51
|
Kamalapathy PN, Kline A, Hollow H, Raskin K, Schwab JH, Lozano-Calderón S. Predictors of Symptomatic Venous Thromboembolism in Patients with Soft Tissue Sarcoma in the Lower Extremity. Cancers (Basel) 2023; 15:cancers15010315. [PMID: 36612310 PMCID: PMC9818863 DOI: 10.3390/cancers15010315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Orthopedic surgery and soft-tissue sarcoma (STS) both independently increase the risk of developing symptomatic venous thromboembolic events (SVTE), but there are no established risk factors or guidelines for how to prophylactically treat patients with STS undergoing surgery. The objectives of this study were to (1) identify the prevalence of SVTE in patients undergoing STS surgery, (2) identify risk factors for SVTE, and (3) determine the risk of wound complications associated with VTE prophylaxis. This retrospective study was conducted in a tertiary level, academic hospital. A total of 642 patients were treated for soft-tissue sarcoma in the lower extremity with follow up for at least 90 days for the development of SVTE such as deep venous thrombosis and pulmonary embolism. Multivariate logistic regression was used to identify predictors for these events by controlling for patient characteristics, surgical characteristics, and treatment variables, with significance held at p < 0.05. Twenty eight patients (4.36%) were diagnosed with SVTE. Multivariate analysis found six significant predictors ordered based on standardized coefficients: pre-operative (PTT) partial thromboplastin time (p < 0.001), post-operative PTT (p = 0.010), post-op chemotherapy (p = 0.013), metastasis at diagnosis (p = 0.025), additional surgery for metastasis or local recurrence (p = 0.004), and tumor size larger than 10 cm (p < 0.001). The risk of wound complications (p = 0.04) and infection (p = 0.017) increased significantly in patients who received chemical prophylaxis. Our study identifies risk factors for patients at increased risk of developing VTE. Further prospective research is necessary to identify which protocols would be beneficial in preventing SVTE in high-risk patients with a low profile of wound complications.
Collapse
|
52
|
Aiyede M, Lim XY, Russell AAM, Patel RP, Gueven N, Howells DW, Bye N. A Systematic Review and Meta-Analysis on the Therapeutic Efficacy of Heparin and Low Molecular Weight Heparins in Animal Studies of Traumatic Brain Injury. J Neurotrauma 2023; 40:4-21. [PMID: 35880422 DOI: 10.1089/neu.2022.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The identification of effective pharmacotherapies for traumatic brain injury (TBI) remains a major challenge. Treatment with heparin and its derivatives is associated with neuroprotective effects after experimental TBI; however, the optimal dosage and method of administration, modes of action, and effects on hemorrhage remain unclear. Therefore, this review aimed to systematically evaluate, analyze, and summarize the available literature on the use of heparin and low molecular weight heparins (LMWHs) as treatment options for experimental TBI. We searched two online databases (PubMed and ISI Web of Science) to identify relevant studies. Data pertaining to TBI paradigm, animal subjects, drug administration, and all pathological and behavior outcomes were extracted. Eleven studies met our pre-specified inclusion criteria, and for outcomes with sufficient numbers, data from seven publications were analyzed in a weighted mean difference meta-analysis using a random-effects model. Study quality and risk of bias were also determined. Meta-analysis revealed that heparin and its derivatives decreased brain edema, leukocyte rolling, and vascular permeability, and improved neurological function. Further, treatment did not aggravate hemorrhage. These findings must be interpreted with caution, however, because they were determined from a limited number of studies with substantial heterogeneity. Also, overall study quality was low based on absences of data reporting, and potential publication bias was identified. Importantly, we found that there are insufficient data to evaluate the variables we had hoped to investigate. The beneficial effects of heparin and LMWHs, however, suggest that further pre-clinical studies are warranted.
Collapse
Affiliation(s)
- Mimieveshiofuo Aiyede
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia
| | - Xin Yi Lim
- Herbal Medicine Research Centre, Institute for Medical Research, Ministry of Health, Kuala Lumpur, Malaysia
| | - Ash A M Russell
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Rahul P Patel
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia
| | - David W Howells
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Nicole Bye
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
53
|
Field EK, Hartzheim A, Terry J, Dawson G, Haydt N, Neuman-Lee LA. Reptilian Innate Immunology and Ecoimmunology: What Do We Know and Where Are We Going? Integr Comp Biol 2022; 62:1557-1571. [PMID: 35833292 DOI: 10.1093/icb/icac116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/05/2023] Open
Abstract
Reptiles, the only ectothermic amniotes, employ a wide variety of physiological adaptations to adjust to their environments but remain vastly understudied in the field of immunology and ecoimmunology in comparison to other vertebrate taxa. To address this knowledge gap, we assessed the current state of research on reptilian innate immunology by conducting an extensive literature search of peer-reviewed articles published across the four orders of Reptilia (Crocodilia, Testudines, Squamata, and Rhynchocephalia). Using our compiled dataset, we investigated common techniques, characterization of immune components, differences in findings and type of research among the four orders, and immune responses to ecological and life-history variables. We found that there are differences in the types of questions asked and approaches used for each of these reptilian orders. The different conceptual frameworks applied to each group has led to a lack of unified understanding of reptilian immunological strategies, which, in turn, have resulted in large conceptual gaps in the field of ecoimmunology as a whole. To apply ecoimmunological concepts and techniques most effectively to reptiles, we must combine traditional immunological studies with ecoimmunological studies to continue to identify, characterize, and describe the reptilian immune components and responses. This review highlights the advances and gaps that remain to help identify targeted and cohesive approaches for future research in reptilian ecoimmunological studies.
Collapse
Affiliation(s)
- Emily K Field
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Alyssa Hartzheim
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Jennifer Terry
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Grant Dawson
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Natalie Haydt
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Lorin A Neuman-Lee
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| |
Collapse
|
54
|
Natural Coatings and Surface Modifications on Magnesium Alloys for Biomedical Applications. Polymers (Basel) 2022; 14:polym14235297. [PMID: 36501691 PMCID: PMC9740093 DOI: 10.3390/polym14235297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/07/2022] Open
Abstract
Magnesium (Mg) alloys have great potential in biomedical applications due to their incomparable properties regarding other metals, such as stainless steels, Co-Cr alloys, and titanium (Ti) alloys. However, when Mg engages with body fluids, its degradation rate increases, inhibiting the complete healing of bone tissue. For this reason, it has been necessary to implement protective coatings to control the rate of degradation. This review focuses on natural biopolymer coatings used on Mg alloys for resorbable biomedical applications, as well as some modification techniques implemented before applying natural polymer coatings to improve their performance. Issues such as improving the corrosion resistance, cell adhesion, proliferation, and biodegradability of natural biopolymers are discussed through their basic comparison with inorganic-type coatings. Emphasis is placed on the expected biological behavior of each natural polymer described, to provide basic information as a reference on this topic.
Collapse
|
55
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for drug delivery and wound management: a review. Expert Opin Drug Deliv 2022; 19:1664-1695. [PMID: 36440488 DOI: 10.1080/17425247.2022.2152791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Polysaccharide-based hydrogels (PBHs) offer several advantages over their synthetic counterparts. Their natural origin contributes to their nontoxicity, high biocompatibility, and in vivo biodegradability. Their properties can be tuned finely to obtain hydrogels with desired mechanical, structural, and chemical properties. AREAS COVERED Such versatile characteristics have potentiated the use of PBHs for the delivery of drugs, vaccines, protein and peptide therapeutics, genes, cells, probiotics, bacteriophages, and other therapeutic agents. Recent advances in hydrogel-based formulations such as nanogels, microgels, microneedles, hydrogel beads, nanocarrier-loaded hydrogels, and complexation hydrogels have enabled the precise delivery of a wide range of therapeutics. This review aims to give a holistic overview of hydrogels in the delivery of a variety of therapeutics through different routes. EXPERT OPINION PBHs have been used to enable the oral delivery of vaccines and other biologicals, thereby allowing self-administration of life-saving vaccines during public health emergencies. There is a lack of commercialized wound dressings for the treatment of chronic wounds. PBH-based wound dressings, especially those based on chitosan and loaded with actives and growth factors, have the potential to help in the long-term treatment of such wounds. Recent developments in the 3D printing of hydrogels can enable the quick and large-scale production of drug-loaded hydrogels.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai School of Pharmacy and Technology Management, Mumbai, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Vinita Kale
- Department of Pharmaceutics, Guru Nanak College of Pharmacy, Nagpur, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| |
Collapse
|
56
|
Tang B, Yang X, Zhang A, Wang Q, Fan L, Fang G. Polypseudorotaxane hydrogel based on Tween 80 and α-cyclodextrin for sustained delivery of low molecular weight heparin. Carbohydr Polym 2022; 297:120002. [DOI: 10.1016/j.carbpol.2022.120002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
|
57
|
Lee LYY, Suryadinata R, McCafferty C, Ignjatovic V, Purcell DFJ, Robinson P, Morton CJ, Parker MW, Anderson GP, Monagle P, Subbarao K, Neil JA. Heparin Inhibits SARS-CoV-2 Replication in Human Nasal Epithelial Cells. Viruses 2022; 14:v14122620. [PMID: 36560624 PMCID: PMC9785945 DOI: 10.3390/v14122620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
SARS-CoV-2 is the causative agent of the COVID-19 pandemic. Vaccination, supported by social and public health measures, has proven efficacious for reducing disease severity and virus spread. However, the emergence of highly transmissible viral variants that escape prior immunity highlights the need for additional mitigation approaches. Heparin binds the SARS-CoV-2 spike protein and can inhibit virus entry and replication in susceptible human cell lines and bronchial epithelial cells. Primary infection predominantly occurs via the nasal epithelium, but the nasal cell biology of SARS-CoV-2 is not well studied. We hypothesized that prophylactic intranasal administration of heparin may provide strain-agnostic protection for household contacts or those in high-risk settings against SARS-CoV-2 infection. Therefore, we investigated the ability of heparin to inhibit SARS-CoV-2 infection and replication in differentiated human nasal epithelial cells and showed that prolonged exposure to heparin inhibits virus infection. Furthermore, we establish a method for PCR detection of SARS-CoV-2 viral genomes in heparin-treated samples that can be adapted for the detection of viruses in clinical studies.
