51
|
Fu SY, Chen FH, Wang CC, Yu CF, Chiang CS, Hong JH. Role of Myeloid-Derived Suppressor Cells in High-Dose-Irradiated TRAMP-C1 Tumors: A Therapeutic Target and an Index for Assessing Tumor Microenvironment. Int J Radiat Oncol Biol Phys 2020; 109:1547-1558. [PMID: 33188861 DOI: 10.1016/j.ijrobp.2020.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 01/22/2023]
Abstract
PURPOSE To investigate the temporal and spatial infiltration of TRAMP-C1 tumors by myeloid-derived suppressor cells (MDSCs) after high-dose radiation therapy (RT), and to explore their effect on tumor growth. METHODS AND MATERIALS TRAMP-C1 intramuscularly tumors were irradiated with a single dose of 8 Gy or 25 Gy. The dynamics of infiltrated MDSCs and their intratumoral spatial distribution were assessed by immunohistochemistry and flow cytometry. Cytokine levels in the blood and tumor were analyzed by multiplex immunoassay. Mice were injected with anti-Gr-1 antibody to determine whether MDSCs affect tumor growth after RT. RESULTS CD11b+Gr-1+ MDSCs infiltrated TRAMP-C1 tumors irradiated with 25 Gy, but not 8 Gy, within 4 hours and recruitment persisted for at least 2 weeks. Both CD11b+Ly6G+Ly6C+ polymorphonuclear-MDSCs (PMN-MDSCs) and CD11b+Ly6G-Ly6Chi monocytic-MDSCs (M-MDSCs) were involved. Tumor RT also increased the representation of both MDSC subpopulations in the spleen and peripheral blood. Levels of multiple cytokines were increased in the tumors at 2 weeks, including GM-CSF, G-CSF, CCL-3, CCL-5, CXCL-5, IL-6, IL-17α, and VEGF-a; while G-CSF, IL-6, and TNF-α levels increased in the blood. PMN-MDSCs aggregated in the central necrotic region of the irradiated tumors over time, where they were associated with avascular hypoxia (CD31-PIMO+). MDSCs expressed the proangiogenic factor, matrix metalloproteinase-9, and, within the necrotic area, high levels of arginase-1 and indoleamine 2,3-dioxygenase. Depletion of PMN-MDSCs by Gr-1 antibody increased the efficacy of high-dose RT. CONCLUSIONS PMN-MDSCs infiltrate TRAMP-C1 tumors after high-dose RT. Their spatial distribution suggests they are involved in the evolution of an intratumoral state of necrosis associated with avascular hypoxia, and their phenotype is consistent with them being immunosuppressive. They appear to promote tumor growth after RT, making them a prime therapeutic target for therapeutic intervention. Assessment of MDSCs and cytokine levels in blood could be an index of the need for such an intervention.
Collapse
Affiliation(s)
- Sheng-Yung Fu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; Radiation Biology Research Center, Institute for Radiologic Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Fang-Hsin Chen
- Radiation Biology Research Center, Institute for Radiologic Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Imaging and Radiologic Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Radiation Oncology, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan
| | - Chun-Chieh Wang
- Radiation Biology Research Center, Institute for Radiologic Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Imaging and Radiologic Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Radiation Oncology, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan
| | - Ching-Fang Yu
- Radiation Biology Research Center, Institute for Radiologic Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Radiation Oncology, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan.
| | - Ji-Hong Hong
- Radiation Biology Research Center, Institute for Radiologic Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Imaging and Radiologic Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Radiation Oncology, Chang Gung Memorial Hospital Linkou Branch, Taoyuan, Taiwan.
| |
Collapse
|
52
|
Matsui HM, Hazama S, Nakajima M, Xu M, Matsukuma S, Tokumitsu Y, Shindo Y, Tomochika S, Yoshida S, Iida M, Suzuki N, Takeda S, Yoshino S, Ueno T, Oka M, Nagano H. Novel adjuvant dendritic cell therapy with transfection of heat-shock protein 70 messenger RNA for patients with hepatocellular carcinoma: a phase I/II prospective randomized controlled clinical trial. Cancer Immunol Immunother 2020; 70:945-957. [PMID: 33074442 DOI: 10.1007/s00262-020-02737-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION A proteomic analysis of hepatocellular carcinoma (HCC) has revealed that Heat Shock Protein 70 (HSP70) is among the cancer antigen proteins of HCC. Moreover, we confirmed that HSP70 was highly expressed in HCC by immunohistochemical staining. Based on these results, we developed an HSP70 mRNA-transfected dendritic cell (DC) therapy for treating unresectable or recurrent HCC, and the phase I trial was completed successfully. Thus, we aimed to investigate the safety and efficacy of this therapy as a postoperative adjuvant treatment after curative resection for HCC to prevent recurrence by conducting a phase I/II randomized controlled clinical trial. METHODS Patients (n = 45) with resectable HCC of stages II-IVa were registered and randomly assigned into two groups (DC group: 31 patients, control group: 14 patients) before surgery. The primary endpoint was disease-free survival (DFS), and the secondary endpoints were safety and overall survival. The DC therapy was initially administered at approximately 1 week after surgery, and twice every 3-4 weeks thereafter. RESULTS No adverse events specific to the immunotherapy were observed in the DC group. There was no difference in DFS between the DC and control groups (p = 0.666). However, in the subgroup with HSP70-expressing HCC, DFS of the DC group tended to be better (p = 0.090) and OS of the DC group was significantly longer (p = 0.003) than those of the control group. CONCLUSION The HSP70 mRNA-transfected DC therapy was performed safely as an adjuvant therapy. The prognosis of HSP70-expressing HCC cases could be expected to improve with this therapy.
Collapse
Affiliation(s)
- Hiroto Matsui Matsui
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.,Department of Translational Research and Developmental Therapeutics Against Cancer, Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan
| | - Masao Nakajima
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ming Xu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Satoshi Matsukuma
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yukio Tokumitsu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shinobu Tomochika
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shin Yoshida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Michihisa Iida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shigeru Takeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shigefumi Yoshino
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.,Yamaguchi University Hospital Cancer Center, Ube, Yamaguchi, Japan
| | - Tomio Ueno
- Department of Digestive Surgery, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Masaaki Oka
- Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| |
Collapse
|
53
|
Implications of metabolism-driven myeloid dysfunctions in cancer therapy. Cell Mol Immunol 2020; 18:829-841. [PMID: 33077904 PMCID: PMC7570408 DOI: 10.1038/s41423-020-00556-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Immune homeostasis is maintained by an adequate balance of myeloid and lymphoid responses. In chronic inflammatory states, including cancer, this balance is lost due to dramatic expansion of myeloid progenitors that fail to mature to functional inflammatory neutrophils, macrophages, and dendritic cells (DCs), thus giving rise to a decline in the antitumor effector lymphoid response. Cancer-related inflammation orchestrates the production of hematopoietic growth factors and cytokines that perpetuate recruitment and activation of myeloid precursors, resulting in unresolved and chronic inflammation. This pathologic inflammation creates profound alterations in the intrinsic cellular metabolism of the myeloid progenitor pool, which is amplified by competition for essential nutrients and by hypoxia-induced metabolic rewiring at the tumor site. Therefore, persistent myelopoiesis and metabolic dysfunctions contribute to the development of cancer, as well as to the severity of a broad range of diseases, including metabolic syndrome and autoimmune and infectious diseases. The aims of this review are to (1) define the metabolic networks implicated in aberrant myelopoiesis observed in cancer patients, (2) discuss the mechanisms underlying these clinical manifestations and the impact of metabolic perturbations on clinical outcomes, and (3) explore new biomarkers and therapeutic strategies to restore immunometabolism and differentiation of myeloid cells towards an effector phenotype to increase host antitumor immunity. We propose that the profound metabolic alterations and associated transcriptional changes triggered by chronic and overactivated immune responses in myeloid cells represent critical factors influencing the balance between therapeutic efficacy and immune-related adverse effects (irAEs) for current therapeutic strategies, including immune checkpoint inhibitor (ICI) therapy.
Collapse
|
54
|
Sasidharan Nair V, Saleh R, Toor SM, Alajez NM, Elkord E. Transcriptomic Analyses of Myeloid-Derived Suppressor Cell Subsets in the Circulation of Colorectal Cancer Patients. Front Oncol 2020; 10:1530. [PMID: 32984004 PMCID: PMC7492613 DOI: 10.3389/fonc.2020.01530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/16/2020] [Indexed: 12/24/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) promote tumor immune evasion and favor tumorigenesis by activating various tumor-promoting downstream signals. MDSC expansion is evident in the circulation and tumor microenvironment of many solid tumors including colorectal cancer (CRC). We have recently reported the transcriptomic profiles of tumor-infiltrating MDSCs in CRC patients and uncovered pathways, which could potentially assist tumor progression. In this study, we sorted different subsets of circulating MDSCs in CRC patients and investigated their transcriptomic profiles in order to disclose pathways, which could potentially contribute to disease progression. The sorted subsets included polymorphonuclear/granulocytic MDSCs (PMN-MDSCs), immature MDSCs (I-MDSCs), and monocytic MDSCs (M-MDSCs). Our functional annotation analyses revealed that multiple pathways including DNA damage-, chemotaxis-, apoptosis-, mitogen-activated protein kinase-, transforming growth factor β-, and myeloid differentiation–related transcripts were higher in PMN-MDSCs, compared with monocytic antigen-presenting cells (APCs) or I-MDSCs. Furthermore, genes related to Janus kinase (JAK)–signal transducer and activator of transcription (STAT) were also elevated in PMN-MDSCs. These data suggest that upregulation of JAK-STAT pathway could trigger multiple downstream targets in PMN-MDSCs, which favor tumor progression. Additionally, we found that pathways including phosphatidyl inositol 3-kinase (PI3K), interleukin 6, and TGF-β in M-MDSCs and cell cycle–related pathways in I-MDSCs were upregulated, compared with monocytic APCs. Moreover, acetylation-related genes were upregulated in both PMN-MDSCs and M-MDSCs. This latter finding implicates that epigenetic modifications could also play a role in the regulation of multiple tumor-promoting genes in PMN-MDSCs and M-MDSCs. Taken together, this study reveals various signaling pathways, which regulate the function of MDSC subsets in the circulation of CRC patients. However, functional studies are warranted to support these findings.
Collapse
Affiliation(s)
- Varun Sasidharan Nair
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Reem Saleh
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Salman M Toor
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Nehad M Alajez
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|
55
|
Taniura T, Iida Y, Kotani H, Ishitobi K, Tajima Y, Harada M. Immunogenic chemotherapy in two mouse colon cancer models. Cancer Sci 2020; 111:3527-3539. [PMID: 32816355 PMCID: PMC7541014 DOI: 10.1111/cas.14624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 01/18/2023] Open
Abstract
Aside from the induction of cell death, some anticancer chemotherapeutic drugs can modulate antitumor immune responses. In this study, we examined the anticancer effects of 5‐fluorouracil (5‐FU) and oxaliplatin (L‐OHP), which are standard chemotherapeutic drugs for colon cancer, combined with cyclophosphamide (CP) in two mouse colon cancer models (CT26 and MC38 colon adenocarcinoma models). In the CT26 model, two injections of 5‐FU/L‐OHP and CP significantly suppressed the growth of subcutaneously established CT26 tumors compared with either 5‐FU/L‐OHP or CP, without a significant loss of body weight. The anticancer effect was weakened in nude mice. Cured mice acquired protective immunity against CT26, and CT26‐specific cytotoxic T cells (CTLs) were induced from their spleen cells. Analysis of tumor‐infiltrating immune cells revealed that 5‐FU/L‐OHP treatment with or without CP increased the proportion of CD8+ T cells at tumor sites. The 5‐FU/L‐OHP treatment decreased the proportion of granulocytic myeloid‐derived suppressor cells (MDSCs) and increased monocytic MDSCs in tumor sites, whereas the addition of CP treatment reversed these changes. In the MC38 model, although significant anticancer effects of the triple combination therapy were seen, additional treatment with anti‐PD‐1 antibody increased the number of cured mice. These mice exhibited protective immunity against MC38, and MC38‐specific CTLs were generated from their spleen cells. Together, these results indicate that the antitumor effects of the combination of 5‐FU/L‐OHP and CP mainly depend on host T cells; moreover, the therapeutic efficacy can be effectively boosted by immune checkpoint blockade.
