51
|
Shi Y, Wang P, Zhou D, Huang L, Zhang L, Gao X, Maitiabula G, Wang S, Wang X. Multi-Omics Analyses Characterize the Gut Microbiome and Metabolome Signatures of Soldiers Under Sustained Military Training. Front Microbiol 2022; 13:827071. [PMID: 35401452 PMCID: PMC8990768 DOI: 10.3389/fmicb.2022.827071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2022] [Indexed: 11/15/2022] Open
Abstract
Exercise can directly alter the gut microbiome at the compositional and functional metabolic levels, which in turn may beneficially influence physical performance. However, data how the gut microbiome and fecal metabolome change, and how they interact in soldiers who commonly undergo sustained military training are limited. To address this issue, we first performed 16S rRNA sequencing to assess the gut microbial community patterns in a cohort of 80 soldiers separated into elite soldiers (ES, n = 40) and non-elite soldiers (N-ES, n = 40). We observed that the α-diversities of the ES group were higher than those of the N-ES group. As for both taxonomical structure and phenotypic compositions, elite soldiers were mainly characterized by an increased abundance of bacteria producing short-chain fatty acids (SCFAs), including Ruminococcaceae_UCG-005, Prevotella_9, and Veillonella, as well as a higher proportion of oxidative stress tolerant microbiota. The taxonomical signatures of the gut microbiome were significantly correlated with soldier performance. To further investigate the metabolic activities of the gut microbiome, using an untargeted metabolomic method, we found that the ES and N-ES groups displayed significantly different metabolic profiles and differential metabolites were primarily involved in the metabolic network of carbohydrates, energy, and amino acids, which might contribute to an enhanced exercise phenotype. Furthermore, these differences in metabolites were strongly correlated with the altered abundance of specific microbes. Finally, by integrating multi-omics data, we identified a shortlist of bacteria-metabolites associated with physical performance, following which a random forest classifier was established based on the combinatorial biomarkers capable of distinguishing between elite and non-elite soldiers with high accuracy. Our findings suggest possible future modalities for improving physical performance through targeting specific bacteria associated with more energetically efficient metabolic patterns.
Collapse
Affiliation(s)
- Yifan Shi
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Peng Wang
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Da Zhou
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Longchang Huang
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Li Zhang
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xuejin Gao
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Gulisudumu Maitiabula
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Siwen Wang
- Department of General Surgery, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Xinying Wang
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
52
|
Oral antibiotics reduce voluntary exercise behavior in athletic mice. Behav Processes 2022; 199:104650. [DOI: 10.1016/j.beproc.2022.104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
|
53
|
Intestinal barrier disorders and metabolic endotoxemia in obesity: Current knowledge. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The World Health Organization reports that the prevalent problem of excessive weight and obesity currently affects about 1.9 billion people worldwide and is the fifth most common death factor among patients. In view of the growing number of patients with obesity, attention is drawn to the insufficient effectiveness of behavioral treatment methods. In addition to genetic and environmental factors leading to the consumption of excess energy in the diet and the accumulation of adipose tissue, attention is paid to the role of intestinal microbiota in maintaining a normal body weight. Dysbiosis – a disorder in the composition of the gut microbiota – is mentioned as one of the contributing factors to the development of metabolic diseases, including obesity, type 2 diabetes, and cardiovascular disorders. The human gastrointestinal tract is colonized largely by a group of Gram-negative bacteria that are indicated to be a source of lipopolysaccharide (LPS), associated with inducing systemic inflammation and endotoxemia. Research suggests that disturbances in the gut microbiota, leading to damage to the intestinal barrier and an increase in circulating LPS, are implicated in obesity and other metabolic disorders. Plasma LPS and lipopolysaccharide-binding protein (LBP) levels have been shown to be elevated in individuals with excess body weight. Bariatric surgery has become a popular treatment option, leading to stable weight loss and an improvement in obesity-related conditions. The aim of this study was to characterize the factors that promote the induction of metabolic endotoxemia and its associated health consequences, along with the presentation of their changes after bariatric surgery.
Collapse
|
54
|
The Nutrition-Microbiota-Physical Activity Triad: An Inspiring New Concept for Health and Sports Performance. Nutrients 2022; 14:nu14050924. [PMID: 35267899 PMCID: PMC8912693 DOI: 10.3390/nu14050924] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
The human gut microbiota is currently the focus of converging interest in many diseases and sports performance. This review presents gut microbiota as a real “orchestra conductor” in the host’s physio(patho)logy due to its implications in many aspects of health and disease. Reciprocally, gut microbiota composition and activity are influenced by many different factors, such as diet and physical activity. Literature data have shown that macro- and micro-nutrients influence gut microbiota composition. Cumulative data indicate that gut bacteria are sensitive to modulation by physical activity, as shown by studies using training and hypoactivity models. Sports performance studies have also presented interesting and promising results. Therefore, gut microbiota could be considered a “pivotal” organ for health and sports performance, leading to a new concept: the nutrition-microbiota-physical activity triad. The next challenge for the scientific and medical communities is to test this concept in clinical studies. The long-term aim is to find the best combination of the three elements of this triad to optimize treatments, delay disease onset, or enhance sports performance. The many possibilities offered by biotic supplementation and training modalities open different avenues for future research.
Collapse
|
55
|
Batista KS, Cintra VM, Lucena PAF, Manhães-de-Castro R, Toscano AE, Costa LP, Queiroz MEBS, de Andrade SM, Guzman-Quevedo O, Aquino JDS. The role of vitamin B12 in viral infections: a comprehensive review of its relationship with the muscle-gut-brain axis and implications for SARS-CoV-2 infection. Nutr Rev 2022; 80:561-578. [PMID: 34791425 PMCID: PMC8689946 DOI: 10.1093/nutrit/nuab092] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This comprehensive review establishes the role of vitamin B12 as adjunct therapy for viral infections in the treatment and persistent symptoms of COVID-19, focusing on symptoms related to the muscle-gut-brain axis. Vitamin B12 can help balance immune responses to better fight viral infections. Furthermore, data from randomized clinical trials and meta-analysis indicate that vitamin B12 in the forms of methylcobalamin and cyanocobalamin may increase serum vitamin B12 levels, and resulted in decreased serum methylmalonic acid and homocysteine concentrations, and decreased pain intensity, memory loss, and impaired concentration. Among studies, there is much variation in vitamin B12 doses, chemical forms, supplementation time, and administration routes. Larger randomized clinical trials of vitamin B12 supplementation and analysis of markers such as total vitamin B12, holotranscobalamin, total homocysteine and methylmalonic acid, total folic acid, and, if possible, polymorphisms and methylation of genes need to be conducted with people with and without COVID-19 or who have had COVID-19 to facilitate the proper vitamin B12 form to be administered in individual treatment.
