51
|
Gause KT, Wheatley AK, Cui J, Yan Y, Kent SJ, Caruso F. Immunological Principles Guiding the Rational Design of Particles for Vaccine Delivery. ACS NANO 2017; 11:54-68. [PMID: 28075558 DOI: 10.1021/acsnano.6b07343] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Despite the immense public health successes of immunization over the past century, effective vaccines are still lacking for globally important pathogens such as human immunodeficiency virus, malaria, and tuberculosis. Exciting recent advances in immunology and biotechnology over the past few decades have facilitated a shift from empirical to rational vaccine design, opening possibilities for improved vaccines. Some of the most important advancements include (i) the purification of subunit antigens with high safety profiles, (ii) the identification of innate pattern recognition receptors (PRRs) and cognate agonists responsible for inducing immune responses, and (iii) developments in nano- and microparticle fabrication and characterization techniques. Advances in particle engineering now allow highly tunable physicochemical properties of particle-based vaccines, including composition, size, shape, surface characteristics, and degradability. Enhanced collaborative efforts between researchers in immunology and materials science are expected to rise to next-generation vaccines. This process will be significantly aided by a greater understanding of the immunological principles guiding vaccine antigenicity, immunogenicity, and efficacy. With specific emphasis on PRR-targeted adjuvants and particle physicochemical properties, this review aims to provide an overview of the current literature to guide and focus rational particle-based vaccine design efforts.
Collapse
Affiliation(s)
- Katelyn T Gause
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Adam K Wheatley
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity , Parkville, Victoria 3010, Australia
| | - Jiwei Cui
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Yan Yan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Stephen J Kent
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity , Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
52
|
Abstract
The pathophysiology of Crohn's disease (CD), a chronic inflammatory bowel disease, remains imperfectly elucidated. Consequently, the therapeutic armamentarium remains limited and has not changed the natural history of CD hitherto. Accordingly, physicians need to identify new therapeutic targets to be able to alter the intestinal damage. The most recent hypothesis considered CD as resulting from an abnormal interaction between microbiota and host immune system influenced by genetics and environmental factors. Several experimental and genetic evidence point out intestinal macrophages in CD etiology. An increase of macrophages number and the presence of granulomas are especially observed in the intestinal mucosa of patients with CD. These macrophages could be defective and particularly in responses to infectious agents like CD-associated Escherichia coli. This review focuses on, what is currently known regarding the role of macrophages, macrophages/E. coli interaction, and the impact of CD therapies on macrophages in CD. We also speculate that macrophages modulation could lead to important translational implications in CD with the end goal of promoting gut health.
Collapse
|
53
|
Sidiq T, Yoshihama S, Downs I, Kobayashi KS. Nod2: A Critical Regulator of Ileal Microbiota and Crohn's Disease. Front Immunol 2016; 7:367. [PMID: 27703457 PMCID: PMC5028879 DOI: 10.3389/fimmu.2016.00367] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/06/2016] [Indexed: 12/19/2022] Open
Abstract
The human intestinal tract harbors large bacterial community consisting of commensal, symbiotic, and pathogenic strains, which are constantly interacting with the intestinal immune system. This interaction elicits a non-pathological basal level of immune responses and contributes to shaping both the intestinal immune system and bacterial community. Recent studies on human microbiota are revealing the critical role of intestinal bacterial community in the pathogenesis of both systemic and intestinal diseases, including Crohn’s disease (CD). NOD2 plays a key role in the regulation of microbiota in the small intestine. NOD2 is highly expressed in ileal Paneth cells that provide critical mechanism for the regulation of ileal microbiota through the secretion of anti-bacterial compounds. Genome mapping of CD patients revealed that loss of function mutations in NOD2 are associated with ileal CD. Genome-wide association studies further demonstrated that NOD2 is one of the most critical genetic factor linked to ileal CD. The bacterial community in the ileum is indeed dysregulated in Nod2-deficient mice. Nod2-deficient ileal epithelia exhibit impaired ability of killing bacteria. Thus, altered interactions between ileal microbiota and mucosal immunity through NOD2 mutations play significant roles in the disease susceptibility and pathogenesis in CD patients, thereby depicting NOD2 as a critical regulator of ileal microbiota and CD.
Collapse
Affiliation(s)
- Tabasum Sidiq
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University , College Station, TX , USA
| | - Sayuri Yoshihama
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University , College Station, TX , USA
| | - Isaac Downs
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University , College Station, TX , USA
| | - Koichi S Kobayashi
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University , College Station, TX , USA
| |
Collapse
|
54
|
Multifaceted Functions of NOD-Like Receptor Proteins in Myeloid Cells at the Intersection of Innate and Adaptive Immunity. Microbiol Spectr 2016; 4. [DOI: 10.1128/microbiolspec.mchd-0021-2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
NOD-like receptor (NLR) proteins, as much as Toll-like receptor proteins, play a major role in modulating myeloid cells in their immune functions. There is still, however, limited knowledge on the expression and function of several of the mammalian NLR proteins in myeloid lineages. Still, the function of pyrin domain-containing NLR proteins and NLRC4/NAIP as inflammasome components that drive interleukin-1β (IL-1β) and IL-18 maturation and secretion upon pathogen stimulation is well established. NOD1, NOD2, NLRP3, and NLRC4/NAIP act as bona fide pattern recognition receptors (PRRs) that sense microbe-associated molecular patterns (MAMPs) but also react to endogenous danger-associated molecular patterns (DAMPs). Ultimately, activation of these receptors achieves macrophage activation and maturation of dendritic cells to drive antigen-specific adaptive immune responses. Upon infection, sensing of invading pathogens and likely of DAMPs that are released in response to tissue injury is a process that involves multiple PRRs in both myeloid and epithelial cells, and these act in concert to design tailored, pathogen-adapted immune responses by induction of different cytokine profiles, giving rise to appropriate lymphocyte polarization.
Collapse
|
55
|
Epistatic interaction between TLR4 and NOD2 in patients with Crohn's Disease: relation with risk and phenotype in a Spanish cohort. Immunobiology 2016; 221:927-33. [PMID: 27290609 DOI: 10.1016/j.imbio.2016.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/18/2016] [Accepted: 05/27/2016] [Indexed: 01/11/2023]
Abstract
Crohn's Disease is one of the two major forms of the Inflammatory Bowel Diseases and, although the etiology is not completely understood, the confluence of environmental and genetic factors has been demonstrated. The aim of this study was to determine the distribution of TLR4 variants in a Spanish cohort of Crohn's Disease patients and their relation with phenotype and common NOD2 variants. A total of 371 Crohn's Disease (CD) patients and 636 healthy controls (HC) were included. Single Nucleotide Polimorphisms (SNPs) in TLR4 (D299G and T399I) and NOD2 (R702W and G908R) detection was performed by a Taqman(®) Allelic Discrimination Assay. 1007insC NOD2 variant was analyzed using a PCR combined with fluorescent technology and the different alleles were determined depending on the PCR products size. D299G and T399I were related to CD only in patients carrying NOD2 variants (NOD2+/TLR4+ haplotype) (p=0.036; OR=1.924), increasing the risk to develop CD when 1007insC and TLR4 variants were both present (OR=4.886). We also described a strong association between mutant NOD2 and CD risk (p<0.001, OR=3.214). R702W, G908R and 1007insC were associated when they were considered separately (p<0.001; p=0.002; p<0.001, respectively). Moreover, the patients carrying any mutant D299G or T399I polymorphisms were predisposed to develop a stricturing disease (p=0.013; OR=2.391), especially in the presence of NOD2 mutation (p=0.002; OR=4.989). In this study, ileal disease was also associated with the presence of at least one NOD2 susceptibility allele (p=0.001; OR=3.838) and, the risk of ileal CD was increased if TLR4 variants were presents (p<0.050; OR=4.160). TLR4 variants were related to bowel perforation, independently of NOD2.
