51
|
The Regulatory Effects of mTOR Complexes in the Differentiation and Function of CD4 + T Cell Subsets. J Immunol Res 2020; 2020:3406032. [PMID: 32377533 PMCID: PMC7195637 DOI: 10.1155/2020/3406032] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/01/2020] [Indexed: 01/08/2023] Open
Abstract
T cells are an important part of the adaptive immune system and play critical roles in the elimination of various pathogens. T cells could differentiate into distinct cellular subsets under different extracellular signals and then play different roles in maintaining host homeostasis and defense. The mechanistic target of rapamycin (mTOR) is a conserved intracellular serine/threonine kinase which belongs to the phosphoinositide 3-kinase- (PI3K-) related kinase family. The mTOR signaling pathway is closely involved in a variety of cell biological processes, including cell growth and cell metabolism, by senses and integrates various environmental cues. Recent studies showed that mTOR including mTORC1 and mTORC2 is closely involved in the development of T cell subpopulations such as Th1, Th2, Th9, Th17, follicular helper T cells (Tfh), and Treg cells through distinctive pathways. We herein mainly focused on the recent progress in understanding the roles of mTOR in regulating the development and differentiation of CD4+ T cell subsets.
Collapse
|
52
|
Passerini L, Barzaghi F, Curto R, Sartirana C, Barera G, Tucci F, Albarello L, Mariani A, Testoni PA, Bazzigaluppi E, Bosi E, Lampasona V, Neth O, Zama D, Hoenig M, Schulz A, Seidel MG, Rabbone I, Olek S, Roncarolo MG, Cicalese MP, Aiuti A, Bacchetta R. Treatment with rapamycin can restore regulatory T-cell function in IPEX patients. J Allergy Clin Immunol 2020; 145:1262-1271.e13. [PMID: 31874182 DOI: 10.1016/j.jaci.2019.11.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Immune-dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a lethal disease caused by mutations in a transcription factor critical for the function of thymus-derived regulatory T (Treg) cells (ie, FOXP3), resulting in impaired Treg function and autoimmunity. At present, hematopoietic stem cell transplantation is the therapy of choice for patients with IPEX syndrome. If not available, multiple immunosuppressive regimens have been used with poor disease-free survival at long-term follow-up. Rapamycin has been shown to suppress peripheral T cells while sparing Treg cells expressing wild-type FOXP3, thereby proving beneficial in the clinical setting of immune dysregulation. However, the mechanisms of immunosuppression selective to Treg cells in patients with IPEX syndrome are unclear. OBJECTIVE We sought to determine the cellular and molecular basis of the clinical benefit observed under rapamycin treatment in 6 patients with IPEX syndrome with different FOXP3 mutations. METHODS Phenotype and function of FOXP3-mutated Treg cells from rapamycin-treated patients with IPEX syndrome were tested by flow cytometry and in vitro suppression assays, and the gene expression profile of rapamycin-conditioned Treg cells by droplet-digital PCR. RESULTS Clinical and histologic improvements in patients correlated with partially restored Treg function, independent of FOXP3 expression or Treg frequency. Expression of TNF-receptor-superfamily-member 18 (TNFRSF18, glucocorticoid-induced TNF-receptor-related) and EBV-induced-3 (EBI3, an IL-35 subunit) in patients' Treg cells increased during treatment as compared with that of Treg cells from untreated healthy subjects. Furthermore inhibition of glucocorticoid-induced TNF-receptor-related and Ebi3 partially reverted in vitro suppression by in vivo rapamycin-conditioned Treg cells. CONCLUSIONS Rapamycin is able to affect Treg suppressive function via a FOXP3-independent mechanism, thus sustaining the clinical improvement observed in patients with IPEX syndrome under rapamycin treatment.
Collapse
Affiliation(s)
- Laura Passerini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Paediatric Immunohematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rosalia Curto
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Sartirana
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Graziano Barera
- Department of Paediatrics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Tucci
- Department of Paediatric Immunohematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Albarello
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Mariani
- Gastroenterology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Elena Bazzigaluppi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuele Bosi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita Salute San Raffaele University, Milan, Italy
| | - Vito Lampasona
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Olaf Neth
- Department of Paediatric Infectious Diseases, Rheumatology and Immunodeficiency, Instituto de Biomedicina de Sevilla/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Seville, Spain
| | - Daniele Zama
- Department of Pediatrics, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Manfred Hoenig
- Clinic of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Ansgar Schulz
- Clinic of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Markus G Seidel
- Division of Pediatric Hematology/Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Ivana Rabbone
- Department of Pediatrics, University of Turin, Turin, Italy
| | | | - Maria G Roncarolo
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif
| | - Maria P Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Paediatric Immunohematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Paediatric Immunohematology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita Salute San Raffaele University, Milan, Italy
| | - Rosa Bacchetta
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, Calif.
| |
Collapse
|
53
|
Stampouloglou E, Cheng N, Federico A, Slaby E, Monti S, Szeto GL, Varelas X. Yap suppresses T-cell function and infiltration in the tumor microenvironment. PLoS Biol 2020; 18:e3000591. [PMID: 31929526 PMCID: PMC6980695 DOI: 10.1371/journal.pbio.3000591] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 01/24/2020] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
A major challenge for cancer immunotherapy is sustaining T-cell activation and recruitment in immunosuppressive solid tumors. Here, we report that the levels of the Hippo pathway effector Yes-associated protein (Yap) are sharply induced upon the activation of cluster of differentiation 4 (CD4)-positive and cluster of differentiation 8 (CD8)-positive T cells and that Yap functions as an immunosuppressive factor and inhibitor of effector differentiation. Loss of Yap in T cells results in enhanced T-cell activation, differentiation, and function, which translates in vivo to an improved ability for T cells to infiltrate and repress tumors. Gene expression analyses of tumor-infiltrating T cells following Yap deletion implicates Yap as a mediator of global T-cell responses in the tumor microenvironment and as a negative regulator of T-cell tumor infiltration and patient survival in diverse human cancers. Collectively, our results indicate that Yap plays critical roles in T-cell biology and suggest that Yap inhibition improves T-cell responses in cancer.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/physiology
- Cell Proliferation/genetics
- Cells, Cultured
- Chemotaxis, Leukocyte/genetics
- Down-Regulation/genetics
- Down-Regulation/immunology
- Immunotherapy, Adoptive
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Skin Neoplasms/therapy
- T-Lymphocytes/physiology
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Eleni Stampouloglou
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Nan Cheng
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Anthony Federico
- Division of Computational Biology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Emily Slaby
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Stefano Monti
- Division of Computational Biology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Gregory L. Szeto
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, United States of America
- Translational Center for Age-Related Disease and Disparities, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
54
|
Autophagy Is a Tolerance-Avoidance Mechanism that Modulates TCR-Mediated Signaling and Cell Metabolism to Prevent Induction of T Cell Anergy. Cell Rep 2019; 24:1136-1150. [PMID: 30067971 PMCID: PMC6109966 DOI: 10.1016/j.celrep.2018.06.065] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/04/2018] [Accepted: 06/15/2018] [Indexed: 11/25/2022] Open
Abstract
Mocholi et al. show that, following T cell activation, activation of
autophagy constitutes a tolerance-avoidance mechanism that, through modulation
of cell metabolism and specific signaling pathways, allows T cells to engage in
effector responses and avoid anergy. In vivo inhibition of autophagy in T cells
induces tolerance and prevents autoimmunity. In response to activation, CD4+ T cells upregulate autophagy.
However, the functional consequences of that upregulation have not been fully
elucidated. In this study, we identify autophagy as a tolerance-avoidance
mechanism. Our data show that inhibition of autophagy during CD4+ T
cell activation induces a long-lasting state of hypo-responsiveness that is
accompanied by the expression of an anergic gene signature. Cells unable to
induce autophagy after T cell receptor (TCR) engagement show inefficient
mitochondrial respiration and decreased turnover of the protein tyrosine
phosphatase PTPN1, which translates into defective TCR-mediated signaling.
In vivo, inhibition of autophagy during antigen priming
induces T cell anergy and decreases the severity of disease in an experimental
autoimmune encephalomyelitis mouse model. Interestingly, CD4+ T cells
isolated from the synovial fluid of juvenile idiopathic arthritis patients,
while resistant to suboptimal stimulation-induced anergy, can be tolerized with
autophagy inhibitors. We propose that autophagy constitutes a
tolerance-avoidance mechanism, which determines CD4+ T cell fate.
Collapse
|
55
|
Wagle MV, Marchingo JM, Howitt J, Tan SS, Goodnow CC, Parish IA. The Ubiquitin Ligase Adaptor NDFIP1 Selectively Enforces a CD8 + T Cell Tolerance Checkpoint to High-Dose Antigen. Cell Rep 2019; 24:577-584. [PMID: 30021156 DOI: 10.1016/j.celrep.2018.06.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/17/2018] [Accepted: 06/12/2018] [Indexed: 01/11/2023] Open
Abstract
Escape from peripheral tolerance checkpoints that control cytotoxic CD8+ T cells is important for cancer immunotherapy and autoimmunity, but pathways enforcing these checkpoints are mostly uncharted. We reveal that the HECT-type ubiquitin ligase activator, NDFIP1, enforces a cell-intrinsic CD8+ T cell checkpoint that desensitizes TCR signaling during in vivo exposure to high antigen levels. Ndfip1-deficient OT-I CD8+ T cells responding to high exogenous tolerogenic antigen doses that normally induce anergy aberrantly expanded and differentiated into effector cells that could precipitate autoimmune diabetes in RIP-OVAhi mice. In contrast, NDFIP1 was dispensable for peripheral deletion to low-dose exogenous or pancreatic islet-derived antigen and had little impact upon effector responses to Listeria or acute LCMV infection. These data provide evidence that NDFIP1 mediates a CD8+ T cell tolerance checkpoint, with a different mechanism to CD4+ T cells, and indicates that CD8+ T cell deletion and anergy are molecularly separable checkpoints.
Collapse
Affiliation(s)
- Mayura V Wagle
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia; Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Julia M Marchingo
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jason Howitt
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia; Department of Health and Medical Sciences, Swinburne University, Melbourne, VIC, Australia
| | - Seong-Seng Tan
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Christopher C Goodnow
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia; Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia.
| | - Ian A Parish
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| |
Collapse
|
56
|
Cronin SJF, Woolf CJ, Weiss G, Penninger JM. The Role of Iron Regulation in Immunometabolism and Immune-Related Disease. Front Mol Biosci 2019; 6:116. [PMID: 31824960 PMCID: PMC6883604 DOI: 10.3389/fmolb.2019.00116] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022] Open
Abstract
Immunometabolism explores how the intracellular metabolic pathways in immune cells can regulate their function under different micro-environmental and (patho-)-physiological conditions (Pearce, 2010; Buck et al., 2015; O'Neill and Pearce, 2016). In the last decade great advances have been made in studying and manipulating metabolic programs in immune cells. Immunometabolism has primarily focused on glycolysis, the TCA cycle and oxidative phosphorylation (OXPHOS) as well as free fatty acid synthesis and oxidation. These pathways are important for providing the energy needs of cell growth, membrane rigidity, cytokine production and proliferation. In this review, we will however, highlight the specific role of iron metabolism at the cellular and organismal level, as well as how the bioavailability of this metal orchestrates complex metabolic programs in immune cell homeostasis and inflammation. We will also discuss how dysregulation of iron metabolism contributes to alterations in the immune system and how these novel insights into iron regulation can be targeted to metabolically manipulate immune cell function under pathophysiological conditions, providing new therapeutic opportunities for autoimmunity and cancer.