Collapse
Affiliation(s)
- Takahito Taniura
- Department of Digestive and General Surgery, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Yuichi Iida
- Department of Immunology, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Hitoshi Kotani
- Department of Immunology, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Kazunari Ishitobi
- Department of Digestive and General Surgery, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Yoshitsugu Tajima
- Department of Digestive and General Surgery, Faculty of Medicine, Shimane University, Shimane, Japan
| | - Mamoru Harada
- Department of Immunology, Faculty of Medicine, Shimane University, Shimane, Japan
| |
Collapse
|
56
|
De Cicco P, Ercolano G, Ianaro A. The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Overcome Immune Evasion. Front Immunol 2020; 11:1680. [PMID: 32849585 PMCID: PMC7406792 DOI: 10.3389/fimmu.2020.01680] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Suppression of antitumor immune responses is one of the main mechanisms by which tumor cells escape from destruction by the immune system. Myeloid-derived suppressor cells (MDSCs) represent the main immunosuppressive cells present in the tumor microenvironment (TME) that sustain cancer progression. MDSCs are a heterogeneous group of immature myeloid cells with a potent activity against T-cell. Studies in mice have demonstrated that MDSCs accumulate in several types of cancer where they promote invasion, angiogenesis, and metastasis formation and inhibit antitumor immunity. In addition, different clinical studies have shown that MDSCs levels in the peripheral blood of cancer patients correlates with tumor burden, stage and with poor prognosis in multiple malignancies. Thus, MDSCs are the major obstacle to many cancer immunotherapies and their targeting may be a beneficial strategy for improvement the efficiency of immunotherapeutic interventions. However, the great heterogeneity of these cells makes their identification in human cancer very challenging. Since both the phenotype and mechanisms of action of MDSCs appear to be tumor-dependent, it is important to accurately characterized the precise MDSC subsets that have clinical relevance in each tumor environment to more efficiently target them. In this review we summarize the phenotype and the suppressive mechanisms of MDSCs populations expanded within different tumor contexts. Further, we discuss about their clinical relevance for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Paola De Cicco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy.,Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Angela Ianaro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
57
|
Abdoli Shadbad M, Hajiasgharzadeh K, Baradaran B. Cross-talk between myeloid-derived suppressor cells and Mucin1 in breast cancer vaccination: On the verge of a breakthrough. Life Sci 2020; 258:118128. [PMID: 32710947 DOI: 10.1016/j.lfs.2020.118128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/22/2023]
Abstract
Although breast cancer is one of the leading troublesome cancers, the available therapeutic options have not fulfilled the desired outcomes. Immune-based therapy has gained special attention for breast cancer treatment. Although this approach is highly tolerable, its low response rate has rendered it as an undesirable approach. This review aims to describe the essential oncogenic pathways involved in breast cancer, elucidate the immunosuppression and oncogenic effect of Mucin1, and introduce myeloid-derived suppressor cells, which are the main culprits of anti-tumoral immune response attenuation. The various auto-inductive loops between Mucin1 and myeloid-derived suppressor cells are focal in the suppression of anti-tumoral immune responses in patients with breast cancer. These cross-talks between the Mucin1 and myeloid-derived suppressor cells can be the underlying causes of immunotherapy's impotence for patients with breast cancer. This approach can pave the road for the development of a potent vaccine for patients with breast cancer and is translated into clinical settings.
Collapse
Affiliation(s)
| | - Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
58
|
Chen N, Feng Q, Deng J, Xiong Y, Deng YJ, Wang MM, Zhou L, Yu QW, Hu JP, Deng H. Hdc-expressing myeloid-derived suppressor cells promote basal-like transition and metastasis of breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1431-1443. [PMID: 32661481 PMCID: PMC7344006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Metastases are the greatest contributors to death from breast cancer. Here, we identified a distinct subpopulation of luminal breast cancer characterized by cytokeratin 14 (CK14) expression in secondary colonies rather than primary tumors. This entity possessed a poorer prognosis compared to their CK14- counterparts. Immunohistochemical analysis showed that myeloid-derived suppressor cells (MDSCs) were recruited into the tumor microenvironment and exhibited a close spatial relationship with CK14+ cancer cells. We demonstrated that histidine decarboxylase (Hdc) is capable of labeling myeloid-biased hematopoietic stem cell/progenitor cell (HSC/HSPC) and immature myeloid cells infiltrating in tumor tissues. FACS data obtained from Hdc-CreERT2; eGFP; MMTV-PyVT female mice revealed an increased percentage of Hdc+ PMN-MDSCs in metastatic masses. Hdc+ PMN-MDSCs expressed high levels of canonical Wnts, including Wnt2, Wnt4, Wnt5a, and Wnt7b, to aberrantly activate Wnt/β-catenin signaling in CK14+ malignant cells. β-catenin translocated from the membrane into the cytoplasm and nucleus. Targeted ablation of Hdc+ PMN-MDSCs-derived Wnts through porcupineflox/flox and iDTR transgenic models hampered the metastatic cascade, making Hdc+ immature myeloid cells an attractive candidate for tailed immunotherapies.
Collapse
Affiliation(s)
- Na Chen
- Department of Breast Surgery, The Fourth Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Qiong Feng
- Department of Pathology, The Second Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Jun Deng
- Department of Emergency, The First Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Yin Xiong
- Department of General Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Yan-Juan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang UniversityNanchang, China
- Tumor Immunology Institute, Nanchang UniversityNanchang, China
| | - Meng-Meng Wang
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang UniversityNanchang, China
- Tumor Immunology Institute, Nanchang UniversityNanchang, China
| | - Lv Zhou
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang UniversityNanchang, China
- Tumor Immunology Institute, Nanchang UniversityNanchang, China
| | - Qi-Wen Yu
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang UniversityNanchang, China
- Tumor Immunology Institute, Nanchang UniversityNanchang, China
| | - Jin-Ping Hu
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang UniversityNanchang, China
- Tumor Immunology Institute, Nanchang UniversityNanchang, China
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang UniversityNanchang, China
- Tumor Immunology Institute, Nanchang UniversityNanchang, China
| |
Collapse
|
59
|
Har-Noy M, Or R. Allo-priming as a universal anti-viral vaccine: protecting elderly from current COVID-19 and any future unknown viral outbreak. J Transl Med 2020; 18:196. [PMID: 32398026 PMCID: PMC7215129 DOI: 10.1186/s12967-020-02363-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND We present the rationale for a novel allo-priming approach to serve the elderly as a universal anti-virus vaccine, as well serving to remodel the aging immune system in order to reverse immunosenescence and inflammaging. This approach has the potential to protect the most vulnerable from disease and provide society an incalculable economic benefit. Allo-priming healthy elderly adults is proposed to provide universal protection from progression of any type of viral infection, including protection against progression of the current outbreak of COVID-19 infection, and any future variants of the causative SARS-CoV-2 virus or the next 'Disease X'. Allo-priming is an alternative approach for the COVID-19 pandemic that provides a back-up in case vaccination strategies to elicit neutralizing antibody protection fails or fails to protect the vulnerable elderly population. The allo-priming is performed using activated, intentionally mismatched, ex vivo differentiated and expanded living Th1-like cells (AlloStim®) derived from healthy donors currently in clinical use as an experimental cancer vaccine. Multiple intradermal injections of AlloStim® creates a dominate titer of allo-specific Th1/CTL memory cells in circulation, replacing the dominance of exhausted memory cells of the aged immune system. Upon viral encounter, by-stander activation of the allo-specific memory cells causes an immediate release of IFN-ϒ, leading to development of an "anti-viral state", by-stander activation of innate cellular effector cells and activation of cross-reactive allo-specific CTL. In this manner, the non-specific activation of allo-specific Th1/CTL initiates a cascade of spatial and temporal immune events which act to limit the early viral titer. The release of endogenous heat shock proteins (HSP) and DAMP from lysed viral-infected cells, in the context of IFN-ϒ, creates of conditions for in situ vaccination leading to viral-specific Th1/CTL immunity. These viral-specific Th1/CTL provide sterilizing immunity and memory for protection from disease recurrence, while increasing the pool of Th1/CTL in circulation capable of responding to the next viral encounter. CONCLUSION Allo-priming has potential to provide universal protection from viral disease and is a strategy to reverse immunosenescence and counter-regulate chronic inflammation (inflammaging). Allo-priming can be used as an adjuvant for anti-viral vaccines and as a counter-measure for unknown biological threats and bio-economic terrorism.
Collapse
Affiliation(s)
- Michael Har-Noy
- Cancer Immunotherapy and Immunobiology Center, Hadassah-Hebrew University Medical Center, 9112001, Jerusalem, Israel. .,Immunovative Therapies, Ltd, Malcha Technology Park, B1/F1, 9695101, Jerusalem, Israel. .,Mirror Biologics, Inc., 4824 E Baseline Rd #113, Phoenix, AZ, USA.
| | - Reuven Or
- Cancer Immunotherapy and Immunobiology Center, Hadassah-Hebrew University Medical Center, 9112001, Jerusalem, Israel
| |
Collapse
|
60
|
Wang X, Wang F, Zhong M, Yarden Y, Fu L. The biomarkers of hyperprogressive disease in PD-1/PD-L1 blockage therapy. Mol Cancer 2020. [PMID: 32359357 DOI: 10.1186/s12943-020-01200-x.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs), such as PD-1/PD-L1 antibodies (Abs) and anti-cytotoxic T lymphocyte antigen 4 (CTLA-4) Abs, are effective for patients with various cancers. However, low response rates to ICI monotherapies and even hyperprogressive disease (HPD) have limited the clinical application of ICIs. HPD is a novel pattern of progression, with an unexpected and fast progression in tumor volume and rate, poor survival of patients and early fatality. Considering the limitations of ICI due to HPD incidence, valid biomarkers are urgently needed to predict the occurrence of HPD and the efficacy of ICI. Here, we reviewed and summarized the known biomarkers of HPD, including tumor cell biomarkers, tumor microenvironment biomarkers, laboratory biomarkers and clinical indicators, which provide a potential effective approach for selecting patients sensitive to ICI cancer treatments.
Collapse
Affiliation(s)
- Xueping Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengjun Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
61
|
The biomarkers of hyperprogressive disease in PD-1/PD-L1 blockage therapy. Mol Cancer 2020; 19:81. [PMID: 32359357 PMCID: PMC7195736 DOI: 10.1186/s12943-020-01200-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs), such as PD-1/PD-L1 antibodies (Abs) and anti-cytotoxic T lymphocyte antigen 4 (CTLA-4) Abs, are effective for patients with various cancers. However, low response rates to ICI monotherapies and even hyperprogressive disease (HPD) have limited the clinical application of ICIs. HPD is a novel pattern of progression, with an unexpected and fast progression in tumor volume and rate, poor survival of patients and early fatality. Considering the limitations of ICI due to HPD incidence, valid biomarkers are urgently needed to predict the occurrence of HPD and the efficacy of ICI. Here, we reviewed and summarized the known biomarkers of HPD, including tumor cell biomarkers, tumor microenvironment biomarkers, laboratory biomarkers and clinical indicators, which provide a potential effective approach for selecting patients sensitive to ICI cancer treatments.
Collapse
|
62
|
Mendoza-Reinoso V, McCauley LK, Fournier PG. Contribution of Macrophages and T Cells in Skeletal Metastasis. Cancers (Basel) 2020; 12:E1014. [PMID: 32326073 PMCID: PMC7226332 DOI: 10.3390/cancers12041014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Bone is a common site for metastases with a local microenvironment that is highly conducive for tumor establishment and growth. The bone marrow is replete with myeloid and lymphoid linage cells that provide a fertile niche for metastatic cancer cells promoting their survival and growth. Here, we discuss the role of macrophages and T cells in pro- and anti-tumoral mechanisms, their interaction to support cancer cell growth, and their contribution to the development of skeletal metastases. Importantly, immunotherapeutic strategies targeting macrophages and T cells in cancer are also discussed in this review as they represent a great promise for patients suffering from incurable bone metastases.
