51
|
Positively Correlated CD47 Activation and Autophagy in Umbilical Cord Blood-Derived Mesenchymal Stem Cells during Senescence. Stem Cells Int 2021; 2021:5582792. [PMID: 33936211 PMCID: PMC8062176 DOI: 10.1155/2021/5582792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy plays a critical role in stem cell maintenance and is related to cell growth and cellular senescence. It is important to find a quality-control marker for predicting senescent cells. This study verified that CD47 could be a candidate to select efficient mesenchymal stem cells (MSCs) to enhance the therapeutic effects of stem cell therapy by analyzing the antibody surface array. CD47 expression was significantly decreased during the expansion of MSCs in vitro (p < 0.01), with decreased CD47 expression correlated with accelerated senescence phenotype, which affected cell growth. UCB-MSCs transfected with CD47 siRNA significantly triggered the downregulation of pRB and upregulation of pp38, which are senescence-related markers. Additionally, autophagy-related markers, ATG5, ATG12, Beclin1, and LC3B, revealed significant downregulation with CD47 siRNA transfection. Furthermore, autophagy flux following treatment with an autophagy inducer, rapamycin, has shown that CD47 is a key player in autophagy and senescence to maintain and regulate the growth of MSCs, suggesting that CD47 may be a critical key marker for the selection of effective stem cells in cell therapy.
Collapse
|
52
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021; 11:603224. [PMID: 33763351 PMCID: PMC7982729 DOI: 10.3389/fonc.2021.603224] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
Affiliation(s)
- Alejandra Suares
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Victoria Medina
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Omar Coso
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
53
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021. [DOI: 10.3389/fonc.2021.603224
expr 816899697 + 824303767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
|
54
|
Zhu W, Li J, Zhang Y, Zhu Z, Liu H, Lin Y, Hu A, Zhou J, Ren H, Shi X. Inhibition of HMGB1 Suppresses Hepatocellular Carcinoma Progression via HIPK2-Mediated Autophagic Degradation of ZEB1. Front Oncol 2021; 11:599124. [PMID: 33747917 PMCID: PMC7969871 DOI: 10.3389/fonc.2021.599124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/11/2021] [Indexed: 12/29/2022] Open
Abstract
Autophagy is a conserved catabolic process maintaining cellular homeostasis and reportedly plays a critical role in tumor progression. Accumulating data show that autophagic activity is inhibited in hepatocellular carcinoma. However, the underlying molecular basis of impaired autophagy in HCC remains unclear. In this study, we revealed that autophagic activity was suppressed by HMGB1 in a HIPK2-dependent way. Targeting HMGB1 could inhibit the degradation of HIPK2, as a result of which, autophagic degradation of ZEB1 was enhanced by reprogramming glucose metabolism/AMPK/mTOR axis. Moreover, we demonstrated that selectively degradation of ZEB1 was responsible for HCC growth inhibition in HMGB1 deficient cells. Lastly, we found the combination therapy of HMGB1 inhibitor and rapamycin achieved a better anti-HCC effect. These results demonstrate that impaired autophagy is controlled by HMGB1 and targeting HMGB1 could suppress HCC progression via HIPK2-mediated autophagic degradation of ZEB1.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jun Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuheng Zhang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhengyi Zhu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hanyi Liu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yunzhen Lin
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Anyin Hu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jingchao Zhou
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
55
|
Campanario S, Ramírez-Pardo I, Hong X, Isern J, Muñoz-Cánoves P. Assessing Autophagy in Muscle Stem Cells. Front Cell Dev Biol 2021; 8:620409. [PMID: 33553156 PMCID: PMC7858272 DOI: 10.3389/fcell.2020.620409] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
The skeletal muscle tissue in the adult is relatively stable under normal conditions but retains a striking ability to regenerate by its resident stem cells (satellite cells). Satellite cells exist in a quiescent (G0) state; however, in response to an injury, they reenter the cell cycle and start proliferating to provide sufficient progeny to form new myofibers or undergo self-renewal and returning to quiescence. Maintenance of satellite cell quiescence and entry of satellite cells into the activation state requires autophagy, a fundamental degradative and recycling process that preserves cellular proteostasis. With aging, satellite cell regenerative capacity declines, correlating with loss of autophagy. Enhancing autophagy in aged satellite cells restores their regenerative functions, underscoring this proteostatic activity's relevance for tissue regeneration. Here we describe two strategies for assessing autophagic activity in satellite cells from GFP-LC3 reporter mice, which allows direct autophagosome labeling, or from non-transgenic (wild-type) mice, where autophagosomes can be immunostained. Treatment of GFP-LC3 or WT satellite cells with compounds that interfere with autophagosome-lysosome fusion enables measurement of autophagic activity by flow cytometry and immunofluorescence. Thus, the methods presented permit a relatively rapid assessment of autophagy in stem cells from skeletal muscle in homeostasis and in different pathological scenarios such as regeneration, aging or disease.
Collapse
Affiliation(s)
- Silvia Campanario
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Ignacio Ramírez-Pardo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Xiaotong Hong
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Joan Isern
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
56
|
Pesce NA, Canovai A, Lardner E, Cammalleri M, Kvanta A, André H, Dal Monte M. Autophagy Involvement in the Postnatal Development of the Rat Retina. Cells 2021; 10:cells10010177. [PMID: 33477313 PMCID: PMC7830352 DOI: 10.3390/cells10010177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/25/2022] Open
Abstract
During retinal development, a physiologic hypoxia stimulates endothelial cell proliferation. The hypoxic milieu warrants retina vascularization and promotes the activation of several mechanisms aimed to ensure homeostasis and energy balance of both endothelial and retinal cells. Autophagy is an evolutionarily conserved catabolic system that contributes to cellular adaptation to a variety of environmental changes and stresses. In association with the physiologic hypoxia, autophagy plays a crucial role during development. Autophagy expression profile was evaluated in the developing retina from birth to post-natal day 18 of rat pups, using qPCR, western blotting and immunostaining methodologies. The rat post-partum developing retina displayed increased active autophagy during the first postnatal days, correlating to the hypoxic phase. In latter stages of development, rat retinal autophagy decreases, reaching a normalization between post-natal days 14-18, when the retina is fully vascularized and mature. Collectively, the present study elaborates on the link between hypoxia and autophagy, and contributes to further elucidate the role of autophagy during retinal development.
Collapse
Affiliation(s)
- Noemi Anna Pesce
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Eugeniavägen 12, 17164 Solna, Sweden; (N.A.P.); (E.L.); (A.K.)
- Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy; (A.C.); (M.C.); (M.D.M.)
| | - Alessio Canovai
- Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy; (A.C.); (M.C.); (M.D.M.)
| | - Emma Lardner
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Eugeniavägen 12, 17164 Solna, Sweden; (N.A.P.); (E.L.); (A.K.)
| | - Maurizio Cammalleri
- Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy; (A.C.); (M.C.); (M.D.M.)
| | - Anders Kvanta
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Eugeniavägen 12, 17164 Solna, Sweden; (N.A.P.); (E.L.); (A.K.)
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Eugeniavägen 12, 17164 Solna, Sweden; (N.A.P.); (E.L.); (A.K.)
- Correspondence: ; Tel.: +46-700-923-479
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Via San Zeno 31, 56127 Pisa, Italy; (A.C.); (M.C.); (M.D.M.)
| |
Collapse
|
57
|
Macrophage Autophagy and Silicosis: Current Perspective and Latest Insights. Int J Mol Sci 2021; 22:ijms22010453. [PMID: 33466366 PMCID: PMC7795780 DOI: 10.3390/ijms22010453] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022] Open
Abstract
Silicosis is an urgent public health problem in many countries. Alveolar macrophage (AM) plays an important role in silicosis progression. Autophagy is a balanced mechanism for regulating the cycle of synthesis and degradation of cellular components. Our previous study has shown that silica engulfment results in lysosomal rupture, which may lead to the accumulation of autophagosomes in AMs of human silicosis. The excessive accumulation of autophagosomes may lead to apoptosis in AMs. Herein, we addressed some assumptions concerning the complex function of autophagy-related proteins on the silicosis pathogenesis. We also recapped the molecular mechanism of several critical proteins targeting macrophage autophagy in the process of silicosis fibrosis. Furthermore, we summarized several exogenous chemicals that may cause an aggravation or alleviation for silica-induced pulmonary fibrosis by regulating AM autophagy. For example, lipopolysaccharides or nicotine may have a detrimental effect combined together with silica dust via exacerbating the blockade of AM autophagic degradation. Simultaneously, some natural product ingredients such as atractylenolide III, dioscin, or trehalose may be the potential AM autophagy regulators, protecting against silicosis fibrosis. In conclusion, the deeper molecular mechanism of these autophagy targets should be explored in order to provide feasible clues for silicosis therapy in the clinical setting.
Collapse
|
58
|
Xu J, Ma Y, Zhu X, Zhang J, Cheng Z, Wu W, Wang P. Enhanced autophagy promotes the clearance of Pseudomonas aeruginosa in diabetic rats with wounds. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1362. [PMID: 33313107 PMCID: PMC7723545 DOI: 10.21037/atm-20-1019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background To investigate the effects of the Pseudomonas aeruginosa (P. aeruginosa) type 3 secretion system (T3SS) on diabetic wound healing and autophagy-associated proteins. Methods P. aeruginosa and P. aeruginosa without T3SS were used to infect back wounds in 36 rats (18 normal and 18 diabetic). Followed infection with P. aeruginosa, another 36 rats (18 normal and 18 diabetic) with back wounds were treated with autophagy inducer rapamycin or gentamicin (positive control). Wound healing, colony count, HE and Masson staining were recorded. Western blot and immunofluorescent were used to determine the expression of the autophagy markers (LC3, beclin-1 and p62) in wound tissues. Results The number of P. aeruginosa colonies in infected wounds began to decrease on day 3 in normal rats and on day 7 in diabetic rats. The decrease was more apparent in P. aeruginosa without T3SS. The expression of LC3-II/LC3-I and beclin-1 gradually increased, and p62 gradually decreased in the wounds in of all groups; however, the changes were more dramatic in normal rats compared with diabetic rats on day 14. Rapamycin increased LC3-II/LC3-I and beclin-1 expression, and decreased p62 expression, gentamicin had no effect on their expression of autophagy markers. Conclusions T3SS of P. aeruginosa inhibited the entire autophagy process in wounds. Thus inducing autophagy could enhance the clearance of P. aeruginosa in diabetic wounds and is expected to become a new method of anti-P. aeruginosa infection.
Collapse
Affiliation(s)
- Jun Xu
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Department of Diabetic foot, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Yanan Ma
- Fengyang College, Shanxi Medical University, Fenyang, China
| | - Xiaoqing Zhu
- Department of Endocrinology, Qingdao Eighth People's Hospital, Qingdao, China
| | - Jinghang Zhang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Department of Diabetic foot, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Zhihui Cheng
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Penghua Wang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Department of Diabetic foot, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| |
Collapse
|
59
|
The novel interplay between CD44 standard isoform and the caspase-1/IL1B pathway to induce hepatocellular carcinoma progression. Cell Death Dis 2020; 11:961. [PMID: 33168816 PMCID: PMC7652828 DOI: 10.1038/s41419-020-03158-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022]
Abstract
Accumulating data indicate caspase-1 (CASP1), one of the inflammatory caspases, promotes hepatocellular carcinoma (HCC) progression in tumor proliferation, invasion, EMT phenotype and sorafenib resistance. However, the molecular basis of regulating caspase-1 expression and caspase-1/IL1B (interleukin-1β) pathway in HCC remains unclear. Here, we demonstrated the novel interplay between caspase-1/IL1B activation and cluster differentiation 44 standard isoform (CD44s) in HCC. In this study, we observed that CD44s is responsible for caspase-1/IL1B activation both in HCC tissues and five HCC cell lines. In normoxia conditions, CD44s knockdown repressed the activation of caspase-1/IL1B via stimulating AMPK-mediated autophagy. Moreover, our data suggested that p62-induced autophagic degradation of caspase-1 accounted for caspase-1/IL1B inactivation in CD44s deficient cells. Administration of recombinant human IL1B could rescue impaired proliferation, invasion, and EMT phenotype in CD44s deficient HCC cells. Lastly, hypoxia-mediated caspase-1/IL1B overexpression could be abolished by CD44s downregulation through decreasing HIF1A and enhancing autophagic activity. Overall, targeting CD44s is a novel inhibitory mechanism of caspase-1/IL1B expression, both in normoxia and hypoxia conditions.
