51
|
HOU X, HUANG L, Zhang H, XIN Q, LI H, YE H, ZHANG Y. Adsorption Resin/Polyethersulfone Membrane Used for Plasma Separation and Middle Molecular Toxins Adsorption. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
52
|
Pro-Arrhythmic Potential of Accumulated Uremic Toxins Is Mediated via Vulnerability of Action Potential Repolarization. Int J Mol Sci 2023; 24:ijms24065373. [PMID: 36982449 PMCID: PMC10049510 DOI: 10.3390/ijms24065373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Chronic kidney disease (CKD) is represented by a diminished filtration capacity of the kidneys. End-stage renal disease patients need dialysis treatment to remove waste and toxins from the circulation. However, endogenously produced uremic toxins (UTs) cannot always be filtered during dialysis. UTs are among the CKD-related factors that have been linked to maladaptive and pathophysiological remodeling of the heart. Importantly, 50% of the deaths in dialysis patients are cardiovascular related, with sudden cardiac death predominating. However, the mechanisms responsible remain poorly understood. The current study aimed to assess the vulnerability of action potential repolarization caused by exposure to pre-identified UTs at clinically relevant concentrations. We exposed human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and HEK293 chronically (48 h) to the UTs indoxyl sulfate, kynurenine, or kynurenic acid. We used optical and manual electrophysiological techniques to assess action potential duration (APD) in the hiPSC-CMs and recorded IKr currents in stably transfected HEK293 cells (HEK-hERG). Molecular analysis of KV11.1, the ion channel responsible for IKr, was performed to further understand the potential mechanism underlying the effects of the UTs. Chronic exposure to the UTs resulted in significant APD prolongation. Subsequent assessment of the repolarization current IKr, often most sensitive and responsible for APD alterations, showed decreased current densities after chronic exposure to the UTs. This outcome was supported by lowered protein levels of KV11.1. Finally, treatment with an activator of the IKr current, LUF7244, could reverse the APD prolongation, indicating the potential modulation of electrophysiological effects caused by these UTs. This study highlights the pro-arrhythmogenic potential of UTs and reveals a mode of action by which they affect cardiac repolarization.
Collapse
|
53
|
Koppe L, Mak RH. Is There a Need to "Modernize" and "Simplify" the Diagnostic Criteria of Protein-Energy Wasting? Semin Nephrol 2023; 43:151403. [PMID: 37541069 DOI: 10.1016/j.semnephrol.2023.151403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Protein energy wasting(PEW) is a term that most nephrologists used to define nutritional disorders in patients with acute kidney injury and chronic kidney disease. Although this nomenclature is well implemented in the field of nephrology, the use of other terms such as cachexia or malnutritionin the majority of chronic diseases can induce confusion regarding the definition and interpretation of these terms. There is ample evidence in the literature that the pathways involved in cachexia/malnutrition and PEW are common. However, in kidney diseases, there are pathophysiological conditions such as accumulation of uremic toxins, and the use of dialysis, which may induce a phenotypic specificity justifying the original term PEW. In light of the latest epidemiologic studies, the criteria for PEW used in 2008 probably need to be updated. The objective of this review is to summarize the main mechanisms involved in cachexia/malnutrition and PEW. We discuss the need to modernize and simplify the current definition and diagnostic criteria of PEW. We consider the interest of proposing a specific nomenclature of PEW for children and elderly patients with kidney diseases.
Collapse
Affiliation(s)
- Laetitia Koppe
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France; University Lyon, Cardiovasculaire, Métabolisme, Diabète et Nutrition Laboratory, Institut National des Sciences Appliquées-Lyon, Institut National de la Santé et de la Recherche Médicale U1060, l'Institut National de Recherche Pour l'agriculture, l'alimentation et l'environnement (INRAE), Université Claude Bernard Lyon 1, Villeurbanne, France.
| | - Robert H Mak
- Division of Pediatric Nephrology, Rady Children's Hospital, University of California San Diego, La Jolla, California
| |
Collapse
|
54
|
Huang Z, Zhang W, An Q, Lang Y, Liu Y, Fan H, Chen H. Exploration of the anti-hyperuricemia effect of TongFengTangSan (TFTS) by UPLC-Q-TOF/MS-based non-targeted metabonomics. Chin Med 2023; 18:17. [PMID: 36797795 PMCID: PMC9933412 DOI: 10.1186/s13020-023-00716-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/28/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND TongFengTangSan (TFTS) is a commonly used Tibetan prescription for gout treatment. Previously, TFTS (CF) was confirmed to have a significant uric acid-lowering effect. However, the anti-hyperuricemia mechanisms and the main active fractions remain unclear. The current study aimed to investigate the anti-hyperuricemia mechanism using metabolomics and confirm the active CF fraction. METHODS The hyperuricemia model was established through intraperitoneal injection containing 100 mg/kg potassium oxonate and 150 mg/kg hypoxanthine by gavage. We used serum uric acid (sUA), creatinine (CRE), blood urea nitrogen (BUN), xanthine oxidase (XOD) activity, interleukin-6 (IL-6) and interleukin-1β (IL-1β) as indicators to evaluate the efficacy of CF and the four fractions (SX, CF30, CF60, and CF90). The anti-hyperuricemia mechanism of CF was considered through non-targeted metabolomics depending on the UPLC-Q-TOF-MS technology. Principle component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) helped explore the potential biomarkers in hyperuricemia. Moreover, the differential metabolites and metabolic pathways regulated by CF and four fractions were also assessed. RESULTS CF revealed a significant anti-hyperuricemia effect by down-regulating the level of sUA, sCRE, sIL-1β, and XOD. SX, CF30, CF60, and CF90 differed in the anti-hyperuricemia effect. Only CF60 significantly lowered the sUA level among the four fractions, and it could be the main efficacy fraction of TFTS. Forty-three differential metabolites were identified in hyperuricemia rats from plasma and kidney. Pathway analysis demonstrated that seven pathways were disrupted among hyperuricemia rats. CF reversed 19 metabolites in hyperuricemia rats and exerted an anti-hyperuricemia effect by regulating purine metabolism. CF60 was the main active fraction of TFTS and exerted a similar effect of CF by regulating purine metabolism. CONCLUSIONS CF and CF60 could exert an anti-hyperuricemia effect by regulating the abnormal purine metabolism because of hyperuricemia while improving intestinal and renal function. CF60 could be the main active fraction of TFTS.
Collapse
Affiliation(s)
- Zhichao Huang
- grid.411868.20000 0004 1798 0690Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330004 China
| | - Wugang Zhang
- grid.411868.20000 0004 1798 0690Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330004 China ,grid.411868.20000 0004 1798 0690State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006 China
| | - Qiong An
- grid.411868.20000 0004 1798 0690Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330004 China
| | - Yifan Lang
- grid.411868.20000 0004 1798 0690State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006 China
| | - Ye Liu
- grid.411868.20000 0004 1798 0690State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006 China
| | - Huifang Fan
- grid.411868.20000 0004 1798 0690State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006 China
| | - Haifang Chen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, China.
| |
Collapse
|
55
|
Silva LAP, Campagnolo S, Fernandes SR, Marques SS, Barreiros L, Sampaio-Maia B, Segundo MA. Rapid and sustainable HPLC method for the determination of uremic toxins in human plasma samples. Anal Bioanal Chem 2023; 415:683-694. [PMID: 36464734 DOI: 10.1007/s00216-022-04458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 12/11/2022]
Abstract
Protein-bound uremic toxins, mainly indoxyl sulfate (3-INDS), p-cresol sulfate (pCS), and indole-3-acetic acid (3-IAA) but also phenol (Pol) and p-cresol (pC), are progressively accumulated during chronic kidney disease (CKD). Their accurate measurement in biomatrices is demanded for timely diagnosis and adoption of appropriate therapeutic measures. Multianalyte methods allowing the establishment of a uremic metabolite profile are still missing. Hence, the aim of this work was to develop a rapid and sensitive method based on high-performance liquid chromatography with fluorescence detection for the simultaneous quantification of Pol, 3-IAA, pC, 3-INDS, and pCS in human plasma. Separation was attained in 12 min, using a monolithic C18 column and isocratic elution with acetonitrile and phosphate buffer containing an ion-pairing reagent, at a flow rate of 2 mL min-1. Standards were prepared in plasma and quantification was performed using the background subtraction approach. LOQ values were ≤ 0.2 µg mL-1 for all analytes except for pCS (LOQ of 2 µg mL-1). The method proved to be accurate (93.5-112%) and precise (CV ≤ 14.3%). The multianalyte application of the method, associated to a reduced sample volume (50 µL), a less toxic internal standard (eugenol) in comparison to the previously applied 2,6-dimethylphenol and 4-ethylphenol, and a green extraction solvent (ethanol), resulted in the AGREE score of 0.62 which is in line with the recent trend of green and sustainable analytical chemistry. The validated method was successfully applied to the analysis of plasma samples from control subjects exhibiting normal levels of uremic toxins and CKD patients presenting significantly higher levels of 3-IAA, pC, 3-INDS, and pCS that can be further investigated as biomarkers of disease progression.
Collapse
Affiliation(s)
- Luís A P Silva
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Stefano Campagnolo
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Sara R Fernandes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.,Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal
| | - Sara S Marques
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Luisa Barreiros
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal. .,Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal.
| | - Benedita Sampaio-Maia
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 280, 4200-135, Porto, Portugal.,Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393, Porto, Portugal
| | - Marcela A Segundo
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| |
Collapse
|
56
|
Ciceri P, Artioli L, Magagnoli L, Barassi A, Alvarez JC, Massy ZA, Galassi A, Cozzolino M. The Role of Uremic Retention Solutes in the MIA Syndrome in Hemodialysis Subjects. Blood Purif 2023; 52:41-53. [PMID: 35512641 DOI: 10.1159/000524335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023]
Abstract
INTRODUCTION In chronic kidney disease (CKD), the high morbidity and mortality risk for cardiovascular disease (CVD) are not easily explained only on the basis of traditional factors. Among nontraditional ones involved in CKD, malnutrition, inflammation, and atherosclerosis/calcification have been described as the "MIA syndrome." METHODS In this pilot study, we evaluated the association between the variation in serum levels of 27 uremic retention solutes plus 6 indexes related to the MIA syndrome processes in a population of dialysis patients. RESULTS As expected, we found a direct correlation between serum albumin and both phosphate and total cholesterol (r = 0.54 and 0.37, respectively; p < 0.05). Moreover, total cholesterol and phosphate directly correlate (r = 0.40, p < 0.05). The relationship between malnutrition and inflammation is highlighted by the correlation of serum cholesterol levels with serum alpha-1 acid glycoprotein and IL-6 levels (r = -0.56, r = -0.39, respectively; p < 0.05). Moreover, the relation between inflammation and atherosclerosis/calcification is supported by the correlation of IL-6 with VEGF levels and vascular smooth muscle cell high-Pi in vitro calcification (r = 0.81, r = 0.66, respectively; p < 0.01). CONCLUSION We found significant correlations between several uremic retention solutes and malnutrition, inflammation, and atherosclerosis/calcification. Our findings support the hypothesis of a central role of the uremic milieu in the MIA syndrome and ultimately in the pathogenesis of CKD-specific CVD risk factors.
