51
|
Abstract
The reproductive adaptations of land plants have played a key role in their terrestrial colonization and radiation. This encompasses mechanisms used for the production, dispersal and union of gametes to support sexual reproduction. The production of small motile male gametes and larger immotile female gametes (oogamy) in specialized multicellular gametangia evolved in the charophyte algae, the closest extant relatives of land plants. Reliance on water and motile male gametes for sexual reproduction was retained by bryophytes and basal vascular plants, but was overcome in seed plants by the dispersal of pollen and the guided delivery of non-motile sperm to the female gametes. Here we discuss the evolutionary history of male gametogenesis in streptophytes (green plants) and the underlying developmental biology, including recent advances in bryophyte and angiosperm models. We conclude with a perspective on research trends that promise to deliver a deeper understanding of the evolutionary and developmental mechanisms of male gametogenesis in plants.
Collapse
Affiliation(s)
- Dieter Hackenberg
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom.
| | - David Twell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom.
| |
Collapse
|
52
|
Ryo M, Yamashino T, Nomoto Y, Goto Y, Ichinose M, Sato K, Sugita M, Aoki S. Light-regulated PAS-containing histidine kinases delay gametophore formation in the moss Physcomitrella patens. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4839-4851. [PMID: 29992239 PMCID: PMC6137987 DOI: 10.1093/jxb/ery257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 07/04/2018] [Indexed: 05/07/2023]
Abstract
Two-component systems (TCSs) are signal transduction mechanisms for responding to various environmental stimuli. In angiosperms, TCSs involved in phytohormone signaling have been intensively studied, whereas there are only a few reports on TCSs in basal land plants. The moss Physcomitrella patens possesses several histidine kinases (HKs) that are lacking in seed plant genomes. Here, we studied two of these unique HKs, PAS-histidine kinase 1 (PHK1) and its paralog PHK2, both of which have PAS (Per-Arnt-Sim) domains, which are known to show versatile functions such as sensing light or molecular oxygen. We found homologs of PHK1 and PHK2 only in early diverged clades such as bryophytes and lycophytes, but not in seed plants. The PAS sequences of PHK1 and PHK2 are more similar to a subset of bacterial PAS sequences than to any angiosperm PAS sequences. Gene disruption lines that lack either PHK1 or PHK2 or both formed gametophores earlier than the wild-type, and consistently, more caulonema side branches were induced in response to light in the disruption lines. Therefore, PHK1 and PHK2 delay the timing of gametophore development, probably by suppressing light-induced caulonema branching. This study provides new insights into the evolution of TCSs in plants.
Collapse
Affiliation(s)
- Masashi Ryo
- Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Takafumi Yamashino
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Correspondence: or
| | - Yuji Nomoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Yuki Goto
- Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Mizuho Ichinose
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Kensuke Sato
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Setsuyuki Aoki
- Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Correspondence: or
| |
Collapse
|
53
|
Peters K, Gorzolka K, Bruelheide H, Neumann S. Seasonal variation of secondary metabolites in nine different bryophytes. Ecol Evol 2018; 8:9105-9117. [PMID: 30271570 PMCID: PMC6157681 DOI: 10.1002/ece3.4361] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/12/2018] [Accepted: 06/22/2018] [Indexed: 12/27/2022] Open
Abstract
Bryophytes occur in almost all land ecosystems and contribute to global biogeochemical cycles, ecosystem functioning, and influence vegetation dynamics. As growth and biochemistry of bryophytes are strongly dependent on the season, we analyzed metabolic variation across seasons with regard to ecological characteristics and phylogeny. Using bioinformatics methods, we present an integrative and reproducible approach to connect ecology with biochemistry. Nine different bryophyte species were collected in three composite samples in four seasons. Untargeted liquid chromatography coupled with mass spectrometry (LC/MS) was performed to obtain metabolite profiles. Redundancy analysis, Pearson's correlation, Shannon diversity, and hierarchical clustering were used to determine relationships among species, seasons, ecological characteristics, and hierarchical clustering. Metabolite profiles of Marchantia polymorpha and Fissidens taxifolius which are species with ruderal life strategy (R-selected) showed low seasonal variability, while the profiles of the pleurocarpous mosses and Grimmia pulvinata which have characteristics of a competitive strategy (C-selected) were more variable. Polytrichum strictum and Plagiomnium undulatum had intermediary life strategies. Our study revealed strong species-specific differences in metabolite profiles between the seasons. Life strategies, growth forms, and indicator values for light and soil were among the most important ecological predictors. We demonstrate that untargeted Eco-Metabolomics provide useful biochemical insight that improves our understanding of fundamental ecological strategies.
Collapse
Affiliation(s)
- Kristian Peters
- Leibniz Institute of Plant Biochemistry, Stress and Developmental BiologyHalleGermany
| | - Karin Gorzolka
- Leibniz Institute of Plant Biochemistry, Stress and Developmental BiologyHalleGermany
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle WittenbergHalleGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Steffen Neumann
- Leibniz Institute of Plant Biochemistry, Stress and Developmental BiologyHalleGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| |
Collapse
|
54
|
Ryo M, Yamashino T, Yamakawa H, Fujita Y, Aoki S. PAS-histidine kinases PHK1 and PHK2 exert oxygen-dependent dual and opposite effects on gametophore formation in the moss Physcomitrella patens. Biochem Biophys Res Commun 2018; 503:2861-2865. [DOI: 10.1016/j.bbrc.2018.08.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022]
|
55
|
Jamsheer K M, Shukla BN, Jindal S, Gopan N, Mannully CT, Laxmi A. The FCS-like zinc finger scaffold of the kinase SnRK1 is formed by the coordinated actions of the FLZ domain and intrinsically disordered regions. J Biol Chem 2018; 293:13134-13150. [PMID: 29945970 DOI: 10.1074/jbc.ra118.002073] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/05/2018] [Indexed: 11/06/2022] Open
Abstract
The SNF1-related protein kinase 1 (SnRK1) is a heterotrimeric eukaryotic kinase that interacts with diverse proteins and regulates their activity in response to starvation and stress signals. Recently, the FCS-like zinc finger (FLZ) proteins were identified as a potential scaffold for SnRK1 in plants. However, the evolutionary and mechanistic aspect of this complex formation is currently unknown. Here, in silico analyses predicted that FLZ proteins possess conserved intrinsically disordered regions (IDRs) with a propensity for protein binding in the N and C termini across the plant lineage. We observed that the Arabidopsis FLZ proteins promiscuously interact with SnRK1 subunits, which formed different isoenzyme complexes. The FLZ domain was essential for mediating the interaction with SnRK1α subunits, whereas the IDRs in the N termini facilitated interactions with the β and βγ subunits of SnRK1. Furthermore, the IDRs in the N termini were important for mediating dimerization of different FLZ proteins. Of note, the interaction of FLZ with SnRK1 was confined to cytoplasmic foci, which colocalized with the endoplasmic reticulum. An evolutionary analysis revealed that in general, the IDR-rich regions are under more relaxed selection than the FLZ domain. In summary, the findings in our study reveal the structural details, origin, and evolution of a land plant-specific scaffold of SnRK1 formed by the coordinated actions of IDRs and structured regions in the FLZ proteins. We propose that the FLZ protein complex might be involved in providing flexibility, thus enhancing the binding repertoire of the SnRK1 hub in land plants.
Collapse
Affiliation(s)
- Muhammed Jamsheer K
- From the National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067 and
| | - Brihaspati N Shukla
- From the National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067 and
| | - Sunita Jindal
- From the National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067 and
| | - Nandu Gopan
- the Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru-560064, India
| | | | - Ashverya Laxmi
- From the National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067 and
| |
Collapse
|
56
|
Pandey S, Sharma V, Alam A. Phylogeny based on 16S rRNA sequence and morphology of selected mosses of Mount Abu, Rajasthan (India). Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
57
|
Amagai A, Honda Y, Ishikawa S, Hara Y, Kuwamura M, Shinozawa A, Sugiyama N, Ishihama Y, Takezawa D, Sakata Y, Shinozaki K, Umezawa T. Phosphoproteomic profiling reveals ABA-responsive phosphosignaling pathways in Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:699-708. [PMID: 29575231 DOI: 10.1111/tpj.13891] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 02/09/2018] [Accepted: 02/19/2018] [Indexed: 05/24/2023]
Abstract
Abscisic acid (ABA) and its signaling system are important for land plants to survive in terrestrial conditions. Here, we took a phosphoproteomic approach to elucidate the ABA signaling network in Physcomitrella patens, a model species of basal land plants. Our phosphoproteomic analysis detected 4630 phosphopeptides from wild-type P. patens and two ABA-responsive mutants, a disruptant of group-A type-2C protein phosphatase (PP2C; ppabi1a/b) and AR7, a defective mutant in ARK, identified as an upstream regulator of SnRK2. Quantitative analysis detected 143 ABA-responsive phosphopeptides in P. patens. The analysis indicated that SnRK2-mediated phosphorylation and target motifs were partially conserved in bryophytes. Our data demonstrate that the PpSnRK2B and AREB/ABF-type transcription factors are phosphorylated in vivo in response to ABA under the control of ARK. On the other hand, our data also revealed the following: (i) the entire ABA-responsive phosphoproteome in P. patens is quite diverse; (ii) P. patens PP2C affects additional pathways other than the known ABA signaling pathway; and (iii) ARK is mainly involved in ABA signaling. Taken together, we propose that the core ABA signaling pathway is essential in all land plants; however, some ABA-responsive phosphosignaling uniquely developed in bryophytes during the evolutionary process.