Collapse
Affiliation(s)
- Shane J F Cronin
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States
| | - Guenter Weiss
- Department of Internal Medicine II (Infectious Diseases, Immunology, Rheumatology and Pneumology), Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
57
|
Mastelic-Gavillet B, Navarro Rodrigo B, Décombaz L, Wang H, Ercolano G, Ahmed R, Lozano LE, Ianaro A, Derré L, Valerio M, Tawadros T, Jichlinski P, Nguyen-Ngoc T, Speiser DE, Verdeil G, Gestermann N, Dormond O, Kandalaft L, Coukos G, Jandus C, Ménétrier-Caux C, Caux C, Ho PC, Romero P, Harari A, Vigano S. Adenosine mediates functional and metabolic suppression of peripheral and tumor-infiltrating CD8 + T cells. J Immunother Cancer 2019; 7:257. [PMID: 31601268 PMCID: PMC6788118 DOI: 10.1186/s40425-019-0719-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/28/2019] [Indexed: 12/16/2022] Open
Abstract
Background Several mechanisms are present in the tumor microenvironment (TME) to impair cytotoxic T cell responses potentially able to control tumor growth. Among these, the accumulation of adenosine (Ado) contributes to tumor progression and represents a promising immunotherapeutic target. Ado has been shown to impair T cell effector function, but the role and mechanisms employed by Ado/Ado receptors (AdoRs) in modulating human peripheral and tumor-infiltrating lymphocyte (TIL) function are still puzzling. Methods CD8+ T cell cytokine production following stimulation was quantified by intracellular staining and flow cytometry. The cytotoxic capacity of tumor infiltrating lymphocytes (TILs) was quantified by the chromium release assay following co-culture with autologous or anti-CD3-loaded tumor cell lines. The CD8+ T cell metabolic fitness was evaluated by the seahorse assay and by the quantification of 2-NBDG uptake and CD71/CD98 upregulation upon stimulation. The expression of AdoRs was assessed by RNA flow cytometry, a recently developed technology that we validated by semiquantitative RT-PCR (qRT-PCR), while the impact on T cell function was evaluated by the use of selective antagonists and agonists. The influence of Ado/AdoR on the PKA and mTOR pathways was evaluated by phosphoflow staining of p-CREB and p-S6, respectively, and validated by western blot. Results Here, we demonstrate that Ado signaling through the A2A receptor (A2AR) in human peripheral CD8+ T cells and TILs is responsible for the higher sensitivity to Ado-mediated suppression of T central memory cells. We confirmed that Ado is able to impair peripheral and tumor-expanded T cell effector functions, and we show for the first time its impact on metabolic fitness. The Ado-mediated immunosuppressive effects are mediated by increased PKA activation that results in impairment of the mTORC1 pathway. Conclusions Our findings unveil A2AR/PKA/mTORC1 as the main Ado signaling pathway impairing the immune competence of peripheral T cells and TILs. Thus, p-CREB and p-S6 may represent useful pharmacodynamic and efficacy biomarkers of immunotherapies targeting Ado. The effect of Ado on T cell metabolic fitness reinforces the importance of the adenosinergic pathway as a target for next-generation immunotherapy. Electronic supplementary material The online version of this article (10.1186/s40425-019-0719-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Beatris Mastelic-Gavillet
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Blanca Navarro Rodrigo
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laure Décombaz
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Haiping Wang
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Ercolano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Rita Ahmed
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Angela Ianaro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Laurent Derré
- Department of Urology, Urology Research Unit, CHUV, Lausanne, Switzerland
| | - Massimo Valerio
- Department of Urology, Urology Research Unit, CHUV, Lausanne, Switzerland
| | - Thomas Tawadros
- Department of Urology, Urology Research Unit, CHUV, Lausanne, Switzerland
| | - Patrice Jichlinski
- Department of Urology, Urology Research Unit, CHUV, Lausanne, Switzerland
| | - Tu Nguyen-Ngoc
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Daniel E Speiser
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Grégory Verdeil
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | | | | | - Lana Kandalaft
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Camilla Jandus
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christine Ménétrier-Caux
- Department of Immunology Virology and Inflammation, Univ Lyon, Université Claude Bernard Lyon 1, 69008, Lyon, France.,INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Christophe Caux
- Department of Immunology Virology and Inflammation, Univ Lyon, Université Claude Bernard Lyon 1, 69008, Lyon, France.,INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Ping-Chih Ho
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pedro Romero
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Selena Vigano
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
58
|
Patel CH, Leone RD, Horton MR, Powell JD. Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat Rev Drug Discov 2019; 18:669-688. [PMID: 31363227 DOI: 10.1038/s41573-019-0032-5] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2019] [Indexed: 12/15/2022]
Abstract
Metabolic programming is emerging as a critical mechanism to alter immune cell activation, differentiation and function. Targeting metabolism does not completely suppress or activate the immune system but selectively regulates immune responses. The different metabolic requirements of the diverse cells that constitute an immune response provide a unique opportunity to separate effector functions from regulatory functions. Likewise, cells can be metabolically reprogrammed to promote either their short-term effector functions or long-term memory capacity. Studies in the growing field of immunometabolism support a paradigm of 'cellular selectivity based on demand', in which generic inhibitors of ubiquitous metabolic processes selectively affect cells with the greatest metabolic demand and have few effects on other cells of the body. Targeting metabolism, rather than particular cell types or cytokines, in metabolically demanding processes such as autoimmunity, graft rejection, cancer and uncontrolled inflammation could lead to successful strategies in controlling the pathogenesis of these complex disorders.
Collapse
Affiliation(s)
- Chirag H Patel
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert D Leone
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maureen R Horton
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan D Powell
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
59
|
Elias G, Ogunjimi B, Van Tendeloo V. Tracking Dye-Independent Approach to Identify and Isolate In Vitro Expanded T Cells. Cytometry A 2019; 95:1096-1107. [PMID: 31356002 DOI: 10.1002/cyto.a.23867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 01/03/2023]
Abstract
T cell proliferation is routinely identified in vitro using tracking dyes or through detecting intracellular upregulation of the nuclear protein, Ki-67. However, labeling with tracking dyes is cumbersome, associated with cellular toxicity, while Ki-67 cannot be used to identify and isolate viable T cells, and both techniques are incompatible with MACS technology. Here, we introduce a simple tool to identify and isolate in vitro T cell expansion that is tracking dye-independent and allows for sorting of viable T cells. We show that CD71, a transferrin receptor, and CD98, a heterodimer glycoprotein involved in both integrin signaling and amino-acid transport, are both highly upregulated on proliferating T cells upon in vitro stimulation, and that CD71 expression is maximal on the more recent progeny T cells, while CD98 upregulation remains stable across different generations of progeny T cells. Moreover, we demonstrate that the upregulation of CD71 and CD98 identifies CFSElow T cells and provides further proof of the antigen-specificity of T cells identified by CD71 and CD98 dual upregulation based on tetramer staining. We further show that CD71 can be used to enrich for in vitro expanding T cells using MACS technology. In conclusion, we show that CD71 and CD98 can be used to identify and isolate expanded T cells following in vitro stimulation and that CD71 is an MACS-compatible alternative to tracking dyes or Ki-67 detection. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- George Elias
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.,Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium
| | - Benson Ogunjimi
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.,Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium.,Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.,Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium.,Antwerp Centre for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Viggo Van Tendeloo
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.,Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium
| |
Collapse
|
60
|
Moser EK, Roof J, Dybas JM, Spruce LA, Seeholzer SH, Cancro MP, Oliver PM. The E3 ubiquitin ligase Itch restricts antigen-driven B cell responses. J Exp Med 2019; 216:2170-2183. [PMID: 31311822 PMCID: PMC6719427 DOI: 10.1084/jem.20181953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/10/2019] [Accepted: 06/17/2019] [Indexed: 01/27/2023] Open
Abstract
The E3 ubiquitin ligase Itch regulates antibody levels and prevents autoimmune disease in humans and mice, yet how Itch regulates B cell fate or function is unknown. We now show that Itch directly limits B cell activity. While Itch-deficient mice displayed normal numbers of preimmune B cell populations, they showed elevated numbers of antigen-experienced B cells. Mixed bone marrow chimeras revealed that Itch acts within B cells to limit naive and, to a greater extent, germinal center (GC) B cell numbers. B cells lacking Itch exhibited increased proliferation, glycolytic capacity, and mTORC1 activation. Moreover, stimulation of these cells in vivo by WT T cells resulted in elevated numbers of GC B cells, PCs, and serum IgG. These results support a novel role for Itch in limiting B cell metabolism and proliferation to suppress antigen-driven B cell responses.
Collapse
Affiliation(s)
- Emily K Moser
- Children's Hospital of Philadelphia, Philadelphia, PA
| | | | | | - Lynn A Spruce
- Children's Hospital of Philadelphia, Philadelphia, PA
| | | | | | - Paula M Oliver
- Children's Hospital of Philadelphia, Philadelphia, PA .,University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
61
|
Magee CN, Murakami N, Borges TJ, Shimizu T, Safa K, Ohori S, Cai S, Uffing A, Azzi J, Elyaman W, Charbonnier LM, Liu K, Toprak D, Visner G, Chatila TA, Siebel CW, Najafian N, Riella LV. Notch-1 Inhibition Promotes Immune Regulation in Transplantation Via Regulatory T Cell-Dependent Mechanisms. Circulation 2019; 140:846-863. [PMID: 31266349 DOI: 10.1161/circulationaha.119.040563] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Transplantation is the treatment of choice for many patients with end-stage organ disease. Despite advances in immunosuppression, long-term outcomes remain suboptimal, hampered by drug toxicity and immune-mediated injury, the leading cause of late graft loss. The development of therapies that promote regulation while suppressing effector immunity is imperative to improve graft survival and minimize conventional immunosuppression. Notch signaling is a highly conserved pathway pivotal to T-cell differentiation and function, rendering it a target of interest in efforts to manipulate T cell-mediated immunity. METHODS We investigated the pattern of Notch-1 expression in effector and regulatory T cells (Tregs) in both murine and human recipients of a solid-organ transplant. Using a selective human anti-Notch-1 antibody (aNotch-1), we examined the effect of Notch-1 receptor inhibition in full major histocompatibility complex-mismatch murine cardiac and lung transplant models, and in a humanized skin transplant model. On the basis of our findings, we further used a genetic approach to investigate the effect of selective Notch-1 inhibition in Tregs. RESULTS We observed an increased proportion of Tregs expressing surface and intracellular (activated) Notch-1 in comparison with conventional T cells, both in mice with transplants and in the peripheral blood of patients with transplants. In the murine cardiac transplant model, peritransplant administration of aNotch-1 (days 0, 2, 4, 6, 8, and 10) significantly prolonged allograft survival in comparison with immunoglobulin G-treated controls. Similarly, aNotch-1 treatment improved both histological and functional outcomes in the murine lung transplant model. The use of aNotch-1 resulted in a reduced proportion of both splenic and intragraft conventional T cells, while increasing the proportion of Tregs. Furthermore, Tregs isolated from aNotch-1-treated mice showed enhanced suppressive function on a per-cell basis, confirmed with selective Notch-1 deletion in Tregs (Foxp3EGFPCreNotch1fl/fl). Notch-1 blockade inhibited the mammalian target of rapamycin pathway and increased the phosphorylation of STAT5 (signal transducer and activator of transcription 5) in murine Tregs. Notch-1low Tregs isolated from human peripheral blood exhibited more potent suppressive capacity than Notch-1high Tregs. Last, the combination of aNotch-1 with costimulation blockade induced long-term tolerance in a cardiac transplant model, and this tolerance was dependent on CTLA-4 (cytotoxic T-lymphocyte-associated antigen-4) signaling. CONCLUSIONS Our data reveal a promising, clinically relevant approach for immune modulation in transplantation by selectively targeting Notch-1.
Collapse
Affiliation(s)
- Ciara N Magee
- Transplantation Research Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA (C.N.M., N.M., T.J.B., T.S., K.S., S.O., S.C., A.U., J.A., N.N., L.V.R.).,University College London Department of Renal Medicine, Centre for Transplantation, Royal Free Hospital, United Kingdom (C.N.M.)
| | - Naoka Murakami
- Transplantation Research Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA (C.N.M., N.M., T.J.B., T.S., K.S., S.O., S.C., A.U., J.A., N.N., L.V.R.)
| | - Thiago J Borges
- Transplantation Research Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA (C.N.M., N.M., T.J.B., T.S., K.S., S.O., S.C., A.U., J.A., N.N., L.V.R.)
| | - Tetsunosuke Shimizu
- Transplantation Research Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA (C.N.M., N.M., T.J.B., T.S., K.S., S.O., S.C., A.U., J.A., N.N., L.V.R.)
| | - Kassem Safa
- Transplantation Research Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA (C.N.M., N.M., T.J.B., T.S., K.S., S.O., S.C., A.U., J.A., N.N., L.V.R.)
| | - Shunsuke Ohori
- Transplantation Research Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA (C.N.M., N.M., T.J.B., T.S., K.S., S.O., S.C., A.U., J.A., N.N., L.V.R.)
| | - Songjie Cai
- Transplantation Research Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA (C.N.M., N.M., T.J.B., T.S., K.S., S.O., S.C., A.U., J.A., N.N., L.V.R.)
| | - Audrey Uffing
- Transplantation Research Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA (C.N.M., N.M., T.J.B., T.S., K.S., S.O., S.C., A.U., J.A., N.N., L.V.R.)
| | - Jamil Azzi
- Transplantation Research Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA (C.N.M., N.M., T.J.B., T.S., K.S., S.O., S.C., A.U., J.A., N.N., L.V.R.)
| | - Wassim Elyaman
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY (W.E.)
| | - Louis-Marie Charbonnier
- Division of Immunology (L.-M.C., T.A.C.), Children's Hospital Boston, Harvard Medical School, MA
| | - Kaifeng Liu
- Pulmonary and Respiratory Diseases Division (K.L., G.V.), Children's Hospital Boston, Harvard Medical School, MA
| | - Demet Toprak
- Department of Pediatrics, Seattle Children's Hospital, WA (D.T.)
