51
|
Lu S, Chen S, Li H, Paengkoum S, Taethaisong N, Meethip W, Surakhunthod J, Sinpru B, Sroichak T, Archa P, Thongpea S, Paengkoum P. Sustainable Valorization of Tomato Pomace ( Lycopersicon esculentum) in Animal Nutrition: A Review. Animals (Basel) 2022; 12:3294. [PMID: 36496814 PMCID: PMC9736048 DOI: 10.3390/ani12233294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Under the background of the current shortage of feed resources, especially the shortage of protein feed, attempts to develop and utilize new feed resources are constantly being made. If the tomato pomace (TP) produced by industrial processing is used improperly, it will not only pollute the environment, but also cause feed resources to be wasted. This review summarizes the nutritional content of TP and its use and impact in animals as an animal feed supplement. Tomato pomace is a by-product of tomato processing, divided into peel, pulp, and tomato seeds, which are rich in proteins, fats, minerals, fatty acids, and amino acids, as well as antioxidant bioactive compounds, such as lycopene, beta-carotenoids, tocopherols, polyphenols, and terpenes. There are mainly two forms of feed: drying and silage. Tomato pomace can improve animal feed intake and growth performance, increase polyunsaturated fatty acids (PUFA) and PUFA n-3 content in meat, improve meat color, nutritional value, and juiciness, enhance immunity and antioxidant capacity of animals, and improve sperm quality. Lowering the rumen pH and reducing CH4 production in ruminants promotes the fermentation of rumen microorganisms and improves economic efficiency. Using tomato pomace instead of soybean meal as a protein supplement is a research hotspot in the animal husbandry industry, and further research should focus on the processing technology of TP and its large-scale application in feed.
Collapse
Affiliation(s)
- Shengyong Lu
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Shengchang Chen
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Haixia Li
- Animal Nutrition and Technology Quality Control R&D Department, Guizhou Province Chuanpai Feed Co., Ltd., Guiyang 550201, China
| | - Siwaporn Paengkoum
- Program in Agriculture, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Muang, Nakhon Ratchasima 30000, Thailand
| | - Nittaya Taethaisong
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Weerada Meethip
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Jariya Surakhunthod
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Boontum Sinpru
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Thakun Sroichak
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Pawinee Archa
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Sorasak Thongpea
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| | - Pramote Paengkoum
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
52
|
Huang CN, Lim X, Ong L, Lim C, Chen X, Zhang C. Mediating oxidative stress enhances α-ionone biosynthesis and strain robustness during process scaling up. Microb Cell Fact 2022; 21:246. [PMID: 36424649 PMCID: PMC9686065 DOI: 10.1186/s12934-022-01968-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND α-Ionone is highly valued in cosmetics and perfumery with a global usage of 100-1000 tons per year. Metabolic engineering by microbial fermentation offers a promising way to produce natural (R)-α-ionone in a cost-effective manner. Apart from optimizing the metabolic pathways, the approach is also highly dependent on generating a robust strain which retains productivity during the scale-up process. To our knowledge, no study has investigated strain robustness while increasing α-ionone yield. RESULTS Built on our previous work, here, we further increased α-ionone yield to 11.4 mg/L/OD in 1 mL tubes by overexpressing the bottleneck dioxygenase CCD1 and re-engineering the pathway, which is > 65% enhancement as compared to our previously best strain. However, the yield decreased greatly to 2.4 mg/L/OD when tested in 10 mL flasks. Further investigation uncovered an unexpected inhibition that excessive overexpression of CCD1 was accompanied with increased hydrogen peroxide (H2O2) production. Excessive H2O2 broke down lycopene, the precursor to α-ionone, leading to the decrease in α-ionone production in flasks. This proved that expressing too much CCD1 can lead to reduced production of α-ionone, despite CCD1 being the rate-limiting enzyme. Overexpressing the alkyl hydroperoxide reductase (ahpC/F) partially solved this issue and improved α-ionone yield to 5.0 mg/L/OD in flasks by reducing oxidative stress from H2O2. The strain exhibited improved robustness and produced ~ 700 mg/L in 5L bioreactors, the highest titer reported in the literature. CONCLUSION Our study provides an insight on the importance of mediating the oxidative stress to improve strain robustness and microbial production of α-ionone during scaling up. This new strategy may be inspiring to the biosynthesis of other high-value apocarotenoids such as retinol and crocin, in which oxygenases are also involved.
Collapse
Affiliation(s)
- Ching-Ning Huang
- grid.185448.40000 0004 0637 0221Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore, 138669 Singapore
| | - Xiaohui Lim
- grid.185448.40000 0004 0637 0221Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore, 138669 Singapore
| | - Leonard Ong
- grid.185448.40000 0004 0637 0221Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore, 138669 Singapore
| | - Chinchin Lim
- grid.185448.40000 0004 0637 0221Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore, 138669 Singapore
| | - Xixian Chen
- grid.185448.40000 0004 0637 0221Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore, 138669 Singapore
| | - Congqiang Zhang
- grid.185448.40000 0004 0637 0221Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore, 138669 Singapore
| |
Collapse
|
53
|
Zhou J, Guo J, Chen Q, Wang B, He X, Zhuge Q, Wang P. Different color regulation mechanism in willow barks determined using integrated metabolomics and transcriptomics analyses. BMC PLANT BIOLOGY 2022; 22:530. [PMID: 36380271 PMCID: PMC9664647 DOI: 10.1186/s12870-022-03909-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/25/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND The rich yellow-orange to vividly deep red bark of willow (Salix spp.) branches have high ornamental and economic value. However, the mechanism underlying the regulation of willow branch color remains unknown. Therefore, we performed metabolomics and transcriptomics analyses of purple, green, and red willow barks to elucidating the mechanisms regulating color development. RESULTS Seven anthocyanins were isolated; pelargonidin, petunidin 3-O-rutinoside, and cyanin chloride were the most abundant in red bark, whereas pelargonin chloride was most abundant in purple bark. The green bark contained the highest level of malvidin; however, the malvidin level was not significantly higher than in the red bark. The purple bark contained the largest amount of canthaxanthin, a carotenoid pigment. The integrated pathways of flavonoid biosynthesis, carotenoid biosynthesis, and porphyrin and chlorophyll metabolism were constructed for the willow barks. Among the three barks, the expression of the structural genes ANS, ANR, and BZ1, which are involved in anthocyanin synthesis, was the highest in red bark, likely causing anthocyanin accumulation. The expression of CrtZ, which participates in the carotenoid pathway, was the highest in purple bark, likely leading to canthaxanthin accumulation. The high expression of DVR, POR, and CRD1 may be associated with green pigment synthesis in the chlorophyll biosynthesis pathway. CONCLUSIONS Purple bark color is co-regulated by anthocyanins and carotenoids, whereas red bark is characterized by anthocyanin accumulation and chlorophyll degradation. The green pigment is regulated by maintaining chlorophyll synthesis. BZ1 and CrtZ are candidate genes regulating anthocyanin and canthaxanthin accumulation in red and purple barks respectively. Collectively, our results may facilitate the genetic breeding and cultivation of colorful willows with improved color and luster.
Collapse
Affiliation(s)
- Jie Zhou
- Jiangsu Academy of Forestry, Nanjing city, China.
| | - Jiahui Guo
- Nanjing Forestry University, Nanjing city, China
| | | | - Baosong Wang
- Jiangsu Academy of Forestry, Nanjing city, China
| | - Xudong He
- Jiangsu Academy of Forestry, Nanjing city, China
| | - Qiang Zhuge
- Nanjing Forestry University, Nanjing city, China
| | - Pu Wang
- Nanjing Forestry University, Nanjing city, China
| |
Collapse
|
54
|
Islam F, Muni M, Mitra S, Emran TB, Chandran D, Das R, Rauf A, Safi SZ, Chidambaram K, Dhawan M, Cheon C, Kim B. Recent advances in respiratory diseases: Dietary carotenoids as choice of therapeutics. Biomed Pharmacother 2022; 155:113786. [PMID: 36271564 DOI: 10.1016/j.biopha.2022.113786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
|
55
|
Luo M, Mai M, Song W, Yuan Q, Feng X, Xia E, Guo H. The Antiaging Activities of Phytochemicals in Dark-Colored Plant Foods: Involvement of the Autophagy- and Apoptosis-Associated Pathways. Int J Mol Sci 2022; 23:ijms231911038. [PMID: 36232338 PMCID: PMC9569742 DOI: 10.3390/ijms231911038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
In the last two decades, human life expectancy has increased by about 10 years, but this has not been accompanied by a corresponding increase in healthy lifespan. Aging is associated with a wide range of human disorders, including cancer, diabetes, and cardiovascular and neurodegenerative diseases. Delaying the aging of organs or tissues and improving the physiological functions of the elderly can reduce the risk of aging-related diseases. Autophagy and apoptosis are crucial mechanisms for cell survival and tissue homeostasis, and may also be primary aging-regulatory pathways. Recent epidemiological studies have shown that eating more colorful plant foods could increase life expectancy. Several representative phytochemicals in dark-colored plant foods such as quercetin, catechin, curcumin, anthocyanins, and lycopene have apparent antiaging potential. Nevertheless, the antiaging signaling pathways of the phytochemicals from dark-colored plant foods remain elusive. In the present review, we summarized autophagy- and apoptosis-associated targeting pathways of those phytochemicals and discussed the core targets involved in the antiaging effects. Further clinical evaluation and exploitation of phytochemicals as antiaging agents are needed to develop novel antiaging therapeutics for preventing age-related diseases and improving a healthy lifespan.