Collapse
Affiliation(s)
- Anna Amagai
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Yoshimasa Honda
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Shinnosuke Ishikawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Yurie Hara
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Mayuri Kuwamura
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Akihisa Shinozawa
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Naoyuki Sugiyama
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Daisuke Takezawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Yoichi Sakata
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Kazuo Shinozaki
- Gene Discovery Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Taishi Umezawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
- PRESTO, Japan Science and Technology Agency, Gobancho, Chiyodaku, Tokyo, 102-0076, Japan
| |
Collapse
|
58
|
Morozov SY, Milyutina IA, Erokhina TN, Ozerova LV, Troitsky AV, Solovyev AG. TAS3 miR390-dependent loci in non-vascular land plants: towards a comprehensive reconstruction of the gene evolutionary history. PeerJ 2018; 6:e4636. [PMID: 29682420 PMCID: PMC5907777 DOI: 10.7717/peerj.4636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/28/2018] [Indexed: 01/09/2023] Open
Abstract
Trans-acting small interfering RNAs (ta-siRNAs) are transcribed from protein non-coding genomic TAS loci and belong to a plant-specific class of endogenous small RNAs. These siRNAs have been found to regulate gene expression in most taxa including seed plants, gymnosperms, ferns and mosses. In this study, bioinformatic and experimental PCR-based approaches were used as tools to analyze TAS3 and TAS6 loci in transcriptomes and genomic DNAs from representatives of evolutionary distant non-vascular plant taxa such as Bryophyta, Marchantiophyta and Anthocerotophyta. We revealed previously undiscovered TAS3 loci in plant classes Sphagnopsida and Anthocerotopsida, as well as TAS6 loci in Bryophyta classes Tetraphidiopsida, Polytrichopsida, Andreaeopsida and Takakiopsida. These data further unveil the evolutionary pathway of the miR390-dependent TAS3 loci in land plants. We also identified charophyte alga sequences coding for SUPPRESSOR OF GENE SILENCING 3 (SGS3), which is required for generation of ta-siRNAs in plants, and hypothesized that the appearance of TAS3-related sequences could take place at a very early step in evolutionary transition from charophyte algae to an earliest common ancestor of land plants.
Collapse
Affiliation(s)
- Sergey Y Morozov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Irina A Milyutina
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Tatiana N Erokhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Liudmila V Ozerova
- Tsitsin Main Botanical Garden, Russian Academy of Science, Moscow, Russia
| | - Alexey V Troitsky
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Andrey G Solovyev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
59
|
Abstract
500Ma ago the terrestrial habitat was a barren, unwelcoming place for species other than, for example, bacteria or fungi. Most probably, filamentous freshwater algae adapted to aerial conditions and eventually conquered land. Adaptation to a severely different habitat apparently included sturdy cell walls enabling an erect body plan as well as protection against abiotic stresses such as ultraviolet radiation, drought and varying temperature. To thrive on land, plants probably required more elaborate signaling pathways to react to diverse environmental conditions, and phytohormones to control developmental programs. Many such plant-typical features have been studied in flowering plants, but their evolutionary origins were long clouded. With the sequencing of a moss genome a decade ago, inference of ancestral land plant states using comparative genomics, phylogenomics and evolutionary developmental approaches began in earnest. In the past few years, the ever increasing availability of genomic and transcriptomic data of organisms representing the earliest common ancestors of the plant tree of life has much informed our understanding of the conquest of land by plants.
Collapse
Affiliation(s)
- Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany.
| |
Collapse
|
60
|
Goga M, Ručová D, Kolarčik V, Sabovljević M, Bačkor M, Lang I. Usnic acid, as a biotic factor, changes the ploidy level in mosses. Ecol Evol 2018; 8:2781-2787. [PMID: 29531694 PMCID: PMC5838065 DOI: 10.1002/ece3.3908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/04/2017] [Accepted: 01/14/2018] [Indexed: 11/09/2022] Open
Abstract
Lichens and mosses often share the same environmental conditions where they compete for substrate and other essential factors. Lichens use secondary metabolites as allelochemicals to repel surrounding plants and potential rivals. In mosses, endoreduplication leads to the occurrence of various ploidy levels in the same individual and has been suggested as an adaptation to abiotic stresses. Here, we show that also biotic factors such as usnic acid, an allelochemical produced by lichens, directly influenced the level of ploidy in mosses. Application of usnic acid changed the nuclei proportion and significantly enhanced the endoreduplication index in two moss species, Physcomitrella patens and Pohlia drummondii. These investigations add a new aspect on secondary metabolites of lichens which count as biotic factors and affect ploidy levels in mosses.
Collapse
Affiliation(s)
- Michal Goga
- Core Facility Cell Imaging and Ultrastructure ResearchUniversity of ViennaViennaAustria
- Department of BotanyFaculty of ScienceInstitute of Biology and EcologyPavol Jozef Šafárik UniversityKošiceSlovakia
| | - Dajana Ručová
- Department of BotanyFaculty of ScienceInstitute of Biology and EcologyPavol Jozef Šafárik UniversityKošiceSlovakia
| | - Vladislav Kolarčik
- Department of BotanyFaculty of ScienceInstitute of Biology and EcologyPavol Jozef Šafárik UniversityKošiceSlovakia
| | - Marko Sabovljević
- Faculty of BiologyInstitute of Botany and Botanical GardenUniversity of BelgradeBelgradeSerbia
| | - Martin Bačkor
- Department of BotanyFaculty of ScienceInstitute of Biology and EcologyPavol Jozef Šafárik UniversityKošiceSlovakia
| | - Ingeborg Lang
- Core Facility Cell Imaging and Ultrastructure ResearchUniversity of ViennaViennaAustria
| |
Collapse
|
61
|
Pease JB, Brown JW, Walker JF, Hinchliff CE, Smith SA. Quartet Sampling distinguishes lack of support from conflicting support in the green plant tree of life. AMERICAN JOURNAL OF BOTANY 2018; 105:385-403. [PMID: 29746719 DOI: 10.1002/ajb2.1016] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/05/2017] [Indexed: 05/21/2023]
Abstract
PREMISE OF THE STUDY Phylogenetic support has been difficult to evaluate within the green plant tree of life partly due to a lack of specificity between conflicted versus poorly informed branches. As data sets continue to expand in both breadth and depth, new support measures are needed that are more efficient and informative. METHODS We describe the Quartet Sampling (QS) method, a quartet-based evaluation system that synthesizes several phylogenetic and genomic analytical approaches. QS characterizes discordance in large-sparse and genome-wide data sets, overcoming issues of alignment sparsity and distinguishing strong conflict from weak support. We tested QS with simulations and recent plant phylogenies inferred from variously sized data sets. KEY RESULTS QS scores demonstrated convergence with increasing replicates and were not strongly affected by branch depth. Patterns of QS support from different phylogenies led to a coherent understanding of ancestral branches defining key disagreements, including the relationships of Ginkgo to cycads, magnoliids to monocots and eudicots, and mosses to liverworts. The relationships of ANA-grade angiosperms (Amborella, Nymphaeales, Austrobaileyales), major monocot groups, bryophytes, and fern families are likely highly discordant in their evolutionary histories, rather than poorly informed. QS can also detect discordance due to introgression in phylogenomic data. CONCLUSIONS Quartet Sampling is an efficient synthesis of phylogenetic tests that offers more comprehensive and specific information on branch support than conventional measures. The QS method corroborates growing evidence that phylogenomic investigations that incorporate discordance testing are warranted when reconstructing complex evolutionary histories, in particular those surrounding ANA-grade, monocots, and nonvascular plants.
Collapse
Affiliation(s)
- James B Pease
- Department of Biology, Wake Forest University, 455 Vine Street, Winston-Salem, North Carolina, 27101, USA
| | - Joseph W Brown
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, Michigan, 48109, USA
| | - Joseph F Walker
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, Michigan, 48109, USA
| | - Cody E Hinchliff
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, MS 3051, Moscow, Idaho, 83844, USA
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
62
|
Gallenmüller F, Langer M, Poppinga S, Kassemeyer HH, Speck T. Spore liberation in mosses revisited. AOB PLANTS 2018; 10:plx075. [PMID: 29372045 PMCID: PMC5777488 DOI: 10.1093/aobpla/plx075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 12/21/2017] [Indexed: 05/22/2023]
Abstract
The ability to perform hygroscopic movements has evolved in many plant lineages and relates to a multitude of different functions such as seed burial, flower protection or regulation of diaspore release. In most mosses, spore release is controlled by hygroscopic movements of the peristome teeth and also of the spore capsule. Our study presents, for the first time, temporally and spatially well-resolved kinematic analyses of these complex shape changes in response to humidity conditions and provides insights into the sophisticated functional morphology and anatomy of the peristome teeth. In Brachythecium populeum the outer teeth of the peristome perform particularly complex hygroscopic movements during hydration and desiccation. Hydration induces fast inward dipping followed by partial re-straightening of the teeth. In their final shape, wet teeth close the capsule. During desiccation, the teeth perform an outward flicking followed by a re-straightening which opens the capsule. We present a kinematic analysis of these shape changes and of the underlying functional anatomy of the teeth. These teeth are shown to be composed of two layers which show longitudinal gradients in their material composition, structure and geometry. We hypothesize that these gradients result in (i) differences in swelling/shrinking capacity and velocity between the two layers composing the teeth, and in (ii) a gradient of velocity of swelling and shrinking from the tip to the base of the teeth. We propose these processes explain the observed movements regulating capsule opening or closing. This hypothesis is corroborated by experiments with isolated layers of peristome teeth. During hydration and desiccation, changes to the shape and mass of the whole spore capsule accompany the opening and closing. Results are discussed in relation to their significance for humidity-based regulation of spore release.