| | - Gary Visner
- Pulmonary and Respiratory Diseases Division (K.L., G.V.), Children's Hospital Boston, Harvard Medical School, MA
| | - Talal A Chatila
- Division of Immunology (L.-M.C., T.A.C.), Children's Hospital Boston, Harvard Medical School, MA
| | - Christian W Siebel
- Department of Molecular Biology, Genentech Inc, South San Francisco, CA (C.W.S.)
| | - Nader Najafian
- Transplantation Research Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA (C.N.M., N.M., T.J.B., T.S., K.S., S.O., S.C., A.U., J.A., N.N., L.V.R.)
| | - Leonardo V Riella
- Transplantation Research Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA (C.N.M., N.M., T.J.B., T.S., K.S., S.O., S.C., A.U., J.A., N.N., L.V.R.)
| |
Collapse
|
62
|
Arshad Z, Rezapour-Firouzi S, Ebrahimifar M, Mosavi Jarrahi A, Mohammadian M. Association of Delta-6-Desaturase Expression with
Aggressiveness of Cancer, Diabetes Mellitus, and Multiple
Sclerosis: A Narrative Review. Asian Pac J Cancer Prev 2019; 20:1005-1018. [PMID: 31030467 PMCID: PMC6948902 DOI: 10.31557/apjcp.2019.20.4.1005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: The phosphatidylinositol 3-kinase/ protein kinase B /mammalian target of rapamycin (PI3K/Akt/
mTOR) signaling regulates multiple cellular processes and organizes cell proliferation, survival, and differentiation
with the available nutrients, in particular, fatty acids. Polyunsaturated fatty acids (PUFAs) are cytotoxic to cancer cells
and play a critical role in the treatment of multiple sclerosis (MS) and diabetes mellitus (DM). PUFAs are produced in
the body by desaturases and elongases from dietary essential fatty acids (EFAs), primarily involving delta-6-desaturase
(D6D). D6D is a rate-limiting enzyme for maintaining many aspects of lipid homeostasis and normal health. D6D is
important to recognize the mechanisms that regulate the expression of this enzyme in humans. A lower level of D6D was
seen in breast tumors compared to normal tissues. Interestingly, the elevated serum level of D6D was seen in MS and
DM, which explains the critical role of D6D in inflammatory diseases. Methods: We searched databases of PubMed,
Web of Science (WOS), Google Scholar, Scopus and related studies by predefined eligibility criteria. We assessed
their quality and extracted data. Results: Regarding the mTOR signaling pathway, there is remarkable contributions of
many inflammatory diseases to attention to common metabolic pathways are depicted. Of course, we need to have the
insights into each disorder and their pathological process. The first step in balancing the intake of EFAs is to prevent
the disruption of metabolism and expression of the D6D enzyme. Conclusions: The ω6 and ω3 pathways are two major
pathways in the biosynthesis of PUFAs. In both of these, D6D is a vital bifunctional enzyme desaturating linoleic acid
or alpha-linolenic acid. Therefore, if ω6 and ω3 EFAs are given together in a ratio of 2: 1, the D6D expression will be
down-regulated and normalized.
Collapse
Affiliation(s)
- Zhila Arshad
- Department of Pathology of Anatomy, School of medicine, Baku University of Medical Sciences, Baku, Azerbaijan
| | - Soheila Rezapour-Firouzi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran. ,
| | - Meysam Ebrahimifar
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza, Iran
| | - Alireza Mosavi Jarrahi
- Department of Social Medicine, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahshid Mohammadian
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
63
|
Svatek RS, Ji N, de Leon E, Mukherjee NZ, Kabra A, Hurez V, Nicolas M, Michalek JE, Javors M, Wheeler K, Sharp ZD, Livi CB, Shu ZJ, Henkes D, Curiel TJ. Rapamycin Prevents Surgery-Induced Immune Dysfunction in Patients with Bladder Cancer. Cancer Immunol Res 2019; 7:466-475. [PMID: 30563829 PMCID: PMC6926429 DOI: 10.1158/2326-6066.cir-18-0336] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/18/2018] [Accepted: 12/10/2018] [Indexed: 11/16/2022]
Abstract
The mechanistic target of rapamycin (mTOR) integrates environmental inputs to regulate cellular growth and metabolism in tumors. However, mTOR also regulates T-cell differentiation and activation, rendering applications of mTOR inhibitors toward treating cancer complex. Preclinical data support distinct biphasic effects of rapamycin, with higher doses directly suppressing tumor cell growth and lower doses enhancing T-cell immunity. To address the translational relevance of these findings, the effects of the mTOR complex 1 (mTORC1) inhibitor, rapamycin, on tumor and T cells were monitored in patients undergoing cystectomy for bladder cancer. MB49 syngeneic murine bladder cancer models were tested to gain mechanistic insights. Surgery-induced T-cell exhaustion in humans and mice and was associated with increased pulmonary metastasis and decreased PD-L1 antibody efficacy in mouse bladder cancer. At 3 mg orally daily, rapamycin concentrations were 2-fold higher in bladder tissues than in blood. Rapamycin significantly inhibited tumor mTORC1, shown by decreased rpS6 phosphorylation in treated versus control patients (P = 0.008). Rapamycin reduced surgery-induced T-cell exhaustion in patients, evidenced by a significant decrease in the prevalence of dysfunctional programmed death-1 (PD-1)-expressing T cells. Grade 3 to 4 adverse event rates were similar between groups, but rapamycin-treated patients had a higher rate of wound complications versus controls. In conclusion, surgery promoted bladder cancer metastasis and decreased the efficacy of postoperative bladder cancer immunotherapy. Low-dose (3 mg daily) oral rapamycin has favorable pharmacodynamic and immune modulating activity in surgical patients and has the potential to decrease surgery-induced immune dysfunction.
Collapse
Affiliation(s)
- Robert S Svatek
- Experimental Developmental Therapeutics (EDT) Program, UT Health MD Anderson, San Antonio, Texas.
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - Niannian Ji
- Experimental Developmental Therapeutics (EDT) Program, UT Health MD Anderson, San Antonio, Texas
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - Essel de Leon
- Department of Pathology, UT Health San Antonio, San Antonio, Texas
| | - Neelam Z Mukherjee
- Experimental Developmental Therapeutics (EDT) Program, UT Health MD Anderson, San Antonio, Texas
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - Aashish Kabra
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - Vincent Hurez
- Experimental Developmental Therapeutics (EDT) Program, UT Health MD Anderson, San Antonio, Texas
| | - Marlo Nicolas
- Department of Pathology, UT Health San Antonio, San Antonio, Texas
| | - Joel E Michalek
- Department of Epidemiology and Biostatistics, UT Health San Antonio, San Antonio, Texas
| | - Martin Javors
- Department of Psychiatry, UT Health San Antonio, San Antonio, Texas
| | - Karen Wheeler
- Experimental Developmental Therapeutics (EDT) Program, UT Health MD Anderson, San Antonio, Texas
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - Z Dave Sharp
- The Population Science and Prevention (PSP) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio
| | - Carolina B Livi
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas
- Agilent Technologies, Santa Clara, California
| | - Zhen-Ju Shu
- Experimental Developmental Therapeutics (EDT) Program, UT Health MD Anderson, San Antonio, Texas
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - David Henkes
- Department of Pathology, CHRISTUS Santa Rosa Medical Center, San Antonio, Texas
| | - Tyler J Curiel
- Experimental Developmental Therapeutics (EDT) Program, UT Health MD Anderson, San Antonio, Texas.
- Division of Hematology/Medical Oncology at the UT Health San Antonio, San Antonio, Texas
| |
Collapse
|
64
|
Cellular Metabolic Regulation in the Differentiation and Function of Regulatory T Cells. Cells 2019; 8:cells8020188. [PMID: 30795546 PMCID: PMC6407031 DOI: 10.3390/cells8020188] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining immune tolerance and preventing autoimmune and inflammatory diseases. The activity and function of Tregs are in large part determined by various intracellular metabolic processes. Recent findings have focused on how intracellular metabolism can shape the development, trafficking, and function of Tregs. In this review, we summarize and discuss current research that reveals how distinct metabolic pathways modulate Tregs differentiation, phenotype stabilization, and function. These advances highlight numerous opportunities to alter Tregs frequency and function in physiopathologic conditions via metabolic manipulation and have important translational implications.
Collapse
|
65
|
Fourati S, Ribeiro SP, Blasco Tavares Pereira Lopes F, Talla A, Lefebvre F, Cameron M, Kaewkungwal J, Pitisuttithum P, Nitayaphan S, Rerks-Ngarm S, Kim JH, Thomas R, Gilbert PB, Tomaras GD, Koup RA, Michael NL, McElrath MJ, Gottardo R, Sékaly RP. Integrated systems approach defines the antiviral pathways conferring protection by the RV144 HIV vaccine. Nat Commun 2019; 10:863. [PMID: 30787294 PMCID: PMC6382801 DOI: 10.1038/s41467-019-08854-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 01/25/2019] [Indexed: 12/31/2022] Open
Abstract
The RV144 vaccine trial showed reduced risk of HIV-1 acquisition by 31.2%, although mechanisms that led to protection remain poorly understood. Here we identify transcriptional correlates for reduced HIV-1 acquisition after vaccination. We assess the transcriptomic profile of blood collected from 223 participants and 40 placebo recipients. Pathway-level analysis of HIV-1 negative vaccinees reveals that type I interferons that activate the IRF7 antiviral program and type II interferon-stimulated genes implicated in antigen-presentation are both associated with a reduced risk of HIV-1 acquisition. In contrast, genes upstream and downstream of NF-κB, mTORC1 and host genes required for viral infection are associated with an increased risk of HIV-1 acquisition among vaccinees and placebo recipients, defining a vaccine independent association with HIV-1 acquisition. Our transcriptomic analysis of RV144 trial samples identifies IRF7 as a mediator of protection and the activation of mTORC1 as a correlate of the risk of HIV-1 acquisition. The RV144 vaccine trial showed reduced risk of HIV-1 acquisition, but mechanisms underlying protection are poorly understood. Here, Fourati et al. assess the transcriptomic profile of blood collected from 223 vaccinees and 40 placebo recipients and identify IRF7 as a mediator of protection.
Collapse
Affiliation(s)
- Slim Fourati
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | | | - Aarthi Talla
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Francois Lefebvre
- Canadian Center for Computational Genomics, Montréal, QC, H3A 0G1, Canada
| | - Mark Cameron
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - J Kaewkungwal
- Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - P Pitisuttithum
- Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - S Nitayaphan
- Royal Thai Army, Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - S Rerks-Ngarm
- Department of Disease Control, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Jerome H Kim
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.,International Vaccine Institute, Seoul, 08826, Korea
| | - Rasmi Thomas
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, NC, 27710, USA
| | - Richard A Koup
- Vaccine Research Center, US National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nelson L Michael
- Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Rafick-Pierre Sékaly
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
66
|
Cai G, Sun K, Wang T, Zou H, Gu J, Yuan Y, Liu X, Liu Z, Bian J. Mechanism and effects of Zearalenone on mouse T lymphocytes activation in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:208-217. [PMID: 29990733 DOI: 10.1016/j.ecoenv.2018.06.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/16/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Zearalenone (ZEA) is particularly toxic to the female reproductive system. Nevertheless, the effect of ZEA on the immune system is still not fully understood. The following study investigates the effects and mechanism of ZEA on mouse T cell activation in vitro. Briefly, T lymphocytes were extracted from primary splenic lymphocyte in mice, activated by concanavalin A, and then were exposed to different concentrations of ZEA for a certain period of time. Flow cytometry was used to detect the expression of activating and co-stimulatory molecules, and the secretion of cytokines in T cells at various stages. The expression of initiation regulatory protein in T cell activation, nuclear factor protein and co-stimulatory molecule related PI3K-Akt-mTOR signaling pathway proteins were detected by western blot. Our data showed that ZEA exposure inhibits the activity of T cell, and inhibits the expression of different activation signals in T cell. Additionally, ZEA exposure reduces the expression of initiative regulatory protein, i.e. LAT, Lck, Zap-70 during the activation of T cells. Thus, the results showed that ZEA exposure inhibits the formation and transmission of activated signal in T cells, interferes with signal pathway of T cell activation nuclear factor NFAT and NFκB, and decreases the secretion of cytokines after activation. Moreover, ZEA exposure interferes with co-stimulatory molecule CD28 during T cell activation, and with the activity of the PI3K-Akt-mTOR signaling pathway downstream of CD28. To conclude, our results indicated that ZEA toxin interferes with the activation of mouse T lymphocytes by affecting TCR signal and co-stimulatory signal, thus playing an essential role in immune toxicity.