Collapse
Affiliation(s)
- Mengliu Luo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Meiqing Mai
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Wanhan Song
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qianhua Yuan
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoling Feng
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Enqin Xia
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Honghui Guo
- Department of Nutrition, School of Public Health, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
- Correspondence: ; Tel.: +86-769-2289-6576
| |
Collapse
|
56
|
ALI MN, SERÇE S. Vitamin C and fruit quality consensus in breeding elite European strawberry under multiple interactions of environment. Mol Biol Rep 2022; 49:11573-11586. [DOI: 10.1007/s11033-022-07849-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 10/14/2022]
|
57
|
Guo Z, Liu Y, Luo Y. Mechanisms of carotenoid intestinal absorption and the regulation of dietary lipids: lipid transporter-mediated transintestinal epithelial pathways. Crit Rev Food Sci Nutr 2022; 64:1791-1816. [PMID: 36069234 DOI: 10.1080/10408398.2022.2119204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dietary lipids are key ingredients during cooking, processing, and seasoning of carotenoid-rich fruits and vegetables, playing vitals in affecting the absorption and utilization of carotenoids for achieving their health benefits. Besides, dietary lipids have also been extensively studied to construct various delivery systems for carotenoids, such as micro/nanoparticles, micro/nanoemulsions, and liposomes. Currently, the efficacies of these techniques on improving carotenoid bioavailability are often evaluated using the micellization rate or "bioaccessibility" based on in vitro models. However, recent studies have found that dietary lipids may also affect the carotenoid uptake via intestinal epithelial cells and the efflux of intracellular chyle particles via lipid transporters. An increasing number of studies reveal the varied impact of different dietary lipids on the absorption of different carotenoids and some lipids may even have an inhibitory effect. Consequently, it is necessary to clarify the relationship between the addition of dietary lipids and the intestinal absorption of carotenoid to fully understand the role of lipids during this process. This paper first introduces the intestinal absorption mechanism of carotenoids, including the effect of bile salts and lipases on mixed micelles, the types and regulation of lipid transporters, intracellular metabolizing enzymes, and the efflux process of chyle particles. Then, the regulatory mechanism of dietary lipids during intestinal carotenoid absorption is further discussed. Finally, the importance of selecting the dietary lipids for the absorption and utilization of different carotenoids and the design of an efficient delivery carrier are emphasized. This review provides suggestions for precise dietary carotenoid supplementation and offere an important reference for constructing efficient transport carriers for liposoluble nutrients.
Collapse
Affiliation(s)
- Zixin Guo
- College of Marine Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Yixiang Liu
- College of Marine Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
58
|
An optimal saponification and extraction method to determine carotenoids in avocado. Food Chem 2022; 387:132923. [DOI: 10.1016/j.foodchem.2022.132923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/07/2022] [Accepted: 04/06/2022] [Indexed: 11/19/2022]
|
59
|
Pinho LS, de Lima PM, de Sá SHG, Chen D, Campanella OH, da Costa Rodrigues CE, Favaro-Trindade CS. Encapsulation of Rich-Carotenoids Extract from Guaraná ( Paullinia cupana) Byproduct by a Combination of Spray Drying and Spray Chilling. Foods 2022; 11:2557. [PMID: 36076743 PMCID: PMC9455470 DOI: 10.3390/foods11172557] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
Guaraná byproducts are rich in carotenoids, featuring strong antioxidant capacity and health-promoting benefits. However, these compounds are highly susceptible to oxidation and isomerization, which limits their applications in foods. This research aimed to encapsulate the carotenoid-rich extract from reddish guaraná peels by spray drying (SD), chilling (SC), and their combination (SDC) using gum arabic and vegetable fat as carriers. The carotenoid-rich extract was analyzed as a control, and the formulations were prepared with the following core-carrier ratios: SD20 (20:80), SD25 (25:75), SD33 (33:67), SC20 (20:80), SC30 (30:70), SC40 (40:60), SDC10 (10:90), and SDC20 (20:80). The physicochemical properties of the formed microparticles were characterized, and their storage stability was evaluated over 90 days. Water activity of microparticles formed during the SD process increased during storage, whereas those formed by SC and SDC processes showed no changes in water activity. The formed microparticles exhibited color variation and size increase over time. Carotenoid degradation of the microparticles was described by zero-order kinetics for most treatments. Considering the higher carotenoid content and its stability, the optimum formulation for each process was selected to further analysis. Scanning electron micrographs revealed the spherical shape and absence of cracks on the microparticle surface, as well as size heterogeneity. SD increased the stability to oxidation of the carotenoid-rich extract by at least 52-fold, SC by threefold, and SDC by 545-fold. Analysis of the thermophysical properties suggested that the carrier and the process of encapsulation influence the powder's thermal resistance. Water sorption data of the SDC microparticles depended on the blend of the carrier agents used in the process. Carotenoid encapsulation via an innovative combination of spray drying and spray chilling processes offers technological benefits, which could be applied as a promising alternative to protect valuable bioactive compounds.
Collapse
Affiliation(s)
- Lorena Silva Pinho
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, São Paulo, Brazil
- Department of Food Science and Technology, Ohio State University, Columbus, OH 43210, USA
| | - Priscilla Magalhães de Lima
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| | - Samuel Henrique Gomes de Sá
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| | - Da Chen
- Department of Animals, Veterinary and Food Sciences, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844, USA
| | - Osvaldo H. Campanella
- Department of Food Science and Technology, Ohio State University, Columbus, OH 43210, USA
| | | | - Carmen Sílvia Favaro-Trindade
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| |
Collapse
|
60
|
Araújo RG, Alcantar-Rivera B, Meléndez-Sánchez ER, Martínez-Prado MA, Sosa-Hernández JE, Iqbal HMN, Parra-Saldivar R, Martínez-Ruiz M. Effects of UV and UV-vis Irradiation on the Production of Microalgae and Macroalgae: New Alternatives to Produce Photobioprotectors and Biomedical Compounds. Molecules 2022; 27:molecules27165334. [PMID: 36014571 PMCID: PMC9413999 DOI: 10.3390/molecules27165334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
In the last decade, algae applications have generated considerable interest among research organizations and industrial sectors. Bioactive compounds, such as carotenoids, and Mycosporine-like amino acids (MAAs) derived from microalgae may play a vital role in the bio and non-bio sectors. Currently, commercial sunscreens contain chemicals such as oxybenzone and octinoxate, which have harmful effects on the environment and human health; while microalgae-based sunscreens emerge as an eco-friendly alternative to provide photo protector agents against solar radiation. Algae-based exploration ranges from staple foods to pharmaceuticals, cosmetics, and biomedical applications. This review aims to identify the effects of UV and UV-vis irradiation on the production of microalgae bioactive compounds through the assistance of different techniques and extraction methods for biomass characterization. The efficiency and results focus on the production of a blocking agent that does not damage the aquifer, being beneficial for health and possible biomedical applications.
Collapse
Affiliation(s)
- Rafael G. Araújo
- Tecnológico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Brian Alcantar-Rivera
- Department of Chemical and Biochemical Engineering, Tecnológico Nacional de México—Instituto Tecnológico de Durango (TecNM-ITD), Durango 34080, Mexico
| | | | - María Adriana Martínez-Prado
- Department of Chemical and Biochemical Engineering, Tecnológico Nacional de México—Instituto Tecnológico de Durango (TecNM-ITD), Durango 34080, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnológico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M. N. Iqbal
- Tecnológico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Tecnológico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Roberto Parra-Saldivar
- Tecnológico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Tecnológico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Correspondence: (R.P.-S.); (M.M.-R.)
| | - Manuel Martínez-Ruiz
- Tecnológico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (R.P.-S.); (M.M.-R.)
| |
Collapse
|
61
|
Mohri S, Takahashi H, Sakai M, Waki N, Takahashi S, Aizawa K, Suganuma H, Ara T, Sugawara T, Shibata D, Matsumura Y, Goto T, Kawada T. Integration of bioassay and non-target metabolite analysis of tomato reveals that β-carotene and lycopene activate the adiponectin signaling pathway, including AMPK phosphorylation. PLoS One 2022; 17:e0267248. [PMID: 35776737 PMCID: PMC9249195 DOI: 10.1371/journal.pone.0267248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
Adiponectin, an adipokine, regulates glucose metabolism and insulin sensitivity through the adiponectin receptor (AdipoR). In this study, we searched for metabolites that activate the adiponectin signaling pathway from tomato (Solanum lycopersicu). Metabolites of mature tomato were separated into 55 fractions by liquid chromatography, and then each fraction was examined using the phosphorylation assay of AMP-protein kinase (AMPK) in C2C12 myotubes and in AdipoR-knockdown cells by small interfering RNA (siRNA). Several fractions showed AMPK phosphorylation in C2C12 myotubes and siRNA-mediated abrogation of the effect. Non-targeted metabolite analysis revealed the presence of 721 diverse metabolites in tomato. By integrating the activity of fractions on AMPK phosphorylation and the 721 metabolites based on their retention times of liquid chromatography, we performed a comprehensive screen for metabolites that possess adiponectin-like activity. As the screening suggested that the active fractions contained four carotenoids, we further analyzed β-carotene and lycopene, the major carotenoids of food. They induced AMPK phosphorylation via the AdipoR, Ca2+/calmodulin-dependent protein kinase kinase and Ca2+ influx, in addition to activating glucose uptake via AdipoR in C2C12 myotubes. All these events were characteristic adiponectin actions. These results indicated that the food-derived carotenoids, β-carotene and lycopene, activate the adiponectin signaling pathway, including AMPK phosphorylation.
Collapse
Affiliation(s)
- Shinsuke Mohri
- Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Laboratory of Technology of Marine Bioproducts, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- KAGOME Tomato Discoveries Laboratory, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- * E-mail: (HT); (DS); (TG)
| | - Maiko Sakai
- Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naoko Waki
- KAGOME Tomato Discoveries Laboratory, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Innovation Division, KAGOME CO., LTD., Tochigi, Japan
| | | | - Koichi Aizawa
- Innovation Division, KAGOME CO., LTD., Tochigi, Japan
| | | | - Takeshi Ara
- KAGOME Tomato Discoveries Laboratory, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tatsuya Sugawara
- Laboratory of Technology of Marine Bioproducts, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Daisuke Shibata
- KAGOME Tomato Discoveries Laboratory, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Kazusa DNA Research Institutes, Kazusa-Kamatari, Chiba, Japan
- * E-mail: (HT); (DS); (TG)
| | - Yasuki Matsumura
- Laboratory of Quality Analysis and Assessment, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Research Unit for Physiological Chemistry, Kyoto University, Kyoto, Japan
- * E-mail: (HT); (DS); (TG)
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Research Unit for Physiological Chemistry, Kyoto University, Kyoto, Japan
| |
Collapse
|
62
|
Huang X, Morote L, Zhu C, Ahrazem O, Capell T, Christou P, Gómez-Gómez L. The Biosynthesis of Non-Endogenous Apocarotenoids in Transgenic Nicotiana glauca. Metabolites 2022; 12:575. [PMID: 35888700 PMCID: PMC9317256 DOI: 10.3390/metabo12070575] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Crocins are high-value compounds with industrial and food applications. Saffron is currently the main source of these soluble pigments, but its high market price hinders its use by sectors, such as pharmaceutics. Enzymes involved in the production of these compounds have been identified in saffron, Buddleja, and gardenia. In this study, the enzyme from Buddleja, BdCCD4.1, was constitutively expressed in Nicotiana glauca, a tobacco species with carotenoid-pigmented petals. The transgenic lines produced significant levels of crocins in their leaves and petals. However, the accumulation of crocins was, in general, higher in the leaves than in the petals, reaching almost 302 µg/g DW. The production of crocins was associated with decreased levels of endogenous carotenoids, mainly β-carotene. The stability of crocins in leaf and petal tissues was evaluated after three years of storage, showing an average reduction of 58.06 ± 2.20% in the petals, and 78.37 ± 5.08% in the leaves. This study illustrates the use of BdCCD4.1 as an effective tool for crocin production in N. glauca and how the tissue has an important impact on the stability of produced high-value metabolites during storage.