Collapse
Affiliation(s)
- Kamila S Batista
- K.S. Batista and J.d.S. Aquino are with the Experimental Nutrition Laboratory, Department of Nutrition and Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, Paraíba, Brazil. V.M. Cintra and P.A.F Lucena are with the Department of Medicine, Faculty of Medical Sciences of Paraíba, and the Department of Nutrition, Integrated Colleges of Patos, Paraíba, Brazil. V.M. Cintra is with the the Multiprofessional Residence in Child Health of Secretariat of Health of the State of Paraíba, Brazil. P.A.F Lucena is with Coordination of Neurology Services, Hospital Metropolitano Dom José Maria Pires, Santa Rita, Paraíba and Emergency, Trauma Hospital Senador Humberto Lucena, João Pessoa, Paraíba, Brazil. R. Manhães-de-Castro is with the Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil. R. Manhães-de-Castro and A.E. Toscano are with the Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil. A.E. Toscano is with the Department of Nursing, CAV, Federal University of Pernambuco, Pernambuco, Brazil. A.E. Toscano and O. Guzman-Quevedo are with the Post Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil. L.P. Costa, M.E.B.S. Queirozj, and S.M. de Andrade are with the Ageing and Neuroscience Laboratory, Health Sciences Center, Federal University of Paraíba, Paraíba, Brazil. O. Guzman-Quevedo is with the Higher Technological Institute of Tacámbaro, Tacámbaro, Michoacán, Mexico. O. Guzman-Quevedo is with the Center for Biomedical Research of Michoacán, Mexican Institute of Social Security, Morelia, Michoacán, Mexico
| | - Vanessa M Cintra
- K.S. Batista and J.d.S. Aquino are with the Experimental Nutrition Laboratory, Department of Nutrition and Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, Paraíba, Brazil. V.M. Cintra and P.A.F Lucena are with the Department of Medicine, Faculty of Medical Sciences of Paraíba, and the Department of Nutrition, Integrated Colleges of Patos, Paraíba, Brazil. V.M. Cintra is with the the Multiprofessional Residence in Child Health of Secretariat of Health of the State of Paraíba, Brazil. P.A.F Lucena is with Coordination of Neurology Services, Hospital Metropolitano Dom José Maria Pires, Santa Rita, Paraíba and Emergency, Trauma Hospital Senador Humberto Lucena, João Pessoa, Paraíba, Brazil. R. Manhães-de-Castro is with the Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil. R. Manhães-de-Castro and A.E. Toscano are with the Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil. A.E. Toscano is with the Department of Nursing, CAV, Federal University of Pernambuco, Pernambuco, Brazil. A.E. Toscano and O. Guzman-Quevedo are with the Post Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil. L.P. Costa, M.E.B.S. Queirozj, and S.M. de Andrade are with the Ageing and Neuroscience Laboratory, Health Sciences Center, Federal University of Paraíba, Paraíba, Brazil. O. Guzman-Quevedo is with the Higher Technological Institute of Tacámbaro, Tacámbaro, Michoacán, Mexico. O. Guzman-Quevedo is with the Center for Biomedical Research of Michoacán, Mexican Institute of Social Security, Morelia, Michoacán, Mexico
| | - Paulo A F Lucena
- K.S. Batista and J.d.S. Aquino are with the Experimental Nutrition Laboratory, Department of Nutrition and Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, Paraíba, Brazil. V.M. Cintra and P.A.F Lucena are with the Department of Medicine, Faculty of Medical Sciences of Paraíba, and the Department of Nutrition, Integrated Colleges of Patos, Paraíba, Brazil. V.M. Cintra is with the the Multiprofessional Residence in Child Health of Secretariat of Health of the State of Paraíba, Brazil. P.A.F Lucena is with Coordination of Neurology Services, Hospital Metropolitano Dom José Maria Pires, Santa Rita, Paraíba and Emergency, Trauma Hospital Senador Humberto Lucena, João Pessoa, Paraíba, Brazil. R. Manhães-de-Castro is with the Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil. R. Manhães-de-Castro and A.E. Toscano are with the Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil. A.E. Toscano is with the Department of Nursing, CAV, Federal University of Pernambuco, Pernambuco, Brazil. A.E. Toscano and O. Guzman-Quevedo are with the Post Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil. L.P. Costa, M.E.B.S. Queirozj, and S.M. de Andrade are with the Ageing and Neuroscience Laboratory, Health Sciences Center, Federal University of Paraíba, Paraíba, Brazil. O. Guzman-Quevedo is with the Higher Technological Institute of Tacámbaro, Tacámbaro, Michoacán, Mexico. O. Guzman-Quevedo is with the Center for Biomedical Research of Michoacán, Mexican Institute of Social Security, Morelia, Michoacán, Mexico
| | - Raul Manhães-de-Castro
- K.S. Batista and J.d.S. Aquino are with the Experimental Nutrition Laboratory, Department of Nutrition and Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, Paraíba, Brazil. V.M. Cintra and P.A.F Lucena are with the Department of Medicine, Faculty of Medical Sciences of Paraíba, and the Department of Nutrition, Integrated Colleges of Patos, Paraíba, Brazil. V.M. Cintra is with the the Multiprofessional Residence in Child Health of Secretariat of Health of the State of Paraíba, Brazil. P.A.F Lucena is with Coordination of Neurology Services, Hospital Metropolitano Dom José Maria Pires, Santa Rita, Paraíba and Emergency, Trauma Hospital Senador Humberto Lucena, João Pessoa, Paraíba, Brazil. R. Manhães-de-Castro is with the Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil. R. Manhães-de-Castro and A.E. Toscano are with the Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil. A.E. Toscano is with the Department of Nursing, CAV, Federal University of Pernambuco, Pernambuco, Brazil. A.E. Toscano and O. Guzman-Quevedo are with the Post Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil. L.P. Costa, M.E.B.S. Queirozj, and S.M. de Andrade are with the Ageing and Neuroscience Laboratory, Health Sciences Center, Federal University of Paraíba, Paraíba, Brazil. O. Guzman-Quevedo is with the Higher Technological Institute of Tacámbaro, Tacámbaro, Michoacán, Mexico. O. Guzman-Quevedo is with the Center for Biomedical Research of Michoacán, Mexican Institute of Social Security, Morelia, Michoacán, Mexico
| | - Ana E Toscano
- K.S. Batista and J.d.S. Aquino are with the Experimental Nutrition Laboratory, Department of Nutrition and Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, Paraíba, Brazil. V.M. Cintra and P.A.F Lucena are with the Department of Medicine, Faculty of Medical Sciences of Paraíba, and the Department of Nutrition, Integrated Colleges of Patos, Paraíba, Brazil. V.M. Cintra is with the the Multiprofessional Residence in Child Health of Secretariat of Health of the State of Paraíba, Brazil. P.A.F Lucena is with Coordination of Neurology Services, Hospital Metropolitano Dom José Maria Pires, Santa Rita, Paraíba and Emergency, Trauma Hospital Senador Humberto Lucena, João Pessoa, Paraíba, Brazil. R. Manhães-de-Castro is with the Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil. R. Manhães-de-Castro and A.E. Toscano are with the Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil. A.E. Toscano is with the Department of Nursing, CAV, Federal University of Pernambuco, Pernambuco, Brazil. A.E. Toscano and O. Guzman-Quevedo are with the Post Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil. L.P. Costa, M.E.B.S. Queirozj, and S.M. de Andrade are with the Ageing and Neuroscience Laboratory, Health Sciences Center, Federal University of Paraíba, Paraíba, Brazil. O. Guzman-Quevedo is with the Higher Technological Institute of Tacámbaro, Tacámbaro, Michoacán, Mexico. O. Guzman-Quevedo is with the Center for Biomedical Research of Michoacán, Mexican Institute of Social Security, Morelia, Michoacán, Mexico