Collapse
|
60
|
Upregulation of CFTR Protects against Palmitate-Induced Endothelial Dysfunction by Enhancing Autophagic Flux. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8345246. [PMID: 33123317 PMCID: PMC7586166 DOI: 10.1155/2020/8345246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/23/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Saturated free fatty acids (FFAs) elevate in metabolic symptom leading to endothelial dysfunction. Cystic fibrosis transmembrane regulator (CFTR) functionally expresses in endothelial cells. The role of CFTR in FFA-induced endothelial dysfunction remains unclear. This study is aimed at exploring the effects of CFTR on palmitate- (PA-) induced endothelial dysfunction and its underlying mechanisms. We found that PA-induced endothelial dysfunction is characterized by a decrease of cell viability, reduction of NO generation and mitochondrial membrane potential, impairment of the tube formation, but an increase of ROS generation and cell apoptosis. Simultaneously, PA decreased CFTR protein expression. CFTR agonist Forskolin upregulated CFTR protein expression and protected against PA-induced endothelial dysfunction, while CFTR knockdown exacerbated endothelial dysfunction induced by PA and blunted the protective effects of Forskolin. In addition, PA impaired autophagic flux, and autophagic flux inhibitors aggravated PA-induced endothelial apoptosis. CFTR upregulation significantly restored autophagic flux in PA-insulted endothelial cells, which was involved in increasing the protein expression of Atg16L, Atg12-Atg5 complex, cathepsin B, and cathepsin D. In contrast, CFTR knockdown significantly inhibited the effects of Forskolin on autophagic flux and the expression of the autophagy-regulated proteins. Our findings illustrate that CFTR upregulation protects against PA-induced endothelial dysfunction by improving autophagic flux and underlying mechanisms are involved in enhancing autophagic signaling mediated by the Atg16L-Atg12-Atg5 complex, cathepsin B, and cathepsin D. CFTR might serve as a novel drug target for endothelial protection in cardiovascular diseases with a characteristic of elevation of FFAs.
Collapse
|
61
|
Long J, He Q, Yin Y, Lei X, Li Z, Zhu W. The effect of miRNA and autophagy on colorectal cancer. Cell Prolif 2020; 53:e12900. [PMID: 32914514 PMCID: PMC7574865 DOI: 10.1111/cpr.12900] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) has become a concern because of its high recurrence rate and metastasis rate, low early diagnosis rate and poor therapeutic effect. At present, various studies have shown that autophagy is closely connected with the occurrence and progression of CRC. Autophagy is a highly cytosolic catabolic process involved in lysosomes in biological evolution. Cells degrade proteins and damaged organelles by autophagy to achieve material circulation and maintain cell homeostasis. Moreover, microRNAs are key regulators of autophagy, and their mediated regulation of transcriptional and post-transcriptional levels plays an important role in autophagy in CRC cells. This review focuses on the recent research advances of how autophagy and related microRNAs are involved in affecting occurrence and progression of CRC and provides a new perspective for the study of CRC treatment strategies.
Collapse
Affiliation(s)
- Jiali Long
- Department of PathologyGuangdong Medical UniversityDongguanChina
- Department of Pathologythe Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| | - Qinglian He
- Department of PathologyGuangdong Medical UniversityDongguanChina
| | - Yuting Yin
- Department of PathologyGuangdong Medical UniversityDongguanChina
| | - Xue Lei
- Department of PathologyGuangdong Medical UniversityDongguanChina
| | - Ziqi Li
- Department of PathologyGuangdong Medical UniversityDongguanChina
| | - Wei Zhu
- Department of PathologyGuangdong Medical UniversityDongguanChina
| |
Collapse
|
62
|
Qu S, Liu S, Qiu W, Liu J, Wang H. Screening of autophagy genes as prognostic indicators for glioma patients. Am J Transl Res 2020; 12:5320-5331. [PMID: 33042422 PMCID: PMC7540153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Although autophagy is reported to be involved in tumorigenesis and cancer progression, its correlation with the prognosis of glioma patients remains unclear. Thus, the aim of this study was to identify prognostic autophagy-related genes, analyze their correlation with clinicopathological features of glioma, and further construct a prognostic model for glioma patients. After 139 autophagy-related genes were obtained from the GeneCards database, their expression data in glioma patients were extracted from the Chinese Glioma Genome Atlas database. Univariate and multivariate COX regression analyses were performed to identify prognostic autophagy-related genes. Ten hub autophagy-related genes associated with prognosis were identified. The autophagy risk score (ARS) was only positively correlated with histopathology (P = 0.000) and World Health Organization grade (P = 0.000). Kaplan-Meier analysis showed that the overall survival of patients with a high ARS was significantly worse than that of patients with a low ARS (hazard ratio = 1.59, 95% confidence interval = 1.25-2.03, P = 0.0001). In addition, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed several common biological processes and signaling pathways related to the 10 hub genes in glioblastoma. A prediction model was developed for glioma patients, which demonstrated high prediction efficiency on calibration. Moreover, the area under the receiver operating characteristic curve values for 1-, 3- and 5-year survival probabilities were 0.790, 0.861, and 0.853, respectively. In conclusion, we identified 10 autophagy-related genes that can serve as novel prognostic biomarkers for glioma patients. Our prediction model accurately predicted patient outcomes, and thus, may be a valuable tool in clinical practice.
Collapse
Affiliation(s)
- Shanqiang Qu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, China
- Department of Neurosurgery, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, China
| | - Shuhao Liu
- Department of Gastrointestinal Surgery, The Seventh Affiliated Hospital of Sun Yat-sen UniversityShenzhen 518107, China
| | - Weiwen Qiu
- Department of Neurology, Lishui People’s Hospital (The Sixth Affiliated Hospital of Wenzhou Medical University)Lishui 323000, China
| | - Jin Liu
- Department of Neurosurgery, Lishui People’s Hospital (The Sixth Affiliated Hospital of Wenzhou Medical University)Lishui 323000, China
| | - Huafu Wang
- Department of Clinical Pharmacy, Lishui People’s Hospital (The Sixth Affiliated Hospital of Wenzhou Medical University)Lishui 323000, China
| |
Collapse
|
63
|
Kim H, Jeon BT, Kim IM, Bennett SJ, Lorch CM, Viana MP, Myers JF, Trupp CJ, Whipps ZT, Kundu M, Chung S, Sun X, Khalimonchuk O, Lee J, Ro SH. Sestrin2 Phosphorylation by ULK1 Induces Autophagic Degradation of Mitochondria Damaged by Copper-Induced Oxidative Stress. Int J Mol Sci 2020; 21:ijms21176130. [PMID: 32854424 PMCID: PMC7504119 DOI: 10.3390/ijms21176130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
Selective autolysosomal degradation of damaged mitochondria, also called mitophagy, is an indispensable process for maintaining integrity and homeostasis of mitochondria. One well-established mechanism mediating selective removal of mitochondria under relatively mild mitochondria-depolarizing stress is PINK1-Parkin-mediated or ubiquitin-dependent mitophagy. However, additional mechanisms such as LC3-mediated or ubiquitin-independent mitophagy induction by heavy environmental stress exist and remain poorly understood. The present study unravels a novel role of stress-inducible protein Sestrin2 in degradation of mitochondria damaged by transition metal stress. By utilizing proteomic methods and studies in cell culture and rodent models, we identify autophagy kinase ULK1-mediated phosphorylation sites of Sestrin2 and demonstrate Sestrin2 association with mitochondria adaptor proteins in HEK293 cells. We show that Ser-73 and Ser-254 residues of Sestrin2 are phosphorylated by ULK1, and a pool of Sestrin2 is strongly associated with mitochondrial ATP5A in response to Cu-induced oxidative stress. Subsequently, this interaction promotes association with LC3-coated autolysosomes to induce degradation of mitochondria damaged by Cu-induced ROS. Treatment of cells with antioxidants or a Cu chelator significantly reduces Sestrin2 association with mitochondria. These results highlight the ULK1-Sestrin2 pathway as a novel stress-sensing mechanism that can rapidly induce autophagic degradation of mitochondria under severe heavy metal stress.
Collapse
Affiliation(s)
- Heejeong Kim
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
| | - Byeong Tak Jeon
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Isaac M. Kim
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
| | - Sydney J. Bennett
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
| | - Carolyn M. Lorch
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
- Department of Biology, Grinnell College, Grinnell, IA 50112, USA
- Driskill Graduate Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Martonio Ponte Viana
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
| | - Jacob F. Myers
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
- Department of Chemistry, The University of Scranton, Scranton, PA 18510, USA
| | - Caroline J. Trupp
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
| | - Zachary T. Whipps
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
| | - Mondira Kundu
- Departments of Pathology and Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Soonkyu Chung
- Department of Nutrition, University of Massachusetts, Amherst, MA 01003, USA;
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
| | - Jaekwon Lee
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
| | - Seung-Hyun Ro
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (H.K.); (B.T.J.); (I.M.K.); (S.J.B.); (C.M.L.); (M.P.V.); (J.F.M.); (C.J.T.); (Z.T.W.); (X.S.); (O.K.); (J.L.)
- Correspondence: ; Tel.: +1-402-472-5424
| |
Collapse
|
64
|
Abstract
Autosis is an autophagy-dependent, nonapoptotic, and non-necrotic form of cell death that is characterized by unique morphological and biochemical features, including the presence of ballooning of perinuclear space (PNS) and sensitivity to cardiac glycosides, respectively. Autotic cell death may be initiated by excessive accumulation of autophagosomes rather than lysosomal degradation. Autosis is stimulated during the late phase of reperfusion after a period of ischemia in the heart when up-regulation of rubicon in the presence of continuous autophagosome production induces massive accumulation of autophagosomes. Suppression of autosis, which may reduce death of cardiomyocytes during the late phase of reperfusion, in combination with inhibition of apoptosis and necrosis targeting the early phase of injury, may enhance the effectiveness of treatment for I/R injury in the heart.
Excessive autophagy induces a defined form of cell death called autosis, which is characterized by unique morphological features, including ballooning of perinuclear space and biochemical features, including sensitivity to cardiac glycosides. Autosis is observed during the late phase of reperfusion after a period of ischemia and contributes to myocardial injury. This review discusses unique features of autosis, the involvement of autosis in myocardial injury, and the molecular mechanism of autosis. Because autosis promotes myocardial injury under some conditions, a better understanding of autosis may lead to development of novel interventions to protect the heart against myocardial stress.
Collapse
Key Words
- ATG, autophagy-related
- ATPase, adenosine triphosphatase
- ER, endoplasmic reticulum
- HIV, human immunodeficiency virus
- I/R, ischemia-reperfusion
- LBR, lamin B receptor
- Na+,K+–adenosine triphosphatase
- PI3K, phosphatidylinositol 3 kinase
- PNS, perinuclear space
- Tat, transactivation of transcription
- autophagic cell death
- autophagic flux
- autosis
- beclin 1
- rubicon
Collapse
|
65
|
Kwon CY, Cho IH, Park KS. Therapeutic Effects and Mechanisms of Herbal Medicines for Treating Polycystic Ovary Syndrome: A Review. Front Pharmacol 2020; 11:1192. [PMID: 32903374 PMCID: PMC7434855 DOI: 10.3389/fphar.2020.01192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is one of the most common disorders of endocrinology in reproductive-age women. In this study, we reviewed data on the effects and underlying mechanisms of herbal medicines used in the treatment of PCOS in laboratory studies. Methods Articles published in English up to June 30, 2018 were searched in Medline and EMBASE. We extracted data regarding herbal intervention; target cell (or animal model) usage; method of herbal extraction; route of administration; dosage and periods; and outcomes of the compounds isolated from herbs, individual herbal extracts, and herbal formula decoctions. We summarized the actions and the mechanisms underlying the beneficial effects of herbal medicines on PCOS. Results A total of 27 studies involving 22 herbal medicines reported their efficacy on PCOS. The herbal interventions in the 27 studies comprised four compounds isolated from herbs (6 studies), nine individual herbal extracts (11 studies), and nine herbal formula decoctions (10 studies). Herbal medicines normalized female hormones, diminished male hormones, recovered the estrous cycle, ameliorated insulin resistance, and improved lipid metabolism in PCOS. The mechanisms underlying the beneficial effects of herbal medicines on PCOS were found to be associated with anti-inflammation, anti-oxidative stress, inhibition of autophagy and/or apoptosis, and ovarian nerve growth factor reduction. Conclusions Herbal medicines are thought to be promising resources in the development of effective therapeutic agents for PCOS. Further studies that include methodological quality assessment and quantitative synthesis of outcomes are recommended.
Collapse
Affiliation(s)
- Chan-Young Kwon
- Department of Oriental Neuropsychiatry, Dong-eui University College of Korean Medicine, Busan, South Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, Brain Korea 21 Plus Program, and Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Kyoung Sun Park
- Jaseng Hospital of Korean Medicine, Seoul, South Korea.,Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, South Korea
| |
Collapse
|
66
|
Wu X, Luo L, Kong R, Song Y, Li Q, Nice EC, Wang K. Recent advances in autophagic machinery: a proteomic perspective. Expert Rev Proteomics 2020; 17:561-579. [PMID: 32772586 DOI: 10.1080/14789450.2020.1808464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Autophagy is an evolutionarily conserved cellular clearance process, by which cytosolic components are delivered to autolysosomes for breakdown and recycling to maintain cellular homeostasis. During the past decades, autophagy has been found to be tightly implicated in various physiological and pathological progresses. Unraveling the regulatory mechanisms of the autophagy process will contribute to the development of emerging autophagy-targeting strategies for the treatment of various diseases. Recently, the rapid development of proteomics approaches has enabled the use of large-scale unbiased strategies to unravel autophagy machinery. AREAS COVERED In this review, we will highlight the recent contributions of proteomics strategies in clarifying the autophagy machinery, with an emphasis on the three different types of autophagy (namely macroautophagy, microautophagy, and chaperone-mediated autophagy). We will also discuss the emerging role of proteomics approaches in investigating the mechanism of the autophagy-based unconventional secretory pathway (secretory autophagy). EXPERT OPINION Proteomics has provided an effective strategy for the comprehensive analysis of the autophagy process, which will broaden our understanding of autophagy machinery, and holds great promise for developing clinical therapies targeting autophagy.