Collapse
|
56
|
Tukhvatulin AI, Dzharullaeva AS, Tukhvatulina NM, Shcheblyakov DV, Shmarov MM, Dolzhikova IV, Stanhope-Baker P, Naroditsky BS, Gudkov AV, Logunov DY, Gintsburg AL. Powerful Complex Immunoadjuvant Based on Synergistic Effect of Combined TLR4 and NOD2 Activation Significantly Enhances Magnitude of Humoral and Cellular Adaptive Immune Responses. PLoS One 2016; 11:e0155650. [PMID: 27187797 PMCID: PMC4871337 DOI: 10.1371/journal.pone.0155650] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/02/2016] [Indexed: 12/28/2022] Open
Abstract
Binding of pattern recognition receptors (PRRs) by pathogen-associated molecular patterns (PAMPs) activates innate immune responses and contributes to development of adaptive immunity. Simultaneous stimulation of different types of PRRs can have synergistic immunostimulatory effects resulting in enhanced production of molecules that mediate innate immunity such as inflammatory cytokines, antimicrobial peptides, etc. Here, we evaluated the impact of combined stimulation of PRRs from different families on adaptive immunity by generating alum-based vaccine formulations with ovalbumin as a model antigen and the Toll-like receptor 4 (TLR4) agonist MPLA and the Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) agonist MDP adsorbed individually or together on the alum-ovalbumin particles. Multiple in vitro and in vivo readouts of immune system activation all showed that while individual PRR agonists increased the immunogenicity of vaccines compared to alum alone, the combination of both PRR agonists was significantly more effective. Combined stimulation of TLR4 and NOD2 results in a stronger and broader transcriptional response in THP-1 cells compared to individual PRR stimulation. Immunostimulatory composition containing both PRR agonists (MPLA and MDP) in the context of the alum-based ovalbumin vaccine also enhanced uptake of vaccine particles by bone marrow derived dendritic cells (BMDCs) and promoted maturation (up-regulation of expression of CD80, CD86, MHCII) and activation (production of cytokines) of BMDCs. Finally, immunization of mice with vaccine particles containing both PRR agonists resulted in enhanced cellular immunity as indicated by increased proliferation and activation (IFN-γ production) of splenic CD4+ and CD8+ T cells following in vitro restimulation with ovalbumin and enhanced humoral immunity as indicated by higher titers of ovalbumin-specific IgG antibodies. These results indicate that combined stimulation of TLR4 and NOD2 receptors dramatically enhances activation of both the humoral and cellular branches of adaptive immunity and suggests that inclusion of agonists of these receptors in standard alum-based adjuvants could be used to improve the effectiveness of vaccination.
Collapse
Affiliation(s)
- Amir I. Tukhvatulin
- N. F. Gamaleya Research Institute for Epidemiology and Microbiology, Gamaleya str.18, 123098 Moscow, Russia
| | - Alina S. Dzharullaeva
- N. F. Gamaleya Research Institute for Epidemiology and Microbiology, Gamaleya str.18, 123098 Moscow, Russia
| | - Natalia M. Tukhvatulina
- N. F. Gamaleya Research Institute for Epidemiology and Microbiology, Gamaleya str.18, 123098 Moscow, Russia
| | - Dmitry V. Shcheblyakov
- N. F. Gamaleya Research Institute for Epidemiology and Microbiology, Gamaleya str.18, 123098 Moscow, Russia
| | - Maxim M. Shmarov
- N. F. Gamaleya Research Institute for Epidemiology and Microbiology, Gamaleya str.18, 123098 Moscow, Russia
| | - Inna V. Dolzhikova
- N. F. Gamaleya Research Institute for Epidemiology and Microbiology, Gamaleya str.18, 123098 Moscow, Russia
| | | | - Boris S. Naroditsky
- N. F. Gamaleya Research Institute for Epidemiology and Microbiology, Gamaleya str.18, 123098 Moscow, Russia
| | - Andrei V. Gudkov
- Cleveland BioLabs, Inc., Buffalo, New York, United States of America
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton str., 14263 Buffalo, New York, United States of America
| | - Denis Y. Logunov
- N. F. Gamaleya Research Institute for Epidemiology and Microbiology, Gamaleya str.18, 123098 Moscow, Russia
- * E-mail:
| | - Alexander L. Gintsburg
- N. F. Gamaleya Research Institute for Epidemiology and Microbiology, Gamaleya str.18, 123098 Moscow, Russia
| |
Collapse
|
57
|
Kim D, Kim YG, Seo SU, Kim DJ, Kamada N, Prescott D, Philpott DJ, Rosenstiel P, Inohara N, Núñez G. Nod2-mediated recognition of the microbiota is critical for mucosal adjuvant activity of cholera toxin. Nat Med 2016; 22:524-30. [PMID: 27064448 PMCID: PMC4860092 DOI: 10.1038/nm.4075] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/04/2016] [Indexed: 01/07/2023]
Abstract
Cholera toxin (CT) is a potent adjuvant for inducing mucosal immune responses. However, the mechanism by which CT induces adjuvant activity remains unclear. Here we show that the microbiota is critical for inducing antigen-specific IgG production after intranasal immunization. After mucosal vaccination with CT, both antibiotic-treated and germ-free (GF) mice had reduced amounts of antigen-specific IgG, smaller recall-stimulated cytokine responses, impaired follicular helper T (TFH) cell responses and reduced numbers of plasma cells. Recognition of symbiotic bacteria via the nucleotide-binding oligomerization domain containing 2 (Nod2) sensor in cells that express the integrin CD11c (encoded by Itgax) was required for the adjuvanticity of CT. Reconstitution of GF mice with a Nod2 agonist or monocolonization with Staphylococcus sciuri, which has high Nod2-stimulatory activity, was sufficient to promote robust CT adjuvant activity, whereas bacteria with low Nod2-stimulatory activity did not. Mechanistically, CT enhanced Nod2-mediated cytokine production in dendritic cells via intracellular cyclic AMP. These results show a role for the microbiota and the intracellular receptor Nod2 in promoting the mucosal adjuvant activity of CT.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yun-Gi Kim
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sang-Uk Seo
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Dong-Jae Kim
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Dave Prescott
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Dana J. Philpott
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology; University of Kiel, Kiel, Germany
| | - Naohiro Inohara
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
58
|
Coutermarsh-Ott S, Eden K, Allen IC. Beyond the inflammasome: regulatory NOD-like receptor modulation of the host immune response following virus exposure. J Gen Virol 2016; 97:825-838. [PMID: 26763980 PMCID: PMC4854363 DOI: 10.1099/jgv.0.000401] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A complex interaction exists between elements of the host innate immune system and viral pathogens. It is essential that the host mount a robust immune response during viral infection and effectively resolve inflammation once the pathogen has been eliminated. Members of the nucleotide-binding domain leucine-rich repeat [NBD-LRR; known as NOD-like receptor (NLR)] family of cytosolic pattern-recognition receptors are essential components of these immunological processes and have diverse functions in the host antiviral immune response. NLRs can be subgrouped based on their general function. The inflammasome-forming subgroup of NLRs are the best-characterized family members, and several have been found to modulate the maturation of IL-1β and IL-18 following virus exposure. However, the members of the regulatory NLR subgroups are significantly less characterized. These NLRs uniquely function to modulate signalling pathways initiated by other families of pattern-recognition receptors, such as Toll-like receptors and/or Rig-I-like helicase receptors. Regulatory NLRs that augment pro-inflammatory pathways include nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and NOD2, which have been shown to form a multiprotein complex termed the NODosome that significantly modulates IFN and NF-κB signalling following viral infection. Conversely, a second subgroup of regulatory NLRs functions to negatively regulate inflammation. These inhibitory NLRs include NLRX1, NLRP12 and NLRC3, which have been shown to interact with TRAF molecules and various kinases to modulate diverse cellular processes. Targeting NLR signalling following infection with a virus represents a novel and promising therapeutic strategy. However, significant effort is still required to translate the current understanding of NLR biology into effective therapies.