Collapse
Affiliation(s)
- Leo Yi Yang Lee
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Randy Suryadinata
- Department of Respiratory Medicine, Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Infection and Immunity, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Conor McCafferty
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
- Haematology, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Vera Ignjatovic
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Phil Robinson
- Department of Respiratory Medicine, Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Infection and Immunity, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Craig J. Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael W. Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
- St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Gary P. Anderson
- Lung Health Research Centre, Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Paul Monagle
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
- Haematology, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Haematology, Royal Children’s Hospital, Parkville, VIC 3052, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, VIC 3000, Australia
- Correspondence:
| | - Jessica A. Neil
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| |
Collapse
|
58
|
Su C, Chen Y, Tian S, Lu C, Lv Q. Natural Materials for 3D Printing and Their Applications. Gels 2022; 8:748. [PMID: 36421570 PMCID: PMC9689506 DOI: 10.3390/gels8110748] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 08/15/2023] Open
Abstract
In recent years, 3D printing has gradually become a well-known new topic and a research hotspot. At the same time, the advent of 3D printing is inseparable from the preparation of bio-ink. Natural materials have the advantages of low toxicity or even non-toxicity, there being abundant raw materials, easy processing and modification, excellent mechanical properties, good biocompatibility, and high cell activity, making them very suitable for the preparation of bio-ink. With the help of 3D printing technology, the prepared materials and scaffolds can be widely used in tissue engineering and other fields. Firstly, we introduce the natural materials and their properties for 3D printing and summarize the physical and chemical properties of these natural materials and their applications in tissue engineering after modification. Secondly, we discuss the modification methods used for 3D printing materials, including physical, chemical, and protein self-assembly methods. We also discuss the method of 3D printing. Then, we summarize the application of natural materials for 3D printing in tissue engineering, skin tissue, cartilage tissue, bone tissue, and vascular tissue. Finally, we also express some views on the research and application of these natural materials.
Collapse
Affiliation(s)
- Chunyu Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Yutong Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Shujing Tian
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Chunxiu Lu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China
| |
Collapse
|
59
|
Hu L, Wang Y, Hu Y, Yin J, Wang L, Du G, Chen J, Kang Z. Biosynthesis of non-sulfated high-molecular-weight glycosaminoglycans and specific-sized oligosaccharides. Carbohydr Polym 2022; 295:119829. [DOI: 10.1016/j.carbpol.2022.119829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/02/2022]
|
60
|
Sieme D, Griesinger C, Rezaei-Ghaleh N. Metal Binding to Sodium Heparin Monitored by Quadrupolar NMR. Int J Mol Sci 2022; 23:ijms232113185. [PMID: 36361973 PMCID: PMC9655979 DOI: 10.3390/ijms232113185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Heparins and heparan sulfate polysaccharides are negatively charged glycosaminoglycans and play important roles in cell-to-matrix and cell-to-cell signaling processes. Metal ion binding to heparins alters the conformation of heparins and influences their function. Various experimental techniques have been used to investigate metal ion-heparin interactions, frequently with inconsistent results. Exploiting the quadrupolar 23Na nucleus, we herein develop a 23Na NMR-based competition assay and monitor the binding of divalent Ca2+ and Mg2+ and trivalent Al3+ metal ions to sodium heparin and the consequent release of sodium ions from heparin. The 23Na spin relaxation rates and translational diffusion coefficients are utilized to quantify the metal ion-induced release of sodium ions from heparin. In the case of the Al3+ ion, the complementary approach of 27Al quadrupolar NMR is employed as a direct probe of ion binding to heparin. Our NMR results demonstrate at least two metal ion-binding sites with different affinities on heparin, potentially undergoing dynamic exchange. For the site with lower metal ion binding affinity, the order of Ca2+ > Mg2+ > Al3+ is obtained, in which even the weakly binding Al3+ ion is capable of displacing sodium ions from heparin. Overall, the multinuclear quadrupolar NMR approach employed here can monitor and quantify metal ion binding to heparin and capture different modes of metal ion-heparin binding.
Collapse
Affiliation(s)
- Daniel Sieme
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, D-37077 Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, D-37077 Göttingen, Germany
| | - Nasrollah Rezaei-Ghaleh
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, D-37077 Göttingen, Germany
- Institute of Physical Biology, Heinrich Heine University (HHU) Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428 Jülich, Germany
- Correspondence: or
| |
Collapse
|
61
|
Chandika P, Tennakoon P, Kim TH, Kim SC, Je JY, Kim JI, Lee B, Ryu B, Kang HW, Kim HW, Kim YM, Kim CS, Choi IW, Park WS, Yi M, Jung WK. Marine Biological Macromolecules and Chemically Modified Macromolecules; Potential Anticoagulants. Mar Drugs 2022; 20:md20100654. [PMID: 36286477 PMCID: PMC9604568 DOI: 10.3390/md20100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Coagulation is a potential defense mechanism that involves activating a series of zymogens to convert soluble fibrinogen to insoluble fibrin clots to prevent bleeding and hemorrhagic complications. To prevent the extra formation and diffusion of clots, the counterbalance inhibitory mechanism is activated at levels of the coagulation pathway. Contrariwise, this system can evade normal control due to either inherited or acquired defects or aging which leads to unusual clots formation. The abnormal formations and deposition of excess fibrin trigger serious arterial and cardiovascular diseases. Although heparin and heparin-based anticoagulants are a widely prescribed class of anticoagulants, the clinical use of heparin has limitations due to the unpredictable anticoagulation, risk of bleeding, and other complications. Hence, significant interest has been established over the years to investigate alternative therapeutic anticoagulants from natural sources, especially from marine sources with good safety and potency due to their unique chemical structure and biological activity. This review summarizes the coagulation cascade and potential macromolecular anticoagulants derived from marine flora and fauna.
Collapse
Affiliation(s)
- Pathum Chandika
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
| | - Pipuni Tennakoon
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Tae-Hee Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
| | - Se-Chang Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Korea
| | - Jae-Il Kim
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea
| | - Bonggi Lee
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea
| | - BoMi Ryu
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea
| | - Hyun Wook Kang
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Hyun-Woo Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Department of Marine Biology, Pukyong National University, Busan 48513, Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Major of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Chang Su Kim
- Department of Orthopedic Surgery, Kosin University Gospel Hospital, Busan 49267, Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan 47392, Korea
| | - Won Sun Park
- Department of Physiology, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Myunggi Yi
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
- Correspondence:
| |
Collapse
|
62
|
Not Just Anticoagulation—New and Old Applications of Heparin. Molecules 2022; 27:molecules27206968. [DOI: 10.3390/molecules27206968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
In recent decades, heparin, as the most important anticoagulant drug, has been widely used in clinical settings to prevent and treat thrombosis in a variety of diseases. However, with in-depth research, the therapeutic potential of heparin is being explored beyond anticoagulation. To date, heparin and its derivatives have been tested in the protection against and repair of inflammatory, antitumor, and cardiovascular diseases. It has also been explored as an antiangiogenic, preventive, and antiviral agent for atherosclerosis. This review focused on the new and old applications of heparin and discussed the potential mechanisms explaining the biological diversity of heparin.
Collapse
|
63
|
Yang X, Wang Q, Zhang A, Shao X, Liu T, Tang B, Fang G. Strategies for sustained release of heparin: A review. Carbohydr Polym 2022; 294:119793. [PMID: 35868762 DOI: 10.1016/j.carbpol.2022.119793] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/18/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022]
Abstract
Heparin, a sulfate-containing linear polysaccharide, has proven preclinical and clinical efficacy for a variety of disorders. Heparin, including unfractionated heparin (UFH), low-molecular-weight heparin (LMWH), and ultra-low-molecular-weight heparin (ULMWH), is administered systematically, in the form of a solution in the clinic. However, it is eliminated quickly, due to its short half-life, especially in the case of UFH and LMWH. Frequent administration is required to ensure its therapeutic efficacy, leading to poor patient compliance. Moreover, heparin is used to coat blood-contacting medical devices to avoid thrombosis through physical interaction. However, the short-term durability of heparin on the surface of the stent limits its further application. Various advanced sustained-release strategies have been used to prolong its half-life in vivo as preparation technologies have improved. Herein, we briefly introduce the pharmacological activity and mechanisms of action of heparin. In addition, the strategies for sustained release of heparin are comprehensively summarized.
Collapse
Affiliation(s)
- Xuewen Yang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Qiuxiang Wang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Aiwen Zhang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Xinyao Shao
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Bo Tang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| | - Guihua Fang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
64
|
Anticoagulation in patients with acute kidney injury undergoing kidney replacement therapy. Pediatr Nephrol 2022; 37:2303-2330. [PMID: 34668064 DOI: 10.1007/s00467-021-05020-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/13/2020] [Accepted: 02/18/2021] [Indexed: 10/20/2022]
Abstract
Kidney replacement therapy (KRT) is used to provide supportive therapy for critically ill patients with severe acute kidney injury and various other non-renal indications. Modalities of KRT include continuous KRT (CKRT), intermittent hemodialysis (HD), and sustained low efficiency daily dialysis (SLED). However, circuit clotting is a major complication that has been investigated extensively. Extracorporeal circuit clotting can cause reduction in solute clearances and can cause blood loss, leading to an upsurge in treatment costs and a rise in workload intensity. In this educational review, we discuss the pathophysiology of the clotting cascade within an extracorporeal circuit and the use of various types of anticoagulant methods in various pediatric KRT modalities.