Collapse
Affiliation(s)
- Xin Huang
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; (X.H.); (T.C.); (P.C.)
| | - Lucía Morote
- Department of Science and Agroforestal Technology and Genetics, Botanical Institut, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (L.M.); (O.A.)
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; (X.H.); (T.C.); (P.C.)
- School of Life Sciences, Changchun Normal University, Changchun 130032, China
| | - Oussama Ahrazem
- Department of Science and Agroforestal Technology and Genetics, Botanical Institut, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (L.M.); (O.A.)
| | - Teresa Capell
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; (X.H.); (T.C.); (P.C.)
- ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; (X.H.); (T.C.); (P.C.)
- ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Lourdes Gómez-Gómez
- Department of Science and Agroforestal Technology and Genetics, Botanical Institut, University of Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; (L.M.); (O.A.)
| |
Collapse
|
63
|
Darvish H, Ramezan Y, Khani MR, Kamkari A. Effect of low-pressure cold plasma processing on decontamination and quality attributes of Saffron ( Crocus sativus L.). Food Sci Nutr 2022; 10:2082-2090. [PMID: 35702300 PMCID: PMC9179142 DOI: 10.1002/fsn3.2824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/06/2022] Open
Abstract
This study investigated the microbial decontamination of saffron using the low-pressure cold plasma (LPCP) technology. Therefore, other quality characteristics of saffron that create the color, taste, and aroma have also been studied. The highest microbial log reduction was observed at 110 W for 30 min. Total viable count (TVC), coliforms, molds, and yeasts log reduction were equal to 3.52, 4.62, 2.38, and 4.12 log CFU (colony-forming units)/g, respectively. The lowest decimal reduction times (D-values) were observed at 110 W, which were 9.01, 3.29, 4.17, and 8.93 min for TVC, coliforms, molds, and yeasts. LPCP treatment caused a significant increase in the product's color parameters (L*, a*, b*, ΔE, chroma, and hue angle). The results indicated that the LPCP darkened the treated stigma's color. Also, it reduced picrocrocin, safranal, and crocin in treated samples compared to the untreated control sample (p < .05). However, after examining these metabolites and comparing them with saffron-related ISO standards, all treated and control samples were good.
Collapse
Affiliation(s)
- Haleh Darvish
- Department of Food Science and TechnologyFaculty of PharmacyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Yousef Ramezan
- Department of Food Science and TechnologyFaculty of PharmacyTehran Medical SciencesIslamic Azad UniversityTehranIran
- Nutrition & Food Sciences Research CenterTehran Medical SciencesIslamic Azad UniversityTehranIran
| | | | - Amir Kamkari
- Department of Food EngineeringFaculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
64
|
|
65
|
Li C, Xu Y, Li Z, Cheng P, Yu G. Transcriptomic and metabolomic analysis reveals the potential mechanisms underlying the improvement of β-carotene and torulene production in Rhodosporidiobolus colostri under low temperature treatment. Food Res Int 2022; 156:111158. [DOI: 10.1016/j.foodres.2022.111158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
|
66
|
Enzymatic Extraction of Sapodilla (Manilkara achras L.) Juice: Process Optimization and Characterization. J FOOD QUALITY 2022. [DOI: 10.1155/2022/6367411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Conventional treatment of sapodilla pulp yields very viscous, turbid, and low juice recovery. Sapodilla processing for juice requires liquefying enzyme that leads to rectifying flow of juice. This study was conducted to optimize the enzymatic pectolytic conditions of sapodilla fruit processing to extract maximum juice using a central composite design (CCD). The effect of processing variables on recovery of juice, total soluble solids (TSS), viscosity, clarity, and L-value along with physicochemical analysis was investigated. The optimized processing conditions were pectinase concentration (0.120%) at 42.02°C for 167.83 min resulting in juice recovery (62.08 ± 0.38%), viscosity (4.81 ± 0.02cP), TSS (21.48 ± 0.19 °Brix), clarity (0.72 ± 0.05%T), and L-value (28.79 ± 0.96). Optimized sapodilla juice showed higher filterability (24.16 ± 1.04 min−1), conductivity (69.46 ± 0.30 S/m), total phenolic content (35.86 ± 0.60 mg/100 mL), ascorbic acid (6.38 ± 0.58 mg/100 mL), moisture content (84.85 ± 0.21% WB), and titratable acidity (0.143 ± 0.0% citric acid) as compared to control sample (60.5 ± 1.80 min−1, 30.43 ± 0.35 S/m, 30.68 ± 0.85 mg/100 mL, 4.64 ± 0.0 mg/100 mL, 83.69 ± 0.18%, and 0.130 ± 0.0%). Optimized sapodilla juice was lower in sedimentation index (0.73 ± 0.11%), turbidity (13.73 ± 1.10 NTU), ash (0.57 ± 0.031%), and β-carotene (0.173 ± 0.008 μg/100 mL) as compared to control sample (1.07 ± 0.02%, 79 ± 0.75 NTU, 0.65 ± 0.031%, and 0.306 ± 0.007 μg/100 mL). The flow behavior index (n) was closer to 1 in both juice samples, which indicated Newtonian-like flow behavior. Conclusively, sapodilla juice extraction at optimal condition (0.120% of pectinase concentration) and 42.02°C/167.83 min would be potentiated to the beverage industry. The use of pectinase might reduce membrane fouling and facilitates processing operation efficiently.
Collapse
|
67
|
Lozano-Castellón J, Rinaldi de Alvarenga JF, Vallverdú-Queralt A, Lamuela-Raventós RM. Cooking with extra-virgin olive oil: A mixture of food components to prevent oxidation and degradation. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
68
|
Novikov VS, Kuzmin VV, Darvin ME, Lademann J, Sagitova EA, Prokhorov KA, Ustynyuk LY, Nikolaeva GY. Relations between the Raman spectra and molecular structure of selected carotenoids: DFT study of α-carotene, β-carotene, γ-carotene and lycopene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120755. [PMID: 34973611 DOI: 10.1016/j.saa.2021.120755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Using the density functional theory (DFT), we calculated the structures and Raman spectra of trans-isomers of α-carotene, β-carotene, γ-carotene and lycopene as well as trans-isomers of modified β-carotene and lycopene molecules with substituted end or/and side groups. The DFT calculations showed that the position of the CC stretching band depends mainly on the number of conjugated CC bonds and decreases with an increase in the conjugation length. The weak dependence of the position of the CC stretching band on the structure of the carotenoid side and end groups suggests that this band can be used to evaluate the conjugation length for trans-isomers of various molecules containing polyene chains. The CC stretching band shifts towards lower wavenumbers with growth of the conjugation length or masses of the end groups and to higher wavenumbers in the presence of the side CH3 groups. The intensities of the CC and CC stretching bands are enhanced with growth of the conjugation length or masses of the end groups. The presence of the side CH3 groups results in bending of the carotenoid backbone, splitting and dumping of intensities of the CC and CC stretching bands.
Collapse
Affiliation(s)
- V S Novikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia.
| | - V V Kuzmin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - M E Darvin
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| | - J Lademann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| | - E A Sagitova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - K A Prokhorov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - L Yu Ustynyuk
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1(3), 119991 Moscow, Russia
| | - G Yu Nikolaeva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|
69
|
Sodedji FAK, Ryu D, Choi J, Agbahoungba S, Assogbadjo AE, N’Guetta SPA, Jung JH, Nho CW, Kim HY. Genetic Diversity and Association Analysis for Carotenoid Content among Sprouts of Cowpea ( Vigna unguiculata L. Walp). Int J Mol Sci 2022; 23:3696. [PMID: 35409065 PMCID: PMC8998333 DOI: 10.3390/ijms23073696] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
The development and promotion of biofortified foods plants are a sustainable strategy for supplying essential micronutrients for human health and nutrition. We set out to identify quantitative trait loci (QTL) associated with carotenoid content in cowpea sprouts. The contents of carotenoids, including lutein, zeaxanthin, and β-carotene in sprouts of 125 accessions were quantified via high-performance liquid chromatography. Significant variation existed in the profiles of the different carotenoids. Lutein was the most abundant (58 ± 12.8 mg/100 g), followed by zeaxanthin (14.7 ± 3.1 mg/100 g) and β-carotene (13.2 ± 2.9 mg/100 g). A strong positive correlation was observed among the carotenoid compounds (r ≥ 0.87), indicating they can be improved concurrently. The accessions were distributed into three groups, following their carotenoid profiles, with accession C044 having the highest sprout carotenoid content in a single cluster. A total of 3120 genome-wide SNPs were tested for association analysis, which revealed that carotenoid biosynthesis in cowpea sprouts is a polygenic trait controlled by genes with additive and dominance effects. Seven loci were significantly associated with the variation in carotenoid content. The evidence of variation in carotenoid content and genomic regions controlling the trait creates an avenue for breeding cowpea varieties with enhanced sprouts carotenoid content.
Collapse
Affiliation(s)
- Frejus Ariel Kpedetin Sodedji
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (F.A.K.S.); (D.R.); (J.C.); (J.H.J.); (C.W.N.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Korea
- Non-Timber Forest Products and Orphan Crop Species Unit, Laboratory of Applied Ecology (LEA), University of Abomey-Calavi (UAC), Cotonou 05 BP 1752, Benin; (S.A.); (A.E.A.)
