation and productivity level of enterprises is uneven and tends to be stable in space. The empirical analysis results show that there is a direct and significant positive relationship between voluntary environmental regulation and agricultural total factor productivity. The results of mechanism analysis show that, under the means of environmental regulation, digital transformation plays an indirect role in improving agricultural productivity. On the basis of enriching and deepening the theoretical extension of the "Porter Hypothesis", this study subtly incorporates environmental regulation, digital transformation, and agricultural productivity into a unified framework, expanding existing research.
Collapse
Affiliation(s)
- Zhiqiang Zhou
- School of Business, Hunan University of Science and Technology, Yuhu District, Xiangtan 411201, China
- School of Metallurgy and Environment, Central South University, Yuelu District, Changsha 410083, China
| | - Wenyan Liu
- School of Business, Hunan University of Science and Technology, Yuhu District, Xiangtan 411201, China
| | - Huilin Wang
- School of Business, Hunan University of Science and Technology, Yuhu District, Xiangtan 411201, China
- International College, National Institute of Development Administration, 118 Moo3, Sereethai Road, Klong-Chan, Bangkapi, Bangkok 10240, Thailand
| | - Jingyu Yang
- Department of Medical Bioinformatics, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
77
|
Sommermann L, Babin D, Behr JH, Chowdhury SP, Sandmann M, Windisch S, Neumann G, Nesme J, Sørensen SJ, Schellenberg I, Rothballer M, Geistlinger J, Smalla K, Grosch R. Long-Term Fertilization Strategy Impacts Rhizoctonia solani–Microbe Interactions in Soil and Rhizosphere and Defense Responses in Lettuce. Microorganisms 2022; 10:microorganisms10091717. [PMID: 36144319 PMCID: PMC9501836 DOI: 10.3390/microorganisms10091717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
The long-term effects of agricultural management such as different fertilization strategies on soil microbiota and soil suppressiveness against plant pathogens are crucial. Therefore, the suppressiveness of soils differing in fertilization history was assessed using two Rhizoctonia solani isolates and their respective host plants (lettuce, sugar beet) in pot experiments. Further, the effects of fertilization history and the pathogen R. solani AG1-IB on the bulk soil, root-associated soil and rhizosphere microbiota of lettuce were analyzed based on amplicon sequencing of the 16S rRNA gene and ITS2 region. Organic fertilization history supported the spread of the soil-borne pathogens compared to long-term mineral fertilization. The fertilization strategy affected bacterial and fungal community composition in the root-associated soil and rhizosphere, respectively, but only the fungal community shifted in response to the inoculated pathogen. The potential plant-beneficial genus Talaromyces was enriched in the rhizosphere by organic fertilization and presence of the pathogen. Moreover, increased expression levels of defense-related genes in shoots of lettuce were observed in the soil with organic fertilization history, both in the absence and presence of the pathogen. This may reflect the enrichment of potential plant-beneficial microorganisms in the rhizosphere, but also pathogen infestation. However, enhanced defense responses resulted in retarded plant growth in the presence of R. solani (plant growth/defense tradeoff).
Collapse
Affiliation(s)
- Loreen Sommermann
- Department of Agriculture, Ecotrophology and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
- Correspondence:
| | - Doreen Babin
- Julius Kühn-Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, 38104 Braunschweig, Germany
| | - Jan Helge Behr
- Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), 14979 Großbeeren, Germany
| | - Soumitra Paul Chowdhury
- Institute of Network Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Martin Sandmann
- Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), 14979 Großbeeren, Germany
| | - Saskia Windisch
- Institute of Crop Science (340h), University of Hohenheim, 70599 Stuttgart, Germany
| | - Günter Neumann
- Institute of Crop Science (340h), University of Hohenheim, 70599 Stuttgart, Germany
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Søren J. Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ingo Schellenberg
- Department of Agriculture, Ecotrophology and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Michael Rothballer
- Institute of Network Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Joerg Geistlinger
- Department of Agriculture, Ecotrophology and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Kornelia Smalla
- Julius Kühn-Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, 38104 Braunschweig, Germany
| | - Rita Grosch
- Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), 14979 Großbeeren, Germany
| |
Collapse
|
78
|
Bocos-Asenjo IT, Niño-Sánchez J, Ginésy M, Diez JJ. New Insights on the Integrated Management of Plant Diseases by RNA Strategies: Mycoviruses and RNA Interference. Int J Mol Sci 2022; 23:9236. [PMID: 36012499 PMCID: PMC9409477 DOI: 10.3390/ijms23169236] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
RNA-based strategies for plant disease management offer an attractive alternative to agrochemicals that negatively impact human and ecosystem health and lead to pathogen resistance. There has been recent interest in using mycoviruses for fungal disease control after it was discovered that some cause hypovirulence in fungal pathogens, which refers to a decline in the ability of a pathogen to cause disease. Cryphonectria parasitica, the causal agent of chestnut blight, has set an ideal model of management through the release of hypovirulent strains. However, mycovirus-based management of plant diseases is still restricted by limited approaches to search for viruses causing hypovirulence and the lack of protocols allowing effective and systemic virus infection in pathogens. RNA interference (RNAi), the eukaryotic cell system that recognizes RNA sequences and specifically degrades them, represents a promising. RNA-based disease management method. The natural occurrence of cross-kingdom RNAi provides a basis for host-induced gene silencing, while the ability of most pathogens to uptake exogenous small RNAs enables the use of spray-induced gene silencing techniques. This review describes the mechanisms behind and the potential of two RNA-based strategies, mycoviruses and RNAi, for plant disease management. Successful applications are discussed, as well as the research gaps and limitations that remain to be addressed.
