51
|
Haro MA, Dyevoich AM, Phipps JP, Haas KM. Activation of B-1 Cells Promotes Tumor Cell Killing in the Peritoneal Cavity. Cancer Res 2018; 79:159-170. [PMID: 30224373 DOI: 10.1158/0008-5472.can-18-0981] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/13/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022]
Abstract
Metastatic cancer involving spread to the peritoneal cavity is referred to as peritoneal carcinomatosis and has a very poor prognosis. Activating the antitumor immune response in the characteristically immune-suppressive peritoneal environment presents a potential strategy to treat this disease. In this study, we show that a toll-like receptor (TLR) and C-type lectin receptor (CLR) agonist pairing of monophosphoryl lipid A (MPL) and trehalose-6,6'-dicorynomycolate (TDCM) effectively inhibits tumor growth and ascites development in a mouse model of aggressive mammary cancer-induced peritoneal carcinomatosis. MPL/TDCM treatment similarly inhibited peritoneal EL4 tumor growth and ascites development. These effects were not observed in mice lacking B cells or mice lacking CD19, which are deficient in B-1a cells, an innate-like B-cell population enriched in the peritoneal cavity. Remarkably, adoptive transfer of B-1a cells, but not splenic B cells from WT mice, restored MPL/TDCM-induced protection in mice with B-cell defects. Treatment induced B-1 cells to rapidly produce high levels of natural IgM reactive against tumor-associated carbohydrate antigens. Consistent with this, we found significant deposition of IgM and C3 on peritoneal tumor cells as early as 5 days post-treatment. Mice unable to secrete IgM or complement component C4 were not protected by MPL/TDCM treatment, indicating tumor killing was mediated by activation of the classical complement pathway. Collectively, our findings reveal an unsuspected role for B-1 cell-produced natural IgM in providing protection against tumor growth in the peritoneal cavity, thereby highlighting potential opportunities to develop novel therapeutic strategies for the prevention and treatment of peritoneal metastases. SIGNIFICANCE: This work identifies a critical antitumor role for innate-like B cells localized within the peritoneal cavity and demonstrates a novel strategy to activate their tumor-killing potential.See related commentary by Tripodo, p. 5.
Collapse
Affiliation(s)
- Marcela A Haro
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Allison M Dyevoich
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - James P Phipps
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Karen M Haas
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
52
|
Xiong Y, Wu H, Li Y, Huang R, Liu Y, Chen Y, Zhao X, Chang H, Chen J, Wu C. Characteristics of peripheral and intrahepatic regulatory B cells in HBV-related liver cirrhosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4545-4551. [PMID: 31949852 PMCID: PMC6962989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/26/2018] [Indexed: 06/10/2023]
Abstract
Regulatory B (Breg) cells have been demonstrated to play a suppressive role in chronic hepatitis B virus infection. However, the role of Breg in HBV-related liver cirrhosis has not been determined. Patients with chronic hepatitis B virus infection and HBV-related liver cirrhosis were enrolled. Frequencies of peripheral B cell subsets were assessed by flow cytometry. Intrahepatic B cells, IL-10 positive cells and Breg cells were determined by immunohistochemistry. We found that frequency of peripheral Breg cells was significantly higher in cirrhotic patients compared with that in healthy volunteers. Further, the amount of intrahepatic Breg cells was elevated in patients with HBV-related liver cirrhosis. We identified a positive correlation between intrahepatic Breg cells and histological fibrosis stages. Our results suggested that Breg cells may play a role in HBV-related liver cirrhosis, but the function of Breg cells in cirrhosis remains to be further elucidated.
Collapse
Affiliation(s)
- Yali Xiong
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, Jiangsu, China
| | - Hongyan Wu
- Department of Pathology, Nanjing Drum Tower Hospital, Nanjing University Medical SchoolNanjing, Jiangsu, China
| | - Yang Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical SchoolNanjing, Jiangsu, China
| | - Rui Huang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical SchoolNanjing, Jiangsu, China
| | - Yong Liu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical SchoolNanjing, Jiangsu, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical SchoolNanjing, Jiangsu, China
| | - Xiangan Zhao
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical SchoolNanjing, Jiangsu, China
| | - Haiyan Chang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical SchoolNanjing, Jiangsu, China
| | - Jun Chen
- Department of Pathology, Nanjing Drum Tower Hospital, Nanjing University Medical SchoolNanjing, Jiangsu, China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing University Medical SchoolNanjing, Jiangsu, China
| |
Collapse
|
53
|
Ezekian B, Schroder PM, Freischlag K, Yoon J, Kwun J, Knechtle SJ. Contemporary Strategies and Barriers to Transplantation Tolerance. Transplantation 2018; 102:1213-1222. [PMID: 29757903 PMCID: PMC6059978 DOI: 10.1097/tp.0000000000002242] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/30/2022]
Abstract
The purpose of this review is to discuss immunologic tolerance as it applies to solid organ transplantation and to identify barriers that hinder the achievement of this long-term goal. First, the definition of tolerance and an introduction of mechanisms by which tolerance exists or can be achieved will be discussed. Next, a review of contemporary attempts at achieving transplant tolerance will be described. Finally, a discussion of the humoral barriers to transplantation tolerance and potential ways to overcome these barriers will be presented.
Collapse
Affiliation(s)
- Brian Ezekian
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC
| | - Paul M. Schroder
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC
| | - Kyle Freischlag
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC
| | - Janghoon Yoon
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC
| | - Stuart J. Knechtle
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC
| |
Collapse
|
54
|
Mahapatra S, Ying L, Ho PPK, Kurnellas M, Rothbard J, Steinman L, Cornfield DN. An amyloidogenic hexapeptide derived from amylin attenuates inflammation and acute lung injury in murine sepsis. PLoS One 2018; 13:e0199206. [PMID: 29990318 PMCID: PMC6039005 DOI: 10.1371/journal.pone.0199206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/04/2018] [Indexed: 12/03/2022] Open
Abstract
Although the accumulation of amyloidogenic proteins in neuroinflammatory conditions is generally considered pathologic, in a murine model of multiple sclerosis, amyloid-forming fibrils, comprised of hexapeptides, are anti-inflammatory. Whether these molecules modulate systemic inflammatory conditions remains unknown. We hypothesized that an amylin hexapeptide that forms fibrils can attenuate the systemic inflammatory response in a murine model of sepsis. To test this hypothesis, mice were pre-treated with either vehicle or amylin hexapeptide (20 μg) at 12 hours and 6 hours prior to intraperitoneal (i.p.) lipopolysaccharide (LPS, 20 mg/kg) administration. Illness severity and survival were monitored every 6 hours for 3 days. Levels of pro- (IL-6, TNF-α, IFN-γ) and anti-inflammatory (IL-10) cytokines were measured via ELISA at 1, 3, 6, 12, and 24 hours after LPS (i.p.). As a metric of lung injury, pulmonary artery endothelial cell (PAEC) barrier function was tested 24 hours after LPS administration by comparing lung wet-to-dry ratios, Evan’s blue dye (EBD) extravasation, lung histology and caspase-3 activity. Compared to controls, pretreatment with amylin hexapeptide significantly reduced mortality (p<0.05 at 72 h), illness severity (p<0.05), and pro-inflammatory cytokine levels, while IL-10 levels were elevated (p<0.05). Amylin pretreatment attenuated LPS-induced lung injury, as demonstrated by decreased lung water and caspase-3 activity (p<0.05, versus PBS). Hence, in a murine model of systemic inflammation, pretreatment with amylin hexapeptide reduced mortality, disease severity, and preserved lung barrier function. Amylin hexapeptide may represent a novel therapeutic tool to mitigate sepsis severity and lung injury.
Collapse
Affiliation(s)
- Sidharth Mahapatra
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| | - Lihua Ying
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Peggy Pui-Kay Ho
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | | | - Jonathan Rothbard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - David N. Cornfield
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
55
|
Rincón-Arévalo H, Villa-Pulgarín J, Tabares J, Rojas M, Vásquez G, Ramírez-Pineda JR, Castaño D, Yassin LM. Interleukin-10 production and T cell-suppressive capacity in B cell subsets from atherosclerotic apoE -/- mice. Immunol Res 2018; 65:995-1008. [PMID: 28744806 DOI: 10.1007/s12026-017-8939-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The evidence regarding the role of regulatory B cells (Breg) in atherosclerosis are scarce, and there are contradictory data about their atheroprotective properties. Due to the demonstrated protective function of Breg in different inflammatory diseases mainly through interleukin-10 (IL-10) production, the knowledge of their participation in atherosclerosis immunopathology would be very valuable. To further study which B cell subsets participate in IL-10 production and their regulatory role, splenocytes from apolipoprotein-E-deficient mice were evaluated by ex vivo and in vitro cultures. Atherosclerotic mice had increased frequency of IL-10+ B cells, which presented high CD1d, CD19, and IgM, but variable CD5, CD21, and CD23 expression. IL-10+ B cells were not enriched in B cell subsets previously reported as Breg. Increased frequency of IL-10+ B cells with transitional 1-like (T1-like) and follicular (FO) and reduced CD5+ and marginal zone (MZ) phenotypes were observed ex vivo. Increased frequency of IL-10+ B cells with T1-like and MZ, and decreased IL-10+ FO and T2 phenotypes were also observed in vitro. To determine regulatory capacity of B cells in the atherosclerotic model, each subset were co-cultured with CD4+CD25- T cells. CD5+, FO, MZ, and T1-like cells from atherosclerotic mice exhibited regulation in an IL-10-dependent manner. However, only FO cells decreased both frequency of interferon gamma (IFN-γ)+ and tumor necrosis factor alpha (TNF-α)+ and proliferation of T cells. Finally, splenocytes showed increased frequency of IFN-γ+ and TNF-α+ cells only when FO-depleted B cells were evaluated. These results suggest that mainly FO B cells can modulate in some level the inflammatory responses observed in atherosclerosis.