Collapse
Affiliation(s)
- Paola Ciceri
- Department of Health Sciences, Laboratory of Experimental Nephrology, University of Milan, Milan, Italy
| | - Luisa Artioli
- Department of Health Sciences, Laboratory of Experimental Nephrology, University of Milan, Milan, Italy
| | - Lorenza Magagnoli
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Alessandra Barassi
- Department of Health Sciences, Laboratory of Clinical Biochemistry, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Jean-Claude Alvarez
- Laboratory of Pharmacology and Toxicology, CHU Raymond Poincare, Garches, France.,INSERM U-1173, UFR des Sciences de la Santé Simone Veil, Université Paris-Saclay (Versailles-Saint-Quentin-en-Yvelines), Versailles, France
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré University Hospital, APHP, Boulogne-Billancourt, France.,Centre for Research in Epidemiology and Population Health (CESP), INSERM UMRS 1018, Université Paris-Saclay, Université Versailles Saint Quentin (UVSQ), Villejuif, France
| | - Andrea Galassi
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Mario Cozzolino
- Department of Health Sciences, Laboratory of Experimental Nephrology, University of Milan, Milan, Italy.,Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| |
Collapse
|
57
|
Gut microbiome studies in CKD: opportunities, pitfalls and therapeutic potential. Nat Rev Nephrol 2023; 19:87-101. [PMID: 36357577 DOI: 10.1038/s41581-022-00647-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/12/2022]
Abstract
Interest in gut microbiome dysbiosis and its potential association with the development and progression of chronic kidney disease (CKD) has increased substantially in the past 6 years. In parallel, the microbiome field has matured considerably as the importance of host-related and environmental factors is increasingly recognized. Past research output in the context of CKD insufficiently considered the myriad confounding factors that are characteristic of the disease. Gut microbiota-derived metabolites remain an interesting therapeutic target to decrease uraemic (cardio)toxicity. However, future studies on the effect of dietary and biotic interventions will require harmonization of relevant readouts to enable an in-depth understanding of the underlying beneficial mechanisms. High-quality standards throughout the entire microbiome analysis workflow are also of utmost importance to obtain reliable and reproducible results. Importantly, investigating the relative composition and abundance of gut bacteria, and their potential association with plasma uraemic toxins levels is not sufficient. As in other fields, the time has come to move towards in-depth quantitative and functional exploration of the patient's gut microbiome by relying on confounder-controlled quantitative microbial profiling, shotgun metagenomics and in vitro simulations of microorganism-microorganism and host-microorganism interactions. This step is crucial to enable the rational selection and monitoring of dietary and biotic intervention strategies that can be deployed as a personalized intervention in CKD.
Collapse
|
58
|
Fernandes SR, Meireles AN, Marques SS, Silva L, Barreiros L, Sampaio-Maia B, Miró M, Segundo MA. Sample preparation and chromatographic methods for the determination of protein-bound uremic retention solutes in human biological samples: An overview. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123578. [PMID: 36610265 DOI: 10.1016/j.jchromb.2022.123578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Protein-bound uremic retention solutes, such as indole-3-acetic acid, indoxyl sulfate, p-cresol and p-cresol sulfate, are associated with the development of several pathologies, namely renal, cardiovascular, and bone toxicities, due to their potential accumulation in the human body, thus requiring analytical methods for monitoring and evaluation. The present review addresses conventional and advanced sample treatment procedures for sample handling and the chromatographic analytical methods developed for quantification of these compounds in different biological fluids, with particular focus on plasma, serum, and urine. The sample preparation and chromatographic methods coupled to different detection systems are critically discussed, focusing on the different steps involved for sample treatment, namely elimination of interfering compounds present in the sample matrix, and the evaluation of their environmental impact through the AGREEprep tool. There is a clear trend for the application of liquid-chromatography coupled to tandem mass spectrometry, which requires protein precipitation, solid-phase extraction and/or dilution prior to analysis of biological samples. Furthermore, from a sustainability point of view, miniaturized methods resorting to microplate devices are highly recommended.
Collapse
Affiliation(s)
- Sara R Fernandes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Andreia N Meireles
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sara S Marques
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Luís Silva
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Luisa Barreiros
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal.
| | - Benedita Sampaio-Maia
- Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica / I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Manuel Miró
- FI-TRACE group, Department of Chemistry, University of the Balearic Islands, 07122-Palma de Mallorca, Spain
| | - Marcela A Segundo
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
59
|
Xia J, Hou Y, Cai A, Xu Y, Yang W, Huang M, Mou S. An integrated co-expression network analysis reveals novel genetic biomarkers for immune cell infiltration in chronic kidney disease. Front Immunol 2023; 14:1129524. [PMID: 36875100 PMCID: PMC9981626 DOI: 10.3389/fimmu.2023.1129524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Background Chronic kidney disease (CKD) is characterized by persistent damage to kidney function or structure. Progression to end-stage leads to adverse effects on multiple systems. However, owing to its complex etiology and long-term cause, the molecular basis of CKD is not completely known. Methods To dissect the potential important molecules during the progression, based on CKD databases from Gene Expression Omnibus, we used weighted gene co-expression network analysis (WGCNA) to identify the key genes in kidney tissues and peripheral blood mononuclear cells (PBMC). Correlation analysis of these genes with clinical relevance was evaluated based on Nephroseq. Combined with a validation cohort and receiver operating characteristic curve (ROC), we found the candidate biomarkers. The immune cell infiltration of these biomarkers was evaluated. The expression of these biomarkers was further detected in folic acid-induced nephropathy (FAN) murine model and immunohistochemical staining. Results In total, eight genes (CDCP1, CORO1C, DACH1, GSTA4, MAFB, TCF21, TGFBR3, and TGIF1) in kidney tissue and six genes (DDX17, KLF11, MAN1C1, POLR2K, ST14, and TRIM66) in PBMC were screened from co-expression network. Correlation analysis of these genes with serum creatinine levels and estimated glomerular filtration rate from Nephroseq showed a well clinical relevance. Validation cohort and ROC identified TCF21, DACH1 in kidney tissue and DDX17 in PBMC as biomarkers for the progression of CKD. Immune cell infiltration analysis revealed that DACH1 and TCF21 were correlated with eosinophil, activated CD8 T cell, activated CD4 T cell, while the DDX17 was correlated with neutrophil, type-2 T helper cell, type-1 T helper cell, mast cell, etc. FAN murine model and immunohistochemical staining confirmed that these three molecules can be used as genetic biomarkers to distinguish CKD patients from healthy people. Moreover, the increase of TCF21 in kidney tubules might play important role in the CKD progression. Discussion We identified three promising genetic biomarkers which could play important roles in the progression of CKD.
Collapse
Affiliation(s)
- Jia Xia
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anxiang Cai
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Masha Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Mou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
60
|
Identification of Differentially Expressed Genes Particularly Associated with Immunity in Uremia Patients by Bioinformatic Analysis. Anal Cell Pathol (Amst) 2022; 2022:5437560. [PMID: 36618529 PMCID: PMC9815924 DOI: 10.1155/2022/5437560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Uremia is a common syndrome that happens to nearly all end-stage kidney diseases, which profound have changes in human gene expressions, but the related pathways are poorly understood. Gene Ontology categories and Kyoto Encyclopedia of Genes and Genomes pathways enriched in the differentially expressed genes (DEGs) were analyzed by using clusterProfiler, org.Hs.eg.db, and Pathview, and protein-protein interaction (PPI) network was built by Cytoscape. We identified 3432 DEGs (including 3368 down- and 64 up-regulated genes), of which there were 52 different molecular functions, and 178 genes were identified as immune genes controlled by the four transcription factors (POU domain class 6 transcription factor 1 (POU6F1), interferon regulator factor 7 [IRF7], forkhead box D3 (FOXD3), and interferon-stimulated response element [ISRE]). In the gender research, no significant difference was observed. The top 15 proteins of 178 immune-related genes were identified with the highest degree in PPI network. The DEG analysis of uremia patients was expected to provide fundamental information to relieve pain and add years to their life.
Collapse
|
61
|
Azimi SZ, Alizadeh N, Ramezanzadeh E, Monfared A, Leili EK. The impact of underlying diseases-related drugs on the chronic kidney disease-associated pruritus in hemodialysis patients. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2022; 27:86. [PMID: 36685022 PMCID: PMC9854926 DOI: 10.4103/jrms.jrms_633_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/05/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022]
Abstract
Background Uremic pruritus or chronic kidney disease-associated pruritus (CKD-aP) is a frequent compromising symptom in end-stage renal disease. Despite the little attention paid to drugs used among hemodialysis (HD) patients, investigating medications used in this population of patients and examining the status of CKD-aP may lead to the identification of medications that improve or worsen the pruritus condition. We aimed to assess the role of underlying diseases-related drugs on CKD-aP in HD patients. Materials and Methods We performed a case - control study on HD patients aged over 18 years old. The demographic data and clinical parameters including HD parameters, drug history, dermatologic assessments, and laboratory examination were assessed. Results We compared 128 patients with CKD-aP as cases and 109 patients without CKD-aP as controls. Cases were on the longer course of dialysis (44.69 ± 43.24 months for cases vs. 38.87 ± 50.73 months for controls; P = 0.02). In multiple analyses of variables related to CKD-aP, backward LR logistic regression revealed that only atorvastatin (P = 0.036) was considered to be a predictive factor associated with CKD-aP. Thus, the use of atorvastatin reduced the index of CKD-aP (95% confidence interval: 0.256-0.954, odd's Ratio = 0.494). Conclusion Atorvastatin was associated with decreased frequencies of CKD-aP among HD patients in our study. This knowledge may guide further clinical trials to evaluate atorvastatin's immunomodulatory and anti-inflammatory effects on the CKD-aP in HD populations.
Collapse
Affiliation(s)
- Seyyede Zeinab Azimi
- Department of Dermatology, Skin Research Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Narges Alizadeh
- Department of Dermatology, Skin Research Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran,Address for correspondence: Dr. Narges Alizadeh, Department of Dermatology, Skin Research Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran. E-mail:
| | - Elham Ramezanzadeh
- Department of Nephrology, Urology Research Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Monfared
- Department of Nephrology, Urology Research Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Kazemnejad Leili
- Department of Nephrology, Urology Research Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
62
|
Wang Y, Liu Z, Ma J, Xv Q, Gao H, Yin H, Yan G, Jiang X, Yu W. Lycopene attenuates the inflammation and apoptosis in aristolochic acid nephropathy by targeting the Nrf2 antioxidant system. Redox Biol 2022; 57:102494. [PMID: 36198206 PMCID: PMC9530962 DOI: 10.1016/j.redox.2022.102494] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 10/31/2022] Open
Abstract
Lycopene (LYC) is a carotenoid, has antioxidant properties. This study investigated whether lycopene attenuates aristolochic acids (AAs) -induced chronic kidney disease. In this experiment, lycopene was used to intervene C57BL/6 mice with renal injury induced by aristolochic acid exposure. The histomorphological changes and serological parameters of the kidney were measured in order to assess the alleviating effect of lycopene on renal injury in aristolochic acid nephropathy. In vitro and in vivo experiments were carried out to verify the main mechanism of action and drug targets of lycopene in improving aristolochic acid nephropathy (AAN) and by various experimental methods such as ELISA, immunohistochemistry, immunofluorescence, Western-blot and qRT-PCR. The results showed that oxidative stress injury was induced in the kidney of mice after AAI exposure, resulting in inflammatory response and tubular epithelial cell apoptosis. The results showed that the Nrf2/HO-1 antioxidant signaling pathway was inhibited after AAI exposure. AAI induces oxidative stress injury in the kidney, which ultimately leads to inflammation and tubular epithelial cell apoptosis. After LYC intervened in the body, it activated Nrf2 nuclear translocation and its downstream HO-1 and NQO1 antioxidant signaling pathways. LYC inhibited ROS production by renal tubular epithelial cells, and alleviated mitochondrial damage. LYC further modulated the TNF-α/NF-κB signaling cascade, thereby reduced the accumulation of inflammatory factors in the renal interstitium. Moreover, LYC was able to up-regulate the expression of Bcl-2, down-regulate Bax expression and inhibit the activation of cleaved forms of Caspase-9 and Caspase-3, which finally attenuated the apoptosis of the mitochondrial pathway induced by AAI exposure. It was concluded that lycopene was able to activate the Nrf2 antioxidant signaling pathway to maintain the homeostasis of renal oxidative stress and ultimately attenuated renal inflammatory response and apoptosis. These results suggested that lycopene can be used as a drug to relieve AAN.