Collapse
Affiliation(s)
- Irene Teresa Bocos-Asenjo
- Department of Plant Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
- iuFOR-Sustainable Forest Management Research Institute, University of Valladolid-INIA, 34004 Palencia, Spain
| | - Jonatan Niño-Sánchez
- Department of Plant Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
- iuFOR-Sustainable Forest Management Research Institute, University of Valladolid-INIA, 34004 Palencia, Spain
| | - Mireille Ginésy
- Department of Plant Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
- iuFOR-Sustainable Forest Management Research Institute, University of Valladolid-INIA, 34004 Palencia, Spain
| | - Julio Javier Diez
- Department of Plant Production and Forest Resources, University of Valladolid, 34004 Palencia, Spain
- iuFOR-Sustainable Forest Management Research Institute, University of Valladolid-INIA, 34004 Palencia, Spain
| |
Collapse
|
79
|
Lori M, Armengot L, Schneider M, Schneidewind U, Bodenhausen N, Mäder P, Krause HM. Organic management enhances soil quality and drives microbial community diversity in cocoa production systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155223. [PMID: 35429564 DOI: 10.1016/j.scitotenv.2022.155223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Maintaining soil quality for agricultural production is a critical challenge, especially in the tropics. Due to the focus on environmental performance and the provision of soil ecosystem services, organic farming and agroforestry systems are proposed as alternative options to conventional monoculture farming. Soil processes underlying ecosystem services are strongly mediated by microbes; thus, increased understanding of the soil microbiome is crucial for the development of sustainable agricultural practices. Therefore, we measured and related soil quality indicators to bacterial and fungal community structures in five cocoa production systems, managed either organically or conventionally for 12 years, with varying crop diversity, from monoculture to agroforestry. In addition, a successional agroforestry system was included, which uses exclusively on-site pruning residues as soil inputs. Organic management increased soil organic carbon, nitrogen and labile carbon contents compared to conventional. Soil basal respiration and nitrogen mineralisation rates were highest in the successional agroforestry system. Across the field sites, fungal richness exceeded bacterial richness and fungal community composition was distinct between organic and conventional management, as well as between agroforestry and monoculture. Bacterial community composition differed mainly between organic and conventional management. Indicator species associated with organic management were taxonomically more diverse compared to taxa associated with conventionally managed systems. In conclusion, our results highlight the importance of organic management for maintaining soil quality in agroforestry systems for cocoa production.
Collapse
Affiliation(s)
- Martina Lori
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), 5070 Frick, Switzerland
| | - Laura Armengot
- Department of International Cooperation, Research Institute of Organic Agriculture (FiBL), 5070 Frick, Switzerland
| | - Monika Schneider
- Department of International Cooperation, Research Institute of Organic Agriculture (FiBL), 5070 Frick, Switzerland
| | - Ulf Schneidewind
- Georg-August University, Department of Physical Geography, 37077 Göttingen, Germany
| | - Natacha Bodenhausen
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), 5070 Frick, Switzerland
| | - Paul Mäder
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), 5070 Frick, Switzerland
| | - Hans-Martin Krause
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), 5070 Frick, Switzerland.
| |
Collapse
|
80
|
Modeling-Guided Amendments Lead to Enhanced Biodegradation in Soil. mSystems 2022; 7:e0016922. [PMID: 35913191 PMCID: PMC9426591 DOI: 10.1128/msystems.00169-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extensive use of agrochemicals is emerging as a serious environmental issue coming at the cost of the pollution of soil and water resources. Bioremediation techniques such as biostimulation are promising strategies used to remove pollutants from agricultural soils by supporting the indigenous microbial degraders. Though considered cost-effective and eco-friendly, the success rate of these strategies typically varies, and consequently, they are rarely integrated into commercial agricultural practices. In the current study, we applied metabolic-based community-modeling approaches for promoting realistic in terra solutions by simulation-based prioritization of alternative supplements as potential biostimulants, considering a collection of indigenous bacteria. Efficacy of biostimulants as enhancers of the indigenous degrader Paenarthrobacter was ranked through simulation and validated in pot experiments. A two-dimensional simulation matrix predicting the effect of different biostimulants on additional potential indigenous degraders (Pseudomonas, Clostridium, and Geobacter) was crossed with experimental observations. The overall ability of the models to predict the compounds that act as taxa-selective stimulants indicates that computational algorithms can guide the manipulation of the soil microbiome in situ and provides an additional step toward the educated design of biostimulation strategies. IMPORTANCE Providing the food requirements of a growing population comes at the cost of intensive use of agrochemicals, including pesticides. Native microbial soil communities are considered key players in the degradation of such exogenous substances. Manipulating microbial activity toward an optimized outcome in efficient biodegradation processes conveys a promise of maintaining intensive yet sustainable agriculture. Efficient strategies for harnessing the native microbiome require the development of approaches for processing big genomic data. Here, we pursued metabolic modeling for promoting realistic in terra solutions by simulation-based prioritization of alternative supplements as potential biostimulants, considering a collection of indigenous bacteria. Our genomic-based predictions point at strategies for optimizing biodegradation by the native community. Developing a systematic, data-guided understanding of metabolite-driven targeted enhancement of selected microorganisms lays the foundation for the design of ecologically sound methods for optimizing microbiome functioning.