Collapse
|
65
|
Yan N, Song F, Ouyang Y, Li D, Tian H, Yi L, Linhardt RJ, Zhang Z. Glycan Mapping of Low-Molecular-Weight Heparin Using Mass Spectral Correction Based on Chromatography Fitting with “Glycomapping” Software. Anal Chem 2022; 94:13000-13009. [DOI: 10.1021/acs.analchem.2c01579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Na Yan
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Feifan Song
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yilan Ouyang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Duxin Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - He Tian
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Lin Yi
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Robert J. Linhardt
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Zhenqing Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| |
Collapse
|
66
|
Zhu W, Chen L, Yan N, Yi L, Sun Y, Ouyang Y, Liu D, Zhang Z. Sequencing analysis of heparin reducing terminals with orthogonal chromatographic approaches. J Chromatogr A 2022; 1677:463318. [PMID: 35853422 DOI: 10.1016/j.chroma.2022.463318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022]
Abstract
Heparin is a linear sulfated polysaccharide with a complex structure. It is important to figure out the sequences at the terminals of the sugar chains, as it will help us understand the heparin structure deeper and control its quality properly. The tetrasaccharide linkage region (LR) could be a tag to help us find out heparin terminals after digestion by different combinations of heparinases. In this work, orthogonal chromatographic approaches including SAX, SEC-MS and 2D-LC-MS were applied to qualitatively and quantitatively analyze the heparinase released LR-terminals. The disaccharides next to LR are those ones with low or non-sulfation, UA-GlcNAc and UA-GlcNAc6S, and then they are extended with the highly sulfated disaccharides, IdoA2S-GlcNS and IdoA2S-GlcNS6S. It is suggested that the sulfo transferases did not work at the sugar residues next to LR terminal, especially the 2-O-sulfo and N-sulfo transferases, which could be affected by steric hindrance from LR, when heparin is biosynthesized. This conclusion will be theoretical fundamental to help us understand heparin's structure deeper. The methods provided in this work could be potential ways to control heparin's quality and monitor the production processes of heparin properly.
Collapse
Affiliation(s)
- Wen Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Lei Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Na Yan
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Lin Yi
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yuanyuan Sun
- The fourth people's Hospital of Jinan City, Shandong 250031, China
| | - Yilan Ouyang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Dehua Liu
- The fourth people's Hospital of Jinan City, Shandong 250031, China
| | - Zhenqing Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China.
| |
Collapse
|
67
|
Heparin: An old drug for new clinical applications. Carbohydr Polym 2022; 295:119818. [DOI: 10.1016/j.carbpol.2022.119818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 12/23/2022]
|
68
|
Pouyan P, Cherri M, Haag R. Polyglycerols as Multi-Functional Platforms: Synthesis and Biomedical Applications. Polymers (Basel) 2022; 14:polym14132684. [PMID: 35808728 PMCID: PMC9269438 DOI: 10.3390/polym14132684] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 02/07/2023] Open
Abstract
The remarkable and unique characteristics of polyglycerols (PG) have made them an attractive candidate for many applications in the biomedical and pharmaceutical fields. The presence of multiple hydroxy groups on the flexible polyether backbone not only enables the further modification of the PG structure but also makes the polymer highly water-soluble and results in excellent biocompatibility. In this review, the polymerization routes leading to PG with different architectures are discussed. Moreover, we discuss the role of these polymers in different biomedical applications such as drug delivery systems, protein conjugation, and surface modification.
Collapse
|
69
|
Iliou K, Kikionis S, Ioannou E, Roussis V. Marine Biopolymers as Bioactive Functional Ingredients of Electrospun Nanofibrous Scaffolds for Biomedical Applications. Mar Drugs 2022; 20:md20050314. [PMID: 35621965 PMCID: PMC9143254 DOI: 10.3390/md20050314] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 02/01/2023] Open
Abstract
Marine biopolymers, abundantly present in seaweeds and marine animals, feature diverse structures and functionalities, and possess a wide range of beneficial biological activities. Characterized by high biocompatibility and biodegradability, as well as unique physicochemical properties, marine biopolymers are attracting a constantly increasing interest for the development of advanced systems for applications in the biomedical field. The development of electrospinning offers an innovative technological platform for the production of nonwoven nanofibrous scaffolds with increased surface area, high encapsulation efficacy, intrinsic interconnectivity, and structural analogy to the natural extracellular matrix. Marine biopolymer-based electrospun nanofibrous scaffolds with multifunctional characteristics and tunable mechanical properties now attract significant attention for biomedical applications, such as tissue engineering, drug delivery, and wound healing. The present review, covering the literature up to the end of 2021, highlights the advancements in the development of marine biopolymer-based electrospun nanofibers for their utilization as cell proliferation scaffolds, bioadhesives, release modifiers, and wound dressings.
Collapse
|
70
|
Influence of surface morphology and surface free energy on the anticoagulant properties of nanocone‐shaped
ZnO
films. J Appl Polym Sci 2022. [DOI: 10.1002/app.52005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
71
|
Wooten JM, Baldwin ST. Pharmacologic Agents Used to Reverse the Anticoagulant Effect of Common Anticoagulants. South Med J 2022; 115:220-226. [PMID: 35237842 DOI: 10.14423/smj.0000000000001372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Numerous oral and parenteral anticoagulant drugs are now available for clinical use. Understanding the precise pharmacologic properties of each anticoagulant is imperative for those practitioners who prescribe these drugs, including knowing the current recommendations for reversing the anticoagulant effect of each anticoagulant. This review provides a brief description of the various anticoagulants used today and also discusses the pharmacologic properties of those drugs used to reverse the anticoagulant action of specific anticoagulants.
Collapse
Affiliation(s)
- James M Wooten
- From the Department of Internal Medicine-Clinical Pharmacology, University of Missouri-Kansas City School of Medicine, Kansas City, and Pediatric Emergency Medicine, University of Alabama at Birmingham, Birmingham, Alabama (Retired)
| | - Steven T Baldwin
- From the Department of Internal Medicine-Clinical Pharmacology, University of Missouri-Kansas City School of Medicine, Kansas City, and Pediatric Emergency Medicine, University of Alabama at Birmingham, Birmingham, Alabama (Retired)
| |
Collapse
|
72
|
Chitosan/Alginate Nanoparticles for the Enhanced Oral Antithrombotic Activity of Clam Heparinoid from the Clam Coelomactra antiquata. Mar Drugs 2022; 20:md20020136. [PMID: 35200665 PMCID: PMC8879524 DOI: 10.3390/md20020136] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
Chitosan/alginate nanoparticles (DG1-NPs and DG1/Cur-NPs) aiming to enhance the oral antithrombotic activity of clam heparinoid DG1 were prepared by ionotropic pre-gelation. The influence of parameters, such as the concentration of sodium alginate (SA), chitosan (CTS), CaCl2, clam heparinoid DG1, and curcumin (Cur), on the characteristics of the nanoparticles, were investigated. Results indicate that chitosan and alginate can be used as polymer matrices to encapsulate DG1, and nanoparticle characteristics depend on the preparation parameters. Nano-particles should be prepared using 0.6 mg/mL SA, 0.33 mg/mL CaCl2, 0.6 mg/mL CTS, 7.2 mg/mL DG1, and 0.24 mg/mL Cur under vigorous stirring to produce DG1-NPS and DG1/Cur-NPS with small size, high encapsulation efficiency, high loading capacity, and negative zeta potential from approximately −20 to 30 mV. Data from scanning electron microscopy, Fourier-transform infrared spectrometry, and differential scanning calorimetry analyses showed no chemical reaction between DG1, Cur, and the polymers; only physical mixing. Moreover, the drug was loaded in the amorphous phase within the nanoparticle matrix. In the acute pulmonary embolism murine model, DG1-NPs enhanced the oral antithrombotic activity of DG1, but DG1/Cur-NPs did not exhibit higher antithrombotic activity than DG1-NPs. Therefore, the chitosan/alginate nanoparticles enhanced the oral antithrombotic activity of DG1, but curcumin did not further enhance this effect.
Collapse
|
73
|
Thacker BE, Thorne KJ, Cartwright C, Park J, Glass K, Chea A, Kellman BP, Lewis NE, Wang Z, Di Nardo A, Sharfstein ST, Jeske W, Walenga J, Hogwood J, Gray E, Mulloy B, Esko JD, Glass CA. Multiplex genome editing of mammalian cells for producing recombinant heparin. Metab Eng 2022; 70:155-165. [PMID: 35038554 DOI: 10.1016/j.ymben.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 10/19/2022]
Abstract
Heparin is an essential anticoagulant used for treating and preventing thrombosis. However, the complexity of heparin has hindered the development of a recombinant source, making its supply dependent on a vulnerable animal population. In nature, heparin is produced exclusively in mast cells, which are not suitable for commercial production, but mastocytoma cells are readily grown in culture and make heparan sulfate, a closely related glycosaminoglycan that lacks anticoagulant activity. Using gene expression profiling of mast cells as a guide, a multiplex genome engineering strategy was devised to produce heparan sulfate with high anticoagulant potency and to eliminate contaminating chondroitin sulfate from mastocytoma cells. The heparan sulfate purified from engineered cells grown in chemically defined medium has anticoagulant potency that exceeds porcine-derived heparin and confers anticoagulant activity to the blood of healthy mice. This work demonstrates the feasibility of producing recombinant heparin from mammalian cell culture as an alternative to animal sources.