Collapse
Affiliation(s)
- Friederike Gallenmüller
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Corresponding author’s e-mail address:
| | - Max Langer
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
| | - Simon Poppinga
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), Freiburg im Breisgau, Germany
| | - Hanns-Heinz Kassemeyer
- Department of Biology, State Institute of Viticulture and Enology, Freiburg im Breisgau, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), Freiburg im Breisgau, Germany
- Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT), Freiburg im Breisgau, Germany
- Competence Network Biomimetic, Freiburg im Breisgau, Germany
| |
Collapse
|
63
|
Hanschen ER, Herron MD, Wiens JJ, Nozaki H, Michod RE. Repeated evolution and reversibility of self-fertilization in the volvocine green algae. Evolution 2018; 72:386-398. [PMID: 29134623 PMCID: PMC5796843 DOI: 10.1111/evo.13394] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022]
Abstract
Outcrossing and self-fertilization are fundamental strategies of sexual reproduction, each with different evolutionary costs and benefits. Self-fertilization is thought to be an evolutionary "dead-end" strategy, beneficial in the short term but costly in the long term, resulting in self-fertilizing species that occupy only the tips of phylogenetic trees. Here, we use volvocine green algae to investigate the evolution of self-fertilization. We use ancestral-state reconstructions to show that self-fertilization has repeatedly evolved from outcrossing ancestors and that multiple reversals from selfing to outcrossing have occurred. We use three phylogenetic metrics to show that self-fertilization is not restricted to the tips of the phylogenetic tree, a finding inconsistent with the view of self-fertilization as a dead-end strategy. We also find no evidence for higher extinction rates or lower speciation rates in selfing lineages. We find that self-fertilizing species have significantly larger colonies than outcrossing species, suggesting the benefits of selfing may counteract the costs of increased size. We speculate that our macroevolutionary results on self-fertilization (i.e., non-tippy distribution, no decreased diversification rates) may be explained by the haploid-dominant life cycle that occurs in volvocine algae, which may alter the costs and benefits of selfing.
Collapse
Affiliation(s)
- Erik R. Hanschen
- Department of Ecology and Evolutionary Biology, University of Arizona
| | | | - John J. Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona
| | | | - Richard E. Michod
- Department of Ecology and Evolutionary Biology, University of Arizona
| |
Collapse
|
64
|
BAO FRANCIELLI, LEANDRO THALESD, ROCHA MAÍRADA, SANTOS VANESSASDOS, STEFANELLO THIAGOH, ARRUDA RAFAEL, POTT ARNILDO, DAMASCENO-JÚNIOR GERALDOA. Plant species diversity in a Neotropical wetland: patterns of similarity, effects of distance, and altitude. ACTA ACUST UNITED AC 2017; 90:85-97. [DOI: 10.1590/0001-3765201720150370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 06/29/2016] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | | | | | - ARNILDO POTT
- Universidade Federal de Mato Grosso do Sul, Brazil
| | | |
Collapse
|
65
|
Linde A, Eklund DM, Kubota A, Pederson ERA, Holm K, Gyllenstrand N, Nishihama R, Cronberg N, Muranaka T, Oyama T, Kohchi T, Lagercrantz U. Early evolution of the land plant circadian clock. THE NEW PHYTOLOGIST 2017; 216:576-590. [PMID: 28244104 PMCID: PMC5638080 DOI: 10.1111/nph.14487] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/18/2017] [Indexed: 05/21/2023]
Abstract
While angiosperm clocks can be described as an intricate network of interlocked transcriptional feedback loops, clocks of green algae have been modelled as a loop of only two genes. To investigate the transition from a simple clock in algae to a complex one in angiosperms, we performed an inventory of circadian clock genes in bryophytes and charophytes. Additionally, we performed functional characterization of putative core clock genes in the liverwort Marchantia polymorpha and the hornwort Anthoceros agrestis. Phylogenetic construction was combined with studies of spatiotemporal expression patterns and analysis of M. polymorpha clock gene mutants. Homologues to core clock genes identified in Arabidopsis were found not only in bryophytes but also in charophytes, albeit in fewer copies. Circadian rhythms were detected for most identified genes in M. polymorpha and A. agrestis, and mutant analysis supports a role for putative clock genes in M. polymorpha. Our data are in line with a recent hypothesis that adaptation to terrestrial life occurred earlier than previously expected in the evolutionary history of charophyte algae. Both gene duplication and acquisition of new genes was important in the evolution of the plant circadian clock, but gene loss has also contributed to shaping the clock of bryophytes.
Collapse
Affiliation(s)
- Anna‐Malin Linde
- Department of Plant Ecology and EvolutionEvolutionary Biology CentreUppsala UniversityNorbyvägen 18DSE‐75236UppsalaSweden
- The Linnean Centre for Plant Biology in UppsalaUppsalaSweden
| | - D. Magnus Eklund
- Department of Plant Ecology and EvolutionEvolutionary Biology CentreUppsala UniversityNorbyvägen 18DSE‐75236UppsalaSweden
- The Linnean Centre for Plant Biology in UppsalaUppsalaSweden
| | - Akane Kubota
- Graduate School of BiostudiesKyoto UniversityKyoto606‐8502Japan
| | - Eric R. A. Pederson
- Department of Plant Ecology and EvolutionEvolutionary Biology CentreUppsala UniversityNorbyvägen 18DSE‐75236UppsalaSweden
- The Linnean Centre for Plant Biology in UppsalaUppsalaSweden
| | - Karl Holm
- Department of Plant Ecology and EvolutionEvolutionary Biology CentreUppsala UniversityNorbyvägen 18DSE‐75236UppsalaSweden
- The Linnean Centre for Plant Biology in UppsalaUppsalaSweden
| | - Niclas Gyllenstrand
- Department of Plant Ecology and EvolutionEvolutionary Biology CentreUppsala UniversityNorbyvägen 18DSE‐75236UppsalaSweden
- The Linnean Centre for Plant Biology in UppsalaUppsalaSweden
| | | | - Nils Cronberg
- Department of BiologyLund UniversityEcology BuildingSE‐22362LundSweden
| | | | - Tokitaka Oyama
- Graduate School of ScienceKyoto UniversityKyoto606‐8502Japan
| | - Takayuki Kohchi
- Graduate School of BiostudiesKyoto UniversityKyoto606‐8502Japan
| | - Ulf Lagercrantz
- Department of Plant Ecology and EvolutionEvolutionary Biology CentreUppsala UniversityNorbyvägen 18DSE‐75236UppsalaSweden
- The Linnean Centre for Plant Biology in UppsalaUppsalaSweden
| |
Collapse
|
66
|
Macaisne N, Liu F, Scornet D, Peters AF, Lipinska A, Perrineau MM, Henry A, Strittmatter M, Coelho SM, Cock JM. The Ectocarpus IMMEDIATE UPRIGHT gene encodes a member of a novel family of cysteine-rich proteins with an unusual distribution across the eukaryotes. Development 2017; 144:409-418. [PMID: 28049657 DOI: 10.1242/dev.141523] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/12/2016] [Indexed: 01/09/2023]
Abstract
The sporophyte generation of the brown alga Ectocarpus sp. exhibits an unusual pattern of development compared with the majority of brown algae. The first cell division is symmetrical and the apical-basal axis is established late in development. In the immediate upright (imm) mutant, the initial cell undergoes an asymmetric division to immediately establish the apical-basal axis. We provide evidence which suggests that this phenotype corresponds to the ancestral state of the sporophyte. The IMM gene encodes a protein of unknown function that contains a repeated motif also found in the EsV-1-7 gene of the Ectocarpus virus EsV-1. Brown algae possess large families of EsV-1-7 domain genes but these genes are rare in other stramenopiles, suggesting that the expansion of this family might have been linked with the emergence of multicellular complexity. EsV-1-7 domain genes have a patchy distribution across eukaryotic supergroups and occur in several viral genomes, suggesting possible horizontal transfer during eukaryote evolution.
Collapse
Affiliation(s)
- Nicolas Macaisne
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff F-29688, France
| | - Fuli Liu
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff F-29688, France
| | - Delphine Scornet
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff F-29688, France
| | | | - Agnieszka Lipinska
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff F-29688, France
| | - Marie-Mathilde Perrineau
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff F-29688, France
| | - Antoine Henry
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff F-29688, France
| | - Martina Strittmatter
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff F-29688, France
| | - Susana M Coelho
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff F-29688, France
| | - J Mark Cock
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff F-29688, France
| |
Collapse
|
67
|
Petersen KB, Burd M. Why did heterospory evolve? Biol Rev Camb Philos Soc 2016; 92:1739-1754. [DOI: 10.1111/brv.12304] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Kurt B. Petersen
- School of Biological Sciences Monash University Melbourne VIC 3800 Australia
| | - Martin Burd
- School of Biological Sciences Monash University Melbourne VIC 3800 Australia
| |
Collapse
|
68
|
Rosato M, Kovařík A, Garilleti R, Rosselló JA. Conserved Organisation of 45S rDNA Sites and rDNA Gene Copy Number among Major Clades of Early Land Plants. PLoS One 2016; 11:e0162544. [PMID: 27622766 PMCID: PMC5021289 DOI: 10.1371/journal.pone.0162544] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/24/2016] [Indexed: 11/26/2022] Open
Abstract
Genes encoding ribosomal RNA (rDNA) are universal key constituents of eukaryotic genomes, and the nuclear genome harbours hundreds to several thousand copies of each species. Knowledge about the number of rDNA loci and gene copy number provides information for comparative studies of organismal and molecular evolution at various phylogenetic levels. With the exception of seed plants, the range of 45S rDNA locus (encoding 18S, 5.8S and 26S rRNA) and gene copy number variation within key evolutionary plant groups is largely unknown. This is especially true for the three earliest land plant lineages Marchantiophyta (liverworts), Bryophyta (mosses), and Anthocerotophyta (hornworts). In this work, we report the extent of rDNA variation in early land plants, assessing the number of 45S rDNA loci and gene copy number in 106 species and 25 species, respectively, of mosses, liverworts and hornworts. Unexpectedly, the results show a narrow range of ribosomal locus variation (one or two 45S rDNA loci) and gene copies not present in vascular plant lineages, where a wide spectrum is recorded. Mutation analysis of whole genomic reads showed higher (3-fold) intragenomic heterogeneity of Marchantia polymorpha (Marchantiophyta) rDNA compared to Physcomitrella patens (Bryophyta) and two angiosperms (Arabidopsis thaliana and Nicotiana tomentosifomis) suggesting the presence of rDNA pseudogenes in its genome. No association between phylogenetic position, taxonomic adscription and the number of rDNA loci and gene copy number was found. Our results suggest a likely evolutionary rDNA stasis during land colonisation and diversification across 480 myr of bryophyte evolution. We hypothesise that strong selection forces may be acting against ribosomal gene locus amplification. Despite showing a predominant haploid phase and infrequent meiosis, overall rDNA homogeneity is not severely compromised in bryophytes.