- West Africa Center of Excellence in Climate Change Biodiversity and Sustainable Agriculture (CEA-CCBAD), Biosciences Research Unit, University Felix Houphouet-Boigny, 22 BP 582 Abidjan 22, Abidjan 582, Côte d’Ivoire;
| | - Dahye Ryu
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (F.A.K.S.); (D.R.); (J.C.); (J.H.J.); (C.W.N.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Jaeyoung Choi
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (F.A.K.S.); (D.R.); (J.C.); (J.H.J.); (C.W.N.)
| | - Symphorien Agbahoungba
- Non-Timber Forest Products and Orphan Crop Species Unit, Laboratory of Applied Ecology (LEA), University of Abomey-Calavi (UAC), Cotonou 05 BP 1752, Benin; (S.A.); (A.E.A.)
| | - Achille Ephrem Assogbadjo
- Non-Timber Forest Products and Orphan Crop Species Unit, Laboratory of Applied Ecology (LEA), University of Abomey-Calavi (UAC), Cotonou 05 BP 1752, Benin; (S.A.); (A.E.A.)
| | - Simon-Pierre Assanvo N’Guetta
- West Africa Center of Excellence in Climate Change Biodiversity and Sustainable Agriculture (CEA-CCBAD), Biosciences Research Unit, University Felix Houphouet-Boigny, 22 BP 582 Abidjan 22, Abidjan 582, Côte d’Ivoire;
| | - Je Hyeong Jung
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (F.A.K.S.); (D.R.); (J.C.); (J.H.J.); (C.W.N.)
| | - Chu Won Nho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (F.A.K.S.); (D.R.); (J.C.); (J.H.J.); (C.W.N.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea; (F.A.K.S.); (D.R.); (J.C.); (J.H.J.); (C.W.N.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| |
Collapse
|
70
|
Agung Wibowo A, Heriyanto, Shioi Y, Limantara L, Brotosudarmo THP. Simultaneous purification of fucoxanthin isomers from brown seaweeds by open-column and high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1193:123166. [PMID: 35182858 DOI: 10.1016/j.jchromb.2022.123166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/12/2022] [Accepted: 02/07/2022] [Indexed: 11/21/2022]
Abstract
Simultaneous purification of fucoxanthin isomers from brown seaweeds by two steps of open-column chromatography (OCC) and reversed-phase (RP)-high-performance liquid chromatography (HPLC) is described. Analysis and identification of fucoxanthin isomers were performed by chromatographic and spectrophotometric properties such as retention time (tR), spectral shape, maximal absorption wavelength (λmax), Q-ratio, and mass spectrometry (MS) data including the ratio of fragment ions. The optimal conditions for a simultaneous separation and purification were examined by changing several parameters of HPLC, i.e., mobile phase composition, equilibration time, and column oven temperature. The purification procedure consisted of the following two steps: first, highly purified fucoxanthin fraction was obtained by a silica-gel OCC. Then, four major fucoxanthin isomers, all-trans, 13'-cis, 13-cis, and 9'-cis, were simultaneously separated and purified by RP-HPLC with an analytical C30 column and gradient elution in a mixture of water, methanol, and methyl tert-butyl ether. The purity of fucoxanthin isomers purified was >95% for all-trans and 9'-cis, 85% for 13'-cis, and >80% for 13-cis. A large-scale purification by RP-HPLC using a preparative C18 column was effective for the purification of all-trans and 9'-cis with a yield of 95%. This developed technique was fully applicable to analyze the enhanced production of fucoxanthin isomers by iodine-catalyzed stereomutation which composed of 9 isomer species including 9-cis.
Collapse
Affiliation(s)
- Arif Agung Wibowo
- Department of Chemistry and Ma Chung Research Center for Photosynthetic Pigments (MRCPP), Universitas Ma Chung, Villa Puncak Tidar N-01, Malang 65151, Indonesia
| | - Heriyanto
- Department of Chemistry and Ma Chung Research Center for Photosynthetic Pigments (MRCPP), Universitas Ma Chung, Villa Puncak Tidar N-01, Malang 65151, Indonesia
| | - Yuzo Shioi
- Department of Chemistry and Ma Chung Research Center for Photosynthetic Pigments (MRCPP), Universitas Ma Chung, Villa Puncak Tidar N-01, Malang 65151, Indonesia
| | - Leenawaty Limantara
- Center for Urban Studies, Universitas Pembangunan Jaya, Jl. Cendrawasih Raya B7/P, South Tangerang 15413, Banten, Indonesia
| | | |
Collapse
|
71
|
LaPorte MF, Vachev M, Fenn M, Diepenbrock C. Simultaneous dissection of grain carotenoid levels and kernel color in biparental maize populations with yellow-to-orange grain. G3 (BETHESDA, MD.) 2022; 12:6506523. [PMID: 35100389 PMCID: PMC8895983 DOI: 10.1093/g3journal/jkac006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/30/2021] [Indexed: 01/19/2023]
Abstract
Maize enriched in provitamin A carotenoids could be key in combatting vitamin A deficiency in human populations relying on maize as a food staple. Consumer studies indicate that orange maize may be regarded as novel and preferred. This study identifies genes of relevance for grain carotenoid concentrations and kernel color, through simultaneous dissection of these traits in 10 families of the US maize nested association mapping panel that have yellow to orange grain. Quantitative trait loci were identified via joint-linkage analysis, with phenotypic variation explained for individual kernel color quantitative trait loci ranging from 2.4% to 17.5%. These quantitative trait loci were cross-analyzed with significant marker-trait associations in a genome-wide association study that utilized ∼27 million variants. Nine genes were identified: four encoding activities upstream of the core carotenoid pathway, one at the pathway branchpoint, three within the α- or β-pathway branches, and one encoding a carotenoid cleavage dioxygenase. Of these, three exhibited significant pleiotropy between kernel color and one or more carotenoid traits. Kernel color exhibited moderate positive correlations with β-branch and total carotenoids and negligible correlations with α-branch carotenoids. These findings can be leveraged to simultaneously achieve desirable kernel color phenotypes and increase concentrations of provitamin A and other priority carotenoids.
Collapse
Affiliation(s)
- Mary-Francis LaPorte
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Mishi Vachev
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Matthew Fenn
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
72
|
Nantongo JS, Odoi JB, Agaba H, Gwali S. Nutritional prospects of jackfruit and its potential for improving dietary diversity in Uganda. BMC Res Notes 2022; 15:74. [PMID: 35193660 PMCID: PMC8862346 DOI: 10.1186/s13104-022-05916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE A sustainable way of providing essential nutrients from crops for the poor and undernourished is biofortification, through plant breeding. This study characterised the intraspecific variation of selected nutritional elements in the flakes and seeds of Ugandan jackfruit (Artocarpus heterophyllus) plus the phytochemical composition of leaves. The overall aim was to explore possibilities of selecting for varieties that are higher in selected essential nutrients. Selecting for nutrient dense crops has been mostly done for annual agricultural crops, and rarely for perennial fruit trees. RESULTS Uganda's Jackfruit has high macronutrients, especially magnesium and calcium. This study revealed that the amounts of these macronutrients were higher than those found in commonly consumed fruits, giving jackfruit a nutritional advantage with respect to these nutrients. The varieties sampled also differed significantly (p < 0.01) for some nutrients such as vitamin C, crude fat, crude fibre, total soluble solids and juice yield, highlighting the potential for selection for targeted nutritional gains. The seeds however, had less amounts of most of the quantified nutrients that also differed among the varieties. Significant intraspecific variation of the leaf total phenolics was also observed. With regard to the quantified nutritional elements in the flakes, the ethno-varieties were separated in space along PC1 (p < 0.001), PC2 (p < 0.001) and PC3 (p < 0.01) indicating their distinctness.
Collapse
Affiliation(s)
- Judith S Nantongo
- National Forestry Resources Research Institute, Kifu, Mukono, Uganda.
| | - Juventine B Odoi
- National Forestry Resources Research Institute, Kifu, Mukono, Uganda
| | - Hillary Agaba
- National Forestry Resources Research Institute, Kifu, Mukono, Uganda
| | - Samson Gwali
- National Forestry Resources Research Institute, Kifu, Mukono, Uganda
| |
Collapse
|
73
|
Zayed A, Sheashea M, Kassem IAA, Farag MA. Red and white cabbages: An updated comparative review of bioactives, extraction methods, processing practices, and health benefits. Crit Rev Food Sci Nutr 2022; 63:7025-7042. [PMID: 35174750 DOI: 10.1080/10408398.2022.2040416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Red and white cabbages (Brassica oleracea var. capitata f. alba and rubra, respectively) are two of the most commercially valued vegetables in crucifers, well-recognized for their unique sensory and nutritive attributes in addition to a myriad of health-promoting benefits. The current review addressed the differential qualitative/quantitative phytochemical make-ups for the first time for better utilization as nutraceuticals and to identify potential uses based on the chemical makeup of both cultivars (cvs.). In addition, extraction methods are compared highlighting their advantages and/or limitations with regards to improving yield and stability of cabbage bioactives, especially glucosinolates. Besides, the review recapitulated detailed action mechanism and safety of cabbage bioactives, as well as processing technologies to further improve their effects are posed as future perspectives. White and red cabbage cvs. revealed different GLSs profile which affected by food processing, including enzymatic hydrolysis, thermal breakdown, and leaching. In addition, the red cultivar provides high quality pigment for industrial applications. Moreover, non-conventional modern extraction techniques showed promising techniques for the recovery of their bioactive constituents compared to solvent extraction. All these findings pose white and red cabbages as potential candidates for inclusion in nutraceuticals and/or to be commercialized as functional foods prepared in different culinary forms.
Collapse
Affiliation(s)
- Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Tanta, Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mohamed Sheashea
- Aromatic and Medicinal Plants Department, Desert Research Center, Cairo, Egypt
| | - Iman A A Kassem
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Giza, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
74
|
Sarkar T, Salauddin M, Roy A, Sharma N, Sharma A, Yadav S, Jha V, Rebezov M, Khayrullin M, Thiruvengadam M, Chung IM, Shariati MA, Simal-Gandara J. Minor tropical fruits as a potential source of bioactive and functional foods. Crit Rev Food Sci Nutr 2022; 63:6491-6535. [PMID: 35164626 DOI: 10.1080/10408398.2022.2033953] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tropical fruits are defined as fruits that are grown in hot and humid regions within the Tropic of Cancer and Tropic of Capricorn, covering most of the tropical and subtropical areas of Asia, Africa, Central America, South America, the Caribbean and Oceania. Depending on the cultivation area covered, economic value and popularity these tropical fruits are divided into major and minor tropical fruits. There is an annual increment of 3.8% in terms of commercialization of the tropical fruits. In total 26 minor tropical fruits (Kiwifruit, Lutqua, Carambola, Tree Tomato, Elephant apple, Rambutan, Bay berry, Mangosteen, Bhawa, Loquat, Silver berry, Durian, Persimon, Longan, Passion fruit, Water apple, Pulasan, Indian gooseberry, Guava, Lychee, Annona, Pitaya, Sapodilla, Pepino, Jaboticaba, Jackfruit) have been covered in this work. The nutritional composition, phytochemical composition, health benefits, traditional use of these minor tropical fruits and their role in food fortification have been portrayed.