Collapse
Affiliation(s)
- Bryan E Thacker
- TEGA Therapeutics Inc, 3550 General Atomics Court, G02-102, San Diego, CA, 92121, USA
| | - Kristen J Thorne
- TEGA Therapeutics Inc, 3550 General Atomics Court, G02-102, San Diego, CA, 92121, USA
| | - Colin Cartwright
- TEGA Therapeutics Inc, 3550 General Atomics Court, G02-102, San Diego, CA, 92121, USA
| | - Jeeyoung Park
- TEGA Therapeutics Inc, 3550 General Atomics Court, G02-102, San Diego, CA, 92121, USA
| | - Kimberly Glass
- TEGA Therapeutics Inc, 3550 General Atomics Court, G02-102, San Diego, CA, 92121, USA
| | - Annie Chea
- TEGA Therapeutics Inc, 3550 General Atomics Court, G02-102, San Diego, CA, 92121, USA
| | - Benjamin P Kellman
- Departments of Pediatrics and Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Nathan E Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Zhenping Wang
- Department of Dermatology, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Anna Di Nardo
- Department of Dermatology, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Susan T Sharfstein
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY, 12203, USA
| | - Walter Jeske
- Cardiovascular Research Institute, Loyola University Chicago, Health Sciences Division, 2160 S 1st Avenue, Maywood, IL, 60153, USA
| | - Jeanine Walenga
- Cardiovascular Research Institute, Loyola University Chicago, Health Sciences Division, 2160 S 1st Avenue, Maywood, IL, 60153, USA
| | - John Hogwood
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Herts, EN6 3QG, UK
| | - Elaine Gray
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Herts, EN6 3QG, UK
| | - Barbara Mulloy
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Herts, EN6 3QG, UK
| | - Jeffrey D Esko
- Glycobiology Research and Training Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Charles A Glass
- TEGA Therapeutics Inc, 3550 General Atomics Court, G02-102, San Diego, CA, 92121, USA.
| |
Collapse
|
74
|
Zha Z, Liu Y, Miao Y, Liao S, Wang SY, Tang H, Yin H. Preparation and characterization of 2-deacetyl-3-O-sulfo-heparosan and its antitumor effects via the fibroblast growth factor receptor pathway. Int J Biol Macromol 2022; 201:47-58. [PMID: 34998873 DOI: 10.1016/j.ijbiomac.2021.12.098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/24/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022]
Abstract
Heparosan, with a linear chain of disaccharide repeating units of → 4) β-D-glucuronic acid (GlcA) (1 → 4)-α-D-N-acetylglucosamine (GlcNAc) (1→, is a potential starting chemical for heparin synthesis. However, the chemoenzymatic synthesis of single-site sulfated heparosan and its antitumor activity have not been studied. In this study, 2-deacetyl-3-O-sulfo-heparosan (DSH) was prepared successively by the N-deacetylation chemical reaction and enzymatic modification of human 3-O-sulfotransferase-1 (3-OST-1). Structural characterization of DSH was shown the success of the sulfation with the sulfation degree of 0.87. High performance gel permeation chromatography (HPGPC) analysis revealed that DSH had only one symmetrical sharp peak with a molecular weight of 9.6334 × 104 Da. Biological function studies showed that DSH could inhibit tumor cell (A549, HepG2 and HCT116) viability and induce the apoptosis of A549 cells. Further in vitro mechanistic studies showed that DSH may induce apoptosis via the JNK signaling pathway, and the upstream signal of this process may be fibroblast growth factor receptors. These results indicated that DSH could be developed as one of a potential chemical for tumor treatment.
Collapse
Affiliation(s)
- Zhengqi Zha
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yaoyao Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yinghua Miao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shiying Liao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Su-Yan Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Huiling Tang
- Department of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huaian 223003, People's Republic of China.
| | - Hongping Yin
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
75
|
Chen G, Zeng R, Wang X, Cai H, Chen J, Zhong Y, Zhong S, Jia X. Antithrombotic Activity of Heparinoid G2 and Its Derivatives from the Clam Coelomactra antiquata. Mar Drugs 2022; 20:md20010050. [PMID: 35049905 PMCID: PMC8779706 DOI: 10.3390/md20010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022] Open
Abstract
Clam heparinoid G2 (60.25 kDa) and its depolymerized derivatives DG1 (24.48 kDa) and DG2 (6.75 kDa) prepared from Coelomactra antiquata have been documented to have excellent fibrinolytic and anticoagulant activity. In this study, to further explore the antithrombotic activity of G2, DG1 and DG2, azure A, sheep plasma, and clot lytic rate assays were used to determine their anticoagulant and thrombolytic activity in vitro. The results indicated that the anticoagulant titer of G2 was approximately 70% that of heparin and the thrombolytic activity of DG2 was greater than G2, DG1, and heparin activities. Moreover, in a carrageenan-induced venous thrombosis model, oral administration of G2 and DG1 each at 20 mg/kg and 40 mg/kg for 7 days significantly reduced blacktail thrombus formation, increased tissue-type plasminogen activator, fibrin degradation products, and D-dimer levels, decreased von Willebrand factor and thromboxane B2 levels, and restored phylum and genus abundance changes of intestinal bacteria. DG2 had no antithrombotic effect. At 20 mg/kg, G2, DG1, and heparin had comparable antithrombotic activities, and DG1 at 40 mg/kg had more muscular antithrombotic activity than G2. Thus, DG1 could be an antithrombotic oral agent owing to its more robust antithrombotic activity and lower molecular weight.
Collapse
Affiliation(s)
- Guanlan Chen
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Rui Zeng
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xin Wang
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongying Cai
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiajia Chen
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yingxiong Zhong
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Institute, Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: ; Tel.: +86-188-2669-9336
| | - Xuejing Jia
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (G.C.); (R.Z.); (X.W.); (H.C.); (J.C.); (Y.Z.); (X.J.)
- Guangdong Province Engineering Laboratory for Marine Biological Products, School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
76
|
Analysis of heparinase derived LMWH products using a MHC 2D LC system linked to Q-TOF MS. J Pharm Biomed Anal 2022; 212:114616. [DOI: 10.1016/j.jpba.2022.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
|
77
|
Karlsson R, Chopra P, Joshi A, Yang Z, Vakhrushev SY, Clausen TM, Painter CD, Szekeres GP, Chen YH, Sandoval DR, Hansen L, Esko JD, Pagel K, Dyer DP, Turnbull JE, Clausen H, Boons GJ, Miller RL. Dissecting structure-function of 3-O-sulfated heparin and engineered heparan sulfates. SCIENCE ADVANCES 2021; 7:eabl6026. [PMID: 34936441 PMCID: PMC8694587 DOI: 10.1126/sciadv.abl6026] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/08/2021] [Indexed: 06/01/2023]
Abstract
Heparan sulfate (HS) polysaccharides are master regulators of diverse biological processes via sulfated motifs that can recruit specific proteins. 3-O-sulfation of HS/heparin is crucial for anticoagulant activity, but despite emerging evidence for roles in many other functions, a lack of tools for deciphering structure-function relationships has hampered advances. Here, we describe an approach integrating synthesis of 3-O-sulfated standards, comprehensive HS disaccharide profiling, and cell engineering to address this deficiency. Its application revealed previously unseen differences in 3-O-sulfated profiles of clinical heparins and 3-O-sulfotransferase (HS3ST)–specific variations in cell surface HS profiles. The latter correlated with functional differences in anticoagulant activity and binding to platelet factor 4 (PF4), which underlies heparin-induced thrombocytopenia, a known side effect of heparin. Unexpectedly, cells expressing the HS3ST4 isoenzyme generated HS with potent anticoagulant activity but weak PF4 binding. The data provide new insights into 3-O-sulfate structure-function and demonstrate proof of concept for tailored cell-based synthesis of next-generation heparins.
Collapse
Affiliation(s)
- Richard Karlsson
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Apoorva Joshi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
- GlycoDisplay ApS, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sergey Y. Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Thomas Mandel Clausen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chelsea D. Painter
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gergo P. Szekeres
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Yen-Hsi Chen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
- GlycoDisplay ApS, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Daniel R. Sandoval
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lars Hansen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin Pagel
- Freie Universitaet Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany
- Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Douglas P. Dyer
- Wellcome Centre for Cell-Matrix Research, Geoffrey Jefferson Brain Research Centre, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Jeremy E. Turnbull
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
- Centre for Glycobiology, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Science, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands
| | - Rebecca L. Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
78
|
Li L, Chen C, Zhang C, Luo R, Lan X, Guo F, Ma L, Fu P, Wang Y. A honokiol-mediated robust coating for blood-contacting devices with anti-inflammatory, antibacterial and antithrombotic properties. J Mater Chem B 2021; 9:9770-9783. [PMID: 34806726 DOI: 10.1039/d1tb01617b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Thrombus, bacterial infections, and severe inflammation are still serious problems that have to be faced with blood-contacting materials. However, it is a great challenge to simultaneously meet the above functional requirements in a simple, economical and efficient method. As such, we put forward a robust and versatile coating strategy by covalently modifying the multi-pharmacological drug honokiol (HK) with an amine-rich polydopamine/polyethyleneimine coating, through which anticoagulant, antibacterial and anti-inflammatory properties were obtained (DPHc) simultaneously. The amine content in the DPHc coating was lower than the detection limit, while it contained abundant phenolic hydroxyl groups (49 μmol cm-2). Meanwhile, the 30 day drug release test confirmed that the drug was firmly modified on the surface of the coating without release. A systematic in vitro and ex vivo evaluation confirmed that the coating had significant anti-thrombotic properties. The antibacterial rates of the DPHc coating against Staphylococcus aureus and Escherichia coli reached 99.98% and 99.99%, respectively. In addition, subcutaneous implantation indicated that the DPHc coating also has excellent histocompatibility. To the best of our knowledge, this is the first study using HK as a coating material that can not only combat thrombosis and infection but also significantly inhibit inflammation associated with the use of blood-contacting materials, thus expanding the application of HK in the field of biomaterials.