Collapse
Affiliation(s)
- Xingyun Wu
- West China School of Basic Medical Sciences & Forensic Medicine, Center of Reproductive Medicine, West China Second University Hospital, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu, P.R. China
| | - Li Luo
- West China School of Basic Medical Sciences & Forensic Medicine, Center of Reproductive Medicine, West China Second University Hospital, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu, P.R. China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education , Chengdu, P.R. China
| | - Ruxin Kong
- West China School of Basic Medical Sciences & Forensic Medicine, Center of Reproductive Medicine, West China Second University Hospital, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu, P.R. China
| | - Yabing Song
- West China School of Basic Medical Sciences & Forensic Medicine, Center of Reproductive Medicine, West China Second University Hospital, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu, P.R. China
| | - Qifu Li
- Department of Neurology, the First Affiliated Hospital of Hainan Medical University, and Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University , Haikou, P.R. China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University , Clayton, Australia
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Center of Reproductive Medicine, West China Second University Hospital, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy , Chengdu, P.R. China
| |
Collapse
|
67
|
Richard P, Feng S, Tsai YL, Li W, Rinchetti P, Muhith U, Irizarry-Cole J, Stolz K, Sanz LA, Hartono S, Hoque M, Tadesse S, Seitz H, Lotti F, Hirano M, Chédin F, Tian B, Manley JL. SETX (senataxin), the helicase mutated in AOA2 and ALS4, functions in autophagy regulation. Autophagy 2020; 17:1889-1906. [PMID: 32686621 DOI: 10.1080/15548627.2020.1796292] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
SETX (senataxin) is an RNA/DNA helicase that has been implicated in transcriptional regulation and the DNA damage response through resolution of R-loop structures. Mutations in SETX result in either of two distinct neurodegenerative disorders. SETX dominant mutations result in a juvenile form of amyotrophic lateral sclerosis (ALS) called ALS4, whereas recessive mutations are responsible for ataxia called ataxia with oculomotor apraxia type 2 (AOA2). How mutations in the same protein can lead to different phenotypes is still unclear. To elucidate AOA2 disease mechanisms, we first examined gene expression changes following SETX depletion. We observed the effects on both transcription and RNA processing, but surprisingly observed decreased R-loop accumulation in SETX-depleted cells. Importantly, we discovered a strong connection between SETX and the macroautophagy/autophagy pathway, reflecting a direct effect on transcription of autophagy genes. We show that SETX depletion inhibits the progression of autophagy, leading to an accumulation of ubiquitinated proteins, decreased ability to clear protein aggregates, as well as mitochondrial defects. Analysis of AOA2 patient fibroblasts also revealed a perturbation of the autophagy pathway. Our work has thus identified a novel function for SETX in the regulation of autophagy, whose modulation may have a therapeutic impact for AOA2.Abbreviations: 3'READS: 3' region extraction and deep sequencing; ACTB: actin beta; ALS4: amyotrophic lateral sclerosis type 4; AOA2: ataxia with oculomotor apraxia type 2; APA: alternative polyadenylation; AS: alternative splicing; ATG7: autophagy-related 7; ATP6V0D2: ATPase H+ transporting V0 subunit D2; BAF: bafilomycin A1; BECN1: beclin 1; ChIP: chromatin IP; Chloro: chloroquine; CPT: camptothecin; DDR: DNA damage response; DNMT1: DNA methyltransferase 1; DRIP: DNA/RNA IP; DSBs: double strand breaks; EBs: embryoid bodies; FTD: frontotemporal dementia; GABARAP: GABA type A receptor-associated protein; GO: gene ontology; HR: homologous recombination; HTT: huntingtin; IF: immunofluorescence; IP: immunoprecipitation; iPSCs: induced pluripotent stem cells; KD: knockdown; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MN: motor neuron; MTORC1: mechanistic target of rapamycin kinase complex 1; PASS: PolyA Site Supporting; PFA: paraformaldehyde; RNAPII: RNA polymerase II; SCA: spinocerebellar ataxia; SETX: senataxin; SMA: spinal muscular atrophy; SMN1: survival of motor neuron 1, telomeric; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TSS: transcription start site; TTS: transcription termination site; ULK1: unc-51 like autophagy activating kinase 1; WB: western blot; WIPI2: WD repeat domain, phosphoinositide interacting 2; XRN2: 5'-3' exoribonuclease 2.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, NY, USA.,Stellate Therapeutics, JLABS @ NYC, New York, NY, USA
| | | | - Yueh-Lin Tsai
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Wencheng Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Paola Rinchetti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.,Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Ubayed Muhith
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Juan Irizarry-Cole
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Katharine Stolz
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Lionel A Sanz
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA, USA
| | - Stella Hartono
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA, USA
| | - Mainul Hoque
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Saba Tadesse
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hervé Seitz
- Institut de Génétique Humaine, UMR 9002 CNRS and Université de Montpellier, Montpellier, France
| | - Francesco Lotti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA.,Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
68
|
Jung H, Seo SB. Histone lysine demethylase 3B (KDM3B) regulates the propagation of autophagy via transcriptional activation of autophagy-related genes. PLoS One 2020; 15:e0236403. [PMID: 32716961 PMCID: PMC7384621 DOI: 10.1371/journal.pone.0236403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/05/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagy, a self-degradative physiological process, is critical for homeostasis maintenance and energy source balancing in response to various stresses, including nutrient deprivation. It is a highly conserved catabolic process in eukaryotes and is indispensable for cell survival as it involves degradation of unessential or excessive components and their subsequent recycling as building blocks for the synthesis of necessary molecules. Although the dysregulation of autophagy has been reported to broadly contribute to various diseases, including cancers and neurodegenerative diseases, the molecular mechanisms underlying the epigenetic regulation of autophagy are poorly elucidated. Here, we report that the level of lysine demethylase 3B (KDM3B) increases in nutrient-deprived HCT116 cells, a colorectal carcinoma cell line, resulting in transcriptional activation of the autophagy-inducing genes. KDM3B was found to enhance the transcription by demethylating H3K9me2 on the promoter of these genes. Furthermore, we observed that the depletion of KDM3B inhibited the autophagic flux in HCT116 cells. Collectively, these data suggested the critical role of KDM3B in the regulation of autophagy-related genes via H3K9me2 demethylation and induction of autophagy in nutrient-starved HCT116 cells.
Collapse
Affiliation(s)
- Hyeonsoo Jung
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
69
|
Painter JD, Galle-Treger L, Akbari O. Role of Autophagy in Lung Inflammation. Front Immunol 2020; 11:1337. [PMID: 32733448 PMCID: PMC7358431 DOI: 10.3389/fimmu.2020.01337] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a cellular recycling system found in almost all types of eukaryotic organisms. The system is made up of a variety of proteins which function to deliver intracellular cargo to lysosomes for formation of autophagosomes in which the contents are degraded. The maintenance of cellular homeostasis is key in the survival and function of a variety of human cell populations. The interconnection between metabolism and autophagy is extensive, therefore it has a role in a variety of different cell functions. The disruption or dysfunction of autophagy in these cell types have been implicated in the development of a variety of inflammatory diseases including asthma. The role of autophagy in non-immune and immune cells both lead to the pathogenesis of lung inflammation. Autophagy in pulmonary non-immune cells leads to tissue remodeling which can develop into chronic asthma cases with long term effects. The role autophagy in the lymphoid and myeloid lineages in the pathology of asthma differ in their functions. Impaired autophagy in lymphoid populations have been shown, in general, to decrease inflammation in both asthma and inflammatory disease models. Many lymphoid cells rely on autophagy for effector function and maintained inflammation. In stark contrast, autophagy deficient antigen presenting cells have been shown to have an activated inflammasome. This is largely characterized by a TH17 response that is accompanied with a much worse prognosis including granulocyte mediated inflammation and steroid resistance. The cell specificity associated with changes in autophagic flux complicates its targeting for amelioration of asthmatic symptoms. Differing asthmatic phenotypes between TH2 and TH17 mediated disease may require different autophagic modulations. Therefore, treatments call for a more cell specific and personalized approach when looking at chronic asthma cases. Viral-induced lung inflammation, such as that caused by SARS-CoV-2, also may involve autophagic modulation leading to inflammation mediated by lung resident cells. In this review, we will be discussing the role of autophagy in non-immune cells, myeloid cells, and lymphoid cells for their implications into lung inflammation and asthma. Finally, we will discuss autophagy's role viral pathogenesis, immunometabolism, and asthma with insights into autophagic modulators for amelioration of lung inflammation.
Collapse
Affiliation(s)
- Jacob D Painter
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lauriane Galle-Treger
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
70
|
Talebian S, Daghagh H, Yousefi B, Ȍzkul Y, Ilkhani K, Seif F, Alivand MR. The role of epigenetics and non-coding RNAs in autophagy: A new perspective for thorough understanding. Mech Ageing Dev 2020; 190:111309. [PMID: 32634442 DOI: 10.1016/j.mad.2020.111309] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/22/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
Autophagy is a major self-degradative intracellular process required for the maintenance of homeostasis and promotion of survival in response to starvation. It plays critical roles in a large variety of physiological and pathological processes. On the other hand, aberrant regulation of autophagy can lead to various cancers and neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Crohn's disease. Emerging evidence strongly supports that epigenetic signatures, related non-coding RNA profiles, and their cross-talking are significantly associated with the control of autophagic responses. Therefore, it may be helpful and promising to manage autophagic processes by finding valuable markers and therapeutic approaches. Although there is a great deal of information on the components of autophagy in the cytoplasm, the molecular basis of the epigenetic regulation of autophagy has not been completely elucidated. In this review, we highlight recent research on epigenetic changes through the expression of autophagy-related genes (ATGs), which regulate autophagy, DNA methylation, histone modifications as well as non-coding RNAs, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and their relationship with human diseases, that play key roles in causing autophagy-related diseases.
Collapse
Affiliation(s)
- Shahrzad Talebian
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Daghagh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yusuf Ȍzkul
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Khandan Ilkhani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Seif
- Department of Immunology & Allergy, Academic Center for Education, Culture, and Research, Tehran, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
71
|
Roberto TN, Lima RF, Pascon RC, Idnurm A, Vallim MA. Biological functions of the autophagy-related proteins Atg4 and Atg8 in Cryptococcus neoformans. PLoS One 2020; 15:e0230981. [PMID: 32251488 PMCID: PMC7135279 DOI: 10.1371/journal.pone.0230981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/12/2020] [Indexed: 11/28/2022] Open
Abstract
Autophagy is a mechanism responsible for intracellular degradation and recycling of macromolecules and organelles, essential for cell survival in adverse conditions. More than 40 autophagy-related (ATG) genes have been identified and characterized in fungi, among them ATG4 and ATG8. ATG4 encodes a cysteine protease (Atg4) that plays an important role in autophagy by initially processing Atg8 at its C-terminus region. Atg8 is a ubiquitin-like protein essential for the synthesis of the double-layer membrane that constitutes the autophagosome vesicle, responsible for delivering the cargo from the cytoplasm to the vacuole lumen. The contributions of Atg-related proteins in the pathogenic yeast in the genus Cryptococcus remain to be explored, to elucidate the molecular basis of the autophagy pathway. In this context, we aimed to investigate the role of autophagy-related proteins 4 and 8 (Atg4 and Atg8) during autophagy induction and their contribution with non-autophagic events in C. neoformans. We found that Atg4 and Atg8 are conserved proteins and that they interact physically with each other. ATG gene deletions resulted in cells sensitive to nitrogen starvation. ATG4 gene disruption affects Atg8 degradation and its translocation to the vacuole lumen, after autophagy induction. Both atg4 and atg8 mutants are more resistant to oxidative stress, have an impaired growth in the presence of the cell wall-perturbing agent Congo Red, and are sensitive to the proteasome inhibitor bortezomib (BTZ). By that, we conclude that in C. neoformans the autophagy-related proteins Atg4 and Atg8 play an important role in the autophagy pathway; which are required for autophagy regulation, maintenance of amino acid levels and cell adaptation to stressful conditions.