| | - Larissa P Costa
- K.S. Batista and J.d.S. Aquino are with the Experimental Nutrition Laboratory, Department of Nutrition and Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, Paraíba, Brazil. V.M. Cintra and P.A.F Lucena are with the Department of Medicine, Faculty of Medical Sciences of Paraíba, and the Department of Nutrition, Integrated Colleges of Patos, Paraíba, Brazil. V.M. Cintra is with the the Multiprofessional Residence in Child Health of Secretariat of Health of the State of Paraíba, Brazil. P.A.F Lucena is with Coordination of Neurology Services, Hospital Metropolitano Dom José Maria Pires, Santa Rita, Paraíba and Emergency, Trauma Hospital Senador Humberto Lucena, João Pessoa, Paraíba, Brazil. R. Manhães-de-Castro is with the Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil. R. Manhães-de-Castro and A.E. Toscano are with the Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil. A.E. Toscano is with the Department of Nursing, CAV, Federal University of Pernambuco, Pernambuco, Brazil. A.E. Toscano and O. Guzman-Quevedo are with the Post Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil. L.P. Costa, M.E.B.S. Queirozj, and S.M. de Andrade are with the Ageing and Neuroscience Laboratory, Health Sciences Center, Federal University of Paraíba, Paraíba, Brazil. O. Guzman-Quevedo is with the Higher Technological Institute of Tacámbaro, Tacámbaro, Michoacán, Mexico. O. Guzman-Quevedo is with the Center for Biomedical Research of Michoacán, Mexican Institute of Social Security, Morelia, Michoacán, Mexico
| | - Maria E B S Queiroz
- K.S. Batista and J.d.S. Aquino are with the Experimental Nutrition Laboratory, Department of Nutrition and Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, Paraíba, Brazil. V.M. Cintra and P.A.F Lucena are with the Department of Medicine, Faculty of Medical Sciences of Paraíba, and the Department of Nutrition, Integrated Colleges of Patos, Paraíba, Brazil. V.M. Cintra is with the the Multiprofessional Residence in Child Health of Secretariat of Health of the State of Paraíba, Brazil. P.A.F Lucena is with Coordination of Neurology Services, Hospital Metropolitano Dom José Maria Pires, Santa Rita, Paraíba and Emergency, Trauma Hospital Senador Humberto Lucena, João Pessoa, Paraíba, Brazil. R. Manhães-de-Castro is with the Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil. R. Manhães-de-Castro and A.E. Toscano are with the Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil. A.E. Toscano is with the Department of Nursing, CAV, Federal University of Pernambuco, Pernambuco, Brazil. A.E. Toscano and O. Guzman-Quevedo are with the Post Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil. L.P. Costa, M.E.B.S. Queirozj, and S.M. de Andrade are with the Ageing and Neuroscience Laboratory, Health Sciences Center, Federal University of Paraíba, Paraíba, Brazil. O. Guzman-Quevedo is with the Higher Technological Institute of Tacámbaro, Tacámbaro, Michoacán, Mexico. O. Guzman-Quevedo is with the Center for Biomedical Research of Michoacán, Mexican Institute of Social Security, Morelia, Michoacán, Mexico
| | - Suellen M de Andrade
- K.S. Batista and J.d.S. Aquino are with the Experimental Nutrition Laboratory, Department of Nutrition and Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, Paraíba, Brazil. V.M. Cintra and P.A.F Lucena are with the Department of Medicine, Faculty of Medical Sciences of Paraíba, and the Department of Nutrition, Integrated Colleges of Patos, Paraíba, Brazil. V.M. Cintra is with the the Multiprofessional Residence in Child Health of Secretariat of Health of the State of Paraíba, Brazil. P.A.F Lucena is with Coordination of Neurology Services, Hospital Metropolitano Dom José Maria Pires, Santa Rita, Paraíba and Emergency, Trauma Hospital Senador Humberto Lucena, João Pessoa, Paraíba, Brazil. R. Manhães-de-Castro is with the Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil. R. Manhães-de-Castro and A.E. Toscano are with the Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil. A.E. Toscano is with the Department of Nursing, CAV, Federal University of Pernambuco, Pernambuco, Brazil. A.E. Toscano and O. Guzman-Quevedo are with the Post Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil. L.P. Costa, M.E.B.S. Queirozj, and S.M. de Andrade are with the Ageing and Neuroscience Laboratory, Health Sciences Center, Federal University of Paraíba, Paraíba, Brazil. O. Guzman-Quevedo is with the Higher Technological Institute of Tacámbaro, Tacámbaro, Michoacán, Mexico. O. Guzman-Quevedo is with the Center for Biomedical Research of Michoacán, Mexican Institute of Social Security, Morelia, Michoacán, Mexico
| | - Omar Guzman-Quevedo
- K.S. Batista and J.d.S. Aquino are with the Experimental Nutrition Laboratory, Department of Nutrition and Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, Paraíba, Brazil. V.M. Cintra and P.A.F Lucena are with the Department of Medicine, Faculty of Medical Sciences of Paraíba, and the Department of Nutrition, Integrated Colleges of Patos, Paraíba, Brazil. V.M. Cintra is with the the Multiprofessional Residence in Child Health of Secretariat of Health of the State of Paraíba, Brazil. P.A.F Lucena is with Coordination of Neurology Services, Hospital Metropolitano Dom José Maria Pires, Santa Rita, Paraíba and Emergency, Trauma Hospital Senador Humberto Lucena, João Pessoa, Paraíba, Brazil. R. Manhães-de-Castro is with the Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil. R. Manhães-de-Castro and A.E. Toscano are with the Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil. A.E. Toscano is with the Department of Nursing, CAV, Federal University of Pernambuco, Pernambuco, Brazil. A.E. Toscano and O. Guzman-Quevedo are with the Post Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil. L.P. Costa, M.E.B.S. Queirozj, and S.M. de Andrade are with the Ageing and Neuroscience Laboratory, Health Sciences Center, Federal University of Paraíba, Paraíba, Brazil. O. Guzman-Quevedo is with the Higher Technological Institute of Tacámbaro, Tacámbaro, Michoacán, Mexico. O. Guzman-Quevedo is with the Center for Biomedical Research of Michoacán, Mexican Institute of Social Security, Morelia, Michoacán, Mexico
| | - Jailane de S Aquino