Collapse
Affiliation(s)
- Héctor Rincón-Arévalo
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Janny Villa-Pulgarín
- Grupo Inmunomodulación, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Jorge Tabares
- Grupo Inmunomodulación, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.,Unidad de Citometría, Facultad de Medicina, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Gloria Vásquez
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - José R Ramírez-Pineda
- Grupo Inmunomodulación, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Diana Castaño
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.
| | - Lina M Yassin
- Grupo de Investigaciones Biomédicas Uniremington, Corporación Universitaria Remington, Medellín, Colombia.
| |
Collapse
|
56
|
Hosseini H, Yi L, Kanellakis P, Cao A, Tay C, Peter K, Bobik A, Toh BH, Kyaw T. Anti-TIM-1 Monoclonal Antibody (RMT1-10) Attenuates Atherosclerosis By Expanding IgM-producing B1a Cells. J Am Heart Assoc 2018; 7:JAHA.117.008447. [PMID: 29936416 PMCID: PMC6064881 DOI: 10.1161/jaha.117.008447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Peritoneal B1a cells attenuate atherosclerosis by secreting natural polyclonal immunoglobulin M (IgM). Regulatory B cells expressing T‐cell immunoglobulin mucin domain‐1 (TIM‐1) expanded through TIM‐1 ligation by anti‐TIM‐1 monoclonal antibody (RMT1‐10) induces immune tolerance. Methods and Results We examined the capacity of RMT1‐10 to expand peritoneal B1a cells to prevent atherosclerosis development and retard progression of established atherosclerosis. RMT1‐10 treatment selectively doubled peritoneal B1a cells, tripled TIM‐1+ B1a cells and increased TIM‐1+IgM+interleukin (IL)‐10+ by 3‐fold and TIM‐1+IgM+IL‐10− B1a cells by 2.5‐fold. Similar expansion of B1a B cells was observed in spleens. These effects reduced atherosclerotic lesion size, increased plasma IgM and lesion IgM deposits, and decreased oxidatively modified low‐density lipoproteins in lesions. Lesion CD4+ and CD8+ T cells, macrophages and monocyte chemoattractant protein‐1, vascular cell adhesion molecule‐1, expression of proinflammatory cytokines monocyte chemoattractant protein‐1, vascular cell adhesion molecule‐1, IL1β, apoptotic cell numbers and necrotic cores were also reduced. RMT1‐10 treatment failed to expand peritoneal B1a cells and reduce atherosclerosis after splenectomy that reduces B1a cells, indicating that these effects are B1a cell‐dependent. Apolipoprotein E‐KO mice fed a high‐fat diet for 6 weeks before treatment with RMT1‐10 also increased TIM‐1+IgM+IL‐10+ and TIM‐1+IgM+IL‐10− B1a cells and IgM levels and attenuated progression of established atherosclerosis. Conclusions RMT1‐10 treatment attenuates atherosclerosis development and progression by selectively expanding IgM producing atheroprotective B1a cells. Antibody‐based in vivo expansion of B1a cells could be an attractive approach for treating atherosclerosis.
Collapse
Affiliation(s)
- Hamid Hosseini
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Melbourne, Australia
| | - Li Yi
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Melbourne, Australia
| | | | - Anh Cao
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Christopher Tay
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Melbourne, Australia
| | | | - Alex Bobik
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Immunology, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Melbourne, Australia
| | - Tin Kyaw
- Baker Heart and Diabetes Institute, Melbourne, Australia .,Centre for Inflammatory Diseases, Department of Medicine, Southern Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
57
|
Da Rosa LC, Boldison J, De Leenheer E, Davies J, Wen L, Wong FS. B cell depletion reduces T cell activation in pancreatic islets in a murine autoimmune diabetes model. Diabetologia 2018; 61:1397-1410. [PMID: 29594371 PMCID: PMC6449006 DOI: 10.1007/s00125-018-4597-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/21/2018] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes is a T cell-mediated autoimmune disease characterised by the destruction of beta cells in the islets of Langerhans, resulting in deficient insulin production. B cell depletion therapy has proved successful in preventing diabetes and restoring euglycaemia in animal models of diabetes, as well as in preserving beta cell function in clinical trials in the short term. We aimed to report a full characterisation of B cell kinetics post B cell depletion, with a focus on pancreatic islets. METHODS Transgenic NOD mice with a human CD20 transgene expressed on B cells were injected with an anti-CD20 depleting antibody. B cells were analysed using multivariable flow cytometry. RESULTS There was a 10 week delay in the onset of diabetes when comparing control and experimental groups, although the final difference in the diabetes incidence, following prolonged observation, was not statistically significant (p = 0.07). The co-stimulatory molecules CD80 and CD86 were reduced on stimulation of B cells during B cell depletion and repopulation. IL-10-producing regulatory B cells were not induced in repopulated B cells in the periphery, post anti-CD20 depletion. However, the early depletion of B cells had a marked effect on T cells in the local islet infiltrate. We demonstrated a lack of T cell activation, specifically with reduced CD44 expression and effector function, including IFN-γ production from both CD4+ and CD8+ T cells. These CD8+ T cells remained altered in the pancreatic islets long after B cell depletion and repopulation. CONCLUSIONS/INTERPRETATION Our findings suggest that B cell depletion can have an impact on T cell regulation, inducing a durable effect that is present long after repopulation. We suggest that this local effect of reducing autoimmune T cell activity contributes to delay in the onset of autoimmune diabetes.
Collapse
Affiliation(s)
- Larissa C Da Rosa
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Joanne Boldison
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Evy De Leenheer
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
- University of Sheffield, New Spring House, Sheffield, UK
| | - Joanne Davies
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Li Wen
- Section of Endocrinology, School of Medicine, Yale University, New Haven, CT, USA
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
58
|
S1P Signalling Differentially Affects Migration of Peritoneal B Cell Populations In Vitro and Influences the Production of Intestinal IgA In Vivo. Int J Mol Sci 2018; 19:ijms19020391. [PMID: 29382132 PMCID: PMC5855613 DOI: 10.3390/ijms19020391] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 01/07/2023] Open
Abstract
Introduction: Sphingosine-1-phosphate (S1P) regulates the migration of follicular B cells (B2 cells) and directs the positioning of Marginal zone B cells (MZ B cells) within the spleen. The function of S1P signalling in the third B cell lineage, B1 B cells, mainly present in the pleural and peritoneal cavity, has not yet been determined. Methods: S1P receptor expression was analysed in peritoneal B cells by real-time polymerase chain reaction (qPCR). The chemotactic response to S1P was studied in vitro. The role of S1P signalling was further explored in a s1p4−/− mouse strain. Results: Peritoneal B cells expressed considerable amounts of the S1P receptors 1 and 4 (S1P1 and S1P4, respectively). S1P1 showed differential expression between the distinct peritoneal B cell lineages. While B2 cells showed no chemotactic response to S1P, B1 B cells showed a migration response to S1P. s1p4−/− mice displayed significant alterations in the composition of peritoneal B cell populations, as well as a significant reduction of mucosal immunoglobulin A (IgA) in the gut. Discussion: S1P signalling influences peritoneal B1 B cell migration. S1P4 deficiency alters the composition of peritoneal B cell populations and reduces secretory IgA levels. These findings suggest that S1P signalling may be a target to modulate B cell function in inflammatory intestinal pathologies.
Collapse
|
59
|
Regulatory B cells: the cutting edge of immune tolerance in kidney transplantation. Cell Death Dis 2018; 9:109. [PMID: 29371592 PMCID: PMC5833552 DOI: 10.1038/s41419-017-0152-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/16/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022]
Abstract
Kidney transplantation is the optimal treatment for end-stage renal diseases. Although great improvement has been achieved, immune tolerance is still the Holy Grail that every organ transplant practitioner pursues. The role of B cells in transplantation has long been considered simply to serve as precursors of plasma cells, which produce alloantibodies and induce antibody-mediated rejection. Recent research indicates that a specialized subset of B cells plays an important role in immune regulation, which has been well demonstrated in autoimmune diseases, infections, and cancers. This category of regulatory B cells (Bregs) differs from conventional B cells, and they may help develop a novel immunomodulatory therapeutic strategy to achieve immune tolerance in transplantation. Here, we review the latest evidence regarding phenotypes, functions, and effectors of Bregs and discuss their diverse effects on kidney transplantation.
Collapse
|
60
|
Miles K, Simpson J, Brown S, Cowan G, Gray D, Gray M. Immune Tolerance to Apoptotic Self Is Mediated Primarily by Regulatory B1a Cells. Front Immunol 2018; 8:1952. [PMID: 29403471 PMCID: PMC5780629 DOI: 10.3389/fimmu.2017.01952] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/18/2017] [Indexed: 01/24/2023] Open
Abstract
The chronic autoimmune inflammatory diseases, systemic lupus erythematosus and Sjogren's syndrome, develop when tolerance to apoptotic cells (ACs) is lost. We have previously reported that this tolerance is maintained by innate-like, IL-10 secreting regulatory B cells. Two questions remained. First, do these regulatory B cells belong predominantly to a single subset of steady-state B cells and second, what is their specificity? We report here that innate-like B cells with markers characteristic for B1a cells (CD43+veCD19hiCD5+veIgMhiIgDlo) constitute 80% of splenic and 96% of peritoneal B cells that respond to ACs by secreting IL-10. AC responsive B1a cells secrete self-reactive natural antibodies (NAbs) and IL-10, which is augmented by toll-like receptor (TLR) 7 or TLR9 stimulation. In so doing, they both accelerate the clearance of dying cells by macrophages and inhibit their potential to mount proinflammatory immune responses. While B1a cells make prolonged contact with ACs, they do not require TIM1 or complement to mediate their regulatory function. In an animal model of neural inflammation (experimental autoimmune encephalomyelitis), just 105 activated B1a B cells was sufficient to restrain inflammation. Activated B1a B cells also induced antigen-specific T cells to secrete IL-10. Hence, regulatory B1a cells specifically recognize and augment tolerance to apoptotic self via IL-10 and NAbs; but once activated, can also prevent autoimmune mediated inflammation.
Collapse
Affiliation(s)
- Katherine Miles
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Joanne Simpson
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Sheila Brown
- School of Biological Sciences, Institute of Immunology and Infection Research, Ashworth Laboratories, The University of Edinburgh, Edinburgh, United Kingdom
| | - Graeme Cowan
- School of Biological Sciences, Institute of Immunology and Infection Research, Ashworth Laboratories, The University of Edinburgh, Edinburgh, United Kingdom
| | - David Gray
- School of Biological Sciences, Institute of Immunology and Infection Research, Ashworth Laboratories, The University of Edinburgh, Edinburgh, United Kingdom
| | - Mohini Gray
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
61
|
Dysregulation of peritoneal cavity B1a cells and murine primary biliary cholangitis. Oncotarget 2017; 7:26992-7006. [PMID: 27105495 PMCID: PMC5053627 DOI: 10.18632/oncotarget.8853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/13/2016] [Indexed: 12/27/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease with progressive cholestasis and liver fibrosis. Similar to human patients with PBC, p40−/−IL-2Rα−/− mice spontaneously develop severe autoimmune cholangitis. Although there has been considerable work on immune regulation and autoimmunity, there is a relative paucity of work directed at the functional implications of the key peritoneal cavity (PC) B cell subset, coined B1a cells in PBC. We used flow cytometry and high-resolution microarrays to study the qualitative and quantitative characteristics of B cells, particularly B1a cells, in the PC of p40−/−IL-2Rα−/− mice compared to controls. Importantly, B1a cell proliferation was markedly lower as the expression of Ki67 decreased. Meanwhile, the apoptosis level was much higher. These lead to a reduction of B1a cells in the PC of p40−/−IL-2Rα−/− mice compared to controls. In contrast, there was a dramatic increase of CD4+ and CD8+ T cells accompanied by elevated production of IFN-γ. In addition, we found a negative correlation between the frequency of B1a cells and the presence of autoreactive CD8+ T cells in both liver and PC of p40−/−IL-2Rα−/− mice. From a functional perspective, B cells from p40−/−IL-2Rα−/− mice downregulated IL-10 production and CTLA-4 expression, leading to loss of B cell regulatory function. We suggest that the dysfunction of B1a cells in the PC in this murine model of autoimmune cholangitis results in defective regulatory function. This highlights a new potential therapeutic target in PBC.
