51
|
Ratova DMV, Mikheev IV, Chermashentsev GR, Maslakov KI, Kottsov SY, Stolbov DN, Maksimov SV, Sozarukova MM, Proskurnina EV, Proskurnin MA. Green and Sustainable Ultrasound-Assisted Anodic Electrochemical Preparation of Graphene Oxide Dispersions and Their Antioxidant Properties. Molecules 2023; 28:molecules28073238. [PMID: 37050001 PMCID: PMC10096744 DOI: 10.3390/molecules28073238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
A fast method for preparing aqueous graphene oxide (GO) dispersions by electrochemical oxidation of a graphite anode without preliminary intercalation with oxidizing agents is proposed. Ultrasonic probing was used in the modulation mode of ultrasonic waves (work/rest) for more efficient graphite oxidation-exfoliation. It is shown that the 4/2 s mode of ultrasonic modulation is the most effective due to the probe material's low corrosion while maintaining the optimum synthesis temperature not exceeding 30-35 °C and achieving the best characteristics of the resulting product. Three cases of anodic oxidation of graphite to obtain graphene oxide were considered: (1) a combined cathode-anode compartment, (2) a split cathode-anode salt-bridged compartment, and (3) separated anode compartment with a 3.5 kDa dialysis membrane. It was determined that the approach to synthesis with a divided cathode-anode compartment makes it possible to obtain GO sheets with fewer defects compared to chemical methods or methods with a combined cathode-anode compartment and makes it possible to control the oxidation degree of the material (C:O ratio) by varying the current density. The prepared samples showed good stability for more than six months. The spectral and morphological characteristics were studied. Using chemiluminometry in the luminol/Co(II)/H2O2 system, the antioxidant properties concerning three key reactive oxygen species (H2O2, superoxide anion radical, and hydroxyl radical) were demonstrated. It was also shown that the prepared GO dispersions do not induce lipid and phospholipid peroxidation.
Collapse
Affiliation(s)
- Daria-Maria V Ratova
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Ivan V Mikheev
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Grigoryi R Chermashentsev
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Konstantin I Maslakov
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Sergei Yu Kottsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia
| | - Dmitrii N Stolbov
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Sergey V Maksimov
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Madina M Sozarukova
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia
| | - Elena V Proskurnina
- Laboratory of Molecular Biology, Research Centre for Medical Genetics, 1 Moskvorechye St., 115522 Moscow, Russia
| | - Mikhail A Proskurnin
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
52
|
Prospective features of functional 2D nanomaterial graphene oxide in the wound healing process. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
53
|
Liu T, Wang L, Jiang R, Tang Y, He Y, Sun C, Lv Y, Liu S. Fluorescence Properties of ZnOQDs-GO-g-C 3N 4 Nanocomposites. MICROMACHINES 2023; 14:711. [PMID: 37420944 DOI: 10.3390/mi14040711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 07/09/2023]
Abstract
In this paper, the fluorescence properties of ZnOQD-GO-g-C3N4 composite materials (ZCGQDs) were studied. Firstly, the addition of a silane coupling agent (APTES) in the synthesis process was explored, and it was found that the addition of 0.04 g·mL-1 APTES had the largest relative fluorescence intensity and the highest quenching efficiency. The selectivity of ZCGQDs for metal ions was also investigated, and it was found that ZCGQDs showed good selectivity for Cu2+. ZCGQDs were optimally mixed with Cu2+ for 15 min. ZCGQDs also had good anti-interference capability toward Cu2+. There was a linear relationship between the concentration of Cu2+ and the fluorescence intensity of ZCGQDs in the range of 1~100 µM. The regression equation was found to be F0/F = 0.9687 + 0.12343C. The detection limit of Cu2+ was about 1.74 μM. The quenching mechanism was also analyzed.