Collapse
Affiliation(s)
- Thiago Nunes Roberto
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Ricardo Ferreira Lima
- Departamento de Infectologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Marcelo Afonso Vallim
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
72
|
Su Y, Zhang JJ, He JL, Liu XQ, Chen XM, Ding YB, Tong C, Peng C, Geng YQ, Wang YX, Gao RF. Endometrial autophagy is essential for embryo implantation during early pregnancy. J Mol Med (Berl) 2020; 98:555-567. [PMID: 32072231 DOI: 10.1007/s00109-019-01849-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022]
Abstract
Embryo implantation is an essential and complex process in mammalian reproduction. However, little evidence has indicated the involvement of autophagy during embryo implantation. To determine the possible role of autophagy in uterine of pregnant mice during the peri-implantation stage, we first examined the expression of autophagy-related markers ATG5 and LC3 on day 4, 5, and 6 of pregnancy (D4, D5, and D6, respectively). Compared with expression on D4, downregulation of the autophagy-related markers was observed on D5 and D6, the days after the embryo attached to the receptivity endometrium. Further examination showed that autophagy-related markers ATG5, ATG12, LC3, cathepsin B, and P62 at the implantation site were significantly decreased when comparing with the inter-implantation site. Fewer number of autophagosomes at the implantation site were also observed by transmission electron microscopy. To confirm the functional role of autophagy during embryo implantation in mice, we administered the autophagy inhibitor 3-methyladenine and chloroquine to mice. After treated with 3-methyladenine, the expression of decidual markers HOXA10 and progesterone receptor were significantly reduced. Furthermore, a reduction in implantation sites and increase in the HOXA10 and PR protein levels were observed in response to chloroquine treatment. In addition, impaired uterine decidualization and dysregulation of the PR and HOXA10 protein levels was observed after autophagy inhibited by 3-methyladenine and chloroquine in in vivo artificial decidualization mouse model. In the last, LC3 and P62 were also observed in normal human proliferative, secretory, and decidua tissues. In conclusion, endometrial autophagy may be essential for embryo implantation, and it may be associated with endometrial decidualization during early pregnancy. KEY MESSAGE: • Autophagy-related markers were significantly decreased at implantation site. • Autophagy inhibition results in abnormal decidualization. • Autophagy is essential for embryo implantation.
Collapse
Affiliation(s)
- Yan Su
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction&Development, Chongqing, 400016, China
| | - Juan-Juan Zhang
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Reproductive Medicine Centre, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, 442000, Hubei, China
| | - Jun-Lin He
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction&Development, Chongqing, 400016, China
| | - Xue-Qing Liu
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction&Development, Chongqing, 400016, China
| | - Xue-Mei Chen
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction&Development, Chongqing, 400016, China
| | - Yu-Bin Ding
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction&Development, Chongqing, 400016, China
| | - Chao Tong
- Joint International Research Laboratory of Reproduction&Development, Chongqing, 400016, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chuan Peng
- Joint International Research Laboratory of Reproduction&Development, Chongqing, 400016, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yan-Qing Geng
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction&Development, Chongqing, 400016, China
| | - Ying-Xiong Wang
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
- Joint International Research Laboratory of Reproduction&Development, Chongqing, 400016, China.
| | - Ru-Fei Gao
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
- Joint International Research Laboratory of Reproduction&Development, Chongqing, 400016, China.
| |
Collapse
|
73
|
Liang X, Liu L, Wang Y, Guo H, Fan H, Zhang C, Hou L, Liu Z. Autophagy-driven NETosis is a double-edged sword - Review. Biomed Pharmacother 2020; 126:110065. [PMID: 32200255 DOI: 10.1016/j.biopha.2020.110065] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a cellular mechanism responsible for delivering protein aggregates or damaged organelles to lysosomes for degradation. It is also simultaneously a precise regulatory process, which is crucial for dealing with hunger, oxidative stress, and pathogen defense. Neutrophil Extracellular Traps (NETs), which form a part of a newly described bactericidal process, are reticular structures composed of a DNA backbone and multiple functional proteins, formed via a process known as NETosis. NETs exert their anti-infection activity by capturing pathogenic microorganisms, inhibiting their spread and inactivating virulence factors. However, NETs may also activate an immune response in non-infectious diseases, leading to tissue damage. Although the mechanism underlying this phenomenon is unclear, a large number of studies have suggested that autophagy may be involved. Autophagy-mediated NETs not only induce inflammation and tissue damage, but can also lead to cell senescence, malignant transformation, and cell death. Autophagy-dependent NETs also play a beneficial role in the hostwith respect to pathogen clearance and immune defense. Through careful review of the literature, we have found that the distinct roles of autophagy in NETosis may be dependent on the extent of autophagy and the specific manner in which it was induced. This article summarizes numerous recent studies, and reviews the role of autophagy-driven NETosis in various diseases, in the hope that this will lead to the development of more effective treatments.
Collapse
Affiliation(s)
- Xiaofei Liang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Li Liu
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China.
| | - Yan Wang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Haipeng Guo
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Hua Fan
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Chao Zhang
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Lili Hou
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Zhibo Liu
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, 161005, China; Department of Laboratory Medicine, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| |
Collapse
|
74
|
He W, Zheng Y, Feng Q, Elkhooly TA, Liu X, Yang X, Wang Y, Xie Y. Silver nanoparticles stimulate osteogenesis of human mesenchymal stem cells through activation of autophagy. Nanomedicine (Lond) 2020; 15:337-353. [DOI: 10.2217/nnm-2019-0026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: Previously, different results have been achieved regarding effects of silver nanoparticles (Ag NPs) on osteogenesis of stem cells and the mechanisms have not been disclosed yet, which are quite important for potential application of Ag NPs in bone reconstruction. Materials & methods: Effects of Ag NPs on osteogenesis of human mesenchymal stem cells (hMSCs) with underlying mechanisms were investigated. Results: Ag NPs at 2.5 and 5 μg/ml increased osteogenic proteins expression and mineralization of hMSCs. Meanwhile, autophagy was activated by Ag NPs and it could be inhibited by 3-methyladenine. Furthermore, osteogenesis induced by Ag NPs could also be reversed by 3-methyladenine. Conclusion: These findings suggest that autophagy is involved in stimulating osteogenesis of hMSCs induced by Ag NPs.
Collapse
Affiliation(s)
- Wei He
- School of Materials Science & Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Yudong Zheng
- School of Materials Science & Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Qingling Feng
- State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Tarek A Elkhooly
- Department of Refractories, Ceramics & Building Materials, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Xujie Liu
- State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Xing Yang
- State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Yansen Wang
- School of Materials Science & Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Yajie Xie
- School of Materials Science & Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China
| |
Collapse
|
75
|
Bao M, Zhang K, Wei Y, Hua W, Gao Y, Li X, Ye L. Therapeutic potentials and modulatory mechanisms of fatty acids in bone. Cell Prolif 2020; 53:e12735. [PMID: 31797479 PMCID: PMC7046483 DOI: 10.1111/cpr.12735] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 02/05/2023] Open
Abstract
Bone metabolism is a lifelong process that includes bone formation and resorption. Osteoblasts and osteoclasts are the predominant cell types associated with bone metabolism, which is facilitated by other cells such as bone marrow mesenchymal stem cells (BMMSCs), osteocytes and chondrocytes. As an important component in our daily diet, fatty acids are mainly categorized as long-chain fatty acids including polyunsaturated fatty acids (LCPUFAs), monounsaturated fatty acids (LCMUFAs), saturated fatty acids (LCSFAs), medium-/short-chain fatty acids (MCFAs/SCFAs) as well as their metabolites. Fatty acids are closely associated with bone metabolism and associated bone disorders. In this review, we summarized the important roles and potential therapeutic implications of fatty acids in multiple bone disorders, reviewed the diverse range of critical effects displayed by fatty acids on bone metabolism, and elucidated their modulatory roles and mechanisms on specific bone cell types. The evidence supporting close implications of fatty acids in bone metabolism and disorders suggests fatty acids as potential therapeutic and nutritional agents for the treatment and prevention of metabolic bone diseases.
Collapse
Affiliation(s)
- Minyue Bao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Kaiwen Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yangyini Wei
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Weihan Hua
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yanzi Gao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ling Ye
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesDepartment of Cariology and EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
76
|
Chen WR, Yang JQ, Liu F, Shen XQ, Zhou YJ. Melatonin attenuates vascular calcification by activating autophagy via an AMPK/mTOR/ULK1 signaling pathway. Exp Cell Res 2020; 389:111883. [PMID: 32014443 DOI: 10.1016/j.yexcr.2020.111883] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/19/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022]
Abstract
Melatonin has been demonstrated to protect against calcification in cyclosporine nephrotoxicity. Autophagy may affect vascular calcification by inhibiting apoptosis and the transdifferentiation process. This study sought to explore whether melatonin attenuates vascular calcification by regulating autophagy via the AMP-activated protein kinase/mammalian target of rapamycin/Unc-51-like kinase 1 (AMPK/mTOR/ULK1) signaling pathway. The effects of melatonin on vascular calcification were investigated in vascular smooth muscle cells (VSMCs). Calcium deposits were visualised by Alizarin red staining, while calcium content and alkaline phosphatase (ALP) activity were used to evaluate osteogenic differentiation. Western blots were used to measure expression of runt-related transcription factor 2 (Runx2, an osteogenic transcription factor), light chain 3 (LC3) II/I, and cleaved caspase 3. Melatonin markedly reduced calcium deposition and ALP activity. Runx2 and cleaved caspase 3 were downregulated, whereas LC3 II/I was increased in response to melatonin, and was accompanied by decreased apoptosis. An immunofluorescence assay revealed that melatonin treatment markedly decreased Runx2 expression and upregulated LC3 expression. Treatment with the autophagy inhibitor 3-methyladenine reversed this phenomenon. Melatonin significantly increased expression of p-AMPK and p-ULK1, and decreased mTOR expression. Treatment with compound C (an inhibitor of AMPK) or MHY1485 (an agonist of mTOR) ablated the observed benefits of melatonin treatment. Melatonin protects VSMCs against calcification by activating autophagy via the AMPK/mTOR/ULK1 pathway.
Collapse
Affiliation(s)
- Wei Ren Chen
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China; Department of Cardiology, Nanlou Division, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, China.
| | - Jia Qi Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China.
| | - Fang Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China.
| | - Xue Qin Shen
- International Medical Centre, PLA General Hospital, Beijing, China.
| | - Yu Jie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China.
| |
Collapse
|
77
|
Kim Y, Eom YJ, Cho SH. Treatment of Hominis placenta pharmacopuncture for a patient with mild neurocognitive disorder: Case report. J Pharmacopuncture 2020; 22:279-283. [PMID: 31970026 PMCID: PMC6970571 DOI: 10.3831/kpi.2019.22.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 11/09/2022] Open
Abstract
Hominis placenta pharmacopuncture, a treatment that injects Hominis placenta extract into acupoints, has been suggested in the literature and researches that it could be used for cognitive decline. We experienced a case of mild neurocognitive disorder treated with Hominis placenta pharmacopuncture. Hominis placenta pharmacopuncture could be a possible treatment modality producing substantial clinical result in cognitive function which is assessed with Mini-Mental State Examination-Dementia Screening (MMSE-DS), Korean Version of Montreal Cognitive Assessment (MoCA-K), and Korean-Dementia Rating Scale (K-DRS). A 84-year-old man with mild neurocognitive disorder received Hominis placenta pharmacopuncture on GV20, CV12, and bilateral ST36 for a month. The results of neuropsychological examination showed increase in scores after treatment of Hominis placenta pharmacopuncture. Before treatment, they were 15 points for MoCA-K, and 120 points for K-DRS (7.6%), but after treatment, they elevated by 21 points for MoCA-K and 137 points for K-DRS (100%). MMSE-DS score was 28 points, unchanged before and after treatment. It did not cause any side-effect. Hominis placenta pharmacopuncture could be a safe option for treating mild neurocognitive disorder.
Collapse
Affiliation(s)
- Yunna Kim
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea.,College of Korean Medicine, Kyung Hee University, Seoul, Korea.,Research group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul, South Korea
| | - Yoon Ji Eom
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea.,College of Korean Medicine, Kyung Hee University, Seoul, Korea.,Research group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul, South Korea
| | - Seung-Hun Cho
- College of Korean Medicine, Kyung Hee University, Seoul, Korea.,Research group of Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
78
|
Kim HJ, Jeong JW, Park C, Choi YH, Hong SH. Naesohwangryeon-tang Induced Apoptosis and Autophagy in A549 Human Lung Cancer Cells. J Pharmacopuncture 2020; 22:269-278. [PMID: 31970025 PMCID: PMC6970567 DOI: 10.3831/kpi.2019.22.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 01/02/2023] Open
Abstract
Objectives Naesohwangryeon-tang (NHT) is a type of traditional herbal formula, however, little is known about its antitumor activity. In this study, the antitumor properties of NHT was evaluated in human lung adenocarcinoma cells. Methods To check the inhibitory effect of NHT, MTT assay was performed. Cell cycle analysis and detection of ROS production were conducted by flow cytometry. To evaluate the signaling pathway, Western blotting was conducted. Results Our results showed that the decrease of cell proliferation by NHT stimulation occurred more significantly in A549 cells than in NCI-H460 cells. In addition, NHT-induced apoptosis was associated with the activation of caspases and production of reactive oxygen species (ROS). NHT-induced apoptosis was attenuated after pretreatments with z-VAD-fmk or N-acetylcysteine, suggesting that NHT-induced apoptosis was caspase- and ROS-dependent. Interestingly, NHT treatment led to the development of autophagic vesicular organelles and upregulation of several autophagy-related genes. The pretreatment of bafilomycin A1 decreased apoptosis slightly but increased cell viability in the presence of NHT. Conclusion These findings indicated that NHT induces both apoptosis and cell-protective autophagy in human lung cancer cells. This data suggests that NHT might be a novel herbal drug for lung cancer.