Collapse
|
62
|
Bocian K, Kiernozek E, Domagała-Kulawik J, Korczak-Kowalska G, Stelmaszczyk-Emmel A, Drela N. Expanding Diversity and Common Goal of Regulatory T and B Cells. I: Origin, Phenotype, Mechanisms. Arch Immunol Ther Exp (Warsz) 2017; 65:501-520. [PMID: 28477096 PMCID: PMC5688216 DOI: 10.1007/s00005-017-0469-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/14/2017] [Indexed: 12/21/2022]
Abstract
Immunosuppressive activity of regulatory T and B cells is critical to limit autoimmunity, excessive inflammation, and pathological immune response to conventional antigens or allergens. Both types of regulatory cells are intensively investigated, however, their development and mechanisms of action are still not completely understood. Both T and B regulatory cells represent highly differentiated populations in terms of phenotypes and origin, however, they use similar mechanisms of action. The most investigated CD4+CD25+ regulatory T cells are characterized by the expression of Foxp3+ transcription factor, which is not sufficient to maintain their lineage stability and suppressive function. Currently, it is considered that specific epigenetic changes are critical for defining regulatory T cell stability in the context of their suppressive function. It is not yet known if similar epigenetic regulation determines development, lineage stability, and function of regulatory B cells. Phenotype diversity, confirmed or hypothetical developmental pathways, multiple mechanisms of action, and role of epigenetic changes in these processes are the subject of this review.
Collapse
Affiliation(s)
- Katarzyna Bocian
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Ewelina Kiernozek
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | | | - Grażyna Korczak-Kowalska
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Nadzieja Drela
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
63
|
B1a cells play a pathogenic role in the development of autoimmune arthritis. Oncotarget 2017; 7:19299-311. [PMID: 27014914 PMCID: PMC4991384 DOI: 10.18632/oncotarget.8244] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 03/14/2016] [Indexed: 11/25/2022] Open
Abstract
Dysregulated functions of B1 cells have been implicated in the disease progression of various autoimmune disorders, but it remains largely unclear whether B1 cells are involved in the pathogenesis of autoimmune arthritis. In this study, we found that peritoneal B1a cells underwent proliferation and migrated to the inflamed joint tissue with upregulated RANKL expression during collagen-induced arthritis (CIA) development in mice. Adoptive transfer of B1a cells exacerbated arthritic severity and joint damage while intraperitoneal depletion of B1 cells ameliorated both arthritic symptoms and joint pathology in CIA mice. In culture, RANKL-expressing B1a cells significantly promoted the expansion of osteoclasts derived from bone marrow cells, which were in accord with the in vivo findings of increased osteoclastogenesis in CIA mice transferred with B1a cells. Together, these results have demonstrated a pathogenic role of B1a cells in the development of autoimmune arthritis through RANKL-mediated osteoclastogenesis.
Collapse
|
64
|
Amrouche K, Jamin C. Influence of drug molecules on regulatory B cells. Clin Immunol 2017; 184:1-10. [DOI: 10.1016/j.clim.2017.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/27/2017] [Indexed: 02/07/2023]
|
65
|
Wang Q, Racine JJ, Ratiu JJ, Wang S, Ettinger R, Wasserfall C, Atkinson MA, Serreze DV. Transient BAFF Blockade Inhibits Type 1 Diabetes Development in Nonobese Diabetic Mice by Enriching Immunoregulatory B Lymphocytes Sensitive to Deletion by Anti-CD20 Cotherapy. THE JOURNAL OF IMMUNOLOGY 2017; 199:3757-3770. [PMID: 29055002 DOI: 10.4049/jimmunol.1700822] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
Abstract
In NOD mice and also likely humans, B lymphocytes play an important role as APC-expanding autoreactive T cell responses ultimately causing type 1 diabetes (T1D). Currently, humans at high future T1D risk can only be identified at late prodromal stages of disease indicated by markers such as insulin autoantibodies. When commenced in already insulin autoantibody+ NOD mice, continuous BAFFR-Fc treatment alone or in combination with anti-CD20 (designated combo therapy) inhibited T1D development. Despite eliciting broader B lymphocyte depletion, continuous combo therapy afforded no greater T1D protection than did BAFFR-Fc alone. As previously observed, late disease stage-initiated anti-CD20 monotherapy did not inhibit T1D, and in this study was additionally found to be associated with development of drug-blocking Abs. Promisingly, NOD mice given transient late disease stage BAFFR-Fc monotherapy were rendered T1D resistant. However, combo treatment abrogated the protective effect of transient BAFFR-Fc monotherapy. NOD mice receiving transient BAFF blockade were characterized by an enrichment of regulatory B lymphocytes that inhibit T1D development through IL-10 production, but this population is sensitive to deletion by anti-CD20 treatment. B lymphocytes from transient BAFFR-Fc-treated mice suppressed T cell proliferation to a greater extent than did those from controls. Proportions of B lymphocytes expressing CD73, an ecto-enzyme operating in a pathway converting proinflammatory ATP to anti-inflammatory adenosine, were also temporarily increased by transient BAFFR-Fc treatment, but not anti-CD20 therapy. These collective studies indicate transient BAFFR-Fc-mediated B lymphocyte depletion elicits long-term T1D protection by enriching regulatory B lymphocytes that are deleted by anti-CD20 cotherapy.
Collapse
Affiliation(s)
- Qiming Wang
- The Jackson Laboratory, Bar Harbor, ME 04609.,Graduate Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111
| | | | | | - Shu Wang
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878; and
| | - Rachel Ettinger
- Respiratory, Inflammation, and Autoimmunity Group, MedImmune LLC, Gaithersburg, MD 20878; and
| | - Clive Wasserfall
- Department of Pathology and Pediatrics, University of Florida, Gainesville, FL 32610
| | - Mark A Atkinson
- Department of Pathology and Pediatrics, University of Florida, Gainesville, FL 32610
| | | |
Collapse
|
66
|
Zheng Y, Ge W, Ma Y, Xie G, Wang W, Han L, Bian B, Li L, Shen L. miR-155 Regulates IL-10-Producing CD24 hiCD27 + B Cells and Impairs Their Function in Patients with Crohn's Disease. Front Immunol 2017; 8:914. [PMID: 28824639 PMCID: PMC5540954 DOI: 10.3389/fimmu.2017.00914] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022] Open
Abstract
Regulatory interleukin-10 (IL-10)-producing B cells (B10 cells) play a critical role in preventing and curing autoimmune diseases in experimental mouse models. However, the precise cellular and molecular mechanisms of action of B10 cells in humans, especially in patients with Crohn's disease (CD), remain to be determined. miR-155 regulates many physiological and pathological conditions, including inflammation such as that in CD. In this study, we aimed to explore the effect of miRNA-155 on IL-10 production by B cells in healthy controls (HCs) and CD patients. Interestingly, we found that CD24hiCD27+ B cells express high levels of miRNA-155 and IL-10, which are positively correlated. Additionally, CD24hiCD27+ B cells express higher levels of Toll-like receptor 9 than those found in other B cell subsets. Overexpression of miRNA-155 promotes IL-10 production, while inhibition of miRNA-155 decreases IL-10 production. We determined that miR-155 directly inhibits the expression of Jarid2, which reduces H3K27me3 binding to the IL10 promoter and increases IL-10 gene expression. In coculture systems, the CD24hiCD27+ B cells from HCs suppressed the secretion of TNFα and IFNγ by monocytes and T cells, respectively. However, the number and function of CD24hiCD27+ B cells from CD patients were decreased. Moreover, we found that miR-155 induces CD24hiCD27+ B cells to produce higher levels of TNFα instead of IL-10 in CD patients than in the controls and that the increased number of IL-10+TNFα+ B cells reduces the induction of Foxp3 expression and the inhibition of IFNγ production by CD4+CD25- T cells, as well as TNFα production by monocytes. Our study demonstrates the critical role of miRNA-155 in the regulation of IL-10 production by B cells and reveals the novel molecular mechanism underlying the functional impairment of B10 cells in CD patients. Our study has the potential to drive the development of B10 cell-based strategies to ameliorate disease progression in CD patients.
Collapse
Affiliation(s)
- Yingxia Zheng
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Biliary Tract Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wensong Ge
- Department of Gastroenterology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhui Ma
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guohua Xie
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Wang
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Han
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingxian Bian
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Li
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisong Shen
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
67
|
IL-10-Producing B Cells Suppress Effector T Cells Activation and Promote Regulatory T Cells in Crystalline Silica-Induced Inflammatory Response In Vitro. Mediators Inflamm 2017; 2017:8415094. [PMID: 28831210 PMCID: PMC5558645 DOI: 10.1155/2017/8415094] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/11/2017] [Indexed: 12/11/2022] Open
Abstract
Long-term exposure to crystalline silica leads to silicosis, which is characterized by persistent lung inflammation and lung fibrosis. Multiple immune cells have been demonstrated to participate in crystalline silica-induced immune responses. Our previous study indicated that B10 could control lung inflammation through modulating the Th balance in experimental silicosis in mice. However, the regulatory mechanism of B10 on CD4+ T cells is still unclear. MACS-sorted CD19+ B cells from the three different groups were cultured with CD4+ T cells either with or without transwell insert plates to evaluate the effects of B10 on CD4+ T cells, including Teff and Treg. B10 was eliminated by anti-CD22 application in vivo. Flow cytometry was used to test the frequencies of CD4+ T cells, and the expressions of the related cytokines were detected by real-time PCR and CBA. Insufficient B10 elevated the levels of proinflammatory cytokines and promoted Th responses in a way independent upon cell-cell contact in the Teff and B cell coculture system. B10 could both increase Treg activity and enhance conversion of Teff into Treg. Our findings demonstrated that B10 could affect Th responses by the release of IL-10, enhancing Treg functions and converting Teff into Treg.
Collapse
|
68
|
Sarvaria A, Madrigal JA, Saudemont A. B cell regulation in cancer and anti-tumor immunity. Cell Mol Immunol 2017; 14:662-674. [PMID: 28626234 PMCID: PMC5549607 DOI: 10.1038/cmi.2017.35] [Citation(s) in RCA: 438] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023] Open
Abstract
The balance between immune effector cells and immunosuppressive cells and how this regulates the tumor microenvironment has been well described. A significant contribution of immune regulatory cells, including regulatory T cells, to tumor progression has been widely reported. An emerging body of evidence has recently recognized a role for B cells in modulating the immune response to tumors and lymphoid malignancies. Regulatory B cells (Bregs) are a newly designated subset of B cells that have been shown to play a pivotal role in regulating immune responses involved in inflammation, autoimmunity and, more recently, cancer. Bregs can suppress diverse cell subtypes, including T cells, through the secretion of anti-inflammatory mediators, such as IL-10, and can facilitate the conversion of T cells to regulatory T cells, thus attenuating anti-tumor immune responses. Similar B-cell subpopulations have been reported to be recruited to the tumor but to acquire their immunosuppressive properties within the tumor bed and thereby attenuate anti-tumor immune responses. However, despite a pivotal role for Bregs in promoting inflammation and carcinogenesis, the phenotypic diversity of the cell surface markers that are unique to Bregs remains unclear in mice and humans. In this review, we summarize the characteristics of Bregs and review our current knowledge of Bregs and their inhibition of anti-tumor immune responses in murine tumor models and cancer patients.