Collapse
Affiliation(s)
- Tianze Liu
- College of Clinical Medicine, Jiamusi University, Jiamusi 154007, China
| | - Lei Wang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Ruxue Jiang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yashi Tang
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Yuxin He
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Changze Sun
- School of Mechanical Engineering, Jiamusi University, Jiamusi 154007, China
| | - Yuguang Lv
- College of Pharmacy, Jiamusi University, Jiamusi 154007, China
| | - Shuang Liu
- College of Basic Medicine, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
54
|
Godínez-García FJ, Guerrero-Rivera R, Martínez-Rivera JA, Gamero-Inda E, Ortiz-Medina J. Advances in two-dimensional engineered nanomaterials applications for the agro- and food-industries. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 36922737 DOI: 10.1002/jsfa.12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional nanomaterials, such as graphene, transition metal dichalcogenides, MXenes, and other layered compounds, are the subject of intense theoretical and experimental research for applications in a wide range of advanced technological solutions, given their outstanding physical, chemical, and mechanical properties. In the context of food science and technology, their contributions are starting to appear, based on the advantages that two-dimensional nanostructures offer to agricultural- and food-related key topics, such as sustainable water use, nano-agrochemicals, novel nanosensing devices, and smart packaging technologies. These application categories facilitate the grasping of the current and potential uses of such advanced nanomaterials in the field, backed by their advantageous physical, chemical, and structural properties. Developments for water cleaning and reuse, efficient nanofertilizers and pesticides, ultrasensitive sensors for food contamination, and intelligent nanoelectronic disposable food packages are among the most promising application examples reviewed here and demonstrate the tremendous impact that further developments would have in the area as the fundamental and applied research of two-dimensional nanostructures continues. We expect this work will contribute to a better understanding of the promising characteristics of two-dimensional nanomaterials that could be used for the design of novel and feasible solutions in the agriculture and food areas. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francisco Javier Godínez-García
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - Rubén Guerrero-Rivera
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - José Antonio Martínez-Rivera
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - Eduardo Gamero-Inda
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - Josué Ortiz-Medina
- Division of Research and Postgraduate Studies and Department of Electrical/Electronics Engineering, TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| |
Collapse
|
55
|
Rout DR, Jena HM, Baigenzhenov O, Hosseini-Bandegharaei A. Graphene-based materials for effective adsorption of organic and inorganic pollutants: A critical and comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160871. [PMID: 36521616 DOI: 10.1016/j.scitotenv.2022.160871] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Water scarcity has been felt in many countries and will become a critical issue in the coming years. The release of toxic organic and inorganic contaminants from different anthropogenic activities, like mining, agriculture, industries, and domestic households, enters the natural waterbody and pollutes them. Keeping this in view in combating the environmental crises, removing pollutants from wastewater is one of the ongoing environmental challenges. Adsorption technology is an economical, fast, and efficient physicochemical method for removing both organic and inorganic pollutants, even at low concentrations. In the last decade, graphene and its composite materials have become the center of attraction for numerous applications, including wastewater treatment, due to the large surface area, highly active surface, and exclusive physicochemical properties, which make them potential adsorbents with unique physicochemical properties, like low density, chemical strength, structural variability, and the possibility of large-scale fabrications. This review article provides a thorough summary/critical appraisal of the published literature on graphene-, GO-, and rGO-based adsorbents for the removal of organic and inorganic pollutants from wastewater. The synthesis methods, experimental parameters, adsorption behaviors, isotherms, kinetics, thermodynamics, mechanisms, and the performance of the regeneration-desorption processes of these substances are scrutinized. Finally, the research challenges, limitations, and future research studies are also discussed. Certainly, this review article will benefit the research community by getting substantial information on suitable techniques for synthesizing such adsorbents and utilizing them in water treatment and designing water treatment systems.
Collapse
Affiliation(s)
- Dibya Ranjan Rout
- Department of Chemical Engineering, National Institute of Technology, Rourkela 769008, Orissa, India.
| | - Hara Mohan Jena
- Department of Chemical Engineering, National Institute of Technology, Rourkela 769008, Orissa, India.
| | | | | |
Collapse
|
56
|
Iordache M, Oubraham A, Sorlei IS, Lungu FA, Capris C, Popescu T, Marinoiu A. Noble Metals Functionalized on Graphene Oxide Obtained by Different Methods-New Catalytic Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040783. [PMID: 36839151 PMCID: PMC9962709 DOI: 10.3390/nano13040783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 05/14/2023]
Abstract
In recent years, research has focused on developing materials exhibiting outstanding mechanical, electrical, thermal, catalytic, magnetic and optical properties such as graphene/polymer, graphene/metal nanoparticles and graphene/ceramic nanocomposites. Two-dimensional sp2 hybridized graphene has become a material of choice in research due to the excellent properties it displays electrically, thermally, optically and mechanically. Noble nanomaterials also present special physical and chemical properties and, therefore, they provide model building blocks in modifying nanoscale structures for various applications, ranging from nanomedicine to catalysis and optics. The introduction of noble metal nanoparticles (NPs) (Au, Ag and Pd) into chemically derived graphene is important in opening new avenues for both materials in different fields where they can provide hybrid materials with exceptional performance due to the synergistical result of the specific properties of each of the materials. This review presents the different synthetic procedures for preparing Pt, Ag, Pd and Au NP/graphene oxide (GO) and reduced graphene oxide (rGO) composites.