Collapse
Affiliation(s)
- Hong Jae Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea
| | - Jin-Woo Jeong
- Freshwater Bioresources Utilization Bureau, Nakdonggang National Institute of Biological Resoureces, Gyeongsangbuk-do 37242, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology, Dong-eui University, Busan 47340, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Republic of Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| |
Collapse
|
79
|
Hu Z, Pan Y, Cheng A, Zhang X, Wang M, Chen S, Zhu D, Liu M, Yang Q, Wu Y, Zhao X, Huang J, Zhang S, Mao S, Ou X, Yu Y, Zhang L, Liu Y, Tian B, Pan L, Rehman MU, Yin Z, Jia R. Autophagy Promotes Duck Tembusu Virus Replication by Suppressing p62/SQSTM1-Mediated Innate Immune Responses In Vitro. Vaccines (Basel) 2020; 8:vaccines8010022. [PMID: 31941042 PMCID: PMC7157248 DOI: 10.3390/vaccines8010022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/16/2022] Open
Abstract
Duck Tembusu virus (DTMUV) has recently appeared in ducks in China and the key cellular determiners for DTMUV replication in host cells remain unknown. Autophagy is an evolutionarily conserved cellular process that has been reported to facilitate flavivirus replication. In this study, we utilized primary duck embryo fibroblast (DEF) as the cell model and found that DTMUV infection triggered LC3-II increase and polyubiquitin-binding protein sequestosome 1 (p62) decrease, confirming that complete autophagy occurred in DEF cells. The induction of autophagy by pharmacological treatment increased DTMUV replication in DEF cells, whereas the inhibition of autophagy with pharmacological treatments or RNA interference decreased DTMUV replication. Inhibiting autophagy enhanced the activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and interferon regulatory factor 7 (IRF7) pathways and increased the p62 protein level in DTMUV-infected cells. We further found that the overexpression of p62 decreased DTMUV replication and inhibited the activation of the NF-κB and IRF7 pathways, and changes in the NF-κB and IRF7 pathways were consistent with the level of phosphorylated TANK-binding kinase 1 (p-TBK1). Opposite results were found in p62 knockdown cells. In summary, we found that autophagy-mediated p62 degradation acted as a new strategy for DTMUV to evade host innate immunity.
Collapse
Affiliation(s)
- Zhiqiang Hu
- Research Center of Avian Disease, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Y.P.); (A.C.); (X.Z.); (M.W.); (S.C.); (D.Z.); (M.L.); (Q.Y.); (Y.W.); (X.Z.); (J.H.); (S.Z.); (S.M.); (X.O.); (Y.Y.); (L.Z.); (Y.L.); (B.T.); (L.P.); (M.U.R.)
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China;
| | - Yuhong Pan
- Research Center of Avian Disease, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Y.P.); (A.C.); (X.Z.); (M.W.); (S.C.); (D.Z.); (M.L.); (Q.Y.); (Y.W.); (X.Z.); (J.H.); (S.Z.); (S.M.); (X.O.); (Y.Y.); (L.Z.); (Y.L.); (B.T.); (L.P.); (M.U.R.)
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China;
| | - Anchun Cheng
- Research Center of Avian Disease, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Y.P.); (A.C.); (X.Z.); (M.W.); (S.C.); (D.Z.); (M.L.); (Q.Y.); (Y.W.); (X.Z.); (J.H.); (S.Z.); (S.M.); (X.O.); (Y.Y.); (L.Z.); (Y.L.); (B.T.); (L.P.); (M.U.R.)
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China;
| | - Xingcui Zhang
- Research Center of Avian Disease, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Y.P.); (A.C.); (X.Z.); (M.W.); (S.C.); (D.Z.); (M.L.); (Q.Y.); (Y.W.); (X.Z.); (J.H.); (S.Z.); (S.M.); (X.O.); (Y.Y.); (L.Z.); (Y.L.); (B.T.); (L.P.); (M.U.R.)
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China;
| | - Mingshu Wang
- Research Center of Avian Disease, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Y.P.); (A.C.); (X.Z.); (M.W.); (S.C.); (D.Z.); (M.L.); (Q.Y.); (Y.W.); (X.Z.); (J.H.); (S.Z.); (S.M.); (X.O.); (Y.Y.); (L.Z.); (Y.L.); (B.T.); (L.P.); (M.U.R.)
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China;
| | - Shun Chen
- Research Center of Avian Disease, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Y.P.); (A.C.); (X.Z.); (M.W.); (S.C.); (D.Z.); (M.L.); (Q.Y.); (Y.W.); (X.Z.); (J.H.); (S.Z.); (S.M.); (X.O.); (Y.Y.); (L.Z.); (Y.L.); (B.T.); (L.P.); (M.U.R.)
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China;
| | - Dekang Zhu
- Research Center of Avian Disease, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Y.P.); (A.C.); (X.Z.); (M.W.); (S.C.); (D.Z.); (M.L.); (Q.Y.); (Y.W.); (X.Z.); (J.H.); (S.Z.); (S.M.); (X.O.); (Y.Y.); (L.Z.); (Y.L.); (B.T.); (L.P.); (M.U.R.)
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China;
| | - Mafeng Liu
- Research Center of Avian Disease, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Y.P.); (A.C.); (X.Z.); (M.W.); (S.C.); (D.Z.); (M.L.); (Q.Y.); (Y.W.); (X.Z.); (J.H.); (S.Z.); (S.M.); (X.O.); (Y.Y.); (L.Z.); (Y.L.); (B.T.); (L.P.); (M.U.R.)
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China;
| | - Qiao Yang
- Research Center of Avian Disease, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Y.P.); (A.C.); (X.Z.); (M.W.); (S.C.); (D.Z.); (M.L.); (Q.Y.); (Y.W.); (X.Z.); (J.H.); (S.Z.); (S.M.); (X.O.); (Y.Y.); (L.Z.); (Y.L.); (B.T.); (L.P.); (M.U.R.)
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China;
| | - Ying Wu
- Research Center of Avian Disease, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Y.P.); (A.C.); (X.Z.); (M.W.); (S.C.); (D.Z.); (M.L.); (Q.Y.); (Y.W.); (X.Z.); (J.H.); (S.Z.); (S.M.); (X.O.); (Y.Y.); (L.Z.); (Y.L.); (B.T.); (L.P.); (M.U.R.)
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China;
| | - Xinxin Zhao
- Research Center of Avian Disease, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Y.P.); (A.C.); (X.Z.); (M.W.); (S.C.); (D.Z.); (M.L.); (Q.Y.); (Y.W.); (X.Z.); (J.H.); (S.Z.); (S.M.); (X.O.); (Y.Y.); (L.Z.); (Y.L.); (B.T.); (L.P.); (M.U.R.)
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China;
| | - Juan Huang
- Research Center of Avian Disease, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Y.P.); (A.C.); (X.Z.); (M.W.); (S.C.); (D.Z.); (M.L.); (Q.Y.); (Y.W.); (X.Z.); (J.H.); (S.Z.); (S.M.); (X.O.); (Y.Y.); (L.Z.); (Y.L.); (B.T.); (L.P.); (M.U.R.)
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China;
| | - Shaqiu Zhang
- Research Center of Avian Disease, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Y.P.); (A.C.); (X.Z.); (M.W.); (S.C.); (D.Z.); (M.L.); (Q.Y.); (Y.W.); (X.Z.); (J.H.); (S.Z.); (S.M.); (X.O.); (Y.Y.); (L.Z.); (Y.L.); (B.T.); (L.P.); (M.U.R.)
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China;
| | - Sai Mao
- Research Center of Avian Disease, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Y.P.); (A.C.); (X.Z.); (M.W.); (S.C.); (D.Z.); (M.L.); (Q.Y.); (Y.W.); (X.Z.); (J.H.); (S.Z.); (S.M.); (X.O.); (Y.Y.); (L.Z.); (Y.L.); (B.T.); (L.P.); (M.U.R.)
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China;
| | - Xumin Ou
- Research Center of Avian Disease, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Y.P.); (A.C.); (X.Z.); (M.W.); (S.C.); (D.Z.); (M.L.); (Q.Y.); (Y.W.); (X.Z.); (J.H.); (S.Z.); (S.M.); (X.O.); (Y.Y.); (L.Z.); (Y.L.); (B.T.); (L.P.); (M.U.R.)
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China;
| | - Yanling Yu
- Research Center of Avian Disease, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Y.P.); (A.C.); (X.Z.); (M.W.); (S.C.); (D.Z.); (M.L.); (Q.Y.); (Y.W.); (X.Z.); (J.H.); (S.Z.); (S.M.); (X.O.); (Y.Y.); (L.Z.); (Y.L.); (B.T.); (L.P.); (M.U.R.)
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China;
| | - Ling Zhang
- Research Center of Avian Disease, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Y.P.); (A.C.); (X.Z.); (M.W.); (S.C.); (D.Z.); (M.L.); (Q.Y.); (Y.W.); (X.Z.); (J.H.); (S.Z.); (S.M.); (X.O.); (Y.Y.); (L.Z.); (Y.L.); (B.T.); (L.P.); (M.U.R.)
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China;
| | - Yunya Liu
- Research Center of Avian Disease, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Y.P.); (A.C.); (X.Z.); (M.W.); (S.C.); (D.Z.); (M.L.); (Q.Y.); (Y.W.); (X.Z.); (J.H.); (S.Z.); (S.M.); (X.O.); (Y.Y.); (L.Z.); (Y.L.); (B.T.); (L.P.); (M.U.R.)
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China;
| | - Bin Tian
- Research Center of Avian Disease, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Y.P.); (A.C.); (X.Z.); (M.W.); (S.C.); (D.Z.); (M.L.); (Q.Y.); (Y.W.); (X.Z.); (J.H.); (S.Z.); (S.M.); (X.O.); (Y.Y.); (L.Z.); (Y.L.); (B.T.); (L.P.); (M.U.R.)
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China;
| | - Leichang Pan
- Research Center of Avian Disease, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Y.P.); (A.C.); (X.Z.); (M.W.); (S.C.); (D.Z.); (M.L.); (Q.Y.); (Y.W.); (X.Z.); (J.H.); (S.Z.); (S.M.); (X.O.); (Y.Y.); (L.Z.); (Y.L.); (B.T.); (L.P.); (M.U.R.)
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China;
| | - Mujeeb Ur Rehman
- Research Center of Avian Disease, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Y.P.); (A.C.); (X.Z.); (M.W.); (S.C.); (D.Z.); (M.L.); (Q.Y.); (Y.W.); (X.Z.); (J.H.); (S.Z.); (S.M.); (X.O.); (Y.Y.); (L.Z.); (Y.L.); (B.T.); (L.P.); (M.U.R.)
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China;
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China;
| | - Renyong Jia
- Research Center of Avian Disease, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Y.P.); (A.C.); (X.Z.); (M.W.); (S.C.); (D.Z.); (M.L.); (Q.Y.); (Y.W.); (X.Z.); (J.H.); (S.Z.); (S.M.); (X.O.); (Y.Y.); (L.Z.); (Y.L.); (B.T.); (L.P.); (M.U.R.)
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China;
- Correspondence:
| |
Collapse
|
80
|
Zhang JW, Xu DQ, Feng XZ. The toxic effects and possible mechanisms of glyphosate on mouse oocytes. CHEMOSPHERE 2019; 237:124435. [PMID: 31352102 DOI: 10.1016/j.chemosphere.2019.124435] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Glyphosate is a high-efficiency, low-toxicity, broad-spectrum herbicide. The residues of glyphosate-based herbicides are frequent pollutants in the environment. However, the effects of glyphosate on oocyte maturation, as well as its possible mechanisms, remain unclear. The present study revealed that mouse oocytes had reduced rates of germinal vesicle breakdown (GVBD) and first polar body extrusion (PBE) after treatment with 500 μM glyphosate. Reactive oxygen species (ROS) were found in mouse oocytes exposed to glyphosate, as shown by changes in the mRNA expression of related antioxidant enzyme genes (cat, sod2, gpx). After 14 h of exposure to glyphosate, metaphase II (MII) mouse oocytes displayed an abnormal spindle morphology and DNA double-strand breaks (DNA-DSBs). Simultaneously, mitochondria showed an aggregated distribution and decreased membrane potential in mouse oocytes exposed to glyphosate. The protein expression levels of apoptosis factors (Bax, Bcl-2) and the mRNA expression levels of apoptosis-related genes (bax, bcl-2, caspase3) were measured by Western blot and qRT-PCR, respectively. Meanwhile, the expression levels of autophagy-related genes (lc3, atg14, mtor) and proteins (LC3, Atg12) were significantly decreased in the glyphosate treatment group compared with the control group. Collectively, our results indicated that glyphosate exposure could interfere with mouse oocyte maturation by generating oxidative stress and early apoptosis.