Collapse
Affiliation(s)
- Guodong Cai
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Kai Sun
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, 12 Wenhui East Road, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
67
|
Fu X, Xu M, Song Y, Li Y, Zhang H, Zhang J, Zhang C. Enhanced interaction between SEC2 mutant and TCR Vβ induces MHC II-independent activation of T cells via PKCθ/NF-κB and IL-2R/STAT5 signaling pathways. J Biol Chem 2018; 293:19771-19784. [PMID: 30352872 DOI: 10.1074/jbc.ra118.003668] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/23/2018] [Indexed: 11/06/2022] Open
Abstract
SEC2, a major histocompatibility complex class II (MHC II)-dependent T-cell mitogen, binds MHC II and T-cell receptor (TCR) Vβs to induce effective co-stimulating signals for clonal T-cell expansion. We previously characterized a SEC2 mutant with increased recognition of TCR Vβs, ST-4, which could intensify NF-κB signaling transduction, leading to IL-2 production and T-cell activation. In this study, we found that in contrast to SEC2, ST-4 could induce murine CD4+ T-cell proliferation in a Vβ8.2- and Vβ8.3-specific manner in the absence of MHC II+ antigen-presenting cells (APCs). Furthermore, although IL-2 secretion in response to either SEC2 or ST-4 stimulation was accompanied by up-regulation of protein kinase Cθ (PKCθ), inhibitor of κB (IκB), α and β IκB kinase (IKKα/β), IκBα, and NF-κB in mouse splenocytes, only ST-4 could activate CD4+ T cells in the absence of MHC II+ APCs through the PKCθ/NF-κB signaling pathway. The PKCθ inhibitor AEB071 significantly suppressed SEC2/ST-4-induced T-cell proliferation, CD69 and CD25 expression, and IL-2 secretion with or without MHC II+ APCs. Further, SEC2/ST-4-induced changes in PKCθ/NF-κB signaling were significantly relieved by AEB071 in a dose-dependent manner. Using Lck siRNA, we found that Lck controlled SEC2/ST-4-induced phosphorylation of PKCθ. We also demonstrated that the IL-2R/STAT5 pathway is essential for SEC2/ST-4-induced T-cell activation. Collectively, our data demonstrate that an enhanced ST-4-TCR interaction can compensate for lack of MHC II and stimulate MHC II-free CD4+ T-cell proliferation via PKCθ/NF-κB and IL-2R/STAT5 signaling pathways. Compared with SEC2, intensified PKCθ/NF-κB and IL-2R/STAT5 signals induced by ST-4 lead to enhanced T-cell activation. The results of this study will facilitate better understanding of TCR-based immunotherapies for cancer.
Collapse
Affiliation(s)
- Xuanhe Fu
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and.,the School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 WenHua Road, Shenyang 110016, China
| | - Mingkai Xu
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Yubo Song
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Yongqiang Li
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Huiwen Zhang
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Jinghai Zhang
- the School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 WenHua Road, Shenyang 110016, China
| | - Chenggang Zhang
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| |
Collapse
|
68
|
Zhu Q, Wang H, Jiang B, Ni X, Jiang L, Li C, Wang X, Zhang F, Ke B, Lu L. Loss of ATF3 exacerbates liver damage through the activation of mTOR/p70S6K/ HIF-1α signaling pathway in liver inflammatory injury. Cell Death Dis 2018; 9:910. [PMID: 30185770 PMCID: PMC6125320 DOI: 10.1038/s41419-018-0894-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/14/2022]
Abstract
Activating transcription factor 3 (ATF3) is a stress-induced transcription factor that plays important roles in regulating immune and metabolic homeostasis. Activation of the mechanistic target of rapamycin (mTOR) and hypoxia-inducible factor (HIF) transcription factors are crucial for the regulation of immune cell function. Here, we investigated the mechanism by which the ATF3/mTOR/HIF-1 axis regulates immune responses in a liver ischemia/reperfusion injury (IRI) model. Deletion of ATF3 exacerbated liver damage, as evidenced by increased levels of serum ALT, intrahepatic macrophage/neutrophil trafficking, hepatocellular apoptosis, and the upregulation of pro-inflammatory mediators. ATF3 deficiency promoted mTOR and p70S6K phosphorylation, activated high mobility group box 1 (HMGB1) and TLR4, inhibited prolyl-hydroxylase 1 (PHD1), and increased HIF-1α activity, leading to Foxp3 downregulation and RORγt and IL-17A upregulation in IRI livers. Blocking mTOR or p70S6K in ATF3 knockout (KO) mice or bone marrow-derived macrophages (BMMs) downregulated HMGB1, TLR4, and HIF-1α and upregulated PHD1, increasing Foxp3 and decreasing IL-17A levels in vitro. Silencing of HIF-1α in ATF3 KO mice ameliorated IRI-induced liver damage in parallel with the downregulation of IL-17A in ATF3-deficient mice. These findings demonstrated that ATF3 deficiency activated mTOR/p70S6K/HIF-1α signaling, which was crucial for the modulation of TLR4-driven inflammatory responses and T cell development. The present study provides potential therapeutic targets for the treatment of liver IRI followed by liver transplantation.
Collapse
Affiliation(s)
- Qiang Zhu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China.,Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Han Wang
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Bin Jiang
- Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xuhao Ni
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Longfeng Jiang
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Changyong Li
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xuehao Wang
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Zhang
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Bibo Ke
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA, USA.
| | - Ling Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
69
|
Schito L. Bridging angiogenesis and immune evasion in the hypoxic tumor microenvironment. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1072-R1084. [PMID: 30183339 DOI: 10.1152/ajpregu.00209.2018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hypoxia (low O2) is a ubiquitous microenvironmental factor promoting cancer progression, metastasis, and mortality, owing to the ability of cancer cells to co-opt physiological angiogenic responses. Notwithstanding, the pathophysiological induction of angiogenesis results in an abnormal tumor vasculature, further aggravating hypoxia in a feedforward loop that limits the efficacy of molecular targeted therapies. Recent studies suggest that, besides their canonical roles, angiogenic factors promote a panoply of immunosuppressive effects in the tumor microenvironment. Therefore, intratumoral hypoxia emerges as a hitherto unrecognized mechanism evolutionarily repurposing angiogenic molecules as (patho)physiological immunomodulators. On the other hand, antiangiogenic therapies could be aimed at impeding both tumor growth and immunotolerance toward cancer cells, a beneficial effect that can be countered if hypoxia signaling pathways are left unchecked, leading to therapeutic failure. This review summarizes evidence supporting the hypothesis that hypoxia acts as a common pathophysiological mechanism of resistance to immunotherapeutic and antiangiogenic agents while proposing potential strategies to curtail resistance and mortality in patients bearing solid malignancies.
Collapse
Affiliation(s)
- Luana Schito
- Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto , Toronto, Ontario , Canada
| |
Collapse
|
70
|
Ligons DL, Hwang S, Waickman AT, Park JY, Luckey MA, Park JH. RORγt limits the amount of the cytokine receptor γc through the prosurvival factor Bcl-x L in developing thymocytes. Sci Signal 2018; 11:11/545/eaam8939. [PMID: 30154103 DOI: 10.1126/scisignal.aam8939] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cytokine receptor subunit γc provides critical signals for T cell survival and differentiation. We investigated the molecular mechanism that controls the cell surface abundance of γc during T cell development in the thymus. We found that the amount of γc was low on CD4+CD8+ double-positive (DP) thymocytes before their positive selection to become mature T cells. The transcription factor RORγt was abundant in immature DP thymocytes, and its loss resulted in an increase in the abundance of surface γc, specifically on preselection DP cells. Rather than directly repressing expression of the gene encoding γc, RORγt acted through the antiapoptotic protein Bcl-xL to reduce the abundance of surface γc, which resulted in decreased cytokine signaling and was associated with inhibition of cell metabolism and mitochondrial biogenesis. Accordingly, overexpression of Bcl-xL in RORγt-deficient thymocytes restored the amount of surface γc to that present on normal preselection DP cells. Together, these data highlight a previously unappreciated role for RORγt and Bcl-xL in limiting γc abundance at the cell surface and reveal a signaling circuit in which survival factors control cytokine signaling by limiting the abundance and surface distribution of a receptor subunit shared by several cytokines.
Collapse
Affiliation(s)
- Davinna L Ligons
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - SuJin Hwang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam T Waickman
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joo-Young Park
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Megan A Luckey
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
71
|
Jung JW, Veitch M, Bridge JA, Overgaard NH, Cruz JL, Linedale R, Franklin ME, Saunders NA, Simpson F, Frazer IH, Steptoe RJ, Wells JW. Clinically-Relevant Rapamycin Treatment Regimens Enhance CD8 + Effector Memory T Cell Function In The Skin and Allow their Infiltration into Cutaneous Squamous Cell Carcinoma. Oncoimmunology 2018; 7:e1479627. [PMID: 30228949 DOI: 10.1080/2162402x.2018.1479627] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 10/28/2022] Open
Abstract
Patients receiving immunosuppressive drugs to prevent organ transplant rejection exhibit a greatly increased risk of developing cutaneous squamous cell carcinoma (SCC). However, not all immunosuppressive drugs confer the same risk. Randomised, controlled trials demonstrate that switching renal transplant recipients receiving calcineurin inhibitor-based therapies to mammalian target of rapamycin (mTOR) inhibitors results in a reduced incidence of de novo SSC formation, and can even result in the regression of pre-existing premalignant lesions. However, the contribution played by residual immune function in this setting is unclear. We examined the hypotheses that mTOR inhibitors promote the enhanced differentiation and function of CD8+ memory T cells in the skin. Here, we demonstrate that the long-term oral administration of rapamycin to achieve clinically-relevant whole blood drug target thresholds, creates a "low rapamycin dose" environment in the skin. While both rapamycin and the calcineurin inhibitor tacrolimus elongated the survival of OVA-expressing skin grafts, and inhibited short-term antigen-specific CD8+ T cell responses, rapamycin but not tacrolimus permitted the statistically significant infiltration of CD8+ effector memory T cells into UV-induced SCC lesions. Furthermore, rapamycin uniquely enhanced the number and function of CD8+ effector and central memory T cells in a model of long-term contact hypersensitivity provided that rapamycin was present during the antigen sensitization phase. Thus, our findings suggest that patients switched to mTOR inhibitor regimens likely experience enhanced CD8+ memory T cell function to new antigen-challenges in their skin, which could contribute to their lower risk of de novo SSC formation and regression of pre-existing premalignant lesions.
Collapse
Affiliation(s)
- Ji-Won Jung
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Margaret Veitch
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Jennifer A Bridge
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Nana H Overgaard
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia.,Division of Immunology & Vaccinology, National Veterinary Institute, Technical University of Denmark, Lyngby, Denmark
| | - Jazmina L Cruz
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Richard Linedale
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Michael E Franklin
- Department of Clinical Pharmacology, Princess Alexandra Hospital, Queensland Health, Brisbane, QLD, Australia
| | - Nicholas A Saunders
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Fiona Simpson
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - Raymond J Steptoe
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| | - James W Wells
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD Australia
| |
Collapse
|
72
|
Petersburg J, Shen J, Csizmar CM, Murphy KA, Spanier J, Gabrielse K, Griffith TS, Fife B, Wagner CR. Eradication of Established Tumors by Chemically Self-Assembled Nanoring Labeled T Cells. ACS NANO 2018; 12:6563-6576. [PMID: 29792808 PMCID: PMC6506352 DOI: 10.1021/acsnano.8b01308] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Our laboratory has developed chemically self-assembled nanorings (CSANs) as prosthetic antigen receptors (PARs) for the nongenetic modification of T cell surfaces. PARs have been successfully employed in vitro to activate T cells for the selective killing of leukemia cells. However, PAR efficacy has yet to be evaluated in vivo or against solid tumors. Therefore, we developed bispecific PARs that selectively target the human CD3 receptor and human epithelial cell adhesion molecule (EpCAM), which is overexpressed on multiple carcinomas and cancer stem cells. The αEpCAM/αCD3 PARs were found to stably bind T cells for >4 days, and treating EpCAM+ MCF-7 breast cancer cells with αEpCAM/αCD3 PAR-functionalized T cells resulted in the induction of IL-2, IFN-γ, and MCF-7 cytotoxicity. Furthermore, an orthotopic breast cancer model validated the ability of αEpCAM/αCD3 PAR therapy to direct T cell lytic activity toward EpCAM+ breast cancer cells in vivo, leading to tumor eradication. In vivo biodistribution studies demonstrated that PAR-T cells were formed in vivo and persist for over 48 h with rapid accumulation in tumor tissue. Following PAR treatment, the production of IL-2, IFN-γ, IL-6, and TNF-α could be significantly reduced by an infusion of clinically relevant concentrations of the FDA-approved antibiotic, trimethoprim, signaling pharmacologic PAR deactivation. Importantly, CSANs did not induce naïve T cell activation and thus exhibit a limited potential to induce naïve T cell anergy. In addition, murine immunogenicity studies demonstrated that CSANs do not induce a significant antibody response nor do they activate splenic cells. Collectively, our results demonstrate that bispecific CSANs are able to nongenetically generate reversibly modified T cells that are capable of eradicating targeted solid tumors.