Collapse
Affiliation(s)
- Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Malda, India
| | - Molla Salauddin
- Department of Food Processing Technology, Mir Madan Mohanlal Govt. Polytechnic, West Bengal State Council of Technical Education, Nadia, India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Nikita Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Apoorva Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Saanya Yadav
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Vaishnavi Jha
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Maksim Rebezov
- Liaocheng University, Liaocheng, Shandong, China
- V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russian Federation
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Mars Khayrullin
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Mohammad Ali Shariati
- Liaocheng University, Liaocheng, Shandong, China
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
75
|
Wang J, Hu X, Chen J, Wang T, Huang X, Chen G. The Extraction of β-Carotene from Microalgae for Testing Their Health Benefits. Foods 2022; 11:foods11040502. [PMID: 35205979 PMCID: PMC8871089 DOI: 10.3390/foods11040502] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023] Open
Abstract
β-carotene, a member of the carotenoid family, is a provitamin A, and can be converted into vitamin A (retinol), which plays essential roles in the regulation of physiological functions in animal bodies. Microalgae synthesize a variety of carotenoids including β-carotene and are a rich source of natural β-carotene. This has attracted the attention of researchers in academia and the biotech industry. Methods to enrich or purify β-carotene from microalgae have been investigated, and experiments to understand the biological functions of microalgae products containing β-carotene have been conducted. To better understand the use of microalgae to produce β-carotene and other carotenoids, we have searched PubMed in August 2021 for the recent studies that are focused on microalgae carotenoid content, the extraction methods to produce β-carotene from microalgae, and the bioactivities of β-carotene from microalgae. Articles published in peer-reviewed scientific journals were identified, screened, and summarized here. So far, various types and amounts of carotenoids have been identified and extracted in different types of microalgae. Diverse methods have been developed overtime to extract β-carotene efficiently and practically from microalgae for mass production. It appears that methods have been developed to simplify the steps and extract β-carotene directly and efficiently. Multiple studies have shown that extracts or whole organism of microalgae containing β-carotene have activities to promote lifespan in lab animals and reduce oxidative stress in culture cells, etc. Nevertheless, more studies are warranted to study the health benefits and functional mechanisms of β-carotene in these microalgae extracts, which may benefit human and animal health in the future.
Collapse
Affiliation(s)
- Jing Wang
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China; (J.W.); (X.H.)
| | - Xinge Hu
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; (X.H.); (T.W.)
| | - Junbin Chen
- School of Public Health, Southern Medical University, Guangzhou 510515, China;
| | - Tiannan Wang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; (X.H.); (T.W.)
| | - Xianju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China; (J.W.); (X.H.)
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; (X.H.); (T.W.)
- Correspondence: ; Tel.: +1-865-974-6257
| |
Collapse
|
76
|
Heat and Light Stability of Pumpkin-Based Carotenoids in a Photosensitive Food: A Carotenoid-Coloured Beverage. Foods 2022; 11:foods11030485. [PMID: 35159635 PMCID: PMC8834637 DOI: 10.3390/foods11030485] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/07/2023] Open
Abstract
This study aimed to evaluate carotenoid degradation kinetics in a beverage coloured with pumpkin juice concentrate during storage at dark and illuminated conditions at four temperatures (10, 20, 35 and 45 °C). Carotenoids were quantified by HPLC-DAD, and kinetic parameters for carotenoid degradation were estimated by one-step nonlinear regression analysis. During dark storage, degradation kinetics was modelled by fractional conversion (all-trans-β-carotene) and zero-order equations (all-trans-antheraxanthin, all-trans-lutein, all-trans-violaxanthin and all-trans-neoxanthin). Storage of samples in a climatic chamber with intense light intensity (1875–3000 lux) accelerated the carotenoid losses. At illuminated conditions, degradation followed a first-order (all-trans-lutein, all-trans-violaxanthin and all-trans-neoxanthin) and fractional conversion model (all-trans-β-carotene and all-trans-antheraxanthin). Carotenoid degradation followed an Arrhenius temperature-dependency, with Ea values lower than 50 kJ/mol. Degradation was shown to be mainly by oxidative reactions. Packaging under minimal oxygen conditions, use of antioxidants (e.g., ascorbic acid), and proper choice of light sources at retail shelves may be considered to optimize the pigment retention in a carotenoid-coloured beverage during storage.
Collapse
|
77
|
Lycopene: A Natural Arsenal in the War against Oxidative Stress and Cardiovascular Diseases. Antioxidants (Basel) 2022; 11:antiox11020232. [PMID: 35204115 PMCID: PMC8868303 DOI: 10.3390/antiox11020232] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Lycopene is a bioactive red pigment found in plants, especially in red fruits and vegetables, including tomato, pink guava, papaya, pink grapefruit, and watermelon. Several research reports have advocated its positive impact on human health and physiology. For humans, lycopene is an essential substance obtained from dietary sources to fulfil the body requirements. The production of reactive oxygen species (ROS) causing oxidative stress and downstream complications include one of the major health concerns worldwide. In recent years, oxidative stress and its counter strategies have attracted biomedical research in order to manage the emerging health issues. Lycopene has been reported to directly interact with ROS, which can help to prevent chronic diseases, including diabetes and neurodegenerative and cardiovascular diseases. In this context, the present review article was written to provide an accumulative account of protective and ameliorative effects of lycopene on coronary artery disease (CAD) and hypertension, which are the leading causes of death worldwide. Lycopene is a potent antioxidant that fights ROS and, subsequently, complications. It reduces blood pressure via inhibiting the angiotensin-converting enzyme and regulating nitrous oxide bioavailability. It plays an important role in lowering of LDL (low-density lipoproteins) and improving HDL (high-density lipoproteins) levels to minimize atherosclerosis, which protects the onset of coronary artery disease and hypertension. Various studies have advocated that lycopene exhibited a combating competence in the treatment of these diseases. Owing to all the antioxidant, anti-diabetic, and anti-hypertensive properties, lycopene provides a potential nutraceutical with a protective and curing ability against coronary artery disease and hypertension.
Collapse
|
78
|
Honda M. Application of E/Z-Isomerization Technology for Enhancing Processing Efficiency, Health-Promoting Effects, and Usability of Carotenoids: A Review and Future Perspectives. J Oleo Sci 2022; 71:151-165. [PMID: 35034944 DOI: 10.5650/jos.ess21338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Carotenoids are naturally occurring pigments whose presence in the diet is beneficial to human health. Moreover, they have a wide range of applications in the food, cosmetic, and animal feed industries. As carotenoids contain multiple conjugated double bonds in the molecule, a large number of geometric (E/Z, trans/cis) isomers are theoretically possible. In general, (all-E)-carotenoids are the most predominant geometric isomer in nature, and they have high crystallinity and low solubility in various mediums, resulting in their low processing efficiency and bioavailability. Technological developments for improving the processing efficiency and bioavailability of carotenoids utilizing the Z-isomerization have recently been gaining traction. Namely, Z-isomerization of carotenoids induces a significant change in their physicochemical properties (e.g., solubility and crystallinity), leading to improved processing efficiency and bioavailability as well as several biological activities. For the practical use of isomerization technology for carotenoids, the development of efficient isomerization methods and an acute understanding of the changes in biological activity are required. This review highlights the recent advancements in various conventional and unconventional methods for carotenoid isomerization, such as thermal treatment, light irradiation, microwave irradiation, and catalytic treatment, as well as environment-friendly isomerization methods. Current progress in the improvement of processing efficiency and biological activity utilizing isomerization technology and an application development of carotenoid Z-isomers for the feed industry are also described. In addition, future research challenges in the context of carotenoid isomerization have been elaborated upon.
Collapse
Affiliation(s)
- Masaki Honda
- Faculty of Science & Technology, Meijo University
| |
Collapse
|
79
|
Ramasamy S, Lin MY, Wu WJ, Wang HI, Sotelo-Cardona P. Evaluating the Potential of Protected Cultivation for Off-Season Leafy Vegetable Production: Prospects for Crop Productivity and Nutritional Improvement. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.731181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of different protective structures on horticultural and nutritional yield of amaranth and water spinach were studied in three seasons of 2020–2021 in Taiwan. The number of people that can receive recommended dietary intake of iron and β-Carotene from vegetables grown under different production conditions was also estimated. The yield of white and red amaranths was consistently better (7.68–19.70 t/ha) under pink poly-net house in all the seasons, but the yield of water spinach was consistently better under white poly-net house (16.25–20.88 t/ha). Spider mite (fall & spring) and aphid (winter) infestation was mostly observed on all crops under poly-net houses. Neoxanthin, lutein and β-carotene were almost two-fold higher in red amaranth harvested from poly-net houses than open field. Based on the RDI values, β-Carotene supply to both men and women (14+) was consistently higher in all crops produced under pink ploy-net houses in all seasons, except for white amaranth produced under white poly-net house during winter. Its supply to 64,788 more men and 83,298 more women was estimated for red amaranth harvested from pink poly-net house than other production conditions. α-carotene was 2–3 fold higher in amaranths and water spinach harvested from poly-net houses than open field. The iron content of the amaranths was lower in poly-net houses (234.50–574.04 g/ha) than open field (645.42–881.67 g/ha) in the fall, but its supply from pink poly-net house was comparable with open field in the winter. However, pink poly-net house was the highest iron supplier from water spinach (323.90 g/ha) in the winter, which was estimated to provide iron to 19,450–22,939 more men and women than other production conditions. Both poly-net houses were the sole supplier of iron through amaranths in the spring, with pink poly-net house supplying iron to 2,000–5,000 more men and women. Thus, protected cultivation not only leads to more marketable yields but also results in higher quantities of health promoting nutrients. Hence, pink poly-net house may be considered to produce more nutritious vegetables, especially during the off-season to bridge the gaps in the seasonal variations in vegetable consumption, besides providing better income opportunities to the smallholder farmers.