Collapse
|
69
|
Soares RR, Antinarelli LMR, Abramo C, Macedo GC, Coimbra ES, Scopel KKG. What do we know about the role of regulatory B cells (Breg) during the course of infection of two major parasitic diseases, malaria and leishmaniasis? Pathog Glob Health 2017; 111:107-115. [PMID: 28353409 PMCID: PMC5445636 DOI: 10.1080/20477724.2017.1308902] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Parasitic diseases, such as malaria and leishmaniasis, are relevant public health problems worldwide. For both diseases, the alarming number of clinical cases and deaths reported annually has justified the incentives directed to better understanding of host's factors associated with susceptibility to infection or protection. In this context, over recent years, some studies have given special attention to B lymphocytes with a regulator phenotype, known as Breg cells. Essentially important in the maintenance of immunological tolerance, especially in autoimmune disease models such as rheumatoid arthritis and experimentally induced autoimmune encephalomyelitis, the function of these lymphocytes has so far been poorly explored during the course of diseases caused by parasites. As the activation of Breg cells has been proposed as a possible therapeutic or vaccine strategy against several diseases, here we reviewed studies focused on understanding the relation of parasite and Breg cells in malaria and leishmaniasis, and the possible implications of these strategies in the course of both infections.
Collapse
|
70
|
Schistosome-induced pulmonary B cells inhibit allergic airway inflammation and display a reduced Th2-driving function. Int J Parasitol 2017; 47:545-554. [PMID: 28385494 DOI: 10.1016/j.ijpara.2017.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/31/2022]
Abstract
Chronic schistosome infections protect against allergic airway inflammation (AAI) via the induction of IL-10-producing splenic regulatory B (Breg) cells. Previous experiments have demonstrated that schistosome-induced pulmonary B cells can also reduce AAI, but act independently of IL-10. We have now further characterized the phenotype and inhibitory activity of these protective pulmonary B cells. We excluded a role for regulatory T (Treg) cell induction as putative AAI-protective mechanisms. Schistosome-induced B cells showed increased CD86 expression and reduced cytokine expression in response to Toll-like receptor (TLR) ligands compared with control B cells. To investigate the consequences for T cell activation we cultured ovalbumin (OVA)-pulsed, schistosome-induced B cells with OVA-specific transgenic T cells and observed less Th2 cytokine expression and T cell proliferation compared with control conditions. This suppressive effect was preserved even under optimal T cell stimulation by anti-CD3/28. Blocking of the inhibitory cytokines IL-10 or TGF-β only marginally restored Th2 cytokine induction. These data suggest that schistosome-induced pulmonary B cells are impaired in their capacity to produce cytokines to TLR ligands and to induce Th2 cytokine responses independent of their antigen-presenting function. These findings underline the presence of distinct B cell subsets with different stimulatory or inhibitory properties even if induced by the same type of helminth.
Collapse
|
71
|
Chong AS, Khiew SH. Transplantation tolerance: don't forget about the B cells. Clin Exp Immunol 2017; 189:171-180. [PMID: 28100001 DOI: 10.1111/cei.12927] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2017] [Indexed: 12/13/2022] Open
Abstract
Establishing a state of transplantation tolerance that leads to indefinite graft survival without the need for lifelong immunosuppression has been achieved successfully in limited numbers of transplant recipients in the clinic. These successes led to studies aimed at identifying potential biomarkers that diagnose allograft tolerance and identify the patients most amenable to drug minimization, and implicated an enriched B cell signature of tolerance. The emergence of a specialized subset of regulatory B cell (Bregs ), that possess immune-modulatory function in inflammation and autoimmune disease, raised the possibility that Bregs play critical roles in the promotion of transplantation tolerance and that Bregs are the underlying explanation for the B cell signature of tolerance. However, B cells are best known to play a key role in humoral immunity, and excessive production of donor specific antibodies has clear deleterious effects in transplantation. Thus, for tolerance to be persistent, alloantibody responses must also be curtailed, either through the suppression of T cell help or the induction of B cell-intrinsic dysfunction. Recent findings indicate a unique subset of follicular regulatory T cells (Tfr) that can suppress B cell function and induce epigenetic modifications that result in sustained defects in B cell differentiation and function. In this review, we summarize studies in animals and humans that suggest roles for Bregs and dysfunctional B cells in transplantation tolerance, and discuss how these insights may provide a roadmap for new approaches to diagnose, and new therapies to induce allograft tolerance.
Collapse
Affiliation(s)
- A S Chong
- Section of Transplantation, Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - S H Khiew
- Section of Transplantation, Department of Surgery, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
72
|
Guzman-Genuino RM, Diener KR. Regulatory B Cells in Pregnancy: Lessons from Autoimmunity, Graft Tolerance, and Cancer. Front Immunol 2017; 8:172. [PMID: 28261223 PMCID: PMC5313489 DOI: 10.3389/fimmu.2017.00172] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/03/2017] [Indexed: 12/26/2022] Open
Abstract
The success of pregnancy is contingent on the maternal immune system recognizing and accommodating a growing semi-allogeneic fetus. Specialized subsets of lymphocytes capable of negative regulation are fundamental in this process, and include the regulatory T cells (Tregs) and potentially, regulatory B cells (Bregs). Most of our current understanding of the immune regulatory role of Bregs comes from studies in the fields of autoimmunity, transplantation tolerance, and cancer biology. Bregs control autoimmune diseases and can elicit graft tolerance by inhibiting the differentiation of effector T cells and dendritic cells (DCs), and activating Tregs. Furthermore, in cancer, Bregs are hijacked by neoplastic cells to promote tumorigenesis. Pregnancy therefore represents a condition that reconciles these fields-mechanisms must be in place to ensure maternal immunological tolerance throughout gravidity to allow the semi-allogeneic fetus to grow within. Thus, the mechanisms underlying Breg activities in autoimmune diseases, transplantation tolerance, and cancer may take place during pregnancy as well. In this review, we discuss the potential role of Bregs as guardians of pregnancy and propose an endocrine-modulated feedback loop highlighting the Breg-Treg-tolerogenic DC interface essential for the induction of maternal immune tolerance.
Collapse
Affiliation(s)
- Ruth Marian Guzman-Genuino
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Science, Hanson Institute and Sansom Institute for Health Research, University of South Australia , Adelaide, SA , Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Science, Hanson Institute and Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia; Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
73
|
Leech JM, Lacey KA, Mulcahy ME, Medina E, McLoughlin RM. IL-10 Plays Opposing Roles during Staphylococcus aureus Systemic and Localized Infections. THE JOURNAL OF IMMUNOLOGY 2017; 198:2352-2365. [PMID: 28167629 DOI: 10.4049/jimmunol.1601018] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 01/12/2017] [Indexed: 01/08/2023]
Abstract
IL-10 is a potent anti-inflammatory mediator that plays a crucial role in limiting host immunopathology during bacterial infections by controlling effector T cell activation. Staphylococcus aureus has previously been shown to manipulate the IL-10 response as a mechanism of immune evasion during chronic systemic and biofilm models of infection. In the present study, we demonstrate divergent roles for IL-10 depending on the site of infection. During acute systemic S. aureus infection, IL-10 plays an important protective role and is required to prevent bacterial dissemination and host morbidity by controlling effector T cells and the associated downstream hyperactivation of inflammatory phagocytes, which are capable of host tissue damage. CD19+CD11b+CD5+ B1a regulatory cells were shown to rapidly express IL-10 in a TLR2-dependent manner in response to S. aureus, and adoptive transfer of B1a cells was protective during acute systemic infection in IL-10-deficient hosts. In contrast, during localized s.c. infection, IL-10 production plays a detrimental role by facilitating bacterial persistence via the same mechanism of controlling proinflammatory T cell responses. Our findings demonstrate that induction of IL-10 has a major influence on disease outcome during acute S. aureus infection. Too much IL-10 at one end of the scale may suppress otherwise protective T cell responses, thus facilitating persistence of the bacteria, and at the other end, too little IL-10 may tend toward fatal host-mediated pathology through excessive activation of T cells and associated phagocyte-mediated damage.
Collapse
Affiliation(s)
- John M Leech
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; and
| | - Keenan A Lacey
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; and
| | - Michelle E Mulcahy
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; and
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; and
| |
Collapse
|
74
|
Zhou Z, Gong L, Wang X, Hu Z, Wu G, Tang X, Peng X, Tang S, Meng M, Feng H. The role of regulatory B cells in digestive system diseases. Inflamm Res 2016; 66:303-309. [PMID: 27878329 DOI: 10.1007/s00011-016-1007-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/01/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The past decade has provided striking insights into a newly identified subset of B cells known as regulatory B cells (Bregs). In addition to producing antibody, Bregs also regulate diseases via cytokine production and antigen presentation. This subset of B cells has protective and potentially therapeutic effects. However, the particularity of Bregs has caused some difficulties in conducting research on their roles. Notably, human B10 cells, which are Bregs that produce interleukin 10, share phenotypic characteristics with other previously defined B cell subsets, and currently, there is no known surface phenotype that is unique to B10 cells. METHODS An online search was performed in the PubMed and Web of Science databases for articles published providing evidences on the role of regulatory B cells in digestive system diseases. RESULTS AND CONCLUSIONS Abundant evidence has demonstrated that Bregs play a regulatory role in inflammatory, autoimmune, and tumor diseases, and regulatory B cells play different roles in different diseases, but future work needs to determine the mechanisms by which Bregs are activated and how these cells affect their target cells.