Collapse
Affiliation(s)
- Linhua Li
- Kidney Research Institute, National Clinical Research Center for Geriatrics and Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Chong Chen
- Laboratory of Biomechanical Engineering, Department of Applied Mechanics, College of Architecture & Environment, Sichuan University, Chengdu, 610064, China
| | - Chunle Zhang
- Kidney Research Institute, National Clinical Research Center for Geriatrics and Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Xiaorong Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Fan Guo
- Kidney Research Institute, National Clinical Research Center for Geriatrics and Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Liang Ma
- Kidney Research Institute, National Clinical Research Center for Geriatrics and Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Ping Fu
- Kidney Research Institute, National Clinical Research Center for Geriatrics and Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
79
|
Makedonov I, Kahn SR, Abdulrehman J, Schulman S, Delluc A, Gross PL, Galanaud JP. Prevention of the post thrombotic syndrome with anticoagulation: a narrative review. Thromb Haemost 2021; 122:1255-1264. [PMID: 34852380 DOI: 10.1055/a-1711-1263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The post thrombotic syndrome (PTS) is chronic venous insufficiency secondary to a prior deep vein thrombosis (DVT). It is the most common complication of VTE and, while not fatal, it can lead to chronic, unremitting symptoms as well as societal and economic consequences. The cornerstone of PTS treatment lies in its prevention after DVT. Specific PTS preventative measures include the use of elastic compression stockings (ECS) and pharmacomechanical catheter directed thrombolysis (PCDT). However, the efficacy of these treatments has been questioned by large RCTs. So far, anticoagulation, primarily prescribed to prevent DVT extension and recurrence, appears to be the only unquestionably effective treatment for the prevention of PTS. In this literature review we present pathophysiological, biological, radiological and clinical data supporting the efficacy of anticoagulants to prevent PTS and the possible differential efficacy among available classes of anticoagulants (vitamin K antagonists (VKA), low molecular weight heparins (LMWHs) and direct oral anticoagulants (DOACs)). Data suggest that LMWHs and DOACs are superior to VKAs, but no head-to-head comparison is available between DOACs and LMWHs. Owing to their potentially greater anti-inflammatory properties, LMWHs could be superior to DOACs. This finding may be of interest particularly in patients with extensive DVT at high risk of moderate to severe PTS, but needs to be confirmed by a dedicated RCT.
Collapse
Affiliation(s)
- Ilia Makedonov
- Medicine, Sunnybrook Health Sciences Centre, Toronto, Canada
| | | | | | | | | | - Peter L Gross
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Canada
| | | |
Collapse
|
80
|
Sood A, Gupta A, Agrawal G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100067] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
81
|
Barry R, Stevens CA, Huynh T, Lerner D. Impact of Protocolized Pharmacist Intervention on Critical Activated Partial Thromboplastin Time Values With Heparin Infusions. J Pharm Technol 2021; 37:225-233. [PMID: 34752562 DOI: 10.1177/87551225211031923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Unfractionated heparin (UFH) infusions are commonly managed with nurse-driven nomograms titrated to activated partial thromboplastin time (aPTT). In some patients, anti-Xa values may be more appropriate measures of anticoagulation. At the present institution, an update to the nurse-driven aPTT nomogram requires pharmacist notification and clinical assessment for critically supratherapeutic aPTT results. Objective: The purpose of this study was to evaluate the efficacy and safety of the nomogram update. Methods: A single-center, retrospective, pre-post analysis was conducted in patients treated with UFH who experienced a critical aPTT during the 6 months preceding and following the nomogram update. Patients with erroneous critical aPTT results were excluded. The primary endpoint was the time in therapeutic range (Rosendaal method) from the first critical aPTT until UFH discontinuation. Secondary endpoints included the proportion of patients transitioned to anti-Xa monitoring and the incidence of Bleeding Academic Research Consortium (BARC) 2, 3, 5 bleeding. Data were analyzed by the χ2 test. The study was institutional review board approved. Results: Of 277 UFH infusions, 142 belonged to the pre-implementation group and 135 to the post-implementation group. Baseline aPTTs were similar between the 2 groups. Time in therapeutic range was 58.1% versus 62.4% of between groups (P = .467). UFH was transitioned to pharmacist-driven anti-Xa monitoring in 16.2% versus 40.3% of patients (P < .001). BARC 2, 3, 5 bleeding occurred in 23.2% versus 13.4% of patients (P < .001). Conclusions: Application of these data suggest improved safety and efficacy outcomes with directed pharmacist management of UFH in patients with critically elevated aPTTs.
Collapse
Affiliation(s)
- Rachelle Barry
- University of California, Davis Health, Sacramento, CA, USA
| | - Craig A Stevens
- University of California, San Diego Health, San Diego, CA, USA
| | - Trina Huynh
- University of California, San Diego Health, San Diego, CA, USA
| | - Dmitri Lerner
- University of California, San Diego Health, San Diego, CA, USA
| |
Collapse
|
82
|
Khan NZ, Chen LY, Lindenbauer A, Pliquett U, Rothe H, Nguyen TH. Label-Free Detection and Characterization of Heparin-Induced Thrombocytopenia (HIT)-like Antibodies. ACS OMEGA 2021; 6:25926-25939. [PMID: 34660955 PMCID: PMC8515375 DOI: 10.1021/acsomega.1c02496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/16/2021] [Indexed: 05/04/2023]
Abstract
Heparin-induced thrombocytopenia (HIT) antibodies (Abs) can mediate and activate blood cells, forming blood clots. To detect HIT Abs, immunological assays with high sensitivity (≥95%) and fast response are widely used, but only about 50% of these tests are accurate as non-HIT Abs also bind to the same antigens. We aim to develop biosensor-based electrical detection to better differentiate HIT-like from non-HIT-like Abs. As a proof of principle, we tested with two types of commercially available monoclonal Abs including KKO (inducing HIT) and RTO (noninducing HIT). Platelet factor 4/Heparin antigens were immobilized on gold electrodes, and binding of antibodies on the chips was detected based on the change in the charge transfer resistance (R ct). Binding of KKO on sensors yielded a significantly lower charge transfer resistance than that of RTO. Bound antibodies and their binding characteristics on the sensors were confirmed and characterized by complementary techniques. Analysis of thermal kinetics showed that RTO bonds are more stable than those of KKO, whereas KKO exhibited a higher negative ζ potential than RTO. These different characteristics made it possible to electrically differentiate these two types of antibodies. Our study opens a new avenue for the development of sensors for better detection of pathogenic Abs in HIT patients.
Collapse
Affiliation(s)
- Nida Zaman Khan
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308 Heiligenstadt, Germany
- Institute
for Chemistry and Biotechnology, Faculty of Mathematics and Natural
Sciences, Technische Universität
Ilmenau, 98694 Ilmenau, Germany
| | - Li-Yu Chen
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308 Heiligenstadt, Germany
- Institute
of Microbiology, Friedrich Schiller University, 07745 Jena, Germany
| | - Annerose Lindenbauer
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308 Heiligenstadt, Germany
| | - Uwe Pliquett
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308 Heiligenstadt, Germany
| | - Holger Rothe
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308 Heiligenstadt, Germany
| | - Thi-Huong Nguyen
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308 Heiligenstadt, Germany
- Institute
for Chemistry and Biotechnology, Faculty of Mathematics and Natural
Sciences, Technische Universität
Ilmenau, 98694 Ilmenau, Germany
| |
Collapse
|
83
|
CK2 Regulation: Perspectives in 2021. Biomedicines 2021; 9:biomedicines9101361. [PMID: 34680478 PMCID: PMC8533506 DOI: 10.3390/biomedicines9101361] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/20/2022] Open
Abstract
The protein kinase CK2 (CK2) family encompasses a small number of acidophilic serine/threonine kinases that phosphorylate substrates involved in numerous biological processes including apoptosis, cell proliferation, and the DNA damage response. CK2 has also been implicated in many human malignancies and other disorders including Alzheimer′s and Parkinson’s diseases, and COVID-19. Interestingly, no single mechanism describes how CK2 is regulated, including activation by external proteins or domains, phosphorylation, or dimerization. Furthermore, the kinase has an elongated activation loop that locks the kinase into an active conformation, leading CK2 to be labelled a constitutively active kinase. This presents an interesting paradox that remains unanswered: how can a constitutively active kinase regulate biological processes that require careful control? Here, we highlight a selection of studies where CK2 activity is regulated at the substrate level, and discuss them based on the regulatory mechanism. Overall, this review describes numerous biological processes where CK2 activity is regulated, highlighting how a constitutively active kinase can still control numerous cellular activities. It is also evident that more research is required to fully elucidate the mechanisms that regulate CK2 and what causes aberrant CK2 signaling in disease.
Collapse
|
84
|
Abstract
Carbohydrates are the most abundant and one of the most important biomacromolecules in Nature. Except for energy-related compounds, carbohydrates can be roughly divided into two categories: Carbohydrates as matter and carbohydrates as information. As matter, carbohydrates are abundantly present in the extracellular matrix of animals and cell walls of various plants, bacteria, fungi, etc., serving as scaffolds. Some commonly found polysaccharides are featured as biocompatible materials with controllable rigidity and functionality, forming polymeric biomaterials which are widely used in drug delivery, tissue engineering, etc. As information, carbohydrates are usually referred to the glycans from glycoproteins, glycolipids, and proteoglycans, which bind to proteins or other carbohydrates, thereby meditating the cell-cell and cell-matrix interactions. These glycans could be simplified as synthetic glycopolymers, glycolipids, and glycoproteins, which could be afforded through polymerization, multistep synthesis, or a semisynthetic strategy. The information role of carbohydrates can be demonstrated not only as targeting reagents but also as immune antigens and adjuvants. The latter are also included in this review as they are always in a macromolecular formulation. In this review, we intend to provide a relatively comprehensive summary of carbohydrate-based macromolecular biomaterials since 2010 while emphasizing the fundamental understanding to guide the rational design of biomaterials. Carbohydrate-based macromolecules on the basis of their resources and chemical structures will be discussed, including naturally occurring polysaccharides, naturally derived synthetic polysaccharides, glycopolymers/glycodendrimers, supramolecular glycopolymers, and synthetic glycolipids/glycoproteins. Multiscale structure-function relationships in several major application areas, including delivery systems, tissue engineering, and immunology, will be detailed. We hope this review will provide valuable information for the development of carbohydrate-based macromolecular biomaterials and build a bridge between the carbohydrates as matter and the carbohydrates as information to promote new biomaterial design in the near future.