Collapse
Affiliation(s)
- Marcela Rosato
- Jardín Botánico, ICBiBE-Unidad Asociada CSIC, Universidad de Valencia, c/Quart 80, E-46008, Valencia, Spain
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, CZ–61265, Czech Republic
| | - Ricardo Garilleti
- Departamento de Botánica, Facultad de Farmacia, Universidad de Valencia, E-46100, Burjassot, Spain
| | - Josep A. Rosselló
- Jardín Botánico, ICBiBE-Unidad Asociada CSIC, Universidad de Valencia, c/Quart 80, E-46008, Valencia, Spain
- Marimurtra Bot. Garden, Carl Faust Fdn., PO Box 112, E-17300, Blanes, Catalonia, Spain
- * E-mail:
| |
Collapse
|
69
|
Stanton DE, Reeb C. Morphogeometric Approaches to Non-vascular Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:916. [PMID: 27446146 PMCID: PMC4921491 DOI: 10.3389/fpls.2016.00916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/09/2016] [Indexed: 06/02/2023]
Abstract
Morphometric analysis of organisms has undergone a dramatic renaissance in recent years, embracing a range of novel computational and imaging techniques to provide new approaches to phenotypic characterization. These innovations have often developed piece-meal, and may reflect the taxonomic specializations and biases of their creators. In this review, we aim to provide a brief introduction to applications and applicability of modern morphometrics to non-vascular land plants, an often overlooked but evolutionarily and ecologically important group. The scale and physiology of bryophytes (mosses, liverworts, and hornworts) differ in important and informative ways from more "traditional" model plants, and their inclusion has the potential to powerfully broaden perspectives in plant morphology. In particular we highlight three areas where the "bryophytic perspective" shows considerable inter-disciplinary potential: (i) bryophytes as models for intra-specific and inter-specific phenotypic variation, (ii) bryophyte growth-forms as areas for innovation in architectural modularity, and (iii) bryophytes as models of ecophysiological integration between organs, individuals, and stands. We suggest that advances should come from two-way dialog: the translation and adoption of techniques recently developed for vascular plants (and other organisms) to bryophytes and the use of bryophytes as model systems for the innovation of new techniques and paradigms in morphogeometric approaches.
Collapse
Affiliation(s)
- Daniel E. Stanton
- Department of Ecology, Evolution and Behavior, University of Minnesota – Twin Cities, Saint PaulMN, USA
| | - Catherine Reeb
- Institut de Systématique Évolution Biodiversité UMR 7205, UPMC, MNHN, CNRS, EPHE, Muséum National d’Histoire NaturelleParis, France
| |
Collapse
|
70
|
Morphological and physiological adaptation of the mosses Funaria hygrometrica and Brachythecium glareosum (Bryophyta) to periodic desiccation. UKRAINIAN BOTANICAL JOURNAL 2015. [DOI: 10.15407/ukrbotj72.06.559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
71
|
Taylor ZN, Rice DW, Palmer JD. The Complete Moss Mitochondrial Genome in the Angiosperm Amborella Is a Chimera Derived from Two Moss Whole-Genome Transfers. PLoS One 2015; 10:e0137532. [PMID: 26618775 PMCID: PMC4664403 DOI: 10.1371/journal.pone.0137532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Sequencing of the 4-Mb mitochondrial genome of the angiosperm Amborella trichopoda has shown that it contains unprecedented amounts of foreign mitochondrial DNA, including four blocks of sequences that together correspond almost perfectly to one entire moss mitochondrial genome. This implies whole-genome transfer from a single moss donor but conflicts with phylogenetic results from an earlier, PCR-based study that suggested three different moss donors to Amborella. To resolve this conflict, we conducted an expanded set of phylogenetic analyses with respect to both moss lineages and mitochondrial loci. The moss DNA in Amborella was consistently placed in either of two positions, depending on the locus analyzed, as sister to the Ptychomniales or within the Hookeriales. This agrees with two of the three previously suggested donors, whereas the third is no longer supported. These results, combined with synteny analyses and other considerations, lead us to favor a model involving two successive moss-to-Amborella whole-genome transfers, followed by recombination that produced a single intact and chimeric moss mitochondrial genome integrated in the Amborella mitochondrial genome. Eight subsequent recombination events account for the state of fragmentation, rearrangement, duplication, and deletion of this chimeric moss mitochondrial genome as it currently exists in Amborella. Five of these events are associated with short-to-intermediate sized repeats. Two of the five probably occurred by reciprocal homologous recombination, whereas the other three probably occurred in a non-reciprocal manner via microhomology-mediated break-induced replication (MMBIR). These findings reinforce and extend recent evidence for an important role of MMBIR in plant mitochondrial DNA evolution.
Collapse
Affiliation(s)
- Z. Nathan Taylor
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Danny W. Rice
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Jeffrey D. Palmer
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
72
|
Bisang I, Ehrlén J, Korpelainen H, Hedenäs L. No evidence of sexual niche partitioning in a dioecious moss with rare sexual reproduction. ANNALS OF BOTANY 2015; 116:771-9. [PMID: 26359424 PMCID: PMC4590334 DOI: 10.1093/aob/mcv133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/08/2015] [Accepted: 07/20/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND AND AIMS Roughly half of the species of bryophytes have separate sexes (dioecious) and half are hermaphroditic (monoecious). This variation has major consequences for the ecology and evolution of the different species. In some sexually reproducing dioecious bryophytes, sex ratio has been shown to vary with environmental conditions. This study focuses on the dioecious wetland moss Drepanocladus trifarius, which rarely produces sexual branches or sporophytes and lacks apparent secondary sex characteristics, and examines whether genetic sexes exhibit different habitat preferences, i.e. whether sexual niche partitioning occurs. METHODS A total of 277 shoots of D. trifarius were randomly sampled at 214 locations and 12 environmental factors were quantified at each site. Sex was assigned to the individual shoots collected in the natural environments, regardless of their reproductive status, using a specifically designed molecular marker associated with female sex. KEY RESULTS Male and female shoots did not differ in shoot biomass, the sexes were randomly distributed with respect to each other, and environmental conditions at male and female sampling locations did not differ. Collectively, this demonstrates a lack of sexual niche segregation. Adult genetic sex ratio was female-biased, with 2·8 females for every male individual. CONCLUSIONS The results show that although the sexes of D. trifarius did not differ with regard to annual growth, spatial distribution or habitat requirements, the genetic sex ratio was nevertheless significantly female-biased. This supports the notion that factors other than sex-related differences in reproductive costs and sexual dimorphism can also drive the evolution of biased sex ratios in plants.