Collapse
Affiliation(s)
- Veronica Mendoza-Reinoso
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (V.M.-R.); (L.K.M.)
| | - Laurie K. McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; (V.M.-R.); (L.K.M.)
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pierrick G.J. Fournier
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, BC 22860, Mexico
| |
Collapse
|
63
|
Basu A, Kodumudi K. Multimodal approaches to improve immunotherapy in breast cancer. Immunotherapy 2020; 12:161-165. [PMID: 32157934 DOI: 10.2217/imt-2019-0198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Amrita Basu
- Immunology Program & Department of Clinical Science, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Krithika Kodumudi
- Immunology Program & Department of Clinical Science, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA.,Department of Oncological Sciences, USF Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
64
|
Luker AJ, Graham LJ, Smith TM, Camarena C, Zellner MP, Gilmer JJS, Damle SR, Conrad DH, Bear HD, Martin RK. The DNA methyltransferase inhibitor, guadecitabine, targets tumor-induced myelopoiesis and recovers T cell activity to slow tumor growth in combination with adoptive immunotherapy in a mouse model of breast cancer. BMC Immunol 2020; 21:8. [PMID: 32106810 PMCID: PMC7045411 DOI: 10.1186/s12865-020-0337-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background Myeloid derived suppressor cells (MDSCs) present a significant obstacle to cancer immunotherapy because they dampen anti-tumor cytotoxic T cell responses. Previous groups, including our own, have reported on the myelo-depletive effects of certain chemotherapy agents. We have shown previously that decitabine increased tumor cell Class I and tumor antigen expression, increased ability of tumor cells to stimulate T lymphocytes, depleted tumor-induced MDSC in vivo and augmented immunotherapy of a murine mammary carcinoma. Results In this study, we expand upon this observation by testing a next-generation DNA methyltransferase inhibitor (DNMTi), guadecitabine, which has increased stability in the circulation. Using the 4 T1 murine mammary carcinoma model, in BALB/cJ female mice, we found that guadecitabine significantly reduces tumor burden in a T cell-dependent manner by preventing excessive myeloid proliferation and systemic accumulation of MDSC. The remaining MDSC were shifted to an antigen-presenting phenotype. Building upon our previous publication, we show that guadecitabine enhances the therapeutic effect of adoptively transferred antigen-experienced lymphocytes to diminish tumor growth and improve overall survival. We also show guadecitabine’s versatility with similar tumor reduction and augmentation of immunotherapy in the C57BL/6 J E0771 murine breast cancer model. Conclusions Guadecitabine depleted and altered MDSC, inhibited growth of two different murine mammary carcinomas in vivo, and augmented immunotherapeutic efficacy. Based on these findings, we believe the immune-modulatory effects of guadecitabine can help rescue anti-tumor immune response and contribute to the overall effectiveness of current cancer immunotherapies.
Collapse
Affiliation(s)
- Andrea J Luker
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA.,Massey Cancer Center, VCU, Box 980678, Richmond, VA, 23298, USA
| | - Laura J Graham
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA.,Massey Cancer Center, VCU, Box 980678, Richmond, VA, 23298, USA
| | - Timothy M Smith
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA.,Massey Cancer Center, VCU, Box 980678, Richmond, VA, 23298, USA
| | - Carmen Camarena
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA
| | - Matt P Zellner
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA
| | - Jamie-Jean S Gilmer
- Department of Biology, College of Humanities and Sciences, VCU, Richmond, VA, USA
| | - Sheela R Damle
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA.,Massey Cancer Center, VCU, Box 980678, Richmond, VA, 23298, USA
| | - Daniel H Conrad
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA.,Massey Cancer Center, VCU, Box 980678, Richmond, VA, 23298, USA
| | - Harry D Bear
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA.,Massey Cancer Center, VCU, Box 980678, Richmond, VA, 23298, USA.,Division of Surgical Oncology, Department of Surgery, VCU, Richmond, VA, USA
| | - Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA. .,Massey Cancer Center, VCU, Box 980678, Richmond, VA, 23298, USA.
| |
Collapse
|
65
|
Wang H, Sové RJ, Jafarnejad M, Rahmeh S, Jaffee EM, Stearns V, Torres ETR, Connolly RM, Popel AS. Conducting a Virtual Clinical Trial in HER2-Negative Breast Cancer Using a Quantitative Systems Pharmacology Model With an Epigenetic Modulator and Immune Checkpoint Inhibitors. Front Bioeng Biotechnol 2020; 8:141. [PMID: 32158754 PMCID: PMC7051945 DOI: 10.3389/fbioe.2020.00141] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022] Open
Abstract
The survival rate of patients with breast cancer has been improved by immune checkpoint blockade therapies, and the efficacy of their combinations with epigenetic modulators has shown promising results in preclinical studies. In this prospective study, we propose an ordinary differential equation (ODE)-based quantitative systems pharmacology (QSP) model to conduct an in silico virtual clinical trial and analyze potential predictive biomarkers to improve the anti-tumor response in HER2-negative breast cancer. The model is comprised of four compartments: central, peripheral, tumor, and tumor-draining lymph node, and describes immune activation, suppression, T cell trafficking, and pharmacokinetics and pharmacodynamics (PK/PD) of the therapeutic agents. We implement theoretical mechanisms of action for checkpoint inhibitors and the epigenetic modulator based on preclinical studies to investigate their effects on anti-tumor response. According to model-based simulations, we confirm the synergistic effect of the epigenetic modulator and that pre-treatment tumor mutational burden, tumor-infiltrating effector T cell (Teff) density, and Teff to regulatory T cell (Treg) ratio are significantly higher in responders, which can be potential biomarkers to be considered in clinical trials. Overall, we present a readily reproducible modular model to conduct in silico virtual clinical trials on patient cohorts of interest, which is a step toward personalized medicine in cancer immunotherapy.
Collapse
Affiliation(s)
- Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard J. Sové
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mohammad Jafarnejad
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sondra Rahmeh
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elizabeth M. Jaffee
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vered Stearns
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Evanthia T. Roussos Torres
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Roisin M. Connolly
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
66
|
Clinical relevance of systemic monocytic-MDSCs in patients with metastatic breast cancer. Cancer Immunol Immunother 2020; 69:435-448. [PMID: 31925475 PMCID: PMC7044142 DOI: 10.1007/s00262-019-02472-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/31/2019] [Indexed: 01/18/2023]
Abstract
The overall aim of this prospective study was to delineate the role of monocytic myeloid-derived suppressor cells (Mo-MDSCs) in patients with metastatic breast cancer (MBC). MDSCs are a heterogeneous group of immunosuppressive cells often enriched in different malignancies which hold prognostic and predictive value for clinical outcomes. Here, we assessed the clinical significance of Mo-MDSCs in 54 patients with de novo or distant recurrent MBC. We show that high levels of Mo-MDSCs significantly correlated with de novo MBC (metastatic disease at initial diagnosis), estrogen receptor (ER) negativity, and liver- and bone metastasis. A trend towards an association between high levels of Mo-MDSCs and survival (P = 0.053) was also found in patients with distant recurrent ER-positive MBC. We therefore propose that an increased population of Mo-MDSCs may be related to the metastatic or immunoregulatory switch associated with transition to a more systemic disease. Our data imply that high levels of systemic Mo-MDSCs represent patients with more aggressive disease and worse outcome.
Collapse
|
67
|
Miyagawa Y, Yanai A, Yanagawa T, Inatome J, Egawa C, Nishimukai A, Takamoto K, Morimoto T, Kikawa Y, Suwa H, Taji T, Yamaguchi A, Okada Y, Sata A, Fukui R, Bun A, Ozawa H, Higuchi T, Fujimoto Y, Imamura M, Miyoshi Y. Baseline neutrophil-to-lymphocyte ratio and c-reactive protein predict efficacy of treatment with bevacizumab plus paclitaxel for locally advanced or metastatic breast cancer. Oncotarget 2020; 11:86-98. [PMID: 32002126 PMCID: PMC6967770 DOI: 10.18632/oncotarget.27423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/21/2019] [Indexed: 01/05/2023] Open
Abstract
The effect of bevacizumab plus paclitaxel therapy on progression-free survival (PFS) is prominent; however, no overall survival (OS) benefit has been demonstrated. Our aim was to study the predictive efficacy of peripheral immune-related parameters, neutrophil-to-lymphocyte ratio (NLR), absolute lymphocyte count (ALC), and c-reactive protein (CRP) in locally advanced and metastatic breast cancers. A total of 179 patients treated with bevacizumab plus paclitaxel were recruited from three institutes in the test cohort. The cut-off values of NLR, ALC, and CRP were set at 3, 1500/μL, and 1.0 mg/dL, respectively, and baseline values of these factors were measured. The PFS of patients with NLR-low was significantly longer than that of patients with -high (median, 12.6 vs. 7.2 months; hazard ratio (HR), 0.48, 95% confidence interval (95% CI), 0.31–0.73; p = 0.0004). OS of patients with NLR-low was significantly better than those with-high (22.2 vs. 13.5 months; HR, 0.57, 95% CI, 0.39–0.83; p = 0.0032). Similarly, improved PFS and OS were recognized in patients with CRP-low as compared with patients with -high (HR, 0.44, 95% CI, 0.28–0.68; p = 0.0001 and HR, 0.39, 95% CI, 0.26–0.61, p < 0.0001, respectively). In the validation cohort from two institutes (n = 57), similar significant improvements in PFS and OS were confirmed for patients with NLR-low (p = 0.0344 and p = 0.0233, respectively) and CRP-low groups (p < 0.0001 and p = 0.0001, respectively). Low levels of NLR and CRP at baseline were significantly associated with improved prognosis in patients treated with bevacizumab plus paclitaxel.
Collapse
Affiliation(s)
- Yoshimasa Miyagawa
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Ayako Yanai
- Department of Surgery, Kansai Rosai Hospital, Amagasaki, Hyogo 660-8511, Japan
| | - Takehiro Yanagawa
- Department of Surgery, Kansai Rosai Hospital, Amagasaki, Hyogo 660-8511, Japan
| | - Junichi Inatome
- Department of Surgery, Kansai Rosai Hospital, Amagasaki, Hyogo 660-8511, Japan
| | - Chiyomi Egawa
- Department of Surgery, Kansai Rosai Hospital, Amagasaki, Hyogo 660-8511, Japan
| | - Arisa Nishimukai
- Department of Breast Surgery, Yao Municipal Hospital, Yao, Osaka 581-0069, Japan
| | - Kaori Takamoto
- Department of Breast Surgery, Yao Municipal Hospital, Yao, Osaka 581-0069, Japan
| | - Takashi Morimoto
- Department of Breast Surgery, Yao Municipal Hospital, Yao, Osaka 581-0069, Japan
| | - Yuichiro Kikawa
- Department of Breast Surgery, Kobe City Medical Center General Hospital, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hirofumi Suwa
- Department of Breast Surgery, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Hyogo 660-8550, Japan
| | - Tomoe Taji
- Department of Breast Surgery, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Hyogo 660-8550, Japan
| | - Ai Yamaguchi
- Department of Breast Surgery, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Hyogo 660-8550, Japan
| | - Yuki Okada
- Department of Breast Surgery, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Hyogo 660-8550, Japan
| | - Atsushi Sata
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Reiko Fukui
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Ayako Bun
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Hiromi Ozawa
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Tomoko Higuchi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Yukie Fujimoto
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Michiko Imamura
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Yasuo Miyoshi
- Department of Surgery, Division of Breast and Endocrine Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
68
|
Gonda K, Akama T, Nakamura T, Hashimoto E, Kyoya N, Rokkaku Y, Maejima Y, Horita S, Tachibana K, Abe N, Ohtake T, Shimomura K, Kono K, Saji S, Takenoshita S, Higashihara E. Cluster of differentiation 8 and programmed cell death ligand 1 expression in triple-negative breast cancer combined with autosomal dominant polycystic kidney disease and tuberous sclerosis complex: a case report. J Med Case Rep 2019; 13:381. [PMID: 31870441 PMCID: PMC6929341 DOI: 10.1186/s13256-019-2274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/24/2019] [Indexed: 11/10/2022] Open
Abstract
Background Autosomal dominant polycystic kidney disease is defined as an inherited disorder characterized by renal cyst formation due to mutations in the PKD1 or PKD2 gene, whereas tuberous sclerosis complex is an autosomal dominant neurocutaneous syndrome caused by mutation or deletion of the TSC2 gene. A TSC2/PKD1 contiguous gene syndrome, which is caused by a chromosomal mutation that disrupts both the TSC2 and PKD1 genes, has been identified in patients with tuberous sclerosis complex and severe early-onset autosomal dominant polycystic kidney disease. The tumor tissue of patients with breast cancer with contiguous gene syndrome has a high mutation burden and produces several neoantigens. A diffuse positive immunohistochemistry staining for cluster of differentiation 8+ in the T cells of breast cancer tissue is consistent with neoantigen production due to high mutation burden. Case presentation A 61-year-old Japanese woman who had been undergoing dialysis for 23 years because of end-stage renal failure secondary to autosomal dominant polycystic kidney disease was diagnosed as having triple-negative breast cancer and underwent mastectomy in 2015. She had a history of epilepsy and skin hamartoma. Her grandmother, mother, two aunts, four cousins, and one brother were also on dialysis for autosomal dominant polycystic kidney disease. Her brother had epilepsy and a brain nodule. Another brother had a syndrome of kidney failure, intellectual disability, and diabetes mellitus, which seemed to be caused by mutation in the CREBBP gene. Immunohistochemistry of our patient’s breast tissue showed cluster of differentiation 8 and programmed cell death ligand 1 positivity. Conclusions Programmed cell death ligand 1 checkpoint therapy may be effective for recurrence of triple-negative breast cancer in a patient with autosomal dominant polycystic kidney disease and tuberous sclerosis complex.