Collapse
Affiliation(s)
- Lu Su
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Yingle Feng
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Department of Materials meet Life, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Xuyang Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
85
|
Nie C, Pouyan P, Lauster D, Trimpert J, Kerkhoff Y, Szekeres GP, Wallert M, Block S, Sahoo AK, Dernedde J, Pagel K, Kaufer BB, Netz RR, Ballauff M, Haag R. Polysulfate hemmen durch elektrostatische Wechselwirkungen die SARS‐CoV‐2‐Infektion**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chuanxiong Nie
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Institut für Virologie Freie Universität Berlin Robert-von-Ostertag-Straße 7–13 14163 Berlin Deutschland
| | - Paria Pouyan
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Daniel Lauster
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Jakob Trimpert
- Institut für Virologie Freie Universität Berlin Robert-von-Ostertag-Straße 7–13 14163 Berlin Deutschland
| | - Yannic Kerkhoff
- Department of Chemistry and Biochemistry Emmy-Noether Group “Bionanointerfaces” Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Gergo Peter Szekeres
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Department of Molecular Physics Fritz Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Deutschland
| | - Matthias Wallert
- Department of Chemistry and Biochemistry Emmy-Noether Group “Bionanointerfaces” Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Stephan Block
- Department of Chemistry and Biochemistry Emmy-Noether Group “Bionanointerfaces” Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Anil Kumar Sahoo
- Fachbereich Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Deutschland
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Deutschland
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie Charité-Universitätsmedizin Berlin Augustenburgerplatz 1 13353 Berlin Deutschland
| | - Kevin Pagel
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
- Department of Molecular Physics Fritz Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Deutschland
| | - Benedikt B. Kaufer
- Institut für Virologie Freie Universität Berlin Robert-von-Ostertag-Straße 7–13 14163 Berlin Deutschland
| | - Roland R. Netz
- Fachbereich Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Deutschland
| | - Matthias Ballauff
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| | - Rainer Haag
- Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 14195 Berlin Deutschland
| |
Collapse
|
86
|
Nie C, Pouyan P, Lauster D, Trimpert J, Kerkhoff Y, Szekeres GP, Wallert M, Block S, Sahoo AK, Dernedde J, Pagel K, Kaufer BB, Netz RR, Ballauff M, Haag R. Polysulfates Block SARS-CoV-2 Uptake through Electrostatic Interactions*. Angew Chem Int Ed Engl 2021; 60:15870-15878. [PMID: 33860605 PMCID: PMC8250366 DOI: 10.1002/anie.202102717] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/29/2021] [Indexed: 12/20/2022]
Abstract
Here we report that negatively charged polysulfates can bind to the spike protein of SARS-CoV-2 via electrostatic interactions. Using a plaque reduction assay, we compare inhibition of SARS-CoV-2 by heparin, pentosan sulfate, linear polyglycerol sulfate (LPGS) and hyperbranched polyglycerol sulfate (HPGS). Highly sulfated LPGS is the optimal inhibitor, with an IC50 of 67 μg mL-1 (approx. 1.6 μm). This synthetic polysulfate exhibits more than 60-fold higher virus inhibitory activity than heparin (IC50 : 4084 μg mL-1 ), along with much lower anticoagulant activity. Furthermore, in molecular dynamics simulations, we verified that LPGS can bind more strongly to the spike protein than heparin, and that LPGS can interact even more with the spike protein of the new N501Y and E484K variants. Our study demonstrates that the entry of SARS-CoV-2 into host cells can be blocked via electrostatic interactions, therefore LPGS can serve as a blueprint for the design of novel viral inhibitors of SARS-CoV-2.
Collapse
Affiliation(s)
- Chuanxiong Nie
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
- Institut für VirologieFreie Universität BerlinRobert-von-Ostertag-Strasse 7–1314163BerlinGermany
| | - Paria Pouyan
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Daniel Lauster
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Jakob Trimpert
- Institut für VirologieFreie Universität BerlinRobert-von-Ostertag-Strasse 7–1314163BerlinGermany
| | - Yannic Kerkhoff
- Department of Chemistry and BiochemistryEmmy-Noether Group “Bionanointerfaces”Freie Universität BerlinArnimallee 2214195BerlinGermany
| | - Gergo Peter Szekeres
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
- Department of Molecular PhysicsFritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Matthias Wallert
- Department of Chemistry and BiochemistryEmmy-Noether Group “Bionanointerfaces”Freie Universität BerlinArnimallee 2214195BerlinGermany
| | - Stephan Block
- Department of Chemistry and BiochemistryEmmy-Noether Group “Bionanointerfaces”Freie Universität BerlinArnimallee 2214195BerlinGermany
| | - Anil Kumar Sahoo
- Fachbereich PhysikFreie Universität BerlinArnimallee 1414195BerlinGermany
- Max Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Jens Dernedde
- Institut für Laboratoriumsmedizin, Klinische Chemie und PathobiochemieCharité-Universitätsmedizin BerlinAugustenburgerplatz 113353BerlinGermany
| | - Kevin Pagel
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
- Department of Molecular PhysicsFritz Haber Institute of the Max Planck SocietyFaradayweg 4–614195BerlinGermany
| | - Benedikt B. Kaufer
- Institut für VirologieFreie Universität BerlinRobert-von-Ostertag-Strasse 7–1314163BerlinGermany
| | - Roland R. Netz
- Fachbereich PhysikFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Matthias Ballauff
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Rainer Haag
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| |
Collapse
|
87
|
Chen D. Heparin beyond anti-coagulation. Curr Res Transl Med 2021; 69:103300. [PMID: 34237474 PMCID: PMC8257468 DOI: 10.1016/j.retram.2021.103300] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 05/22/2021] [Accepted: 06/02/2021] [Indexed: 11/04/2022]
Abstract
Heparin has served as a mainstream anticoagulant for over eight decades. Clinically heparin-derived compounds significantly contribute to prevention and treatment of thrombotic events complicated in numerous medical conditions such as venous thromboembolism, coronary artery disease and extracorporeal circulation processes. Moreover in recent years, various off-labeled efficacious potentials of heparin beyond anti-coagulation are dramatically emerging, and increasingly investigated in clinical studies. Herein this article presents a comprehensive update on the expanded applications of heparin agents, covering the pregnant clinic, respiratory inflammation, renal disease, sepsis, pancreatitis, among others. It aims to maximize the beneficial profile of a pharmaceutical product through medical re-purposing development, exemplified by heparin, to address the unmet clinical needs of severe illness including coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Daohong Chen
- Research Institute, Changshan Biochemical Pharmaceutical, North Head of Yinchuan Street, Zhengding New District, Shijiazhuang, Hebei, 050800, China.
| |
Collapse
|
88
|
Cullivan S, Murphy CA, Weiss L, Comer SP, Kevane B, McCullagh B, Maguire PB, Ní Ainle F, Gaine SP. Platelets, extracellular vesicles and coagulation in pulmonary arterial hypertension. Pulm Circ 2021; 11:20458940211021036. [PMID: 34158919 PMCID: PMC8182202 DOI: 10.1177/20458940211021036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023] Open
Abstract
Pulmonary arterial hypertension is a rare disease of the pulmonary vasculature, characterised pathologically by proliferation, remodelling and thrombosis in situ. Unfortunately, existing therapeutic interventions do not reverse these findings and the disease continues to result in significant morbidity and premature mortality. A number of haematological derangements have been described in pulmonary arterial hypertension which may provide insights into the pathobiology of the disease and opportunities to explore new therapeutic pathways. These include quantitative and qualitative platelet abnormalities, such as thrombocytopaenia, increased mean platelet volume and altered platelet bioenergetics. Furthermore, a hypercoagulable state and aberrant negative regulatory pathways can be observed, which could contribute to thrombosis in situ in distal pulmonary arteries and arterioles. Finally, there is increasing interest in the role of extracellular vesicle autocrine and paracrine signalling in pulmonary arterial hypertension, and their potential utility as biomarkers and novel therapeutic targets. This review focuses on the potential role of platelets, extracellular vesicles and coagulation pathways in the pathobiology of pulmonary arterial hypertension. We highlight important unanswered clinical questions and the implications of these observations for future research and pulmonary arterial hypertension-directed therapies.
Collapse
Affiliation(s)
- Sarah Cullivan
- National Pulmonary Hypertension Unit, Mater
Misericordiae University Hospital, Dublin, Ireland
- Conway-SPHERE Research Group, Conway Institute,
University College Dublin, Dublin, Ireland
| | - Claire A. Murphy
- Conway-SPHERE Research Group, Conway Institute,
University College Dublin, Dublin, Ireland
- Department of Neonatology, Rotunda Hospital, Dublin,
Ireland
| | - Luisa Weiss
- Conway-SPHERE Research Group, Conway Institute,
University College Dublin, Dublin, Ireland
| | - Shane P. Comer
- Conway-SPHERE Research Group, Conway Institute,
University College Dublin, Dublin, Ireland
| | - Barry Kevane
- Conway-SPHERE Research Group, Conway Institute,
University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae
University Hospital, Dublin, Ireland
| | - Brian McCullagh
- National Pulmonary Hypertension Unit, Mater
Misericordiae University Hospital, Dublin, Ireland
| | - Patricia B. Maguire
- Conway-SPHERE Research Group, Conway Institute,
University College Dublin, Dublin, Ireland
| | - Fionnuala Ní Ainle
- Conway-SPHERE Research Group, Conway Institute,
University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae
University Hospital, Dublin, Ireland
| | - Sean P. Gaine
- National Pulmonary Hypertension Unit, Mater
Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
89
|
Patel H. Blood biocompatibility enhancement of biomaterials by heparin immobilization: a review. Blood Coagul Fibrinolysis 2021; 32:237-247. [PMID: 33443929 DOI: 10.1097/mbc.0000000000001011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Blood contacting materials are concerned with biocompatibility including thrombus formation, decrease blood coagulation time, hematology, activation of complement system, platelet aggression. Interestingly, recent research suggests that biocompatibility is increasing by incorporating various materials including heparin using different methods. Basic of heparin including uses and complications was mentioned, in which burst release of heparin is major issue. To minimize the problem of biocompatibility and unpredictable heparin release, present review article potentially reviews the reported work and investigates the various immobilization methods of heparin onto biomaterials, such as polymers, metals, and alloys. Detailed explanation of different immobilization methods through different intermediates, activation, incubation method, plasma treatment, irradiations and other methods are also discussed, in which immobilization through intermediates is the most exploitable method. In addition to biocompatibility, other required properties of biomaterials like mechanical and corrosion resistance properties that increase by attachment of heparin are reviewed and discussed in this article.