Collapse
Affiliation(s)
- Yu Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Zhihui Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jun Ma
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qingyang Xv
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hongxin Gao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hang Yin
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ge Yan
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaowen Jiang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| | - Wenhui Yu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial Key Laboratory for Prevention and Control of Common Animal Diseases, Northeast Agricultural University, Harbin, 150030, China; Institute of Chinese Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
63
|
van Ham WB, Cornelissen CM, van Veen TAB. Uremic toxins in chronic kidney disease highlight a fundamental gap in understanding their detrimental effects on cardiac electrophysiology and arrhythmogenesis. Acta Physiol (Oxf) 2022; 236:e13888. [PMID: 36148604 PMCID: PMC9787632 DOI: 10.1111/apha.13888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 01/29/2023]
Abstract
Chronic kidney disease (CKD) and cardiovascular disease (CVD) have an estimated 700-800 and 523 million cases worldwide, respectively, with CVD being the leading cause of death in CKD patients. The pathophysiological interplay between the heart and kidneys is defined as the cardiorenal syndrome (CRS), in which worsening of kidney function is represented by increased plasma concentrations of uremic toxins (UTs), culminating in dialysis patients. As there is a high incidence of CVD in CKD patients, accompanied by arrhythmias and sudden cardiac death, knowledge on electrophysiological remodeling would be instrumental for understanding the CRS. While the interplay between both organs is clearly of importance in CRS, the involvement of UTs in pro-arrhythmic remodeling is only poorly investigated, especially regarding the mechanistic background. Currently, the clinical approach against potential arrhythmic events is mainly restricted to symptom treatment, stressing the need for fundamental research on UT in relation to electrophysiology. This review addresses the existing knowledge of UTs and cardiac electrophysiology, and the experimental research gap between fundamental research and clinical research of the CRS. Clinically, mainly absorbents like ibuprofen and AST-120 are studied, which show limited safe and efficient usability. Experimental research shows disturbances in cardiac electrical activation and conduction after inducing CKD or exposure to UTs, but are scarcely present or focus solely on already well-investigated UTs. Based on UTs data derived from CKD patient cohort studies, a clinically relevant overview of physiological and pathological UTs concentrations is created. Using this, future experimental research is stimulated to involve electrophysiologically translatable animals, such as rabbits, or in vitro engineered heart tissues.
Collapse
Affiliation(s)
- Willem B. van Ham
- Department of Medical Physiology, Division Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Carlijn M. Cornelissen
- Department of Medical Physiology, Division Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Toon A. B. van Veen
- Department of Medical Physiology, Division Heart & LungsUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
64
|
Tung S, Kendrick J, Surapaneni A, Scheppach JB, Coresh J, Gottesman R, Sharrett AR, Daya N, Grams ME. Association Between Acute Kidney Injury and Dementia in the Atherosclerosis Risk in Communities (ARIC) Study. Am J Kidney Dis 2022; 80:495-501. [PMID: 35390426 PMCID: PMC9509404 DOI: 10.1053/j.ajkd.2022.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/05/2022] [Indexed: 02/02/2023]
Abstract
RATIONALE & OBJECTIVE Acute kidney injury (AKI) causes biochemical changes in the brain in animal models and is associated with adverse neurological complications in hospitalized patients. This study tested the association between AKI and incident dementia in a community-based cohort. STUDY DESIGN Prospective cohort study. SETTING & PARTICIPANTS Adult participants in the Atherosclerosis Risk in Communities (ARIC) study who experienced hospitalized AKI compared with participants hospitalized for other reasons (primary analysis, mean follow-up period 4.3 years) or participants without hospitalized AKI (secondary analysis). PREDICTORS Incident AKI, defined by ICD codes from hospital records. OUTCOME Incident dementia, diagnosed based on a combination of neurocognitive testing, informant interviews, ICD codes, and death certificates. ANALYTICAL APPROACH In the primary analysis, we estimated the propensity for hospitalized AKI and matched these participants with those hospitalized for another reason to examine the association of AKI with subsequent onset of dementia (N = 1,708). In the secondary analysis, we estimated the association between time-varying hospitalized AKI and subsequent onset of dementia using multivariable Cox proportional hazards regression models, adjusted for age, sex, race/center, education, smoking status, body mass index, baseline estimated glomerular filtration rate, baseline urinary albumin-creatinine ratio, systolic blood pressure, coronary heart disease, diabetes, hypertension, apolipoprotein E (APOE) ε4 allele, and C-reactive protein. RESULTS The mean age in the propensity-matched cohort was 76.1 ± 6.5 (SD) years, and 53.2% of the participants were women. People who were hospitalized with AKI had a higher risk of dementia (HR, 1.25 [95% CI, 1.02-1.52]; P = 0.03) compared with those without a hospitalization for AKI. The associations were slightly stronger in the time-varying analysis (HR, 1.69 [95% CI, 1.48-1.92]; P < 0.001). Other risk factors for dementia included older age, male sex, higher albuminuria, diabetes, current smoker status, and presence of the APOE risk alleles. LIMITATIONS Observational study, with AKI identified through diagnosis codes. CONCLUSIONS Participants who experienced a hospitalization for AKI were at increased risk of dementia.
Collapse
Affiliation(s)
- Sarah Tung
- Whiting School of Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica Kendrick
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, Colorado
| | - Aditya Surapaneni
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Johannes B Scheppach
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Josef Coresh
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rebecca Gottesman
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - A Richey Sharrett
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Natalie Daya
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Morgan E Grams
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, Maryland; Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
65
|
Santana-Padilla Y, Berrocal-Tomé F, Santana-López B. Las terapias adsortivas como coadyuvante al soporte vital en el paciente crítico. ENFERMERIA INTENSIVA 2022. [DOI: 10.1016/j.enfi.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
66
|
Binder V, Chruścicka-Smaga B, Bergum B, Jaisson S, Gillery P, Sivertsen J, Hervig T, Kaminska M, Tilvawala R, Nemmara VV, Thompson PR, Potempa J, Marti HP, Mydel P. Carbamylation of Integrin α IIb β 3: The Mechanistic Link to Platelet Dysfunction in ESKD. J Am Soc Nephrol 2022; 33:1841-1856. [PMID: 36038265 PMCID: PMC9528322 DOI: 10.1681/asn.2022010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/05/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Bleeding diatheses, common among patients with ESKD, can lead to serious complications, particularly during invasive procedures. Chronic urea overload significantly increases cyanate concentrations in patients with ESKD, leading to carbamylation, an irreversible modification of proteins and peptides. METHODS To investigate carbamylation as a potential mechanistic link between uremia and platelet dysfunction in ESKD, we used liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to quantify total homocitrulline, and biotin-conjugated phenylglyoxal labeling and Western blot to detect carbamylated integrin α IIb β 3 (a receptor required for platelet aggregation). Flow cytometry was used to study activation of isolated platelets and platelet-rich plasma. In a transient transfection system, we tested activity and fibrinogen binding of different mutated forms of the receptor. We assessed platelet adhesion and aggregation in microplate assays. RESULTS Carbamylation inhibited platelet activation, adhesion, and aggregation. Patients on hemodialysis exhibited significantly reduced activation of α IIb β 3 compared with healthy controls. We found significant carbamylation of both subunits of α IIb β 3 on platelets from patients receiving hemodialysis versus only minor modification in controls. In the transient transfection system, modification of lysine 185 in the β 3 subunit was associated with loss of receptor activity and fibrinogen binding. Supplementation of free amino acids, which was shown to protect plasma proteins from carbamylation-induced damage in patients on hemodialysis, prevented loss of α IIb β 3 activity in vitro. CONCLUSIONS Carbamylation of α IIb β 3-specifically modification of the K185 residue-might represent a mechanistic link between uremia and dysfunctional primary hemostasis in patients on hemodialysis. The observation that free amino acids prevented the carbamylation-induced loss of α IIb β 3 activity suggests amino acid administration during dialysis may help to normalize platelet function.
Collapse
Affiliation(s)
- Veronika Binder
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
| | | | - Brith Bergum
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
| | - Stéphane Jaisson
- Laboratory of Biochemistry and Molecular Biology, Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7369, University of Reims Champagne-Ardenne, Reims, France
| | - Philippe Gillery
- Laboratory of Biochemistry and Molecular Biology, Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7369, University of Reims Champagne-Ardenne, Reims, France
| | - Joar Sivertsen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Tor Hervig
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Marta Kaminska
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
| | - Ronak Tilvawala
- Department of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Venkatesh V. Nemmara
- Department of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Paul R. Thompson
- Department of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jan Potempa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Piotr Mydel
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
67
|
Candeliere F, Simone M, Leonardi A, Rossi M, Amaretti A, Raimondi S. Indole and p-cresol in feces of healthy subjects: Concentration, kinetics, and correlation with microbiome. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:959189. [PMID: 39086966 PMCID: PMC11285674 DOI: 10.3389/fmmed.2022.959189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/02/2022] [Indexed: 08/02/2024]
Abstract
Indole and p-cresol are precursors of the most important uremic toxins, generated from the fermentation of amino acids tryptophan and tyrosine by the proteolytic community of intestinal bacteria. The present study focused on the relationship between the microbiome composition, the fecal levels of indole and p-cresol, and their kinetics of generation/degradation in fecal cultures. The concentration of indole and p-cresol, the volatilome, the dry weight, and the amount of ammonium and carbohydrates were analyzed in the feces of 10 healthy adults. Indole and p-cresol widely differed among samples, laying in the range of 1.0-19.5 μg/g and 1.2-173.4 μg/g, respectively. Higher fecal levels of indole and p-cresol were associated with lower carbohydrates and higher ammonium levels, that are markers of a more pronounced intestinal proteolytic metabolism. Positive relationship was observed also with the dry/wet weight ratio, indicator of prolonged intestinal retention of feces. p-cresol and indole presented a statistically significant negative correlation with OTUs of uncultured Bacteroidetes and Firmicutes, the former belonging to Bacteroides and the latter to the families Butyricicoccaceae (genus Butyricicoccus), Monoglobaceae (genus Monoglobus), Lachnospiraceae (genera Faecalibacterium, Roseburia, and Eubacterium ventriosum group). The kinetics of formation and/or degradation of indole and p-cresol was investigated in fecal slurries, supplemented with the precursor amino acids tryptophan and tyrosine in strict anaerobiosis. The presence of the precursors bursted indole production but had a lower effect on the rate of p-cresol formation. On the other hand, supplementation with indole reduced the net rate of formation. The taxa that positively correlated with fecal levels of uremic toxins presented a positive correlation also with p-cresol generation rate in biotransformation experiments. Moreover other bacterial groups were positively correlated with generation rate of p-cresol and indole, further expanding the range of taxa associated to production of p-cresol (Bacteroides, Alistipes, Eubacterium xylanophylum, and Barnesiella) and indole (e.g., Bacteroides, Ruminococcus torques, Balutia, Dialister, Butyricicoccus). The information herein presented contributes to disclose the relationships between microbiota composition and the production of uremic toxins, that could provide the basis for probiotic intervention on the gut microbiota, aimed to prevent the onset, hamper the progression, and alleviate the impact of nephropaties.
Collapse
Affiliation(s)
- Francesco Candeliere
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marta Simone
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alan Leonardi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Biogest Siteia, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Biogest Siteia, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Biogest Siteia, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
68
|
Homeostasis in the Gut Microbiota in Chronic Kidney Disease. Toxins (Basel) 2022; 14:toxins14100648. [PMID: 36287917 PMCID: PMC9610479 DOI: 10.3390/toxins14100648] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota consists of trillions of microorganisms, fulfilling important roles in metabolism, nutritional intake, physiology and maturation of the immune system, but also aiding and abetting the progression of chronic kidney disease (CKD). The human gut microbiome consists of bacterial species from five major bacterial phyla, namely Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia. Alterations in the members of these phyla alter the total gut microbiota, with a decline in the number of symbiotic flora and an increase in the pathogenic bacteria, causing or aggravating CKD. In addition, CKD-associated alteration of this intestinal microbiome results in metabolic changes and the accumulation of amines, indoles and phenols, among other uremic metabolites, which have a feedforward adverse effect on CKD patients, inhibiting renal functions and increasing comorbidities such as atherosclerosis and cardiovascular diseases (CVD). A classification of uremic toxins according to the degree of known toxicity based on the experimental evidence of their toxicity (number of systems affected) and overall experimental and clinical evidence was selected to identify the representative uremic toxins from small water-soluble compounds, protein-bound compounds and middle molecules and their relation to the gut microbiota was summarized. Gut-derived uremic metabolites accumulating in CKD patients further exhibit cell-damaging properties, damage the intestinal epithelial cell wall, increase gut permeability and lead to the translocation of bacteria and endotoxins from the gut into the circulatory system. Elevated levels of endotoxins lead to endotoxemia and inflammation, further accelerating CKD progression. In recent years, the role of the gut microbiome in CKD pathophysiology has emerged as an important aspect of corrective treatment; however, the mechanisms by which the gut microbiota contributes to CKD progression are still not completely understood. Therefore, this review summarizes the current state of research regarding CKD and the gut microbiota, alterations in the microbiome, uremic toxin production, and gut epithelial barrier degradation.