- K.S. Batista and J.d.S. Aquino are with the Experimental Nutrition Laboratory, Department of Nutrition and Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, Paraíba, Brazil. V.M. Cintra and P.A.F Lucena are with the Department of Medicine, Faculty of Medical Sciences of Paraíba, and the Department of Nutrition, Integrated Colleges of Patos, Paraíba, Brazil. V.M. Cintra is with the the Multiprofessional Residence in Child Health of Secretariat of Health of the State of Paraíba, Brazil. P.A.F Lucena is with Coordination of Neurology Services, Hospital Metropolitano Dom José Maria Pires, Santa Rita, Paraíba and Emergency, Trauma Hospital Senador Humberto Lucena, João Pessoa, Paraíba, Brazil. R. Manhães-de-Castro is with the Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil. R. Manhães-de-Castro and A.E. Toscano are with the Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil. A.E. Toscano is with the Department of Nursing, CAV, Federal University of Pernambuco, Pernambuco, Brazil. A.E. Toscano and O. Guzman-Quevedo are with the Post Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil. L.P. Costa, M.E.B.S. Queirozj, and S.M. de Andrade are with the Ageing and Neuroscience Laboratory, Health Sciences Center, Federal University of Paraíba, Paraíba, Brazil. O. Guzman-Quevedo is with the Higher Technological Institute of Tacámbaro, Tacámbaro, Michoacán, Mexico. O. Guzman-Quevedo is with the Center for Biomedical Research of Michoacán, Mexican Institute of Social Security, Morelia, Michoacán, Mexico
| |
Collapse
|
56
|
Huang L, Li T, Zhou M, Deng M, Zhang L, Yi L, Zhu J, Zhu X, Mi M. Hypoxia Improves Endurance Performance by Enhancing Short Chain Fatty Acids Production via Gut Microbiota Remodeling. Front Microbiol 2022; 12:820691. [PMID: 35197946 PMCID: PMC8859164 DOI: 10.3389/fmicb.2021.820691] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Hypoxia environment has been widely used to promote exercise capacity. However, the underlying mechanisms still need to be further elucidated. In this study, mice were exposed to the normoxia environment (21% O2) or hypoxia environment (16.4% O2) for 4 weeks. Hypoxia-induced gut microbiota remodeling characterized by the increased abundance of Akkermansia and Bacteroidetes genera, and their related short-chain fatty acids (SCFAs) production. It was observed that hypoxia markedly improved endurance by significantly prolonging the exhaustive running time, promoting mitochondrial biogenesis, and ameliorating exercise fatigue biochemical parameters, including urea nitrogen, creatine kinase, and lactic acid, which were correlated with the concentrations of SCFAs. Additionally, the antibiotics experiment partially inhibited hypoxia-induced mitochondrial synthesis. The microbiota transplantation experiment demonstrated that the enhancement of endurance capacity induced by hypoxia was transferable, indicating that the beneficial effects of hypoxia on exercise performance were partly dependent on the gut microbiota. We further identified that acetate and butyrate, but not propionate, stimulated mitochondrial biogenesis and promoted endurance performance. Our results suggested that hypoxia exposure promoted endurance capacity partially by the increased production of SCFAs derived from gut microbiota remodeling.
Collapse
|
57
|
Santibañez-Gutierrez A, Fernández-Landa J, Calleja-González J, Delextrat A, Mielgo-Ayuso J. Effects of Probiotic Supplementation on Exercise with Predominance of Aerobic Metabolism in Trained Population: A Systematic Review, Meta-Analysis and Meta-Regression. Nutrients 2022; 14:nu14030622. [PMID: 35276980 PMCID: PMC8840281 DOI: 10.3390/nu14030622] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
The scientific literature about probiotic intake and its effect on sports performance is growing. Therefore, the main aim of this systematic review, meta-analysis and meta-regression was to review all information about the effects of probiotic supplementation on performance tests with predominance of aerobic metabolism in trained populations (athletes and/or Division I players and/or trained population: ≥8 h/week and/or ≥5 workouts/week). A structured search was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA®) statement and PICOS guidelines in PubMed/MEDLINE, Web of Science (WOS), and Scopus international databases from inception to 1 November 2021. Studies involving probiotic supplementation in trained population and execution of performance test with aerobic metabolism predominance (test lasted more than 5 min) were considered for inclusion. Fifteen articles were included in the final systematic review (in total, 388 participants were included). After 3 studies were removed due to a lack of data for the meta-analysis and meta-regression, 12 studies with 232 participants were involved. With the objective of assessing the risk of bias of included studies, Cochrane Collaboration Guidelines and the Physiotherapy Evidence Database (PEDro) scale were performed. For all included studies the following data was extracted: authors, year of publication, study design, the size of the sample, probiotic administration (dose and time), and characteristics of participants. The random effects model and pooled standardized mean differences (SMDs) were used according to Hedges’ g for the meta-analysis. In order to determine if dose and duration covariates could predict probiotic effects, a meta-regression was also conducted. Results showed a small positive and significant effect on the performance test with aerobic metabolic predominance (SMD = 0.29; CI = 0.08−0.50; p < 0.05). Moreover, the subgroup analysis displayed significant greater benefits when the dose was ≥30 × 109 colony forming units (CFU) (SMD, 0.47; CI, 0.05 to 0.89; p < 0.05), when supplementation duration was ≤4 weeks (SMD, 0.44; CI, 0.05 to 0.84; p < 0.05), when single strain probiotics were used (SMD, 0.33; CI, 0.06 to 0.60; p < 0.05), when participants were males (SMD, 0.30; CI, 0.04 to 0.56; p < 0.05), and when the test was performed to exhaustion (SMD, 0.45; CI, 0.05 to 0.48; p < 0.05). However, with references to the findings of the meta-regression, selected covariates did not predict probiotic effects in highly trained population. In summary, the current systematic review and meta-analysis supported the potential effects of probiotics supplementation to improve performance in a test in which aerobic metabolism is predominant in trained population. However, more research is needed to fully understand the mechanisms of action of this supplement.
Collapse
Affiliation(s)
- Asier Santibañez-Gutierrez
- Physical Education and Sports Department, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), 01007 Vitoria, Spain; (A.S.-G.); (J.F.-L.); (J.C.-G.)
| | - Julen Fernández-Landa
- Physical Education and Sports Department, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), 01007 Vitoria, Spain; (A.S.-G.); (J.F.-L.); (J.C.-G.)
| | - Julio Calleja-González
- Physical Education and Sports Department, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), 01007 Vitoria, Spain; (A.S.-G.); (J.F.-L.); (J.C.-G.)