Collapse
Affiliation(s)
| | | | - Irving Coy Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
59
|
Structural requirements of acylated Gly-l-Ala-d-Glu analogs for activation of the innate immune receptor NOD2. Eur J Med Chem 2016; 116:1-12. [PMID: 27039337 DOI: 10.1016/j.ejmech.2016.03.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 03/02/2016] [Accepted: 03/11/2016] [Indexed: 02/07/2023]
Abstract
The fragment of bacterial peptidoglycan muramyl dipeptide (MDP) has long been known for its adjuvant activity, however the underlying mechanism of this action has only recently been elucidated. It is ascribed to its agonist action on the nucleotide-binding oligomerization domain-containing protein 2 (NOD2). In spite of the pressing need for novel adjuvants for human use, this discovery is hampered, by not knowing the structural requirements underlying the immunostimulatory activity. We have investigated how minor modifications of hit compound acyl Gly-L-Ala-D-Glu derivative I modulate the molecular recognition by NOD2. A series of novel desmuramyldipeptides has been designed and synthesized leading to the identification of compound 16, in which the sugar moiety is replaced by a 6-phenylindole moiety, that exhibits the strongest NOD2 activation to date sans the carbohydrate moiety. The results have enabled a deeper understanding of the structural requirements of desmuramylpeptides for NOD2 activation.
Collapse
|
60
|
Volz T, Biedermann T. Natürliche Immunität und ihre Bedeutung für das Mikrobiom. ALLERGOLOGIE 2016. [DOI: 10.1007/978-3-642-37203-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
61
|
Aberrant expression of regulatory cytokine IL-35 and pattern recognition receptor NOD2 in patients with allergic asthma. Inflammation 2015; 38:348-60. [PMID: 25326182 DOI: 10.1007/s10753-014-0038-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We investigated the plasma concentration of the novel regulatory cytokine IL-35 and intracytosolic pattern recognition receptors nucleotide-binding oligomerization domain (NOD)-like receptors in granulocytes and explored their potential implication in disease severity monitoring of allergic asthma. The expression of circulating IL-35 and other pro-inflammatory mediators in asthmatic patients or control subjects were evaluated using enzyme-linked immunosorbent assay (ELISA). The intracellular expressions of NOD1 and NOD2 in CCR3+ granulocytes were assessed using flow cytometry. Plasma concentrations of IL-35, IL-17A, basophil activation marker basogranulin, and eosinophilic airway inflammation biomarker periostin were significantly elevated in allergic asthmatic patients compared to non-atopic control subjects (all probability (p) <0.05). Both granulocyte markers exhibited significant and positive correlation with plasma IL-35 concentration in asthmatic patients (all p < 0.05). Significant positive correlation was also identified between plasma concentrations of IL-35 and periostin with disease severity score in asthmatic patients (both p < 0.05). The basophil activation allergenicity test was positive in allergic asthmatic patients but not in control subjects. Despite significantly elevated eosinophil count in allergic asthmatic patients, downregulation of NOD2 in CCR3+ granulocytes was observed in these patients (both p < 0.05). A negative correlation between plasma concentrations of tumor necrosis factor family member LIGHT and soluble herpesvirus entry mediator was observed in patients with elevated plasma concentration of IL-35 (p < 0.05). Aberrant expression of NOD2 in granulocytes may be contributed to the impaired innate immunity predisposing allergic asthma. IL-35 may serve as a potential surrogate biomarker for disease severity of allergic asthma.
Collapse
|
62
|
Kanduri K, Tripathi S, Larjo A, Mannerström H, Ullah U, Lund R, Hawkins RD, Ren B, Lähdesmäki H, Lahesmaa R. Identification of global regulators of T-helper cell lineage specification. Genome Med 2015; 7:122. [PMID: 26589177 PMCID: PMC4654807 DOI: 10.1186/s13073-015-0237-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/02/2015] [Indexed: 11/15/2022] Open
Abstract
Background Activation and differentiation of T-helper (Th) cells into Th1 and Th2 types is a complex process orchestrated by distinct gene activation programs engaging a number of genes. This process is crucial for a robust immune response and an imbalance might lead to disease states such as autoimmune diseases or allergy. Therefore, identification of genes involved in this process is paramount to further understand the pathogenesis of, and design interventions for, immune-mediated diseases. Methods We aimed at identifying protein-coding genes and long non-coding RNAs (lncRNAs) involved in early differentiation of T-helper cells by transcriptome analysis of cord blood-derived naïve precursor, primary and polarized cells. Results Here, we identified lineage-specific genes involved in early differentiation of Th1 and Th2 subsets by integrating transcriptional profiling data from multiple platforms. We have obtained a high confidence list of genes as well as a list of novel genes by employing more than one profiling platform. We show that the density of lineage-specific epigenetic marks is higher around lineage-specific genes than anywhere else in the genome. Based on next-generation sequencing data we identified lineage-specific lncRNAs involved in early Th1 and Th2 differentiation and predicted their expected functions through Gene Ontology analysis. We show that there is a positive trend in the expression of the closest lineage-specific lncRNA and gene pairs. We also found out that there is an enrichment of disease SNPs around a number of lncRNAs identified, suggesting that these lncRNAs might play a role in the etiology of autoimmune diseases. Conclusion The results presented here show the involvement of several new actors in the early differentiation of T-helper cells and will be a valuable resource for better understanding of autoimmune processes. Electronic supplementary material The online version of this article (doi:10.1186/s13073-015-0237-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kartiek Kanduri
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland. .,Department of Computer Science, Aalto University School of Science, Espoo, Finland.
| | - Subhash Tripathi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Antti Larjo
- Department of Computer Science, Aalto University School of Science, Espoo, Finland.
| | - Henrik Mannerström
- Department of Computer Science, Aalto University School of Science, Espoo, Finland.
| | - Ubaid Ullah
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Riikka Lund
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| | - R David Hawkins
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland. .,Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA. .,Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA, 92093, USA. .,Department of Cellular and Molecular Medicine, Institute of Genomic Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Harri Lähdesmäki
- Department of Computer Science, Aalto University School of Science, Espoo, Finland.