Collapse
|
80
|
Marsh A, Radford-Smith G, Banks M, Lord A, Chachay V. Dietary intake of patients with inflammatory bowel disease aligns poorly with traditional Mediterranean diet principles. Nutr Diet 2021; 79:229-237. [PMID: 34806269 DOI: 10.1111/1747-0080.12715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022]
Abstract
AIM Previous research has shown that individuals with inflammatory bowel disease avoid specific food items, such as fibre rich foods, in order to manage symptoms. Dietary fibre and the traditional Mediterranean diet are both associated with reduced mucosal and systemic inflammation, gut barrier integrity, and microbiota diversity. There is limited data on the diet composition of individuals with inflammatory bowel disease. The aim of this study was to evaluate how it compares to the traditional Mediterranean diet and national dietary guidelines. METHODS Outpatients with inflammatory bowel disease were recruited to the study between February and August 2019. Demographic and medical information was obtained for consenting participants. All participants completed a dietary assessment of usual intake (24-h diet recall and 17-point ready reckoner) from which a Mediterranean diet adherence score was calculated. Dietary intake of core food groups was compared to the recommended number of serves outlined in the Australian Guide to Healthy Eating. RESULTS 100 participants were recruited. The mean Mediterranean diet adherence score was 5.1 ± 1.3 (maximum 14 points), 4% of participants scored ≥9 (commonly agreed criteria for Mediterranean diet adherence). Participants also consumed considerably less grains and vegetables than national dietary guidelines recommendations. CONCLUSIONS The diet of outpatients with inflammatory bowel disease did not align with Mediterranean diet characteristics. Participants consumed significantly less grains and vegetables than national guidelines, suggesting a low fibre intake. These findings suggest that dietary interventions focusing on improving the diet of individuals with inflammatory bowel disease to align with Mediterranean diet characteristics are warranted.
Collapse
Affiliation(s)
- Abigail Marsh
- The School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia.,Department of Nutrition and Dietetics, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Graham Radford-Smith
- Gut Health Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Merrilyn Banks
- Department of Nutrition and Dietetics, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Anton Lord
- Gut Health Group, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Veronique Chachay
- The School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
81
|
Gebretsadik K, Qiu X, Dong S, Miao H, Bo K. Molecular research progress and improvement approach of fruit quality traits in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3535-3552. [PMID: 34181057 DOI: 10.1007/s00122-021-03895-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/21/2021] [Indexed: 05/10/2023]
Abstract
Recent molecular studies revealed new opportunities to improve cucumber fruit quality. However, the fruit color and spine traits molecular basis remain vague despite the vast sources of genetic diversity. Cucumber is agriculturally, economically and nutritionally important vegetable crop. China produces three-fourths of the world's total cucumber production. Cucumber fruit quality depends on a number of traits such as the fruit color (peel and flesh color), spine (density, size and color), fruit shape, fruit size, defects, texture, firmness, taste, maturity stage and nutritional composition. Fruit color and spine traits determine critical quality attributes and have been the interest of researchers at the molecular level. Evaluating the molecular mechanisms of fruit quality traits is important to improve production and quality of cucumber varieties. Genes and qualitative trait locus (QTL) that are responsible for cucumber fruit color and fruit spine have been identified. The purpose of this paper is to reveal the molecular research progress of fruit color and spines as key quality traits of cucumber. The markers and genes identified so far could help for marker-assisted selection of the fruit color and spine trait in cucumber breeding and its associated nutritional improvement. Based on the previous studies, peel color and spine density as examples, we proposed a comprehensive approach for cucumber fruit quality traits improvement. Moreover, the markers and genes can be useful to facilitate cloning-mediated genetic breeding in cucumber. However, in the era of climate change, increased human population and high-quality demand of consumers, studies on molecular mechanisms of cucumber fruit quality traits are limited.
Collapse
Affiliation(s)
- Kiros Gebretsadik
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Science, Aksum University, Shire Campus, Shire, Ethiopia
| | - Xiyan Qiu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoyun Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kailiang Bo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
82
|
Dini I. Bio Discarded from Waste to Resource. Foods 2021; 10:2652. [PMID: 34828933 PMCID: PMC8621767 DOI: 10.3390/foods10112652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
The modern linear agricultural production system allows the production of large quantities of food for an ever-growing population. However, it leads to large quantities of agricultural waste either being disposed of or treated for the purpose of reintroduction into the production chain with a new use. Various approaches in food waste management were explored to achieve social benefits and applications. The extraction of natural bioactive molecules (such as fibers and antioxidants) through innovative technologies represents a means of obtaining value-added products and an excellent measure to reduce the environmental impact. Cosmetic, pharmaceutical, and nutraceutical industries can use natural bioactive molecules as supplements and the food industry as feed and food additives. The bioactivities of phytochemicals contained in biowaste, their potential economic impact, and analytical procedures that allow their recovery are summarized in this study. Our results showed that although the recovery of bioactive molecules represents a sustainable means of achieving both waste reduction and resource utilization, further research is needed to optimize the valuable process for industrial-scale recovery.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
83
|
Arshad F, Umbreen H, Aslam I, Hameed A, Aftab K, Al-Qahtani WH, Aslam N, Noreen R. Therapeutic Role of Mango Peels in Management of Dyslipidemia and Oxidative Stress in Obese Females. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3094571. [PMID: 34725636 PMCID: PMC8557052 DOI: 10.1155/2021/3094571] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
Obesity is a chronic metabolic and noncommunicable disease that affects 50% of world population. Reactive oxygen species and oxidative stress are interconnected with the obesity and several metabolic disorders, gaining the attention of scientific community to combat this problem naturally. Among various fruits, mango as a yellow fruit is rich in polyphenols, carotenoids, terpenes, and flavonoids that act as antioxidants to protect against free radicals produced in the body. The present study was performed to explore in vivo antioxidant potential of mango peels against dyslipidemia and oxidative stress in overweight subjects. The female volunteers (n = 31) between 25 and 45 years of age having a body mass index (BMI) of 25.0-29.9 (overweight) were included in this study, while participants with complications as diabetes, hypertension, cardiovascular, and liver diseases were excluded. The treatment group consumed 1 g mango peel powder for 84 days. The subjects were analyzed for biochemical analysis, antioxidant status, and anthropometric measurements at baseline and end of the study period. Further, at the end of study, the safety evaluation tests were also performed. The results showed that upon consumption of mango peel powder, low-density lipoproteins (LDL), cholesterol, triglyceride, urea, and creatinine levels were decreased and high-density lipoprotein (HDL) level was increased (P ≤ 0.05), while thiobarbituric acid reactive substances (TBARS) showed increased antioxidant status (P ≤ 0.05) which suggests that mango peels have a strong management potential against oxidative stress and dyslipidemia in obese subjects.
Collapse
Affiliation(s)
- Farkhanda Arshad
- Department of Biochemistry, Government College University, Faisalabad-, Pakistan
| | - Huma Umbreen
- Department of Nutritional Sciences, Government College University, Faisalabad-, Pakistan
| | - Iqra Aslam
- Department of Biochemistry, University of Management and Technology, Sialkot Campus, Sialkot-, Pakistan
| | - Arruje Hameed
- Department of Biochemistry, Government College University, Faisalabad-, Pakistan
| | - Kiran Aftab
- Department of Chemistry, Government College University, Faisalabad-, Pakistan
| | - Wahidah H. Al-Qahtani
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nighat Aslam
- Department of Biochemistry, Independent Medical College, Faisalabad-, Pakistan
| | - Razia Noreen
- Department of Biochemistry, Government College University, Faisalabad-, Pakistan
| |
Collapse
|
84
|
Slonimskiy YB, Egorkin NA, Friedrich T, Maksimov EG, Sluchanko NN. Microalgal protein AstaP is a potent carotenoid solubilizer and delivery module with a broad carotenoid binding repertoire. FEBS J 2021; 289:999-1022. [PMID: 34582628 DOI: 10.1111/febs.16215] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Carotenoids are lipophilic substances with many biological functions, from coloration to photoprotection. Being potent antioxidants, carotenoids have multiple biomedical applications, including the treatment of neurodegenerative disorders and retina degeneration. Nevertheless, the delivery of carotenoids is substantially limited by their poor solubility in the aqueous phase. Natural water-soluble carotenoproteins can facilitate this task, necessitating studies on their ability to uptake and deliver carotenoids. One such promising carotenoprotein, AstaP (astaxanthin-binding protein), was recently identified in eukaryotic microalgae, but its structure and functional properties remained largely uncharacterized. By using a correctly folded recombinant protein, here we show that AstaP is an efficient carotenoid solubilizer that can stably bind not only astaxanthin but also zeaxanthin, canthaxanthin, and, to a lesser extent, β-carotene, that is, carotenoids especially valuable to human health. AstaP accepts carotenoids provided as acetone solutions or embedded in membranes, forming carotenoid-protein complexes with an apparent stoichiometry of 1:1. We successfully produced AstaP holoproteins in specific carotenoid-producing strains of Escherichia coli, proving it is amenable to cost-efficient biotechnology processes. Regardless of the carotenoid type, AstaP remains monomeric in both apo- and holoform, while its rather minimalistic mass (~ 20 kDa) makes it an especially attractive antioxidant delivery module. In vitro, AstaP transfers different carotenoids to liposomes and to unrelated proteins from cyanobacteria, which can modulate their photoactivity and/or oligomerization. These findings expand the toolkit of the characterized carotenoid binding proteins and outline the perspective of the use of AstaP as a unique monomeric antioxidant nanocarrier with an extensive carotenoid binding repertoire.
Collapse
Affiliation(s)
- Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Nikita A Egorkin
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Thomas Friedrich
- Institute of Chemistry PC 14, Technical University of Berlin, Berlin, Germany
| | - Eugene G Maksimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
85
|
Gómez X, Sanon S, Zambrano K, Asquel S, Bassantes M, Morales JE, Otáñez G, Pomaquero C, Villarroel S, Zurita A, Calvache C, Celi K, Contreras T, Corrales D, Naciph MB, Peña J, Caicedo A. Key points for the development of antioxidant cocktails to prevent cellular stress and damage caused by reactive oxygen species (ROS) during manned space missions. NPJ Microgravity 2021; 7:35. [PMID: 34556658 PMCID: PMC8460669 DOI: 10.1038/s41526-021-00162-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
Exposure to microgravity and ionizing radiation during spaceflight missions causes excessive reactive oxygen species (ROS) production that contributes to cellular stress and damage in astronauts. Average spaceflight mission time is expected to lengthen as humanity aims to visit other planets. However, longer missions or spaceflights will undoubtedly lead to an increment in microgravity, ionizing radiation and ROS production. Strategies to minimize ROS damage are necessary to maintain the health of astronauts, future space colonists, and tourists during and after spaceflight missions. An antioxidant cocktail formulated to prevent or mitigate ROS damage during space exploration could help maintain the health of space explorers. We propose key points to consider when developing an antioxidant cocktail. We discuss how ROS damages our body and organs, the genetic predisposition of astronauts to its damage, characteristics and evidence of the effectiveness of antioxidants to combat excess ROS, differences in drug metabolism when on Earth and in space that could modify antioxidant effects, and the characteristics and efficacy of common antioxidants. Based on this information we propose a workflow for assessing astronaut resistance to ROS damage, infight monitoring of ROS production, and an antioxidant cocktail. Developing an antioxidant cocktail represents a big challenge to translate current medical practices from an Earth setting to space. The key points presented in this review could promote the development of different antioxidant formulations to maintain space explorers' health in the future.