Collapse
|
81
|
Verma A, Shameem N, Jatav HS, Sathyanarayana E, Parray JA, Poczai P, Sayyed RZ. Fungal Endophytes to Combat Biotic and Abiotic Stresses for Climate-Smart and Sustainable Agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:953836. [PMID: 35865289 PMCID: PMC9294639 DOI: 10.3389/fpls.2022.953836] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 05/14/2023]
Abstract
The agricultural sustainability concept considers higher food production combating biotic and abiotic stresses, socio-economic well-being, and environmental conservation. On the contrary, global warming-led climatic changes have appalling consequences on agriculture, generating shifting rainfall patterns, high temperature, CO2, drought, etc., prompting abiotic stress conditions for plants. Such stresses abandon the plants to thrive, demoting food productivity and ultimately hampering food security. Though environmental issues are natural and cannot be regulated, plants can still be enabled to endure these abnormal abiotic conditions, reinforcing the stress resilience in an eco-friendly fashion by incorporating fungal endophytes. Endophytic fungi are a group of subtle, non-pathogenic microorganisms establishing a mutualistic association with diverse plant species. Their varied association with the host plant under dynamic environments boosts the endogenic tolerance mechanism of the host plant against various stresses via overall modulations of local and systemic mechanisms accompanied by higher antioxidants secretion, ample enough to scavenge Reactive Oxygen Species (ROS) hence, coping over-expression of defensive redox regulatory system of host plant as an aversion to stressed condition. They are also reported to ameliorate plants toward biotic stress mitigation and elevate phytohormone levels forging them worthy enough to be used as biocontrol agents and as biofertilizers against various pathogens, promoting crop improvement and soil improvement, respectively. This review summarizes the present-day conception of the endophytic fungi, their diversity in various crops, and the molecular mechanism behind abiotic and biotic resistance prompting climate-resilient aided sustainable agriculture.
Collapse
Affiliation(s)
- Anamika Verma
- Amity Institute of Horticulture Studies and Research, Amity University Uttar Pradesh, Noida, India
| | - Nowsheen Shameem
- Department of Environmental Science, S.P. College, Srinagar, India
| | - Hanuman Singh Jatav
- Department of Soil Science and Agricultural Chemistry, Sri Karan Narendra Agriculture University, Jaipur, India
| | | | - Javid A. Parray
- Department of Environmental Science, Government Degree College Eidgah, Srinagar, India
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s SI Patil Arts, GB Patel Science and STKV Sangh Commerce College, Shahada, India
| |
Collapse
|
82
|
Mondal S, Santra S, Uddin H, Pal K, Halder SK, Chattopadhyay S, Mondal KC. Application of Phytochemicals To Combat Fungal Pathogens of Pulses: An Approach toward Inhibition of Fungal Propagation and Invasin Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7662-7673. [PMID: 35699309 DOI: 10.1021/acs.jafc.1c07729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study represented an innovative strategy for inactivating the secreted invasins (lignocellulolytic enzymes) of fungal phytopathogens using natural phytochemicals to combat fungal infection to the pulses. A fungal pathogen (Aspergillus niger SKP1) was isolated from the white lentil (Vigna mungo), which has the ability to synthesize different lignocellulolytic enzymes. An in silico docking study elucidated that quercetin, naringin, epigallocatechin gallate, curcumin, and cinnamic acid were the prime efficient phytochemicals to inhibit the activity of fungal invasive enzymes like endoglucanase, endo-1,4-β-xylanase, and glucoamylase. Considering this observation, extracted phytochemicals in different mixtures were applied to prevent growth of the isolated pathogen under in situ experimental studies. The minimal inhibitory concentrations (MIC50) and minimal fungicidal concentration (MFC50) values of the first mixture (naringenin, epicatechin gallate, and cinnamic acid) and second mixture (quercetin and curcumin) were 170 and 220 mg/L and 320 and 380 mg/L, respectively. The studied phytochemicals were established to be cytosafe when compared to the commercial fungicides. The seeds of the white lentil were subjected to 1 year of long-term storage with the two aforementioned combinatorial phytochemicals. Subsequent morphological and physiological analyses revealed the complete protection of the stored seeds from the fungal infection. The present work has enough potentiality for the storage of pulses using natural preservatives that circumvent the adverse effect of the chemical preservatives on the ecosystem.
Collapse
Affiliation(s)
- Subhadeep Mondal
- Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Sourav Santra
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Hilal Uddin
- Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Kalyanbrata Pal
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Suman Kumar Halder
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Sandip Chattopadhyay
- Department of Biomedical Laboratory Science & Management, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Keshab Chandra Mondal
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal 721102, India
| |
Collapse
|
83
|
Abstract
The state of environmental pollution is of random character, and it depends on climatic conditions, landforms, development and industrialization. It is estimated that in the last decade as many pollutants have been released into the environment as in the previous 70 years, and the pollution rate still increases. Many scientific reports indicate that, in addition to metals, pesticides are the most commonly detected compounds in the environment. This situation is mainly due to the irrational use of these chemicals by humans. Mostly, soil environment changes caused by the influence of pesticides can be determined by various chemical analyses, which require the use of sophisticated and expensive equipment. However, biological methods, such as those using microbiological activity and an abundance of microorganisms, e.g., organisms responsible for the cycle of organic matter and nutrients, tend to be neglected. For this reason, the aim of the present study is not only to assess the validity of other research studies that were performed based on the available literature but to compile methods and compare them, which allows for an in depth understanding of the complexity of soil processes following herbicide application by conducting comprehensive soil biomonitoring.
Collapse
|
84
|
Sachu M, Kynshi BL, Syiem MB. A biochemical, physiological and molecular evaluation of how the herbicide 2, 4-dichlorophenoxyacetic acid intercedes photosynthesis and diazotrophy in the cyanobacterium Nostoc muscorum Meg 1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:36684-36698. [PMID: 35064489 DOI: 10.1007/s11356-021-18000-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Among the non-target microorganisms residing in crop fields that are potentially vulnerable to herbicides are cyanobacteria. They contribute to the maintenance of soil quality and fertility and hence are considered to be an important component of soil microflora. Consequently, the present study was aimed to check the influence of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on some major parameters of carbon (CO2) and nitrogen (N2) fixations of a cyanobacterium Nostoc muscorum Meg 1 isolated from a rice field in Cherrapunji, Meghalaya, India. These include various photosynthetic pigments, the oxygen-evolving complex activity of the PSII, the protein contents of RuBisCO, D1 protein, isocitrate dehydrogenase (IDH), nitrogenase and glutamine synthetase (GS) enzymes, the heterocyst percentage, nitrogenase and GS enzyme activities, and production of total proteins and carbohydrates in the cyanobacterium in a varying range of 50 to 125 ppm doses of 2,4-D. The mRNA levels of several proteins were also analyzed. Besides carotenoid concentration that enhanced at 50 ppm, all other parameters were compromised by 2,4-D in a dose-dependent manner resulting in a reduction in photosynthetic and N2-fixing activities. The negative effect on N2-fixation was partly due to compromised IDH activity. RT-PCR analysis further showed that these negative effects were initiated at transcription levels as mRNA contents of all enzymes studied were found compromised under 2,4-D exposure. The scanning and transmission electron microscopy further revealed herbicide induced adverse changes in the morphology and ultrastructure of the organism. The significance of the work lies in its detailed analysis of the effect of 2,4-D at biochemical, physiological, and molecular levels.