Collapse
Affiliation(s)
- Mihaela Iordache
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI, 4 Uzinei Street, 240050 Râmnicu Vâlcea, Romania
| | - Anisoara Oubraham
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI, 4 Uzinei Street, 240050 Râmnicu Vâlcea, Romania
- Correspondence: (A.O.); (A.M.)
| | - Ioan-Sorin Sorlei
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI, 4 Uzinei Street, 240050 Râmnicu Vâlcea, Romania
| | - Florin Alexandru Lungu
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI, 4 Uzinei Street, 240050 Râmnicu Vâlcea, Romania
| | - Catalin Capris
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI, 4 Uzinei Street, 240050 Râmnicu Vâlcea, Romania
| | - Tudor Popescu
- Faculty of Chemical Engineering and Biotechnologies, 011061 Bucharest, Romania
| | - Adriana Marinoiu
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI, 4 Uzinei Street, 240050 Râmnicu Vâlcea, Romania
- Correspondence: (A.O.); (A.M.)
| |
Collapse
|
57
|
Pintus A, Mantovani S, Kovtun A, Bertuzzi G, Melucci M, Bandini M. Recyclable GO-Arginine Hybrids for CO 2 Fixation into Cyclic Carbonates. Chemistry 2023; 29:e202202440. [PMID: 36260641 DOI: 10.1002/chem.202202440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 11/30/2022]
Abstract
New covalently modified GO-guanidine materials have been realized in a gram-scale synthesis and purified by an innovative microfiltration. The use of these composites in the fixation of CO2 into cyclic carbonates is demonstrated. Mild operating conditions, high yields (up to 85 %), wide scope (15 examples) and recoverability/reusability (up to 5 cycles) of the material account for the efficiency of the protocol. Dedicated control experiments shed light on the activation modes exerted by GO-l-arginine during the ring-opening/closing synthetic sequence.
Collapse
Affiliation(s)
- Angela Pintus
- Istituto per la Sintesi Organica e Fotoreattività (ISOF)-CNR, via Gobetti 101, 40129, Bologna, Italy
| | - Sebastiano Mantovani
- Istituto per la Sintesi Organica e Fotoreattività (ISOF)-CNR, via Gobetti 101, 40129, Bologna, Italy
| | - Alessandro Kovtun
- Istituto per la Sintesi Organica e Fotoreattività (ISOF)-CNR, via Gobetti 101, 40129, Bologna, Italy
| | - Giulio Bertuzzi
- Dipartimento di Chimica, "Giacomo Ciamcian", Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy.,Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Manuela Melucci
- Istituto per la Sintesi Organica e Fotoreattività (ISOF)-CNR, via Gobetti 101, 40129, Bologna, Italy
| | - Marco Bandini
- Dipartimento di Chimica, "Giacomo Ciamcian", Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy.,Center for Chemical Catalysis-C3, Alma Mater Studiorum-Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
58
|
Flasz B, Dziewięcka M, Ajay AK, Tarnawska M, Babczyńska A, Kędziorski A, Napora-Rutkowski Ł, Ziętara P, Świerczek E, Augustyniak M. Age- and Lifespan-Dependent Differences in GO Caused DNA Damage in Acheta domesticus. Int J Mol Sci 2022; 24:ijms24010290. [PMID: 36613733 PMCID: PMC9820743 DOI: 10.3390/ijms24010290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The rising applicability of graphene oxide (GO) should be preceded by detailed tests confirming its safety and lack of toxicity. Sensitivity to GO of immature, or with different survival strategy, individuals has not been studied so far. Therefore, in the present research, we focused on the GO genotoxic effects, examining selected parameters of DNA damage (total DNA damage, double-strand breaks-DSB, 8-hydroxy-2'-deoxyguanosine-8-OHdG, abasic site-AP sites), DNA damage response parameters, and global methylation in the model organism Acheta domesticus. Special attention was paid to various life stages and lifespans, using wild (H), and selected for longevity (D) strains. DNA damage was significantly affected by stage and/or strain and GO exposure. Larvae and young imago were generally more sensitive than adults, revealing more severe DNA damage. Especially in the earlier life stages, the D strain reacted more intensely/inversely than the H strain. In contrast, DNA damage response parameters were not significantly related to stage and/or strain and GO exposure. Stage-dependent DNA damage, especially DSB and 8-OHdG, with the simultaneous lack or subtle activation of DNA damage response parameters, may result from the general life strategy of insects. Predominantly fast-living and fast-breeding organisms can minimize energy-demanding repair mechanisms.