Collapse
Affiliation(s)
- Irene Bisang
- Swedish Museum of Natural History, Department of Botany, Box 50007, SE-104 05 Stockholm, Sweden,
| | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden and
| | - Helena Korpelainen
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014 Helsinki, Finland
| | - Lars Hedenäs
- Swedish Museum of Natural History, Department of Botany, Box 50007, SE-104 05 Stockholm, Sweden
| |
Collapse
|
73
|
Margiotta G, Bacaro G, Carnevali E, Severini S, Bacci M, Gabbrielli M. Forensic botany as a useful tool in the crime scene: Report of a case. J Forensic Leg Med 2015; 34:24-8. [DOI: 10.1016/j.jflm.2015.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 10/23/2022]
|
74
|
Edwards D, Kenrick P. The early evolution of land plants, from fossils to genomics: a commentary on Lang (1937) 'On the plant-remains from the Downtonian of England and Wales'. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140343. [PMID: 25750238 PMCID: PMC4360123 DOI: 10.1098/rstb.2014.0343] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During the 1920s, the botanist W. H. Lang set out to collect and investigate some very unpromising fossils of uncertain affinity, which predated the known geological record of life on land. His discoveries led to a landmark publication in 1937, 'On the plant-remains from the Downtonian of England and Wales', in which he revealed a diversity of small fossil organisms of great simplicity that shed light on the nature of the earliest known land plants. These and subsequent discoveries have taken on new relevance as botanists seek to understand the plant genome and the early evolution of fundamental organ systems. Also, our developing knowledge of the composition of early land-based ecosystems and the interactions among their various components is contributing to our understanding of how life on land affects key Earth Systems (e.g. carbon cycle). The emerging paradigm is one of early life on land dominated by microbes, small bryophyte-like organisms and lichens. Collectively called cryptogamic covers, these are comparable with those that dominate certain ecosystems today. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
Collapse
Affiliation(s)
- Dianne Edwards
- School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Paul Kenrick
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
75
|
Kasinsky H, Ellis S, Martens G, Ausió J. Dynamic aspects of spermiogenic chromatin condensation patterning by phase separation during the histone-to-protamine transition in charalean algae and relation to bryophytes. Tissue Cell 2014; 46:415-32. [DOI: 10.1016/j.tice.2014.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/07/2014] [Accepted: 07/21/2014] [Indexed: 10/25/2022]
|
76
|
Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, Ayyampalayam S, Barker MS, Burleigh JG, Gitzendanner MA, Ruhfel BR, Wafula E, Der JP, Graham SW, Mathews S, Melkonian M, Soltis DE, Soltis PS, Miles NW, Rothfels CJ, Pokorny L, Shaw AJ, DeGironimo L, Stevenson DW, Surek B, Villarreal JC, Roure B, Philippe H, dePamphilis CW, Chen T, Deyholos MK, Baucom RS, Kutchan TM, Augustin MM, Wang J, Zhang Y, Tian Z, Yan Z, Wu X, Sun X, Wong GKS, Leebens-Mack J. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci U S A 2014; 111:E4859-68. [PMID: 25355905 PMCID: PMC4234587 DOI: 10.1073/pnas.1323926111] [Citation(s) in RCA: 795] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, including the embryo, vascular tissue, seeds, and flowers. Despite advances in molecular systematics, some hypotheses of relationships remain weakly resolved. Inferring deep phylogenies with bouts of rapid diversification can be problematic; however, genome-scale data should significantly increase the number of informative characters for analyses. Recent phylogenomic reconstructions focused on the major divergences of plants have resulted in promising but inconsistent results. One limitation is sparse taxon sampling, likely resulting from the difficulty and cost of data generation. To address this limitation, transcriptome data for 92 streptophyte taxa were generated and analyzed along with 11 published plant genome sequences. Phylogenetic reconstructions were conducted using up to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses were performed to test the robustness of phylogenetic inferences to permutations of the data matrix or to phylogenetic method, including supermatrix, supertree, and coalescent-based approaches, maximum-likelihood and Bayesian methods, partitioned and unpartitioned analyses, and amino acid versus DNA alignments. Among other results, we find robust support for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae. Strong and robust support for a clade comprising liverworts and mosses is inconsistent with a widely accepted view of early land plant evolution, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated.
Collapse
Affiliation(s)
- Norman J Wickett
- Chicago Botanic Garden, Glencoe, IL 60022; Program in Biological Sciences, Northwestern University, Evanston, IL 60208;
| | - Siavash Mirarab
- Department of Computer Science, University of Texas, Austin, TX 78712
| | - Nam Nguyen
- Department of Computer Science, University of Texas, Austin, TX 78712
| | - Tandy Warnow
- Department of Computer Science, University of Texas, Austin, TX 78712
| | - Eric Carpenter
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Naim Matasci
- iPlant Collaborative, Tucson, AZ 85721; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721
| | | | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721
| | | | - Matthew A Gitzendanner
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611
| | - Brad R Ruhfel
- Department of Biology and Department of Biological Sciences, Eastern Kentucky University, Richmond, KY 40475; Florida Museum of Natural History, Gainesville, FL 32611
| | - Eric Wafula
- Department of Biology, Pennsylvania State University, University Park, PA 16803
| | - Joshua P Der
- Department of Biology, Pennsylvania State University, University Park, PA 16803
| | | | - Sarah Mathews
- Arnold Arboretum of Harvard University, Cambridge, MA 02138
| | | | - Douglas E Soltis
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611; Florida Museum of Natural History, Gainesville, FL 32611
| | - Pamela S Soltis
- Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611; Florida Museum of Natural History, Gainesville, FL 32611
| | | | - Carl J Rothfels
- Department of Biology, Duke University, Durham, NC 27708; Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Lisa Pokorny
- Department of Biology, Duke University, Durham, NC 27708; Department of Biodiversity and Conservation, Real Jardín Botánico-Consejo Superior de Investigaciones Cientificas, 28014 Madrid, Spain
| | | | | | | | - Barbara Surek
- Botanical Institute, Universität zu Köln, Cologne D-50674, Germany
| | - Juan Carlos Villarreal
- Department fur Biologie, Systematische Botanik und Mykologie, Ludwig-Maximilians-Universitat, 80638 Munich, Germany
| | - Béatrice Roure
- Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Succursale Centre-Ville, Montreal, QC, Canada H3C 3J7
| | - Hervé Philippe
- Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Succursale Centre-Ville, Montreal, QC, Canada H3C 3J7; CNRS, Station d' Ecologie Expérimentale du CNRS, Moulis, 09200, France
| | | | - Tao Chen
- Shenzhen Fairy Lake Botanical Garden, The Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China
| | - Michael K Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Regina S Baucom
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
| | - Toni M Kutchan
- Donald Danforth Plant Science Center, St. Louis, MO 63132
| | | | - Jun Wang
- BGI-Shenzhen, Bei shan Industrial Zone, Yantian District, Shenzhen 518083, China; and
| | - Yong Zhang
- CNRS, Station d' Ecologie Expérimentale du CNRS, Moulis, 09200, France
| | - Zhijian Tian
- BGI-Shenzhen, Bei shan Industrial Zone, Yantian District, Shenzhen 518083, China; and
| | - Zhixiang Yan
- BGI-Shenzhen, Bei shan Industrial Zone, Yantian District, Shenzhen 518083, China; and
| | - Xiaolei Wu
- BGI-Shenzhen, Bei shan Industrial Zone, Yantian District, Shenzhen 518083, China; and
| | - Xiao Sun
- BGI-Shenzhen, Bei shan Industrial Zone, Yantian District, Shenzhen 518083, China; and
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9; BGI-Shenzhen, Bei shan Industrial Zone, Yantian District, Shenzhen 518083, China; and Department of Medicine, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | | |
Collapse
|
77
|
Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts. Nat Commun 2014; 5:5134. [PMID: 25346115 DOI: 10.1038/ncomms6134] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/03/2014] [Indexed: 02/06/2023] Open
Abstract
Unraveling the macroevolutionary history of bryophytes, which arose soon after the origin of land plants but exhibit substantially lower species richness than the more recently derived angiosperms, has been challenged by the scarce fossil record. Here we demonstrate that overall estimates of net species diversification are approximately half those reported in ferns and ∼30% those described for angiosperms. Nevertheless, statistical rate analyses on time-calibrated large-scale phylogenies reveal that mosses and liverworts underwent bursts of diversification since the mid-Mesozoic. The diversification rates further increase in specific lineages towards the Cenozoic to reach, in the most recently derived lineages, values that are comparable to those reported in angiosperms. This suggests that low diversification rates do not fully account for current patterns of bryophyte species richness, and we hypothesize that, as in gymnosperms, the low extant bryophyte species richness also results from massive extinctions.
Collapse
|
78
|
Abstract
Oleosins form a steric barrier surface on lipid droplets in cytoplasm, preventing them from contacting and coalescing with adjacent droplets. Oleosin genes have been detected in numerous plant species. However, the presence of oleosin genes in the most basally diverging lineage of land plants, liverworts, has not been reported previously. Thus we explored whether liverworts have an oleosin gene. In Marchantia polymorpha L., a thalloid liverwort, one predicted sequence was found that could encode oleosin, possessing the hallmark of oleosin, a proline knot (-PX5SPX3P-) motif. The phylogeny of the oleosin gene family in land plants was reconstructed based on both nucleotide and amino acid sequences of oleosins, from 31 representative species covering almost all the main lineages of land plants. Based on our phylogenetic trees, oleosin genes were classified into three groups: M-oleosins (defined here as a novel group distinct from the two previously known groups), low molecular weight isoform (L-oleosin), and high molecular weight isoform (H-oleosin), according to their amino-acid organization, phylogenetic relationships, expression tissues, and immunological characteristics. In liverworts, mosses, lycophytes, and gymnosperms, only M-oleosins have been described. In angiosperms, however, while this isoform remains and is highly expressed in the gametophyte pollen tube, two other isoforms also occur, L-oleosins and H-oleosins. Phylogenetic analyses suggest that the M-oleosin isoform is the precursor to the ancestor of L-oleosins and H-oleosins. The later two isoforms evolved by successive gene duplications in ancestral angiosperms. At the genomic level, most oleosins possess no introns. If introns are present, in both the L-isoform and the M-isoform a single intron inserts behind the central region, while in the H-isoform, a single intron is located at the 5'-terminus. This study fills a major gap in understanding functional gene evolution of oleosin in land plants, shedding new light on evolutionary transitions of lipid storage strategies.