Collapse
Affiliation(s)
- Meguovilie Sachu
- Department of Biochemistry, North-Eastern Hill University, Shillong - 793022, Meghalaya, India
| | | | - Mayashree B Syiem
- Department of Biochemistry, North-Eastern Hill University, Shillong - 793022, Meghalaya, India.
| |
Collapse
|
85
|
Kumar A, Choudhary A, Kaur H, Guha S, Mehta S, Husen A. Potential Applications of Engineered Nanoparticles in Plant Disease Management: A Critical Update. CHEMOSPHERE 2022; 295:133798. [PMID: 35122813 DOI: 10.1016/j.chemosphere.2022.133798] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/08/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Plant diseases caused by pathogenic entities pose severe issues to global food security. Effective sensory applications and tools for the effective determination of plant diseases become crucial to the assurance of food supply and agricultural sustainability. Antibody-mediated molecular assays and nucleic acid are gold-standard approaches for plant disease diagnosis, but the evaluating methodologies are liable, complex, and laborious. With the rise in global food demand, escalating the food production in threats of diverse pathogen ranges, and climate change is a major challenge. Engineered nanoparticles (NPs) have been inserted into conventional laboratory sequence technologies or molecular assays that provide a remarkable increment in selectivity and sensitivity. In the present scenario, they are useful in plant disease management as well as in plant health monitoring. The use of NPs could sustainably mitigate numerous food security issues and or threats in disease management by decreasing the risk of chemical inputs and alleviating supra detection of pathogens. Overall, this review paper discusses the role of NPs in plant diseases management, available commercial products. Additionally, the future directions and their regulatory laws in the usage of the nano-diagnostic approach for plant health monitoring have been explained.
Collapse
Affiliation(s)
- Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| | - Harmanjot Kaur
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| | - Satyakam Guha
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India; School of Agricultural Sciences, K.R. Mangalam University, Sohna Rural, Haryana, 122103, India
| | - Azamal Husen
- Wolaita Sodo University, P.O. Box: 138, Wolaita, Ethiopia.
| |
Collapse
|
86
|
The Soil Microbiota Recovery in the Agroecosystem: Minimal Information and a New Framework for Sustainable Agriculture. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095423. [PMID: 35564818 PMCID: PMC9105074 DOI: 10.3390/ijerph19095423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 02/05/2023]
Abstract
The efficient management of soil represents a mission of vital importance for meeting the continuously increasing agricultural demand in a sustainable way. Decades of research identified in the biotechnological potential of soil microorganisms an always more practicable channel for achieving these goals. Due to the complexity of soil microbial communities and their tight connection to soil characteristics, it is still difficult to define universal strategies for an efficient and sustainable agroecosystem management. We here propose a new framework for the assessment of the impact of agricultural practices in the agroecosystem that revolves around the concept of microbial community recovery. This assessment is based on the selection of (i) a representative temporal interval, (ii) a representative agricultural system and (iii) monitoring tools able to assess the expression levels of microbial functionality in soil. This approach can be especially valuable for evaluating the effects of agrochemicals and other agronomical amendments (of different nature: biological, physical, chemical) on the soil microbiota. In the same way precision-medicine tries to tailor drugs on an always smaller subset of patients' characteristics, a new generation of agrochemicals can be developed and tested considering soil characteristics in order to minimize their off-target effects. What remains central in this paradigm is the promotion of Soil Health maintenance practices. As for healthy humans, a healthy soil is more resilient and tolerates treatments and stresses better while recovering more quickly.
Collapse
|
87
|
Willow J, Cook SM, Veromann E, Smagghe G. Uniting RNAi Technology and Conservation Biocontrol to Promote Global Food Security and Agrobiodiversity. Front Bioeng Biotechnol 2022; 10:871651. [PMID: 35547161 PMCID: PMC9081497 DOI: 10.3389/fbioe.2022.871651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/05/2022] [Indexed: 12/01/2022] Open
Abstract
Habitat loss and fragmentation, and the effects of pesticides, contribute to biodiversity losses and unsustainable food production. Given the United Nation's (UN's) declaration of this decade as the UN Decade on Ecosystem Restoration, we advocate combining conservation biocontrol-enhancing practices with the use of RNA interference (RNAi) pesticide technology, the latter demonstrating remarkable target-specificity via double-stranded (ds)RNA's sequence-specific mode of action. This specificity makes dsRNA a biosafe candidate for integration into the global conservation initiative. Our interdisciplinary perspective conforms to the UN's declaration, and is facilitated by the Earth BioGenome Project, an effort valuable to RNAi development given its utility in providing whole-genome sequences, allowing identification of genetic targets in crop pests, and potentially relevant sequences in non-target organisms. Interdisciplinary studies bringing together biocontrol-enhancing techniques and RNAi are needed, and should be examined for various crop‒pest systems to address this global problem.