Collapse
Affiliation(s)
- Xavier Gómez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Serena Sanon
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Cornell University, Ithaca, NY, USA
- Mito-Act Research Consortium, Quito, Ecuador
| | - Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Samira Asquel
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Mariuxi Bassantes
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Julián E Morales
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Gabriela Otáñez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Core Pomaquero
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Sarah Villarroel
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Alejandro Zurita
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Carlos Calvache
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Kathlyn Celi
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Terry Contreras
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Dylan Corrales
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - María Belén Naciph
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - José Peña
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador.
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador.
- Mito-Act Research Consortium, Quito, Ecuador.
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador.
| |
Collapse
|
86
|
Vegetable phytochemicals: An update on extraction and analysis techniques. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
87
|
Zhang C, Li B. Fabrication and stability of carotenoids-loaded emulsions stabilized by soy protein isolate. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2020.1791718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Chunlan Zhang
- College of Life Science, Tarim University, Alar, China
- Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, Alar, Xinjiang, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| |
Collapse
|
88
|
Perumal AB, Nambiar RB, Sellamuthu PS, Emmanuel RS. Use of modified atmosphere packaging combined with essential oils for prolonging post-harvest shelf life of mango (cv. Banganapalli and cv. Totapuri). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
89
|
The Effect of Ripening Stages on the Accumulation of Carotenoids, Polyphenols and Vitamin C in Rosehip Species/Cultivars. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156761] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our research was aimed at assessing the effect of accumulation of carotenoids, polyphenols, vitamin C and ripening stage in the rosehip fruits of two species—Rosa canina, Rosa rugosa and two cultivar—Rosa rugosa ‘Rubra’ and Rosa rugosa ‘Alba’. The amounts of carotenoids, polyphenols and vitamin C were determined using the high-performance liquid chromatography (HPLC) method. The obtained results showed that the significantly highest amount (107.15 mg 100 g−1) of total carotenoid was determined in the fruits of Rosa canina at ripening Stage V. While results indicated that significant amount of total polyphenols were established at Stages I and II in the Rosa Rugosa ‘Alba’ and Rosa rugosa ‘Rubra’ cultivars (110.34 mg 100 g−1, 107.88 mg 100 g−1 and 103.20 mg 100 g−1 103.39 mg 100 g−1). At ripening Stage I, in the fruits of Rosa rugosa the greatest increases were established in the contents of vitamin C (3036.08 mg 100 g−1).
Collapse
|
90
|
Inroga MMAS, da Silva MM, Cantillano RFF, Paese K, Guterres SS, Flôres SH, de Oliveira Rios A. Apples ( Malus Domestica Borkh) Minimally Processed Biofortified with Nanoencapsulated β-carotene. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2021. [DOI: 10.1080/15428052.2021.1948479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | | | - Karina Paese
- Programa De Pós-Graduação Em Ciências Farmacêuticas, Faculdade De Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Sílvia Stanisçuaski Guterres
- Programa De Pós-Graduação Em Ciências Farmacêuticas, Faculdade De Farmácia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Simone Hickmann Flôres
- Instituto De Ciência E Tecnologia De Alimentos, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Alessandro de Oliveira Rios
- Instituto De Ciência E Tecnologia De Alimentos, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
91
|
Novikov VS, Kuzmin VV, Kuznetsov SM, Darvin ME, Lademann J, Sagitova EA, Ustynyuk LY, Prokhorov KA, Nikolaeva GY. DFT study of Raman spectra of polyenes and ß-carotene: Dependence on length of polyene chain and isomer type. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119668. [PMID: 33761387 DOI: 10.1016/j.saa.2021.119668] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/20/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
We carried out calculations of non-resonance Raman spectra of ß-carotene and polyenes CH2(CHCH)n-2CHCH2 using the density functional theory (DFT). We revealed that the peak positions and intensities of the CC and CC stretching bands depend on length of the polyene chain and type of the isomer. Our experimental non-resonance Raman spectra of ß-carotene powder match well the DFT-simulated Raman spectrum of ß-carotene in the all-trans form. The peak positions and relative intensities of the CC and CC stretching bands of ß-carotene turned out to be similar in the resonance and non-resonance Raman spectra. An increase in the number of conjugated double bonds (n = 3-30) in a polyene structure results in a monotonous shift of the positions of the most intense CC and CC bands towards lower wavenumbers with an increase in the band intensities. An increase in the isomer number results in the monotonous decrease of the CC stretching band intensity for polyenes with 9, 10, 11, 15 and 24 double bonds. An increase in the isomer number inhomogeneously influences the form, position and intensity of the CC stretching band.
Collapse
Affiliation(s)
- V S Novikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia.
| | - V V Kuzmin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - S M Kuznetsov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - M E Darvin
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| | - J Lademann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charitéplatz 1, 10117 Berlin, Germany
| | - E A Sagitova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - L Yu Ustynyuk
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1(3), 119991 Moscow, Russia
| | - K A Prokhorov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - G Yu Nikolaeva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|
92
|
β-Carotene Status Is Associated with Inflammation and Two Components of Metabolic Syndrome in Patients with and without Osteoarthritis. Nutrients 2021; 13:nu13072280. [PMID: 34209267 PMCID: PMC8308445 DOI: 10.3390/nu13072280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
This study was conducted to investigate the β-carotene status in osteoarthritis (OA) patients and examine its relationships with the risk of inflammation and metabolic syndrome. OA patients were stratified by obesity based on body fat percentage (obese OA, n = 44; non-obese OA, n = 56), and sixty-nine subjects without OA or obesity were assigned as a non-obese control group. β-carotene, metabolic parameters, and inflammation status were assessed. Obese OA patients exhibited a significantly higher rate of metabolic syndrome (p = 0.02), abdominal obesity (p < 0.01), and lower β-carotene status (p < 0.01) compared with non-obese OA and non-obese controls. After adjusting for potential confounders, β-carotene status (≥0.8 µM) was significantly inversely correlated with the risk of metabolic syndrome (odds ratio = 0.27, p < 0.01), abdominal obesity (odds ratio = 0.33, p < 0.01), high blood pressure (odds ratio = 0.35, p < 0.01), hyperglycemia (odds ratio = 0.45, p < 0.05), and inflammation (odds ratio = 0.30, p = 0.01). Additionally, subjects who had a high β-carotene status with a low proportion of metabolic syndrome when they had a low-grade inflammatory status (p < 0.01). Obese OA patients suffered from a higher prevalence of metabolic syndrome and lower β-carotene status compared to the non-obese controls. A better β-carotene status (≥0.8 µM) was inversely associated with the risk of metabolic syndrome and inflammation, so we suggest that β-carotene status could be a predictor of the risk of metabolic syndrome and inflammation in patients with and without OA.
Collapse
|
93
|
Megía-Palma R, Barrientos R, Gallardo M, Martínez J, Merino S. Brighter is darker: the Hamilton–Zuk hypothesis revisited in lizards. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Abstract
Several studies of lizards have made an erroneous interpretation of negative relationships between spectral brightness and parasite load, and thus provided misleading support for the Hamilton–Zuk hypothesis (HZH). The HZH predicts that infected hosts will produce poorer sexual ornamentation than uninfected individuals as a result of energetic trade-offs between immune and signalling functions. To test whether there is a negative relationship between spectral brightness and pigment content in the skin of lizards, we used spectrophotometry to quantify the changes in spectral brightness of colour patches of two species after chemically manipulating the contents of orange, yellow and black pigments in skin samples. Carotenoids were identified using high-performance liquid chromatography. In addition, we compared the spectral brightness in the colour patches of live individuals with differential expression of nuptial coloration. Overall, the analyses demonstrated that the more pigmented the colour patch, the darker the spectrum. We provide a comprehensive interpretation of how variation in pigment content affects the spectral brightness of the colour patches of lizards. Furthermore, we review 18 studies of lizards presenting 24 intraspecific tests of the HZH and show that 14 (58%) of the tests do not support the hypothesis.
Collapse
Affiliation(s)
- Rodrigo Megía-Palma
- Universidad de Alcalá (UAH), Área de Parasitología, Departamento de Biomedicina y Biotecnología, Facultad de Farmacia, Alcalá de Henares, Spain
- CIBIO, InBIO – Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, Vairão, Porto, Portugal
| | - Rafael Barrientos
- Road Ecology Laboratory, Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, José Antonio Novais, Madrid, Spain
| | - Manuela Gallardo
- Laboratorio de Histología, Museo Nacional de Ciencias Naturales-CSIC, c/ José Gutiérrez Abascal, Madrid, Spain
| | - Javier Martínez
- Universidad de Alcalá (UAH), Área de Parasitología, Departamento de Biomedicina y Biotecnología, Facultad de Farmacia, Alcalá de Henares, Spain
| | - Santiago Merino
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales-CSIC, c/ José Gutiérrez Abascal, Madrid, Spain
| |
Collapse
|
94
|
de Souza Guedes L, Martinez RM, Bou-Chacra NA, Velasco MVR, Rosado C, Baby AR. An Overview on Topical Administration of Carotenoids and Coenzyme Q10 Loaded in Lipid Nanoparticles. Antioxidants (Basel) 2021; 10:1034. [PMID: 34206935 PMCID: PMC8300771 DOI: 10.3390/antiox10071034] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Carotenoids and coenzyme Q10 are naturally occurring antioxidant compounds that are also found in human skin. These bioactive compounds have been the focus of considerable research due to their antioxidant, anti-inflammatory, and photoprotective properties. In this review, the current state of the art in the encapsulation of carotenoids and coenzyme Q10 in lipid nanoparticles to improve their bioavailability, chemical stability, and skin absorption is discussed. Additionally, the main findings are highlighted on the cytotoxic and photoprotective effects of these systems in the skin.