Collapse
Affiliation(s)
- Yuan Fang
- School of Life Science, East China Normal University, Shanghai, China
- University and Jepson Herbaria, and Department of Integrative Biology, University of California, Berkeley, California, United State of America
| | - Rui-Liang Zhu
- School of Life Science, East China Normal University, Shanghai, China
| | - Brent D. Mishler
- University and Jepson Herbaria, and Department of Integrative Biology, University of California, Berkeley, California, United State of America
| |
Collapse
|
79
|
Gorelick R. Do Micrognathozoa have micro-genomes? Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Root Gorelick
- Department of Biology; School of Mathematics & Statistics; Institute of Interdisciplinary Studies; Carleton University; 1125 Colonel By Ottawa ON Canada K1S 5B6
| |
Collapse
|
80
|
Khorkavtsiv Y, Kit N. Peculiarities of the moss spores germination under the conditions of water stress depending on pH and temperature. UKRAINIAN BOTANICAL JOURNAL 2014. [DOI: 10.15407/ukrbotj71.03.344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
81
|
Raven JA, Edwards D. Photosynthesis in Early Land Plants: Adapting to the Terrestrial Environment. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-007-6988-5_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
82
|
Chang Y, Graham SW. Patterns of clade support across the major lineages of moss phylogeny. Cladistics 2013; 30:590-606. [DOI: 10.1111/cla.12066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ying Chang
- Department of Botany; University of British Columbia; 6270 University Boulevard Vancouver BC V6T 1Z4 Canada
- UBC Botanical Garden & Centre for Plant Research; University of British Columbia; Vancouver BC V6T 1Z4 Canada
| | - Sean W. Graham
- Department of Botany; University of British Columbia; 6270 University Boulevard Vancouver BC V6T 1Z4 Canada
- UBC Botanical Garden & Centre for Plant Research; University of British Columbia; Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
83
|
Peculiar evolutionary history of miR390-guided TAS3-like genes in land plants. ScientificWorldJournal 2013; 2013:924153. [PMID: 24302881 PMCID: PMC3835848 DOI: 10.1155/2013/924153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 08/27/2013] [Indexed: 11/17/2022] Open
Abstract
PCR-based approach was used as a phylogenetic profiling tool to probe genomic DNA samples from representatives of evolutionary distant moss taxa, namely, classes Bryopsida, Tetraphidopsida, Polytrichopsida, Andreaeopsida, and Sphagnopsida. We found relatives of all Physcomitrella patens miR390 and TAS3-like loci in these plant taxa excluding Sphagnopsida. Importantly, cloning and sequencing of Marchantia polymorpha genomic DNA showed miR390 and TAS3-like sequences which were also found among genomic reads of M. polymorpha at NCBI database. Our data suggest that the ancient plant miR390-dependent TAS molecular machinery firstly evolved to target AP2-like mRNAs in Marchantiophyta and only then both ARF- and AP2-specific mRNAs in mosses. The presented analysis shows that moss TAS3 families may undergone losses of tasiAP2 sites during evolution toward ferns and seed plants. These data confirm that miR390-guided genes coding for ARF- and AP2-specific ta-siRNAs have been gradually changed during land plant evolution.
Collapse
|
84
|
Pisa S, Werner O, Vanderpoorten A, Magdy M, Ros RM. Elevational patterns of genetic variation in the cosmopolitan moss Bryum argenteum (Bryaceae). AMERICAN JOURNAL OF BOTANY 2013; 100:2000-2008. [PMID: 24091785 DOI: 10.3732/ajb.1300100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
PREMISE OF THE STUDY The Baas Becking tenet posits that 'everything is everywhere, but the environment selects' to explain cosmopolitan distributions in highly vagile taxa. Bryophyte species show wider distributions than vascular plants and include examples of truly cosmopolitan ranges, which have been interpreted as a result of high dispersal capacities and ecological plasticity. In the current study, we documented patterns of genetic structure and diversity in the cosmopolitan moss Bryum argenteum along an elevational gradient to determine if genetic diversity and structure is homogenized by intense migrations in the lack of ecological differentiation. • METHODS 60 specimens were collected in the Sierra Nevada Mountains (Spain) between 100 and 2870 m and sequenced for ITS and rps4. Comparative analyses, genetic diversity estimators, and Mantel's tests were employed to determine the relationship between genetic variation, elevation, and geographic distance and to look for signs of demographic shifts. • KEY RESULTS Genetic diversity peaked above 1900 m and no signs of demographic shifts were detected at any elevation. There was a strong phylogenetic component in elevational variation. Genetic variation was significantly correlated with elevation, but not with geographic distance. • CONCLUSIONS The results point to the long-term persistence of Bryum argenteum in a range that was glaciated during the Late Pleistocene. Evidence for an environmentally driven pattern of genetic differentiation suggests adaptive divergence. This supports the Baas Becking tenet and indicates that ecological specialization might play a key role in explaining patterns of genetic structure in cosmopolitan mosses.
Collapse
Affiliation(s)
- Sergio Pisa
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, Campus de Espinardo 30100 Murcia, Spain
| | | | | | | | | |
Collapse
|
85
|
Zalewski CS, Floyd SK, Furumizu C, Sakakibara K, Stevenson DW, Bowman JL. Evolution of the class IV HD-zip gene family in streptophytes. Mol Biol Evol 2013; 30:2347-65. [PMID: 23894141 PMCID: PMC3773374 DOI: 10.1093/molbev/mst132] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Class IV homeodomain leucine zipper (C4HDZ) genes are plant-specific transcription factors that, based on phenotypes in Arabidopsis thaliana, play an important role in epidermal development. In this study, we sampled all major extant lineages and their closest algal relatives for C4HDZ homologs and phylogenetic analyses result in a gene tree that mirrors land plant evolution with evidence for gene duplications in many lineages, but minimal evidence for gene losses. Our analysis suggests an ancestral C4HDZ gene originated in an algal ancestor of land plants and a single ancestral gene was present in the last common ancestor of land plants. Independent gene duplications are evident within several lineages including mosses, lycophytes, euphyllophytes, seed plants, and, most notably, angiosperms. In recently evolved angiosperm paralogs, we find evidence of pseudogenization via mutations in both coding and regulatory sequences. The increasing complexity of the C4HDZ gene family through the diversification of land plants correlates to increasing complexity in epidermal characters.
Collapse
Affiliation(s)
| | - Sandra K. Floyd
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Chihiro Furumizu
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Keiko Sakakibara
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Graduate School of Science, University of Tokyo, Hongo, Tokyo, Japan
| | | | - John L. Bowman
- Section of Plant Biology, University of California, Davis
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
86
|
La Farge C, Williams KH, England JH. Regeneration of Little Ice Age bryophytes emerging from a polar glacier with implications of totipotency in extreme environments. Proc Natl Acad Sci U S A 2013; 110:9839-44. [PMID: 23716658 PMCID: PMC3683725 DOI: 10.1073/pnas.1304199110] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Across the Canadian Arctic Archipelago, widespread ice retreat during the 20th century has sharply accelerated since 2004. In Sverdrup Pass, central Ellesmere Island, rapid glacier retreat is exposing intact plant communities whose radiocarbon dates demonstrate entombment during the Little Ice Age (1550-1850 AD). The exhumed bryophyte assemblages have exceptional structural integrity (i.e., setae, stem structures, leaf hair points) and have remarkable species richness (60 of 144 extant taxa in Sverdrup Pass). Although the populations are often discolored (blackened), some have developed green stem apices or lateral branches suggesting in vivo regrowth. To test their biological viability, Little Ice Age populations emerging from the ice margin were collected for in vitro growth experiments. Our results include a unique successful regeneration of subglacial bryophytes following 400 y of ice entombment. This finding demonstrates the totipotent capacity of bryophytes, the ability of a cell to dedifferentiate into a meristematic state (analogous to stem cells) and develop a new plant. In polar ecosystems, regrowth of bryophyte tissue buried by ice for 400 y significantly expands our understanding of their role in recolonization of polar landscapes (past or present). Regeneration of subglacial bryophytes broadens the concept of Ice Age refugia, traditionally confined to survival of land plants to sites above and beyond glacier margins. Our results emphasize the unrecognized resilience of bryophytes, which are commonly overlooked vis-a-vis their contribution to the establishment, colonization, and maintenance of polar terrestrial ecosystems.
Collapse
Affiliation(s)
- Catherine La Farge
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9.
| | | | | |
Collapse
|
87
|
Szövényi P, Ricca M, Hock Z, Shaw JA, Shimizu KK, Wagner A. Selection is no more efficient in haploid than in diploid life stages of an angiosperm and a moss. Mol Biol Evol 2013; 30:1929-39. [PMID: 23686659 DOI: 10.1093/molbev/mst095] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The masking hypothesis predicts that selection is more efficient in haploids than in diploids, because dominant alleles can mask the deleterious effects of recessive alleles in diploids. However, gene expression breadth and noise can potentially counteract the effect of masking on the rate at which genes evolve. Land plants are ideal to ask whether masking, expression breadth, or expression noise dominate in their influence on the rate of molecular evolution, because they have a biphasic life cycle in which the duration and complexity of the haploid and diploid phase varies among organisms. Here, we generate and compile genome-wide gene expression, sequence divergence, and polymorphism data for Arabidopsis thaliana and for the moss Funaria hygrometrica to show that the evolutionary rates of haploid- and diploid-specific genes contradict the masking hypothesis. Haploid-specific genes do not evolve more slowly than diploid-specific genes in either organism. Our data suggest that gene expression breadth influence the evolutionary rate of phase-specific genes more strongly than masking. Our observations have implications for the role of haploid life stages in the purging of deleterious mutations, as well as for the evolution of ploidy.