Collapse
Affiliation(s)
- Jonathan Willow
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Samantha M. Cook
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, United Kingdom
| | - Eve Veromann
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
88
|
Assessment of the Interrelationships of Soil Nutrient Balances with the Agricultural Soil Emissions and Food Production. SOIL SYSTEMS 2022. [DOI: 10.3390/soilsystems6020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sustainable and adjusted soil management practices are crucial for soil quality, namely in terms of the nutrient budget. On the other hand, soil characteristics are interlinked with agricultural sustainability and food supply. In other words, soil quality influences agricultural performance and food chains, but it is also impacted by agricultural activities. In this context, this research aims to evaluate the spatial correlations of the soil nutrient balance around the world and analyse how this variable is interrelated with agricultural soil emissions, agricultural output, and food supply. To achieve these goals, data from the FAOSTAT database were considered. This statistical information was analysed with spatial autocorrelation approaches to identify spatial clusters around the world that can be considered as a basis for designing common policies. To perform panel data regressions to identify marginal effects between variables, data were first evaluated using correlation matrices and factor analysis. The results highlight that there is space for common strategies worldwide to preserve soil quality, as in some parts of the world the problems are similar. In these frameworks, the international organizations may have a determinant contribution.
Collapse
|
89
|
Mohamed AO, Abdelbagi AO, Ishag AESA, Abdalla AM, Hammad AMA, Hur JH. Insecticide residues in Khor Abuhabel sediments and soil of South Kordofan State, Sudan. ARABIAN JOURNAL OF GEOSCIENCES 2022; 15:499. [DOI: 10.1007/s12517-022-09769-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 02/23/2022] [Indexed: 09/02/2023]
|
90
|
Bridžiuvienė D, Raudonienė V, Švedienė J, Paškevičius A, Baužienė I, Vaitonis G, Šlepetienė A, Šlepetys J, Kačergius A. Impact of Soil Chemical Properties on the Growth Promotion Ability of Trichoderma ghanense, T. tomentosum and Their Complex on Rye in Different Land-Use Systems. J Fungi (Basel) 2022; 8:jof8010085. [PMID: 35050025 PMCID: PMC8777797 DOI: 10.3390/jof8010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Microbial-based biostimulants that increase plant performance and ensure sustainable restoration of degraded soils are of great importance. The aim of the present study was to evaluate the growth promotion ability of indigenous Trichoderma ghanense, T. tomentosum and their complex on early rye seedlings in sustained grassland and arable soil. The impact of soil chemical properties on the ability of selected Trichoderma strains and their complex to promote plant growth was determined by the evaluation of the rye (Secale cereale L.) early seedling growth—measuring the length of shoots and roots as well as their dry weight. Trichoderma species were tested for their ability to produce extracellular degradative enzymes on solid media. Furthermore, the soil properties and CM-cellulase activity of soil were estimated. The indigenous Trichoderma strains possess the capacity to produce enzymes such as peroxidase, laccase, tyrosinase, and endoglucanase. The results indicated a significant (p < 0.05) increase in plant growth and the improvement of some soil chemical properties (total N, mobile humic and fulvic acids, exchangeable K2O, soil CM-cellulase activity) in inoculated soils when compared to the control. The growth of the roots of rye seedlings in sustained grassland was enhanced when T. tomentosum was applied (p = 0.005). There was an increase in total weight and shoot weight of rye seedlings when T. ghanense was used in the arable soil (p = 0.014 and p = 0.024). The expected beneficial effect of Trichoderma spp. complex on rye growth promotion was not observed in any tested soil. The results could find application in the development of new and efficient biostimulants, since not only do physiological characteristics of fungi play an important role but also the quality of the soil has an impact.
Collapse
Affiliation(s)
- Danguolė Bridžiuvienė
- Nature Research Centre, 08412 Vilnius, Lithuania; (D.B.); (V.R.); (A.P.); (I.B.); (G.V.)
| | - Vita Raudonienė
- Nature Research Centre, 08412 Vilnius, Lithuania; (D.B.); (V.R.); (A.P.); (I.B.); (G.V.)
| | - Jurgita Švedienė
- Nature Research Centre, 08412 Vilnius, Lithuania; (D.B.); (V.R.); (A.P.); (I.B.); (G.V.)
- Correspondence:
| | - Algimantas Paškevičius
- Nature Research Centre, 08412 Vilnius, Lithuania; (D.B.); (V.R.); (A.P.); (I.B.); (G.V.)
| | - Ieva Baužienė
- Nature Research Centre, 08412 Vilnius, Lithuania; (D.B.); (V.R.); (A.P.); (I.B.); (G.V.)
| | - Gintautas Vaitonis
- Nature Research Centre, 08412 Vilnius, Lithuania; (D.B.); (V.R.); (A.P.); (I.B.); (G.V.)
| | - Alvyra Šlepetienė
- Lithuanian Research Centre for Agriculture and Forestry, 58344 Akademija, Lithuania; (A.Š.); (J.Š.); (A.K.)
| | - Jonas Šlepetys
- Lithuanian Research Centre for Agriculture and Forestry, 58344 Akademija, Lithuania; (A.Š.); (J.Š.); (A.K.)
| | - Audrius Kačergius
- Lithuanian Research Centre for Agriculture and Forestry, 58344 Akademija, Lithuania; (A.Š.); (J.Š.); (A.K.)