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
63
|
Abstract
Eukaryotes have evolved strategies to detect microbial intrusion and instruct immune responses to limit damage from infection. Recognition of microbes and cellular damage relies on the detection of microbe-associated molecular patterns (MAMPs, also called PAMPS, or pathogen-associated molecular patterns) and so-called "danger signals" by various families of host pattern recognition receptors (PRRs). Members of the recently identified protein family of nucleotide-binding domain andleucine-rich-repeat-containing proteins (NLR), including Nod1, Nod2, NLRP3, and NLRC4, have been shown to detect specific microbial motifs and danger signals for regulating host inflammatory responses. Moreover, with the discovery that polymorphisms in NOD1, NOD2, NLRP1, and NLRP3 are associated with susceptibility to chronic inflammatory disorders, the view has emerged that NLRs act not only as sensors butalso can serve as signaling platforms for instructing and balancing host immune responses. In this chapter, we explore the functions of these intracellular innate immune receptors and examine their implication in inflammatory diseases.
Collapse
|
64
|
Hrnčířová L, Krejsek J, Šplíchal I, Hrnčíř T. Crohn's disease: a role of gut microbiota and Nod2 gene polymorphisms in disease pathogenesis. ACTA MEDICA (HRADEC KRÁLOVÉ) 2015; 57:89-96. [PMID: 25649363 DOI: 10.14712/18059694.2014.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Crohn's disease is a chronic immune-mediated intestinal inflammation targeted against a yet incompletely defined subset of commensal gut microbiota and occurs on the background of a genetic predisposition under the influence of environmental factors. Genome-wide association studies have identified about 70 genetic risk loci associated with Crohn's disease. The greatest risk for Crohn's disease represent polymorphisms affecting the CARD15 gene encoding nucleotide-binding oligomerization domain 2 (NOD2) which is an intracellular sensor for muramyl dipeptide, a peptidoglycan constituent of bacterial cell wall. The accumulated evidence suggests that gut microbiota represent an essential, perhaps a central factor in the induction and maintaining of Crohn's disease where dysregulation of normal co-evolved homeostatic relationships between intestinal microbiota and host mucosal immune system leads to intestinal inflammation. Taken together, these findings identify Crohn's disease as a syndrome of overlapping phenotypes that involves variable influences of genetic and environmental factors. A deeper understanding of different genetic abnormalities underlying Crohn's disease together with the identification of beneficial and harmful components of gut microbiota and their interactions are essential conditions for the categorization of Crohn's disease patients, which enable us to design more effective, preferably causative, individually tailored therapy.
Collapse
Affiliation(s)
- Lucia Hrnčířová
- Department of Clinical Immunology and Allergology, Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Králové, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, Charles University in Prague, Faculty of Medicine and University Hospital in Hradec Králové, Czech Republic
| | - Igor Šplíchal
- Department of Immunology and Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Doly 183, 549 22 Nový Hrádek, Czech Republic
| | - Tomáš Hrnčíř
- Department of Immunology and Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Doly 183, 549 22 Nový Hrádek, Czech Republic
| |
Collapse
|
65
|
Sellge G, Kufer TA. PRR-signaling pathways: Learning from microbial tactics. Semin Immunol 2015; 27:75-84. [PMID: 25911384 DOI: 10.1016/j.smim.2015.03.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 03/13/2015] [Indexed: 12/13/2022]
Abstract
Recognition of bacterial pathogens by the mammalian host relies on the induction of early innate immune responses initiated by the activation of pattern-recognition receptors (PRRs) upon sensing of their cognate microbe-associated-patterns (MAMPs). Successful pathogens have evolved to intercept PRR activation and signaling at multiple steps. The molecular dissection of the underlying mechanisms revealed many of the basic mechanisms used by the immune system. Here we provide an overview of the different strategies used by bacterial pathogens and commensals to subvert and reprogram PPR-mediated innate immune responses. A particular attention is given to recent discoveries highlighting novel molecular details of the host inflammatory response in mammalian cells and current advances in our understanding of the interaction of commensals with PRR-mediated responses.
Collapse
Affiliation(s)
- Gernot Sellge
- Department of Medicine III, University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Thomas A Kufer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, Fruwirthstr. 12, 70599 Stuttgart, Germany.
| |
Collapse
|
66
|
Motta V, Soares F, Sun T, Philpott DJ. NOD-like receptors: versatile cytosolic sentinels. Physiol Rev 2015; 95:149-78. [PMID: 25540141 DOI: 10.1152/physrev.00009.2014] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nucleotide binding oligomerization domain (NOD)-like receptors are cytoplasmic pattern-recognition receptors that together with RIG-I-like receptor (retinoic acid-inducible gene 1), Toll-like receptor (TLR), and C-type lectin families make up the innate pathogen pattern recognition system. There are 22 members of NLRs in humans, 34 in mice, and even a larger number in some invertebrates like sea urchins, which contain more than 200 receptors. Although initially described to respond to intracellular pathogens, NLRs have been shown to play important roles in distinct biological processes ranging from regulation of antigen presentation, sensing metabolic changes in the cell, modulation of inflammation, embryo development, cell death, and differentiation of the adaptive immune response. The diversity among NLR receptors is derived from ligand specificity conferred by the leucine-rich repeats and an NH2-terminal effector domain that triggers the activation of different biological pathways. Here, we describe NLR genes associated with different biological processes and the molecular mechanisms underlying their function. Furthermore, we discuss mutations in NLR genes that have been associated with human diseases.
Collapse
Affiliation(s)
- Vinicius Motta
- Departments of Immunology and of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Fraser Soares
- Departments of Immunology and of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Tian Sun
- Departments of Immunology and of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Dana J Philpott
- Departments of Immunology and of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
67
|
Abstract
In the 40 years since their discovery, dendritic cells (DCs) have been recognized as central players in immune regulation. DCs sense microbial stimuli through pathogen-recognition receptors (PRRs) and decode, integrate, and present information derived from such stimuli to T cells, thus stimulating immune responses. DCs can also regulate the quality of immune responses. Several functionally specialized subsets of DCs exist, but DCs also display functional plasticity in response to diverse stimuli. In addition to sensing pathogens via PRRs, emerging evidence suggests that DCs can also sense stress signals, such as amino acid starvation, through ancient stress and nutrient sensing pathways, to stimulate adaptive immunity. Here, I discuss these exciting advances in the context of a historic perspective on the discovery of DCs and their role in immune regulation. I conclude with a discussion of emerging areas in DC biology in the systems immunology era and suggest that the impact of DCs on immunity can be usefully contextualized in a hierarchy-of-organization model in which DCs, their receptors and signaling networks, cell-cell interactions, tissue microenvironment, and the host macroenvironment represent different levels of the hierarchy. Immunity or tolerance can then be represented as a complex function of each of these hierarchies.