Collapse
Affiliation(s)
- Jacob Petersburg
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Jingjing Shen
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Clifford M Csizmar
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Katherine A Murphy
- Department of Urology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Justin Spanier
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Kari Gabrielse
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Brian Fife
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Carston R. Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Address correspondence to: , University of Minnesota, Department of Medicinal Chemistry, 2231 6th Street S.E., Cancer & Cardiovascular Research Building, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
73
|
Alwarawrah Y, Kiernan K, MacIver NJ. Changes in Nutritional Status Impact Immune Cell Metabolism and Function. Front Immunol 2018; 9:1055. [PMID: 29868016 PMCID: PMC5968375 DOI: 10.3389/fimmu.2018.01055] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/27/2018] [Indexed: 12/15/2022] Open
Abstract
Immune cell function and metabolism are closely linked. Many studies have now clearly demonstrated that alterations in cellular metabolism influence immune cell function and that, conversely, immune cell function determines the cellular metabolic state. Less well understood, however, are the effects of systemic metabolism or whole organism nutritional status on immune cell function and metabolism. Several studies have demonstrated that undernutrition is associated with immunosuppression, which leads to both increased susceptibility to infection and protection against several types of autoimmune disease, whereas overnutrition is associated with low-grade, chronic inflammation that increases the risk of metabolic and cardiovascular disease, promotes autoreactivity, and disrupts protective immunity. Here, we review the effects of nutritional status on immunity and highlight the effects of nutrition on circulating cytokines and immune cell populations in both human studies and mouse models. As T cells are critical members of the immune system, which direct overall immune response, we will focus this review on the influence of systemic nutritional status on T cell metabolism and function. Several cytokines and hormones have been identified which mediate the effects of nutrition on T cell metabolism and function through the expression and action of key regulatory signaling proteins. Understanding how T cells are sensitive to both inadequate and overabundant nutrients may enhance our ability to target immune cell metabolism and alter immunity in both malnutrition and obesity.
Collapse
Affiliation(s)
- Yazan Alwarawrah
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Kaitlin Kiernan
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Nancie J MacIver
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States.,Department of Immunology, Duke University Medical Center, Durham, NC, United States.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
74
|
Abstract
The complement system is an evolutionarily ancient key component of innate immunity required for the detection and removal of invading pathogens. It was discovered more than 100 years ago and was originally defined as a liver-derived, blood-circulating sentinel system that classically mediates the opsonization and lytic killing of dangerous microbes and the initiation of the general inflammatory reaction. More recently, complement has also emerged as a critical player in adaptive immunity via its ability to instruct both B and T cell responses. In particular, work on the impact of complement on T cell responses led to the surprising discoveries that the complement system also functions within cells and is involved in regulating basic cellular processes, predominantly those of metabolic nature. Here, we review current knowledge about complement's role in T cell biology, with a focus on the novel intracellular and noncanonical activities of this ancient system.
Collapse
Affiliation(s)
- Erin E West
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, United States; ,
| | - Martin Kolev
- Division of Transplant Immunology and Mucosal Biology, King's College London, London SE1 9RT, United Kingdom;
| | - Claudia Kemper
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, United States; ,
- Division of Transplant Immunology and Mucosal Biology, King's College London, London SE1 9RT, United Kingdom;
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
75
|
West EE, Afzali B, Kemper C. Unexpected Roles for Intracellular Complement in the Regulation of Th1 Responses. Adv Immunol 2018; 138:35-70. [PMID: 29731006 DOI: 10.1016/bs.ai.2018.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The complement system is generally recognized as an evolutionarily ancient and critical part of innate immunity required for the removal of pathogens that have breached the protective host barriers. It was originally defined as a liver-derived serum surveillance system that induces the opsonization and killing of invading microbes and amplifies the general inflammatory reactions. However, studies spanning the last four decades have established complement also as a vital bridge between innate and adaptive immunity. Furthermore, recent work on complement, and in particular its impact on human T helper 1 (Th1) responses, has led to the unexpected findings that the complement system also functions within cells and that it participates in the regulation of basic processes of the cell, including metabolism. These recent new insights into the unanticipated noncanonical activities of this ancient system suggest that the functions of complement extend well beyond mere host protection and into cellular physiology.
Collapse
Affiliation(s)
- Erin E West
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, MD, United States
| | - Behdad Afzali
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, MD, United States; Lymphocyte Cell Biology Section (Molecular Immunology and Inflammation Branch), National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Claudia Kemper
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, MD, United States; Division of Transplant Immunology and Mucosal Biology, King's College London, London, United Kingdom; Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
76
|
LaMothe RA, Kolte PN, Vo T, Ferrari JD, Gelsinger TC, Wong J, Chan VT, Ahmed S, Srinivasan A, Deitemeyer P, Maldonado RA, Kishimoto TK. Tolerogenic Nanoparticles Induce Antigen-Specific Regulatory T Cells and Provide Therapeutic Efficacy and Transferrable Tolerance against Experimental Autoimmune Encephalomyelitis. Front Immunol 2018; 9:281. [PMID: 29552007 PMCID: PMC5840162 DOI: 10.3389/fimmu.2018.00281] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/31/2018] [Indexed: 12/16/2022] Open
Abstract
T cells reacting to self-components can promote tissue damage when escaping tolerogenic control mechanisms which may result in autoimmune disease. The current treatments for these disorders are not antigen (Ag) specific and can compromise host immunity through chronic suppression. We have previously demonstrated that co-administration of encapsulated or free Ag with tolerogenic nanoparticles (tNPs) comprised of biodegradable polymers that encapsulate rapamycin are capable of inhibiting Ag-specific transgenic T cell proliferation and inducing Ag-specific regulatory T cells (Tregs). Here, we further show that tNPs can trigger the expansion of endogenous Tregs specific to a target Ag. The proportion of Ag-specific Treg to total Ag-specific T cells remains constant even after subsequent Ag challenge in combination with a potent TLR7/8 agonist or complete Freund’s adjuvant. tNP-treated mice do not develop experimental autoimmune encephalomyelitis (EAE) after adoptive transfer of encephalitogenic T cells; furthermore, tNP treatment provided therapeutic protection in relapsing EAE that was transferred to naïve animals. These findings describe a potent therapy to expand Ag-specific Tregs in vivo and suppress T cell-mediated autoimmunity.
Collapse
Affiliation(s)
| | | | - Trinh Vo
- Selecta Biosciences Inc., Watertown, MA, United States
| | | | | | - Jodie Wong
- Selecta Biosciences Inc., Watertown, MA, United States
| | - Victor T Chan
- Selecta Biosciences Inc., Watertown, MA, United States
| | - Sinthia Ahmed
- Selecta Biosciences Inc., Watertown, MA, United States
| | | | | | | | | |
Collapse
|
77
|
Kordbacheh T, Honeychurch J, Blackhall F, Faivre-Finn C, Illidge T. Radiotherapy and anti-PD-1/PD-L1 combinations in lung cancer: building better translational research platforms. Ann Oncol 2018; 29:301-310. [PMID: 29309540 DOI: 10.1093/annonc/mdx790] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024] Open
Abstract
Despite the unheralded success of immune checkpoint blockade in delivering durable responses for some patients with non-small-cell lung cancer (NSCLC), the majority of patients do not respond. PD-L1 tumour expression and pre-existing tumour T-cell infiltration have been correlated with improved clinical outcomes to anti-PD-1/anti-PD-L1. However, patients with tumours that are negative for PD-L1 expression can also respond to treatment. Strategies to combine other treatment modalities like radiotherapy (RT) with immune checkpoint inhibitors are being investigated as means of improving the response rates to PD-1/PD-L1 antibody blockade. RT induces immunogenic changes in cancer cells, can adaptively upregulate tumour cell PD-L1 expression and can improve the efficacy of anti-PD-1/anti-PD-L1 therapy. How we design future clinical trials in NSCLC also depends on practical considerations of delivering these treatment combinations, such as RT dose, fractionation and field volume, as well as scheduling with immune checkpoint blockade. Here, we review reasons for resistance to anti-PD-1/anti-PD-L1 and how RT may be utilised in combination with these drugs to enhance their effect by building better translational research platforms.
Collapse
Affiliation(s)
- T Kordbacheh
- Targeted Therapy Group, Division of Cancer Sciences, University of Manchester, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester Cancer Research Centre, Manchester, M20 4BX, UK; The Christie NHS Foundation Trust, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M20 4BX, UK.
| | - J Honeychurch
- Targeted Therapy Group, Division of Cancer Sciences, University of Manchester, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester Cancer Research Centre, Manchester, M20 4BX, UK
| | - F Blackhall
- Targeted Therapy Group, Division of Cancer Sciences, University of Manchester, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester Cancer Research Centre, Manchester, M20 4BX, UK; The Christie NHS Foundation Trust, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M20 4BX, UK
| | - C Faivre-Finn
- Targeted Therapy Group, Division of Cancer Sciences, University of Manchester, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester Cancer Research Centre, Manchester, M20 4BX, UK; The Christie NHS Foundation Trust, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M20 4BX, UK
| | - T Illidge
- Targeted Therapy Group, Division of Cancer Sciences, University of Manchester, UK; Cancer Research UK Lung Cancer Centre of Excellence, Manchester Cancer Research Centre, Manchester, M20 4BX, UK; The Christie NHS Foundation Trust, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M20 4BX, UK
| |
Collapse
|
78
|
Zeng H, Yu M, Tan H, Li Y, Su W, Shi H, Dhungana Y, Guy C, Neale G, Cloer C, Peng J, Wang D, Chi H. Discrete roles and bifurcation of PTEN signaling and mTORC1-mediated anabolic metabolism underlie IL-7-driven B lymphopoiesis. SCIENCE ADVANCES 2018; 4:eaar5701. [PMID: 29399633 PMCID: PMC5792226 DOI: 10.1126/sciadv.aar5701] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/04/2018] [Indexed: 05/21/2023]
Abstract
Interleukin-7 (IL-7) drives early B lymphopoiesis, but the underlying molecular circuits remain poorly understood, especially how Stat5 (signal transducer and activator of transcription 5)-dependent and Stat5-independent pathways contribute to this process. Combining transcriptome and proteome analyses and mouse genetic models, we show that IL-7 promotes anabolic metabolism and biosynthetic programs in pro-B cells. IL-7-mediated activation of mTORC1 (mechanistic target of rapamycin complex 1) supported cell proliferation and metabolism in a Stat5-independent, Myc-dependent manner but was largely dispensable for cell survival or Rag1 and Rag2 gene expression. mTORC1 was also required for Myc-driven lymphomagenesis. PI3K (phosphatidylinositol 3-kinase) and mTORC1 had discrete effects on Stat5 signaling and independently controlled B cell development. PI3K was actively suppressed by PTEN (phosphatase and tensin homolog) in pro-B cells to ensure proper IL-7R expression, Stat5 activation, heavy chain rearrangement, and cell survival, suggesting the unexpected bifurcation of the classical PI3K-mTOR signaling. Together, our integrative analyses establish IL-7R-mTORC1-Myc and PTEN-mediated PI3K suppression as discrete signaling axes driving B cell development, with differential effects on IL-7R-Stat5 signaling.
Collapse
Affiliation(s)
- Hu Zeng
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mei Yu
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | - Haiyan Tan
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- St. Jude Proteomics Facility, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yuxin Li
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- St. Jude Proteomics Facility, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Wei Su
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yogesh Dhungana
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Caryn Cloer
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- St. Jude Proteomics Facility, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Corresponding author. (H.C.); (D.W.); (J.P.)
| | - Demin Wang
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI 53226, USA
- Corresponding author. (H.C.); (D.W.); (J.P.)
| | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Corresponding author. (H.C.); (D.W.); (J.P.)
| |
Collapse
|
79
|
Battu S, Minhas G, Mishra A, Khan N. Amino Acid Sensing via General Control Nonderepressible-2 Kinase and Immunological Programming. Front Immunol 2017; 8:1719. [PMID: 29321774 PMCID: PMC5732134 DOI: 10.3389/fimmu.2017.01719] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/21/2017] [Indexed: 12/16/2022] Open
Abstract
Metabolic adaptation to the changing nutrient levels in the cellular microenvironment plays a decisive role in the maintenance of homeostasis. Eukaryotic cells are equipped with nutrient sensors, which sense the fluctuating nutrients levels and accordingly program the cellular machinery to mount an appropriate response. Nutrients including amino acids play a vital role in maintaining cellular homeostasis. Therefore, over the evolution, different species have developed diverse mechanisms to detect amino acids abundance or scarcity. Immune responses have been known to be closely associated with the cellular metabolism especially amino acid sensing pathway, which influences innate as well as adaptive immune-effector functions. Thus, exploring the cross-talk between amino acid sensing mechanisms and immune responses in disease as well as in normal physiological conditions might open up avenues to explore how this association can be exploited to tailor immunological functions toward the design of better therapeutics for controlling metabolic diseases. In this review, we discuss the advances in the knowledge of various amino acid sensing pathways including general control nonderepressible-2 kinase in the control of inflammation and metabolic diseases.