| | - Anne Delextrat
- Department of Sport and Health Sciences, Oxford Brookes University, Oxford OX3 0BP, UK;
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
- Correspondence:
| |
Collapse
|
58
|
Daily JW, Park S. Sarcopenia Is a Cause and Consequence of Metabolic Dysregulation in Aging Humans: Effects of Gut Dysbiosis, Glucose Dysregulation, Diet and Lifestyle. Cells 2022; 11:cells11030338. [PMID: 35159148 PMCID: PMC8834403 DOI: 10.3390/cells11030338] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Skeletal muscle mass plays a critical role in a healthy lifespan by helping to regulate glucose homeostasis. As seen in sarcopenia, decreased skeletal muscle mass impairs glucose homeostasis, but it may also be caused by glucose dysregulation. Gut microbiota modulates lipopolysaccharide (LPS) production, short-chain fatty acids (SCFA), and various metabolites that affect the host metabolism, including skeletal muscle tissues, and may have a role in the sarcopenia etiology. Here, we aimed to review the relationship between skeletal muscle mass, glucose homeostasis, and gut microbiota, and the effect of consuming probiotics and prebiotics on the development and pathological consequences of sarcopenia in the aging human population. This review includes discussions about the effects of glucose metabolism and gut microbiota on skeletal muscle mass and sarcopenia and the interaction of dietary intake, physical activity, and gut microbiome to influence sarcopenia through modulating the gut–muscle axis. Emerging evidence suggests that the microbiome can regulate both skeletal muscle mass and function, in part through modulating the metabolisms of short-chain fatty acids and branch-chain amino acids that might act directly on muscle in humans or indirectly through the brain and liver. Dietary factors such as fats, proteins, and indigestible carbohydrates and lifestyle interventions such as exercise, smoking, and alcohol intake can both help and hinder the putative gut–muscle axis. The evidence presented in this review suggests that loss of muscle mass and function are not an inevitable consequence of the aging process, and that dietary and lifestyle interventions may prevent or delay sarcopenia.
Collapse
Affiliation(s)
- James W. Daily
- Department of R & D, Daily Manufacturing Inc., Rockwell, 28138 NC, USA;
| | - Sunmin Park
- Department of Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 31499, Korea
- Correspondence: ; Tel.: +82-41-540-5345; Fax: +82-41-548-0670
| |
Collapse
|
59
|
Donati Zeppa S, Amatori S, Sisti D, Gervasi M, Agostini D, Piccoli G, Pazienza V, Gobbi P, Rocchi MBL, Sestili P, Stocchi V. Nine weeks of high-intensity indoor cycling training induced changes in the microbiota composition in non-athlete healthy male college students. J Int Soc Sports Nutr 2021; 18:74. [PMID: 34922581 PMCID: PMC8684107 DOI: 10.1186/s12970-021-00471-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Background The gut microbiota constitutes a dynamic microbial system constantly challenged by environmental conditions, including physical exercise. Limited human studies suggest that exercise could play a beneficial role for gut health, increasing microbial diversity, even if the effects of exercise on gut microbial microorganisms depends on its intensity and duration. This study aimed to investigate the effects of nine weeks of high-intensity interval exercise on gut microbiota composition in healthy young adults. Methods The gut microbiota composition of seventeen healthy male college students was analysed before and after nine weeks of high-intensity interval cycling training by 16S rRNA amplicon sequencing. PERMANOVA for repeated measures was used to test pre-post differences in the relative abundance of all taxonomic levels, and correlations between variations in microbial composition and physical and dietary features were also assessed. Results Physical exercise induced changes in microbiota composition, at all taxonomic levels analysed (phyla: F [1, 32]=3.97, p=0.029; classes: F [1, 32]=3.39, p=0.033, orders: F [1, 32]=3.17, p=0.044, families: F [1, 32]=1.54, p=0.037, genera: F [1, 32]=1.46, p=0.015, species: F [1, 32]=1.38, p=0.007). Conversely, no differences were found between pre and post-training conditions for microbial community richness (Chao1: V=105, p=0.06) or diversity (Shannon index: V=62, p=0.52; Simpson index: V=59, p=0.43). Changes in the relative abundance of eighteen genera were correlated to changes of twenty environmental factors grouped in physical features, sport-related features, and dietary features. Conclusions Nine weeks of high-intensity exercise induced modifications in gut microbiota composition in healthy male college students, shifting the gut microbial population towards a healthier microbiome with benefit to human health in general. Supplementary Information The online version contains supplementary material available at 10.1186/s12970-021-00471-z.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Stefano Amatori
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Davide Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy.
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Valerio Pazienza
- Division of Gastroenterology "Casa Sollievo della Sofferenza" Hospital, 71013, San Giovanni Rotondo, Italy
| | - Pietro Gobbi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Marco B L Rocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | | |
Collapse
|
60
|
Chen YH, Chiu WC, Xiao Q, Chen YL, Shirakawa H, Yang SC. Synbiotics Alleviate Hepatic Damage, Intestinal Injury and Muscular Beclin-1 Elevation in Rats after Chronic Ethanol Administration. Int J Mol Sci 2021; 22:ijms222212547. [PMID: 34830430 PMCID: PMC8622351 DOI: 10.3390/ijms222212547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to investigate the beneficial effects of synbiotics on liver damage, intestinal health, and muscle loss, and their relevance in rats with chronic ethanol feeding. Thirty Wistar rats fed with a control liquid diet were divided into control and synbiotics groups, which were respectively provided with water or synbiotics solution (1.5 g/kg body weight/day) for 2 weeks. From the 3rd to 8th week, the control group was divided into a C group (control liquid diet + water) and an E group (ethanol liquid diet + water). The synbiotics group was separated in to three groups, SC, ASE, and PSE. The SC group was given a control liquid diet with synbiotics solution; the ASE group was given ethanol liquid diet with synbiotics solution, and the PSE group was given ethanol liquid diet and water. As the results, the E group exhibited liver damage, including increased AST and ALT activities, hepatic fatty changes, and higher CYP2E1 expression. Intestinal mRNA expressions of occludin and claudin-1 were significantly decreased and the plasma endotoxin level was significantly higher in the E group. In muscles, beclin-1 was significantly increased in the E group. Compared to the E group, the PSE and ASE groups had lower plasma ALT activities, hepatic fatty changes, and CYP2E1 expression. The PSE and ASE groups had significantly higher intestinal occludin and claudin-1 mRNA expressions and lower muscular beclin-1 expression when compared to the E group. In conclusion, synbiotics supplementation might reduce protein expression of muscle protein degradation biomarkers such as beclin-1 in rats with chronic ethanol feeding, which is speculated to be linked to the improvement of intestinal tight junction and the reduction of liver damage.
Collapse
Affiliation(s)
- Yi-Hsiu Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Qian Xiao
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
| | - Ya-Ling Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8857, Japan;
| | - Suh-Ching Yang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; (Y.-H.C.); (W.-C.C.); (Q.X.); (Y.-L.C.)