Collapse
Affiliation(s)
- Kenji Gonda
- Department of Genetics, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan. .,Clinical Oncology Center, Fukushima Medical University Hospital, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan. .,Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan. .,Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan. .,Daido Obesity and Metabolism Research Centre, 123 Daido, Naha, Okinawa, 902-0066, Japan.
| | - Takanori Akama
- Department of Genetics, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan.,Clinical Oncology Center, Fukushima Medical University Hospital, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Takayuki Nakamura
- Deptartment of Urology, Japan Community Healthcare Organization Nihonmatsu Hospital, 1-553 Naritamachi, Nihonmatsu, Fukushima, 964-8501, Japan
| | - Eiko Hashimoto
- Deptartment of Urology, Japan Community Healthcare Organization Nihonmatsu Hospital, 1-553 Naritamachi, Nihonmatsu, Fukushima, 964-8501, Japan
| | - Naomi Kyoya
- Deptartment of Urology, Japan Community Healthcare Organization Nihonmatsu Hospital, 1-553 Naritamachi, Nihonmatsu, Fukushima, 964-8501, Japan
| | - Yuichi Rokkaku
- Deptartment of Surgery, Japan Community Healthcare Organization Nihonmatsu Hospital, 1-553 Naritamachi, Nihonmatsu, Fukushima, 964-8501, Japan
| | - Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Shoichiro Horita
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Kazunoshin Tachibana
- Department of Breast Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Noriko Abe
- Department of Breast Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Tohru Ohtake
- Department of Breast Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Shigehira Saji
- Clinical Oncology Center, Fukushima Medical University Hospital, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Seiichi Takenoshita
- President of Fukushima Medical University, Fukushima Medical University, 1 Hikarigaoka, Fukushima, Fukushima, 960-1295, Japan
| | - Eiji Higashihara
- Department of Polycystic Kidney Research, Kyorin University shool of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| |
Collapse
|
69
|
Leal AS, Zydeck K, Carapellucci S, Reich LA, Zhang D, Moerland JA, Sporn MB, Liby KT. Retinoid X receptor agonist LG100268 modulates the immune microenvironment in preclinical breast cancer models. NPJ Breast Cancer 2019; 5:39. [PMID: 31700995 PMCID: PMC6825145 DOI: 10.1038/s41523-019-0135-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/10/2019] [Indexed: 02/08/2023] Open
Abstract
Despite numerous therapeutic advances in the past decade, breast cancer is expected to cause over 42,000 deaths in the United States in 2019. Breast cancer had been considered an immunologically silent tumor; however recent findings suggest that immune cells play important roles in tumor growth even in the breast. Retinoid X receptors (RXRs) are a subclass of nuclear receptors that act as ligand-dependent transcription factors that regulate a variety of cellular processes including proliferation and differentiation; in addition, they are essential for macrophage biology. Rexinoids are synthetic molecules that bind and activate RXRs. Bexarotene is the only rexinoid approved by the FDA for the treatment of refractory cutaneous T-cell lymphoma. Other more-potent rexinoids have been synthesized, such as LG100268 (LG268). Here, we report that treatment with LG 268, but not bexarotene, decreased infiltration of myeloid-derived suppressor cells and CD206-expressing macrophages, increased the expression of PD-L1 by 50%, and increased the ratio of CD8/CD4, CD25 T cells, which correlates with increased cytotoxic activity of CD8 T cells in tumors of MMTV-Neu mice (a model of HER2-positive breast cancer). In the MMTV-PyMT murine model of triple negative breast cancer, LG268 treatment of established tumors prolonged survival, and in combination with anti-PD-L1 antibodies, significantly (p = 0.05) increased the infiltration of cytotoxic CD8 T cells and apoptosis. Collectively, these data suggest that the use of LG268, a RXR agonist, can improve response to immune checkpoint blockade in HER2+ or triple-negative breast cancer.
Collapse
Affiliation(s)
- Ana S. Leal
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI USA
| | - Kayla Zydeck
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI USA
| | - Sarah Carapellucci
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI USA
| | - Lyndsey A. Reich
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI USA
| | - Di Zhang
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI USA
| | - Jessica A. Moerland
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI USA
| | - Michael B. Sporn
- Department of Molecular and Systems Biology, Dartmouth/Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Karen T. Liby
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI USA
| |
Collapse
|
70
|
Deshmukh SK, Srivastava SK, Poosarla T, Dyess DL, Holliday NP, Singh AP, Singh S. Inflammation, immunosuppressive microenvironment and breast cancer: opportunities for cancer prevention and therapy. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:593. [PMID: 31807574 DOI: 10.21037/atm.2019.09.68] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most commonly diagnosed malignancy and a leading cause of cancer-related death in women worldwide. It also exhibits pronounced racial disparities in terms of incidence and clinical outcomes. There has been a growing interest in research community to better understand the role of the microenvironment in cancer. Several lines of evidence have highlighted the significance of chronic inflammation at the local and/or systemic level in breast tumor pathobiology. Inflammation can influence breast cancer progression, metastasis and therapeutic outcome by establishing a tumor supportive immune microenvironment. These processes are mediated through a variety of cytokines and hormones that exert their biological actions either locally or distantly via systemic circulation. Targeting of immune and inflammatory pathways has met tremendous success in some cancers underscoring the importance of research to further our understanding of these systems in breast cancer. This knowledge can be helpful not only in the development of novel prevention and therapeutic strategies, but also help in better prediction of therapeutic responses in patients. This review summarizes some of the significant findings on the role of inflammation in breast cancer to gain collective molecular and mechanistic insights. We also discuss ongoing efforts and future outlook to exploit the existing knowledge for improved breast cancer management.
Collapse
Affiliation(s)
- Sachin Kumar Deshmukh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.,Department of Pathology, University of South Alabama, Mobile, AL, USA
| | - Sanjeev Kumar Srivastava
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.,Department of Pathology, University of South Alabama, Mobile, AL, USA
| | - Teja Poosarla
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Donna Lynn Dyess
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | | | - Ajay Pratap Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.,Department of Pathology, University of South Alabama, Mobile, AL, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Seema Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA.,Department of Pathology, University of South Alabama, Mobile, AL, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
71
|
Dias AS, Almeida CR, Helguero LA, Duarte IF. Metabolic crosstalk in the breast cancer microenvironment. Eur J Cancer 2019; 121:154-171. [PMID: 31581056 DOI: 10.1016/j.ejca.2019.09.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/03/2019] [Indexed: 02/08/2023]
Abstract
During tumorigenesis, breast tumour cells undergo metabolic reprogramming, which generally includes enhanced glycolysis, tricarboxylic acid cycle activity, glutaminolysis and fatty acid biosynthesis. However, the extension and functional importance of these metabolic alterations may diverge not only according to breast cancer subtypes, but also depending on the interaction of cancer cells with the complex surrounding microenvironment. This microenvironment comprises a variety of non-cancerous cells, such as immune cells (e.g. macrophages, lymphocytes, natural killer cells), fibroblasts, adipocytes and endothelial cells, together with extracellular matrix components and soluble factors, which influence cancer progression and are predictive of clinical outcome. The continuous interaction between cancer and stromal cells results in metabolic competition and symbiosis, with oncogenic-driven metabolic reprogramming of cancer cells shaping the metabolism of neighbouring cells and vice versa. This review addresses current knowledge on this metabolic crosstalk within the breast tumour microenvironment (TME). Improved understanding of how metabolism in the TME modulates cancer development and evasion of tumour-suppressive mechanisms may provide clues for novel anticancer therapeutics directed to metabolic targets.
Collapse
Affiliation(s)
- Ana S Dias
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, Aveiro, Portugal; iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Catarina R Almeida
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Luisa A Helguero
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Iola F Duarte
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, Aveiro, Portugal.
| |
Collapse
|
72
|
Puttmann K, Duggan M, Mortazavi A, Diaz DA, Carson III WE, Sundi D. The Role of Myeloid Derived Suppressor Cells in Urothelial Carcinoma Immunotherapy. Bladder Cancer 2019. [DOI: 10.3233/blc-190219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kathleen Puttmann
- Department of Urology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Megan Duggan
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Amir Mortazavi
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Dayssy Alexandra Diaz
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - William E. Carson III
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Debasish Sundi
- Department of Urology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
73
|
Sasaki A, Nakamura Y, Mishima S, Kawazoe A, Kuboki Y, Bando H, Kojima T, Doi T, Ohtsu A, Yoshino T, Kuwata T, Akimoto T, Shitara K. Predictive factors for hyperprogressive disease during nivolumab as anti-PD1 treatment in patients with advanced gastric cancer. Gastric Cancer 2019; 22:793-802. [PMID: 30627987 DOI: 10.1007/s10120-018-00922-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/25/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hyperprogressive disease (HPD) during treatment with anti-programmed death-1/programmed death-ligand 1 monoclonal antibodies has anecdotally been reported in some types of cancers, but is not well-characterized in patients with advanced gastric cancer (AGC). METHODS Total 62 AGC patients treated with nivolumab in a single institution from September 2017 to April 2018 were enrolled in this study. Tumor responses were assessed according to Response Evaluation Criteria in Solid Tumors version 1.1, and HPD was defined as ≥ two fold increase in tumor growth rate. Clinicopathological and molecular characteristics associated with HPD were also investigated. RESULTS Thirteen of 62 patients (21%) developed HPD after nivolumab treatment. Overall survival (OS) and progression-free survival (PFS) were significantly shorter in patients with HPD than in patients without HPD (median OS: 2.3 months vs. not reached, P < 0.001; median PFS: 0.7 months vs. 2.4 months, P < 0.001). Liver metastases (77% vs. 41%), Eastern Cooperative Oncology Group (ECOG) performance status (PS) of 1 or 2 (77% vs. 29%), and a large sum of target lesion diameters at baseline (median 104.2 mm vs. 44.9 mm) were significantly associated with HPD. Absolute neutrophil count (ANC) and C-reactive protein (CRP) level significantly increased in the first 4 weeks in only patients with HPD. CONCLUSIONS HPD was observed in AGC patients treated with nivolumab and correlated with some clinicopathological characteristics. Elevations in ANC and CRP levels upon treatment might indicate HPD.