Collapse
Affiliation(s)
- Srikanth Battu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Gillipsie Minhas
- Department of Biomedical Engineering, IIT Hyderabad, Hyderabad, India
| | - Aman Mishra
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Nooruddin Khan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
80
|
SNX27 links DGKζ to the control of transcriptional and metabolic programs in T lymphocytes. Sci Rep 2017; 7:16361. [PMID: 29180720 PMCID: PMC5703713 DOI: 10.1038/s41598-017-16370-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/10/2017] [Indexed: 01/10/2023] Open
Abstract
Sorting nexin 27 (SNX27) recycles PSD-95, Dlg1, ZO-1 (PDZ) domain-interacting membrane proteins and is essential to sustain adequate brain functions. Here we define a fundamental SNX27 function in T lymphocytes controlling antigen-induced transcriptional activation and metabolic reprogramming. SNX27 limits the activation of diacylglycerol (DAG)-based signals through its high affinity PDZ-interacting cargo DAG kinase ζ (DGKζ). SNX27 silencing in human T cells enhanced T cell receptor (TCR)-stimulated activator protein 1 (AP-1)- and nuclear factor κB (NF-κB)-mediated transcription. Transcription did not increase upon DGKζ silencing, suggesting that DGKζ function is dependent on SNX27. The enhanced transcriptional activation in SNX27-silenced cells contrasted with defective activation of the mammalian target of rapamycin (mTOR) pathway. The analysis of Snx27−/− mice supported a role for SNX27 in the control of T cell growth. This study broadens our understanding of SNX27 as an integrator of lipid-based signals with the control of transcription and metabolic pathways.
Collapse
|
81
|
Hickey JW, Vicente FP, Howard GP, Mao HQ, Schneck JP. Biologically Inspired Design of Nanoparticle Artificial Antigen-Presenting Cells for Immunomodulation. NANO LETTERS 2017; 17:7045-7054. [PMID: 28994285 PMCID: PMC6709596 DOI: 10.1021/acs.nanolett.7b03734] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Particles engineered to engage and interact with cell surface ligands and to modulate cells can be harnessed to explore basic biological questions as well as to devise cellular therapies. Biology has inspired the design of these particles, such as artificial antigen-presenting cells (aAPCs) for use in immunotherapy. While much has been learned about mimicking antigen presenting cell biology, as we decrease the size of aAPCs to the nanometer scale, we need to extend biomimetic design to include considerations of T cell biology-including T-cell receptor (TCR) organization. Here we describe the first quantitative analysis of particle size effect on aAPCs with both Signals 1 and 2 based on T cell biology. We show that aAPCs, larger than 300 nm, activate T cells more efficiently than smaller aAPCs, 50 nm. The 50 nm aAPCs require saturating doses or require artificial magnetic clustering to activate T cells. Increasing ligand density alone on the 50 nm aAPCs did not increase their ability to stimulate CD8+ T cells, confirming the size-dependent phenomenon. These data support the need for multireceptor ligation and activation of T-cell receptor (TCR) nanoclusters of similar sizes to 300 nm aAPCs. Quantitative analysis and modeling of a nanoparticle system provides insight into engineering constraints of aAPCs for T cell immunotherapy applications and offers a case study for other cell-modulating particles.
Collapse
Affiliation(s)
- John W. Hickey
- Department of Biomedical Engineering, School of Medicine
- Institute for Cell Engineering, School of Medicine
- Translational Tissue Engineering Center
- Institute for Nanobiotechnology
| | | | - Gregory P. Howard
- Department of Biomedical Engineering, School of Medicine
- Institute for Nanobiotechnology
| | - Hai-Quan Mao
- Translational Tissue Engineering Center
- Institute for Nanobiotechnology
- Department of Materials Science and Engineering, Whiting School of Engineering
| | - Jonathan P. Schneck
- Institute for Cell Engineering, School of Medicine
- Department of Pathology, School of Medicine
- Institute for Nanobiotechnology
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
- Corresponding Author: . Phone: 410-614-4589
| |
Collapse
|
82
|
Galgani M, De Rosa V, La Cava A, Matarese G. Role of Metabolism in the Immunobiology of Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 197:2567-75. [PMID: 27638939 DOI: 10.4049/jimmunol.1600242] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/25/2016] [Indexed: 02/06/2023]
Abstract
Intracellular metabolism is central to cell activity and function. CD4(+)CD25(+) regulatory T cells (Tregs) that express the transcription factor FOXP3 play a pivotal role in the maintenance of immune tolerance to self. Recent studies showed that the metabolism and function of Tregs are influenced significantly by local environmental conditions and the availability of certain metabolites. It also was reported that defined metabolic programs associate with Treg differentiation, expression of FOXP3, and phenotype stabilization. This article reviews how metabolism modulates FOXP3 expression and Treg function, what environmental factors are involved, and how metabolic manipulation could alter Treg frequency and function in physiopathologic conditions.
Collapse
Affiliation(s)
- Mario Galgani
- Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy
| | - Veronica De Rosa
- Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy; Unità di NeuroImmunologia, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00179 Rome, Italy
| | - Antonio La Cava
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095; and
| | - Giuseppe Matarese
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| |
Collapse
|
83
|
Abstract
During antibody affinity maturation, germinal center (GC) B cells cycle between affinity-driven selection in the light zone (LZ) and proliferation and somatic hypermutation in the dark zone (DZ). Although selection of GC B cells is triggered by antigen-dependent signals delivered in the LZ, DZ proliferation occurs in the absence of such signals. We show that positive selection triggered by T cell help activates the mechanistic target of rapamycin complex 1 (mTORC1), which promotes the anabolic program that supports DZ proliferation. Blocking mTORC1 prior to growth prevented clonal expansion, whereas blockade after cells reached peak size had little to no effect. Conversely, constitutively active mTORC1 led to DZ enrichment but loss of competitiveness and impaired affinity maturation. Thus, mTORC1 activation is required for fueling B cells prior to DZ proliferation rather than for allowing cell-cycle progression itself and must be regulated dynamically during cyclic re-entry to ensure efficient affinity-based selection.
Collapse
|
84
|
Wu CE, Yu CW, Chang KW, Chou WH, Lu CY, Ghelfi E, Wu FC, Jan PS, Huang MC, Allard P, Lin SP, Ho HN, Chen HF. Comparative global immune-related gene profiling of somatic cells, human pluripotent stem cells and their derivatives: implication for human lymphocyte proliferation. Exp Mol Med 2017; 49:e376. [PMID: 28912571 PMCID: PMC5628273 DOI: 10.1038/emm.2017.134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 02/19/2017] [Accepted: 03/19/2017] [Indexed: 12/14/2022] Open
Abstract
Human pluripotent stem cells (hPSCs), including embryonic stem cells (ESCs) and induced PSCs (iPSCs), represent potentially unlimited cell sources for clinical applications. Previous studies have suggested that hPSCs may benefit from immune privilege and limited immunogenicity, as reflected by the reduced expression of major histocompatibility complex class-related molecules. Here we investigated the global immune-related gene expression profiles of human ESCs, hiPSCs and somatic cells and identified candidate immune-related genes that may alter their immunogenicity. The expression levels of global immune-related genes were determined by comparing undifferentiated and differentiated stem cells and three types of human somatic cells: dermal papilla cells, ovarian granulosa cells and foreskin fibroblast cells. We identified the differentially expressed genes CD24, GATA3, PROM1, THBS2, LY96, IFIT3, CXCR4, IL1R1, FGFR3, IDO1 and KDR, which overlapped with selected immune-related gene lists. In further analyses, mammalian target of rapamycin complex (mTOR) signaling was investigated in the differentiated stem cells following treatment with rapamycin and lentiviral transduction with specific short-hairpin RNAs. We found that the inhibition of mTOR signal pathways significantly downregulated the immunogenicity of differentiated stem cells. We also tested the immune responses induced in differentiated stem cells by mixed lymphocyte reactions. We found that CD24- and GATA3-deficient differentiated stem cells including neural lineage cells had limited abilities to activate human lymphocytes. By analyzing the transcriptome signature of immune-related genes, we observed a tendency of the hPSCs to differentiate toward an immune cell phenotype. Taken together, these data identify candidate immune-related genes that might constitute valuable targets for clinical applications.
Collapse
Affiliation(s)
- Chia-Eng Wu
- College of Medicine, Graduate Institute of Immunology, National Taiwan University, Taipei, Taiwan
| | - Chen-Wei Yu
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,College of Medicine, Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Kai-Wei Chang
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| | - Wen-Hsi Chou
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,College of Medicine, Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Chen-Yu Lu
- College of Medicine, Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Elisa Ghelfi
- Department of Environmental Health, Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences, Boston, MA, USA
| | - Fang-Chun Wu
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,College of Medicine, Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Pey-Shynan Jan
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,College of Medicine, Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Mei-Chi Huang
- College of Medicine, Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Patrick Allard
- Department of Environment Health Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shau-Ping Lin
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hong-Nerng Ho
- College of Medicine, Graduate Institute of Immunology, National Taiwan University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,College of Medicine, Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Hsin-Fu Chen
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,College of Medicine, Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
85
|
Vignali PDA, Barbi J, Pan F. Metabolic Regulation of T Cell Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1011:87-130. [DOI: 10.1007/978-94-024-1170-6_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
86
|
Marçais A, Marotel M, Degouve S, Koenig A, Fauteux-Daniel S, Drouillard A, Schlums H, Viel S, Besson L, Allatif O, Bléry M, Vivier E, Bryceson Y, Thaunat O, Walzer T. High mTOR activity is a hallmark of reactive natural killer cells and amplifies early signaling through activating receptors. eLife 2017; 6:26423. [PMID: 28875936 PMCID: PMC5628014 DOI: 10.7554/elife.26423] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/29/2017] [Indexed: 01/04/2023] Open
Abstract
NK cell education is the process through which chronic engagement of inhibitory NK cell receptors by self MHC-I molecules preserves cellular responsiveness. The molecular mechanisms responsible for NK cell education remain unclear. Here, we show that mouse NK cell education is associated with a higher basal activity of the mTOR/Akt pathway, commensurate to the number of educating receptors. This higher activity was dependent on the SHP-1 phosphatase and essential for the improved responsiveness of reactive NK cells. Upon stimulation, the mTOR/Akt pathway amplified signaling through activating NK cell receptors by enhancing calcium flux and LFA-1 integrin activation. Pharmacological inhibition of mTOR resulted in a proportional decrease in NK cell reactivity. Reciprocally, acute cytokine stimulation restored reactivity of hyporesponsive NK cells through mTOR activation. These results demonstrate that mTOR acts as a molecular rheostat of NK cell reactivity controlled by educating receptors and uncover how cytokine stimulation overcomes NK cell education. The cells of the immune system patrol the body to detect and destroy harmful microbes and diseased cells. Natural killer cells are immune cells with a natural capacity to kill infected or cancerous cells, as their name suggests. Importantly, they do so while sparing the surrounding healthy cells. As natural killer cells mature they go through an “education” process to learn to distinguish between normal and abnormal cells. During education, the natural killer cells interact continuously with nearby healthy cells. However, it remains unknown how these interactions change the natural killer cells, or how these changes control their killing activity. Marçais et al. now show that a protein called mTOR is essential to the education of natural killer cells. Comparing natural killer cells that had or had not completed the education process revealed that mTOR is more active in the educated cells. Moreover, inhibiting the activity of mTOR caused educated natural killer cells to lose their ability to identify diseased cells, while stimulating mTOR activity in uneducated natural killer cells mimicked the education process, allowing them to recognize and eliminate diseased host cells. Certain nutrients are known to control the activity of mTOR, which suggests these nutrients could also affect how natural killer cells develop. In addition, manipulating the activity of mTOR could be used to control the response of natural killer cells to diseased host cells, and so could form part of treatments for cancer and infectious diseases. However, given that mTOR plays numerous roles within different body cells, any potential therapies that are developed would need to be able to manipulate mTOR specifically in natural killer cells.