Collapse
Affiliation(s)
- Jing-Wen Zhang
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Ding-Qi Xu
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Xi-Zeng Feng
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
81
|
Wang JL, Xu CJ. Astrocytes autophagy in aging and neurodegenerative disorders. Biomed Pharmacother 2019; 122:109691. [PMID: 31786465 DOI: 10.1016/j.biopha.2019.109691] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/11/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
Astrocytes can serve multiple functions in maintaining cellular homeostasis of the central nervous system (CNS), and normal functions for autophagy in astrocytes is considered to have very vital roles in the pathogenesis of aging and neurodegenerative diseases. Autophagy is a major intracellular lysosomal (or its yeast analog, vacuolar) clearance pathways involved in the degradation and recycling of long-lived proteins, oxidatively damaged proteins and dysfunctional organelles by lysosomes. Current evidence has shown that autophagy might influence inflammation, oxidative stress, aging and function of astrocytes. Although the interrelation between autophagy and inflammation, oxidative stress, aging or neurological disorders have been addressed in detail, the influence of astrocytes mediated-autophagy in aging and neurodegenerative disorders has yet to be fully reviewed. In this review, we will summarize the most up-to-date findings and highlight the role of autophagy in astrocytes and link autophagy of astrocytes to aging and neurodegenerative diseases. Due to the prominent roles of astrocytic autophagy in age-related neurodegenerative diseases, we believe that we can provide new suggestions for the treatment of these disorders.
Collapse
Affiliation(s)
- Jun-Ling Wang
- Center for Reproductive Medicine, Affiliated Hospital 1 of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China.
| | - Chao-Jin Xu
- Department of Histology & Embryology, School of Basic Medical Science, Wenzhou Medical University, Cha Shan University Town, No.1 Central North Road, Wenzhou, Zhejiang, 325035, PR China.
| |
Collapse
|
82
|
Zhao Y, Wang Z, Zhang W, Zhang L. Non-coding RNAs regulate autophagy process via influencing the expression of associated protein. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 151:32-39. [PMID: 31786247 DOI: 10.1016/j.pbiomolbio.2019.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/17/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
Autophagy is a tightly-regulated multi-step process involving the lysosomal degradation of proteins and cytoplasmic organelles. Central to this process is the formation of the autophagosome, a double membrane-bound vesicle, which is fuse with lysosomes or endosomes, and then deliver its cytoplasmic cargo to the lysosomes. Here, we summarize the recent process of autophagy, focusing on protein molecules, their complexes, and its essential roles of autophagy in various phases. Emerging evidence has revealed that miRNAs, lncRNAs, and circRNAs play an indispensable role in autophagy regulation by modulating targeting gene expression. This review we will summarize the main features of ncRNAs and point to gaps in our current knowledge of the connection between ncRNAs and autophagy, as well as their potential utilization in various disease phenotypes. Also, we highlight recent advances in ncRNAs and autophagy-associated protein interaction and how they regulate the autophagy process.
Collapse
Affiliation(s)
- Yunyi Zhao
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Ze Wang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Wenhui Zhang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China; Ministry of Education, Engineering Research Center for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China.
| | - Linbo Zhang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China; Ministry of Education, Engineering Research Center for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| |
Collapse
|
83
|
Functions and Implications of Autophagy in Colon Cancer. Cells 2019; 8:cells8111349. [PMID: 31671556 PMCID: PMC6912527 DOI: 10.3390/cells8111349] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 02/08/2023] Open
Abstract
Autophagy is an essential function to breakdown cellular proteins and organelles to recycle for new nutrient building blocks. In colorectal cancer, the importance of autophagy is becoming widely recognized as it demonstrates both pro- and anti-tumorigenic functions. In colon cancer, cell autonomous and non-autonomous roles for autophagy are essential in growth and progression. However, the mechanisms downstream of autophagy (to reduce or enhance tumor growth) are not well known. Additionally, the signals that activate and coordinate autophagy for tumor cell growth and survival are not clear. Here, we highlight the context- and cargo-dependent role of autophagy in proliferation, cell death, and cargo breakdown.
Collapse
|
84
|
Li C, Yu Y, Zhang X, Wei J, Qin Q. Grouper Atg12 negatively regulates the antiviral immune response against Singapore grouper iridovirus (SGIV) infection. FISH & SHELLFISH IMMUNOLOGY 2019; 93:702-710. [PMID: 31421242 DOI: 10.1016/j.fsi.2019.08.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Autophagy is an evolutionarily conserved, multi-step lysosomal degradation process used to maintain cell survival and homeostasis. A series of autophagy-related genes (Atgs) are involved in the autophagic pathway. In mammals, a growing number of studies have attributed functions to some Atgs that are distinct from their classical role in autophagosome biogenesis, such as resistance to pathogens. However, little is known about the functions of fish Atgs. In this study, we cloned and characterized an atg12 homolog from orange spotted grouper (Epinephelus coioides) (Ecatg12). Ecatg12 encodes a 117 amino acid protein that shares 94.0% and 76.8% identity with gourami (Anabas_testudineus) and humans (Homo sapiens), respectively. The transcription level of Ecatg12 was lower in cells infected with Singapore grouper iridovirus (SGIV) than in non-infected cells. Fluorescence microscopy revealed that EcAtg12 localized in the cytoplasm and nucleus in grouper spleen cells. Overexpression of EcAtg12 significantly increased the replication of SGIV, as evidenced by increased severity of the cytopathic effect, transcription levels of viral genes, levels of viral proteins, and progeny virus yield. Further studies showed that EcAtg12 overexpression decreased the expression levels of interferon (IFN) related molecules and pro-inflammatory factors and inhibited the promoter activity of IFN-3, interferon-stimulated response element, and nuclear factor-κB. Together, these results demonstrate that EcAtg12 plays crucial roles in SGIV replication by downregulating antiviral immune responses.
Collapse
Affiliation(s)
- Chen Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yepin Yu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xin Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jingguang Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510642, PR China.
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, PR China.
| |
Collapse
|
85
|
Feng Q, Luo Y, Zhang XN, Yang XF, Hong XY, Sun DS, Li XC, Hu Y, Li XG, Zhang JF, Li X, Yang Y, Wang Q, Liu GP, Wang JZ. MAPT/Tau accumulation represses autophagy flux by disrupting IST1-regulated ESCRT-III complex formation: a vicious cycle in Alzheimer neurodegeneration. Autophagy 2019; 16:641-658. [PMID: 31223056 DOI: 10.1080/15548627.2019.1633862] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Macroautophagy/autophagy deficit induces intracellular MAPT/tau accumulation, the hallmark pathology in Alzheimer disease (AD) and other tauopathies; however, the reverse role of MAPT accumulation in autophagy and neurodegeneration is not clear. Here, we found that overexpression of human wild-type full-length MAPT, which models MAPT pathologies as seen in sporadic AD patients, induced autophagy deficits via repression of autophagosome-lysosome fusion leading to significantly increased LC3 (microtubule-associated protein 1 light chain 3)-II and SQSTM1/p62 (sequestosome 1) protein levels with autophagosome accumulation. At the molecular level, intracellular MAPT aggregation inhibited expression of IST1 (IST1 factor associated with ESCRT-III), a positive modulator for the formation of ESCRT (the Endosomal Sorting Complex Required for Transport) complex that is required for autophagosome-lysosome fusion. Upregulating IST1 in human MAPT transgenic mice attenuated autophagy deficit with reduced MAPT aggregation and ameliorated synaptic plasticity and cognitive functions, while downregulating IST1 per se induced autophagy deficit with impaired synapse and cognitive function in naïve mice. IST1 can facilitate association of CHMP2B (charged multivesicular body protein 2B) and CHMP4B/SNF7-2 to form ESCRT-III complex, while lack of IST1 impeded the complex formation. Finally, we demonstrate that MAPT accumulation suppresses IST1 transcription with the mechanisms involving the ANP32A-regulated mask of histone acetylation. Our findings suggest that the AD-like MAPT accumulation can repress autophagosome-lysosome fusion by deregulating ANP32A-INHAT-IST1-ESCRT-III pathway, which also reveals a vicious cycle of MAPT accumulation and autophagy deficit in the chronic course of AD neurodegeneration.Abbreviations: AAV: adeno-associated virus; Aβ: β-amyloid; aCSF: artificial cerebrospinal fluid; AD: Alzheimer disease; ANP32A: acidic nuclear phosphoprotein 32 family member A; ATG: autophagy related; AVs: autophagic vacuoles; CEBPB: CCAAT enhancer binding protein beta; CHMP: charged multivesicular body protein; DMEM: Dulbecco's modified eagle's medium; EBSS: Earle's balanced salt solution; EGFR: epidermal growth factor receptor; ESCRT: endosomal sorting complex required for transport; fEPSPs: field excitatory postsynaptic potentials; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GSK3B: glycogen synthase kinase 3 beta; HAT: histone acetyl transferase; HDAC: histone deacetylase; INHAT: inhibitor of histone acetyl transferase; IST1: IST1 factor associated with ESCRT-III; LAMP2: lysosomal associated membrane protein 2; LTP: long-term potentiation; MAP1LC3: microtubule associated protein 1 light chain 3; MAPT/tau: microtubule associated protein tau; MVB: multivesicular bodies; MWM: Morris water maze; PBS: phosphate-buffered saline solution; RAB7: member RAS oncogene family; SNAREs: soluble N-ethylmaleimide-sensitive factor attachment protein receptors; SQSTM1/p62: sequestosome 1.
Collapse
Affiliation(s)
- Qiong Feng
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Luo
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xi-Fei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiao-Yue Hong
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-Shen Sun
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia-Chun Li
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Guang Li
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Fei Zhang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Li
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gong-Ping Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, China
| |
Collapse
|
86
|
Mishra R, Upadhyay A, Prajapati VK, Dhiman R, Poluri KM, Jana NR, Mishra A. LRSAM1 E3 ubiquitin ligase: molecular neurobiological perspectives linked with brain diseases. Cell Mol Life Sci 2019; 76:2093-2110. [PMID: 30826859 PMCID: PMC11105512 DOI: 10.1007/s00018-019-03055-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 01/01/2023]
Abstract
Cellular protein quality control (PQC) plays a significant role in the maintenance of cellular homeostasis. Failure of PQC mechanism may lead to various neurodegenerative diseases due to accumulation of aberrant proteins. To avoid such fatal neuronal conditions PQC employs autophagy and ubiquitin proteasome system (UPS) to degrade misfolded proteins. Few quality control (QC) E3 ubiquitin ligases interplay an important role to specifically recognize misfolded proteins for their intracellular degradation. Leucine-rich repeat and sterile alpha motif-containing 1 (LRSAM1) is a really interesting new gene (RING) class protein that possesses E3 ubiquitin ligase activity with promising applications in PQC. LRSAM1 is also known as RING finger leucine repeat rich (RIFLE) or TSG 101-associated ligase (TAL). LRSAM1 has various cellular functions as it modulates the protein aggregation, endosomal sorting machinery and virus egress from the cells. Thus, this makes LRSAM1 interesting to study not only in protein conformational disorders such as neurodegeneration but also in immunological and other cancerous disorders. Furthermore, LRSAM1 interacts with both cellular protein degradation machineries and hence it can participate in maintenance of overall cellular proteostasis. Still, more research work on the quality control molecular functions of LRSAM1 is needed to comprehend its roles in various protein aggregatory diseases. Earlier findings suggest that in a mouse model of Charcot-Marie-Tooth (CMT) disease, lack of LRSAM1 functions sensitizes peripheral axons to degeneration. It has been observed that in CMT the patients retain dominant and recessive mutations of LRSAM1 gene, which encodes most likely a defective protein. However, still the comprehensive molecular pathomechanism of LRSAM1 in neuronal functions and neurodegenerative diseases is not known. The current article systematically represents the molecular functions, nature and detailed characterization of LRSAM1 E3 ubiquitin ligase. Here, we review emerging molecular mechanisms of LRSAM1 linked with neurobiological functions, with a clear focus on the mechanism of neurodegeneration and also on other diseases. Better understanding of LRSAM1 neurobiological and intracellular functions may contribute to develop promising novel therapeutic approaches, which can also propose new lines of molecular beneficial targets for various neurodegenerative diseases.