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-27361661 (ext. 6553); Fax: +886-2-27373112
| |
Collapse
|
61
|
Szurkowska J, Wiącek J, Laparidis K, Karolkiewicz J. A Comparative Study of Selected Gut Bacteria Abundance and Fecal pH in Bodybuilders Eating High-Protein Diet and More Sedentary Controls. Nutrients 2021; 13:nu13114093. [PMID: 34836348 PMCID: PMC8623519 DOI: 10.3390/nu13114093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 11/17/2022] Open
Abstract
Bodybuilders tend to overeat their daily protein needs. The purpose of a high-protein diet is to support post-workout recovery and skeletal muscle growth; however, its exact impact on gut microbiota still remains under investigation. The aim of this study was to assess the differences in selected gut bacteria (Faecalibacterium prausnitzii, Akkermansia muciniphila, Bifidobacterium spp., and Bacteroides spp.) abundance and fecal pH between the group of amateur bodybuilders and more sedentary control group. In total, 26 young healthy men took part in the study, and their daily nutrients intake was measured using a dietary interview. Real-time PCR was used to assess the stool bacteria abundance. Both groups reported fiber intake within the recommended range, but bodybuilders consumed significantly more protein (33.6% ± 6.5% vs. 22% ± 6.3%) and less fat (27.6% ± 18.9% vs. 36.4% ± 10%) than controls. Study results showed no significant differences in terms of selected intestinal bacteria colony forming unit counts. Significantly higher fecal pH in the bodybuilders’ fecal samples was observed in comparison to the control group 6.9 ± 0.7 vs. 6.2 ± 0.7. Gut microbiota composition similarities could be a result of appropriate fiber intake in both groups.
Collapse
Affiliation(s)
- Joanna Szurkowska
- Department of Food and Nutrition, Poznan University of Physical Education, 61-871 Poznań, Poland; (J.S.); (J.W.)
| | - Jakub Wiącek
- Department of Food and Nutrition, Poznan University of Physical Education, 61-871 Poznań, Poland; (J.S.); (J.W.)
| | - Konstantinos Laparidis
- Department of Physical Education and Sports Science, School of Physical Education & Sport Sciences, Democritus University of Thrace University Campus, 69100 Komotini, Greece;
| | - Joanna Karolkiewicz
- Department of Food and Nutrition, Poznan University of Physical Education, 61-871 Poznań, Poland; (J.S.); (J.W.)
- Correspondence:
| |
Collapse
|
62
|
Martínez de Toda I, Ceprián N, Díaz-Del Cerro E, De la Fuente M. The Role of Immune Cells in Oxi-Inflamm-Aging. Cells 2021; 10:2974. [PMID: 34831197 PMCID: PMC8616159 DOI: 10.3390/cells10112974] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
Aging is the result of the deterioration of the homeostatic systems (nervous, endocrine, and immune systems), which preserve the organism's health. We propose that the age-related impairment of these systems is due to the establishment of a chronic oxidative stress situation that leads to low-grade chronic inflammation throughout the immune system's activity. It is known that the immune system weakens with age, which increases morbidity and mortality. In this context, we describe how the function of immune cells can be used as an indicator of the rate of aging of an individual. In addition to this passive role as a marker, we describe how the immune system can work as a driver of aging by amplifying the oxidative-inflammatory stress associated with aging (oxi-inflamm-aging) and inducing senescence in far tissue cells. Further supporting our theory, we discuss how certain lifestyle conditions (such as social environment, nutrition, or exercise) can have an impact on longevity by affecting the oxidative and inflammatory state of immune cells, regulating immunosenescence and its contribution to oxi-inflamm-aging.
Collapse
Affiliation(s)
- Irene Martínez de Toda
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (N.C.); (E.D.-D.C.); (M.D.l.F.)
- Institute of Investigation 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Noemi Ceprián
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (N.C.); (E.D.-D.C.); (M.D.l.F.)
- Institute of Investigation 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (N.C.); (E.D.-D.C.); (M.D.l.F.)
- Institute of Investigation 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (N.C.); (E.D.-D.C.); (M.D.l.F.)
- Institute of Investigation 12 de Octubre (i+12), 28041 Madrid, Spain
| |
Collapse
|
63
|
Pohl A, Schünemann F, Bersiner K, Gehlert S. The Impact of Vegan and Vegetarian Diets on Physical Performance and Molecular Signaling in Skeletal Muscle. Nutrients 2021; 13:3884. [PMID: 34836139 PMCID: PMC8623732 DOI: 10.3390/nu13113884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Muscular adaptations can be triggered by exercise and diet. As vegan and vegetarian diets differ in nutrient composition compared to an omnivorous diet, a change in dietary regimen might alter physiological responses to physical exercise and influence physical performance. Mitochondria abundance, muscle capillary density, hemoglobin concentration, endothelial function, functional heart morphology and availability of carbohydrates affect endurance performance and can be influenced by diet. Based on these factors, a vegan and vegetarian diet possesses potentially advantageous properties for endurance performance. Properties of the contractile elements, muscle protein synthesis, the neuromuscular system and phosphagen availability affect strength performance and can also be influenced by diet. However, a vegan and vegetarian diet possesses potentially disadvantageous properties for strength performance. Current research has failed to demonstrate consistent differences of performance between diets but a trend towards improved performance after vegetarian and vegan diets for both endurance and strength exercise has been shown. Importantly, diet alters molecular signaling via leucine, creatine, DHA and EPA that directly modulates skeletal muscle adaptation. By changing the gut microbiome, diet can modulate signaling through the production of SFCA.
Collapse
Affiliation(s)
- Alexander Pohl
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
| | - Frederik Schünemann
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
| | - Käthe Bersiner
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
| | - Sebastian Gehlert
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
- Department for Molecular and Cellular Sports Medicine, German Sports University Cologne, 50933 Cologne, Germany
| |
Collapse
|
64
|
Prokopidis K, Chambers E, Ni Lochlainn M, Witard OC. Mechanisms Linking the Gut-Muscle Axis With Muscle Protein Metabolism and Anabolic Resistance: Implications for Older Adults at Risk of Sarcopenia. Front Physiol 2021; 12:770455. [PMID: 34764887 PMCID: PMC8576575 DOI: 10.3389/fphys.2021.770455] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with a decline in skeletal muscle mass and function-termed sarcopenia-as mediated, in part, by muscle anabolic resistance. This metabolic phenomenon describes the impaired response of muscle protein synthesis (MPS) to the provision of dietary amino acids and practice of resistance-based exercise. Recent observations highlight the gut-muscle axis as a physiological target for combatting anabolic resistance and reducing risk of sarcopenia. Experimental studies, primarily conducted in animal models of aging, suggest a mechanistic link between the gut microbiota and muscle atrophy, mediated via the modulation of systemic amino acid availability and low-grade inflammation that are both physiological factors known to underpin anabolic resistance. Moreover, in vivo and in vitro studies demonstrate the action of specific gut bacteria (Lactobacillus and Bifidobacterium) to increase systemic amino acid availability and elicit an anti-inflammatory response in the intestinal lumen. Prospective lifestyle approaches that target the gut-muscle axis have recently been examined in the context of mitigating sarcopenia risk. These approaches include increasing dietary fiber intake that promotes the growth and development of gut bacteria, thus enhancing the production of short-chain fatty acids (SCFA) (acetate, propionate, and butyrate). Prebiotic/probiotic/symbiotic supplementation also generates SCFA and may mitigate low-grade inflammation in older adults via modulation of the gut microbiota. Preliminary evidence also highlights the role of exercise in increasing the production of SCFA. Accordingly, lifestyle approaches that combine diets rich in fiber and probiotic supplementation with exercise training may serve to produce SCFA and increase microbial diversity, and thus may target the gut-muscle axis in mitigating anabolic resistance in older adults. Future mechanistic studies are warranted to establish the direct physiological action of distinct gut microbiota phenotypes on amino acid utilization and the postprandial stimulation of muscle protein synthesis in older adults.