Collapse
Affiliation(s)
- Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie - International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Marie Marotel
- CIRI, Centre International de Recherche en Infectiologie - International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Sophie Degouve
- CIRI, Centre International de Recherche en Infectiologie - International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Alice Koenig
- CIRI, Centre International de Recherche en Infectiologie - International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Sébastien Fauteux-Daniel
- CIRI, Centre International de Recherche en Infectiologie - International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Annabelle Drouillard
- CIRI, Centre International de Recherche en Infectiologie - International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Heinrich Schlums
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Sébastien Viel
- CIRI, Centre International de Recherche en Infectiologie - International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France.,Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Lyon, France
| | - Laurie Besson
- CIRI, Centre International de Recherche en Infectiologie - International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Omran Allatif
- CIRI, Centre International de Recherche en Infectiologie - International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | | | - Eric Vivier
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France.,APHM, Hôpital de la Timone, Service d'Immunologie, Marseille, France
| | - Yenan Bryceson
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Broegelmann Research Laboratory, The Gades Institute, University of Bergen, Bergen, Norway
| | - Olivier Thaunat
- CIRI, Centre International de Recherche en Infectiologie - International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie - International Center for Infectiology Research, Lyon, France.,Inserm, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| |
Collapse
|
87
|
Freeley S, Kemper C, Le Friec G. The "ins and outs" of complement-driven immune responses. Immunol Rev 2017; 274:16-32. [PMID: 27782335 DOI: 10.1111/imr.12472] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The complement system represents an evolutionary old and critical component of innate immunity where it forms the first line of defense against invading pathogens. Originally described as a heat-labile fraction of the serum responsible for the opsonization and subsequent lytic killing of bacteria, work over the last century firmly established complement as a key mediator of the general inflammatory response but also as an acknowledged vital bridge between innate and adaptive immunity. However, recent studies particularly spanning the last decade have provided new insights into the novel modes and locations of complement activation and highlighted unexpected additional biological functions for this ancient system, for example, in regulating basic processes of the cell. In this review, we will cover the current knowledge about complement's established and novel roles in innate and adaptive immunity with a focus on the functional differences between serum circulating and intracellularly active complement and will describe and discuss the newly discovered cross-talks of complement with other cell effector systems particularly during T-cell induction and contraction.
Collapse
Affiliation(s)
- Simon Freeley
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | - Claudia Kemper
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK. .,Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Gaëlle Le Friec
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
88
|
Zhang Y, Jing Y, Qiao J, Luan B, Wang X, Wang L, Song Z. Activation of the mTOR signaling pathway is required for asthma onset. Sci Rep 2017; 7:4532. [PMID: 28674387 PMCID: PMC5495772 DOI: 10.1038/s41598-017-04826-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/22/2017] [Indexed: 12/11/2022] Open
Abstract
The mTOR pathway has been implicated in immune functions; however, its role in asthma is not well understood. We found that patients experiencing an asthma attack, when compared with patients in asthma remission, showed significantly elevated serum mTOR pathway activation, increased Th17 cells and IL-4, and decreased Treg cells and IFN-γ. In patients experiencing asthma, mTOR activation was positively correlated with the loss of Th17/Treg and Th1/Th2 balance. The role of mTOR in asthma was further confirmed using an ovalbumin-induced asthmatic mouse model. The mTOR pathway was activated in asthmatic mice, demonstrated by elevated levels of p-PI3K, p-Akt, p-mTOR, and p-p70S6k, and this activation was significantly reduced by treatment with budenoside or mTOR pathway inhibitors. Moreover, mTOR pathway inhibitor treatment reduced asthmatic markers and reversed the Th17/Treg and Th1/Th2 imbalances in asthmatic mice. Finally, different mTOR pathway inhibitor treatments have different inhibitory effects on signaling molecules in asthmatic mice. In summary, mTOR is activated during asthma onset and suppressed during asthma remission, and inhibiting the mTOR pathway in asthmatic mice alleviates asthmatic markers and restores the balances of Th17/Treg and Th1/Th2 cytokines. These data strongly suggest a critical requirement for mTOR pathway activation in asthma onset, suggesting potential targets for asthma treatments.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Pediatrics, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Ying Jing
- School of Medicine for Basic Research, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Junying Qiao
- Department of Pediatrics, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Bin Luan
- Department of Pediatrics, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiufang Wang
- Department of Pediatrics, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Li Wang
- Department of Pediatrics, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhe Song
- Department of Pediatrics, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
89
|
Jeza VT, Li X, Chen J, Liang Z, Aggrey AO, Wu X. IL-21 Augments Rapamycin in Expansion of Alpha Fetoprotein Antigen Specific Stem-Cell-like Memory T Cells in vitro. Pan Afr Med J 2017; 27:163. [PMID: 28904691 PMCID: PMC5567945 DOI: 10.11604/pamj.2017.27.163.11072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/15/2017] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Alloreactive tumor specific T cells are important arsenals of the adaptive immune system in the fight against tumors. However, stem cell-like memory T cells (Tscm) provide the key to effective elimination of tumor cells. Methods for generating these T cell subsets already exist. However, they could be made more efficient. Further, they are expensive and unattainable to the resource poor laboratories. In this regard, we are hereby describing a novel in vitro allogeneic co-culture method for raising allo-restricted tumor specific Tscm cells that we developed. METHODS We started by obtaining PBLs that screened negative for HLA-A2 molecules from healthy donors followed by co-culture with T2/AFP cells to generate AFP peptide specific tumor-reactive T cells. Controls, IL-21 and/or rapamycin were applied to samples in 24 well plates. Samples were harvested and stained with anti-human CD3, CD8, CD44, CD62L, and HLA-A2/AFP dimer followed by flow cytometry analysis. Cell viability was measured by Trypan blue exclusion assay. One Way ANOVA and independent t test were used to compare the mean differences among and between groups where P values less than 0.05 were considered significant. RESULTS Our results show that rapamycin arrests the differentiation of, and expands AFP specific Tscm cells. Further, the expansion of Tscm cells is augmented in the presence of IL-21. CONCLUSION IL-21 and Rapamycin can be used concurrently to raise and maintain antigen specific Tscm cells in vitro for purposes of augmenting immunotherapy strategies against cancers.
Collapse
Affiliation(s)
- Victor Tunje Jeza
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Medical Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Xiaoyi Li
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Chen
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihui Liang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Adem Onago Aggrey
- Department of Mathematics and Physics, Technical University of Mombasa, Kenya
| | - Xiongwen Wu
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
90
|
Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017; 168:960-976. [PMID: 28283069 DOI: 10.1016/j.cell.2017.02.004] [Citation(s) in RCA: 4145] [Impact Index Per Article: 518.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/22/2017] [Accepted: 02/01/2017] [Indexed: 12/13/2022]
Abstract
The mechanistic target of rapamycin (mTOR) coordinates eukaryotic cell growth and metabolism with environmental inputs, including nutrients and growth factors. Extensive research over the past two decades has established a central role for mTOR in regulating many fundamental cell processes, from protein synthesis to autophagy, and deregulated mTOR signaling is implicated in the progression of cancer and diabetes, as well as the aging process. Here, we review recent advances in our understanding of mTOR function, regulation, and importance in mammalian physiology. We also highlight how the mTOR signaling network contributes to human disease and discuss the current and future prospects for therapeutically targeting mTOR in the clinic.
Collapse
Affiliation(s)
- Robert A Saxton
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
91
|
Gibson SA, Yang W, Yan Z, Liu Y, Rowse AL, Weinmann AS, Qin H, Benveniste EN. Protein Kinase CK2 Controls the Fate between Th17 Cell and Regulatory T Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2017; 198:4244-4254. [PMID: 28468969 DOI: 10.4049/jimmunol.1601912] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/31/2017] [Indexed: 11/19/2022]
Abstract
CK2 is a highly conserved and pleiotropic serine/threonine kinase that promotes many prosurvival and proinflammatory signaling pathways, including PI3K/Akt/mTOR and JAK/STAT. These pathways are essential for CD4+ T cell activation and polarization, but little is known about how CK2 functions in T cells. In this article, we demonstrate that CK2 expression and kinase activity are induced upon CD4+ T cell activation. Targeting the catalytic activity of CK2 using the next-generation small molecule inhibitor CX-4945 in vitro significantly and specifically inhibited mouse and human Th17 cell differentiation while promoting the generation of Foxp3+ regulatory T cells (Tregs). These findings were associated with suppression of PI3K/Akt/mTOR activation and STAT3 phosphorylation upon CX-4945 treatment. Furthermore, we demonstrate that CX-4945 treatment inhibits the maturation of Th17 cells into inflammatory IFN-γ-coproducing effector cells. The Th17/Treg axis and maturation of Th17 cells are major contributing factors to the pathogenesis of many autoimmune disorders, including multiple sclerosis. Using a murine model of multiple sclerosis, experimental autoimmune encephalomyelitis, we demonstrate that in vivo administration of CX-4945 targets Akt/mTOR signaling in CD4+ T cells and the Th17/Treg axis throughout disease. Importantly, CX-4945 treatment after disease initiation significantly reduced disease severity, which was associated with a significant decrease in the frequency of pathogenic IFN-γ+ and GM-CSF+ Th17 cells in the CNS. Our data implicate CK2 as a regulator of the Th17/Treg axis and Th17 cell maturation and suggest that CK2 could be targeted for the treatment of Th17 cell-driven autoimmune disorders.
Collapse
Affiliation(s)
- Sara A Gibson
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Wei Yang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Zhaoqi Yan
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Yudong Liu
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Amber L Rowse
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Amy S Weinmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| |
Collapse
|
92
|
Lippitsch A, Chukovetskyi Y, Baal N, Bein G, Hackstein H. Unique high and homogenous surface expression of the transferrin receptor CD71 on murine plasmacytoid dendritic cells in different tissues. Cell Immunol 2017; 316:41-52. [PMID: 28372797 DOI: 10.1016/j.cellimm.2017.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/28/2017] [Accepted: 03/27/2017] [Indexed: 01/03/2023]
Abstract
Plasmacytoid dendritic cells (pDC) are of increasing interest in cancer vaccine development, but many functions of these highly specialized, multifaceted cells are poorly understood. The transferrin receptor CD71 has also been suggested to function as an antigen uptake receptor on professional antigen-presenting cells. In this study, we employed multiparameter flow cytometry to investigate CD71 expression on various leukocyte subsets, including DC subsets, granulocytes, macrophages, T and B lymphocytes, γδ T cells, and natural killer cells. Cells from various lymphoid and non-lymphoid murine tissues were analyzed using fluorochrome-conjugated monoclonal antibodies. High CD71 expression (90-100%) was observed, uniquely on pDC amongst the leukocyte populations examined, in both lymphoid and non-lymphoid tissues, including other DC subsets. In contrast, CD71 expression on non-tissue pDC, in the bone marrow and peripheral blood, was reduced. The cause and function of this high tissue pDC-selective CD71 expression remain to be examined.
Collapse
Affiliation(s)
- Anne Lippitsch
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Biomedical Research Center Seltersberg (BFS), Schubertstrasse 81, D-35392 Giessen, Germany
| | - Yuri Chukovetskyi
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Biomedical Research Center Seltersberg (BFS), Schubertstrasse 81, D-35392 Giessen, Germany
| | - Nelli Baal
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Biomedical Research Center Seltersberg (BFS), Schubertstrasse 81, D-35392 Giessen, Germany
| | - Gregor Bein
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Biomedical Research Center Seltersberg (BFS), Schubertstrasse 81, D-35392 Giessen, Germany
| | - Holger Hackstein
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Biomedical Research Center Seltersberg (BFS), Schubertstrasse 81, D-35392 Giessen, Germany.
| |
Collapse
|
93
|
Ren W, Liu G, Yin J, Tan B, Wu G, Bazer FW, Peng Y, Yin Y. Amino-acid transporters in T-cell activation and differentiation. Cell Death Dis 2017; 8:e2655. [PMID: 28252650 PMCID: PMC5386510 DOI: 10.1038/cddis.2016.222] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/25/2022]
Abstract
T-cell-mediated immune responses aim to protect mammals against cancers and infections, and are also involved in the pathogenesis of various inflammatory or autoimmune diseases. Cellular uptake and the utilization of nutrients is closely related to the T-cell fate decision and function. Research in this area has yielded surprising findings in the importance of amino-acid transporters for T-cell development, homeostasis, activation, differentiation and memory. In this review, we present current information on amino-acid transporters, such as LAT1 (l-leucine transporter), ASCT2 (l-glutamine transporter) and GAT-1 (γ-aminobutyric acid transporter-1), which are critically important for mediating peripheral naive T-cell homeostasis, activation and differentiation, especially for Th1 and Th17 cells, and even memory T cells. Mechanically, the influence of amino-acid transporters on T-cell fate decision may largely depend on the mechanistic target of rapamycin complex 1 (mTORC1) signaling. These discoveries remarkably demonstrate the role of amino-acid transporters in T-cell fate determination, and strongly indicate that manipulation of the amino-acid transporter-mTORC1 axis could ameliorate many inflammatory or autoimmune diseases associated with T-cell-based immune responses.