Collapse
Affiliation(s)
- Péter Szövényi
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
88
|
Bowman JL. Walkabout on the long branches of plant evolution. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:70-7. [PMID: 23140608 DOI: 10.1016/j.pbi.2012.10.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/15/2012] [Accepted: 10/15/2012] [Indexed: 05/09/2023]
Abstract
The closest living relatives of land plants, the Charophytes, and early diverging land plant lineages, the bryophytes, reside in a phylogenetic grade. Recent analyses have resolved relationships and demonstrated that some components of the land plant developmental genetic toolkit have their origin in algal ancestors. Phylogenetic grades of taxa imply long independent evolutionary histories, with extant species diversity potentially relictual and highly derived morphologically, making reconstruction of ancestral states problematic. Incorporating data on the genetic bases of character states may be phylogenetically informative in elucidating ancestral states in cases where morphology is highly divergent.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|
89
|
Szövényi P, Sundberg S, Shaw AJ. Long-distance dispersal and genetic structure of natural populations: an assessment of the inverse isolation hypothesis in peat mosses. Mol Ecol 2012; 21:5461-72. [PMID: 23062192 DOI: 10.1111/mec.12055] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 11/30/2022]
Abstract
It is well accepted that the shape of the dispersal kernel, especially its tail, has a substantial effect on the genetic structure of species. Theory predicts that dispersal by fat-tailed kernels reshuffles genetic material, and thus, preserves genetic diversity during colonization. Moreover, if efficient long-distance dispersal is coupled with random colonization, an inverse isolation effect is predicted to develop in which increasing genetic diversity per colonizer is expected with increasing distance from a genetically variable source. By contrast, increasing isolation leads to decreasing genetic diversity when dispersal is via thin-tailed kernels. Here, we use a well-established model group for dispersal biology (peat mosses: genus Sphagnum) with a fat-tailed dispersal kernel, and the natural laboratory of the Stockholm archipelago to study the validity of the inverse isolation hypothesis in spore-dispersed plants in island colonization. Population genetic structure of three species (Sphagnum fallax, Sphagnum fimbriatum and Sphagnum palustre) with contrasting life histories and ploidy levels were investigated on a set of islands using microsatellites. Our data show (ϕ'(st), amova, IBD) that dispersal of the two most abundant species can be well approximated by a random colonization model. We find that genetic diversity per colonizer on islands increases with distance from the mainland for S. fallax and S. fimbriatum. By contrast, S. palustre deviates from this pattern, owing to its restricted distribution in the region, affecting its source pool strength. Therefore, the inverse isolation effect appears to hold in natural populations of peat mosses and, likely, in other organisms with small diaspores.
Collapse
Affiliation(s)
- Péter Szövényi
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
| | | | | |
Collapse
|
90
|
Ligrone R, Duckett JG, Renzaglia KS. The origin of the sporophyte shoot in land plants: a bryological perspective. ANNALS OF BOTANY 2012; 110:935-41. [PMID: 22875816 PMCID: PMC3448429 DOI: 10.1093/aob/mcs176] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/31/2012] [Indexed: 05/03/2023]
Abstract
BACKGROUND Land plants (embryophytes) are monophyletic and encompass four major clades: liverworts, mosses, hornworts and polysporangiophytes. The liverworts are resolved as the earliest divergent lineage and the mosses as sister to a crown clade formed by the hornworts and polysporangiophytes (lycophytes, monilophytes and seed plants). Alternative topologies resolving the hornworts as sister to mosses plus polysporangiophytes are less well supported. Sporophyte development in liverworts depends only on embryonic formative cell divisions. A transient basal meristem contributes part of the sporophyte in mosses. The sporophyte body in hornworts and polysporangiophytes develops predominantly by post-embryonic meristematic activity. SCOPE This paper explores the origin of the sporophyte shoot in terms of changes in embryo organization. Pressure towards amplification of the sporangium-associated photosynthetic apparatus was a major driver of sporophyte evolution. Starting from a putative ancestral condition in which a transient basal meristem produced a sporangium-supporting seta, we postulate that in the hornwort-polysporangiophyte lineage the basal meristem acquired indeterminate meristematic activity and ectopically expressed the sporangium morphogenetic programme. The resulting sporophyte body plan remained substantially unaltered in hornworts, whereas in polysporangiophytes the persistent meristem shifted from a mid-embryo to a superficial position and was converted into an ancestral shoot apical meristem with the evolution of sequential vegetative and reproductive growth. CONCLUSIONS The sporophyte shoot is interpreted as a sterilized sporangial axis interpolated between the embryo and the fertile sporangium. With reference to the putatively ancestral condition found in mosses, the sporophyte body plans in hornworts and polysporangiophytes are viewed as the product of opposite heterochronic events, i.e. an anticipation and a delay, respectively, in the development of the sporangium. In either case the result was a pedomorphic sporophyte permanently retaining juvenile characters.
Collapse
Affiliation(s)
- Roberto Ligrone
- Dipartimento di Scienze ambientali, Seconda Università di Napoli, Caserta, Italy.
| | | | | |
Collapse
|
91
|
Cooper ED, Henwood MJ, Brown EA. Are the liverworts really that old? Cretaceous origins and Cenozoic diversifications in Lepidoziaceae reflect a recurrent theme in liverwort evolution. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.01946.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Murray J. Henwood
- Heydon-Laurence Building A08; University of Sydney; School of Biological Sciences; Sydney; NSW 2006; Australia
| | - Elizabeth A. Brown
- National Herbarium of New South Wales; Mrs Macquaries Road; Sydney; NSW 2000; Australia
| |
Collapse
|
92
|
Field KJ, Cameron DD, Leake JR, Tille S, Bidartondo MI, Beerling DJ. Contrasting arbuscular mycorrhizal responses of vascular and non-vascular plants to a simulated Palaeozoic CO₂ decline. Nat Commun 2012; 3:835. [PMID: 22588297 DOI: 10.1038/ncomms1831] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 04/10/2012] [Indexed: 11/09/2022] Open
Abstract
The arbuscular mycorrhizal (AM) fungal symbiosis is widely hypothesized to have promoted the evolution of land plants from rootless gametophytes to rooted sporophytes during the mid-Palaeozoic (480-360 Myr, ago), at a time coincident with a 90% fall in the atmospheric CO(2) concentration ([CO(2)](a)). Here we show using standardized dual isotopic tracers ((14)C and (33)P) that AM symbiosis efficiency (defined as plant P gain per unit of C invested into fungi) of liverwort gametophytes declines, but increases in the sporophytes of vascular plants (ferns and angiosperms), at 440 p.p.m. compared with 1,500 p.p.m. [CO(2)](a). These contrasting responses are associated with larger AM hyphal networks, and structural advances in vascular plant water-conducting systems, promoting P transport that enhances AM efficiency at 440 p.p.m. [CO(2)](a). Our results suggest that non-vascular land plants not only faced intense competition for light, as vascular land floras grew taller in the Palaeozoic, but also markedly reduced efficiency and total capture of P as [CO(2)](a) fell.
Collapse
Affiliation(s)
- Katie J Field
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, UK.
| | | | | | | | | | | |
Collapse
|
93
|
Ligrone R, Duckett JG, Renzaglia KS. Major transitions in the evolution of early land plants: a bryological perspective. ANNALS OF BOTANY 2012; 109:851-71. [PMID: 22356739 PMCID: PMC3310499 DOI: 10.1093/aob/mcs017] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/06/2012] [Indexed: 05/02/2023]
Abstract
Background Molecular phylogeny has resolved the liverworts as the earliest-divergent clade of land plants and mosses as the sister group to hornworts plus tracheophytes, with alternative topologies resolving the hornworts as sister to mosses plus tracheophytes less well supported. The tracheophytes plus fossil plants putatively lacking lignified vascular tissue form the polysporangiophyte clade. Scope This paper reviews phylogenetic, developmental, anatomical, genetic and paleontological data with the aim of reconstructing the succession of events that shaped major land plant lineages. Conclusions Fundamental land plant characters primarily evolved in the bryophyte grade, and hence the key to a better understanding of the early evolution of land plants is in bryophytes. The last common ancestor of land plants was probably a leafless axial gametophyte bearing simple unisporangiate sporophytes. Water-conducting tissue, if present, was restricted to the gametophyte and presumably consisted of perforate cells similar to those in the early-divergent bryophytes Haplomitrium and Takakia. Stomata were a sporophyte innovation with the possible ancestral functions of producing a transpiration-driven flow of water and solutes from the parental gametophyte and facilitating spore separation before release. Stomata in mosses, hornworts and polysporangiophytes are viewed as homologous, and hence these three lineages are collectively referred to as the 'stomatophytes'. An indeterminate sporophyte body (the sporophyte shoot) developing from an apical meristem was the key innovation in polysporangiophytes. Poikilohydry is the ancestral condition in land plants; homoiohydry evolved in the sporophyte of polysporangiophytes. Fungal symbiotic associations ancestral to modern arbuscular mycorrhizas evolved in the gametophytic generation before the separation of major present-living lineages. Hydroids are imperforate water-conducting cells specific to advanced mosses. Xylem vascular cells in polysporangiophytes arose either from perforate cells or de novo. Food-conducting cells were a very early innovation in land plant evolution. The inferences presented here await testing by molecular genetics.
Collapse
Affiliation(s)
- Roberto Ligrone
- Dipartimento di Scienze ambientali, Seconda Università di Napoli, via Vivaldi 43, Caserta, Italy.
| | | | | |
Collapse
|
94
|
Volkmar U, Groth-Malonek M, Heinrichs J, Muhle H, Polsakiewicz M, Knoop V. Exclusive conservation of mitochondrial group II intron nad4i548 among liverworts and its use for phylogenetic studies in this ancient plant clade. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:382-391. [PMID: 21973214 DOI: 10.1111/j.1438-8677.2011.00499.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Liverworts occupy a pivotal position in land plant (embryophyte) phylogeny as the presumed earliest-branching major clade, sister to all other land plants, including the mosses, hornworts, lycophytes, monilophytes and seed plants. Molecular support for this earliest dichotomy in land plant phylogeny comes from strikingly different occurrences of introns in mitochondrial genes distinguishing liverworts from all other embryophytes. Exceptionally, however, the nad5 gene--the mitochondrial locus hitherto used most widely to elucidate early land plant phylogeny--carries a group I type intron that is shared between liverworts and mosses. We here explored whether a group II intron, the other major type of organellar intron, would similarly be conserved in position across the entire diversity of extant liverworts and could be of use for phylogenetic analyses in this supposedly most ancient embryophyte clade. To this end, we investigated the nad4 gene as a candidate locus possibly featuring different introns in liverworts as opposed to the non-liverwort embryophyte (NLE) lineage. We indeed found group II intron nad4i548 universally conserved in a wide phylogenetic sampling of 55 liverwort taxa, confirming clade specificity and surprising evolutionary stability of plant mitochondrial introns. As expected, intron nad4i548g2 carries phylogenetic information in its variable sequences, which confirms and extends previous cladistic insights on liverwort evolution. We integrate the new nad4 data with those of the previously established mitochondrial nad5 and the chloroplast rbcL and rps4 genes and present a phylogeny based on the fused datasets. Notably, the phylogenetic analyses suggest a reconsideration of previous phylogenetic and taxonomic assignments for the genera Calycularia and Mylia and resolve a sister group relationship of Ptilidiales and Porellales.