Collapse
Affiliation(s)
- Zhenyu Zhou
- Division of Gastroenterology, Wuxi No.2 Hospital Affiliated with Nanjing Medical University, Zhong Shan Road 68, Wuxi, Jiang Su Province, China
| | - Lei Gong
- Division of Gastroenterology, Wuxi No.2 Hospital Affiliated with Nanjing Medical University, Zhong Shan Road 68, Wuxi, Jiang Su Province, China
| | - Xiaoyun Wang
- Division of Gastroenterology, Wuxi No.2 Hospital Affiliated with Nanjing Medical University, Zhong Shan Road 68, Wuxi, Jiang Su Province, China.
| | - Zhen Hu
- Division of Gastroenterology, Wuxi No.2 Hospital Affiliated with Nanjing Medical University, Zhong Shan Road 68, Wuxi, Jiang Su Province, China
| | - Gaojue Wu
- Division of Gastroenterology, Wuxi No.2 Hospital Affiliated with Nanjing Medical University, Zhong Shan Road 68, Wuxi, Jiang Su Province, China
| | - Xuejun Tang
- Division of Gastroenterology, Wuxi No.2 Hospital Affiliated with Nanjing Medical University, Zhong Shan Road 68, Wuxi, Jiang Su Province, China
| | - Xiaobin Peng
- Division of Gastroenterology, Wuxi No.2 Hospital Affiliated with Nanjing Medical University, Zhong Shan Road 68, Wuxi, Jiang Su Province, China
| | - Shuan Tang
- Division of Gastroenterology, Wuxi No.2 Hospital Affiliated with Nanjing Medical University, Zhong Shan Road 68, Wuxi, Jiang Su Province, China
| | - Miao Meng
- Division of Gastroenterology, Wuxi No.2 Hospital Affiliated with Nanjing Medical University, Zhong Shan Road 68, Wuxi, Jiang Su Province, China
| | - Hui Feng
- Division of Gastroenterology, Wuxi No.2 Hospital Affiliated with Nanjing Medical University, Zhong Shan Road 68, Wuxi, Jiang Su Province, China
| |
Collapse
|
75
|
Bae MJ, Kim HK, Lim S, Lee SY, Shin HS, Kim JE, Im SH, Kim S. Lactobacillus pentosus KF340 alleviates house dust mite-induced murine atopic dermatitis via the secretion of IL-10-producing splenic B10 cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
76
|
Lino AC, Dörner T, Bar-Or A, Fillatreau S. Cytokine-producing B cells: a translational view on their roles in human and mouse autoimmune diseases. Immunol Rev 2016; 269:130-44. [PMID: 26683150 DOI: 10.1111/imr.12374] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
B-cell depletion therapy has beneficial effects in autoimmune diseases. This is only partly explained by an elimination of autoantibodies. How does B-cell depletion improve disease? Here, we review preclinical studies showing that B cells can propagate autoimmune disorders through cytokine production. We also highlight clinical observations indicating the relevance of these B-cell functions in human autoimmunity. Abnormalities in B-cell cytokine production have been observed in rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, and systemic lupus erythematosus. In the first two diseases, B-cell depletion erases these abnormalities, and improves disease progression, suggesting a causative role for defective B-cell cytokine expression in disease pathogenesis. However, in the last two disorders, the pathogenic role of B cells and the effect of B-cell depletion on cytokine-producing B cells remain to be clarified. A better characterization of cytokine-expressing human B-cell subsets, and their modulation by B cell-targeted therapies might help understanding both the successes and failures of current B cell-targeted approaches. This may even lead to the development of novel strategies to deplete or amplify selectively pathogenic or protective subsets, respectively, which might be more effective than global depletion of the B-cell compartment.
Collapse
Affiliation(s)
- Andreia C Lino
- Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany.,CC12, Department of Medicine/Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Amit Bar-Or
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, 3801 University, Montreal, QC, Canada
| | - Simon Fillatreau
- Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany.,Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants Malades, Paris, France
| |
Collapse
|
77
|
Abstract
B-1 lymphocytes exhibit unique phenotypic, ontogenic, and functional characteristics that differ from the conventional B-2 cells. B-1 cells spontaneously secrete germline-like, repertoire-skewed polyreactive natural antibody, which acts as a first line of defense by neutralizing a wide range of pathogens before launching of the adaptive immune response. Immunomodulatory molecules such as interleukin-10, adenosine, granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-35 are also produced by B-1 cells in the presence or absence of stimulation, which regulate acute and chronic inflammatory diseases. Considerable progress has been made during the past three decades since the discovery of B-1 cells, which has improved not only our understanding of their phenotypic and ontogenic uniqueness but also their role in various inflammatory diseases including influenza, pneumonia, sepsis, atherosclerosis, inflammatory bowel disease, autoimmunity, obesity and diabetes mellitus. Recent identification of human B-1 cells widens the scope of this field, leading to novel innovations that can be implemented from bench to bedside. Among the vast number of studies on B-1 cells, we have carried out a literature review highlighting current trends in the study of B-1 cell involvement during inflammation, which may result in a paradigm shift toward sustainable therapeutics in various inflammatory diseases.
Collapse
Affiliation(s)
- Monowar Aziz
- Center for Translational Research, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Nichol E Holodick
- Center for Oncology and Cell Biology, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Thomas L Rothstein
- Center for Oncology and Cell Biology, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Ping Wang
- Center for Translational Research, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA. .,Department of Surgery, Hofstra North Shore-LIJ School of Medicine, 350 Community Dr., Manhasset, NY, 11030, USA.
| |
Collapse
|
78
|
Abstract
A challenging property of gammaherpesviruses is their ability to establish lifelong persistence. The establishment of latency in B cells is thought to involve active virus engagement of host signaling pathways. Pathogenic effects of these viruses during latency or following reactivation can be devastating to the host. Many cancers, including those associated with members of the gammaherpesvirus family, Kaposi’s sarcoma-associated herpesvirus and Epstein-Barr virus, express elevated levels of active host signal transducer and activator of transcription-3 (STAT3). STAT3 is activated by tyrosine phosphorylation in response to many cytokines and can orchestrate effector responses that include proliferation, inflammation, metastasis, and developmental programming. However, the contribution of STAT3 to gammaherpesvirus pathogenesis remains to be completely understood. This is the first study to have identified STAT3 as a critical host determinant of the ability of gammaherpesvirus to establish long-term latency in an animal model of disease. Following an acute infection, murine gammaherpesvirus 68 (MHV68) established latency in resident B cells, but establishment of latency was dramatically reduced in animals with a B cell-specific STAT3 deletion. The lack of STAT3 in B cells did not impair germinal center responses for immunoglobulin (Ig) class switching in the spleen and did not reduce either total or virus-specific IgG titers. Although ablation of STAT3 in B cells did not have a global effect on these assays of B cell function, it had long-term consequences for the viral load of the host, since virus latency was reduced at 6 to 8 weeks postinfection. Our findings establish host STAT3 as a mediator of gammaherpesvirus persistence. The insidious ability of gammaherpesviruses to establish latent infections can have detrimental consequences for the host. Identification of host factors that promote viral latency is essential for understanding latency mechanisms and for therapeutic interventions. We provide the first evidence that STAT3 expression is needed for murine gammaherpesvirus 68 to establish latency in primary B cells during an active immune response to infection. STAT3 deletion in B cells does not impair adaptive immune control of the virus, but loss of STAT3 in B cells has a long-lasting impact on viral persistence. These results indicate a potential therapeutic benefit of STAT3 inhibitors for combating gammaherpesvirus latency and, thereby, associated pathologies.
Collapse
|
79
|
Enlarged colitogenic T cell population paradoxically supports colitis prevention through the B-lymphocyte-dependent peripheral generation of CD4(+)Foxp3(+) Treg cells. Sci Rep 2016; 6:28573. [PMID: 27353032 PMCID: PMC4926115 DOI: 10.1038/srep28573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/03/2016] [Indexed: 01/07/2023] Open
Abstract
Intestinal inflammation can be induced by the reconstitution of T/B cell-deficient mice with low numbers of CD4+ T lymphocytes depleted of CD25+Foxp3+ regulatory T cells (Treg). Using RAG-knockout mice as recipients of either splenocytes exclusively depleted of CD25+ cells or FACS-purified CD4+CD25−Foxp3− T cells, we found that the augmentation of potentially colitogenic naïve T cell numbers in the inoculum was unexpectedly beneficial for the suppression of colon disease and maintenance of immune homeostasis. Protection against T cell-mediated colitis correlated with a significant increment in the frequency of peripherally-induced CD4+CD25+Foxp3+ T (pTreg) cells, especially in the mesenteric lymph nodes, an effect that required the presence of B cells and CD4+CD25−Foxp3+ cells in physiological proportions. Our findings support a model whereby the interplay between B lymphocytes and a diversified naïve T cell repertoire is critical for the generation of CD4+CD25+Foxp3+ pTreg cells and colitis suppression.
Collapse
|
80
|
Tang A, Dadaglio G, Oberkampf M, Di Carlo S, Peduto L, Laubreton D, Desrues B, Sun CM, Montagutelli X, Leclerc C. B cells promote tumor progression in a mouse model of HPV-mediated cervical cancer. Int J Cancer 2016; 139:1358-71. [DOI: 10.1002/ijc.30169] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 04/20/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Alexandre Tang
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur; Paris France
| | - Gilles Dadaglio
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| | - Marine Oberkampf
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| | - Selene Di Carlo
- Institut Pasteur, Unité Microenvironnement Et Immunité; Paris France
| | - Lucie Peduto
- Institut Pasteur, Unité Microenvironnement Et Immunité; Paris France
| | - Daphné Laubreton
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| | - Belinda Desrues
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| | - Cheng-Ming Sun
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| | - Xavier Montagutelli
- Institut Pasteur, Unité de Génétique fonctionnelle de la souris; Paris France
| | - Claude Leclerc
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, Equipe Labellisée Ligue Contre le Cancer; Paris France
- INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, Département Immunologie; Paris France
| |
Collapse
|
81
|
Hu S, Chen M, Wang Y, Wang Z, Pei Y, Fan R, Liu X, Wang L, Zhou J, Zheng S, Zhang T, Lin Y, Zhang M, Tao R, Zhong J. mTOR Inhibition Attenuates Dextran Sulfate Sodium-Induced Colitis by Suppressing T Cell Proliferation and Balancing TH1/TH17/Treg Profile. PLoS One 2016; 11:e0154564. [PMID: 27128484 PMCID: PMC4851424 DOI: 10.1371/journal.pone.0154564] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/17/2016] [Indexed: 02/07/2023] Open
Abstract
It has been established that mammalian target of Rapamycin (mTOR) inhibitors have anti-inflammatory effects in models of experimental colitis. However, the underlying mechanism is largely unknown. In this research, we investigate the anti-inflammatory effects of AZD8055, a potent mTOR inhibitor, on T cell response in dextran sulfate sodium (DSS)-induced colitis in mice, a commonly used animal model of inflammatory bowel diseases (IBD). Severity of colitis is evaluated by changing of body weight, bloody stool, fecal consistency, histology evaluation and cytokine expression. We find that AZD8055 treatment attenuates DSS-induced body weight loss, colon length shortening and pathological damage of the colon. And AZD8055 treatment decreases colonic expression of genes encoding the pro-inflammatory cytokines interferon-γ, interleukin (IL)-17A, IL-1β,IL-6 and tumor necrosis factor(TNF)-a and increases colonic expression of anti-inflammatory cytokines IL-10. We show that AZD8055 treatment decreases the percentages of CD4+ T cells and CD8+ T cells in spleen, lymph nodes and peripheral blood of mice. We also find that AZD8055 treatment significantly reduces the number of T helper 1(TH1) cells and TH17 cells and increases regulatory T (Treg) cells in the lamina propria and mesenteric lymph nodes. Furthermore, we demonstrates that AZD8055 suppresses the proliferation of CD4+ and CD8+ T cells and the differentiation of TH1/TH17 cells and expands Treg cells in vitro. The results suggest that, in experimental colitis, AZD8055 exerts anti-inflammatory effect by regulating T helper cell polarization and proliferation.