Collapse
Affiliation(s)
- Wenkai Ren
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.,University of the Chinese Academy of Sciences, Beijing 10008, China
| | - Gang Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China
| | - Jie Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843-2471, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX 77843-2471, USA
| | - Yuanyi Peng
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Observation and Experiment Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China
| |
Collapse
|
94
|
Kolev M, Kemper C. Keeping It All Going-Complement Meets Metabolism. Front Immunol 2017; 8:1. [PMID: 28149297 PMCID: PMC5241319 DOI: 10.3389/fimmu.2017.00001] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/03/2017] [Indexed: 01/22/2023] Open
Abstract
The complement system is an evolutionary old and crucial component of innate immunity, which is key to the detection and removal of invading pathogens. It was initially discovered as a liver-derived sentinel system circulating in serum, the lymph, and interstitial fluids that mediate the opsonization and lytic killing of bacteria, fungi, and viruses and the initiation of the general inflammatory responses. Although work performed specifically in the last five decades identified complement also as a critical instructor of adaptive immunity—indicating that complement’s function is likely broader than initially anticipated—the dominant opinion among researchers and clinicians was that the key complement functions were in principle defined. However, there is now a growing realization that complement activity goes well beyond “classic” immune functions and that this system is also required for normal (neuronal) development and activity and general cell and tissue integrity and homeostasis. Furthermore, the recent discovery that complement activation is not confined to the extracellular space but occurs within cells led to the surprising understanding that complement is involved in the regulation of basic processes of the cell, particularly those of metabolic nature—mostly via novel crosstalks between complement and intracellular sensor, and effector, pathways that had been overlooked because of their spatial separation. These paradigm shifts in the field led to a renaissance in complement research and provide new platforms to now better understand the molecular pathways underlying the wide-reaching effects of complement functions in immunity and beyond. In this review, we will cover the current knowledge about complement’s emerging relationship with the cellular metabolism machinery with a focus on the functional differences between serum-circulating versus intracellularly active complement during normal cell survival and induction of effector functions. We will also discuss how taking a closer look into the evolution of key complement components not only made the functional connection between complement and metabolism rather “predictable” but how it may also give clues for the discovery of additional roles for complement in basic cellular processes.
Collapse
Affiliation(s)
- Martin Kolev
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital , London , UK
| | - Claudia Kemper
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK; Laboratory of Molecular Immunology, The Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
95
|
Scharping NE, Delgoffe GM. Tumor Microenvironment Metabolism: A New Checkpoint for Anti-Tumor Immunity. Vaccines (Basel) 2016; 4:E46. [PMID: 27929420 PMCID: PMC5192366 DOI: 10.3390/vaccines4040046] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/01/2016] [Accepted: 11/25/2016] [Indexed: 12/21/2022] Open
Abstract
When a T cell infiltrates a tumor, it is subjected to a variety of immunosuppressive and regulatory signals in the microenvironment. However, it is becoming increasingly clear that due to the proliferative and energetically-deregulated nature of tumor cells, T cells also operate at a metabolic disadvantage. The nutrient dearth of the tumor microenvironment (TME) creates "metabolic checkpoints" upon infiltrating T cells, impacting their ability to survive, proliferate and function effectively. In this review, we summarize the basics of tumor cell and T cell metabolism and discuss recent advances elucidating the individual metabolic checkpoints exerted on T cells that drive their dysfunction in the TME.
Collapse
Affiliation(s)
- Nicole E Scharping
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Greg M Delgoffe
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
96
|
Herrero-Sánchez MC, Rodríguez-Serrano C, Almeida J, San Segundo L, Inogés S, Santos-Briz Á, García-Briñón J, Corchete LA, San Miguel JF, Del Cañizo C, Blanco B. Targeting of PI3K/AKT/mTOR pathway to inhibit T cell activation and prevent graft-versus-host disease development. J Hematol Oncol 2016; 9:113. [PMID: 27765055 PMCID: PMC5072323 DOI: 10.1186/s13045-016-0343-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/08/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Graft-versus-host disease (GvHD) remains the major obstacle to successful allogeneic hematopoietic stem cell transplantation, despite of the immunosuppressive regimens administered to control T cell alloreactivity. PI3K/AKT/mTOR pathway is crucial in T cell activation and function and, therefore, represents an attractive therapeutic target to prevent GvHD development. Recently, numerous PI3K inhibitors have been developed for cancer therapy. However, few studies have explored their immunosuppressive effect. METHODS The effects of a selective PI3K inhibitor (BKM120) and a dual PI3K/mTOR inhibitor (BEZ235) on human T cell proliferation, expression of activation-related molecules, and phosphorylation of PI3K/AKT/mTOR pathway proteins were analyzed. Besides, the ability of BEZ235 to prevent GvHD development in mice was evaluated. RESULTS Simultaneous inhibition of PI3K and mTOR was efficient at lower concentrations than PI3K specific targeting. Importantly, BEZ235 prevented naïve T cell activation and induced tolerance of alloreactive T cells, while maintaining an adequate response against cytomegalovirus, more efficiently than BKM120. Finally, BEZ235 treatment significantly improved the survival and decreased the GvHD development in mice. CONCLUSIONS These results support the use of PI3K inhibitors to control T cell responses and show the potential utility of the dual PI3K/mTOR inhibitor BEZ235 in GvHD prophylaxis.
Collapse
Affiliation(s)
- Mª Carmen Herrero-Sánchez
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Concepción Rodríguez-Serrano
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Julia Almeida
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Servicio de Citometría, Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Laura San Segundo
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Susana Inogés
- Laboratorio de Inmunoterapia, Clínica Universidad de Navarra, Avda. Pío XII 55, 31008, Pamplona, Spain
| | - Ángel Santos-Briz
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Departamento de Patología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain
| | - Jesús García-Briñón
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Departamento de Biología Celular y Patología, Facultad de Medicina, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Luis Antonio Corchete
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Jesús F San Miguel
- Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra, Avda. Pío XII 55, 31008, Pamplona, Spain
| | - Consuelo Del Cañizo
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Belén Blanco
- Servicio de Hematología, Hospital Universitario de Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,Centro de Investigación del Cáncer, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
97
|
Hess C, Kemper C. Complement-Mediated Regulation of Metabolism and Basic Cellular Processes. Immunity 2016; 45:240-54. [PMID: 27533012 PMCID: PMC5019180 DOI: 10.1016/j.immuni.2016.08.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 02/07/2023]
Abstract
Complement is well appreciated as a critical arm of innate immunity. It is required for the removal of invading pathogens and works by directly destroying them through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental cellular processes, such as survival, proliferation, and autophagy. Newly identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription-factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism and the potential implications in infection and other disease settings.
Collapse
Affiliation(s)
- Christoph Hess
- Department of Biomedicine, Immunobiology, University of Basel, 20 Hebelstrasse, 4031 Basel, Switzerland.
| | - Claudia Kemper
- Division of Transplant Immunology and Mucosal Biology, Medical Reseaerch Council Centre for Transplantation, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK; Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
98
|
Gill KS, Fernandes P, O'Donovan TR, McKenna SL, Doddakula KK, Power DG, Soden DM, Forde PF. Glycolysis inhibition as a cancer treatment and its role in an anti-tumour immune response. Biochim Biophys Acta Rev Cancer 2016; 1866:87-105. [PMID: 27373814 DOI: 10.1016/j.bbcan.2016.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 12/23/2022]
Abstract
Increased glycolysis is the main source of energy supply in cancer cells that use this metabolic pathway for ATP generation. Altered energy metabolism is a biochemical fingerprint of cancer cells that represents one of the "hallmarks of cancer". The immune system can prevent tumour growth by eliminating cancer cells but this editing process ultimately results in poorly immunogenic cells remaining allowing for unchallenged tumour growth. In this review we look at the glycolysis pathway as a target for cancer treatments. We also examine the interplay between the glycolysis modulation and the immune response as an anti-cancer therapy.
Collapse
Affiliation(s)
- Kheshwant S Gill
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland; Cardiothoracic Surgery Department, Cork University Hospital, Cork, Ireland
| | - Philana Fernandes
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland
| | - Tracey R O'Donovan
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland
| | - Sharon L McKenna
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland
| | | | - Derek G Power
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland; Department of Medical Oncology, Mercy University Hospital, Grenville Place, Cork, Ireland
| | - Declan M Soden
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland
| | - Patrick F Forde
- Cork Cancer Research Centre, Western Gateway Building, University College Cork, Cork, Ireland.
| |
Collapse
|
99
|
Garo LP, Murugaiyan G. Contribution of MicroRNAs to autoimmune diseases. Cell Mol Life Sci 2016; 73:2041-51. [PMID: 26943802 PMCID: PMC11108434 DOI: 10.1007/s00018-016-2167-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 12/12/2022]
Abstract
MicroRNAs are a class of evolutionarily conserved, short non-coding RNAs that post-transcriptionally modulate the expression of multiple target genes. They are implicated in almost every biological process, including pathways involved in immune homeostasis, such as immune cell development, central and peripheral tolerance, and T helper cell differentiation. Alterations in miRNA expression and function can lead to major dysfunction of the immune system and mediate susceptibility to autoimmune disease. Here, we discuss the role of miRNAs in the maintenance of immune tolerance to self-antigens and the gain or loss of miRNA functions on tissue inflammation and autoimmunity.
Collapse
Affiliation(s)
- Lucien P Garo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, USA
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, USA.
| |
Collapse
|
100
|
Matsuzawa Y, Oshima S, Takahara M, Maeyashiki C, Nemoto Y, Kobayashi M, Nibe Y, Nozaki K, Nagaishi T, Okamoto R, Tsuchiya K, Nakamura T, Ma A, Watanabe M. TNFAIP3 promotes survival of CD4 T cells by restricting MTOR and promoting autophagy. Autophagy 2016; 11:1052-62. [PMID: 26043155 DOI: 10.1080/15548627.2015.1055439] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Autophagy plays important roles in metabolism, differentiation, and survival in T cells. TNFAIP3/A20 is a ubiquitin-editing enzyme that is thought to be a negative regulator of autophagy in cell lines. However, the role of TNFAIP3 in autophagy remains unclear. To determine whether TNFAIP3 regulates autophagy in CD4 T cells, we first analyzed Tnfaip3-deficient naïve CD4 T cells in vitro. We demonstrated that Tnfaip3-deficient CD4 T cells exhibited reduced MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) puncta formation, increased mitochondrial content, and exaggerated reactive oxygen species (ROS) production. These results indicate that TNFAIP3 promotes autophagy after T cell receptor (TCR) stimulation in CD4 T cells. We then investigated the mechanism by which TNFAIP3 promotes autophagy signaling. We found that TNFAIP3 bound to the MTOR (mechanistic target of rapamycin) complex and that Tnfaip3-deficient cells displayed enhanced ubiquitination of the MTOR complex and MTOR activity. To confirm the effects of enhanced MTOR activity in Tnfaip3-deficient cells, we analyzed cell survival following treatment with Torin1, an MTOR inhibitor. Tnfaip3-deficient CD4 T cells exhibited fewer cell numbers than the control cells in vitro and in vivo. In addition, the impaired survival of Tnfaip3-deficient cells was ameliorated with Torin1 treatment in vitro and in vivo. The effect of Torin1 was abolished by Atg5 deficiency. Thus, enhanced MTOR activity regulates the survival of Tnfaip3-deficient CD4 T cells. Taken together, our findings illustrate that TNFAIP3 restricts MTOR signaling and promotes autophagy, providing new insight into the manner in which MTOR and autophagy regulate survival in CD4 T cells.
Collapse
Key Words
- 4-OHT, 4-hydroxytamoxifen
- ACTB/bACT, actin, β
- AKT, v-akt murine thymoma viral oncogene homolog
- ATG, autophagy related
- ATG5
- BAK1, BCL2-antagonist/killer 1
- BAX, BCL2-associated X protein
- BCL10, B-cell CLL/lymphoma 10
- BCL2, B-cell CLL/lymphoma 2
- CD28, CD28 antigen
- CD3E, CD3 antigen, epsilon polypeptide
- CD4
- CD44, CD44 antigen
- CD69, CD69 antigen
- CHX, cycloheximide
- EIF4EBP1, eukaryotic translation inhibition factor 4E binding protein 1
- ESR, estrogen receptor
- IFNG, interferon, gamma
- IL2, interleukin 2
- LPS, lipopolysaccharide
- MALT1, MALT1 paracaspase
- MAP1LC3/LC3, microtubule-associated protein 1 light chain 3
- MCL1, myeloid cell leukemia 1
- MFI, mean fluorescence intensity
- MTOR
- MTOR, mechanistic target of rapamycin (serine/threonine kinase)
- NFKB, nuclear factor of kappa light polypeptide gene enhancer in B-cells
- PBS, phosphate-buffered saline
- PI3K, class I phosphoinositide 3-kinase
- PLA, proximity ligation assay
- PRKAA/AMPK, protein kinase, AMP-activated
- RIPK1, receptor (TNFRSF)-interacting serine-threonine kinase 1
- ROS, reactive oxygen species
- RPS6KB1, ribosomal protein S6 kinase, polypeptide 1
- TCR, T cell receptor
- TNFAIP3
- TNFAIP3/A20, tumor necrosis factor, α-induced protein 3
- TRAF6, TNF receptor-associated factor 6, E3 ubiquitin protein ligase
- autophagy
- ubiquitin
Collapse
Affiliation(s)
- Yu Matsuzawa
- a Department of Gastroenterology and Hepatology; Graduate School; Tokyo Medical and Dental University ; Tokyo , Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|