Collapse
Affiliation(s)
- Bali Pulendran
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329;
| |
Collapse
|
68
|
Behr MA, Divangahi M. Freund's adjuvant, NOD2 and mycobacteria. Curr Opin Microbiol 2015; 23:126-32. [DOI: 10.1016/j.mib.2014.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 11/26/2022]
|
69
|
Bryant CE, Orr S, Ferguson B, Symmons MF, Boyle JP, Monie TP. International Union of Basic and Clinical Pharmacology. XCVI. Pattern recognition receptors in health and disease. Pharmacol Rev 2015; 67:462-504. [PMID: 25829385 PMCID: PMC4394686 DOI: 10.1124/pr.114.009928] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since the discovery of Toll, in the fruit fly Drosophila melanogaster, as the first described pattern recognition receptor (PRR) in 1996, many families of these receptors have been discovered and characterized. PRRs play critically important roles in pathogen recognition to initiate innate immune responses that ultimately link to the generation of adaptive immunity. Activation of PRRs leads to the induction of immune and inflammatory genes, including proinflammatory cytokines and chemokines. It is increasingly clear that many PRRs are linked to a range of inflammatory, infectious, immune, and chronic degenerative diseases. Several drugs to modulate PRR activity are already in clinical trials and many more are likely to appear in the near future. Here, we review the different families of mammalian PRRs, the ligands they recognize, the mechanisms of activation, their role in disease, and the potential of targeting these proteins to develop the anti-inflammatory therapeutics of the future.
Collapse
Affiliation(s)
- Clare E Bryant
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Selinda Orr
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Brian Ferguson
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Martyn F Symmons
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Joseph P Boyle
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Tom P Monie
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| |
Collapse
|
70
|
Foley NM, Wang J, Redmond HP, Wang JH. Current knowledge and future directions of TLR and NOD signaling in sepsis. Mil Med Res 2015; 2:1. [PMID: 25722880 PMCID: PMC4340879 DOI: 10.1186/s40779-014-0029-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/17/2014] [Indexed: 01/13/2023] Open
Abstract
The incidence of sepsis is increasing over time, along with an increased risk of dying from the condition. Sepsis care costs billions annually in the United States. Death from sepsis is understood to be a complex process, driven by a lack of normal immune homeostatic functions and excessive production of proinflammatory cytokines, which leads to multi-organ failure. The Toll-like receptor (TLR) family, one of whose members was initially discovered in Drosophila, performs an important role in the recognition of microbial pathogens. These pattern recognition receptors (PRRs), upon sensing invading microorganisms, activate intracellular signal transduction pathways. NOD signaling is also involved in the recognition of bacteria and acts synergistically with the TLR family in initiating an efficient immune response for the eradication of invading microbial pathogens. TLRs and NOD1/NOD2 respond to different pathogen-associated molecular patterns (PAMPs). Modulation of both TLR and NOD signaling is an area of research that has prompted much excitement and debate as a therapeutic strategy in the management of sepsis. Molecules targeting TLR and NOD signaling pathways exist but regrettably thus far none have proven efficacy from clinical trials.
Collapse
Affiliation(s)
- Niamh M Foley
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Jian Wang
- Department of Pediatric Surgery, Affiliated Children's Hospital, Soochow University, Suzhou, 215003 China
| | - H Paul Redmond
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Jiang Huai Wang
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| |
Collapse
|
71
|
Caruso R, Warner N, Inohara N, Núñez G. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity 2014; 41:898-908. [PMID: 25526305 DOI: 10.1016/j.immuni.2014.12.010] [Citation(s) in RCA: 578] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Indexed: 12/11/2022]
Abstract
The nucleotide-binding oligomerization domain (NOD) proteins NOD1 and NOD2, the founding members of the intracellular NOD-like receptor family, sense conserved motifs in bacterial peptidoglycan and induce proinflammatory and antimicrobial responses. Here, we discuss recent developments about the mechanisms by which NOD1 and NOD2 are activated by bacterial ligands, the regulation of their signaling pathways, and their role in host defense and inflammatory disease. Several routes for the entry of peptidoglycan ligands to the host cytosol to trigger activation of NOD1 and NOD2 have been elucidated. Furthermore, genetic screens and biochemical analyses have revealed mechanisms that regulate NOD1 and NOD2 signaling. Finally, recent studies have suggested several mechanisms to account for the link between NOD2 variants and susceptibility to Crohn's disease. Further understanding of NOD1 and NOD2 should provide new insight into the pathogenesis of disease and the development of new strategies to treat inflammatory and infectious disorders.
Collapse
Affiliation(s)
- Roberta Caruso
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Neil Warner
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Naohiro Inohara
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
72
|
Pavot V, Rochereau N, Rességuier J, Gutjahr A, Genin C, Tiraby G, Perouzel E, Lioux T, Vernejoul F, Verrier B, Paul S. Cutting edge: New chimeric NOD2/TLR2 adjuvant drastically increases vaccine immunogenicity. THE JOURNAL OF IMMUNOLOGY 2014; 193:5781-5. [PMID: 25392526 DOI: 10.4049/jimmunol.1402184] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
TLR ligands are critical activators of innate immunity and are being developed as vaccine adjuvants. However, their usefulness in conjunction with NOD-like receptor agonists remains poorly studied. In this study, we evaluated a new ligand that targets both TLR2 and NOD2 receptors. We assessed its ability to enhance dendritic cell maturation in vitro in addition to improving systemic and mucosal immune responses in mice. The chimeric NOD2/TLR2 ligand induced synergistic upregulation of dendritic cell maturation markers, costimulatory molecules, and secretion of proinflammatory cytokines compared with combinations of separate ligands. Furthermore, when coadministered with biodegradable nanoparticles carrying a model Ag, the ligand was able to induce high Ag-specific IgA and IgG titers at both systemic and mucosal sites after parenteral immunizations. These findings point out the potential utility of chimeric molecules TLR/NOD as adjuvants for vaccines to induce systemic and mucosal immune responses.