Collapse
Affiliation(s)
- Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8 Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Nihar Ranjan Jana
- School of Bioscience, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
87
|
Nigam M, Suleria HAR, Farzaei MH, Mishra AP. Marine anticancer drugs and their relevant targets: a treasure from the ocean. Daru 2019; 27:491-515. [PMID: 31165439 PMCID: PMC6593002 DOI: 10.1007/s40199-019-00273-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
Marine organisms comprising animals and plants are wealthiest sources of bioactive compounds possessing various pharmacological properties specifically: free radical scavenging, antitumor, antimicrobial, analgesic, neuroprotective and immunomodulatory. Marine drugs provide an alternative source to meet the demand of effective, safe and low-cost drugs that are rising with the continuously growing world population. Cancer is one of the leading reasons of mortality in western nations in contrast to communicable diseases of developing nations. In spite of outstanding developments in cancer therapy in past three decades, there is still an insistent necessity for innovative drugs in the area of cancer biology, especially in the unexplored area of marine anticancer compounds. However, recent technological innovations in structure revelation, synthetic creation of new compounds and biological assays have made possible the isolation and clinical assessment of innumerable unique anticancer compounds from marine environment. This review provides an insight into the anticancer research so far conducted in the area of the marine natural products/synthetic derivatives, their possible molecular targets and the current challenges in the drug development. Graphical abstract.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand 246174 India
| | - Hafiz Ansar Rasul Suleria
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3216 Australia
- UQ Diamantina Institute, Translational Research Institute, Faculty of Medicine, The University of Queensland, 37 Kent Street Woolloongabba, Brisbane, QLD 4102 Australia
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS 66506 USA
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand 246174 India
| |
Collapse
|
88
|
Gao S, Li S, Li Q, Zhang F, Sun M, Wan Z, Wang S. Protective effects of salvianolic acid B against hydrogen peroxide‑induced apoptosis of human umbilical vein endothelial cells and underlying mechanisms. Int J Mol Med 2019; 44:457-468. [PMID: 31173197 PMCID: PMC6605496 DOI: 10.3892/ijmm.2019.4227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
Salvianolic acid B (Sal B) is a water-soluble active component of Danshen and has anti-atherosclerotic effects. The present study aimed to evaluate the cytoprotective effects of Sal B against hydrogen peroxide (H2O2)-induced oxidative stress damage in human umbilical vein endothelial cells (HUVECs) and investigate the underlying mechanisms. It was revealed that Sal B protected the cells from H2O2-induced damage, as indicated by MTT results showing enhanced cell viability and by flow cytometric analysis showing reduced apoptosis of cells challenged with H2O2. Furthermore, as an underlying mechanism, the enhancement of autophagy was indicated to be accountable for the decrease in apoptosis, as Sal B caused the upregulation of light chain 3-II and Beclin-1, and downregulation of p62 under H2O2-induced oxidative stress. Finally, Sal B increased the phosphorylation of AMP kinase (AMPK) and decreased the phosphorylation of mammalian target of rapamycin (mTOR), but had no effect on the phosphorylation of AKT. In conclusion, the present study revealed that Sal B protects HUVECs from oxidative stress, at least partially by promoting autophagy via activation of the AMPK pathway and downregulation of the mTOR pathway.
Collapse
Affiliation(s)
- Shan Gao
- College of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shiqin Li
- College of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qin Li
- Department of Infectious Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fuyong Zhang
- Department of Pharmacy, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Mengqi Sun
- College of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zilin Wan
- College of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shurong Wang
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
89
|
Casassa AF, Vanrell MC, Colombo MI, Gottlieb RA, Romano PS. Autophagy plays a protective role against Trypanosoma cruzi infection in mice. Virulence 2019; 10:151-165. [PMID: 30829115 PMCID: PMC6550547 DOI: 10.1080/21505594.2019.1584027] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a catabolic pathway required for cellular and organism homeostasis. Autophagy participates in the innate and adaptive immune responses at different levels. Xenophagy is a class of selective autophagy that involves the elimination of intracellular pathogens. Trypanosoma cruzi is the causative agent of Chagas, a disease that affects 8 million individuals worldwide. Previously, our group has demonstrated that autophagy participates in the invasion of T. cruzi in non-phagocytic cells. In this work we have studied the involvement of autophagy in the development of T. cruzi infection in mice. Beclin-1 is a protein essential for autophagy, required for autophagosome biogenesis and maturation. We have performed an acute model of infection on the autophagic deficient Beclin-1 heterozygous knock-out mice (Bcln±) and compared to control Bcln+/+ animals. In addition, we have analyzed the infection process in both peritoneal cells and RAW macrophages. Our results have shown that the infection was more aggressive in the autophagy-deficient mice, which displayed higher numbers of parasitemia, heart´s parasitic nests and mortality rates. We have also found that peritoneal cells derived from Bcln± animals and RAW macrophages treated with autophagy inhibitors displayed higher levels of infection compared to controls. Interestingly, free cytosolic parasites recruited LC3 protein and other markers of xenophagy in control compared to autophagy-deficient cells. Taken together, these data suggest that autophagy plays a protective role against T. cruzi infection in mice, xenophagy being one of the processes activated as part of the repertoire of immune responses generated by the host.
Collapse
Affiliation(s)
- Ana Florencia Casassa
- a Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora- Instituto de Histología y Embriología "Dr. Mario H. Burgos" , (IHEM-CONICET- Universidad Nacional de Cuyo) , Mendoza , Argentina
| | - María Cristina Vanrell
- a Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora- Instituto de Histología y Embriología "Dr. Mario H. Burgos" , (IHEM-CONICET- Universidad Nacional de Cuyo) , Mendoza , Argentina.,b Facultad de Ciencias Médicas , Universidad Nacional de Cuyo , Mendoza , Argentina
| | - María Isabel Colombo
- b Facultad de Ciencias Médicas , Universidad Nacional de Cuyo , Mendoza , Argentina.,c Laboratorio: Mecanismos moleculares implicados en el tráfico vesicular y la vía autofágica Instituto de Histología y Embriología (IHEM) "Dr. Mario H. Burgos" , (IHEM-CONICET- Universidad Nacional de Cuyo) , Mendoza , Argentina
| | - Roberta A Gottlieb
- d Smidt Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Patricia Silvia Romano
- a Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora- Instituto de Histología y Embriología "Dr. Mario H. Burgos" , (IHEM-CONICET- Universidad Nacional de Cuyo) , Mendoza , Argentina.,b Facultad de Ciencias Médicas , Universidad Nacional de Cuyo , Mendoza , Argentina
| |
Collapse
|
90
|
Mahapatra KK, Panigrahi DP, Praharaj PP, Bhol CS, Patra S, Mishra SR, Behera BP, Bhutia SK. Molecular interplay of autophagy and endocytosis in human health and diseases. Biol Rev Camb Philos Soc 2019; 94:1576-1590. [PMID: 30989802 DOI: 10.1111/brv.12515] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
Autophagy, an evolutionarily conserved process for maintaining the physio-metabolic equilibrium of cells, shares many common effector proteins with endocytosis. For example, tethering proteins involved in fusion like Ras-like GTPases (Rabs), soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs), lysosomal-associated membrane protein (LAMP), and endosomal sorting complex required for transport (ESCRT) have a dual role in endocytosis and autophagy, and the trafficking routes of these processes converge at lysosomes. These common effectors indicate an association between budding and fusion of membrane-bound vesicles that may have a substantial role in autophagic lysosome reformation, by sensing cellular stress levels. Therefore, autophagy-endocytosis crosstalk may be significant and implicates a novel endocytic regulatory pathway of autophagy. Moreover, endocytosis has a pivotal role in the intake of signalling molecules, which in turn activates cascades that can result in pathophysiological conditions. This review discusses the basic mechanisms of this crosstalk and its implications in order to identify potential novel therapeutic targets for various human diseases.
Collapse
Affiliation(s)
- Kewal K Mahapatra
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Debasna P Panigrahi
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Prakash P Praharaj
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Chandra S Bhol
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Srimanta Patra
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Soumya R Mishra
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Bishnu P Behera
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Sundergarh, Odisha 769008, India
| |
Collapse
|
91
|
Khalifeh M, Barreto GE, Sahebkar A. Trehalose as a promising therapeutic candidate for the treatment of Parkinson's disease. Br J Pharmacol 2019; 176:1173-1189. [PMID: 30767205 DOI: 10.1111/bph.14623] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a progressive movement disorder resulting primarily from loss of nigrostriatal dopaminergic neurons. PD is characterized by the accumulation of protein aggregates, and evidence suggests that aberrant protein deposition in dopaminergic neurons could be related to the dysregulation of the lysosomal autophagy pathway. The therapeutic potential of autophagy modulators has been reported in experimental models of PD. Trehalose is a natural disaccharide that has been considered as a new candidate for the treatment of neurodegenerative diseases. It has a chaperone-like activity, prevents protein misfolding or aggregation, and by promoting autophagy, contributes to the removal of accumulated proteins. In this review, we briefly summarize the role of aberrant autophagy in PD and the underlying mechanisms that lead to the development of this disease. We also discuss reports that used trehalose to counteract the neurotoxicity in PD, focusing particularly on the autophagy promoting, protein stabilization, and anti-neuroinflammatory effects of trehalose.
Collapse
Affiliation(s)
- Masoomeh Khalifeh
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
92
|
Li C, Liu J, Zhang X, Wei S, Huang X, Huang Y, Wei J, Qin Q. Fish Autophagy Protein 5 Exerts Negative Regulation on Antiviral Immune Response Against Iridovirus and Nodavirus. Front Immunol 2019; 10:517. [PMID: 30941145 PMCID: PMC6433989 DOI: 10.3389/fimmu.2019.00517] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/26/2019] [Indexed: 12/20/2022] Open
Abstract
Autophagy is an important biological activity that maintains homeostasis in eukaryotic cells. However, little is known about the functions of fish autophagy-related genes (Atgs). In this study, we cloned and characterized Atg5, a key gene in the autophagy gene superfamily, from orange-spotted grouper (Epinephelus coioides) (EcAtg5). EcAtg5 encoded a 275-amino acid protein that shared 94 and 81% identity to seabass (Lates calcarifer) and humans (Homo sapiens), respectively. The transcription level of EcAtg5 was significantly increased in cells infected with red-spotted grouper nervous necrosis virus (RGNNV). In cells infected with Singapore grouper iridovirus (SGIV), EcAtg5 expression declined during the early stage of infection and increased in the late stage. Fluorescence microscopy revealed that EcAtg5 mainly localized with a dot-like pattern in the cytoplasm of grouper cells. Overexpression of EcAtg5 significantly increased the replication of RGNNV and SGIV at different levels of detection, as indicated by increased severity of the cytopathic effect, transcription levels of viral genes, and levels of viral proteins. Knockdown of EcAtg5 decreased the replication of RGNNV and SGIV. Further studies showed that overexpression EcAtg5 activated autophagy, decreased expression levels of interferon related cytokines or effectors and pro-inflammatory factors, and inhibited the activation of nuclear factor κB, IFN-sensitive response element, and IFNs. In addition, ectopic expression of EcAtg5 affected cell cycle progression by hindering the G1/S transition. Taken together, our results demonstrated that fish Atg5 exerted a crucial role in virus replication by promoting autophagy, down-regulating antiviral IFN responses, and affecting the cell cycle.
Collapse
Affiliation(s)
- Chen Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jiaxin Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xin Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shina Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaohong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Youhua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jingguang Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
93
|
Huang T, Wan X, Alvarez AA, James CD, Song X, Yang Y, Sastry N, Nakano I, Sulman EP, Hu B, Cheng SY. MIR93 (microRNA -93) regulates tumorigenicity and therapy response of glioblastoma by targeting autophagy. Autophagy 2019; 15:1100-1111. [PMID: 30654687 DOI: 10.1080/15548627.2019.1569947] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Macroautophagy/autophagy is a natural intracellular process that maintains cellular homeostasis and protects cells from death under stress conditions. Autophagy sustains tumor survival and growth when induced by common cancer treatments, including IR and cytotoxic chemotherapy, thereby contributing to therapeutic resistance of tumors. In this study, we report that the expression of MIR93, noted in two clinically relevant tumor subtypes of GBM, influenced GSC phenotype as well as tumor response to therapy through its effects on autophagy. Our mechanistic studies revealed that MIR93 regulated autophagic activities in GSCs through simultaneous inhibition of multiple autophagy regulators, including BECN1/Beclin 1, ATG5, ATG4B, and SQSTM1/p62. Moreover, two first-line treatments for GBM, IR and temozolomide (TMZ), as well as rapamycin (Rap), the prototypic MTOR inhibitor, decreased MIR93 expression that, in turn, stimulated autophagic processes in GSCs. Inhibition of autophagy by ectopic MIR93 expression, or via autophagy inhibitors NSC (an ATG4B inhibitor) and CQ, enhanced the activity of IR and TMZ against GSCs. Collectively, our findings reveal a key role for MIR93 in the regulation of autophagy and suggest a combination treatment strategy involving the inhibition of autophagy while administering cytotoxic therapy. Abbreviations: ACTB: actin beta; ATG4B: autophagy related 4B cysteine peptidase; ATG5: autophagy related 5; BECN1: beclin 1; CL: classical; CQ: chloroquine diphosphate; CSCs: cancer stem cells; GBM: glioblastoma; GSCs: glioma stem-like cells; HEK: human embryonic kidney; IB: immunoblotting; IF: immunofluorescent staining; IR: irradiation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MES: mesenchymal; MIR93: microRNA 93; MIRC: a control miRNA; miRNA/miR: microRNA; MTOR: mechanistic target of rapamycin kinase; NSC: NSC185085; PN: proneural; qRT-PCR: quantitative reverse transcription-polymerase chain reaction; Rap: rapamycin; SQSTM1/p62: sequestosome 1; TCGA: the cancer genome atlas; TMZ: temozolomide; WT: wild type; ZIP93: lentiviral miRZIP targeting MIR93; ZIPC: lentiviral miRZip targeting control miRNA.