Collapse
Affiliation(s)
- Akinori Sasaki
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
- Courses of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshiaki Nakamura
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Saori Mishima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Akihito Kawazoe
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Yasutoshi Kuboki
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Hideaki Bando
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Toshihiko Doi
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Atsushi Ohtsu
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Takeshi Kuwata
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Tetsuo Akimoto
- Courses of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| |
Collapse
|
74
|
Immunostimulatory functions of adoptively transferred MDSCs in experimental blunt chest trauma. Sci Rep 2019; 9:7992. [PMID: 31142770 PMCID: PMC6541619 DOI: 10.1038/s41598-019-44419-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/14/2019] [Indexed: 01/15/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) expand during inflammation and exhibit immunomodulatory functions on innate and adaptive immunity. However, their impact on trauma-induced immune responses, characterized by an early pro-inflammatory phase and dysregulated adaptive immunity involving lymphocyte apoptosis, exhaustion and unresponsiveness is less clear. Therefore, we adoptively transferred in vitro-generated MDSCs shortly before experimental blunt chest trauma (TxT). MDSCs preferentially homed into spleen and liver, but were undetectable in the injured lung, although pro-inflammatory mediators transiently increased in the bronchoalveolar lavage (BAL). Surprisingly, MDSC treatment strongly increased splenocyte numbers, however, without altering the percentage of splenic leukocyte populations. T cells of MDSC-treated TxT mice exhibited an activated phenotype characterized by expression of activation markers and elevated proliferative capacity in vitro, which was not accompanied by up-regulated exhaustion markers or unresponsiveness towards in vitro activation. Most importantly, also T cell expansion after staphylococcal enterotoxin B (SEB) stimulation in vivo was unchanged between MDSC-treated or untreated mice. After MDSC transfer, T cells preferentially exhibited a Th1 phenotype, a prerequisite to circumvent post-traumatic infectious complications. Our findings reveal a totally unexpected immunostimulatory role of adoptively transferred MDSCs in TxT and might offer options to interfere with post-traumatic malfunction of the adaptive immune response.
Collapse
|
75
|
Lafrenie RM, Speigl L, Buckner CA, Pawelec G, Conlon MS, Shipp C. Frequency of Immune Cell Subtypes in Peripheral Blood Correlates With Outcome for Patients With Metastatic Breast Cancer Treated With High-Dose Chemotherapy. Clin Breast Cancer 2019; 19:433-442. [PMID: 31383605 DOI: 10.1016/j.clbc.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/16/2019] [Accepted: 05/09/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND The frequency of circulating leukocytes has been shown to be a prognostic factor in patients being treated for different types of cancer. In breast cancer, tumor-infiltrating leukocytes may predict patient outcome, but few studies have investigated such associations for circulating leukocytes. PATIENTS AND METHODS Multiparametric flow cytometry was used to examine the immunophenotypes of circulating peripheral blood mononuclear cells for 88 patients with metastatic breast cancer, which was then correlated to breast cancer-specific survival. Patients had been treated either with high-dose cyclophosphamide-containing regimens (group 1, n = 51 patients) or high-dose paclitaxel-containing regimens (group 2, n = 37 patients). RESULTS The frequency of peripheral blood CD14+ monocytes indicated prognosis for patients in group 1 (but not group 2), while higher levels of CD11c+ dendritic cells indicated a better prognosis for patients in group 2 (but not group 1). The frequency of a number of different CD4+ or CD8+ T cell subtypes also predicted prognosis for patients in group 2. For example, patients in group 2 with a higher frequency of circulating CD4+ or CD8+ naive T cells (CD45RA+CD95-CD27+CD28+) showed a poorer prognosis. In contrast, T cells were not associated with prognosis for patients in group 1. CONCLUSION Circulating leukocytes can predict clinical outcome for patients with breast cancer. Prediction of clinical outcome in this cohort of metastatic breast cancer patients was specific to the type of chemotherapy, and this finding is likely to apply to other therapies.
Collapse
Affiliation(s)
- Robert M Lafrenie
- Health Sciences North Research Institute, Sudbury, Ontario, Canada; Laurentian University, Sudbury, Ontario, Canada; Northern Ontario School of Medicine, Sudbury, Ontario, Canada.
| | - Lisa Speigl
- Department of Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Carly A Buckner
- Health Sciences North Research Institute, Sudbury, Ontario, Canada; Laurentian University, Sudbury, Ontario, Canada
| | - Graham Pawelec
- Health Sciences North Research Institute, Sudbury, Ontario, Canada; Department of Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| | - Michael S Conlon
- Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Christopher Shipp
- Department of Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
76
|
Chrétien S, Zerdes I, Bergh J, Matikas A, Foukakis T. Beyond PD-1/PD-L1 Inhibition: What the Future Holds for Breast Cancer Immunotherapy. Cancers (Basel) 2019; 11:E628. [PMID: 31060337 PMCID: PMC6562626 DOI: 10.3390/cancers11050628] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapy has altered the management of human malignancies, improving outcomes in an expanding list of diseases. Breast cancer - presumably due to its perceived low immunogenicity - is a late addition to this list. Furthermore, most of the focus has been on the triple negative subtype because of its higher tumor mutational load and lymphocyte-enriched stroma, although emerging data show promise on the other breast cancer subtypes as well. To this point the clinical use of immunotherapy is limited to the inhibition of two immune checkpoints, Programmed Cell Death Protein 1 (PD-1) and Cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4). Consistent with the complexity of the regulation of the tumor - host interactions and their lack of reliance on a single regulatory pathway, combinatory approaches have shown improved efficacy albeit at the cost of increased toxicity. Beyond those two checkpoints though, a large number of co-stimulatory or co-inhibitory molecules play major roles on tumor evasion from immunosurveillance. These molecules likely represent future targets of immunotherapy provided that the promise shown in early data is translated into improved patient survival in randomized trials. The biological role, prognostic and predictive implications regarding breast cancer and early clinical efforts on exploiting these immune-related therapeutic targets are herein reviewed.
Collapse
Affiliation(s)
- Sebastian Chrétien
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Ioannis Zerdes
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Jonas Bergh
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Alexios Matikas
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Theodoros Foukakis
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| |
Collapse
|
77
|
Basu A, Ramamoorthi G, Jia Y, Faughn J, Wiener D, Awshah S, Kodumudi K, Czerniecki BJ. Immunotherapy in breast cancer: Current status and future directions. Adv Cancer Res 2019; 143:295-349. [PMID: 31202361 DOI: 10.1016/bs.acr.2019.03.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer, one of the leading causes of death in women in the United States, challenges therapeutic success in patients due to tumor heterogeneity, treatment resistance, metastasis and disease recurrence. Knowledge of immune system involvement in normal breast development and breast cancer has led to extensive research into the immune landscape of breast cancer and multiple immunotherapy clinical trials in breast cancer patients. However, poor immunogenicity and T-cell infiltration along with heightened immunosuppression in the tumor microenvironment have been identified as potential challenges to the success of immunotherapy in breast cancer. Oncodrivers, owing to their enhanced expression and stimulation of tumor cell proliferation and survival, present an excellent choice for targeted immunotherapy development in breast cancer. Loss of anti-tumor immune response specific to oncodrivers has been reported in breast cancer patients as well. Dendritic cell vaccines have been tested for their efficacy in generating anti-tumor T-cell response against specific tumor-associated antigens and oncodrivers and have shown improved survival outcome in patients. Here, we review the current status of immunotherapy in breast cancer, focusing on dendritic cell vaccines and their therapeutic application in breast cancer. We further discuss future directions of breast cancer immunotherapy and potential combination strategies involving dendritic cell vaccines and existing chemotherapeutics for improved efficacy and better survival outcome in breast cancer.
Collapse
Affiliation(s)
- Amrita Basu
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | | | - Yongsheng Jia
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States; Department of Breast Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Jon Faughn
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Doris Wiener
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Sabrina Awshah
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States; University of South Florida, Tampa, FL, United States
| | - Krithika Kodumudi
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States; University of South Florida, Tampa, FL, United States.
| | - Brian J Czerniecki
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States; Department of Breast Oncology, Moffitt Cancer Center, Tampa, FL, United States; University of South Florida, Tampa, FL, United States.
| |
Collapse
|
78
|
Wang H, Milberg O, Bartelink IH, Vicini P, Wang B, Narwal R, Roskos L, Santa-Maria CA, Popel AS. In silico simulation of a clinical trial with anti-CTLA-4 and anti-PD-L1 immunotherapies in metastatic breast cancer using a systems pharmacology model. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190366. [PMID: 31218069 PMCID: PMC6549962 DOI: 10.1098/rsos.190366] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/24/2019] [Indexed: 05/10/2023]
Abstract
The low response rate of immune checkpoint blockade in breast cancer has highlighted the need for predictive biomarkers to identify responders. While a number of clinical trials are ongoing, testing all possible combinations is not feasible. In this study, a quantitative systems pharmacology model is built to integrate immune-cancer cell interactions in patients with breast cancer, including central, peripheral, tumour-draining lymph node (TDLN) and tumour compartments. The model can describe the immune suppression and evasion in both TDLN and the tumour microenvironment due to checkpoint expression, and mimic the tumour response to checkpoint blockade therapy. We investigate the relationship between the tumour response to checkpoint blockade therapy and composite tumour burden, PD-L1 expression and antigen intensity, including their individual and combined effects on the immune system, using model-based simulations. The proposed model demonstrates the potential to make predictions of tumour response of individual patients given sufficient clinical measurements, and provides a platform that can be further adapted to other types of immunotherapy and their combination with molecular-targeted therapies. The patient predictions demonstrate how this systems pharmacology model can be used to individualize immunotherapy treatments. When appropriately validated, these approaches may contribute to optimization of breast cancer treatment.
Collapse
Affiliation(s)
- Hanwen Wang
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Oleg Milberg
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Imke H. Bartelink
- Department of Medicine, University of California, San Francisco, CA, USA
- Clinical Pharmacology, Pharmacometrics and DMPK (CPD), MedImmune, South San Francisco, CA, USA
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| | - Paolo Vicini
- Clinical Pharmacology, Pharmacometrics and DMPK, MedImmune, Cambridge, UK
| | - Bing Wang
- Amador Bioscience Inc, Pleasanton, CA 94588, USA
| | - Rajesh Narwal
- Clinical Pharmacology and DMPK (CPD), MedImmune, Gaithersburg, MD, USA
| | - Lorin Roskos
- Clinical Pharmacology and DMPK (CPD), MedImmune, Gaithersburg, MD, USA
| | - Cesar A. Santa-Maria
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Aleksander S. Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
79
|
Magcwebeba T, Dorhoi A, du Plessis N. The Emerging Role of Myeloid-Derived Suppressor Cells in Tuberculosis. Front Immunol 2019; 10:917. [PMID: 31114578 PMCID: PMC6502992 DOI: 10.3389/fimmu.2019.00917] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022] Open
Abstract
Myeloid cells are crucial for the host control of a Mycobacterium tuberculosis (M.tb) infection, however the adverse role of specific myeloid subsets has increasingly been appreciated. The relevance of such cells in therapeutic strategies and predictive/prognostic algorithms is to promote interest in regulatory myeloid cells in tuberculosis (TB). Myeloid-derived suppressor cells (MDSC) are a heterogeneous collection of phagocytes comprised of monocytic- and polymorphonuclear cells that exhibit a potent suppression of innate- and adaptive immune responses. Accumulation of MDSC under pathological conditions associated with chronic inflammation, most notably cancer, has been well-described. Evidence supporting the involvement of MDSC in TB is increasing, yet their significance in this infection continues to be viewed with skepticism, primarily due to their complex nature and the lack of genetic evidence unequivocally discriminating these cells from other terminally differentiated myeloid populations. Here we highlight recent advances in MDSC characterization and summarize findings on the TB-induced hematopoietic shift associated with MDSC expansion. Lastly, the mechanisms of MDSC-mediated disease progression and future research avenues in the context of TB therapy and prophylaxis are discussed.