Collapse
Affiliation(s)
- U Volkmar
- Institut für Zelluläre und Molekulare Botanik, Abt Molekulare Evolution, Universität Bonn, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
95
|
Anderberg HI, Kjellbom P, Johanson U. Annotation of Selaginella moellendorffii Major Intrinsic Proteins and the Evolution of the Protein Family in Terrestrial Plants. FRONTIERS IN PLANT SCIENCE 2012; 3:33. [PMID: 22639644 PMCID: PMC3355642 DOI: 10.3389/fpls.2012.00033] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 02/01/2012] [Indexed: 05/18/2023]
Abstract
Major intrinsic proteins (MIPs) also called aquaporins form pores in membranes to facilitate the permeation of water and certain small polar solutes across membranes. MIPs are present in virtually every organism but are uniquely abundant in land plants. To elucidate the evolution and function of MIPs in terrestrial plants, the MIPs encoded in the genome of the spikemoss Selaginella moellendorffii were identified and analyzed. In total 19 MIPs were found in S. moellendorffii belonging to 6 of the 7 MIP subfamilies previously identified in the moss Physcomitrella patens. Only three of the MIPs were classified as members of the conserved water specific plasma membrane intrinsic protein (PIP) subfamily whereas almost half were found to belong to the diverse NOD26-like intrinsic protein (NIP) subfamily permeating various solutes. The small number of PIPs in S. moellendorffii is striking compared to all other land plants and no other species has more NIPs than PIPs. Similar to moss, S. moellendorffii only has one type of tonoplast intrinsic protein (TIP). Based on ESTs from non-angiosperms we conclude that the specialized groups of TIPs present in higher plants are not found in primitive vascular plants but evolved later in a common ancestor of seed plants. We also note that the silicic acid permeable NIP2 group that has been reported from angiosperms appears at the same time. We suggest that the expansion of the number MIP isoforms in higher plants is primarily associated with an increase in the different types of specialized tissues rather than the emergence of vascular tissue per se and that the loss of subfamilies has been possible due to a functional overlap between some subfamilies.
Collapse
Affiliation(s)
- Hanna I. Anderberg
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Center for Chemistry and Chemical Engineering, Lund UniversityLund, Sweden
| | - Per Kjellbom
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Center for Chemistry and Chemical Engineering, Lund UniversityLund, Sweden
| | - Urban Johanson
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Center for Chemistry and Chemical Engineering, Lund UniversityLund, Sweden
- *Correspondence: Urban Johanson, Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Center for Chemistry and Chemical Engineering, Lund University, PO Box 124, S-221 00 Lund, Sweden. e-mail:
| |
Collapse
|
96
|
Gomes SA, Vieira CS, Almeida DB, Santos-Mallet JR, Menna-Barreto RFS, Cesar CL, Feder D. CdTe and CdSe quantum dots cytotoxicity: a comparative study on microorganisms. SENSORS 2011; 11:11664-78. [PMID: 22247686 PMCID: PMC3252003 DOI: 10.3390/s111211664] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 11/26/2011] [Accepted: 12/09/2011] [Indexed: 11/16/2022]
Abstract
Quantum dots (QDs) are colloidal semiconductor nanocrystals of a few nanometers in diameter, being their size and shape controlled during the synthesis. They are synthesized from atoms of group II–VI or III–V of the periodic table, such as cadmium telluride (CdTe) or cadmium selenium (CdSe) forming nanoparticles with fluorescent characteristics superior to current fluorophores. The excellent optical characteristics of quantum dots make them applied widely in the field of life sciences. Cellular uptake of QDs, location and translocation as well as any biological consequence, such as cytotoxicity, stimulated a lot of scientific research in this area. Several studies pointed to the cytotoxic effect against micoorganisms. In this mini-review, we overviewed the synthesis and optical properties of QDs, and its advantages and bioapplications in the studies about microorganisms such as protozoa, bacteria, fungi and virus.
Collapse
Affiliation(s)
- Suzete A.O. Gomes
- Laboratório de Biologia de Insetos, GBG, Universidade Federal Fluminense—UFF, Niterói, RJ, CEP: 24210-130, Brazil; E-Mail: (S.A.O.G.)
| | - Cecilia Stahl Vieira
- Laboratório de Transmissores de Leishmanioses, Setor de Entomologia Médica e Forense, IOC-FIOCRUZ, Rio de Janeiro, RJ, CEP: 21040-360, Brazil; E-Mails: (C.S.V.); (J.R.S.-M.)
| | - Diogo B. Almeida
- Laboratório de Aplicações Biomédicas de Lasers, Departamento de Eletrônica Quântica, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP, CEP: 13083-970, Brazil; E-Mails: (D.B.A.); (C.L.C.)
| | - Jacenir R. Santos-Mallet
- Laboratório de Transmissores de Leishmanioses, Setor de Entomologia Médica e Forense, IOC-FIOCRUZ, Rio de Janeiro, RJ, CEP: 21040-360, Brazil; E-Mails: (C.S.V.); (J.R.S.-M.)
| | - Rubem F. S. Menna-Barreto
- Laboratório de Biologia Celular, IOC-FIOCRUZ, Rio de Janeiro, RJ, CEP: 21040-360, Brazil; E-Mail: (R.F.S.M.-B.)
| | - Carlos L. Cesar
- Laboratório de Aplicações Biomédicas de Lasers, Departamento de Eletrônica Quântica, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP, CEP: 13083-970, Brazil; E-Mails: (D.B.A.); (C.L.C.)
| | - Denise Feder
- Laboratório de Biologia de Insetos, GBG, Universidade Federal Fluminense—UFF, Niterói, RJ, CEP: 24210-130, Brazil; E-Mail: (S.A.O.G.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +55-21-2629-2285
| |
Collapse
|
97
|
Bell D, Long DG, Forrest AD, Hollingsworth ML, Blom HH, Hollingsworth PM. DNA barcoding of European Herbertus (Marchantiopsida, Herbertaceae) and the discovery and description of a new species. Mol Ecol Resour 2011; 12:36-47. [PMID: 21824334 DOI: 10.1111/j.1755-0998.2011.03053.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
DNA barcoding of a group of European liverwort species from the genus Herbertus was undertaken using three plastid (matK, rbcL and trnH-psbA) and one nuclear (ITS) marker. The DNA barcode data were effective in discriminating among the sampled species of Herbertus and contributed towards the detection of a previously overlooked European Herbertus species, described here as H. norenus sp. nov. This species shows clear-cut differences in DNA sequence for multiple barcode regions and is also morphologically distinct. The DNA barcode data were also useful in clarifying taxonomic relationships of the European species with some species from Asia and North America. In terms of the discriminatory power of the different barcode markers, ITS was the most informative region, followed closely by matK. All species were distinguishable by ITS alone, rbcL + matK and various other multimarker combinations.
Collapse
Affiliation(s)
- David Bell
- Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | | | | | | | | | | |
Collapse
|
98
|
Heinrichs J, Kreier HP, Feldberg K, Schmidt AR, Zhu RL, Shaw B, Shaw AJ, Wissemann V. Formalizing morphologically cryptic biological entities: new insights from DNA taxonomy, hybridization, and biogeography in the leafy liverwort Porella platyphylla (Jungermanniopsida, Porellales). AMERICAN JOURNAL OF BOTANY 2011; 98:1252-62. [PMID: 21788532 DOI: 10.3732/ajb.1100115] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
PREMISE OF THE STUDY Recognition and formalization of morphologically cryptic species is a major challenge to modern taxonomy. An extreme example in this regard is the Holarctic Porella platyphylla s.l. (P. platyphylla plus P. platyphylloidea). Earlier studies demonstrated the presence of three isozyme groups and two molecular lineages. The present investigation was carried out to elucidate the molecular diversity of P. platyphylla s.l. and the distribution of its main clades, and to evaluate evidence for the presence of one vs. several species. METHODS We obtained chloroplast (atpB-rbcL, trnL-trnF) and nuclear ribosomal (ITS) DNA sequences from 101 Porella accessions (P. platyphylla s.l., P. × baueri, P. cordaeana, P. bolanderi, plus outgroup species) to estimate the phylogeny using parsimony and likelihood analyses. To facilitate the adoption of Linnean nomenclature for molecular lineages, we chose a DNA voucher as epitype. KEY RESULTS Phylogenies derived from chloroplast vs. nuclear data were congruent except for P. platyphylla s.l., including a North American lineage that was placed sister to P. cordaeana in the chloroplast DNA phylogeny but sister to the Holarctic P. platyphylla s.str. in the nuclear DNA phylogeny. European and North American accessions of P. cordaeana and P. platyphylla form sister clades. CONCLUSIONS The genetic structure of P. platyphylla s.l. reflects morphologically cryptic or near cryptic speciation into Holarctic P. platyphylla s.str. and North American P. platyphylloidea. The latter species is possibly an ancient hybrid resulting from crossings of P. cordaeana and P. platyphylla s.str. and comprises several distinct molecular entities.
Collapse
Affiliation(s)
- Jochen Heinrichs
- Department of Systematic Botany, Albrecht-von-Haller-Institute of Plant Sciences, Georg-August-University, Untere Karspüle 2, 37073 Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|