Collapse
|
69
|
Madella AM, Van Bergenhenegouwen J, Garssen J, Masereeuw R, Overbeek SA. Microbial-Derived Tryptophan Catabolites, Kidney Disease and Gut Inflammation. Toxins (Basel) 2022; 14:toxins14090645. [PMID: 36136583 PMCID: PMC9505404 DOI: 10.3390/toxins14090645] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Uremic metabolites, molecules either produced by the host or from the microbiota population existing in the gastrointestinal tract that gets excreted by the kidneys into urine, have significant effects on both health and disease. Tryptophan-derived catabolites are an important group of bacteria-produced metabolites with an extensive contribution to intestinal health and, eventually, chronic kidney disease (CKD) progression. The end-metabolite, indoxyl sulfate, is a key contributor to the exacerbation of CKD via the induction of an inflammatory state and oxidative stress affecting various organ systems. Contrastingly, other tryptophan catabolites positively contribute to maintaining intestinal homeostasis and preventing intestinal inflammation—activities signaled through nuclear receptors in particular—the aryl hydrocarbon receptor (AhR) and the pregnane X receptor (PXR). This review discusses the origins of these catabolites, their effect on organ systems, and how these can be manipulated therapeutically in the future as a strategy to treat CKD progression and gut inflammation management. Furthermore, the use of biotics (prebiotics, probiotics, synbiotics) as a means to increase the presence of beneficial short-chain fatty acids (SCFAs) to achieve intestinal homeostasis is discussed.
Collapse
Affiliation(s)
- Avra Melina Madella
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Correspondence: (A.M.M.); or (S.A.O.); Tel.: +31-30-209-5000 (S.A.O.)
| | - Jeroen Van Bergenhenegouwen
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, Utrecht Science Park, 3584 CT Utrecht, The Netherlands
| | - Johan Garssen
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, Utrecht Science Park, 3584 CT Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Saskia Adriana Overbeek
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, Utrecht Science Park, 3584 CT Utrecht, The Netherlands
- Correspondence: (A.M.M.); or (S.A.O.); Tel.: +31-30-209-5000 (S.A.O.)
| |
Collapse
|
70
|
Davidson M, Rashidi N, Nurgali K, Apostolopoulos V. The Role of Tryptophan Metabolites in Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23179968. [PMID: 36077360 PMCID: PMC9456464 DOI: 10.3390/ijms23179968] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 12/20/2022] Open
Abstract
In recent decades, neuropsychiatric disorders such as major depressive disorder, schizophrenia, bipolar, etc., have become a global health concern, causing various detrimental influences on patients. Tryptophan is an important amino acid that plays an indisputable role in several physiological processes, including neuronal function and immunity. Tryptophan’s metabolism process in the human body occurs using different pathways, including the kynurenine and serotonin pathways. Furthermore, other biologically active components, such as serotonin, melatonin, and niacin, are by-products of Tryptophan pathways. Current evidence suggests that a functional imbalance in the synthesis of Tryptophan metabolites causes the appearance of pathophysiologic mechanisms that leads to various neuropsychiatric diseases. This review summarizes the pharmacological influences of tryptophan and its metabolites on the development of neuropsychiatric disorders. In addition, tryptophan and its metabolites quantification following the neurotransmitters precursor are highlighted. Eventually, the efficiency of various biomarkers such as inflammatory, protein, electrophysiological, genetic, and proteomic biomarkers in the diagnosis/treatment of neuropsychiatric disorders was discussed to understand the biomarker application in the detection/treatment of various diseases.
Collapse
Affiliation(s)
- Majid Davidson
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Niloufar Rashidi
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Correspondence:
| |
Collapse
|
71
|
Ravarotto V, Bertoldi G, Stefanelli LF, Nalesso F, Calò LA. Pathomechanism of oxidative stress in cardiovascularrenal remodeling and therapeutic strategies. Kidney Res Clin Pract 2022; 41:533-544. [PMID: 36239057 PMCID: PMC9576462 DOI: 10.23876/j.krcp.22.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2023] Open
Abstract
The high prevalence of cardiovascular disease in patients with chronic kidney disease indicates significant interactions between pathogenic pathways operating in the kidney and heart. These interactions involve all cell types (endothelial cells, smooth muscle cells, macrophages, and others), components of the vasculature, glomeruli, and heart that are susceptible to oxidative damage and structural alterations. A vicious cycle occurs whereby harmful factors such as reactive oxygen species and inflammation damage of vascular structures that themselves become sources of additional dangerous/toxic components released into the local environment. The evidence of this vicious cycle in chronic kidney disease should therefore lead to add other factors to both traditional and nontraditional risk factors. This review will examine the processes occurring during progressive kidney dysfunction with regard to vascular injury, renal remodeling, cardiac hypertrophy, and the transversal role of oxidative stress in the development of these complications.
Collapse
Affiliation(s)
- Verdiana Ravarotto
- Division of Nephrology, Dialysis and Transplantation, Department of Medicine (DIMED), School of Medicine, University of Padova, Padova, Italy
| | - Giovanni Bertoldi
- Division of Nephrology, Dialysis and Transplantation, Department of Medicine (DIMED), School of Medicine, University of Padova, Padova, Italy
| | - Lucia Federica Stefanelli
- Division of Nephrology, Dialysis and Transplantation, Department of Medicine (DIMED), School of Medicine, University of Padova, Padova, Italy
| | - Federico Nalesso
- Division of Nephrology, Dialysis and Transplantation, Department of Medicine (DIMED), School of Medicine, University of Padova, Padova, Italy
| | - Lorenzo A. Calò
- Division of Nephrology, Dialysis and Transplantation, Department of Medicine (DIMED), School of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
72
|
Zwiech R, Bruzda-Zwiech A, Balcerczak E, Szczepańska J, Krygier A, Małachowska B, Michałek D, Szmajda-Krygier D. A potential link between AQP3 and SLC14A1 gene expression level and clinical parameters of maintenance hemodialysis patients. BMC Nephrol 2022; 23:297. [PMID: 36038817 PMCID: PMC9426232 DOI: 10.1186/s12882-022-02922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background The transport of water and urea through the erythrocyte membrane is facilitated by aquaporins such as aquaglyceroporin (AQP3), and type B urea transporters (UT-B). As they may play an important role in osmotic balance of maintenance hemodialysis (HD) patients, the aim of the present study was to determine whether any relationship exists between the expression of their genes and the biochemical / clinical parameters in HD patients. Methods AQP3 and UT-B (SLC14A1) gene expression was evaluated using RT-qPCR analysis in 76 HD patients and 35 participants with no kidney failure. Results The HD group demonstrated significantly higher median expression of AQP3 and UT-B (Z = 2.16; P = 0.03 and Z = 8.82; p < 0.0001, respectively) than controls. AQP3 negatively correlated with pre-dialysis urea serum concentration (R = -0.22; P = 0.049) and sodium gradient (R = -0.31; P = 0.04); however, no significant UT-B correlations were observed. Regarding the cause of end-stage kidney disease, AQP3 expression positively correlated with erythropoietin dosages in the chronic glomerulonephritis (GN) subgroup (R = 0.6; P = 0.003), but negatively in the diabetic nephropathy subgroup (R = -0.59; P = 0.004). UT-B positively correlated with inter-dialytic weight gain% in the GN subgroup (R = 0.47; P = 0.03). Conclusion Maintenance hemodialysis seems significantly modify AQP3 and UT-B expression but their link to clinical and biochemical parameters needs further large-scale evaluation.
Collapse
Affiliation(s)
- Rafał Zwiech
- Dialysis Department, Norbert Barlicki Memorial Teaching Hospital, No. 1, Lodz, Poland
| | | | - Ewa Balcerczak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland
| | - Joanna Szczepańska
- Department of Pediatric Dentistry, Medical University of Lodz, Lodz, Poland
| | - Adrian Krygier
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland
| | - Beata Małachowska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Dominika Michałek
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Dagmara Szmajda-Krygier
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
73
|
Ebersolt M, Santana Machado T, Mallmann C, Mc-Kay N, Dou L, Bouchouareb D, Brunet P, Burtey S, Sallée M. Protein/Fiber Index Modulates Uremic Toxin Concentrations in Hemodialysis Patients. Toxins (Basel) 2022; 14:toxins14090589. [PMID: 36136527 PMCID: PMC9502511 DOI: 10.3390/toxins14090589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Indoxyl sulfate (IS) and p-cresyl sulfate (PCS), two uremic toxins (UTs), are associated with increased mortality in patients with chronic kidney disease (CKD). These toxins are produced by the microbiota from the diet and excreted by the kidney. The purpose of this study was to analyze the effect of diet on IS and PCS concentration in hemodialysis (HD) patients. Methods: We performed a prospective monocentric study using a seven-day diet record and determination of serum IS and PCS levels in HD patients. We tested the association between toxin concentrations and nutritional data. Results: A total of 58/75 patients (77%) completed the diet record. Mean caloric intake was 22 ± 9.2 kcal/kg/day. The protein/fiber index was 4.9 ± 1.8. No correlation between IS or PCS concentration and protein/fiber index was highlighted. In the 18 anuric patients (31%) in whom residual renal function could not affect toxin concentrations, IS and PCS concentrations were negatively correlated with fiber intake and positively correlated with the protein/fiber index. In a multivariate analysis, IS serum concentration was positively associated with the protein/fiber index (p = 0.03). Conclusions: A low protein/fiber index is associated with low concentrations of uremic toxins in anuric HD patients. Diets with an increased fiber intake must be tested to determine whether they reduce PCS and IS serum concentrations.
Collapse
Affiliation(s)
- Manon Ebersolt
- Centre de Néphrologie et Transplantation Rénale, AP-HM, Hôpital de la Conception, 147 Bd Baille, 13005 Marseille, France
| | | | - Cecilia Mallmann
- Centre D’investigation Clinique, Hôpital de la Conception, 13005 Marseille, France
| | - Nathalie Mc-Kay
- Aix Marseille Univ, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Laetitia Dou
- Aix Marseille Univ, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Dammar Bouchouareb
- Centre de Néphrologie et Transplantation Rénale, AP-HM, Hôpital de la Conception, 147 Bd Baille, 13005 Marseille, France
| | - Philippe Brunet
- Centre de Néphrologie et Transplantation Rénale, AP-HM, Hôpital de la Conception, 147 Bd Baille, 13005 Marseille, France
- Aix Marseille Univ, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Stéphane Burtey
- Centre de Néphrologie et Transplantation Rénale, AP-HM, Hôpital de la Conception, 147 Bd Baille, 13005 Marseille, France
- Aix Marseille Univ, INSERM, INRAE, C2VN, 13005 Marseille, France
- Correspondence:
| | - Marion Sallée
- Centre de Néphrologie et Transplantation Rénale, AP-HM, Hôpital de la Conception, 147 Bd Baille, 13005 Marseille, France
- Aix Marseille Univ, INSERM, INRAE, C2VN, 13005 Marseille, France
| |
Collapse
|
74
|
Mafra D, Ribeiro M, Fonseca L, Regis B, Cardozo LFMF, Fragoso Dos Santos H, Emiliano de Jesus H, Schultz J, Shiels PG, Stenvinkel P, Rosado A. Archaea from the gut microbiota of humans: Could be linked to chronic diseases? Anaerobe 2022; 77:102629. [PMID: 35985606 DOI: 10.1016/j.anaerobe.2022.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/31/2022] [Accepted: 08/11/2022] [Indexed: 11/01/2022]
Abstract
Archaea comprise a unique domain of organisms with distinct biochemical and genetic differences from bacteria. Methane-forming archaea, methanogens, constitute the predominant group of archaea in the human gut microbiota, with Methanobrevibacter smithii being the most prevalent. However, the effect of methanogenic archaea and their methane production on chronic disease remains controversial. As perturbation of the microbiota is a feature of chronic conditions, such as cardiovascular disease, neurodegenerative diseases and chronic kidney disease, assessing the influence of archaea could provide a new clue to mitigating adverse effects associated with dysbiosis. In this review, we will discuss the putative role of archaea in the gut microbiota in humans and the possible link to chronic diseases.