Collapse
Affiliation(s)
- Tandeka Magcwebeba
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, South African MRC Centre for Tuberculosis Research, DST and NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, Stellenbosch, South Africa
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald, Germany.,Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany.,Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Nelita du Plessis
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, South African MRC Centre for Tuberculosis Research, DST and NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
80
|
Amini RM, Enblad G, Hollander P, Laszlo S, Eriksson E, Ayoola Gustafsson K, Loskog A, Thörn I. Altered profile of immune regulatory cells in the peripheral blood of lymphoma patients. BMC Cancer 2019; 19:316. [PMID: 30953461 PMCID: PMC6449984 DOI: 10.1186/s12885-019-5529-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/27/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Regulatory immune cells may modulate the lymphoma microenvironment and are of great interest due to the increasing prevalence of treatment with immunotherapies in lymphoma patients. The aim was to explore the composition of different immune regulatory cell subsets in the peripheral blood of newly diagnosed lymphoma patients in relation to treatment outcome. METHODS Forty-three newly diagnosed patients with lymphoma were included in the study; 24 with high-grade B-cell lymphoma (HGBCL) and 19 with classical Hodgkin lymphoma (cHL). Peripheral blood was prospectively collected and immune regulatory cells were identified by multi-color flow cytometry and analyzed in relation to healthy blood donors and clinical characteristics and outcome. RESULTS The percentage of CD3-positive T-cells was lower (p = 0.03) in the peripheral blood of lymphoma patients at diagnosis compared to healthy blood donors regardless of lymphoma subtype, although statistically, neither the percentage of monocytes (p = 0.2) nor the T-cell/monocyte ratio (p = 0.055) differed significantly. A significant decrease in the percentage of a subset of regulatory NK cells (CD7+/CD3-/CD56bright/CD16dim/-) was identified in the peripheral blood of lymphoma patients compared to healthy blood donors (p = 0.003). Lymphoma patients also had more granulocytic myeloid-derived suppressor cells (MDSCs) (p = 0.003) compared to healthy blood donors, whereas monocytic MDSCs did not differ significantly (p = 0.07). A superior disease-free survival was observed for cHL patients who had an increase in the percentage of granulocytic MDSCs (p = 0.04). CONCLUSIONS An altered profile of immune cells in the peripheral blood with a decrease in T-cells and regulatory NK-cells was observed in newly diagnosed lymphoma patients. CHL patients with higher percentages of regulatory NK cells and higher percentages of granulocytic MDSCs might have a better outcome, although the number of patients was low.
Collapse
Affiliation(s)
- R-M Amini
- Clinical and Experimental Pathology, Department of Immunology, Genetics and Pathology, Uppsala University and Uppsala University Hospital, Rudbeck Laboratory, C5, SE-75185, Uppsala, Sweden.
| | - G Enblad
- Experimental and Clinical Oncology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - P Hollander
- Clinical and Experimental Pathology, Department of Immunology, Genetics and Pathology, Uppsala University and Uppsala University Hospital, Rudbeck Laboratory, C5, SE-75185, Uppsala, Sweden
| | - S Laszlo
- Clinical and Experimental Pathology, Department of Immunology, Genetics and Pathology, Uppsala University and Uppsala University Hospital, Rudbeck Laboratory, C5, SE-75185, Uppsala, Sweden
| | - E Eriksson
- Clinical Immunology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - K Ayoola Gustafsson
- Medical Genetics and Genomics, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - A Loskog
- Clinical Immunology, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Lokon Pharma, AB, Uppsala, Sweden
| | - I Thörn
- Clinical and Experimental Pathology, Department of Immunology, Genetics and Pathology, Uppsala University and Uppsala University Hospital, Rudbeck Laboratory, C5, SE-75185, Uppsala, Sweden
| |
Collapse
|
81
|
Li X, Liu J, Shi PF, Fu P. Katanin P80 expression correlates with lymph node metastasis and worse overall survival in patients with breast cancer. Cancer Biomark 2019; 23:363-371. [PMID: 30223388 DOI: 10.3233/cbm-181369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the correlation of katanin P80 expression with clinicopathological features and overall survival (OS) in surgical breast cancer (BC) patients. METHODS Four hundred and fourteen BC patients underwent surgery were analyzed in this retrospective cohort study. Katanin P80 expression was examined by immunofluorescence assay. The median follow-up duration was 118.0 months (quantiles: 99.0-140.5 months), the last follow-up date was Jul 1st 2017. RESULTS Eighty-five patients (20.5%) with katanin P80 positive expression and 329 patients (79.5%) with katanin P80 negative expression were observed in this research. Katanin P80 positive expression was correlated with higher N stage (p< 0.001) and TNM stage (p< 0.001). K-M curve and log-rank test revealed that katanin P80 positive patients presented with shorter OS compared with katanin P80 negative patients (p< 0.001). Multivariate Cox's regression analysis disclosed that katanin P80 positive expression (p< 0.001) and histologic grade (p< 0.001) could independently predict unfavorable OS. Furthermore, subgroups analysis was performed, which illuminated that katanin P80 positive expression was correlated with shorter OS in all subgroups divided by molecular subtyping and TNM stage (all p< 0.05) except in TNM stage I subgroup (p= 0.573). CONCLUSION Katanin P80 expression positively correlated with lymph node metastasis and could abe a novel biomarker for prognosis in BC patients.
Collapse
Affiliation(s)
- Xun Li
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng-Fei Shi
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Fu
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
82
|
Significance of baseline neutrophil-to-lymphocyte ratio for progression-free survival of patients with HER2-positive breast cancer treated with trastuzumab emtansine. Sci Rep 2019; 9:1811. [PMID: 30755651 PMCID: PMC6372578 DOI: 10.1038/s41598-018-37633-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/10/2018] [Indexed: 01/13/2023] Open
Abstract
The efficacy of trastuzumab emtansine (T-DM1) is prolonged for some patients; however, the predictive factors remain unknown. We focused on a peripheral blood biomarker, the neutrophil-to-lymphocyte ratio (NLR), regarding T-DM1 treatment efficacy. Fifty-three advanced or metastatic breast cancers treated with T-DM1 were retrospectively recruited from three institutes. The NLR in the peripheral blood was measured at baseline and after one cycle. The cutoff value of the NLR was set at median value 2.56. The progression-free survival (PFS) of patients with NLR-low at baseline (n = 26; median, not reached) was significantly better than that of patients with NLR-high (n = 27; median, 4.13 months; hazard ratio [HR], 0.226; 95% confidence interval [CI], 0.112–0.493; p = 0.0001). Longer overall survival was significantly associated with a low NLR (HR, 0.384; 95% CI, 0.170–0.910; p = 0.0296). In the subgroup analysis, patients with NLR-low consistently had longer PFS compared to those with NLR-high irrespective of the number of prior chemotherapy regimens, prior trastuzumab, visceral metastasis, estrogen receptor status, and human epidermal growth factor receptor 2 (HER2) score. Although detailed mechanisms remain unknown, treatment efficacy of T-DM1 may be partly mediated by activation of the immune system. Low baseline NLR appears to be beneficial for treatment with T-DM1 in HER2-positive breast cancers.
Collapse
|
83
|
Soda H, Ogawara D, Fukuda Y, Tomono H, Okuno D, Koga S, Taniguchi H, Yoshida M, Harada T, Umemura A, Yamaguchi H, Mukae H. Dynamics of blood neutrophil-related indices during nivolumab treatment may be associated with response to salvage chemotherapy for non-small cell lung cancer: A hypothesis-generating study. Thorac Cancer 2019; 10:341-346. [PMID: 30582295 PMCID: PMC6360233 DOI: 10.1111/1759-7714.12952] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022] Open
Abstract
Several recent studies have shown that salvage chemotherapy following PD-1 blockade produces high antitumor activity in some patients with non-small lung cancer (NSCLC). However, the underlying synergistic mechanisms remain uncertain. The blood neutrophil-to-lymphocyte ratio (NLR) and absolute neutrophil count (ANC) can reflect the number of circulating myeloid-derived suppressor cells and tumor-associated neutrophils. The immunosuppressive status of the tumor microenvironment could be monitored by the time-series patterns of NLR and ANC. The dynamics of NLR and ANC during nivolumab treatment were retrospectively explored in 15 patients: 8 patients receiving subsequent salvage chemotherapy (2 groups: 3 non-responders and 5 responders), and 7 responders to nivolumab alone (2 groups: 4 partial response and 3 complete response). The dynamics of NLR and ANC during nivolumab differed among these four groups (NLR P = 0.045, ANC P = 0.067). NLR and ANC during nivolumab treatment increased over time in non-responders to salvage chemotherapy, with an inverse relationship between drug response and NLR or ANC at four to six weeks among the four groups. We hypothesize that the early dynamics of NLR and ANC during nivolumab may be associated with the late efficacy of subsequent salvage chemotherapy. Further studies involving a large cohort are needed to confirm these findings, which could provide insight into the role of myeloid immunosuppressor cells in combination PD-1 blockade and chemotherapy.
Collapse
Affiliation(s)
- Hiroshi Soda
- Department of Respiratory MedicineSasebo City General HospitalNagasakiJapan
| | - Daiki Ogawara
- Department of Respiratory MedicineSasebo City General HospitalNagasakiJapan
| | - Yuichi Fukuda
- Department of Respiratory MedicineSasebo City General HospitalNagasakiJapan
| | - Hiromi Tomono
- Department of Respiratory MedicineSasebo City General HospitalNagasakiJapan
| | - Daisuke Okuno
- Department of Respiratory MedicineSasebo City General HospitalNagasakiJapan
| | - Seiko Koga
- Department of PharmacySasebo City General HospitalNagasakiJapan
| | - Hirokazu Taniguchi
- Department of Respiratory MedicineNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Masataka Yoshida
- Department of Respiratory MedicineSasebo City General HospitalNagasakiJapan
| | - Tatsuhiko Harada
- Department of Respiratory MedicineSasebo City General HospitalNagasakiJapan
| | - Asuka Umemura
- Department of Respiratory MedicineSasebo City General HospitalNagasakiJapan
| | - Hiroyuki Yamaguchi
- Department of Respiratory MedicineNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Hiroshi Mukae
- Department of Respiratory MedicineNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| |
Collapse
|
84
|
Verma P, Verma R, Nair RR, Budhwar S, Khanna A, Agrawal NR, Sinha R, Birendra R, Rajender S, Singh K. Altered crosstalk of estradiol and progesterone with Myeloid-derived suppressor cells and Th1/Th2 cytokines in early miscarriage is associated with early breakdown of maternal-fetal tolerance. Am J Reprod Immunol 2019; 81:e13081. [PMID: 30589483 DOI: 10.1111/aji.13081] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/30/2018] [Accepted: 12/20/2018] [Indexed: 12/28/2022] Open
Abstract
PROBLEM Decline in myeloid-derived suppressor cells (MDSCs) and Th2 cytokines levels lead to early miscarriage (EM) but how the hormonal milieu of the body regulates MDSCs and Th1/Th2 cytokine balance is still a matter of investigation. METHOD OF STUDY Peripheral blood and decidua samples were collected from 20 EM patients, and 20 healthy pregnant women opted for elective abortion. MDSCs and G-MDSCs levels were analyzed in peripheral blood mononuclear cells, and Th1/Th2 cytokines levels were determined in serum via flow cytometry. Estrogen (E2), Progesterone (P4), and Testosterone levels were measured via ELISA. Further, proliferation and apoptosis in decidual samples were checked via immunoblot/immunohistochemistry of estrogen receptor -α (ER-α), STAT-3/pSTAT-3, and caspase-3, respectively. RESULTS Our results clearly indicate that in EM patients; decline in E2 and P4 significantly correlates with decline in MDSCs, particularly with subtype granulocytic MDSCs (G-MDSCs) and skewness of the Th1/Th2 cytokines balance toward Th1 response. Downregulation of ER- α and increased caspase-3 expression in endometrium decidua signifies poor endometrial receptivity in EM. STAT-3 activation regulates proliferation, differentiation and suppressive potency of MDSCs. In decidua of EM, significantly lower expression of pSTAT-3 indicates that these processes pertaining to MDSCs are compromised. CONCLUSION Altogether, this unfavorable systemic milieu may drive toward early breakdown of maternal-fetal tolerance in EM. Therefore, regulated crosstalk of E2, P4 with MDSCs and balanced Th1/Th2 cytokines is prerequisite for successful pregnancy.