Collapse
Affiliation(s)
- Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Marta Dziewięcka
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Amrendra K. Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Łukasz Napora-Rutkowski
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, 43-520 Chybie, Poland
| | - Patrycja Ziętara
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Ewa Świerczek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
- Correspondence: ; Tel.: +48-32-359-1235
| |
Collapse
|
59
|
Ganesh S, Thambiliyagodage C, Perera SVTJ, Rajapakse RKND. Influence of Laboratory Synthesized Graphene Oxide on the Morphology and Properties of Cement Mortar. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:18. [PMID: 36615928 PMCID: PMC9824886 DOI: 10.3390/nano13010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The introduction of Graphene Oxide (GO), a nanomaterial, has shown considerable promise in improving the mechanical properties of cement composites. However, the reasons for this improvement are not yet fully understood and demand further research. This study aims to understand the effect of laboratory-produced GO, using Tour's method, on the mechanical properties and morphology of cement mortar containing GO. The GO was characterized using Fourier-transform infrared spectroscopy, X-ray Photoelectron Spectroscopy (XRD), X-ray powder diffraction, and Raman spectroscopy alongside Scanning electron microscopy (SEM). This study adopted a cement mortar with GO percentages of 0.02, 0.025, 0.03, 0.035, and 0.04 with respect to the weight of the cement. The presence of GO in cement mortar increased the density and decreased the consistency and setting times. At the optimum of 0.03% GO viscous suspension, the mechanical properties such as the 28-day compressive strength, splitting tensile strength, and flexural strength were enhanced by 41%, 83%, and 43%, respectively. In addition, Brunauer-Emmett-Teller analysis indicates an increase in surface area and volume of micropores of GO cement mortar, resulting in a decreased volume of mesopores. The improvement in properties was due to increased nucleation sites, calcium silicate hydrate (CSH) density, and a decreased volume of mesopores.
Collapse
Affiliation(s)
- Suganthiny Ganesh
- Department of Civil Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology (SLIIT), Colombo 10115, Sri Lanka
| | - Charitha Thambiliyagodage
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology (SLIIT), Colombo 10115, Sri Lanka
| | - S. V. T. Janaka Perera
- Department of Civil Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology (SLIIT), Colombo 10115, Sri Lanka
| | - R. K. N. D. Rajapakse
- Department of Civil Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology (SLIIT), Colombo 10115, Sri Lanka
- Faculty of Applied Science, Simon Fraser University, Burnaby, BC V5A 0A7, Canada
| |
Collapse
|
60
|
Tayouri MI, Estaji S, Mousavi SR, Salkhi Khasraghi S, Jahanmardi R, Nouranian S, Arjmand M, Khonakdar HA. Degradation of polymer nanocomposites filled with graphene oxide and reduced graphene oxide nanoparticles: A review of current status. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
61
|
Mahmoud AED, El-Maghrabi N, Hosny M, Fawzy M. Biogenic synthesis of reduced graphene oxide from Ziziphus spina-christi (Christ's thorn jujube) extracts for catalytic, antimicrobial, and antioxidant potentialities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89772-89787. [PMID: 35859234 PMCID: PMC9671977 DOI: 10.1007/s11356-022-21871-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/01/2022] [Indexed: 05/26/2023]
Abstract
In the current work, various concentrations of the aqueous extract of Ziziphus spina-christi were employed for the phytoreduction of graphene oxide (GO). The green synthesized reduced graphene oxide (rGO) was characterized through UV-Vis spectrometry, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy, and energy-dispersive X-ray spectroscopy (SEM-EDX). Gas chromatography-mass spectrometry (GC-MS) denoted the presence of numerous phytoconstituents including ketones, terpenoids, fatty acids, esters, and flavonoids, which acted as reducing and capping agents. The obtained results indicated the increase in rGO yield and shape with increasing the extract concentration. The optimized rGO was instantaneously ~100% removed methylene blue (MB) from the water at 5 mg L-1. However, the removal efficiency was slightly declined to reach 73.55 and 65.1% at 10 and 15 mg L-1, respectively. A powerful antibacterial activity for rGO particularly against gram-negative bacteria with a high concentration of 2 × 108 CFU mL-1 was confirmed. Furthermore, rGO demonstrated promising and comparable antioxidant efficiency with vitamin C against DPPH free radical scavenging. While vitamin C recorded 13.45 and 48.4%, the optimized rGO attained 13.30 and 45.20% at 12 and 50 μg mL-1, respectively.