Collapse
Affiliation(s)
- Denise Mafra
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, (RJ), Brazil; Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Brazil; Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Brazil.
| | - Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Brazil
| | - Larissa Fonseca
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Brazil
| | - Bruna Regis
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Brazil
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Brazil
| | | | | | - Junia Schultz
- Microbial Ecogenomics and Biotechnology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955, Saudi Arabia
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1QH, UK
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Alexandre Rosado
- Microbial Ecogenomics and Biotechnology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955, Saudi Arabia
| |
Collapse
|
75
|
Recent Advances in Understanding of Cardiovascular Diseases in Patients with Chronic Kidney Disease. J Clin Med 2022; 11:jcm11164653. [PMID: 36012887 PMCID: PMC9409994 DOI: 10.3390/jcm11164653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
|
76
|
Verbeke F, Vanholder R, Van Biesen W, Glorieux G. Contribution of Hypoalbuminemia and Anemia to the Prognostic Value of Plasma p-Cresyl Sulfate and p-Cresyl Glucuronide for Cardiovascular Outcome in Chronic Kidney Disease. J Pers Med 2022; 12:jpm12081239. [PMID: 36013188 PMCID: PMC9410048 DOI: 10.3390/jpm12081239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Free plasma concentrations of protein-bound uremic toxins (PBUTs) may be influenced by serum albumin and hemoglobin. The potential association of serum albumin and hemoglobin with free levels of p-cresyl sulfate (pCS) and p-cresyl glucuronide (pCG) and their predictive value for cardiovascular morbidity and mortality were explored. A total of 523 non-dialysis chronic kidney disease (CKD) stages G1–G5 patients were prospectively followed for the occurrence of fatal or non-fatal cardiovascular events over a 5.5-year period. A negative correlation was found between albumin and between hemoglobin, and both total and free pCS and pCG. In multiple linear regression, PBUTs were negatively associated with eGFR (estimated glomerular filtration rate) and hemoglobin but not albumin. In multivariate Cox regression analysis, albumin was a predictor of outcome, independent of pCS and pCG, without interactions between albumin and pCS or pCG. The relation of low hemoglobin with adverse outcome was lost when albumin was entered into the model. Lower concentrations of pCS and pCG are associated with higher serum albumin and hemoglobin. This may indicate that there are two pathways in the blood that potentially contribute to attenuating the vasculotoxic effects of these PBUTs. The association of PBUTs with cardiovascular risk is not explained by albumin levels, which remains a strong and independent predictor for adverse outcome.
Collapse
|
77
|
Richards E, Ye SH, Ash SR, Li L. Developing a Selective Zirconium Phosphate Cation Exchanger to Adsorb Ammonium: Effect of a Gas-Permeable and Hydrophobic Coating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8677-8685. [PMID: 35786968 DOI: 10.1021/acs.langmuir.2c01194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A sorbent with a high enough capacity for NH4+ could serve as an oral binder to lower urea levels in end-stage kidney disease (ESKD) patients. A hydrogen-loaded cation exchanger such as zirconium phosphate Zr(HPO4)2·H2O (ZrP) is a promising candidate for this application. However, the NH4+ binding selectivity versus other ions must be improved. Here, we have developed a gas-permeable and hydrophobic surface coating on an amorphous form of ZrP using tetraethyl orthosilicate and methoxy-terminated polydimethylsiloxane. The hydrophobic coating serves as a barrier to ions in water solution from reaching the ion-exchanger's surface. Meanwhile, its gas-permeable nature allows for gaseous ammonia transfer to the cation exchanger. In vitro studies were designed to replicate the small intestine's expected ion concentrations and exposure time to the sorbent. The effectiveness of the coating was measured with NH4+ and Ca2+ solutions and uncoated ZrP as the negative control. X-ray photoelectron spectroscopy and scanning electron microscopy measurements show that the coating successfully modifies the surface of the cation exchanger─ZrP. Water contact angle studies indicate that coated ZrP is hydrophobic with an angle of (149.8 ± 2.5°). Simulated small intestine solution studies show that the coated ZrP will bind 94% (±11%) more NH4+ than uncoated ZrP in the presence of Ca2+. Meanwhile, Ca2+ binding decreases by 64% (±6%). The nearly fourfold increase in NH4+ selectivity can be attributed to the gas-permeable and hydrophobic coating applied on the ZrP surface. This work suggests a novel pathway to develop a selective cation exchanger for treating ESKD patients.
Collapse
Affiliation(s)
- Evan Richards
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sang-Ho Ye
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania 15219, United States
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen R Ash
- Nephrology Department, Indiana University Health Arnett Hospital, Lafayette, Indiana 47905, United States
- CEO, HemoCleanse Technologies, LLC, Lafayette, Indiana 47904, United States
| | - Lei Li
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
78
|
Sayre-Chavez B, Baxter B, Broeckling CD, Muñoz-Amatriaín M, Manary M, Ryan EP. Non-targeted metabolomics of cooked cowpea (Vigna unguiculata) and pigeon pea (Cajanus cajan) from Ghana using two distinct and complementary analytical platforms. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 4:100087. [PMID: 35415674 PMCID: PMC8991828 DOI: 10.1016/j.fochms.2022.100087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 11/13/2022]
Abstract
Cowpea varieties represent diverse staple foods in Sub-Saharan Africa. Cowpea metabolite composition is different from pigeon pea and common bean. Cowpea metabolites included tonkinelin, pheophytin A, and linoleoyl ethanolamide. Pheophytin A was only detected in the cowpea variety Sangyi. Pipecolic acid identification was confirmed for all three legumes.
Legumes are global staple foods with multiple human health properties that merit detailed composition analysis in cooked forms. This study analyzed cowpea [Vigna unguiculata] (three varieties: Dagbantuya, Sangyi, and Tukara), pigeon pea [Cajanus cajan], and common bean [Phaseolus vulgaris] using two distinct ultra-performance liquid chromatography mass spectrometry (UPLC-MS) platforms and analytical workflows. Comparisons between cowpea and pigeon pea consumed in Ghana, and common bean (navy bean) from USA, revealed 75 metabolites that differentiated cowpeas. Metabolite fold-change comparisons resulted in 142 metabolites with significantly higher abundance in cowpea, and 154 higher in abundance from pigeon pea. 3-(all-trans-nonaprenyl)benzene-1,2-diol, N-tetracosanoylphytosphingosine, and sitoindoside II are novel identifications in cowpea, with notably higher abundance than other legumes tested. Cowpea variety specific markers were tonkinelin (Dagbantuya), pheophytin A (Sangyi), and linoleoyl ethanolamide (Tukara). This study identified novel cowpea and pigeon pea food metabolites that warrant continued investigation as bioactive food components following consumption in people.
Collapse
|
79
|
Lipid Profile Is Negatively Associated with Uremic Toxins in Patients with Kidney Failure-A Tri-National Cohort. Toxins (Basel) 2022; 14:toxins14060412. [PMID: 35737073 PMCID: PMC9231137 DOI: 10.3390/toxins14060412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Patients with kidney failure (KF) have a high incidence of cardiovascular (CV) disease, partly driven by insufficient clearance of uremic toxins. Recent investigations have questioned the accepted effects of adverse lipid profile and CV risk in uremic patients. Therefore, we related a panel of uremic toxins previously associated with CV morbidity/mortality to a full lipid profile in a large, tri-national, cross-sectional cohort. Total, high-density lipoprotein (HDL), non-HDL, low-density lipoprotein (LDL), and remnant cholesterol, as well as triglyceride, levels were associated with five uremic toxins in a cohort of 611 adult KF patients with adjustment for clinically relevant covariates and other patient-level variables. Univariate analyses revealed negative correlations of total, non-HDL, and LDL cholesterol with all investigated uremic toxins. Multivariate linear regression analyses confirmed independent, negative associations of phenylacetylglutamine with total, non-HDL, and LDL cholesterol, while indole-3 acetic acid associated with non-HDL and LDL cholesterol. Furthermore, trimethylamine-N-Oxide was independently and negatively associated with non-HDL cholesterol. Sensitivity analyses largely confirmed findings in the entire cohort. In conclusion, significant inverse associations between lipid profile and distinct uremic toxins in KF highlight the complexity of the uremic milieu, suggesting that not all uremic toxin interactions with conventional CV risk markers may be pathogenic.
Collapse
|
80
|
An Optoelectronic Spectral Sensor for Monitoring the Elimination of Uremic Markers with Low and Middle Molecular Weight during Hemodialysis Therapy. BIOMEDICAL ENGINEERING 2022. [DOI: 10.1007/s10527-022-10158-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
81
|
Chawla LS. Permissive azotemia during acute kidney injury enables more rapid renal recovery and less renal fibrosis: a hypothesis and clinical development plan. Crit Care 2022; 26:116. [PMID: 35484549 PMCID: PMC9047291 DOI: 10.1186/s13054-022-03988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
Preclinical models of acute kidney injury (AKI) consistently demonstrate that a uremic milieu enhances renal recovery and decreases kidney fibrosis. Similarly, significant decreases in monocyte/macrophage infiltration, complement levels, and other markers of inflammation in the injured kidney are observed across multiple studies and species. In essence, decreased renal clearance has the surprising and counterintuitive effect of being an effective treatment for AKI. In this Perspective, the author suggests a hypothesis describing why the uremic milieu is kidney protective and proposes a clinical trial of 'permissive azotemia' to improve renal recovery and long-term renal outcomes in critically ill patients with severe AKI.
Collapse
Affiliation(s)
- Lakhmir S Chawla
- Department of Medicine, Veterans Affairs Medical Center, 3550 La Jolla Village Drive, San Diego, CA, USA.
| |
Collapse
|
82
|
Zhao Y, Gan L, Niu Q, Ni M, Zuo L. Efficacy and safety of expanded hemodialysis in hemodialysis patients: a meta-analysis and systematic review. Ren Fail 2022; 44:541-550. [PMID: 35343378 PMCID: PMC8967190 DOI: 10.1080/0886022x.2022.2048855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background Expanded hemodialysis (HDx) is a new dialysis modality, but a systematic review of the clinical effects of using HDx is lacking. This systematic review and meta-analysis aimed to assess the efficacy and safety of HDx for hemodialysis (HD) patients. Methods PubMed, the Cochrane library, and EMBASE databases were systematically searched for prospective interventional studies comparing the efficacy and safety of HDx with those of high flux HD or HDF in HD patients. Results Eighteen trials including a total of 853 HD patients were enrolled. HDx increased the reduction ratio (RR) of β2-microglobulin (SMD 6.28%, 95% CI 0.83, 1.73, p = .02), κFLC (SMD 15.86%, 95% CI 6.96, 24.76, p = .0005), and λFLC (SMD 22.42%, 95% CI, 17.95, 26.88, p < .0001) compared with high flux HD. The RR of β2-microglobulin in the HDx group was lower than that in the HDF group (SMD −3.53%, 95% CI −1.16, −1.9, p < .0001). HDx increased the RRs of κFLC (SMD 1.34%, 95% CI 0.52, 2.16, p = .001) and λFLC (SMD 7.28%, 95% CI 1.08, 13.48, p = .02) compared to HDF. There was no significant difference in albumin loss into the dialysate between the HDx and HDF groups (SMD 0.35 g/session, 95% CI −2.38, 3.09, p = .8). Conclusions This meta-analysis indicated that compared with high-flux HD and HDF, HDx can increase the clearance of medium and large-molecular-weight uremic toxins. And it does not increase the loss of albumin compared with HDF.