Collapse
Affiliation(s)
- Shurong Hu
- Department of Gastroenterology, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Mengmeng Chen
- Department of Gastroenterology, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Yilin Wang
- Department of Surgery, Cancer hospital, Fudan University, Shanghai, PR China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Yaofei Pei
- Department of Surgery, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Rong Fan
- Department of Gastroenterology, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Xiqiang Liu
- Department of Hepatobiliary-Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang Province, PR China
| | - Lei Wang
- Department of Gastroenterology, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Jie Zhou
- Department of Gastroenterology, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Sichang Zheng
- Department of Gastroenterology, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Tianyu Zhang
- Department of Gastroenterology, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Yun Lin
- Department of Gastroenterology, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Maochen Zhang
- Department of Gastroenterology, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Ran Tao
- Department of Hepatobiliary-Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang Province, PR China
- * E-mail: (JZ); (RT)
| | - Jie Zhong
- Department of Gastroenterology, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
- * E-mail: (JZ); (RT)
| |
Collapse
|
82
|
Floudas A, Amu S, Fallon PG. New Insights into IL-10 Dependent and IL-10 Independent Mechanisms of Regulatory B Cell Immune Suppression. J Clin Immunol 2016; 36 Suppl 1:25-33. [DOI: 10.1007/s10875-016-0263-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 01/01/2023]
|
83
|
IL-10 Production Is Critical for Sustaining the Expansion of CD5+ B and NKT Cells and Restraining Autoantibody Production in Congenic Lupus-Prone Mice. PLoS One 2016; 11:e0150515. [PMID: 26964093 PMCID: PMC4786215 DOI: 10.1371/journal.pone.0150515] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/15/2016] [Indexed: 02/02/2023] Open
Abstract
The development and progression of systemic lupus erythematosus is mediated by the complex interaction of genetic and environmental factors. To decipher the genetics that contribute to pathogenesis and the production of pathogenic autoantibodies, our lab has focused on the generation of congenic lupus-prone mice derived from the New Zealand Black (NZB) strain. Previous work has shown that an NZB-derived chromosome 4 interval spanning 32 to 151 Mb led to expansion of CD5+ B and Natural Killer T (NKT) cells, and could suppress autoimmunity when crossed with a lupus-prone mouse strain. Subsequently, it was shown that CD5+ B cells but not NKT cells derived from these mice could suppress the development of pro-inflammatory T cells. In this paper, we aimed to further resolve the genetics that leads to expansion of these two innate-like populations through the creation of additional sub-congenic mice and to characterize the role of IL-10 in the suppression of autoimmunity through the generation of IL-10 knockout mice. We show that expansion of CD5+ B cells and NKT cells localizes to a chromosome 4 interval spanning 91 to 123 Mb, which is distinct from the region that mediates the majority of the suppressive phenotype. We also demonstrate that IL-10 is critical to restraining autoantibody production and surprisingly plays a vital role in supporting the expansion of innate-like populations.
Collapse
|
84
|
Matsushita T, Le Huu D, Kobayashi T, Hamaguchi Y, Hasegawa M, Naka K, Hirao A, Muramatsu M, Takehara K, Fujimoto M. A novel splenic B1 regulatory cell subset suppresses allergic disease through phosphatidylinositol 3-kinase-Akt pathway activation. J Allergy Clin Immunol 2016; 138:1170-1182.e9. [PMID: 26948079 DOI: 10.1016/j.jaci.2015.12.1319] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/16/2015] [Accepted: 12/18/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND IL-10-producing regulatory B (B10) cells potently suppress allergic diseases, such as contact hypersensitivity (CHS). Splenic B10 cells share overlapping phenotypic markers with CD5+ B1 B cells, CD1dhiCD21+CD23- marginal zone (MZ) B cells, and CD1dhiCD21+CD23+ T2-MZ precursor B cells but do not exclusively belong to either subset. OBJECTIVE In this study we investigated the signaling mechanisms and a novel phenotypic parameter of B10 cells. METHOD We performed microarray analysis comparing IL-10+ and IL-10- B cells. B cell-specific phosphatase and tensin homolog (PTEN)-deficient mice, which exhibit aberrant activation of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway in B cells, were examined. RESULTS Microarray analysis revealed that the PI3K-Akt pathway is important for IL-10 production in B cells. PI3K-Akt pathway inhibitors reduced B10 cell numbers in vitro. B10 cell numbers were significantly increased in B cell-specific PTEN-deficient mice. The CHS response was significantly diminished in PTEN-deficient mice. Unexpectedly, splenic B10 cells in these mice were found within the B1 B-cell subset but not within the MZ B-cell subset. In wild-type mice not only MZ B10 cells but also B1-B10 cells were identified in the spleen. In addition, these 2 B10 cell subsets were predominantly found within the CD9+CD80+ B-cell fraction. CONCLUSION A novel splenic B1 regulatory cell subset (B1-B10 cells) was identified. Our findings show that the PI3K-Akt pathway in B cells is critical for B10 cell development and CHS response and that CD9/CD80 coexpression is a novel phenotypic parameter for both MZ-B10 and B1-B10 cells.
Collapse
Affiliation(s)
- Takashi Matsushita
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
| | - Doanh Le Huu
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan; Department of Dermatology and Venereology, Hanoi Medical University, Hanoi, Vietnam
| | - Tadahiro Kobayashi
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yasuhito Hamaguchi
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Minoru Hasegawa
- Department of Dermatology, University of Fukui, Fukui, Japan
| | - Kazuhito Naka
- Exploratory Project on Cancer Stem Cells, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masamichi Muramatsu
- Department of Molecular Genetics, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kazuhiko Takehara
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Japan.
| |
Collapse
|
85
|
Pedersen GK, Ádori M, Stark JM, Khoenkhoen S, Arnold C, Beutler B, Karlsson Hedestam GB. Heterozygous Mutation in IκBNS Leads to Reduced Levels of Natural IgM Antibodies and Impaired Responses to T-Independent Type 2 Antigens. Front Immunol 2016; 7:65. [PMID: 26973645 PMCID: PMC4771772 DOI: 10.3389/fimmu.2016.00065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/12/2016] [Indexed: 11/24/2022] Open
Abstract
Mice deficient in central components of classical NF-κB signaling have low levels of circulating natural IgM antibodies and fail to respond to immunization with T-independent type 2 (TI-2) antigens. A plausible explanation for these defects is the severely reduced numbers of B-1 and marginal zone B (MZB) cells in such mice. By using an ethyl-N-nitrosourea mutagenesis screen, we identified a role for the atypical IκB protein IκBNS in humoral immunity. IκBNS-deficient mice lack B-1 cells and have severely reduced numbers of MZB cells, and thus resemble several other strains with defects in classical NF-κB signaling. We analyzed mice heterozygous for the identified IκBNS mutation and demonstrate that these mice have an intermediary phenotype in terms of levels of circulating IgM antibodies and responses to TI-2 antigens. However, in contrast to mice that are homozygous for the IκBNS mutation, the heterozygous mice had normal frequencies of B-1 and MZB cells. These results suggest that there is a requirement for IκBNS expression from two functional alleles for maintaining normal levels of circulating natural IgM antibodies and responses to TI-2 antigens.
Collapse
Affiliation(s)
- Gabriel K Pedersen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Monika Ádori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Julian M Stark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Sharesta Khoenkhoen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Carrie Arnold
- Department of Genetics, The Scripps Research Institute , La Jolla, CA , USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center , Dallas, TX , USA
| | | |
Collapse
|
86
|
Geherin SA, Gómez D, Glabman RA, Ruthel G, Hamann A, Debes GF. IL-10+ Innate-like B Cells Are Part of the Skin Immune System and Require α4β1 Integrin To Migrate between the Peritoneum and Inflamed Skin. THE JOURNAL OF IMMUNOLOGY 2016; 196:2514-2525. [PMID: 26851219 DOI: 10.4049/jimmunol.1403246] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 01/04/2016] [Indexed: 02/07/2023]
Abstract
The skin is an important barrier organ and frequent target of autoimmunity and allergy. In this study, we found innate-like B cells that expressed the anti-inflammatory cytokine IL-10 in the skin of humans and mice. Unexpectedly, innate-like B1 and conventional B2 cells showed differential homing capacities with peritoneal B1 cells preferentially migrating into the inflamed skin of mice. Importantly, the skin-homing B1 cells included IL-10-secreting cells. B1 cell homing into the skin was independent of typical skin-homing trafficking receptors and instead required α4β1-integrin. Moreover, B1 cells constitutively expressed activated β1 integrin and relocated from the peritoneum to the inflamed skin and intestine upon innate stimulation, indicating an inherent propensity to extravasate into inflamed and barrier sites. We conclude that innate-like B cells migrate from central reservoirs into skin, adding an important cell type with regulatory and protective functions to the skin immune system.
Collapse
Affiliation(s)
- Skye A Geherin
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Daniela Gómez
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Raisa A Glabman
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Gordon Ruthel
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Alf Hamann
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Gudrun F Debes
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| |
Collapse
|
87
|
Mishima Y, Ishihara S, Oka A, Fukuba N, Oshima N, Sonoyama H, Yamashita N, Tada Y, Kusunoki R, Moriyama I, Yuki T, Kawashima K, Kinoshita Y. Decreased Frequency of Intestinal Regulatory CD5+ B Cells in Colonic Inflammation. PLoS One 2016; 11:e0146191. [PMID: 26727001 PMCID: PMC4705109 DOI: 10.1371/journal.pone.0146191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/13/2015] [Indexed: 02/06/2023] Open
Abstract
Background CD5+ B cells are a type of regulatory immune cells, though the involvement of this B cell subset in intestinal inflammation and immune regulation is not fully understood. Methods We examined the distribution of CD5+ B cells in various mouse organs. Expression levels of CD11b, IgM, and toll-like receptor (TLR)-4 and -9 in B cells were evaluated. In vitro, TLR-stimulated IL-10 production by colonic lamina propria (LP) CD5+ and CD5- B cells was measured. In vivo, mice with acute or chronic dextran sulfate sodium (DSS)-induced colonic injury were examined, and the frequency of colonic LP CD5+ B cells in those was assessed by flow cytometry. Results The expression level of TLR9 was higher in colonic LP CD5+ B cells as compared to CD5- B cells. Colonic LP CD5+ B cells produced greater amounts of IL-10 following stimulation with TLR ligands, especially TLR9, as compared with the LP CD5- B cells. Acute intestinal inflammation transiently decreased the frequency of colonic LP CD5+ B cells, while chronic inflammation induced a persistent decrease in colonic LP CD5+ B cells and led to a CD5- B cell-dominant condition. Conclusion A persistent altered mucosal B cell population caused by chronic gut inflammation may be involved in the pathogenesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Yoshiyuki Mishima
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Shunji Ishihara
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Akihiko Oka
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Nobuhiko Fukuba
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Naoki Oshima
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Hiroki Sonoyama
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Noritsugu Yamashita
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Yasumasa Tada
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Ryusaku Kusunoki
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Ichiro Moriyama
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo, Shimane, Japan.,Cancer Center, Shimane University Hospital, Izumo, Shimane, Japan
| | - Takafumi Yuki
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Kousaku Kawashima
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Yoshikazu Kinoshita
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
88
|
Kurnellas MP, Ghosn EEB, Schartner JM, Baker J, Rothbard JJ, Negrin RS, Herzenberg LA, Fathman CG, Steinman L, Rothbard JB. Amyloid fibrils activate B-1a lymphocytes to ameliorate inflammatory brain disease. Proc Natl Acad Sci U S A 2015; 112:15016-23. [PMID: 26621719 PMCID: PMC4679000 DOI: 10.1073/pnas.1521206112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Amyloid fibrils composed of peptides as short as six amino acids are therapeutic in experimental autoimmune encephalomyelitis (EAE), reducing paralysis and inflammation, while inducing several pathways of immune suppression. Intraperitoneal injection of fibrils selectively activates B-1a lymphocytes and two populations of resident macrophages (MΦs), increasing IL-10 production, and triggering their exodus from the peritoneum. The importance of IL-10-producing B-1a cells in this effective therapy was established in loss-of-function experiments where neither B-cell-deficient (μMT) nor IL10(-/-) mice with EAE responded to the fibrils. In gain-of-function experiments, B-1a cells, adoptively transferred to μMT mice with EAE, restored their therapeutic efficacy when Amylin 28-33 was administered. Stimulation of adoptively transferred bioluminescent MΦs and B-1a cells by amyloid fibrils resulted in rapid (within 60 min of injection) trafficking of both cell types to draining lymph nodes. Analysis of gene expression indicated that the fibrils activated the CD40/B-cell receptor pathway in B-1a cells and induced a set of immune-suppressive cell-surface proteins, including BTLA, IRF4, and Siglec G. Collectively, these data indicate that the fibrils activate B-1a cells and F4/80(+) MΦs, resulting in their migration to the lymph nodes, where IL-10 and cell-surface receptors associated with immune-suppression limit antigen presentation and T-cell activation. These mechanisms culminate in reduction of paralytic signs of EAE.