Collapse
Affiliation(s)
- Alaa El Din Mahmoud
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Nourhan El-Maghrabi
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Mohamed Hosny
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Manal Fawzy
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- National Egyptian Biotechnology Experts Network, National Egyptian Academy for Scientific Research and Technology, Cairo, Egypt
| |
Collapse
|
62
|
Mikheev IV, Byvsheva SM, Sozarukova MM, Kottsov SY, Proskurnina EV, Proskurnin MA. High-Throughput Preparation of Uncontaminated Graphene-Oxide Aqueous Dispersions with Antioxidant Properties by Semi-Automated Diffusion Dialysis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4159. [PMID: 36500782 PMCID: PMC9739863 DOI: 10.3390/nano12234159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
A semi-automated diffusion-dialysis purification procedure is proposed for the preparation of uncontaminated graphene oxide (GO) aqueous dispersions. The purification process is integrated with analytical-signal processing to control the purification degree online by several channels: oxidation-reduction potential, conductivity, and absorbance. This approach reduces the amounts of reagents for chemical treatment during dialysis. The total transition metal (Mn and Ti) content was reduced to a sub-ppb level (assessed by slurry nebulization in inductively coupled plasma optical atomic emission spectroscopy). Purified aqueous GO samples possess good stability for about a year with a zeta-potential of ca. -40 mV and a lateral size of ca. sub-µm. Purified GO samples showed increased antioxidant properties (up to five times compared to initial samples according to chemiluminometry by superoxide-radical (O2-) generated in situ from xanthine and xanthine oxidase with the lucigenin probe) and significantly decreased peroxidase-like activity (assessed by the H2O2-L-012 system).
Collapse
Affiliation(s)
- Ivan V. Mikheev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sofiya M. Byvsheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Madina M. Sozarukova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 117901, Russia
| | - Sergey Yu. Kottsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 117901, Russia
| | | | | |
Collapse
|
63
|
Navarro F, Segura R, Godoy F, Martí AA, Mascayano C, Aguirre MJ, Flores E, Pizarro J. Fast and Simple Preparation of a Sensor Based on Electrochemically Reduced Graphene Oxide (rGO) for the Determination of Zopiclone in Pharmaceutical Dosage by Square Wave Adsorptive Stripping Voltammetry (SWAdSV). ELECTROANAL 2022. [DOI: 10.1002/elan.202200357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Freddy Navarro
- Departamento de Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Santiago Chile
| | - Rodrigo Segura
- Departamento de Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Santiago Chile
| | - Fernando Godoy
- Departamento de Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Santiago Chile
| | - Angel A. Martí
- Department of Chemistry Materials Science and Nanoengineering Bioengineering Smalley-Curl Institute for Nanoscale Science and Technology Rice University Houston TX 77005 United States
| | - Carolina Mascayano
- Departamento Ciencias del Ambiente Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Santiago Chile
| | - Maria J. Aguirre
- Departamento de Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Santiago Chile
- Millenium Institute on Green Ammonia as Energy Vector MIGA, ANID/Millenium Science Initiative Program/ICN2021_023
| | - Erick Flores
- Departamento de Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Santiago Chile
| | - Jaime Pizarro
- Departamento de Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile (USACH) Santiago Chile
| |
Collapse
|
64
|
Abbas Q, Shinde PA, Abdelkareem MA, Alami AH, Mirzaeian M, Yadav A, Olabi AG. Graphene Synthesis Techniques and Environmental Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7804. [PMID: 36363396 PMCID: PMC9658785 DOI: 10.3390/ma15217804] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Graphene is fundamentally a two-dimensional material with extraordinary optical, thermal, mechanical, and electrical characteristics. It has a versatile surface chemistry and large surface area. It is a carbon nanomaterial, which comprises sp2 hybridized carbon atoms placed in a hexagonal lattice with one-atom thickness, giving it a two-dimensional structure. A large number of synthesis techniques including epitaxial growth, liquid phase exfoliation, electrochemical exfoliation, mechanical exfoliation, and chemical vapor deposition are used for the synthesis of graphene. Graphene prepared using different techniques can have a number of benefits and deficiencies depending on its application. This study provides a summary of graphene preparation techniques and critically assesses the use of graphene, its derivates, and composites in environmental applications. These applications include the use of graphene as membrane material for the detoxication and purification of water, active material for gas sensing, heavy metal ions detection, and CO2 conversion. Furthermore, a trend analysis of both synthesis techniques and environmental applications of graphene has been performed by extracting and analyzing Scopus data from the past ten years. Finally, conclusions and outlook are provided to address the residual challenges related to the synthesis of the material and its use for environmental applications.