Collapse
Affiliation(s)
- Yuchao Zhao
- Department of Nephrology, Peking University People's Hospital, Beijing, P. R. China
| | - Liangying Gan
- Department of Nephrology, Peking University People's Hospital, Beijing, P. R. China
| | - Qingyu Niu
- Department of Nephrology, Peking University People's Hospital, Beijing, P. R. China
| | - Mengfan Ni
- Department of Nephrology, Peking University People's Hospital, Beijing, P. R. China
| | - Li Zuo
- Department of Nephrology, Peking University People's Hospital, Beijing, P. R. China
| |
Collapse
|
83
|
What If Not All Metabolites from the Uremic Toxin Generating Pathways Are Toxic? A Hypothesis. Toxins (Basel) 2022; 14:toxins14030221. [PMID: 35324718 PMCID: PMC8953523 DOI: 10.3390/toxins14030221] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 12/21/2022] Open
Abstract
The topic of uremic toxicity has received broad attention from the nephrological community over the past few decades. An aspect that is much less often considered is the possibility that the metabolic pathways that generate uremic toxins also may produce molecules that benefit body functions. Here, we discuss this dualism based on the example of tryptophan-derived metabolites, which comprise elements that are mainly toxic, such as indoxyl sulfate, kynurenine and kynurenic acid, but also beneficial compounds, such as indole, melatonin and indole-3-propionic acid, and ambivalent (beneficial for some aspects and harmful for others) compounds such as serotonin. This dualism can also be perceived at the level of the main receptor of the tryptophan-derived metabolites, the aryl hydrocarbon receptor (AHR), which has also been linked to both harm and benefit. We hypothesize that these beneficial effects are the reason why uremic toxin generation remained preserved throughout evolution. This duality is also not unique for the tryptophan-derived metabolites, and in this broader context we discuss the remote sensing and signaling theory (RSST). The RSST proposes that transporters (e.g., organic anion transporter 1—OAT1; ATP-binding cassette transporter G—ABCG2) and drug metabolizing enzymes form a large network of proteins interacting to promote small molecule remote communication at the inter-organ (e.g., gut–liver–heart–brain–kidney) and inter-organismal (e.g., gut microbe–host) levels. These small molecules include gut microbe-derived uremic toxins as well as beneficial molecules such as those discussed here. We emphasize that this positive side of uremic metabolite production needs more attention, and that this dualism especially needs to be considered when assessing and conceiving of therapeutic interventions. These homeostatic considerations are central to the RSST and suggest that interventions be aimed at preserving or restoring the balance between positive and negative components rather than eliminating them all without distinction.
Collapse
|
84
|
Gherghina ME, Peride I, Tiglis M, Neagu TP, Niculae A, Checherita IA. Uric Acid and Oxidative Stress-Relationship with Cardiovascular, Metabolic, and Renal Impairment. Int J Mol Sci 2022; 23:ijms23063188. [PMID: 35328614 PMCID: PMC8949471 DOI: 10.3390/ijms23063188] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 01/27/2023] Open
Abstract
Background: The connection between uric acid (UA) and renal impairment is well known due to the urate capacity to precipitate within the tubules or extra-renal system. Emerging studies allege a new hypothesis concerning UA and renal impairment involving a pro-inflammatory status, endothelial dysfunction, and excessive activation of renin–angiotensin–aldosterone system (RAAS). Additionally, hyperuricemia associated with oxidative stress is incriminated in DNA damage, oxidations, inflammatory cytokine production, and even cell apoptosis. There is also increasing evidence regarding the association of hyperuricemia with chronic kidney disease (CKD), cardiovascular disease, and metabolic syndrome or diabetes mellitus. Conclusions: Important aspects need to be clarified regarding hyperuricemia predisposition to oxidative stress and its effects in order to initiate the proper treatment to determine the optimal maintenance of UA level, improving patients’ long-term prognosis and their quality of life.
Collapse
Affiliation(s)
- Mihai-Emil Gherghina
- Department of Nephrology, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania; (M.-E.G.); (I.A.C.)
| | - Ileana Peride
- Department of Nephrology, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania; (M.-E.G.); (I.A.C.)
- Correspondence: (I.P.); (A.N.)
| | - Mirela Tiglis
- Department of Anesthesiology and Intensive Care, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
| | - Tiberiu Paul Neagu
- Department of Plastic Surgery and Reconstructive Microsurgery, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
| | - Andrei Niculae
- Department of Nephrology, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania; (M.-E.G.); (I.A.C.)
- Correspondence: (I.P.); (A.N.)
| | - Ionel Alexandru Checherita
- Department of Nephrology, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania; (M.-E.G.); (I.A.C.)
| |
Collapse
|
85
|
Corona R, Ordaz B, Robles-Osorio L, Sabath E, Morales T. Neuroimmunoendocrine Link Between Chronic Kidney Disease and Olfactory Deficits. Front Integr Neurosci 2022; 16:763986. [PMID: 35173591 PMCID: PMC8841736 DOI: 10.3389/fnint.2022.763986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/07/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic kidney disease (CKD) is a multifactorial pathology that progressively leads to the deterioration of metabolic functions and results from deficient glomerular filtration and electrolyte imbalance. Its economic impact on public health is challenging. Mexico has a high prevalence of CKD that is strongly associated with some of the most common metabolic disorders like diabetes and hypertension. The gradual loss of kidney functions provokes an inflammatory state and endocrine alterations affecting several systems. High serum levels of prolactin have been associated with CKD progression, inflammation, and olfactory function. Also, the nutritional status is altered due to impaired renal function. The decrease in calorie and protein intake is often accompanied by malnutrition, which can be severe at advanced stages of the disease. Nutrition and olfactory functioning are closely interconnected, and CKD patients often complain of olfactory deficits, which ultimately can lead to deficient food intake. CKD patients present a wide range of deficits in olfaction like odor discrimination, identification, and detection threshold. The chronic inflammatory status in CKD damages the olfactory epithelium leading to deficiencies in the chemical detection of odor molecules. Additionally, the decline in cognitive functioning impairs the capacity of odor differentiation. It is not clear whether peritoneal dialysis and hemodialysis improve the olfactory deficits, but renal transplants have a strong positive effect. In the present review, we discuss whether the olfactory deficiencies caused by CKD are the result of the induced inflammatory state, the hyperprolactinemia, or a combination of both.
Collapse
Affiliation(s)
- Rebeca Corona
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Benito Ordaz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | | - Ernesto Sabath
- Facultad de Nutrición, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Teresa Morales
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
86
|
Santos AF, Schiefer EM, Sassaki GL, Menezes L, Fonseca R, Cunha R, Souza W, Pecoits-Filho R, Stinghen AEM. Comparative metabolomic study of high-flux hemodialysis and high volume online hemodiafiltration in the removal of uremic toxins using 1H NMR spectroscopy. J Pharm Biomed Anal 2022; 208:114460. [PMID: 34773837 DOI: 10.1016/j.jpba.2021.114460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 11/28/2022]
Abstract
Uremic toxins (UTs) accumulate in the circulation of patients with chronic kidney disease (CKD). High volume hemodiafiltration (HDF) improves clearance of low and medium molecular weight UTs compared to HD. The present study is a post-hoc analysis comparing the metabolomic profile in serum from patients under high flux HD (hf-HD) and HDF in HDFIT, a multicentric randomized controlled trial (RCTs). Per protocol, serum samples were collected pre- and post- dialysis treatments at randomization (baseline) and at the end of the follow up (6 months) and stored in a biorepository. Random (pre- and post-dialysis) samples from nine patients in study arm were selected at baseline and at the end of the follow up. To compare the samples, 26 possibly matching metabolites were identified by a t-test among the four groups using 1H nuclear magnetic resonance (NMR). To evaluate the comparison between the modalities is a single treatment session, the clearance rates (CRs) of each metabolite were calculated based on pre-dialysis and post-dialysis samples. In addition, to evaluate to effect of UT removal during the trial follow up period, the pre-dialysis metabolite concentrations at the baseline and at 6 months were compared among the two arms of the study. There was no significant difference between in the single session CRs of metabolites when hf-HD and HDF were compared. On the other hand, the comparison between baseline and 6-month (long-term evolution) led to the identification of 16 metabolites that differentiated the hf-HD and the HDF evolutions. Most of these 16 metabolites are involved in several important metabolic pathways, such as metabolism of phenylalanine and biosynthesis of phenylalanine, tyrosine, and tryptophan, which are related to UTs and cardiovascular disease development. Although no difference was observed between hf-HD and HDF samples before and after a single session, concentrations of CKD-relevant metabolites and associated pathologies were stable in the HDF samples, but not in the hf-HD samples, over the six-month period, suggesting that HDF enhances long-term stability.
Collapse
Affiliation(s)
- Andressa Flores Santos
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba, PR, Brazil; Clinical Analysis Department, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Elberth Manfron Schiefer
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba, PR, Brazil; Graduate Program in Electrical and Computer Engineering, Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brazil
| | | | - Leociley Menezes
- Biochemistry Department, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Renato Fonseca
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Regiane Cunha
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Wesley Souza
- Clinical Analysis Department, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Roberto Pecoits-Filho
- Pontifícia Universidade Católica do Paraná, Programa de Pós-Graduação em Ciências da Saúde, Curitiba, Brazil
| | - Andréa E M Stinghen
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
87
|
Vollmer T, Stegmayr B. Establishing Cell Models to Understand Cellular Toxicity: Lessons Learned from an Unconventional Cell Type. Toxins (Basel) 2022; 14:toxins14010054. [PMID: 35051031 PMCID: PMC8779380 DOI: 10.3390/toxins14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
The syndrome of uremic toxicity comprises a complex toxic milieu in-vivo, as numerous uremic substances accumulate and harm the organ systems. Among these substances, toxic and non-toxic players differently interfere with human cells. However, results from animal experiments are not always compatible with the expected reactions in human patients and studies on one organ system are limited in capturing the complexity of the uremic situation. In this narrative review, we present aspects relevant for cellular toxicity research based on our previous establishment of a human spermatozoa-based cell model, as follows: (i) applicability to compare the effects of more than 100 uremic substances, (ii) detection of the protective effects of uremic substances by the cellular responses towards the uremic milieu, (iii) inclusion of the drug milieu for cellular function, and (iv) transferability for clinical application, e.g., hemodialysis. Our technique allows the estimation of cell viability, vitality, and physiological state, not only restricted to acute or chronic kidney toxicity but also for other conditions, such as intoxications of unknown substances. The cellular models can clarify molecular mechanisms of action of toxins related to human physiology and therapy. Identification of uremic toxins retained during acute and chronic kidney injury enables further research on the removal or degradation of such products.
Collapse
Affiliation(s)
- Tino Vollmer
- Department of Internal Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, D-79106 Freiburg, Germany
- Department of Public Health and Clinical Medicine, University of Umea, SE-90187 Umea, Sweden;
- Correspondence:
| | - Bernd Stegmayr
- Department of Public Health and Clinical Medicine, University of Umea, SE-90187 Umea, Sweden;
| |
Collapse
|
88
|
Baaten CC, Schröer JR, Floege J, Marx N, Jankowski J, Berger M, Noels H. Platelet Abnormalities in CKD and Their Implications for Antiplatelet Therapy. Clin J Am Soc Nephrol 2022; 17:155-170. [PMID: 34750169 PMCID: PMC8763166 DOI: 10.2215/cjn.04100321] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Patients with CKD display a significantly higher risk of cardiovascular and thromboembolic complications, with around half of patients with advanced CKD ultimately dying of cardiovascular disease. Paradoxically, these patients also have a higher risk of hemorrhages, greatly complicating patient therapy. Platelets are central to hemostasis, and altered platelet function resulting in either platelet hyper- or hyporeactivity may contribute to thrombotic or hemorrhagic complications. Different molecular changes have been identified that may underlie altered platelet activity and hemostasis in CKD. In this study, we summarize the knowledge on CKD-induced aberrations in hemostasis, with a special focus on platelet abnormalities. We also discuss how prominent alterations in vascular integrity, coagulation, and red blood cell count in CKD may contribute to altered hemostasis in these patients who are high risk. Furthermore, with patients with CKD commonly receiving antiplatelet therapy to prevent secondary atherothrombotic complications, we discuss antiplatelet treatment strategies and their risk versus benefit in terms of thrombosis prevention, bleeding, and clinical outcome depending on CKD stage. This reveals a careful consideration of benefits versus risks of antiplatelet therapy in patients with CKD, balancing thrombotic versus bleeding risk. Nonetheless, despite antiplatelet therapy, patients with CKD remain at high cardiovascular risk. Thus, deep insights into altered platelet activity in CKD and underlying mechanisms are important for the optimization and development of current and novel antiplatelet treatment strategies, specifically tailored to these patients who are high risk. Ultimately, this review underlines the importance of a closer investigation of altered platelet function, hemostasis, and antiplatelet therapy in patients with CKD.