| |
Collapse
|
91
|
Environmental Distribution, Metabolic Fate, and Degradation Mechanism of Chlorpyrifos: Recent and Future Perspectives. Appl Biochem Biotechnol 2022; 194:2301-2335. [DOI: 10.1007/s12010-021-03713-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/08/2021] [Indexed: 01/25/2023]
|
92
|
Vishakha K, Das S, Das SK, Banerjee S, Ganguli A. Antibacterial, anti-biofilm, and anti-virulence potential of tea tree oil against leaf blight pathogen Xanthomonas oryzae pv. oryzae instigates disease suppression. Braz J Microbiol 2022; 53:19-32. [PMID: 35001350 PMCID: PMC8882498 DOI: 10.1007/s42770-021-00657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/21/2021] [Indexed: 01/12/2023] Open
Abstract
Bacterial leaf blight (BLB) disease, caused by Xanthomonas oryzae pv. oryzae (Xoo), causes major annual economic losses around the world. Inorganic copper compounds and antibiotics are conventionally used to control BLB disease. They often cause environmental pollution, contributing to adverse effects on human health. Therefore, research is now leading to the search for alternative control methods. Tea tree oil (TTO) is obtained from a traditional medicinal plant, Melaleuca alternifolia, with antibacterial properties. In this study, we found that TTO showed antibacterial activity against Xoo with a minimum inhibitory concentration (MIC) of 18 mg/ml. These antagonistic activities were not limited only to planktonic cells, as further studies have shown that TTO effectively eradicated sessile cells of Xoo in both initial and mature biofilms. Furthermore, it was also observed that TTO reduced various key virulence properties of Xoo, such as swimming, swarming motility, and the production of extracellular polymeric substances, xanthomonadin, and exoenzymes. TTO triggered ROS generation with cell membrane damage as an antibacterial mode of action against Xoo. The in silico study revealed that 1,8-cineole of TTO was effectively bound to two essential proteins, phosphoglucomutase and peptide deformylase, responsible for the synthesis of EPS and bacterial survival, respectively. These antibacterial and anti-virulence activities of TTO against Xoo were further confirmed by an ex vivo virulence assay where TTO significantly reduced the lesion length caused by Xoo on rice leaves. All these data concluded that TTO could be a safe, environment-friendly alternative approach for the comprehensive management of BLB disease.
Collapse
Affiliation(s)
- Kumari Vishakha
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector V, Kolkata, West Bengal, 700091, India
| | - Shatabdi Das
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector V, Kolkata, West Bengal, 700091, India
| | - Sudip Kumar Das
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector V, Kolkata, West Bengal, 700091, India
| | - Satarupa Banerjee
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector V, Kolkata, West Bengal, 700091, India
| | - Arnab Ganguli
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector V, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
93
|
Mansotra P, Sharma P, Sirari A, Aggarwal N. Ecological performance of multifunctional pesticide tolerant strains of Mesorhizobium sp. in chickpea with recommended pendimethalin, ready-mix of pendimethalin and imazethpyr, carbendazim and chlorpyrifos application. Arch Microbiol 2022; 204:117. [PMID: 34985559 DOI: 10.1007/s00203-021-02628-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/16/2021] [Accepted: 09/30/2021] [Indexed: 11/02/2022]
Abstract
The present study was designed to screen the Mesorhizobium strains (50) for tolerance with four recommended pesticides in chickpea. In-vitro, robust pesticide tolerant strains were developed in pesticides amended media over several generations. Further, verification of the multifunctional traits of pesticide tolerant mesorhizobia under pesticide stress was conducted in-vitro. Among different pesticides, significantly high tolerance in Mesorhizobium strains was observed with recommended doses of pendimethalin (37%) and ready-mix (36%) followed by chlorpyrifos (31%) and carbendazim (30%), on an overall basis. Based on multifunctional traits, Mesorhizobium strains viz. MR2, MR17 and recommended MR33 were the most promising. Ecological performance of the potential Mesorhizobium strains alone and in dual-inoculation with recommended PGP rhizobacterium strain RB-1 (Pseudomonas argenttinensis JX239745.1) was subsequently analyzed in field following standard pesticide application in PBG-7 and GPF-2 chickpea varieties for two consecutive rabi seasons (2015 and 2016). Dual-inoculant treatments; recommended RB-1 + MR33 (4.1%) and RB-1 + MR2 (3.8%) significantly increased the grain yield over Mesorhizobium alone treatments viz MR33 and MR2, respectively. Grain yield in PBG7 variety was significantly affected (7.3%) by the microbial inoculant treatments over GPF2 variety. Therefore, the potential pesticide tolerant strains MR2 and MR33 can be further explored as compatible dual-inoculants with recommended RB-1 for chickpea under environmentally stressed conditions (pesticide application) at multiple locations. Our approach using robust multifunctional pesticide tolerant Mesorhizobium for bio-augmentation of chickpea might be helpful in the formulation of effective bio-inoculants consortia in establishing successful chickpea-Mesorhizobium symbiosis.
Collapse
Affiliation(s)
- Pallavi Mansotra
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Poonam Sharma
- Pulses Section, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| | - Asmita Sirari
- Pulses Section, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| | - Navneet Aggarwal
- South Australia Research and Development Institute, Claire Research Centre, Clare, South Australia
| |
Collapse
|
94
|
Aspects, problems and utilization of Arbuscular Mycorrhizal (AM) Application as Bio-fertilizer in sustainable Agriculture. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100107. [PMID: 35169758 PMCID: PMC8829076 DOI: 10.1016/j.crmicr.2022.100107] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/11/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
|
95
|
Maitra S, Brestic M, Bhadra P, Shankar T, Praharaj S, Palai JB, Shah MMR, Barek V, Ondrisik P, Skalický M, Hossain A. Bioinoculants-Natural Biological Resources for Sustainable Plant Production. Microorganisms 2021; 10:51. [PMID: 35056500 PMCID: PMC8780112 DOI: 10.3390/microorganisms10010051] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
Abstract
Agricultural sustainability is of foremost importance for maintaining high food production. Irresponsible resource use not only negatively affects agroecology, but also reduces the economic profitability of the production system. Among different resources, soil is one of the most vital resources of agriculture. Soil fertility is the key to achieve high crop productivity. Maintaining soil fertility and soil health requires conscious management effort to avoid excessive nutrient loss, sustain organic carbon content, and minimize soil contamination. Though the use of chemical fertilizers have successfully improved crop production, its integration with organic manures and other bioinoculants helps in improving nutrient use efficiency, improves soil health and to some extent ameliorates some of the constraints associated with excessive fertilizer application. In addition to nutrient supplementation, bioinoculants have other beneficial effects such as plant growth-promoting activity, nutrient mobilization and solubilization, soil decontamination and/or detoxification, etc. During the present time, high energy based chemical inputs also caused havoc to agriculture because of the ill effects of global warming and climate change. Under the consequences of climate change, the use of bioinputs may be considered as a suitable mitigation option. Bioinoculants, as a concept, is not something new to agricultural science, however; it is one of the areas where consistent innovations have been made. Understanding the role of bioinoculants, the scope of their use, and analysing their performance in various environments are key to the successful adaptation of this technology in agriculture.