Collapse
Affiliation(s)
- Qaisar Abbas
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Engineering, Computing & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Pragati A. Shinde
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad Ali Abdelkareem
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
- Chemical Engineering Department, Minia University, Minya 61519, Egypt
| | - Abdul Hai Alami
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mojtaba Mirzaeian
- School of Engineering, Computing & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Al-Farabi Avenue, 71, Almaty 050012, Kazakhstan
| | - Arti Yadav
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Abdul Ghani Olabi
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
- Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University Aston Triangle, Birmingham B4 7ET, UK
| |
Collapse
|
65
|
Interactions between graphene oxide and polyester microplastics changed their phototransformation process and potential environmental risks: Mechanism insights. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
66
|
Reduced Graphene Oxide–Metal Oxide Nanocomposites (ZrO2 and Y2O3): Fabrication and Characterization for the Photocatalytic Degradation of Picric Acid. Catalysts 2022. [DOI: 10.3390/catal12101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herein, reduced graphene-oxide-supported ZrO2 and Y2O3 (rGO-ZrO2 and rGO-Y2O3) nanocomposites were synthesized by hydrothermal method and used as the catalysts for photodegradation of picric acid. The structural and morphological properties of the synthesized samples were characterized by using an X-ray diffractometer (XRD), scanning electron microscope (SEM) with energy dispersive absorption X-ray spectroscopy (EDAX), UV-Vis spectrophotometer, Raman spectrophotometer and Fourier transformation infrared spectrophotometer (FT-IR) techniques. In this work, the wide band gap of the ZrO2 and Y2O3 was successfully reduced by addition of the reduced graphene oxide (rGO) to absorb visible light for photocatalytic application. The performance of as synthesized rGO-ZrO2 and rGO-Y2O3 nanocomposites in the photocatalytic degradation of picric acid were evaluated under UV light irradiation. The photodegradation study using picric acid was analyzed with different energy light sources UV (254, 365 and 395 nm), visible light and sunlight at different pH conditions (pH = 3, 7 and 10). The photocatalytic activity of rGO-ZrO2 and rGO-Y2O3 nanocomposites showed excellent photocatalytic activity under optimum identical conditions with mild variations in pH 3. Compared to rGO-Y2O3, the rGO-ZrO2 nanocomposite showed a better action, with a degradation percentage rate of 100, 99.3, 99.9, 100 and 100% for light conditions of UV-252, 365, 395, visible and sunlight, respectively. The excellent degradation efficiency is attributed to factors such as oxygen-deficient metal oxide phase, high surface area and creation of a greater number of hydroxyl groups.
Collapse
|
67
|
Cheng X, Li F, Jiao G, Han Y, Tan Q, Nie K. Interactions and spectroscopic characteristics of propidium dication on soluble graphene oxides. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
68
|
Zhong J, Zhang S, He Y, Zhang Z, Li H, Song R. Preparation, corrosion resistance and mechanical properties of electroless Ni-W-P-eGO composite coatings. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
69
|
Vimalanathan B, Vijaya JJ, Mary BCJ, Ignacimuthu S, Daniel M, Jayavel R, Bououdina M, Bellucci S. The Anticancer Efficacy of Thiourea-Mediated Reduced Graphene Oxide Nanosheets against Human Colon Cancer Cells (HT-29). J Funct Biomater 2022; 13:jfb13030130. [PMID: 36135565 PMCID: PMC9502518 DOI: 10.3390/jfb13030130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 01/03/2023] Open
Abstract
The current research focuses on the fabrication of water-soluble, reduced graphene oxide (rGO) employing thiourea (T) using a simple cost-effective method, and subsequently examining its anticancer characteristics. The cytotoxicity caused by graphene oxide (GO) and T-rGO is investigated in detail. Biological results reveal a concentration-dependent toxicity of GO and T-rGO in human colon cancer cells HT-29. A decrease in cell viability alongside DNA fragmentation is observed. Flow cytometry analysis confirms the cytotoxic effects. The novelty in this work is the use of raw graphite powder, and oxidants such as KMNO4, NaNO3, and 98 percent H2SO4 to produce graphene oxide by a modified Hummers method. This study demonstrates a simple and affordable procedure for utilising thiourea to fabricate a water-soluble reduced graphene oxide, which will be useful in a variety of biomedical applications.
Collapse
Affiliation(s)
| | - J. Judith Vijaya
- Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600034, India
- Correspondence: (J.J.V.); (R.J.)
| | - B. Carmel Jeeva Mary
- Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600034, India
| | | | - Magesh Daniel
- Department of Zoology, Loyola College, Chennai 600034, India
| | - Ramasamy Jayavel
- Crystal Growth Centre, Anna University, Chennai 600025, India
- Correspondence: (J.J.V.); (R.J.)