Collapse
Affiliation(s)
- Constance C.F.M.J. Baaten
- Institute for Molecular Cardiovascular Research, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Jonas R. Schröer
- Institute for Molecular Cardiovascular Research, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany,Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Martin Berger
- Department of Internal Medicine I, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
89
|
Popkov VA, Zharikova AA, Demchenko EA, Andrianova NV, Zorov DB, Plotnikov EY. Gut Microbiota as a Source of Uremic Toxins. Int J Mol Sci 2022; 23:ijms23010483. [PMID: 35008909 PMCID: PMC8745165 DOI: 10.3390/ijms23010483] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Uremic retention solutes are the compounds that accumulate in the blood when kidney excretory function is impaired. Some of these compounds are toxic at high concentrations and are usually known as “uremic toxins”. The cumulative detrimental effect of uremic toxins results in numerous health problems and eventually mortality during acute or chronic uremia, especially in end-stage renal disease. More than 100 different solutes increase during uremia; however, the exact origin for most of them is still debatable. There are three main sources for such compounds: exogenous ones are consumed with food, whereas endogenous ones are produced by the host metabolism or by symbiotic microbiota metabolism. In this article, we identify uremic retention solutes presumably of gut microbiota origin. We used database analysis to obtain data on the enzymatic reactions in bacteria and human organisms that potentially yield uremic retention solutes and hence to determine what toxins could be synthesized in bacteria residing in the human gut. We selected biochemical pathways resulting in uremic retention solutes synthesis related to specific bacterial strains and revealed links between toxin concentration in uremia and the proportion of different bacteria species which can synthesize the toxin. The detected bacterial species essential for the synthesis of uremic retention solutes were then verified using the Human Microbiome Project database. Moreover, we defined the relative abundance of human toxin-generating enzymes as well as the possibility of the synthesis of a particular toxin by the human metabolism. Our study presents a novel bioinformatics approach for the elucidation of the origin of both uremic retention solutes and uremic toxins and for searching for the most likely human microbiome producers of toxins that can be targeted and used for the therapy of adverse consequences of uremia.
Collapse
Affiliation(s)
- Vasily A. Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.A.P.); (A.A.Z.); (E.A.D.); (N.V.A.); (D.B.Z.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Anastasia A. Zharikova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.A.P.); (A.A.Z.); (E.A.D.); (N.V.A.); (D.B.Z.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Evgenia A. Demchenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.A.P.); (A.A.Z.); (E.A.D.); (N.V.A.); (D.B.Z.)
| | - Nadezda V. Andrianova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.A.P.); (A.A.Z.); (E.A.D.); (N.V.A.); (D.B.Z.)
| | - Dmitry B. Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.A.P.); (A.A.Z.); (E.A.D.); (N.V.A.); (D.B.Z.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (V.A.P.); (A.A.Z.); (E.A.D.); (N.V.A.); (D.B.Z.)
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)939-59-44
| |
Collapse
|
90
|
The Prescription of Drugs That Inhibit Organic Anion Transporters 1 or 3 Is Associated with the Plasma Accumulation of Uremic Toxins in Kidney Transplant Recipients. Toxins (Basel) 2021; 14:toxins14010015. [PMID: 35050992 PMCID: PMC8780284 DOI: 10.3390/toxins14010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022] Open
Abstract
The renal elimination of uremic toxins (UTs) can be potentially altered by drugs that inhibit organic anion transporters 1/3 (OAT1/OAT3). The objective of the present study was to determine whether the prescription of at least one OAT1/OAT3 inhibitor was associated with the plasma accumulation of certain UTs in kidney transplant recipients. We included 403 kidney transplant recipients. For each patient, we recorded all prescription drugs known to inhibit OAT1/OAT3. Plasma levels of four UTs (trimethylamine N-oxide (TMAO), indole acetic acid (IAA), para-cresylsulfate (pCS), and indoxylsulfate (IxS) were assayed using liquid chromatography-tandem mass spectrometry. Plasma UT levels were significantly higher among patients prescribed at least one OAT inhibitor (n = 311) than among patients not prescribed any OAT inhibitors (n = 92). Multivariate analysis revealed that after adjustment for age, estimated glomerular filtration rate (eGFR), plasma level of albumin and time since transplantation, prescription of an OAT1/OAT3 inhibitor was independently associated with the plasma accumulation of pCS (adjusted odds ratio (95% confidence interval): 2.11 (1.26; 3.61]). Our results emphasize the importance of understanding the interactions between drugs and UTs and those involving UT transporters in particular.
Collapse
|
91
|
Ebert T, Neytchev O, Witasp A, Kublickiene K, Stenvinkel P, Shiels PG. Inflammation and Oxidative Stress in Chronic Kidney Disease and Dialysis Patients. Antioxid Redox Signal 2021; 35:1426-1448. [PMID: 34006115 DOI: 10.1089/ars.2020.8184] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Chronic kidney disease (CKD) can be regarded as a burden of lifestyle disease that shares common underpinning features and risk factors with the aging process; it is a complex constituted by several adverse components, including chronic inflammation, oxidative stress, early vascular aging, and cellular senescence. Recent Advances: A systemic approach to tackle CKD, based on mitigating the associated inflammatory, cell stress, and damage processes, has the potential to attenuate the effects of CKD, but it also preempts the development and progression of associated morbidities. In effect, this will enhance health span and compress the period of morbidity. Pharmacological, nutritional, and potentially lifestyle-based interventions are promising therapeutic avenues to achieve such a goal. Critical Issues: In the present review, currents concepts of inflammation and oxidative damage as key patho-mechanisms in CKD are addressed. In particular, potential beneficial but also adverse effects of different systemic interventions in patients with CKD are discussed. Future Directions: Senotherapeutics, the nuclear factor erythroid 2-related factor 2-kelch-like ECH-associated protein 1 (NRF2-KEAP1) signaling pathway, the endocrine klotho axis, inhibitors of the sodium-glucose cotransporter 2 (SGLT2), and live bio-therapeutics have the potential to reduce the burden of CKD and improve quality of life, as well as morbidity and mortality, in this fragile high-risk patient group. Antioxid. Redox Signal. 35, 1426-1448.
Collapse
Affiliation(s)
- Thomas Ebert
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ognian Neytchev
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Anna Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
92
|
Bowry SK, Kotanko P, Himmele R, Tao X, Anger M. The membrane perspective of uraemic toxins: which ones should, or can, be removed? Clin Kidney J 2021; 14:i17-i31. [PMID: 34987783 PMCID: PMC8711755 DOI: 10.1093/ckj/sfab202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 11/15/2022] Open
Abstract
Informed decision-making is paramount to the improvement of dialysis therapies and patient outcomes. A cornerstone of delivery of optimal dialysis therapy is to delineate which substances (uraemic retention solutes or 'uraemic toxins') contribute to the condition of uraemia in terms of deleterious biochemical effects they may exert. Thereafter, decisions can be made as to which of the accumulated compounds need to be targeted for removal and by which strategies. For haemodialysis (HD), the non-selectivity of membranes is sometimes considered a limitation. Yet, considering that dozens of substances with potential toxicity need to be eliminated, and targeting removal of individual toxins explicitly is not recommended, current dialysis membranes enable elimination of several molecules of a broad size range within a single therapy session. However, because HD solute removal is based on size-exclusion principles, i.e. the size of the substances to be removed relative to the mean size of the 'pores' of the membrane, only a limited degree of selectivity of removal is possible. Removal of unwanted substances during HD needs to be weighed against the unavoidable loss of substances that are recognized to be necessary for bodily functions and physiology. In striving to improve the efficiency of HD by increasing the porosity of membranes, there is a greater potential for the loss of substances that are of benefit. Based on this elementary trade-off and availability of recent guidance on the relative toxicity of substances retained in uraemia, we propose a new evidence-linked uraemic toxin elimination (ELUTE) approach whereby only those clusters of substances for which there is a sufficient body of evidence linking them to deleterious biological effects need to be targeted for removal. Our approach involves correlating the physical properties of retention solutes (deemed to express toxicity) with key determinants of membranes and separation processes. Our analysis revealed that in attempting to remove the relatively small number of 'larger' substances graded as having only moderate toxicity, uncontrolled (and efficient) removal of several useful compounds would take place simultaneously and may compromise the well-being or outcomes of patients. The bulk of the uraemic toxin load comprises uraemic toxins below <30 000 Da and are adequately removed by standard membranes. Further, removal of a few difficult-to-remove-by-dialysis (protein-bound) compounds that express toxicity cannot be achieved by manipulation of pore size alone. The trade-off between the benefits of effective removal of the bulk of the uraemic toxin load and risks (increased loss of useful substances) associated with targeting the removal of a few larger substances in 'high-efficiency' HD treatment strategies needs to be recognized and better understood. The removability during HD of substances, be they toxic, inert or beneficial, needs be revised to establish the pros and cons of current dialytic elimination strategies. .
Collapse
Affiliation(s)
- Sudhir K Bowry
- Dialysis-at-Crossroads (D@X) Advisory, Bad Nauheim, Germany
| | | | - Rainer Himmele
- Global Medical Information and Education, Fresenius Medical Care, Charlotte, NC, USA
| | - Xia Tao
- Renal Research Institute, New York, NY, USA
| | - Michael Anger
- Global Medical Office, Fresenius Medical Care, Waltham, MA, USA
| |
Collapse
|
93
|
Bowry SK, Kircelli F, Nandakumar M, Vachharajani TJ. Clinical relevance of abstruse transport phenomena in haemodialysis. Clin Kidney J 2021; 14:i85-i97. [PMID: 34987788 PMCID: PMC8711756 DOI: 10.1093/ckj/sfab183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 11/12/2022] Open
Abstract
Haemodialysis (HD) utilizes the bidirectional properties of semipermeable membranes to remove uraemic toxins from blood while simultaneously replenishing electrolytes and buffers to correct metabolic acidosis. However, the nonspecific size-dependent transport across membranes also means that certain useful plasma constituents may be removed from the patient (together with uraemic toxins), or toxic compounds, e.g. endotoxin fragments, may accompany electrolytes and buffers of the dialysis fluids into blood and elicit severe biological reactions. We describe the mechanisms and implications of these undesirable transport processes that are inherent to all HD therapies and propose approaches to mitigate the effects of such transport. We focus particularly on two undesirable events that are considered to adversely affect HD therapy and possibly impact patient outcomes. Firstly, we describe how loss of albumin (and other essential substances) can occur while striving to eliminate larger uraemic toxins during HD and why hypoalbuminemia is a clinical condition to contend with. Secondly, we describe the origins and mode of transport of biologically active substances (from dialysis fluids with bacterial contamination) into the blood compartment and biological reactions they elicit. Endotoxin fragments activate various proinflammatory pathways to increase the underlying inflammation associated with chronic kidney disease. Both phenomena involve the physical as well as chemical properties of membranes that must be selected judiciously to balance the benefits with potential risks patients may encounter, in both the short and long term.
Collapse
Affiliation(s)
- Sudhir K Bowry
- Dialysis-at-Crossroads (D@X) Advisory, Bad Nauheim, Germany
| | - Fatih Kircelli
- Global Medical Information and Education, Fresenius Medical Care, Bad Homburg, Germany
| | | | - Tushar J Vachharajani
- Department of Hypertension and Nephrology, Glickman Urological and Kidney Institute, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
94
|
Rosner MH, Reis T, Husain-Syed F, Vanholder R, Hutchison C, Stenvinkel P, Blankestijn PJ, Cozzolino M, Juillard L, Kashani K, Kaushik M, Kawanishi H, Massy Z, Sirich TL, Zuo L, Ronco C. Classification of Uremic Toxins and Their Role in Kidney Failure. Clin J Am Soc Nephrol 2021; 16:1918-1928. [PMID: 34233920 PMCID: PMC8729494 DOI: 10.2215/cjn.02660221] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Advances in our understanding of uremic retention solutes, and improvements in hemodialysis membranes and other techniques designed to remove uremic retention solutes, offer opportunities to readdress the definition and classification of uremic toxins. A consensus conference was held to develop recommendations for an updated definition and classification scheme on the basis of a holistic approach that incorporates physicochemical characteristics and dialytic removal patterns of uremic retention solutes and their linkage to clinical symptoms and outcomes. The major focus is on the removal of uremic retention solutes by hemodialysis. The identification of representative biomarkers for different classes of uremic retention solutes and their correlation to clinical symptoms and outcomes may facilitate personalized and targeted dialysis prescriptions to improve quality of life, morbidity, and mortality. Recommendations for areas of future research were also formulated, aimed at improving understanding of uremic solutes and improving outcomes in patients with CKD.