Collapse
Affiliation(s)
- Michael Phillip Kurnellas
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Eliver Eid Bou Ghosn
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Jill M Schartner
- Division of Immunology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Jesse J Rothbard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Robert S Negrin
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Leonore A Herzenberg
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - C Garrison Fathman
- Division of Immunology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305;
| | - Jonathan B Rothbard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305; Division of Immunology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
89
|
Wang H, Lin JX, Li P, Skinner J, Leonard WJ, Morse HC. New insights into heterogeneity of peritoneal B-1a cells. Ann N Y Acad Sci 2015; 1362:68-76. [PMID: 25988856 PMCID: PMC4651667 DOI: 10.1111/nyas.12791] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peritoneal B-1a cells are characterized by their expression of CD5 and enrichment for germline-encoded IgM B cell receptors. Early studies showing expression of a diverse array of VDJ sequences among purified B-1a cells provided a molecular basis for understanding the heterogeneity of the B-1a cell repertoire. Antigen-driven positive selection and the identification of B-1a specific progenitors suggest multiple origins of B-1a cells. The introduction of new markers such as PD-L2, CD25, CD73, and PC1 (plasma cell alloantigen 1, also known as ectonucleotide phosphodiesterase/pyrophosphatase 1) further helped to identify phenotypically and functionally distinct B-1a subsets. Among many B-1a subsets defined by these new markers, PC1 is unique in that it subdivides B-1a cells into PC1(hi) and PC1(lo) subpopulations with distinct functions, such as production of natural IgM and gut IgA, response to the pneumococcal antigen PPS-3, secretion of interleukin-10, and support for T helper 1 (TH 1) cell differentiation. RNA sequencing of these subsets revealed differential expression of genes involved in cellular movement and immune cell trafficking. We will discuss these new insights underlying the heterogeneous nature of the B-1a cell repertoire.
Collapse
Affiliation(s)
- Hongsheng Wang
- The Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Jian-xin Lin
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Peng Li
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Warren J. Leonard
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Herbert C. Morse
- The Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
90
|
Braza F, Chesne J, Durand M, Dirou S, Brosseau C, Mahay G, Cheminant MA, Magnan A, Brouard S. A regulatory CD9(+) B-cell subset inhibits HDM-induced allergic airway inflammation. Allergy 2015. [PMID: 26194936 DOI: 10.1111/all.12697] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Exposure to respiratory allergens triggers airway hyperresponsiveness and inflammation characterized by the expansion of TH 2 cells and the production of allergen specific IgE. Allergic asthma is characterized by an alteration in immune regulatory mechanisms leading to an imbalance between pro- and anti-inflammatory components of the immune system. AIMS Recently B cells have been described as central regulators of exacerbated inflammation, notably in the case of autoimmunity. However, to what extent these cells can regulate airway inflammation and asthma remains to be elucidated. MATERIALS & METHODS We took advantage of a allergic asthma model in mice induced by percutaneous sensitization and respiratory challenge with an extract of house dust mite. RESULTS In this study, we showed that the induction of allergic asthma alters the homeostasis of IL-10(+) Bregs and favors the production of inflammatory cytokines by B cells. Deeper transcriptomic and phenotypic analysis of Bregs revealed that they were enriched in a CD9(+) B cell subset. In asthmatic mice the adoptive transfer of CD9(+) B cells normalized airway inflammation and lung function by inhibiting TH 2- and TH 17-driven inflammation in an IL-10-dependent manner, restoring a favorable immunological balance in lung tissues. Indeed we further showed that injection of CD9(+) Bregs controls the expansion of lung effector T cells allowing the establishment of a favorable regulatory T cells/effector T cells ratio in lungs. CONCLUSION This finding strengthens the potential for Breg-targeted therapies in allergic asthma.
Collapse
Affiliation(s)
- F. Braza
- INSERM; UMR 1087; l'institut du thorax; Nantes France
- CNRS; UMR 6291; Nantes France
- INSERM; UMR 1064; Nantes France
- CHU de Nantes; ITUN; Nantes France
- CIC biothérapie; Nantes France. Université de Nantes; Nantes France
| | - J. Chesne
- INSERM; UMR 1087; l'institut du thorax; Nantes France
- CNRS; UMR 6291; Nantes France
- INSERM; UMR 1064; Nantes France
- CHU de Nantes; ITUN; Nantes France
- CIC biothérapie; Nantes France. Université de Nantes; Nantes France
| | - M. Durand
- INSERM; UMR 1064; Nantes France
- CHU de Nantes; ITUN; Nantes France
- CIC biothérapie; Nantes France
- Université de Nantes; Nantes France
| | - S. Dirou
- INSERM; UMR 1087; l'institut du thorax; Nantes France
- CNRS; UMR 6291; Nantes France
- CHU Nantes; l'institut du thorax; Service de Pneumologie; Nantes France
| | - C. Brosseau
- INSERM; UMR 1087; l'institut du thorax; Nantes France
- CNRS; UMR 6291; Nantes France
- INSERM; UMR 1064; Nantes France
- CHU de Nantes; ITUN; Nantes France
- CHU Nantes; l'institut du thorax; Service de Pneumologie; Nantes France
| | - G. Mahay
- INSERM; UMR 1087; l'institut du thorax; Nantes France
- CNRS; UMR 6291; Nantes France
| | - M. A. Cheminant
- INSERM; UMR 1087; l'institut du thorax; Nantes France
- CNRS; UMR 6291; Nantes France
| | - A. Magnan
- INSERM; UMR 1087; l'institut du thorax; Nantes France
- CNRS; UMR 6291; Nantes France
- Université de Nantes; Nantes France
- CHU Nantes; l'institut du thorax; Service de Pneumologie; Nantes France
| | - S. Brouard
- INSERM; UMR 1064; Nantes France
- CHU de Nantes; ITUN; Nantes France
- CIC biothérapie; Nantes France
- Université de Nantes; Nantes France
| |
Collapse
|
91
|
Sheng JR, Quan S, Soliven B. IL-10 derived from CD1dhiCD5⁺ B cells regulates experimental autoimmune myasthenia gravis. J Neuroimmunol 2015; 289:130-8. [PMID: 26616882 DOI: 10.1016/j.jneuroim.2015.10.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/19/2022]
Abstract
IL-10-competent subset within CD1d(hi)CD5(+) B cells, also known as B10 cells, has been shown to regulate autoimmune diseases. In our previous study, adoptive transfer of CD1d(hi)CD5(+) B cells expanded in vivo by GM-CSF prevented and suppressed experimental autoimmune myasthenia gravis (EAMG). The goal of this study was to further examine the role and mechanism of IL-10 in the regulatory function of B10 cells in EAMG. We found that only IL-10 competent CD1d(hi)CD5(+) B cells sorted from WT mice, but not IL-10 deficient CD1d(hi)CD5(+) B cells exhibited regulatory function in vitro and in vivo. Adoptive transfer of IL-10 competent CD1d(hi)CD5(+) B cells led to higher frequency of Tregs and B10 cells, and low levels of proinflammatory cytokines and autoantibody production. We conclude that IL-10 production within CD1d(hi)CD5(+) B cells plays an important role in immune regulation of EAMG.
Collapse
MESH Headings
- Adoptive Transfer/methods
- Animals
- Antigens, CD1d/metabolism
- B-Lymphocyte Subsets/chemistry
- CD5 Antigens/metabolism
- Cell Proliferation/physiology
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Flow Cytometry
- Interleukin-10/genetics
- Interleukin-10/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/metabolism
- Myasthenia Gravis, Autoimmune, Experimental/chemically induced
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Myasthenia Gravis, Autoimmune, Experimental/pathology
- Myasthenia Gravis, Autoimmune, Experimental/physiopathology
- Peptide Fragments/immunology
- Receptors, Nicotinic/immunology
Collapse
Affiliation(s)
- Jian Rong Sheng
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA.
| | - Songhua Quan
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Betty Soliven
- Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
92
|
The role of IL-10 in microbiome-associated immune modulation and disease tolerance. Cytokine 2015; 75:291-301. [DOI: 10.1016/j.cyto.2014.11.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 02/06/2023]
|
93
|
Almishri W, Deans J, Swain MG. Rapid activation and hepatic recruitment of innate-like regulatory B cells after invariant NKT cell stimulation in mice. J Hepatol 2015; 63:943-51. [PMID: 26095178 DOI: 10.1016/j.jhep.2015.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Invariant natural killer T (iNKT) cells are present within the liver and have been implicated in the development of many liver diseases. Upon activation by glycolipid ligands (including α-galactosylceramide; αGalCer), hepatic iNKT cells produce numerous cytokines and recruit both pro-inflammatory and regulatory immune cells. However, the involvement of B cells in this process is poorly defined. METHODS Wild-type (male, C57BL/6), B cell deficient, or B cell depleted mice were injected with αGalCer or vehicle, hepatic B cell phenotype and liver injury was subsequently determined. RESULTS iNKT cell activation resulted in liver injury and the rapid activation and hepatic recruitment of B cells (mainly innate-like B1 and MZ-like B cells) from the spleen and peritoneal cavity. B cells recruited to the liver produce IL-10 and TGFβ, and express cell surface CD73 (ectoenzyme which generates adenosine). B cell deficient mice developed augmented αGalCer-induced hepatitis, enhanced neutrophil recruitment and striking alterations in the hepatic cytokine milieu. αGalCer-induced hepatitis was unaltered in IL-10(-/-) mice, or after TGFβ neutralization, but was significantly worsened in mice treated with a CD73 inhibitor. CONCLUSIONS iNKT cell stimulation recruits innate-like regulatory B cells to the liver which suppress hepatic inflammation through IL-10 and TGFβ1 independent mechanisms, but involve CD73 activity. These findings highlight an important inflammation suppressing role for B cells at early time points during the development of an innate immune response within the liver, and represent a potential therapeutic target for the treatment of liver disease.