Collapse
Affiliation(s)
- Konstantinos Prokopidis
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Edward Chambers
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Mary Ni Lochlainn
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Oliver C. Witard
- Faculty of Life Sciences and Medicine, Centre for Human and Applied Physiological Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
65
|
Xu Y, Liu X, Liu X, Chen D, Wang M, Jiang X, Xiong Z. The Roles of the Gut Microbiota and Chronic Low-Grade Inflammation in Older Adults With Frailty. Front Cell Infect Microbiol 2021; 11:675414. [PMID: 34277468 PMCID: PMC8282182 DOI: 10.3389/fcimb.2021.675414] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
Frailty is a major public issue that affects the physical health and quality of life of older adults, especially as the population ages. Chronic low-grade inflammation has been speculated to accelerate the aging process as well as the development of age-related diseases such as frailty. Intestinal homeostasis plays a crucial role in healthy aging. The interaction between the microbiome and the host regulates the inflammatory response. Emerging evidence indicates that in older adults with frailty, the diversity and composition structure of gut microbiota are altered. Age-associated changes in gut microbiota composition and in their metabolites contribute to increased gut permeability and imbalances in immune function. In this review, we aim to: identify gut microbiota changes in the aging and frail populations; summarize the role of chronic low-grade inflammation in the development of frailty; and outline how gut microbiota may be related to the pathogenesis of frailty, more specifically, in the regulation of gut-derived chronic inflammation. Although additional research is needed, the regulation of gut microbiota may represent a safe, easy, and inexpensive intervention to counteract the chronic inflammation leading to frailty.
Collapse
Affiliation(s)
- YuShuang Xu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - XiangJie Liu
- Division of Geriatric, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - XiaoXia Liu
- Division of Geriatric, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Chen
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - MengMeng Wang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Jiang
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - ZhiFan Xiong
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
66
|
de Marco Castro E, Murphy CH, Roche HM. Targeting the Gut Microbiota to Improve Dietary Protein Efficacy to Mitigate Sarcopenia. Front Nutr 2021; 8:656730. [PMID: 34235167 PMCID: PMC8256992 DOI: 10.3389/fnut.2021.656730] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is characterised by the presence of diminished skeletal muscle mass and strength. It is relatively common in older adults as ageing is associated with anabolic resistance (a blunted muscle protein synthesis response to dietary protein consumption and resistance exercise). Therefore, interventions to counteract anabolic resistance may benefit sarcopenia prevention and are of utmost importance in the present ageing population. There is growing speculation that the gut microbiota may contribute to sarcopenia, as ageing is also associated with [1) dysbiosis, whereby the gut microbiota becomes less diverse, lacking in healthy butyrate-producing microorganisms and higher in pathogenic bacteria, and [2) loss of epithelial tight junction integrity in the lining of the gut, leading to increased gut permeability and higher metabolic endotoxemia. Animal data suggest that both elements may impact muscle physiology, but human data corroborating the causality of the association between gut microbiota and muscle mass and strength are lacking. Mechanisms wherein the gut microbiota may alter anabolic resistance include an attenuation of gut-derived low-grade inflammation and/or the increased digestibility of protein-containing foods and consequent higher aminoacidemia, both in favour of muscle protein synthesis. This review focuses on the putative links between the gut microbiota and skeletal muscle in the context of sarcopenia. We also address the issue of plant protein digestibility because plant proteins are increasingly important from an environmental sustainability perspective, yet they are less efficient at stimulating muscle protein synthesis than animal proteins.
Collapse
Affiliation(s)
- Elena de Marco Castro
- Nutrigenomics Research Group, School of Public Health, Physiotherapy, and Sports Science, UCD Conway Institute, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| | - Caoileann H Murphy
- Nutrigenomics Research Group, School of Public Health, Physiotherapy, and Sports Science, UCD Conway Institute, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland.,Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - Helen M Roche
- Nutrigenomics Research Group, School of Public Health, Physiotherapy, and Sports Science, UCD Conway Institute, UCD Institute of Food and Health, University College Dublin, Dublin, Ireland.,Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
67
|
Jaago M, Timmusk US, Timmusk T, Palm K. Drastic Effects on the Microbiome of a Young Rower Engaged in High-Endurance Exercise After a Month Usage of a Dietary Fiber Supplement. Front Nutr 2021; 8:654008. [PMID: 33996876 PMCID: PMC8119783 DOI: 10.3389/fnut.2021.654008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 01/12/2023] Open
Abstract
Food supplements are increasingly used worldwide. However, research on the efficacy of such supplements on athlete's well-being and optimal sports performance is very limited. This study performed in junior academic rowing explores the effects of nutritional supplements to aid to the high energy requirements at periods of intense exercise. Herein, the effects of prebiotic fibers on the intestinal microbiome composition of an 18-year-old athlete exercising at high loads during an 8-month period in a “real-life” setting were examined using next-generation sequencing analysis. Results demonstrated that although the alpha diversity of the subject's microbiome drastically decreased [from 2.11 precompetition to 1.67 (p < 0.05)] upon fiber consumption, the Firmicutes/Bacteroidetes ratio increased significantly [from 3.11 to 4.55, as compared with population average (p < 0.05)]. Underlying these macrolevel microbial alterations were demonstrable shifts from acetate- to butyrate-producing bacteria, although with stable effects on the Veillonella species. To our knowledge, this a unique study that shows pronounced changes in the gut microbiome of the young athlete at the competition season and their favorable compensation by the dietary fiber intake. The data here expand the overall understanding of how the high energy needs in high-intensity sports like academic rowing could be supported by dietary fiber supplement consumption.