Collapse
Affiliation(s)
- Himanshu Patel
- Department of Applied Science and Humanities, Pacific School of Engineering, Surat, Gujarat
| |
Collapse
|
90
|
Prolonged release and shelf-life of anticoagulant sulfated polysaccharides encapsulated with ZIF-8. Int J Biol Macromol 2021; 183:1174-1183. [PMID: 33984382 DOI: 10.1016/j.ijbiomac.2021.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/10/2021] [Accepted: 05/02/2021] [Indexed: 12/11/2022]
Abstract
Natural active polysaccharides are attracting increased attention from pharmaceutical industries for their valuable biological activities. However, the application of polysaccharides has been restricted due to their relatively large molecular weight, complex structure, and instability. Metal-organic frameworks (MOFs) have emerged to help deliver cargo to specific locations, achieving the objectives of eliminating the potential damage to the body, protecting the drugs, and improving therapeutic effectiveness. Here, a pH-responsive zeolitic imidazolate framework (ZIF-8) was synthesized to encapsulated three sulfated polysaccharides (heparin, fucan sulfate, fucosylated chondroitin sulfate) and a non-sulfated polysaccharide, hyaluronic acid. The resulting polysaccharides@ZIF-8 biocomposites showed differences in terms of morphology, particle size, encapsulation, and release efficiency. These biocomposites retained antithrombotic activity and the framework ZIF-8 effectively protected these polysaccharides from degradation and prolonged shelf-life of the anticoagulants from the unfavorable environment.
Collapse
|
91
|
From Exosome Glycobiology to Exosome Glycotechnology, the Role of Natural Occurring Polysaccharides. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2020021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exosomes (EXOs) are nano-sized informative shuttles acting as endogenous mediators of cell-to-cell communication. Their innate ability to target specific cells and deliver functional cargo is recently claimed as a promising theranostic strategy. The glycan profile, actively involved in the EXO biogenesis, release, sorting and function, is highly cell type-specific and frequently altered in pathological conditions. Therefore, the modulation of EXO glyco-composition has recently been considered an attractive tool in the design of novel therapeutics. In addition to the available approaches involving conventional glyco-engineering, soft technology is becoming more and more attractive for better exploiting EXO glycan tasks and optimizing EXO delivery platforms. This review, first, explores the main functions of EXO glycans and associates the potential implications of the reported new findings across the nanomedicine applications. The state-of-the-art of the last decade concerning the role of natural polysaccharides—as targeting molecules and in 3D soft structure manufacture matrices—is then analysed and highlighted, as an advancing EXO biofunction toolkit. The promising results, integrating the biopolymers area to the EXO-based bio-nanofabrication and bio-nanotechnology field, lay the foundation for further investigation and offer a new perspective in drug delivery and personalized medicine progress.
Collapse
|
92
|
Kaur R, Deb PK, Diwan V, Saini B. Heparanase Inhibitors in Cancer Progression: Recent Advances. Curr Pharm Des 2021; 27:43-68. [PMID: 33185156 DOI: 10.2174/1381612826666201113105250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND An endo-β-glucuronidase enzyme, Heparanase (HPSE), degrades the side chains of polymeric heparan sulfate (HS), a glycosaminoglycan formed by alternate repetitive units of D-glucosamine and D-glucuronic acid/L-iduronic acid. HS is a major component of the extracellular matrix and basement membranes and has been implicated in processes of the tissue's integrity and functional state. The degradation of HS by HPSE enzyme leads to conditions like inflammation, angiogenesis, and metastasis. An elevated HPSE expression with a poor prognosis and its multiple roles in tumor growth and metastasis has attracted significant interest for its inhibition as a potential anti-neoplastic target. METHODS We reviewed the literature from journal publication websites and electronic databases such as Bentham, Science Direct, PubMed, Scopus, USFDA, etc., about HPSE, its structure, functions, and role in cancer. RESULTS The present review is focused on Heparanase inhibitors (HPIns) that have been isolated from natural resources or chemically synthesized as new therapeutics for metastatic tumors and chronic inflammatory diseases in recent years. The recent developments made in the HPSE structure and function are also discussed, which can lead to the future design of HPIns with more potency and specificity for the target. CONCLUSION HPIns can be a better target to be explored against various cancers.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pran Kishore Deb
- Faculty of Pharmacy, Philadelphia University, Philadelphia, Jordan
| | - Vishal Diwan
- Faculty of Medicine, The University of Queensland, Queensland, Australia
| | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
93
|
Braz-de-Melo HA, Faria SS, Pasquarelli-do-Nascimento G, Santos IDO, Kobinger GP, Magalhães KG. The Use of the Anticoagulant Heparin and Corticosteroid Dexamethasone as Prominent Treatments for COVID-19. Front Med (Lausanne) 2021; 8:615333. [PMID: 33968948 PMCID: PMC8102695 DOI: 10.3389/fmed.2021.615333] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/26/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is spreading worldwide at disturbing rates, overwhelming global healthcare. Mounting death cases due to disease complications highlight the necessity of describing efficient drug therapy strategies for severe patients. COVID-19 severity associates with hypercoagulation and exacerbated inflammation, both influenced by ACE2 downregulation and cytokine storm occurrence. In this review, we discuss the applicability of the anticoagulant heparin and the anti-inflammatory corticosteroid dexamethasone for managing severe COVID-19 patients. The upregulated inflammation and blood clotting may be mitigated by administrating heparin and its derivatives. Heparin enhances the anticoagulant property of anti-thrombin (AT) and may be useful in conjunction with fibrinolytic drugs for severe COVID-19 patients. Besides, heparin can also modulate immune responses, alleviating TNF-α-mediated inflammation, impairing IL-6 production and secretion, and binding to complement proteins and leukotriene B4 (LTB4). Moreover, heparin may present anti-SARS-CoV-2 potential once it can impact viral infectivity and alter SARS-CoV-2 Spike protein architecture. Another feasible approach is the administration of the glucocorticoid dexamethasone. Although glucocorticoid's administration for viral infection managing is controversial, there is increasing evidence demonstrating that dexamethasone treatment is capable of drastically diminishing the death rate of patients presenting with Acute Respiratory Distress Syndrome (ARDS) that required invasive mechanical ventilation. Importantly, dexamethasone may be detrimental by impairing viral clearance and inducing hyperglycemia and sodium retention, hence possibly being deleterious for diabetics and hypertensive patients, two major COVID-19 risk groups. Therefore, while heparin's multitarget capacity shows to be strongly beneficial for severe COVID-19 patients, dexamethasone should be carefully administered taking into consideration underlying medical conditions and COVID-19 disease severity. Therefore, we suggest that the multitarget impact of heparin as an anti-viral, antithrombotic and anti-inflammatory drug in the early stage of the COVID-19 could significantly reduce the need for dexamethasone treatment in the initial phase of this disease. If the standard treatment of heparins fails on protecting against severe illness, dexamethasone must be applied as a potent anti-inflammatory shutting-down the uncontrolled and exacerbated inflammation.
Collapse
Affiliation(s)
| | - Sara Socorro Faria
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Igor de Oliveira Santos
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Gary P Kobinger
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Quebec City, QC, Canada.,Centre de Recherche en Infectiologie du CHU de Québec, Université Laval, Quebec City, QC, Canada
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
94
|
Zoepfl M, Dwivedi R, Taylor MC, Pomin VH, McVoy MA. Antiviral activities of four marine sulfated glycans against adenovirus and human cytomegalovirus. Antiviral Res 2021; 190:105077. [PMID: 33864843 DOI: 10.1016/j.antiviral.2021.105077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Broad-spectrum antivirals are more needed than ever to provide treatment options for novel emerging viruses and for viruses that lack therapeutic options or have developed resistance. A large number of viruses rely on charge-dependent non-specific interactions with heparan sulfate (HS), a highly sulfated glycosaminoglycan (GAG), for attachment to cell surfaces to initiate cell entry. As such, inhibitors targeting virion-HS interactions have potential to have broad-spectrum antiviral activity. Previous research has explored organic and inorganic small molecules, peptides, and GAG mimetics to disrupt virion-HS interactions. Here we report antiviral activities against both enveloped (the herpesvirus human cytomegalovirus) and non-enveloped (adenovirus) DNA viruses for four defined marine sulfated glycans: a sulfated galactan from the red alga Botryocladia occidentalis; a sulfated fucan from the sea urchin Lytechinus variegatus, and a sulfated fucan and a fucosylated chondroitin sulfate from the sea cucumber Isostichopus badionotus. As evidenced by gene expression, time of addition, and treatment/removal assays, all four novel glycans inhibited viral attachment and entry, most likely through interactions with virions. The sulfated fucans, which both lack anticoagulant activity, had similar antiviral profiles, suggesting that their activities are not only due to sulfation content or negative charge density but also due to other physicochemical factors such as the potential conformational shapes of these carbohydrates in solution and upon interaction with virion proteins. The structural and chemical properties of these marine sulfated glycans provide unique opportunities to explore relationships between glycan structure and their antiviral activities.