Collapse
Affiliation(s)
- Priyanka Verma
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi, India
| | - Rachna Verma
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi, India
| | - Rohini R Nair
- Department of Molecular & Human Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Snehil Budhwar
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi, India
| | - Anuradha Khanna
- Department of Obstetrics & Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Nisha Rani Agrawal
- Department of Obstetrics & Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ruchi Sinha
- Department of Obstetrics & Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ruchi Birendra
- Department of Obstetrics & Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - Kiran Singh
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi, India
| |
Collapse
|
85
|
Tesi R. MDSC; the Most Important Cell You Have Never Heard Of. Trends Pharmacol Sci 2019; 40:4-7. [DOI: 10.1016/j.tips.2018.10.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 11/29/2022]
|
86
|
Safarzadeh E, Hashemzadeh S, Duijf PH, Mansoori B, Khaze V, Mohammadi A, Kazemi T, Yousefi M, Asadi M, Mohammadi H, Babaie F, Baradaran B. Circulating myeloid‐derived suppressor cells: An independent prognostic factor in patients with breast cancer. J Cell Physiol 2018; 234:3515-3525. [DOI: 10.1002/jcp.26896] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/12/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Elham Safarzadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee, Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
- Department of Microbiology & Immunology, Faculty of Medicine Ardabil University of Medical Sciences Ardabil Iran
| | - Shahryar Hashemzadeh
- General and Vascular Surgery Department Tabriz University of Medical Sciences Tabriz Iran
| | - Pascal H.G. Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute Brisbane Australia
| | - Behzad Mansoori
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Vahid Khaze
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Mohammadi
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Milad Asadi
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Hamed Mohammadi
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Farhad Babaie
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Behzad Baradaran
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
- Stem Cell And Regenerative Medicine Institute (SCARM), Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
87
|
Ravindranathan S, Nguyen KG, Kurtz SL, Frazier HN, Smith SG, Koppolu BP, Rajaram N, Zaharoff DA. Tumor-derived granulocyte colony-stimulating factor diminishes efficacy of breast tumor cell vaccines. Breast Cancer Res 2018; 20:126. [PMID: 30348199 PMCID: PMC6198508 DOI: 10.1186/s13058-018-1054-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/25/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Although metastasis is ultimately responsible for about 90% of breast cancer mortality, the vast majority of breast-cancer-related deaths are due to progressive recurrences from non-metastatic disease. Current adjuvant therapies are unable to prevent progressive recurrences for a significant fraction of patients with breast cancer. Autologous tumor cell vaccines (ATCVs) are a safe and potentially useful strategy to prevent breast cancer recurrence, in a personalized and patient-specific manner, following standard-of-care tumor resection. Given the high intra-patient and inter-patient heterogeneity in breast cancer, it is important to understand which factors influence the immunogenicity of breast tumor cells in order to maximize ATCV effectiveness. METHODS The relative immunogenicity of two murine breast carcinomas, 4T1 and EMT6, were compared in a prophylactic vaccination-tumor challenge model. Differences in cell surface expression of antigen-presentation-related and costimulatory molecules were compared along with immunosuppressive cytokine production. CRISPR/Cas9 technology was used to modulate tumor-derived cytokine secretion. The impacts of cytokine deletion on splenomegaly, myeloid-derived suppressor cell (MDSC) accumulation and ATCV immunogenicity were assessed. RESULTS Mice vaccinated with an EMT6 vaccine exhibited significantly greater protective immunity than mice vaccinated with a 4T1 vaccine. Hybrid vaccination studies revealed that the 4T1 vaccination induced both local and systemic immune impairments. Although there were significant differences between EMT6 and 4T1 in the expression of costimulatory molecules, major disparities in the secretion of immunosuppressive cytokines likely accounts for differences in immunogenicity between the cell lines. Ablation of one cytokine in particular, granulocyte-colony stimulating factor (G-CSF), reversed MDSC accumulation and splenomegaly in the 4T1 model. Furthermore, G-CSF inhibition enhanced the immunogenicity of a 4T1-based vaccine to the extent that all vaccinated mice developed complete protective immunity. CONCLUSIONS Breast cancer cells that express high levels of G-CSF have the potential to diminish or abrogate the efficacy of breast cancer ATCVs. Fortunately, this study demonstrates that genetic ablation of immunosuppressive cytokines, such as G-CSF, can enhance the immunogenicity of breast cancer cell-based vaccines. Strategies that combine inhibition of immunosuppressive factors with immune stimulatory co-formulations already under development may help ATCVs reach their full potential.
Collapse
Affiliation(s)
| | - Khue G Nguyen
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Samantha L Kurtz
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Haven N Frazier
- Honors College, University of Arkansas, Fayetteville, AR, USA
| | - Sean G Smith
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA.,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC and North Carolina State University, Raleigh, NC, USA
| | - Bhanu Prasanth Koppolu
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA.,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC and North Carolina State University, Raleigh, NC, USA
| | - Narasimhan Rajaram
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - David A Zaharoff
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA. .,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, USA. .,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA. .,Honors College, University of Arkansas, Fayetteville, AR, USA. .,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC and North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
88
|
Lv Y, Cui M, Lv Z, Lu J, Zhang X, Zhao Z, Wang Y, Gao L, Tsuji NM, Yan H. Expression and significance of peripheral myeloid-derived suppressor cells in chronic hepatitis B patients. Clin Res Hepatol Gastroenterol 2018; 42:462-469. [PMID: 29753730 DOI: 10.1016/j.clinre.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/29/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) exert their suppressive effects on multiple immune response and contribute to the development of many diseases. However, limited data is available on the involvement of MDSCs in human chronic HBV infection. OBJECTIVE To investigate whether the progression of chronic HBV infection was associated with imbalance of MDSCs. METHODS The percentages of MDSCs, regulatory T (Treg), Th1 and Tc1 cells in the peripheral blood from chronic hepatitis B (CHB) patients and healthy controls (HC) were determined by flow cytometry. Plasma levels of IL-10, TGF-β and IFN-γ were measured using enzyme-linked immunosorbent assay. The potential association of the frequencies of MDSCs with clinical parameters was assessed. RESULTS The percentages of MDSCs and Treg cells were significantly higher in CHB patients than those in HC. The percentages of MDSCs were negatively correlated with Th1 cells. Increased plasma IL-10 level and decreased IFN-γ level were found in CHB patients compared with HC. Moreover, the frequencies of MDSCs and plasma IL-10 levels were positively correlated with serum HBV DNA loads, as well as liver function impairment. CONCLUSION The expanded peripheral MDSCs may contribute to poor viral clearance and disease progression during chronic HBV infection.
Collapse
Affiliation(s)
- Y Lv
- Clinical Research Center, Shijiazhuang Fifth Hospital, 42, Tanan Road, Shijiazhuang, Hebei 050021, China
| | - M Cui
- Department of Liver and Digestive Disease, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050021, China
| | - Z Lv
- Graduate College of Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - J Lu
- Clinical Research Center, Shijiazhuang Fifth Hospital, 42, Tanan Road, Shijiazhuang, Hebei 050021, China
| | - X Zhang
- Graduate College of Hebei Medical University, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Z Zhao
- Department of Liver and Digestive Disease, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050021, China
| | - Y Wang
- Department of Liver and Digestive Disease, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050021, China
| | - L Gao
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - N M Tsuji
- Biomedical Research Institude, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - H Yan
- Clinical Research Center, Shijiazhuang Fifth Hospital, 42, Tanan Road, Shijiazhuang, Hebei 050021, China.
| |
Collapse
|
89
|
Foulds GA, Vadakekolathu J, Abdel-Fatah TMA, Nagarajan D, Reeder S, Johnson C, Hood S, Moseley PM, Chan SYT, Pockley AG, Rutella S, McArdle SEB. Immune-Phenotyping and Transcriptomic Profiling of Peripheral Blood Mononuclear Cells From Patients With Breast Cancer: Identification of a 3 Gene Signature Which Predicts Relapse of Triple Negative Breast Cancer. Front Immunol 2018; 9:2028. [PMID: 30254632 PMCID: PMC6141692 DOI: 10.3389/fimmu.2018.02028] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Interactions between the immune system and tumors are highly reciprocal in nature, leading to speculation that tumor recurrence or therapeutic resistance could be influenced or predicted by immune events that manifest locally, but can be detected systemically. Methods: Multi-parameter flow cytometry was used to examine the percentage and phenotype of natural killer (NK) cells, myeloid-derived suppressor cells (MDSCs), monocyte subsets and regulatory T (Treg) cells in the peripheral blood of of 85 patients with breast cancer (50 of whom were assessed before and after one cycle of anthracycline-based chemotherapy), and 23 controls. Transcriptomic profiles of peripheral blood mononuclear cells (PBMCs) in 23 patients were generated using a NanoString gene profiling platform. Results: An increased percentage of immunosuppressive cells such as granulocytic MDSCs, intermediate CD14++CD16+ monocytes and CD127negCD25highFoxP3+ Treg cells was observed in patients with breast cancer, especially patients with stage 3 and 4 disease, regardless of ER status. Following neoadjuvant chemotherapy, B cell numbers decreased significantly, whereas monocyte numbers increased. Although chemotherapy had no effect on the percentage of Treg, MDSC and NK cells, the expression of inhibitory receptors CD85j, LIAR and NKG2A and activating receptors NKp30 and NKp44 on NK cells increased, concomitant with a decreased expression of NKp46 and DNAM-1 activating receptors. Transcriptomic profiling revealed a distinct group of 3 patients in the triple negative breast cancer (TNBC) cohort who expressed high levels of mRNA encoding genes predominantly involved in inflammation. The analysis of a large transcriptomic dataset derived from the tumors of patients with TNBC revealed that the expression of CD163, CXCR4, THBS1 predicted relapse-free survival. Conclusions: The peripheral blood immunome of patients with breast cancer is influenced by the presence and stage of cancer, but not by molecular subtypes. Furthermore, immune profiling coupled with transcriptomic analyses of peripheral blood cells may identify patients with TNBC that are at risk of relapse after chemotherapy.