Collapse
Affiliation(s)
- Sagar Maitra
- Department of Agronomy, M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakheundi 761 211, India; (S.M.); (T.S.); (S.P.); (J.B.P.)
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
| | - Preetha Bhadra
- Department of Biotechnology, M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakheundi 761 211, India;
| | - Tanmoy Shankar
- Department of Agronomy, M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakheundi 761 211, India; (S.M.); (T.S.); (S.P.); (J.B.P.)
| | - Subhashisa Praharaj
- Department of Agronomy, M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakheundi 761 211, India; (S.M.); (T.S.); (S.P.); (J.B.P.)
| | - Jnana Bharati Palai
- Department of Agronomy, M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakheundi 761 211, India; (S.M.); (T.S.); (S.P.); (J.B.P.)
| | | | - Viliam Barek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
| | - Peter Ondrisik
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
| | - Milan Skalický
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
| | - Akbar Hossain
- Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh;
| |
Collapse
|
96
|
Abd-Elgawad MMM. Biological control of nematodes infecting eggplant in Egypt. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2021; 45:6. [DOI: 10.1186/s42269-020-00463-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 12/04/2020] [Indexed: 09/02/2023]
Abstract
Abstract
Background
Eggplant is of great renown in Egypt and worldwide as it is favorable and high value vegetable crop. Yet, many plant-parasitic nematodes (PPNs) can penetrate the roots of this plant and feed on it, causing heavy losses in its yield. Meloidogyne spp. (root-knot nematodes, RKNs) and Rotylenchulus reniformis rank high among these parasites in Egypt.
Main body of the abstract
This review compiles PPN ecology, biology and economic value from the pest management point of view. Applying production practices and other preventive methods against PPNs should be a priority. Accelerating and unprecedented public concern about excessive use of chemical nematicides leading to health problems, development of pest resistance, and environmental contamination, has boosted interest in developing eco-friendly biologicals as safe substitutional materials. Hence, safe biological control agents (BCAs) are reviewed herein to prove that they are quintessential to nematode control on eggplant in Egypt. Thus, BCAs should reliably operate with other agricultural inputs in integrated pest management programs against eggplant nematodes.
Short conclusion
A few paradigms are shown herein which foster BCA practical use via additive or synergistic relation with compatible inputs such as compost, chemicals, and manure. Upgrading their delivery techniques, beneficial interaction and persistence in fields with nematode-infected eggplants should be broadly tested and greatly disseminated.
Collapse
|
97
|
Li J, Li R, Zhang C, Guo Z, Wu X, An H. Co-Application of Allicin and Chitosan Increases Resistance of Rosa roxburghii against Powdery Mildew and Enhances Its Yield and Quality. Antibiotics (Basel) 2021; 10:antibiotics10121449. [PMID: 34943661 PMCID: PMC8698363 DOI: 10.3390/antibiotics10121449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
Powdery mildew, caused by Sphaerotheca sp., annually causes severe losses in yield and quality in Rosa roxburghii production areas of southwest China. In this study, the role of the co-application of allicin and chitosan in the resistance of R. roxburghii against powdery mildew and its effects on growth, yield and quality of R. roxburghii were investigated. The laboratory toxicity test results show that allicin exhibited a superior antifungal activity against Sphaerotheca sp. with EC50 value of 148.65 mg kg−1. In the field, the foliar application of allicin could effectively enhance chitosan against powdery mildew with control efficacy of 85.97% by spraying 5% allicin microemulsion (ME) 100–time liquid + chitosan 100–time liquid, which was significantly (p < 0.01) higher than 76.70% of allicin, 70.93% of chitosan and 60.23% of polyoxin. The co-application of allicin and chitosan effectively enhanced the photosynthetic rate and chlorophyll of R. roxburghii compared with allicin, chitosan or polyoxin alone. Moreover, allicin used together with chitosan was more effective than allicin or chitosan alone in enhancing R. roxburghii plant growth and fruit yield as well as improving R. roxburghii fruit quality. This work highlights that the co-application of allicin and chitosan can be used as a green, cost-effective and environmentally friendly alternative strategy to conventional antibiotics for controlling powdery mildew of R. roxburghii.
Collapse
Affiliation(s)
- Jiaohong Li
- College of Forestry, Guizhou University, Guiyang 550025, China;
| | - Rongyu Li
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China; (R.L.); (C.Z.); (Z.G.)
| | - Cheng Zhang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China; (R.L.); (C.Z.); (Z.G.)
| | - Zhenxiang Guo
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China; (R.L.); (C.Z.); (Z.G.)
| | - Xiaomao Wu
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China; (R.L.); (C.Z.); (Z.G.)