Collapse
Affiliation(s)
- Vincent Pavot
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5305, Université de Lyon, Lyon F-69007, France; Groupe Immunité des Muqueuses et Agents Pathogènes, INSERM Centre d'Investigation Clinique en Vaccinologie 1408, Université de Lyon, Saint-Etienne F-42023, France; and
| | - Nicolas Rochereau
- Groupe Immunité des Muqueuses et Agents Pathogènes, INSERM Centre d'Investigation Clinique en Vaccinologie 1408, Université de Lyon, Saint-Etienne F-42023, France; and
| | - Julien Rességuier
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5305, Université de Lyon, Lyon F-69007, France
| | - Alice Gutjahr
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5305, Université de Lyon, Lyon F-69007, France; Groupe Immunité des Muqueuses et Agents Pathogènes, INSERM Centre d'Investigation Clinique en Vaccinologie 1408, Université de Lyon, Saint-Etienne F-42023, France; and Cayla-InvivoGen, Toulouse F-31000, France
| | - Christian Genin
- Groupe Immunité des Muqueuses et Agents Pathogènes, INSERM Centre d'Investigation Clinique en Vaccinologie 1408, Université de Lyon, Saint-Etienne F-42023, France; and
| | | | | | | | | | - Bernard Verrier
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5305, Université de Lyon, Lyon F-69007, France
| | - Stéphane Paul
- Groupe Immunité des Muqueuses et Agents Pathogènes, INSERM Centre d'Investigation Clinique en Vaccinologie 1408, Université de Lyon, Saint-Etienne F-42023, France; and
| |
Collapse
|
73
|
NOD2 stimulation by Staphylococcus aureus-derived peptidoglycan is boosted by Toll-like receptor 2 costimulation with lipoproteins in dendritic cells. Infect Immun 2014; 82:4681-8. [PMID: 25156723 DOI: 10.1128/iai.02043-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mutations in the nucleotide-binding oligomerization domain-containing protein 2 (NOD2) play an important role in the pathogenesis of Crohn's disease. NOD2 is an intracellular pattern recognition receptor (PRR) that senses bacterial peptidoglycan (PGN) structures, e.g., muramyl dipeptide (MDP). Here we focused on the effect of more-cross-linked, polymeric PGN fragments (PGNpol) in the activation of the innate immune system. In this study, the effect of combined NOD2 and Toll-like receptor 2 (TLR2) stimulation was examined compared to single stimulation of the NOD2 receptor alone. PGNpol species derived from a lipoprotein-containing Staphylococcus aureus strain (SA113) and a lipoprotein-deficient strain (SA113 Δlgt) were isolated. While PGNpol constitutes a combined NOD2 and TLR2 ligand, lipoprotein-deficient PGNpolΔlgt leads to activation of the immune system only via the NOD2 receptor. Murine bone marrow-derived dendritic cells (BMDCs), J774 cells, and Mono Mac 6 (MM6) cells were stimulated with these ligands. Cytokines (interleukin-6 [IL-6], IL-12p40, and tumor necrosis factor alpha [TNF-α]) as well as DC activation and maturation parameters were measured. Stimulation with PGNpolΔlgt did not lead to enhanced cytokine secretion or DC activation and maturation. However, stimulation with PGNpol led to strong cytokine secretion and subsequent DC maturation. These results were confirmed in MM6 and J774 cells. We showed that the NOD2-mediated activation of DCs with PGNpol was dependent on TLR2 costimulation. Therefore, signaling via both receptors leads to a more potent activation of the immune system than that with stimulation via each receptor alone.
Collapse
|
74
|
Unleashing the potential of NOD- and Toll-like agonists as vaccine adjuvants. Proc Natl Acad Sci U S A 2014; 111:12294-9. [PMID: 25136133 DOI: 10.1073/pnas.1400478111] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Innate immunity confers an immediate nonspecific mechanism of microbial recognition through germ line-encoded pattern recognition receptors (PRRs). Of these, Toll-like receptors (TLRs) and nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) have shaped our current understanding of innate regulation of adaptive immunity. It is now recognized that PRRs are paramount in instructing an appropriate adaptive immune response. Their ligands have been the focus of adjuvant research with the goal of generating modern vaccine combinations tailored to specific pathogens. In this review we will highlight the recent findings in the field of adjuvant research with a particular focus on the potential of TLR and NLR ligands as adjuvants and their influence on adaptive immune responses.
Collapse
|
75
|
Dalessandri T, Strid J. Beneficial autoimmunity at body surfaces - immune surveillance and rapid type 2 immunity regulate tissue homeostasis and cancer. Front Immunol 2014; 5:347. [PMID: 25101088 PMCID: PMC4105846 DOI: 10.3389/fimmu.2014.00347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/08/2014] [Indexed: 12/27/2022] Open
Abstract
Epithelial cells (ECs) line body surface tissues and provide a physicochemical barrier to the external environment. Frequent microbial and non-microbial challenges such as those imposed by mechanical disruption, injury or exposure to noxious environmental substances including chemicals, carcinogens, ultraviolet-irradiation, or toxins cause activation of ECs with release of cytokines and chemokines as well as alterations in the expression of cell-surface ligands. Such display of epithelial stress is rapidly sensed by tissue-resident immunocytes, which can directly interact with self-moieties on ECs and initiate both local and systemic immune responses. ECs are thus key drivers of immune surveillance at body surface tissues. However, ECs have a propensity to drive type 2 immunity (rather than type 1) upon non-invasive challenge or stress – a type of immunity whose regulation and function still remain enigmatic. Here, we review the induction and possible role of type 2 immunity in epithelial tissues and propose that rapid immune surveillance and type 2 immunity are key regulators of tissue homeostasis and carcinogenesis.
Collapse
Affiliation(s)
- Tim Dalessandri
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London , London , UK
| | - Jessica Strid
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London , London , UK
| |
Collapse
|
76
|
Jakopin Ž. Nucleotide-binding oligomerization domain (NOD) inhibitors: a rational approach toward inhibition of NOD signaling pathway. J Med Chem 2014; 57:6897-918. [PMID: 24707857 DOI: 10.1021/jm401841p] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dysregulation of nucleotide-binding oligomerization domains 1 and 2 (NOD1 and NOD2) has been implicated in the pathology of various inflammatory disorders, rendering them and their downstream signaling proteins potential therapeutic targets. Selective inhibition of NOD1 and NOD2 signaling could be advantageous in treating many acute and chronic diseases; therefore, harnessing the full potential of NOD inhibitors is a key topic in medicinal chemistry. Although they are among the best studied NOD-like receptors (NLRs), the therapeutic potential of pharmacological modulation of NOD1 and NOD2 is largely unexplored. This review is focused on the scientific progress in the field of NOD inhibitors over the past decade, including the recently reported selective inhibitors of NOD1 and NOD2. In addition, the potential approaches to inhibition of NOD signaling as well as the advantages and disadvantages linked with inhibition of NOD signaling are discussed. Finally, the potential directions for drug discovery are also discussed.