| | - Mohamed Bououdina
- Department of Mathematics and Sciences, Faculty of Humanities and Sciences, Prince Sultan University, Riyadh 122001, Saudi Arabia
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy
| |
Collapse
|
70
|
Oktay B, Ahlatcıoğlu Özerol E, Sahin A, Gunduz O, Ustundag CB. Production and Characterization of PLA/HA/GO Nanocomposite Scaffold. ChemistrySelect 2022. [DOI: 10.1002/slct.202200697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Busra Oktay
- Department of Bioengineering Faculty of Chemical and Metallurgical Engineering Yildiz Technical University Istanbul 34220 Turkey
| | - Esma Ahlatcıoğlu Özerol
- Department of Bioengineering Faculty of Chemical and Metallurgical Engineering Yildiz Technical University Istanbul 34220 Turkey
| | - Ali Sahin
- Department of Biochemistry, Faculty of Medicine Marmara University Istanbul 34854 Turkey
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM) Marmara University Istanbul 34730 Turkey
- Department of Metallurgical and Materials Engineering Faculty of Technology Marmara University Istanbul 34730 Turkey
| | - Cem Bulent Ustundag
- Department of Bioengineering Faculty of Chemical and Metallurgical Engineering Yildiz Technical University Istanbul 34220 Turkey
| |
Collapse
|
71
|
Qiao K, Arakaki S, Suzuki M, Nakayama KI. Performance Improvement with an Ultrathin p-Type Interfacial Layer in n-Type Vertical Organic Field-Effect Transistors Based on Reduced Graphene Oxide Electrode. ACS OMEGA 2022; 7:24468-24474. [PMID: 35874241 PMCID: PMC9301728 DOI: 10.1021/acsomega.2c02085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Vertical organic field-effect transistors (VOFETs) with a large current on/off ratio and easy fabrication process are highly desirable for future organic electronics. In this paper, we proposed an ultrathin p-type copper (II) phthalocyanine (CuPc) interfacial layer in reduced graphene oxide (rGO)-based VOFETs. The CuPc interfacial layer was sandwiched between the rGO electrode and the N,N'-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) organic layer. The introduced CuPc interfacial layer not only decreased the off-current density of the device but also slightly enhanced the on-current density. The threshold voltage of the device was also effectively improved and stabilized at around 0 V. The obtained device exhibited a current on/off ratio exceeding 106, which is the largest value reported for rGO-based VOFETs. The vertical electron mobility of the PTCDI-C8 layer estimated by the space-charge-limited current technique was 1.14 × 10-3 cm2/(V s). However, it was not the main limiting factor for the current density in this device. We totally fabricated 48 devices, and more than 75% could work. Besides, the device was stable with little performance degradation after 1 month. The use of low-cost, solution-processable rGO as work-function-tunable electrode and the application of an ultrathin CuPc interfacial layer in VOFETs may open up opportunities for future organic electronics.
Collapse
Affiliation(s)
- Kun Qiao
- Division
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shun Arakaki
- Division
of Applied Chemistry, School of Engineering, Osaka University, 2-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuharu Suzuki
- Division
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ken-ichi Nakayama
- Division
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
72
|
Abuoudah CK, Abuibaid AZ, Greish YE, Ehmann HMA, Abu-Jdayil B, Iqbal MZ. Thermally reduced graphene/polypropylene nanocomposites: Effects of processing method on thermal, mechanical, and morphological properties. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
73
|
Song Y, Yu H, Wang X, Liu J, Liu J. A Facile Fabrication of CdSe/ZnS QDs-Block Copolymer Brushes-Modified Graphene Oxide Nanohybrid with Temperature-Responsive Behavior. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3356. [PMID: 35591690 PMCID: PMC9100873 DOI: 10.3390/ma15093356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022]
Abstract
In this paper, we described a straightforward one-step chemical method for the synthesis of semiconductor quantum dots(QDs)-block copolymer brushes functionalized graphene oxide(GO) fluorescence nanohybrids. The azobenzene-terminated block copolymer poly(N-isopropylacrylamid)-b-poly(styrene-co-5-(2-methacryoylethyloxymethyl)-8-quinolinol)(PNIPAM-b-P(St-co-MQ)) was modified on the surface of GO sheets via host-guest interactions between β-cyclodextrin-modified GO and azobenzene moieties, and simultaneously CdSe/ZnS QDs were integrated on the block copolymer brushes through the coordination between 8-hydroxyquinoline units in the polymer brushes and CdSe/ZnS QDs. The resulting fluorescence nanohybrid exhibited dual photoluminescence at 620 nm and 526 nm, respectively, upon excitation at 380 nm and LCST-type thermo-responsive behavior which originated from the change in the PNIPAM conformation in the block copolymer brushes of GO sheets.
Collapse
Affiliation(s)
- Yajiao Song
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.S.); (H.Y.); (X.W.)