Collapse
Affiliation(s)
- Luciana de Souza Guedes
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Renata Miliani Martinez
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Nádia A. Bou-Chacra
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Maria Valéria Robles Velasco
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| | - Catarina Rosado
- CBIOS, Universidade Lusófona’s Research Center for Biosciences & Health Technologies, 1749-024 Lisbon, Portugal;
| | - André Rolim Baby
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (L.d.S.G.); (R.M.M.); (N.A.B.-C.); (M.V.R.V.)
| |
Collapse
|
95
|
Encapsulation of Carotenoids as Food Colorants via Formation of Cyclodextrin Inclusion Complexes: A Review. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2020028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The use of natural carotenoids as food colorants is an important trend of innovation in the industry due to their low toxicity, their potential as bio-functional ingredients, and the increasing demand for natural and organic foods. Despite these benefits, their inclusion in food matrices presents multiple challenges related to their low stability and low water solubility. The present review covers the main concepts and background of carotenoid inclusion complex formation in cyclodextrins as a strategy for their stabilization, and subsequent inclusion in food products as color additives. The review includes the key aspects of the molecular and physicochemical properties of cyclodextrins as complexing agents, and a detailed review of the published evidence on complex formation with natural carotenoids from different sources in cyclodextrins, comparing complex formation methodologies, recovery, inclusion efficiency, and instrumental characterization techniques. Moreover, process flow diagrams (PFD), based on the most promising carotenoid-cyclodextrin complex formation methodologies reported in literature, are proposed, and discussed as a potential tool for their future scale-up. This review shows that the inclusion of carotenoids in complexes with cyclodextrins constitutes a promising technology for the stabilization of these pigments, with possible advantages in terms of their stability in food matrices.
Collapse
|
96
|
Potential applications of algae in biochemical and bioenergy sector. 3 Biotech 2021; 11:296. [PMID: 34136333 DOI: 10.1007/s13205-021-02825-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023] Open
Abstract
Algae have gained substantial importance as the most promising potential green fuel source across the globe and is on growing demand due to their antioxidant, anticancer, antiviral, antihypertensive, cholesterol reducing and thickening properties. Therefore, it has vast range of application in medicines, pharmaceutical, cosmetics, paper and nutraceutical industries. In this work, the remarkable ability of algae to convert CO2 and other toxic compounds in atmosphere to potential biofuels, foods, feeds and high-value bioactive compounds is reviewed. Algae produce approximately 50% of the earth's oxygen using its photosynthetic activity, thus acting as a potent tool to mitigate the effects of air pollution. Further, the applicability of algae as a desirable energy source has also been discussed, as they have the potential to serve as an effective alternative to intermittent renewable energy; and also, to combustion-based fossil fuel energy, making them effective for advanced biofuel conversions. This work also evaluates the current applications of algae and the implications of it as a potential substrate for bioplastic, natural alternative to inks and for making paper besides high-value products. In addition, the scope for integrated biorefinery approach is also briefly explored in terms of economic aspects at the industrial scale, as such energy conversion mechanisms are directly linked with sustainability, thus providing a positive overall energy outlook.
Collapse
|
97
|
Diepenbrock CH, Ilut DC, Magallanes-Lundback M, Kandianis CB, Lipka AE, Bradbury PJ, Holland JB, Hamilton JP, Wooldridge E, Vaillancourt B, Góngora-Castillo E, Wallace JG, Cepela J, Mateos-Hernandez M, Owens BF, Tiede T, Buckler ES, Rocheford T, Buell CR, Gore MA, DellaPenna D. Eleven biosynthetic genes explain the majority of natural variation in carotenoid levels in maize grain. THE PLANT CELL 2021; 33:882-900. [PMID: 33681994 PMCID: PMC8226291 DOI: 10.1093/plcell/koab032] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/26/2021] [Indexed: 05/03/2023]
Abstract
Vitamin A deficiency remains prevalent in parts of Asia, Latin America, and sub-Saharan Africa where maize (Zea mays) is a food staple. Extensive natural variation exists for carotenoids in maize grain. Here, to understand its genetic basis, we conducted a joint linkage and genome-wide association study of the US maize nested association mapping panel. Eleven of the 44 detected quantitative trait loci (QTL) were resolved to individual genes. Six of these were correlated expression and effect QTL (ceeQTL), showing strong correlations between RNA-seq expression abundances and QTL allelic effect estimates across six stages of grain development. These six ceeQTL also had the largest percentage of phenotypic variance explained, and in major part comprised the three to five loci capturing the bulk of genetic variation for each trait. Most of these ceeQTL had strongly correlated QTL allelic effect estimates across multiple traits. These findings provide an in-depth genome-level understanding of the genetic and molecular control of carotenoids in plants. In addition, these findings provide a roadmap to accelerate breeding for provitamin A and other priority carotenoid traits in maize grain that should be readily extendable to other cereals.
Collapse
Affiliation(s)
| | - Daniel C Ilut
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Maria Magallanes-Lundback
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Catherine B Kandianis
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Alexander E Lipka
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Peter J Bradbury
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
- United States Department of Agriculture—Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
| | - James B Holland
- United States Department of Agriculture—Agricultural Research Service, Plant Science Research Unit, Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Edmund Wooldridge
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Elsa Góngora-Castillo
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Jason G Wallace
- Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia 30602
| | - Jason Cepela
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Maria Mateos-Hernandez
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Brenda F Owens
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Tyler Tiede
- Present addresses: Nacre Innovations, Houston, Texas 77002 (C.B.K.); Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (A.E.L.); University of Michigan, Ann Arbor, MI 48109 (E.W.); Centro de Investigación Científica de Yucatan, CONACYT—Unidad de Biotecnologia, Merida, Yucatan 97200, Mexico (E.G.-C.); Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota 55455 (J.C.); Bayer, Stonington, Illinois 62567 (M.M.-H.); BASF, Dawson, Georgia 39842 (B.F.O.); and Corteva Agriscience, St. Paul, Minnesota 55108 (T.T.)
| | - Edward S Buckler
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
- United States Department of Agriculture—Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
| | - Torbert Rocheford
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Michael A Gore
- Authors for correspondence: (C.H.D.), (M.A.G.), and (D.D.P.)
| | - Dean DellaPenna
- Authors for correspondence: (C.H.D.), (M.A.G.), and (D.D.P.)
| |
Collapse
|
98
|
Yagi A, Nouchi R, Butler L, Kawashima R. Lutein Has a Positive Impact on Brain Health in Healthy Older Adults: A Systematic Review of Randomized Controlled Trials and Cohort Studies. Nutrients 2021; 13:1746. [PMID: 34063827 PMCID: PMC8223987 DOI: 10.3390/nu13061746] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
A previous systematic review revealed that lutein intake leads to improved cognitive function among older adults. However, the association between lutein intake and brain health remains unclear. METHODS We searched the Web of Science, PubMed, PsycInfo, and Cochrane Library for research papers. The criteria were (1) an intervention study using oral lutein intake or a cross-sectional study that examined lutein levels and the brain, (2) participants were older adults, and (3) brain activities or structures were measured using a brain imaging technique (magnetic resonance imaging (MRI) or electroencephalography (EEG)). RESULTS Seven studies using MRI (brain activities during rest, cognitive tasks, and brain structure) and two studies using EEG were included. We mainly focused on MRI studies. Three intervention studies using MRI indicated that 10 mg lutein intake over 12 months had a positive impact on healthy older adults' brain activities during learning, resting-state connectivity, and gray matter volumes. Four cross-sectional studies using MRI suggested that lutein was positively associated with brain structure and neural efficiency during cognitive tasks. CONCLUSION Although only nine studies that used similar datasets were reviewed, this systematic review indicates that lutein has beneficial effects on healthy older adults' brain health.
Collapse
Affiliation(s)
- Ayano Yagi
- Department of Cognitive Health Science, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan;
- Smart Aging Research Center, Tohoku University, Seiryo-machi 4-1, Sendai 980-8575, Japan;
| | - Rui Nouchi
- Department of Cognitive Health Science, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan;
- Smart Aging Research Center, Tohoku University, Seiryo-machi 4-1, Sendai 980-8575, Japan;
| | - Laurie Butler
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK;
| | - Ryuta Kawashima
- Smart Aging Research Center, Tohoku University, Seiryo-machi 4-1, Sendai 980-8575, Japan;
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
99
|
Differences in bioavailability and tissue accumulation efficiency of (all-E)- and (Z)-carotenoids: A comparative study. Food Chem 2021; 361:130119. [PMID: 34044214 DOI: 10.1016/j.foodchem.2021.130119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/27/2021] [Accepted: 05/12/2021] [Indexed: 02/01/2023]
Abstract
This study investigated the differences in bioavailability and tissue accumulation efficiency between all-E- and Z-isomer-rich carotenoids after oral administration to rats. Three commercially important carotenoids (lycopene, β-carotene, and lutein) were chosen for the study. For all carotenoids, feeding with Z-isomer-rich diets increased their concentrations in plasma and tissues at least similar to or more than the all-E-isomer-rich diets, e.g., in rats fed a Z-isomer-rich lycopene, the lycopene concentrations in the plasma and liver after the 2-week administration were respectively 6.2 and 11.6 times higher than those fed an all-E-isomer-rich diet. These results strongly indicate that carotenoid Z-isomers have higher bioavailability and tissue accumulation efficiency than the all-E-isomers. Moreover, diets rich in carotenoid Z-isomers significantly improved the total Z-isomer ratio in plasma and several tissues compared to the all-E-isomers. Since carotenoid Z-isomers potentially have higher antioxidant activity than the all-E-isomers, their accumulation in the body might bring remarkable health benefits.
Collapse
|
100
|
Comprehensive Evaluation of Late Season Peach Varieties ( Prunus persica L.): Fruit Nutritional Quality and Phytochemicals. Molecules 2021; 26:molecules26092818. [PMID: 34068685 PMCID: PMC8126153 DOI: 10.3390/molecules26092818] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
Peaches are one of the most preferred seasonal fruits, and a reliable source of nutrients. They possess biologically active substances that largely differ among varieties. Hence, revealing the potential of several late season peaches is of present interest. Three commonly consumed varieties ("Flat Queen"; "Evmolpiya"; "Morsiani 90") were studied in terms of nutritive and phytochemical content, as well as antioxidant activity with the use of reliable spectrophotometric and High Performance Liquid Chromatographic (HPLC) methods. An analysis of the soil was also made. The phytochemical data were subjected to principal component analysis in order to evaluate their relationship. The "Morsiani 90" variety had the highest minerals concentration (2349.03 mg/kg fw), total carbohydrates (16.21 g/100 g fw), and α-tocopherol (395.75 µg/100 g fresh weight (fw)). Similar amounts of TDF (approx. 3 g/100 g fw) were reported for all three varieties. "Flat Queen's" peel extract was the richest in monomeric anthocyanins (2279.33 µg cyanidin-3-glucoside (C3GE)/100 g fw). The "Morsiani 90" variety extracts had the highest antioxidant potential, defined by 2,2-diphenil-1-picrylhydrazyl (DPPH), ferric-reducing antioxidant power (FRAP) and cupric ion-reducing antioxidant capacity (CUPRAC) assays.
Collapse
|