Collapse
Affiliation(s)
- Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana , Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
77
|
Li J, Wu S, Wang MR, Wang TT, Li BK, Zhu JM. Potential roles of nucleotide-binding oligomerization domain 2 in the pathogenesis of systemic lupus erythematosus. Rheumatol Int 2014; 34:1339-44. [PMID: 24599604 DOI: 10.1007/s00296-014-2975-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/17/2014] [Indexed: 01/09/2023]
Abstract
Nucleotide-binding oligomerization domain 2 (NOD2) is one of the most prominent member of the NOD-like receptors protein family that functions as intracellular pattern recognition receptors. Numerous studies have suggested the importance of NOD2 in defensing against microbial infections, regulation of the inflammatory process. It is shown that NOD2 contributes to the pathogenesis of various autoimmune and chronic inflammatory diseases, such as Crohn's disease, rheumatoid arthritis. The aim of this study is to summarize our current understandings of NOD2 function and the role of NOD2 in systemic lupus erythematosus (SLE). The following databases were searched: Pubmed, EMBASE and Web of Science for English-language sources, using the terms "lupus," "systemic lupus erythematosus," ''SLE," "immunity," "inflammatory" and "NOD2." Emerging data evidences that NOD2 has important biological effects in autoimmunity and inflammatory and might take part in the pathogenesis of SLE. Studies exploring the relationship between NOD2 and SLE are very limited. Whether NOD2 could be a potentially valuable therapeutic target for treatment for SLE, more understanding of the mechanism of NOD2 is needed in the future in SLE.
Collapse
Affiliation(s)
- Jing Li
- Department of Public Health and General Medicine, School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
| | | | | | | | | | | |
Collapse
|
78
|
Wu X, Lahiri A, Haines GK, Flavell RA, Abraham C. NOD2 regulates CXCR3-dependent CD8+ T cell accumulation in intestinal tissues with acute injury. THE JOURNAL OF IMMUNOLOGY 2014; 192:3409-18. [PMID: 24591373 DOI: 10.4049/jimmunol.1302436] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polymorphisms in NOD2 confer risk for Crohn's disease, characterized by intestinal inflammation. How NOD2 regulates both inflammatory and regulatory intestinal T cells, which are critical to intestinal immune homeostasis, is not well understood. Anti-CD3 mAb administration is used as therapy in human autoimmune diseases, as well as a model of transient intestinal injury. The stages of T cell activation, intestinal injury, and subsequent T tolerance are dependent on migration of T cells into the small intestinal (SI) lamina propria. Upon anti-CD3 mAb treatment of mice, we found that NOD2 was required for optimal small intestinal IL-10 production, in particular from CD8(+) T cells. This requirement was associated with a critical role for NOD2 in SI CD8(+) T cell accumulation and induction of the CXCR3 ligands CXCL9 and CXCL10, which regulate T cell migration. NOD2 was required in both the hematopoietic and nonhematopoietic compartments for optimal expression of CXCR3 ligands in intestinal tissues. NOD2 synergized with IFN-γ to induce CXCL9 and CXCL10 secretion in dendritic cells, macrophages, and intestinal stromal cells in vitro. Consistent with the in vitro studies, during anti-CD3 mAb treatment in vivo, CXCR3 blockade, CD8(+) T cell depletion, or IFN-γ neutralization each inhibited SI CD8(+) T cell recruitment, and reduced chemokine expression and IL-10 expression. Thus, NOD2 synergizes with IFN-γ to promote CXCL9 and CXCL10 expression, thereby amplifying CXCR3-dependent SI CD8(+) T cell migration during T cell activation, which, in turn, contributes to induction of both inflammatory and regulatory T cell outcomes in the intestinal environment.
Collapse
Affiliation(s)
- Xingxin Wu
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06520
| | | | | | | | | |
Collapse
|
79
|
Liu D, Rhebergen AM, Eisenbarth SC. Licensing Adaptive Immunity by NOD-Like Receptors. Front Immunol 2013; 4:486. [PMID: 24409181 PMCID: PMC3873523 DOI: 10.3389/fimmu.2013.00486] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/10/2013] [Indexed: 12/30/2022] Open
Abstract
The innate immune system is composed of a diverse set of host defense molecules, physical barriers, and specialized leukocytes and is the primary form of immune defense against environmental insults. Another crucial role of innate immunity is to shape the long-lived adaptive immune response mediated by T and B lymphocytes. The activation of pattern recognition receptors (PRRs) from the Toll-like receptor family is now a classic example of innate immune molecules influencing adaptive immunity, resulting in effective antigen presentation to naïve T cells. More recent work suggests that the activation of another family of PRRs, the NOD-like receptors (NLRs), induces a different set of innate immune responses and accordingly, drives different aspects of adaptive immunity. Yet how this unusually diverse family of molecules (some without canonical PRR function) regulates immunity remains incompletely understood. In this review, we discuss the evidence for and against NLR activity orchestrating adaptive immune responses during infectious as well as non-infectious challenges.
Collapse
Affiliation(s)
- Dong Liu
- Department of Laboratory Medicine, Yale University School of Medicine , New Haven, CT , USA ; Department of Immunobiology, Yale University School of Medicine , New Haven, CT , USA ; Department of Internal Medicine, Yale University School of Medicine , New Haven, CT , USA
| | - Anne Marie Rhebergen
- Department of Laboratory Medicine, Yale University School of Medicine , New Haven, CT , USA ; Department of Immunobiology, Yale University School of Medicine , New Haven, CT , USA ; Department of Internal Medicine, Yale University School of Medicine , New Haven, CT , USA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine , New Haven, CT , USA ; Department of Immunobiology, Yale University School of Medicine , New Haven, CT , USA ; Department of Internal Medicine, Yale University School of Medicine , New Haven, CT , USA
| |
Collapse
|
80
|
Philpott DJ, Sorbara MT, Robertson SJ, Croitoru K, Girardin SE. NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol 2013; 14:9-23. [PMID: 24336102 DOI: 10.1038/nri3565] [Citation(s) in RCA: 477] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Entry of bacteria into host cells is an important virulence mechanism. Through peptidoglycan recognition, the nucleotide-binding oligomerization domain (NOD) proteins NOD1 and NOD2 enable detection of intracellular bacteria and promote their clearance through initiation of a pro-inflammatory transcriptional programme and other host defence pathways, including autophagy. Recent findings have expanded the scope of the cellular compartments monitored by NOD1 and NOD2 and have elucidated the signalling pathways that are triggered downstream of NOD activation. In vivo, NOD1 and NOD2 have complex roles, both during bacterial infection and at homeostasis. The association of alleles that encode constitutively active or constitutively inactive forms of NOD2 with different diseases highlights this complexity and indicates that a balanced level of NOD signalling is crucial for the maintenance of immune homeostasis.