- Correspondence: (X.W.); (H.A.)
| | - Huaming An
- Research Center for Fruit Tree Engineering and Technology of Guizhou Province, College of Agriculture, Guizhou University, Guiyang 550025, China
- Correspondence: (X.W.); (H.A.)
| |
Collapse
|
98
|
Freitas PNN, Rovida AFDS, Silva CR, Pileggi SAV, Olchanheski LR, Pileggi M. Specific quorum sensing molecules are possibly associated with responses to herbicide toxicity in a Pseudomonas strain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117896. [PMID: 34358867 DOI: 10.1016/j.envpol.2021.117896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/25/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Pesticides contribute to pest control and increase agricultural production; however, they are toxic to non-target organisms, and they contaminate the environment. The exposure of bacteria to these substances can lead to the need for physiological and structural changes for survival, which can be determined by genes whose expression is regulated by quorum sensing (QS). However, it is not yet clear whether these processes can be induced by herbicides. Thus, the aim of this work was to determine whether there is a QS response system in the Pseudomonas fluorescens CMA55 strain that is modulated by herbicides. This strain was isolated from water storage tanks used for washing pesticide packaging and was tested against herbicides containing saflufenacil, glyphosate, sulfentrazone, 2,4-D, and dicamba as active molecules. Our results showed that in the presence of herbicides containing saflufenacil and glyphosate (the latter was not present at the bacterial isolation site) the strain had a profile of QS signaling molecules that may be involved in controlling the production of reactive oxygen species. Alternatively, the same strain, in the presence of sulfentrazone (it was not present at the bacterial isolation site), 2,4-D and dicamba-containing herbicides, presented another profile of molecules that may be involved in different stages of biofilm formation. These findings, as a first screening, suggest that this strain used strategies to activate antioxidant enzymes and biofilm production under the signaling of QS molecules to respond to herbicides, regardless of previous contact, representing a model of phenotypic plasticity for adaptation to agricultural environments that can be used in studies of herbicide bioremediation.
Collapse
Affiliation(s)
- Paloma Nathane Nunes Freitas
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | | | - Caroline Rosa Silva
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | - Sônia Alvim Veiga Pileggi
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | - Luiz Ricardo Olchanheski
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | - Marcos Pileggi
- Laboratory of Environmental Microbiology, Biological and Health Sciences Sector, Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil.
| |
Collapse
|
99
|
Castrejón-Godínez ML, Tovar-Sánchez E, Valencia-Cuevas L, Rosas-Ramírez ME, Rodríguez A, Mussali-Galante P. Glyphosate Pollution Treatment and Microbial Degradation Alternatives, a Review. Microorganisms 2021; 9:2322. [PMID: 34835448 PMCID: PMC8625783 DOI: 10.3390/microorganisms9112322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
Glyphosate is a broad-spectrum herbicide extensively used worldwide to eliminate weeds in agricultural areas. Since its market introduction in the 70's, the levels of glyphosate agricultural use have increased, mainly due to the introduction of glyphosate-resistant transgenic crops in the 90's. Glyphosate presence in the environment causes pollution, and recent findings have proposed that glyphosate exposure causes adverse effects in different organisms, including humans. In 2015, glyphosate was classified as a probable carcinogen chemical, and several other human health effects have been documented since. Environmental pollution and human health threats derived from glyphosate intensive use require the development of alternatives for its elimination and proper treatment. Bioremediation has been proposed as a suitable alternative for the treatment of glyphosate-related pollution, and several microorganisms have great potential for the biodegradation of this herbicide. The present review highlights the environmental and human health impacts related to glyphosate pollution, the proposed alternatives for its elimination through physicochemical and biological approaches, and recent studies related to glyphosate biodegradation by bacteria and fungi are also reviewed. Microbial remediation strategies have great potential for glyphosate elimination, however, additional studies are needed to characterize the mechanisms employed by the microorganisms to counteract the adverse effects generated by the glyphosate exposure.
Collapse
Affiliation(s)
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Mexico; (E.T.-S.); (L.V.-C.)
| | - Leticia Valencia-Cuevas
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Mexico; (E.T.-S.); (L.V.-C.)
| | | | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Mexico;
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Mexico;
| |
Collapse
|
100
|
Aloo BN, Mbega ER, Makumba BA, Tumuhairwe JB. Effects of agrochemicals on the beneficial plant rhizobacteria in agricultural systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60406-60424. [PMID: 34535866 DOI: 10.1007/s11356-021-16191-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Conventional agriculture relies heavily on chemical pesticides and fertilizers to control plant pests and diseases and improve production. Nevertheless, the intensive and prolonged use of agrochemicals may have undesirable consequences on the structure, diversity, and activities of soil microbiomes, including the beneficial plant rhizobacteria in agricultural systems. Although literature continues to mount regarding the effects of these chemicals on the beneficial plant rhizobacteria in agricultural systems, our understanding of them is still limited, and a proper account is required. With the renewed efforts and focus on agricultural and environmental sustainability, understanding the effects of different agrochemicals on the beneficial plant rhizobacteria in agricultural systems is both urgent and important to deduce practical solutions towards agricultural sustainability. This review critically evaluates the effects of various agrochemicals on the structure, diversity, and functions of the beneficial plant rhizobacteria in agricultural systems and propounds on the prospects and general solutions that can be considered to realize sustainable agricultural systems. This can be useful in understanding the anthropogenic effects of common and constantly applied agrochemicals on symbiotic systems in agricultural soils and shed light on the need for more environmentally friendly and sustainable agricultural practices.
Collapse
Affiliation(s)
- Becky Nancy Aloo
- Department of Biological Sciences, University of Eldoret, P.O. Box 1125-30100, Eldoret, Kenya.
| | - Ernest Rashid Mbega
- Department of Sustainable Agriculture and Biodiversity Conservation, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - Billy Amendi Makumba
- Department of Biological Sciences, Moi University, P.O. Box 3900-30100, Eldoret, Kenya
| | - John Baptist Tumuhairwe
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box, 7062, Kampala, Uganda
| |
Collapse
|