Collapse
Affiliation(s)
- Mitchell H. Rosner
- Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia
| | - Thiago Reis
- Department of Nephrology, University of Brazil, Brasília, Brazil
- National Academy of Medicine, Rio de Janeiro, Brazil
| | - Faeq Husain-Syed
- Department of Internal Medicine II, Justus-Liebig-University Giessen, Giessen, Germany
| | - Raymond Vanholder
- Department of Internal Medicine and Pediatrics, University Hospital, Ghent, Belgium
| | - Colin Hutchison
- Faculty of Medicine, University of Queensland, Herston, Australia
- Department of Medicine, Hawke's Bay District Health Board, Hastings, New Zealand
| | - Peter Stenvinkel
- Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Peter J. Blankestijn
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Mario Cozzolino
- Renal Division, Università degli Studi di Milano, Milan, Italy
| | - Laurent Juillard
- University of Lyon, Villeurbanne, France
- Hôpital E. Herriot, Lyon, France
| | - Kianoush Kashani
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Manish Kaushik
- Department of Renal Medicine, Singapore General Hospital, Singapore, Singapore
| | - Hideki Kawanishi
- Department of Artificial Organs, Tsuchiya General Hospital, Hiroshima, Japan
| | - Ziad Massy
- INSERM U1018, Villejuif, France
- Service de Néphrologie et Dialyse, Hôpital Universitaire Ambroise Paré, Boulogne-Billancourt, France
| | - Tammy Lisa Sirich
- Nephrology Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
- Division of Nephrology, Stanford University School of Medicine, Stanford, California
| | - Li Zuo
- Department of Nephrology, Peking University People's Hospital, Beijing, China
| | - Claudio Ronco
- Department of Medicine, University of Padova, Padova, Italy
- Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza, Vicenza, Italy
| |
Collapse
|
95
|
Wang CT, Tezuka T, Takeda N, Araki K, Arai S, Miyazaki T. High salt exacerbates acute kidney injury by disturbing the activation of CD5L/apoptosis inhibitor of macrophage (AIM) protein. PLoS One 2021; 16:e0260449. [PMID: 34843572 PMCID: PMC8629239 DOI: 10.1371/journal.pone.0260449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
The influence of excess salt intake on acute kidney injury (AKI) has not been examined precisely except for some clinical data, unlike in chronic kidney disease. Here, we addressed the influence of high salt (HS) on AKI and its underlying mechanisms in terms of the activity of circulating apoptosis inhibitor of macrophage (AIM, also called CD5L) protein, a facilitator of AKI repair. HS loading in mice subjected to ischemia/reperfusion (IR) resulted in high mortality with advanced renal tubular obstruction and marked exacerbation in biomarkers of proximal renal tubular damage. This AKI exacerbation appeared to be caused mainly by the reduced AIM dissociation from IgM pentamer in serum, as IgM-free AIM is indispensable for the removal of intratubular debris to facilitate AKI repair. Injection of recombinant AIM (rAIM) ameliorated the AKI induced by IR/HS, dramatically improving the tubular damage and mouse survival. The repair of lethal AKI by AIM was dependent on AIM/ kidney injury molecule-1 (KIM-1) axis, as rAIM injection was not effective in KIM-1 deficient mice. Our results demonstrate that the inhibition of AIM dissociation from IgM is an important reason for the exacerbation of AKI by HS, that AIM is a strong therapeutic tool for severe AKI.
Collapse
Affiliation(s)
- Ching-Ting Wang
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsushi Tezuka
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoki Takeda
- Institute of Resource Development and Analysis, Division of Developmental Genetics, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Division of Developmental Genetics, Kumamoto University, Kumamoto, Japan
| | - Satoko Arai
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- The Institute for AIM Medicine, Tokyo, Japan
| | - Toru Miyazaki
- Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- The Institute for AIM Medicine, Tokyo, Japan
- LEAP, Japan Agency for Medical Research and Development, Tokyo, Japan
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut National de la Santé et de la Recherche Médicale UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg, Laboratory of Excellence TRANSPLANTEX, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
96
|
Li Y, Cao H, Wang X, Guo L, Ding X, Zhao W, Zhang F. Diet-mediated metaorganismal relay biotransformation: health effects and pathways. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34802351 DOI: 10.1080/10408398.2021.2004993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In recent years, the concept of metaorganism expands our insight into how diet-microbe-host interactions contribute to human health and diseases. We realized that many biological metabolic processes in the host can be summarized into metaorganismal relay pathways, in which metabolites such as trimethylamine-N‑oxide, short-chain fatty acids and bile acids act as double-edged swords (beneficial or harmful effects) in the initiation and progression of diseases. Pleiotropic effects of metabolites are derived from several influencing factors including dose level, targeted organ of effect, action duration and species of these metabolites. Based on the pleiotropic effects of metabolites, personalized therapeutic approaches including microecological agents, enzymatic regulators and changes in dietary habits to govern related metabolite production may provide a new insight in promoting human health. In this review, we summarize our current knowledge of metaorganismal relay pathways and elaborate on the pleiotropic effects of metabolites in these pathways, with special emphasis on related therapeutic nutritional interventions.
Collapse
Affiliation(s)
- Yanmin Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hong Cao
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaoqian Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lichun Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoying Ding
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Feng Zhang
- Department of Nutrition, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
97
|
Steenbeke M, Valkenburg S, Gryp T, Van Biesen W, Delanghe JR, Speeckaert MM, Glorieux G. Gut Microbiota and Their Derived Metabolites, a Search for Potential Targets to Limit Accumulation of Protein-Bound Uremic Toxins in Chronic Kidney Disease. Toxins (Basel) 2021; 13:toxins13110809. [PMID: 34822593 PMCID: PMC8625482 DOI: 10.3390/toxins13110809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by gut dysbiosis with a decrease in short-chain fatty acid (SCFA)-producing bacteria. Levels of protein-bound uremic toxins (PBUTs) and post-translational modifications (PTMs) of albumin increase with CKD, both risk factors for cardiovascular morbidity and mortality. The relationship between fecal metabolites and plasma concentrations of PBUTs in different stages of CKD (n = 103) was explored. Estimated GFR tends to correlate with fecal butyric acid (BA) concentrations (rs = 0.212; p = 0.032), which, in its turn, correlates with the abundance of SCFA-producing bacteria. Specific SCFAs correlate with concentrations of PBUT precursors in feces. Fecal levels of p-cresol correlate with its derived plasma UTs (p-cresyl sulfate: rs = 0.342, p < 0.001; p-cresyl glucuronide: rs = 0.268, p = 0.006), whereas an association was found between fecal and plasma levels of indole acetic acid (rs = 0.306; p = 0.002). Finally, the albumin symmetry factor correlates positively with eGFR (rs = 0.274; p = 0.005). The decreased abundance of SCFA-producing gut bacteria in parallel with the fecal concentration of BA and indole could compromise the intestinal barrier function in CKD. It is currently not known if this contributes to increased plasma levels of PBUTs, potentially playing a role in the PTMs of albumin. Further evaluation of SCFA-producing bacteria and SCFAs as potential targets to restore both gut dysbiosis and uremia is needed.
Collapse
Affiliation(s)
- Mieke Steenbeke
- Department of Internal Medicine and Pediatrics, Nephrology Unit, Ghent University Hospital, 9000 Ghent, Belgium
| | - Sophie Valkenburg
- Department of Internal Medicine and Pediatrics, Nephrology Unit, Ghent University Hospital, 9000 Ghent, Belgium
| | - Tessa Gryp
- Department of Internal Medicine and Pediatrics, Nephrology Unit, Ghent University Hospital, 9000 Ghent, Belgium
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Wim Van Biesen
- Department of Internal Medicine and Pediatrics, Nephrology Unit, Ghent University Hospital, 9000 Ghent, Belgium
| | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Internal Medicine and Pediatrics, Nephrology Unit, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation Flanders, 1000 Brussels, Belgium
| | - Griet Glorieux
- Department of Internal Medicine and Pediatrics, Nephrology Unit, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
98
|
Uremic serum damages endothelium by provoking excessive neutrophil extracellular trap formation. Sci Rep 2021; 11:21439. [PMID: 34728714 PMCID: PMC8563801 DOI: 10.1038/s41598-021-00863-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in patients with chronic kidney disease (CKD). Endothelial cell (EC) dysfunction is a key CKD-specific risk factor; however, the mechanisms by which uremia harms the endothelium are still unclear. We report a role for excessive neutrophil extracellular trap (NET) formation induced by uremic serum on EC injury. Level of plasma nucleosome and myeloperoxidase-DNA, established in vivo markers of NETs, as well as intracellular adhesion molecule (ICAM)-1 were measured in hemodialysis (HD) patients and healthy volunteers (HV) and their prognostic role evaluated. For in vitro studies, HV-derived neutrophils and differentiated HL-60 cells by retinoic acid were used to determine the effect of uremic serum-induced NETs on human umbilical vein EC (HUVEC). The level of in vivo NETs was significantly higher in incident HD patients compared to HV, and these markers were strongly associated with ICAM-1. Specifically, nucleosome and ICAM-1 levels were independent predictors of a composite endpoint, all-cause mortality, or vascular access failure. In vitro, HD-derived uremic serum significantly increased NET formation both in dHL-60 and isolated neutrophils compared to control serum, and these NETs decreased EC viability and induced their apoptosis. In addition, the level of ICAM-1, E-selectin and von Willebrand factor in HUVEC supernatant was significantly increased by uremic serum-induced NETs compared to control serum-induced NETs. Dysregulated neutrophil activities in the uremic milieu may play a key role in vascular inflammatory responses. The high mortality and CVD rates in ESRD may be explained in part by excessive NET formation leading to EC damage and dysfunction.
Collapse
|
99
|
Immuno-regenerative biomaterials for in situ cardiovascular tissue engineering - Do patient characteristics warrant precision engineering? Adv Drug Deliv Rev 2021; 178:113960. [PMID: 34481036 DOI: 10.1016/j.addr.2021.113960] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
In situ tissue engineering using bioresorbable material implants - or scaffolds - that harness the patient's immune response while guiding neotissue formation at the site of implantation is emerging as a novel therapy to regenerate human tissues. For the cardiovascular system, the use of such implants, like blood vessels and heart valves, is gradually entering the stage of clinical translation. This opens up the question if and to what extent patient characteristics influence tissue outcomes, necessitating the precision engineering of scaffolds to guide patient-specific neo-tissue formation. Because of the current scarcity of human in vivo data, herein we review and evaluate in vitro and preclinical investigations to predict the potential role of patient-specific parameters like sex, age, ethnicity, hemodynamics, and a multifactorial disease profile, with special emphasis on their contribution to the inflammation-driven processes of in situ tissue engineering. We conclude that patient-specific conditions have a strong impact on key aspects of in situ cardiovascular tissue engineering, including inflammation, hemodynamic conditions, scaffold resorption, and tissue remodeling capacity, suggesting that a tailored approach may be required to engineer immuno-regenerative biomaterials for safe and predictive clinical applicability.
Collapse
|
100
|
Abstract
Uremic encephalopathy encompasses a wide range of central nervous system abnormalities associated with poor kidney function occurring with either progressive chronic kidney disease or acute kidney injury. The syndrome is likely caused by retention of uremic solutes, alterations in hormonal metabolism, changes in electrolyte and acid-base homeostasis, as well as changes in vascular reactivity, blood-brain barrier transport, and inflammation. There are no defining clinical, laboratory, or imaging findings, and the diagnosis is often made retrospectively when symptoms improve after dialysis or transplantation. The diagnosis is also made difficult because of the many confounding and overlapping conditions seen in patients with chronic kidney disease and acute kidney injury. Thus, institution of kidney replacement therapy should be considered as a trial to improve symptoms in the right clinical context. Neurological symptoms that do not improve after improvement in clearance should prompt a search for other explanations. Further knowledge linking possible uremic retention solutes with neurological symptoms is needed to better understand this syndrome as well as to develop more tailored treatments that aim to improve cognitive function.
Collapse
|