Collapse
Affiliation(s)
- Mary Zoepfl
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St, Richmond, VA, 23284, USA
| | - Rohini Dwivedi
- Department of BioMolecular Sciences, University of Mississippi, 417A Faser Hall University, MS, 38677-1848, USA
| | - Maggie C Taylor
- Department of BioMolecular Sciences, University of Mississippi, 417A Faser Hall University, MS, 38677-1848, USA
| | - Vitor H Pomin
- Department of BioMolecular Sciences, University of Mississippi, 417A Faser Hall University, MS, 38677-1848, USA.
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, VA, 23298-0163, USA.
| |
Collapse
|
95
|
Lepedda AJ, Nieddu G, Piperigkou Z, Kyriakopoulou K, Karamanos N, Formato M. Circulating Heparan Sulfate Proteoglycans as Biomarkers in Health and Disease. Semin Thromb Hemost 2021; 47:295-307. [PMID: 33794553 DOI: 10.1055/s-0041-1725063] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell-surface heparan sulfate proteoglycans (HSPGs) play key roles in regulating cell behavior, cell signaling, and cell matrix interactions in both physiological and pathological conditions. Their soluble forms from glycocalyx shedding are not merely waste products, but, rather, bioactive molecules, detectable in serum, which may be useful as diagnostic and prognostic markers. In addition, as in the case of glypican-3 in hepatocellular carcinoma, they may be specifically expressed by pathological tissue, representing promising targets for immunotherapy. The primary goal of this comprehensive review is to critically survey the main findings of the clinical data from the last 20 years and provide readers with an overall picture of the diagnostic and prognostic value of circulating HSPGs. Moreover, issues related to the involvement of HSPGs in various pathologies, including cardiovascular disease, thrombosis, diabetes and obesity, kidney disease, cancer, trauma, sepsis, but also multiple sclerosis, preeclampsia, pathologies requiring surgery, pulmonary disease, and others will be discussed.
Collapse
Affiliation(s)
| | - Gabriele Nieddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Nikolaos Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Marilena Formato
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
96
|
Bu C, Jin L. NMR Characterization of the Interactions Between Glycosaminoglycans and Proteins. Front Mol Biosci 2021; 8:646808. [PMID: 33796549 PMCID: PMC8007983 DOI: 10.3389/fmolb.2021.646808] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Glycosaminoglycans (GAGs) constitute a considerable fraction of the glycoconjugates found on cellular membranes and in the extracellular matrix of virtually all mammalian tissues. The essential role of GAG-protein interactions in the regulation of physiological processes has been recognized for decades. However, the underlying molecular basis of these interactions has only emerged since 1990s. The binding specificity of GAGs is encoded in their primary structures, but ultimately depends on how their functional groups are presented to a protein in the three-dimensional space. This review focuses on the application of NMR spectroscopy on the characterization of the GAG-protein interactions. Examples of interpretation of the complex mechanism and characterization of structural motifs involved in the GAG-protein interactions are given. Selected families of GAG-binding proteins investigated using NMR are also described.
Collapse
Affiliation(s)
- Changkai Bu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Lan Jin
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| |
Collapse
|
97
|
Pouyan P, Nie C, Bhatia S, Wedepohl S, Achazi K, Osterrieder N, Haag R. Inhibition of Herpes Simplex Virus Type 1 Attachment and Infection by Sulfated Polyglycerols with Different Architectures. Biomacromolecules 2021; 22:1545-1554. [PMID: 33706509 DOI: 10.1021/acs.biomac.0c01789] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inhibition of herpes simplex virus type 1 (HSV-1) binding to the host cell surface by highly sulfated architectures is among the promising strategies to prevent virus entry and infection. However, the structural flexibility of multivalent inhibitors plays a major role in effective blockage and inhibition of virus receptors. In this study, we demonstrate the inhibitory effect of a polymer scaffold on the HSV-1 infection by using highly sulfated polyglycerols with different architectures (linear, dendronized, and hyperbranched). IC50 values for all synthesized sulfated polyglycerols and the natural sulfated polymer heparin were determined using plaque reduction infection assays. Interestingly, an increase in the IC50 value from 0.03 to 374 nM from highly flexible linear polyglycerol sulfate (LPGS) to less flexible scaffolds, namely, dendronized polyglycerol sulfate and hyperbranched polyglycerol sulfate was observed. The most potent LPGS inhibits HSV-1 infection 295 times more efficiently than heparin, and we show that LPGS has a much reduced anticoagulant capacity when compared to heparin as evidenced by measuring the activated partial thromboplastin time. Furthermore, prevention of infection by LPGS and the commercially available drug acyclovir were compared. All tested sulfated polymers do not show any cytotoxicity at concentrations of up to 1 mg/mL in different cell lines. We conclude from our results that more flexible polyglycerol sulfates are superior to less flexible sulfated polymers with respect to inhibition of HSV-1 infection and may constitute an alternative to the current antiviral treatments of this ubiquitous pathogen.
Collapse
Affiliation(s)
- Paria Pouyan
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Chuanxiong Nie
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany.,Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Street 7-13, Berlin 14163, Germany
| | - Sumati Bhatia
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| | - Stefanie Wedepohl
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee. 22, Berlin 14195, Germany
| | - Katharina Achazi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee. 22, Berlin 14195, Germany
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Street 7-13, Berlin 14163, Germany.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong TYB-1B-507, Hong Kong
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
| |
Collapse
|
98
|
Chen L, Ouyang Y, Yan N, Guo Y, Yi L, Sun Y, Liu D, Zhang Z. Comprehensive analysis of heparinase derived heparin-products using two-dimensional liquid chromatography coupled with mass spectrometry. J Chromatogr A 2021; 1643:462049. [PMID: 33743327 DOI: 10.1016/j.chroma.2021.462049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022]
Abstract
Heparin is a linear sulfated polysaccharide. It is composed of a repeating disaccharide unit with different sulfo patterns. The compositional analysis after heparin was decomposed to disaccharides and enzyme resistant domains is an important way to delve into its structure. Strong anion exchange (SAX) chromatography is commonly used for the compositional analysis due to its high resolution, stability and capability of quantitation. However, nonvolatile salt in mobile phase is not compatible with MS, then the structural domains cannot be identified without standards. Here, a new two-dimensional liquid chromatography system, multiple heart cut (MHC), was developed and linked to mass spectrometry (MS) directly to provide a comprehensive analysis of enzyme digested heparin. SAX was applied as the first dimensional chromatography, in which 17 peaks were observed and integrated in the digested heparin. Size-exclusion chromatography (SEC) was used as the second dimensional chromatography to desalt efficiently. Structural information of each component was then obtained with MS, including eight common disaccharides, eight enzyme resistant tetrasaccharides and a heparin-core protein linkage domain. The comparison of enzyme digested heparins obtained from different vendors using this system suggested their similar major structure and activity, but slightly different production processes.
Collapse
Affiliation(s)
- Lei Chen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yilan Ouyang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Na Yan
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yan Guo
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Lin Yi
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yuanyuan Sun
- The fourth people's Hospital of Jinan City, Shandong Province, 250031, China
| | - Dehua Liu
- The fourth people's Hospital of Jinan City, Shandong Province, 250031, China
| | - Zhenqing Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China.
| |
Collapse
|
99
|
Nishinari K, Fang Y. Molar mass effect in food and health. Food Hydrocoll 2021; 112:106110. [PMID: 32895590 PMCID: PMC7467918 DOI: 10.1016/j.foodhyd.2020.106110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022]
Abstract
It is demanded to supply foods with good quality for all the humans. With the advent of aging society, palatable and healthy foods are required to improve the quality of life and reduce the burden of finance for medical expenditure. Food hydrocolloids can contribute to this demand by versatile functions such as thickening, gelling, stabilising, and emulsifying, controlling texture and flavour release in food processing. Molar mass effects on viscosity and diffusion in liquid foods, and on mechanical and other physical properties of solid and semi-solid foods and films are overviewed. In these functions, the molar mass is one of the key factors, and therefore, the effects of molar mass on various health problems related to noncommunicable diseases or symptoms such as cancer, hyperlipidemia, hyperglycemia, constipation, high blood pressure, knee pain, osteoporosis, cystic fibrosis and dysphagia are described. Understanding these problems only from the viewpoint of molar mass is limited since other structural characteristics, conformation, branching, blockiness in copolymers such as pectin and alginate, degree of substitution as well as the position of the substituents are sometimes the determining factor rather than the molar mass. Nevertheless, comparison of different behaviours and functions in different polymers from the viewpoint of molar mass is expected to be useful to find a common characteristics, which may be helpful to understand the mechanism in other problems.
Collapse
Affiliation(s)
- Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloids Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, PR China
- Department of Food and Nutrition, Graduate School of Human Life Science, Osaka City University, Osaka, 558-6565, Japan
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
100
|
Champanhac C, Haas H, Landfester K, Mailänder V. Heparin modulates the cellular uptake of nanomedicines. Biomater Sci 2021; 9:1227-1231. [PMID: 33570055 DOI: 10.1039/d0bm01946a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Liposomal formulations are used to improve the safety and cellular absorption of conventional drugs by limiting their interaction with phagocytes. The uptake behaviour of these nanocarriers is affected by the blood composition, and accordingly the presence of an anticoagulant in the blood could have a critical impact on the efficiency of nanomedicines. For the negatively charged liposomes, such as AmBisome®, no significant change in the uptake could be observed when co-incubated with heparin and primary phagocytes. Yet, we observed that a peak of the uptake extent of cationic liposomes was reached at a clinically relevant concentration of heparin for phagocytes and cancer cells. Hence, we recommend avoiding treatment of a heparinized patient with cationic nanomedicines because unexpectedly high uptake can occur in phagocytes.
Collapse
Affiliation(s)
- Carole Champanhac
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55122 Mainz, Germany.
| | | | | | | |
Collapse
|