- Key Laboratory of Natural Products Chemistry and Functional Molecular Synthesis, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Hongcui Yu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.S.); (H.Y.); (X.W.)
- Key Laboratory of Natural Products Chemistry and Functional Molecular Synthesis, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xiaohui Wang
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.S.); (H.Y.); (X.W.)
- Key Laboratory of Natural Products Chemistry and Functional Molecular Synthesis, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jinglin Liu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.S.); (H.Y.); (X.W.)
- Key Laboratory of Natural Products Chemistry and Functional Molecular Synthesis, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jinghai Liu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China; (Y.S.); (H.Y.); (X.W.)
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Inner Mongolia Minzu University, Tongliao 028000, China
| |
Collapse
|
74
|
Liu C, Tan D, Chen X, Liao J, Wu L. Research on Graphene and Its Derivatives in Oral Disease Treatment. Int J Mol Sci 2022; 23:ijms23094737. [PMID: 35563128 PMCID: PMC9104291 DOI: 10.3390/ijms23094737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023] Open
Abstract
Oral diseases present a global public health problem that imposes heavy financial burdens on individuals and health-care systems. Most oral health conditions can be treated in their early stage. Even if the early symptoms of oral diseases do not seem to cause significant discomfort, prompt treatment is essential for preventing their progression. Biomaterials with superior properties enable dental therapies with applications in restoration, therapeutic drug/protein delivery, and tissue regeneration. Graphene nanomaterials have many unique mechanical and physiochemical properties and can respond to the complex oral microenvironment, which includes oral microbiota colonization and high masticatory force. Research on graphene nanomaterials in dentistry, especially in caries, periodontitis therapy, and implant coatings, is progressing rapidly. Here, we review the development of graphene and its derivatives for dental disease therapy.
Collapse
Affiliation(s)
- Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (C.L.); (X.C.)
| | - Dan Tan
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China;
| | - Xiaoli Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (C.L.); (X.C.)
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, West China School & Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (J.L.); (L.W.)
| | - Leng Wu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430030, China
- Correspondence: (J.L.); (L.W.)
| |
Collapse
|
75
|
Electrical and Structural Properties of CVD-Graphene Oxidized Using KMnO4/H2SO4 Solution. CRYSTALS 2022. [DOI: 10.3390/cryst12040439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report the electrical properties of graphene grown via chemical vapor deposition (CVD-graphene) and oxidized using a KMnO4/dilute H2SO4 mixture. CVD-graphene was successfully oxidized without any pores or peeling off from the substrates. When the H2SO4 concentration was increased, the electrical resistance of the oxidized graphene (OG) increased. In particular, OG-20 shows a nonlinear current–voltage curve similar to that of a diode owing to direct tunneling through the interfaces between the nanosized sp2 and sp3 regions. The changes in electrical properties occurred because of structural evolution. As the H2SO4 concentration increased, the number of oxygen functional groups (epoxide/hydroxyl and carboxyl groups) in the OG increased. In addition, a reduction in the average distance between defects in the OG was determined using Raman spectroscopy. Oxidation using a KMnO4/dilute H2SO4 mixture results in CVD-graphene with modified electrical properties for graphene-based applications.
Collapse
|
76
|
Efficiency of marketable decontamination agent and graphene oxide on 99mTc and 131I spillages in nuclear medicine department. NUCLEAR TECHNOLOGY AND RADIATION PROTECTION 2022. [DOI: 10.2298/ntrp2202159r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dealing with open sources of radioactive substances in nuclear medicine is a
daily task since contamination due to radioactive spills may happen
frequently. Proper and safe decontamination management is a vital
procedure. However, regular purchase of decontamination agents incurs high
costs and might be toxic due to their chemical properties. The purpose of
this study is to compare graphene oxide, which is an environmentally
friendly carbon-based material and marketable decontamination agent, in
decontaminating radioactive spillage. Samples of pure 99mTc and 131I from
the laboratory were spilled on a petri dish. The spill was immediately
decontaminated with a marketable decontamination agent swab and varying
concentrations of graphene oxide swab. The initial radioactivity of each
swab containing 99mTc and 131I was measured using a dose calibrator. The
absorbance spectra of each sample were analysed using an ultraviolet-visible
spectrophotometer. The morphology image of graphene oxide was observed under
field emission scanning electron microscope. For decontamination using a
marketable decontamination agent, the radioactivity of 131I was slightly
higher, whereas that of 99mTc was slightly lower than the high concentration
of graphene oxide. The absorbance spectra of 99mTc and 131I that had been
decontaminated using graphene oxide were observed at a range of 200 nm to
250 nm due ???* to the transition.
Collapse
|