Collapse
Affiliation(s)
- Mariliis Jaago
- Protobios Llc, Tallinn, Estonia.,Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | - Tõnis Timmusk
- Protobios Llc, Tallinn, Estonia.,Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kaia Palm
- Protobios Llc, Tallinn, Estonia.,Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
68
|
Mussap M, Noto A, Piras C, Atzori L, Fanos V. Slotting metabolomics into routine precision medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1911639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michele Mussap
- Department of Surgical Science, University of Cagliari, Monserrato, Italy
| | - Antonio Noto
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Cristina Piras
- Department of Surgical Science, University of Cagliari, Monserrato, Italy
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Luigi Atzori
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Vassilios Fanos
- Department of Surgical Science, University of Cagliari, Monserrato, Italy
| |
Collapse
|
69
|
Palmas V, Pisanu S, Madau V, Casula E, Deledda A, Cusano R, Uva P, Vascellari S, Loviselli A, Manzin A, Velluzzi F. Gut microbiota markers associated with obesity and overweight in Italian adults. Sci Rep 2021; 11:5532. [PMID: 33750881 PMCID: PMC7943584 DOI: 10.1038/s41598-021-84928-w] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
In the present study, we characterized the distinctive signatures of the gut microbiota (GM) from overweight/obese patients (OB), and normal-weight controls (NW), both of Sardinian origin. Fecal bacterial composition of 46 OB patients (BMI = 36.6 ± 6.0; F/M = 40/6) was analyzed and compared to that of 46 NW subjects (BMI = 21.6 ± 2.1; F/M = 41/5), matched for sex, age and smoking status, by using 16S rRNA gene sequencing on MiSeq Illumina platform. The gut microbial community of OB patients exhibited a significant decrease in the relative abundance of several Bacteroidetes taxa (i.e. Flavobacteriaceae, Porphyromonadaceae, Sphingobacteriaceae, Flavobacterium, Rikenella spp., Pedobacter spp., Parabacteroides spp., Bacteroides spp.) when compared to NW; instead, several Firmicutes taxa were significantly increased in the same subjects (Lachnospiraceae, Gemellaceae, Paenibacillaceae, Streptococcaceae, Thermicanaceae, Gemella, Mitsuokella, Streptococcus, Acidaminococcus spp., Eubacterium spp., Ruminococcus spp., Megamonas spp., Streptococcus, Thermicanus, Megasphaera spp. and Veillonella spp.). Correlation analysis indicated that body fatness and waist circumference negatively correlated with Bacteroidetes taxa, while Firmicutes taxa positively correlated with body fat and negatively with muscle mass and/or physical activity level. Furthermore, the relative abundance of several bacterial taxa belonging to Enterobacteriaceae family, known to exhibit endotoxic activity, was increased in the OB group compared to NW. The results extend our knowledge on the GM profiles in Italian OB, identifying novel taxa linking obesity and intestine.
Collapse
Affiliation(s)
- Vanessa Palmas
- Microbiology and Virology Unit, Department of Biomedical Sciences, Azienda Ospedaliero-Universitaria Cagliari, University of Cagliari, Strada Statale 554- bivio Sestu, 09042, Monserrato, Cagliari, Italy
| | - Silvia Pisanu
- Microbiology and Virology Unit, Department of Biomedical Sciences, Azienda Ospedaliero-Universitaria Cagliari, University of Cagliari, Strada Statale 554- bivio Sestu, 09042, Monserrato, Cagliari, Italy
| | - Veronica Madau
- Microbiology and Virology Unit, Department of Biomedical Sciences, Azienda Ospedaliero-Universitaria Cagliari, University of Cagliari, Strada Statale 554- bivio Sestu, 09042, Monserrato, Cagliari, Italy
| | - Emanuela Casula
- Microbiology and Virology Unit, Department of Biomedical Sciences, Azienda Ospedaliero-Universitaria Cagliari, University of Cagliari, Strada Statale 554- bivio Sestu, 09042, Monserrato, Cagliari, Italy
| | - Andrea Deledda
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Roberto Cusano
- CRS4, Science and Technology Park Polaris, Piscina Manna, Pula, Cagliari, Italy
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Piscina Manna, Pula, Cagliari, Italy
| | - Sarah Vascellari
- Microbiology and Virology Unit, Department of Biomedical Sciences, Azienda Ospedaliero-Universitaria Cagliari, University of Cagliari, Strada Statale 554- bivio Sestu, 09042, Monserrato, Cagliari, Italy
| | - Andrea Loviselli
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Aldo Manzin
- Microbiology and Virology Unit, Department of Biomedical Sciences, Azienda Ospedaliero-Universitaria Cagliari, University of Cagliari, Strada Statale 554- bivio Sestu, 09042, Monserrato, Cagliari, Italy.
| | - Fernanda Velluzzi
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
70
|
Watson MD, Cross BL, Grosicki GJ. Evidence for the Contribution of Gut Microbiota to Age-Related Anabolic Resistance. Nutrients 2021; 13:706. [PMID: 33672207 PMCID: PMC7926629 DOI: 10.3390/nu13020706] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Globally, people 65 years of age and older are the fastest growing segment of the population. Physiological manifestations of the aging process include undesirable changes in body composition, declines in cardiorespiratory fitness, and reductions in skeletal muscle size and function (i.e., sarcopenia) that are independently associated with mortality. Decrements in muscle protein synthetic responses to anabolic stimuli (i.e., anabolic resistance), such as protein feeding or physical activity, are highly characteristic of the aging skeletal muscle phenotype and play a fundamental role in the development of sarcopenia. A more definitive understanding of the mechanisms underlying this age-associated reduction in anabolic responsiveness will help to guide promyogenic and function promoting therapies. Recent studies have provided evidence in support of a bidirectional gut-muscle axis with implications for aging muscle health. This review will examine how age-related changes in gut microbiota composition may impact anabolic response to protein feeding through adverse changes in protein digestion and amino acid absorption, circulating amino acid availability, anabolic hormone production and responsiveness, and intramuscular anabolic signaling. We conclude by reviewing literature describing lifestyle habits suspected to contribute to age-related changes in the microbiome with the goal of identifying evidence-informed strategies to preserve microbial homeostasis, anabolic sensitivity, and skeletal muscle with advancing age.
Collapse
Affiliation(s)
| | | | - Gregory J. Grosicki
- Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, GA 31419, USA; (M.D.W.); (B.L.C.)
| |
Collapse
|
71
|
González-Soltero R, Bailén M, de Lucas B, Ramírez-Goercke MI, Pareja-Galeano H, Larrosa M. Role of Oral and Gut Microbiota in Dietary Nitrate Metabolism and Its Impact on Sports Performance. Nutrients 2020; 12:E3611. [PMID: 33255362 PMCID: PMC7760746 DOI: 10.3390/nu12123611] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/30/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
Nitrate supplementation is an effective, evidence-based dietary strategy for enhancing sports performance. The effects of dietary nitrate seem to be mediated by the ability of oral bacteria to reduce nitrate to nitrite, thus increasing the levels of nitrite in circulation that may be further reduced to nitric oxide in the body. The gut microbiota has been recently implicated in sports performance by improving muscle function through the supply of certain metabolites. In this line, skeletal muscle can also serve as a reservoir of nitrate. Here we review the bacteria of the oral cavity involved in the reduction of nitrate to nitrite and the possible changes induced by nitrite and their effect on gastrointestinal balance and gut microbiota homeostasis. The potential role of gut bacteria in the reduction of nitrate to nitrite and as a supplier of the signaling molecule nitric oxide to the blood circulation and muscles has not been explored in any great detail.
Collapse
Affiliation(s)
- Rocío González-Soltero
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (M.B.); (M.I.R.-G.)
| | - María Bailén
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (M.B.); (M.I.R.-G.)
| | - Beatriz de Lucas
- Faculty of Sports Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (B.d.L.); (H.P.-G.); (M.L.)
| | - Maria Isabel Ramírez-Goercke
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (M.B.); (M.I.R.-G.)
| | - Helios Pareja-Galeano
- Faculty of Sports Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (B.d.L.); (H.P.-G.); (M.L.)
| | - Mar Larrosa
- Faculty of Sports Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (B.d.L.); (H.P.-G.); (M.L.)
| |
Collapse
|