Collapse
Affiliation(s)
- Gemma A Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Tarek M A Abdel-Fatah
- Clinical Oncology Department, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Divya Nagarajan
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Stephen Reeder
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Catherine Johnson
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Simon Hood
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Paul M Moseley
- Clinical Oncology Department, Nottingham University Hospitals, Nottingham, United Kingdom
| | - Stephen Y T Chan
- Clinical Oncology Department, Nottingham University Hospitals, Nottingham, United Kingdom
| | - A Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Sergio Rutella
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Stephanie E B McArdle
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
90
|
Tong D, Liu Q, Wang LA, Xie Q, Pang J, Huang Y, Wang L, Liu G, Zhang D, Lan W, Jiang J. The roles of the COX2/PGE2/EP axis in therapeutic resistance. Cancer Metastasis Rev 2018; 37:355-368. [DOI: 10.1007/s10555-018-9752-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
91
|
Wang PF, Song SY, Wang TJ, Ji WJ, Li SW, Liu N, Yan CX. Prognostic role of pretreatment circulating MDSCs in patients with solid malignancies: A meta-analysis of 40 studies. Oncoimmunology 2018; 7:e1494113. [PMID: 30288362 PMCID: PMC6169582 DOI: 10.1080/2162402x.2018.1494113] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/19/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) have been shown to contribute to tumor progression, mainly through immune suppression. Inverse correlations have been observed between MDSC levels and patient survival for various malignancies. The purpose of this meta-analysis was to evaluate the prognostic value of pretreatment circulating MDSCs. We searched MEDLINE and EMBASE from their inceptions to September 2017 to identify relevant articles. Using a fixed or random effects model, pooled hazard ratios (HRs) were estimated for overall survival (OS) and combined disease-free survival, progression-free survival, and recurrence-free survival (DFS/PFS/RFS). A total of 40 studies comprising 2721 were included. For solid tumors, high levels of pretreatment circulating MDSCs were significantly associated with worse OS (HR = 1.796, 95% CI = 1.587-2.032) and DFS/PFS/RFS (HR = 2.459, 95% CI = 2.018-2.997). Breast cancer showed the largest association between high MDSC levels and worse OS (pooled HR = 3.053). Elevated MDSCs were also associated with worse OS for mixed-stage tumors (pooled HR = 1.659) and advanced-stage tumors (pooled HR = 2.337). Furthermore, both monocytic-MDSCs (M-MDSCs) and granulocytic or polymorphonuclear (PMN-MDSCs) showed negative associations with survival outcomes. Overall, high levels of pretreatment circulating MDSCs negatively influenced survival in most cancers. Pretreatment circulating MDSCs should be taken into account to further improve prognostic evaluation and develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Si-Ying Song
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ting-Jian Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Wen-Jun Ji
- Department of Neurosurgery, Key Laboratory, The Second Hospital of Yulin, Xi’an Jiao tong University, Xi’an, China
| | - Shou-Wei Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Ning Liu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Chang-Xiang Yan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
92
|
Okla K, Wertel I, Wawruszak A, Bobiński M, Kotarski J. Blood-based analyses of cancer: Circulating myeloid-derived suppressor cells - is a new era coming? Crit Rev Clin Lab Sci 2018; 55:376-407. [PMID: 29927668 DOI: 10.1080/10408363.2018.1477729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Progress in cancer treatment made by the beginning of the 21st century has shifted the paradigm from one-size-fits-all to tailor-made treatment. The popular vision, to study solid tumors through the relatively noninvasive sampling of blood, is one of the most thrilling and rapidly advancing fields in global cancer diagnostics. From this perspective, immune-cell analysis in cancer could play a pivotal role in oncology practice. This approach is driven both by rapid technological developments, including the analysis of circulating myeloid-derived suppressor cells (cMDSCs), and by the increasing application of (immune) therapies, the success or failure of which may depend on effective and timely measurements of relevant biomarkers. Although the implementation of these powerful noninvasive diagnostic capabilities in guiding precision cancer treatment is poised to change the ways in which we select and monitor cancer therapy, challenges remain. Here, we discuss the challenges associated with the analysis and clinical aspects of cMDSCs and assess whether the problems in implementing tumor-evolution monitoring as a global tool in personalized oncology can be overcome.
Collapse
Affiliation(s)
- Karolina Okla
- a 1st Chair and Department of Oncological Gynaecology and Gynaecology, Tumor Immunology Laboratory , Medical University of Lublin , Lublin , Poland
| | - Iwona Wertel
- a 1st Chair and Department of Oncological Gynaecology and Gynaecology, Tumor Immunology Laboratory , Medical University of Lublin , Lublin , Poland
| | - Anna Wawruszak
- b Department of Biochemistry and Molecular Biology , Medical University of Lublin , Lublin , Poland
| | - Marcin Bobiński
- a 1st Chair and Department of Oncological Gynaecology and Gynaecology, Tumor Immunology Laboratory , Medical University of Lublin , Lublin , Poland
| | - Jan Kotarski
- a 1st Chair and Department of Oncological Gynaecology and Gynaecology, Tumor Immunology Laboratory , Medical University of Lublin , Lublin , Poland
| |
Collapse
|
93
|
Andrews MC, Reuben A, Gopalakrishnan V, Wargo JA. Concepts Collide: Genomic, Immune, and Microbial Influences on the Tumor Microenvironment and Response to Cancer Therapy. Front Immunol 2018; 9:946. [PMID: 29780391 PMCID: PMC5945998 DOI: 10.3389/fimmu.2018.00946] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/16/2018] [Indexed: 12/30/2022] Open
Abstract
Cancer research has seen unprecedented advances over the past several years, with tremendous insights gained into mechanisms of response and resistance to cancer therapy. Central to this has been our understanding of crosstalk between the tumor and the microenvironment, with the recognition that complex interactions exist between tumor cells, stromal cells, overall host immunity, and the environment surrounding the host. This is perhaps best exemplified in cancer immunotherapy, where numerous studies across cancer types have illuminated our understanding of the genomic and immune factors that shape responses to therapy. In addition to their individual contributions, it is now clear that there is a complex interplay between genomic/epigenomic alterations and tumor immune responses that impact cellular plasticity and therapeutic responses. In addition to this, it is also now apparent that significant heterogeneity exists within tumors-both at the level of genomic mutations as well as tumor immune responses-thus contributing to heterogeneous clinical responses. Beyond the tumor microenvironment, overall host immunity plays a major role in mediating clinical responses. The gut microbiome plays a central role, with recent evidence revealing that the gut microbiome influences the overall immune set-point, through diverse effects on local and systemic inflammatory processes. Indeed, quantifiable differences in the gut microbiome have been associated with disease and treatment outcomes in patients and pre-clinical models, though precise mechanisms of microbiome-immune interactions are yet to be elucidated. Complexities are discussed herein, with a discussion of each of these variables as they relate to treatment response.
Collapse
Affiliation(s)
- Miles C Andrews
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Alexandre Reuben
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vancheswaran Gopalakrishnan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
94
|
Grees M, Sharbi-Yunger A, Evangelou C, Baumann D, Cafri G, Tzehoval E, Eichmüller SB, Offringa R, Utikal J, Eisenbach L, Umansky V. Optimized dendritic cell vaccination induces potent CD8 T cell responses and anti-tumor effects in transgenic mouse melanoma models. Oncoimmunology 2018; 7:e1445457. [PMID: 29900058 DOI: 10.1080/2162402x.2018.1445457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/30/2022] Open
Abstract
Despite melanoma immunogenicity and remarkable therapeutic effects of negative immune checkpoint inhibitors, a significant fraction of patients does not respond to current treatments. This could be due to limitations in tumor immunogenicity and profound immunosuppression in the melanoma microenvironment. Moreover, insufficient tumor antigen processing and presentation by dendritic cells (DC) may hamper the development of tumor-specific T cells. Using two genetically engineered mouse melanoma models (RET and BRAFV600E transgenic mice), in which checkpoint inhibitor therapy alone is not efficacious, we performed proof-of-concept studies with an improved, multivalent DC vaccination strategy based on our recently developed genetic mRNA cancer vaccines. The in vivo expression of multiple chimeric MHC class I receptors allows a simultaneous presentation of several melanoma-associated shared antigens tyrosinase related protein (TRP)-1, tyrosinase, human glycoprotein 100 and TRP-2. The DC vaccine induced a significantly improved survival in both transgenic mouse models. Vaccinated melanoma-bearing mice displayed an increased CD8 T cell reactivity indicated by a higher IFN-γ production and an upregulation of activation marker expression along with an attenuated immunosuppressive pattern of myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg). The combination of DC vaccination with ultra-low doses of paclitaxel or anti-PD-1 antibodies resulted in further prolongation of mouse survival associated with a stronger reduction of MDSC and Treg immunosuppressive phenotype. Our data suggest that an improved multivalent DC vaccine based on shared tumor antigens induces potent anti-tumor effects and could be combined with checkpoint inhibitors or targeting immunosuppressive cells to further improve their therapeutic efficiency.
Collapse
Affiliation(s)
- Mareike Grees
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Adi Sharbi-Yunger
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Christos Evangelou
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Daniel Baumann
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gal Cafri
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Esther Tzehoval
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Stefan B Eichmüller
- GMP and T cell Therapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rienk Offringa
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Lea Eisenbach
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
95
|
Zhu H, Gu Y, Xue Y, Yuan M, Cao X, Liu Q. CXCR2 + MDSCs promote breast cancer progression by inducing EMT and activated T cell exhaustion. Oncotarget 2017; 8:114554-114567. [PMID: 29383101 PMCID: PMC5777713 DOI: 10.18632/oncotarget.23020] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/14/2017] [Indexed: 12/02/2022] Open
Abstract
Although myeloid-derived suppressor cells (MDSCs) have been demonstrated to contribute to tumor initiation, progression and metastasis, however, which MDSC subsets are preferentially expanded and activated, and what's the key molecular mechanism responsible for specific MDSC subsets in promoting tumor progression need to be fully addressed. Here we identify that Ly6GmiLy6CloCD11b+CXCR2+ subpopulation (named CXCR2+ MDSCs) are predominately expanded and recruited in systemic and local tumor microenvironment during breast cancer progression and metastasis. The proportion of CXCR2+ MDSCs is inversely correlated with the infiltration of CD4+ or CD8+ T cells. Besides, CXCR2+ MDSCs promote breast cancer growth and metastasis to lung and/or lymph node in vivo. Furthermore, CXCR2+ MDSCs induce epithelial mesenchymal transition (EMT) of breast cancer cells via IL-6. Moreover, CXCR2+ MDSCs upregulate the expression of immunosuppressive molecules programmed cell death protein 1(PD1), PD1 ligand 1 (PDL1), lymphocyte activation gene 3 protein (LAG3), cytotoxic T lymphocyte antigen 4 (CTLA4), and T cell immunoglobulin domain and mucin domain protein 3 (TIM3) on CD4+ or CD8+ T cells, and induce exhaustion of the activated T cells partially via IFN-γ. These results demonstrate that CXCR2+ MDSCs accelerate breast cancer progression via directly inducing cancer cell EMT and indirectly promoting T cell exhaustion, suggesting that CXCR2+ MDSCs may be a potential therapeutic target of breast cancer.
Collapse
Affiliation(s)
- Ha Zhu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Yan Gu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Yiquan Xue
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Ming Yuan
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Qiuyan Liu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
96
|
Koga N, Moriya F, Waki K, Yamada A, Itoh K, Noguchi M. Immunological efficacy of herbal medicines in prostate cancer patients treated by personalized peptide vaccine. Cancer Sci 2017; 108:2326-2332. [PMID: 28898532 PMCID: PMC5715291 DOI: 10.1111/cas.13397] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/04/2017] [Accepted: 09/07/2017] [Indexed: 12/20/2022] Open
Abstract
This randomized phase II study investigated the immunological efficacy of herbal medicines (HM) using Hochu‐ekki‐to and Keishi‐bukuryo‐gan in combination with personalized peptide vaccination (PPV) for castration‐resistant prostate cancer (CRPC). Seventy patients with CRPC were assigned to two arms; PPV plus HM or PPV alone. Two to four peptides were chosen from 31 peptides derived from cancer antigens for a s.c. injection of PPV given eight times according to the patient's human leukocyte antigen type and levels of antigen‐specific IgG titer before PPV treatment. Peptide‐specific CTL, IgG, regulatory T cells (Treg), monocytic myeloid‐derived suppressor cells (Mo‐MDSC), and interleukin‐6 (IL‐6) responses were measured before and at the eighth vaccination. Clinical outcomes were also analyzed. Combination therapy of PPV with HM was well tolerated without severe adverse events. There was no significant change in antigen‐specific IgG, CTL, Treg or clinical outcomes. Combination therapy of PPV with HM stabilized the frequency of Mo‐MDSC (1.91%–1.92%, P = 0.96) and serum levels of IL‐6 (19.2 pg/mL to 16.1 pg/mL, P = 0.63) during the treatment. In contrast, the frequency of Mo‐MDSC and levels of IL‐6 in the PPV‐alone group were significantly increased (0.91%–1.49% for Mo‐MDSC and 9.2 pg/mL to 19.4 pg/mL for IL‐6, respectively). These results suggest that the combined use of HM has the potential to prevent the immunosuppression induced by Mo‐MDSC or IL‐6 during immunotherapy. More research is needed to validate the findings of the present study.
Collapse
Affiliation(s)
- Noriko Koga
- Division of Clinical Research, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume, Japan
| | - Fukuko Moriya
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| | - Kayoko Waki
- Division of Cancer Vaccines, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume, Japan
| | - Akira Yamada
- Division of Cancer Vaccines, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume, Japan
| | - Kyogo Itoh
- Cancer Vaccine Center, Kurume University School of Medicine, Kurume, Japan
| | - Masanori Noguchi
- Division of Clinical Research, Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume, Japan.,Cancer Vaccine Center, Kurume University School of Medicine, Kurume, Japan.,Department of Urology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|