Collapse
Affiliation(s)
- Tianzhi Huang
- a The Ken & Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute , The Robert H. Lurie Comprehensive Cancer Center, Northwestern Universityd Feinberg School of Medicine , Chicago , IL , USA
| | - Xuechao Wan
- a The Ken & Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute , The Robert H. Lurie Comprehensive Cancer Center, Northwestern Universityd Feinberg School of Medicine , Chicago , IL , USA
| | - Angel A Alvarez
- a The Ken & Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute , The Robert H. Lurie Comprehensive Cancer Center, Northwestern Universityd Feinberg School of Medicine , Chicago , IL , USA
| | - C David James
- b Department of Neurological Surgery , Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Xiao Song
- a The Ken & Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute , The Robert H. Lurie Comprehensive Cancer Center, Northwestern Universityd Feinberg School of Medicine , Chicago , IL , USA
| | - Yongyong Yang
- a The Ken & Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute , The Robert H. Lurie Comprehensive Cancer Center, Northwestern Universityd Feinberg School of Medicine , Chicago , IL , USA
| | - Namratha Sastry
- a The Ken & Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute , The Robert H. Lurie Comprehensive Cancer Center, Northwestern Universityd Feinberg School of Medicine , Chicago , IL , USA
| | - Ichiro Nakano
- c Department of Neurosurgery , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Erik P Sulman
- d Department of Radiation Oncology , The University of Texas M. D. Anderson Cancer Center, Department of Radiation Oncology , Houston , TX , USA
| | - Bo Hu
- a The Ken & Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute , The Robert H. Lurie Comprehensive Cancer Center, Northwestern Universityd Feinberg School of Medicine , Chicago , IL , USA
| | - Shi-Yuan Cheng
- a The Ken & Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute , The Robert H. Lurie Comprehensive Cancer Center, Northwestern Universityd Feinberg School of Medicine , Chicago , IL , USA
| |
Collapse
|
94
|
Zhang W, Chen K, Guo Y, Chen Y, Liu X. Involvement of PRRSV NSP3 and NSP5 in the autophagy process. Virol J 2019; 16:13. [PMID: 30691473 PMCID: PMC6350329 DOI: 10.1186/s12985-019-1116-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/01/2019] [Indexed: 12/29/2022] Open
Abstract
Background Autophagy is an essential process in eukaryotic cells in which autophagosomes form to deliver cellular organelles and long-lived proteins to lysosomes for degradation. Many studies have recently identified the regulatory mechanisms involved in the interaction between viral infection and autophagy. Methods LC3 turnover and the proteins in the endoplasmic reticulum (ER) stress pathway were investigated using western blot analysis. The formation and degradation of autophagosomes were detected using immunofluorescence staining. Results Autophagy was activated by porcine reproductive and respiratory syndrome virus (PRRSV) NSP3, NSP5 and NSP9, which are two transmembrane proteins and an RNA-dependent RNA polymerase, respectively. The formation of autophagosomes was induced by NSP3 and NSP5 and developed from the ER; the fusion of these autophagosomes with lysosomes was limited. Although NSP3 and NSP5 are ER transmembrane proteins, these proteins did not activate the ER stress signaling pathways. In addition, the cytoplasmic domain of NSP3 plays a pivotal role in activating autophagy. Conclusions The data presented in this study reveal an important relationship between PRRSV NSPs and autophagy and provide new insights that improve our understanding of the involvement of PRRSV NSPs in the autophagy process. Electronic supplementary material The online version of this article (10.1186/s12985-019-1116-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Keren Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yang Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
95
|
Functional Characterization of Ubiquitin-Like Core Autophagy Protein ATG12 in Dictyostelium discoideum. Cells 2019; 8:cells8010072. [PMID: 30669443 PMCID: PMC6356199 DOI: 10.3390/cells8010072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a highly conserved intracellular degradative pathway that is crucial for cellular homeostasis. During autophagy, the core autophagy protein ATG12 plays, together with ATG5 and ATG16, an essential role in the expansion of the autophagosomal membrane. In this study we analyzed gene replacement mutants of atg12 in Dictyostelium discoideum AX2 wild-type and ATG16‾ cells. RNAseq analysis revealed a strong enrichment of, firstly, autophagy genes among the up-regulated genes and, secondly, genes implicated in cell motility and phagocytosis among the down-regulated genes in the generated ATG12‾, ATG16‾ and ATG12‾/16‾ cells. The mutant strains showed similar defects in fruiting body formation, autolysosome maturation, and cellular viability, implying that ATG12 and ATG16 act as a functional unit in canonical autophagy. In contrast, ablation of ATG16 or of ATG12 and ATG16 resulted in slightly more severe defects in axenic growth, macropinocytosis, and protein homeostasis than ablation of only ATG12, suggesting that ATG16 fulfils an additional function in these processes. Phagocytosis of yeast, spore viability, and maximal cell density were much more affected in ATG12‾/16‾ cells, indicating that both proteins also have cellular functions independent of each other. In summary, we show that ATG12 and ATG16 fulfil autophagy-independent functions in addition to their role in canonical autophagy.
Collapse
|
96
|
Zhang YY, Gu LJ, Huang J, Cai MC, Yu HL, Zhang W, Bao JF, Yuan WJ. CKD autophagy activation and skeletal muscle atrophy-a preliminary study of mitophagy and inflammation. Eur J Clin Nutr 2019; 73:950-960. [PMID: 30607007 DOI: 10.1038/s41430-018-0381-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 10/16/2018] [Accepted: 10/31/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND/OBJECTIVES Long-lived proteins and organelles, such as mitochondria and the sarcoplasmic reticulum, are degraded by autophagy. However, the specific role of autophagy in chronic kidney disease (CKD) muscle atrophy is still undefined. SUBJECTS/METHODS This was a cross-sectional study with 20 subjects and 11 controls. Autophagy induction was studied in human skeletal muscle biopsies from CKD patients and controls by comparing the cross-sectional areas of muscle fibers, protein, and mRNA expression of autophagy-related genes and the appearance of autophagosomes. RESULTS The cross-sectional area of muscle fibers was decreased in CKD patients as compared with the control group. CKD was associated with activated autophagy and mitophagy, as measured by the elevated mRNA and protein expression of BNIP3, (microtubule-associated proteins 1 A/1B light chain 3, also MAP1LC3) LC3, p62, PINK1, and PARKIN in the skeletal muscle and isolated mitochondria of the CKD group. Electron microscopy and immunohistofluorescence analysis showed mitochondrial engulfment by autophagosomes. Mitophagy was further demonstrated by the colocalization of LC3 and p62 puncta with the mitochondrial outer membrane protein TOM20. In addition, degradative FOXO3 (Forkhead box O3) was activated and synthetic mTOR (mammalian target of rapamycin) was inhibited, whereas the upstream mediators VPS34 (class III PI3-kinase) and AKT (protein kinase B, PKB) were activated in CKD patients. CONCLUSIONS Hyperactive autophagy and mitophagy may play important roles in CKD muscle atrophy. Autophagy was activated by FOXO3 translational factors in the skeletal muscle tissues of CKD patients, which maybe a new way of intervention for CKD muscle atrophy.
Collapse
Affiliation(s)
- Yue Yue Zhang
- Devision of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Li Jie Gu
- Devision of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Juan Huang
- Devision of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Min Chao Cai
- Devision of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Hong Lei Yu
- Devision of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Wei Zhang
- Devision of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Jin Fang Bao
- Devision of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China.
| | - Wei Jie Yuan
- Devision of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
97
|
Mishra AP, Salehi B, Sharifi-Rad M, Pezzani R, Kobarfard F, Sharifi-Rad J, Nigam M. Programmed Cell Death, from a Cancer Perspective: An Overview. Mol Diagn Ther 2018; 22:281-295. [PMID: 29560608 DOI: 10.1007/s40291-018-0329-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Programmed cell death (PCD) is probably the most widely discussed subject among the topics of cancer therapy. Over the last 2 decades an astonishing boost in our perception of cell death has been seen, and its role in cancer and cancer therapy has been thoroughly investigated. A number of discoveries have clarified the molecular mechanism of PCD, thus expounding the link between PCD and therapeutic tools. Even though PCD is assumed to play a major role in anticancer therapy, the clinical relevance of its induction remains uncertain. Since PCD involves multiple death programs including programmed necrosis and autophagic cell death, it has contributed to our better understanding of cancer pathogenesis and therapeutics. In this review, we discuss a brief outline of PCD types as well as their role in cancer therapeutics. Since irregularities in the cell death process are frequently found in various cancers, key proteins governing cell death type could be used as therapeutic targets for a wide range of cancer.
Collapse
Affiliation(s)
- Abhay P Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol, 61663335, Iran
| | - Raffaele Pezzani
- OU Endocrinology, Dept. Medicine (DIMED), University of Padova, via Ospedale 105, 35128, Padua, Italy.,AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padua, Italy
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB, Canada.
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand, 246174, India.
| |
Collapse
|
98
|
Shen Q, Zhang X, Li Q, Zhang J, Lai H, Gan H, Du X, Li M. TLR2 protects cisplatin‐induced acute kidney injury associated with autophagy via PI3K/Akt signaling pathway. J Cell Biochem 2018; 120:4366-4374. [PMID: 30387162 DOI: 10.1002/jcb.27722] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/29/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Qing Shen
- Department of Nephrology First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Xi Zhang
- Department of Nephrology First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Qiuying Li
- Department of Nephrology First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Jing Zhang
- Department of Nephrology First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Heng Lai
- Department of Nephrology First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Hua Gan
- Department of Nephrology First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Xiaogang Du
- Department of Nephrology First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Manli Li
- Department of Nephrology First Affiliated Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
99
|
Sarhan M, Land WG, Tonnus W, Hugo CP, Linkermann A. Origin and Consequences of Necroinflammation. Physiol Rev 2018; 98:727-780. [PMID: 29465288 DOI: 10.1152/physrev.00041.2016] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
When cells undergo necrotic cell death in either physiological or pathophysiological settings in vivo, they release highly immunogenic intracellular molecules and organelles into the interstitium and thereby represent the strongest known trigger of the immune system. With our increasing understanding of necrosis as a regulated and genetically determined process (RN, regulated necrosis), necrosis and necroinflammation can be pharmacologically prevented. This review discusses our current knowledge about signaling pathways of necrotic cell death as the origin of necroinflammation. Multiple pathways of RN such as necroptosis, ferroptosis, and pyroptosis have been evolutionary conserved most likely because of their differences in immunogenicity. As the consequence of necrosis, however, all necrotic cells release damage associated molecular patterns (DAMPs) that have been extensively investigated over the last two decades. Analysis of necroinflammation allows characterizing specific signatures for each particular pathway of cell death. While all RN-pathways share the release of DAMPs in general, most of them actively regulate the immune system by the additional expression and/or maturation of either pro- or anti-inflammatory cytokines/chemokines. In addition, DAMPs have been demonstrated to modulate the process of regeneration. For the purpose of better understanding of necroinflammation, we introduce a novel classification of DAMPs in this review to help detect the relative contribution of each RN-pathway to certain physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Maysa Sarhan
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Walter G Land
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Wulf Tonnus
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Christian P Hugo
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| | - Andreas Linkermann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna , Vienna , Austria ; INSERM UMR_S 1109, Laboratory of Excellence Transplantex, University of Strasbourg , Strasbourg , France ; German Academy of Transplantation Medicine, Munich , Germany ; and Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden , Dresden , Germany
| |
Collapse
|
100
|
Mohareer K, Asalla S, Banerjee S. Cell death at the cross roads of host-pathogen interaction in Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2018; 113:99-121. [PMID: 30514519 DOI: 10.1016/j.tube.2018.09.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/13/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) continues to be the leading cause of death by any single infectious agent, accounting for around 1.7 million annual deaths globally, despite several interventions and support programs by national and international agencies. With the development of drug resistance in Mycobacterium tuberculosis (M. tb), there has been a paradigm shift in TB research towards host-directed therapy. The potential targets include the interactions between host and bacterial proteins that are crucial for pathogenesis. Hence, collective efforts are being made to understand the molecular details of host-pathogen interaction for possible translation into host-directed therapy. The present review focuses on 'host cell death modalities' of host-pathogen interaction, which play a crucial role in determining the outcome of TB disease progression. Several cell death modalities that occur in response to mycobacterial infection have been identified in human macrophages either as host defences for bacterial clearance or as pathogen strategies for multiplication and dissemination. These cell death modalities include apoptosis, necrosis, pyroptosis, necroptosis, pyronecrosis, NETosis, and autophagy. These processes are highly overlapping with several mycobacterial proteins participating in more than one cell death pathway. Until now, reviews in M. tb and host cell death have discussed either focusing on host evasion strategies, apoptosis, autophagy, and necrosis or describing all these forms with limited discussions of their role in host-pathogen interactions. Here, we present a comprehensive review of various mycobacterial factors modulating host cell death pathways and the cross-talk between them. Besides this, we have discussed the networking of host cell death pathways including the interference of host miRNA during M. tb infection with their respective targets. Through this review, we present the host targets that overlap across several cell death modalities and the technical limitations of methodology in cell death research. Given the compelling need to discover alternative drug target(s), this review identifies these overlapping cell death factors as potential targets for host-directed therapy.
Collapse
Affiliation(s)
- Krishnaveni Mohareer
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India-500046
| | - Suman Asalla
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India-500046
| | - Sharmistha Banerjee
- Molecular Pathogenesis Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India-500046.
| |
Collapse
|