Collapse
Affiliation(s)
- Wagdi Almishri
- Gastrointestinal Research Groups, Snyder Institute, Canada
| | - Julie Deans
- Immunology and Snyder Institute, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada
| | - Mark G Swain
- Immunology and Snyder Institute, Canada; Gastrointestinal Research Groups, Snyder Institute, Canada; Liver Unit, Division of Gastroenterology, Department of Medicine, University of Calgary, Alberta, Canada.
| |
Collapse
|
94
|
Gray M, Gray D. Regulatory B cells mediate tolerance to apoptotic self in health: implications for disease. Int Immunol 2015; 27:505-11. [PMID: 26306497 DOI: 10.1093/intimm/dxv045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/27/2015] [Indexed: 12/17/2022] Open
Abstract
B cells are able to regulate immune responses through the secretion of IL-10 and other inhibitory cytokines, though no transcription factor that can define 'regulatory B cells' as a separate lineage has yet been found. Instead it is likely that this function arises as a result of the immune context in which B cells find themselves and the stimuli they perceive. However, some B cells found within the B1a and the marginal zone subsets have a greater propensity to produce IL-10 than others. What are the natural stimuli for these cells to induce immune regulation? We discuss the role that the recognition of autoantigens exposed by apoptotic cells plays in stimulating IL-10 production in mouse and human studies. This mechanism involves the recognition and uptake of self-antigens by autoreactive BCRs, for delivery to endocytic compartments, where apoptosis-derived DNA binds to TLR9, driving IL-10 production. These 'natural' regulatory B cells represent a way of maintaining tolerance to self. We discuss how this may operate in inflammatory lesions where there is an excess of apoptotic leukocytes and how this impacts on our understanding of autoimmune disease.
Collapse
Affiliation(s)
- Mohini Gray
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - David Gray
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, King's Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| |
Collapse
|
95
|
Lykken JM, Candando KM, Tedder TF. Regulatory B10 cell development and function. Int Immunol 2015; 27:471-7. [PMID: 26254185 DOI: 10.1093/intimm/dxv046] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/31/2015] [Indexed: 01/06/2023] Open
Abstract
B cells are known to instigate and promulgate immune responses by producing antibodies and presenting antigens to T cells. However, a rare but potent B-cell subset in both humans and mice is capable of inhibiting immune responses through the production of the anti-inflammatory cytokine IL-10. Regulatory B cells do not express any unique combination of surface markers but instead represent a small population of B cells that have acquired the unique ability to produce IL-10. This numerically rare B-cell subset is therefore functionally referred to as 'B10 cells' to reflect both their molecular program and the fact that their anti-inflammatory effects in models of autoimmunity, infection and cancer are solely attributable to IL-10 production. As with most B cells, B10 cell development and function appear to be predominantly, if not exclusively, driven by antigen-receptor signals. Once generated, B10 cells respond to both innate and adaptive immune signals, with a requirement for antigen-specific local interactions with T cells to induce IL-10 production and to provide optimal immune suppression in mouse models of autoimmune disease. B10 cells therefore provide an antigen-specific mechanism for delivering IL-10 locally to sites of immune activation and inflammation. The ability of B10 cells to regulate innate and adaptive immune responses makes them an ideal therapeutic target for the treatment of many immune-related disorders.
Collapse
Affiliation(s)
- Jacquelyn M Lykken
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kathleen M Candando
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas F Tedder
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
96
|
Li J, Shen C, Liu Y, Li Y, Sun L, Jiao L, Jiao W, Xiao J, Shen C, Qi H, Xu F, Ma L. Impaired Function of CD5+CD19+CD1dhi B10 Cells on IgE Secretion in an Atopic Dermatitis-Like Mouse Model. PLoS One 2015; 10:e0132173. [PMID: 26244559 PMCID: PMC4526574 DOI: 10.1371/journal.pone.0132173] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/10/2015] [Indexed: 12/22/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory pruritic skin disease in which the pathogenic mechanism is complicated and not completely understood. Reports on the role of regulated cells in AD have recently evolved to regulate B cells, which may play a role in allergic inflammation as well. In the present study, we examined the frequency and regulatory function of CD5+CD19+CD1dhi B10 cells in an AD-like mouse model. Our results showed that the percentage of CD5+CD19+CD1dhi B10 cells increased while the frequency of IL-10-producing B cells in CD19+B cells decreased in the mice of AD group. Moreover, no difference in the percentage of B10pro+B10 cells was observed between the AD and control groups. Strikingly, B10 cells from control mice effectively inhibited IgE secretion, whereas the suppressive function of B10 cells from the AD mice was significantly decreased, which was similar to that observed in the group without B10. Altogether, these results suggest that the number of IL-10-producing B cells decreased in the AD group and these cells showed a defective regulatory function on IgE secretion.
Collapse
Affiliation(s)
- Jieqiong Li
- Key Laboratory of Major Diseases in Children Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, 100045, China
| | - Chunping Shen
- The Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, Beijing, 100045, China
| | - Ying Liu
- The Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, Beijing, 100045, China
| | - Yunzhu Li
- The Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, Beijing, 100045, China
| | - Lin Sun
- Key Laboratory of Major Diseases in Children Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, 100045, China
| | - Lei Jiao
- The Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, Beijing, 100045, China
| | - Weiwei Jiao
- Key Laboratory of Major Diseases in Children Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, 100045, China
| | - Jing Xiao
- Key Laboratory of Major Diseases in Children Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, 100045, China
| | - Chen Shen
- Key Laboratory of Major Diseases in Children Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, 100045, China
| | - Hui Qi
- Key Laboratory of Major Diseases in Children Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, 100045, China
| | - Fang Xu
- Key Laboratory of Major Diseases in Children Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, 100045, China
| | - Lin Ma
- The Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, Beijing, 100045, China
- * E-mail:
| |
Collapse
|
97
|
Shen P, Fillatreau S. Antibody-independent functions of B cells: a focus on cytokines. Nat Rev Immunol 2015; 15:441-51. [PMID: 26065586 DOI: 10.1038/nri3857] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytokine production by B cells is important for multiple aspects of immunity. B cell-derived cytokines, including lymphotoxin, are essential for the ontogenesis, homeostasis and activation of secondary lymphoid organs, as well as for the development of tertiary lymphoid tissues at ectopic sites. Other B cell-derived cytokines, such as interleukin-6 (IL-6), interferon-γ and tumour necrosis factor, influence the development of effector and memory CD4(+) T cell responses. Finally, B cells can regulate inflammatory immune responses, primarily through their provision of IL-10 and IL-35. This Review summarizes these various roles of cytokine-producing B cells in immunity and discusses the rational for targeting these cells in the clinic.
Collapse
Affiliation(s)
- Ping Shen
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Chariteplatz 1, 10117 Berlin, Germany
| | - Simon Fillatreau
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Chariteplatz 1, 10117 Berlin, Germany
| |
Collapse
|
98
|
Suppression of autoimmunity by CD5(+) IL-10-producing B cells in lupus-prone mice. Genes Immun 2015; 16:311-20. [PMID: 25973757 DOI: 10.1038/gene.2015.17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/05/2015] [Accepted: 03/19/2015] [Indexed: 12/30/2022]
Abstract
Systemic lupus erythematosus is a complex autoimmune disorder characterized by the production of pathogenic anti-nuclear antibodies. Previous work from our laboratory has shown that the introgression of a New Zealand Black-derived chromosome 4 interval onto a lupus-prone background suppresses the disease. Interestingly, the same genetic interval promoted the expansion of both Natural Killer T- and CD5(+) B cells in suppressed mice. In this study, we show that ablation of NKT cells with a CD1d knockout had no impact on either the suppression of lupus or the expansion of CD5(+) B cells. On the other hand, suppressed mice had an expanded population of IL-10-producing B cells that predominantly localized to the CD5(+)CD1d(low) compartment. The expansion of CD5(+) B cells negatively correlated with the frequency of pro-inflammatory IL-17 A-producing T-cells and kidney damage. Adoptive transfer with a single injection of total B cells with an enriched CD5(+) compartment reduced the frequency of memory/activated, IFNγ-producing, and IL-17 A-producing CD4 T-cells but did not significantly reduce autoantibody levels. Taken together, these data suggest that the expansion of CD5(+) IL-10-producing B cells and not NKT cells protects against lupus in these mice, by limiting the expansion of pro-inflammatory IL-17 A- and IFNγ-producing CD4 T-cells.
Collapse
|
99
|
Miyagaki T, Fujimoto M, Sato S. Regulatory B cells in human inflammatory and autoimmune diseases: from mouse models to clinical research. Int Immunol 2015; 27:495-504. [PMID: 25957264 DOI: 10.1093/intimm/dxv026] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/01/2015] [Indexed: 02/06/2023] Open
Abstract
B cells have been generally considered to be positive regulators of immune responses because of their ability to produce antigen-specific antibodies and to activate T cells through antigen presentation. Impairment of B cell development and function may cause inflammatory and autoimmune diseases. Recently, specific B cell subsets that can negatively regulate immune responses have been described in mouse models of a wide variety of inflammatory and autoimmune diseases. The concept of those B cells, termed regulatory B cells, is now recognized as important in the murine immune system. Among several regulatory B cell subsets, IL-10-producing regulatory B cells are the most widely investigated. On the basis of discoveries from studies of such mice, human regulatory B cells that produce IL-10 in most cases are becoming an active area of research. There have been emerging data suggesting the importance of human regulatory B cells in various diseases. Revealing the immune regulation mechanisms of human regulatory B cells in human inflammatory and autoimmune diseases could lead to the development of novel B cell targeted therapies. This review highlights the current knowledge on regulatory B cells, mainly IL-10-producing regulatory B cells, in animal models of inflammatory and autoimmune diseases and in clinical research using human samples.
Collapse
Affiliation(s)
- Tomomitsu Miyagaki
- Department of Dermatology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shinichi Sato
- Department of Dermatology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
100
|
Bolton EM, Bradley JA. Avoiding immunological rejection in regenerative medicine. Regen Med 2015; 10:287-304. [DOI: 10.2217/rme.15.11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
One of the major goals of regenerative medicine is repair or replacement of diseased and damaged tissues by transfer of differentiated stem cells or stem cell-derived tissues. The possibility that these tissues will be destroyed by immunological rejection remains a challenge that can only be overcome through a better understanding of the nature and expression of potentially immunogenic molecules associated with cell replacement therapy and the mechanisms and pathways resulting in their immunologic rejection. This review draws on clinical experience of organ and tissue transplantation, and on transplantation immunology research to consider practical approaches for avoiding and overcoming the possibility of rejection of stem cell-derived tissues.
Collapse
Affiliation(s)
- Eleanor M Bolton
- Department of Surgery, University of Cambridge, Box 202, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - John Andrew Bradley
- Department of Surgery, University of Cambridge, Box 202, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|