Collapse
Affiliation(s)
- Dana J Philpott
- 1] Department of Immunology, University of Toronto, Toronto M5S 1A8, Canada. [2]
| | - Matthew T Sorbara
- 1] Department of Immunology, University of Toronto, Toronto M5S 1A8, Canada. [2]
| | | | - Kenneth Croitoru
- Institute of Medical Science, Department of Medicine, University of Toronto, Toronto M5S 1A8, Canada
| | - Stephen E Girardin
- 1] Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada. [2]
| |
Collapse
|
81
|
Zanello G, Goethel A, Forster K, Geddes K, Philpott DJ, Croitoru K. Nod2 activates NF-kB in CD4+ T cells but its expression is dispensable for T cell-induced colitis. PLoS One 2013; 8:e82623. [PMID: 24324812 PMCID: PMC3855837 DOI: 10.1371/journal.pone.0082623] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/25/2013] [Indexed: 12/21/2022] Open
Abstract
Although the etiology of Crohn's disease (CD) remains elusive this disease is characterized by T cell activation that leads to chronic inflammation and mucosal damage. A potential role for maladaptation between the intestinal microbiota and the mucosal immune response is suggested by the fact that mutations in the pattern recognition receptor Nod2 are associated with higher risks for developing CD. Although Nod2 deletion in CD4+ T cells has been shown to impair the induction of colitis in the murine T cell transfer model, the analysis of T cell intrinsic Nod2 function in T cell differentiation and T cell-mediated immunity is inconsistent between several studies. In addition, the role of T cell intrinsic Nod2 in regulatory T cell (Treg) development and function during colitis remain to be analyzed. In this study, we show that Nod2 expression is higher in activated/memory CD4+ T cells and its expression was inducible after T cell receptor (TCR) ligation. Nod2 stimulation with muramyl dipeptide (MDP) led to a nuclear accumulation of c-Rel NF-kB subunit. Although functionally active in CD4+ T cells, the deletion of Nod2 did not impair the induction and the prevention of colitis in the T cell transfer model. Moreover, Nod2 deletion did not affect the development of Foxp3+ Treg cells in the spleen of recipient mice and Nod2 deficient CD4 T cells expressing the OVA specific transgenic TCR were able to differentiate in Foxp3+ Treg cells after OVA feeding. In vitro, CD25+ Nod2 deficient T cells suppressed T cell proliferation as well as wild type counter parts and T cell stimulation with MDP did not affect the proliferation and the cytokine secretion of T cells. In conclusion, our data indicate that Nod2 is functional in murine CD4+ T cells but its expression is dispensable for the T cell regulation of colitis.
Collapse
Affiliation(s)
| | | | | | - Kaoru Geddes
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Dana J. Philpott
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Kenneth Croitoru
- Department of Medicine, University of Toronto, Toronto, Canada
- Zane Cohen Center for Digestive Diseases, Division of Gastroenterology, Mount Sinai Hospital, Toronto, Canada
- * E-mail:
| |
Collapse
|
82
|
Selvanantham T, Escalante NK, Cruz Tleugabulova M, Fiévé S, Girardin SE, Philpott DJ, Mallevaey T. Nod1 and Nod2 enhance TLR-mediated invariant NKT cell activation during bacterial infection. THE JOURNAL OF IMMUNOLOGY 2013; 191:5646-54. [PMID: 24163408 DOI: 10.4049/jimmunol.1301412] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Invariant NKT (iNKT) cells act at the crossroad between innate and adaptive immunity and are important players in the defense against microbial pathogens. iNKT cells can detect pathogens that trigger innate receptors (e.g., TLRs, Rig-I, Dectin-1) within APCs, with the consequential induction of CD1d-mediated Ag presentation and release of proinflammatory cytokines. We show that the cytosolic peptidoglycan-sensing receptors Nod1 and Nod2 are necessary for optimal IFN-γ production by iNKT cells, as well as NK cells. In the absence of Nod1 and Nod2, iNKT cells had a blunted IFN-γ response following infection by Salmonella enterica serovar Typhimurium and Listeria monocytogenes. For Gram-negative bacteria, we reveal a synergy between Nod1/2 and TLR4 in dendritic cells that potentiates IL-12 production and, ultimately, activates iNKT cells. These findings suggest that multiple innate pathways can cooperate to regulate iNKT cell activation during bacterial infection.
Collapse
|
83
|
Ferrand J, Ferrero RL. Recognition of Extracellular Bacteria by NLRs and Its Role in the Development of Adaptive Immunity. Front Immunol 2013; 4:344. [PMID: 24155747 PMCID: PMC3801148 DOI: 10.3389/fimmu.2013.00344] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/07/2013] [Indexed: 01/21/2023] Open
Abstract
Innate immune recognition of bacteria is the first requirement for mounting an effective immune response able to control infection. Over the previous decade, the general paradigm was that extracellular bacteria were only sensed by cell surface-expressed Toll-like receptors (TLRs), whereas cytoplasmic sensors, including members of the Nod-like receptor (NLR) family, were specific to pathogens capable of breaching the host cell membrane. It has become apparent, however, that intracellular innate immune molecules, such as the NLRs, play key roles in the sensing of not only intracellular, but also extracellular bacterial pathogens or their components. In this review, we will discuss the various mechanisms used by bacteria to activate NLR signaling in host cells. These mechanisms include bacterial secretion systems, pore-forming toxins, and outer membrane vesicles. We will then focus on the influence of NLR activation on the development of adaptive immune responses in different cell types.
Collapse
Affiliation(s)
- Jonathan Ferrand
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University , Clayton, VIC , Australia
| | | |
Collapse
|
84
|
Lemire P, Calzas C, Segura M. The NOD2 receptor does not play a major role in the pathogenesis of Group B Streptococcus in mice. Microb Pathog 2013; 65:41-7. [PMID: 24107312 DOI: 10.1016/j.micpath.2013.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 01/08/2023]
Abstract
Group B Streptococcus (GBS) capsular type III is an important agent of life-threatening invasive infections. It has been previously shown that encapsulated GBS is easily internalized by dendritic cells (DCs) and this internalization has an impact on cytokine production. The intracellular receptors or pathways underlying this response are not well understood. In this work, we investigated the role of NOD2 in the pathogenesis of GBS using a mouse model of infection. NOD2(-/-) mice showed similar levels of survival and bacteremia than control mice. Interestingly, ex vivo analysis of total spleen cells from infected animals showed that the absence of NOD2 results in reduced production of inflammatory cytokines. However this abridged inflammatory response does not seem to improve mouse survival. In conclusion, we demonstrated that NOD2 is not a crucial receptor to fight GBS infection and only partially contributes to the inflammatory response.
Collapse
Affiliation(s)
- Paul Lemire
- Laboratory of Immunology, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | | | | |
Collapse
|
85
|
Denileukin diftitox (ONTAK) induces a tolerogenic phenotype in dendritic cells and stimulates survival of resting Treg. Blood 2013; 122:2185-94. [DOI: 10.1182/blood-2012-09-456988] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Key Points
ONTAK blocks DC maturation by coreceptor downmodulation and inhibition of Stat3 phosphorylation to induce a tolerogenic phenotype. ONTAK kills activated CD4 T cells but stimulates antiapoptosis in resting Treg by engagement and stimulation through CD25.
Collapse
|
86
|
Rickard DJ, Sehon CA, Kasparcova V, Kallal LA, Zeng X, Montoute MN, Chordia T, Poore DD, Li H, Wu Z, Eidam PM, Haile PA, Yu J, Emery JG, Marquis RW, Gough PJ, Bertin J. Identification of benzimidazole diamides as selective inhibitors of the nucleotide-binding oligomerization domain 2 (NOD2) signaling pathway. PLoS One 2013; 8:e69619. [PMID: 23936340 PMCID: PMC3731320 DOI: 10.1371/journal.pone.0069619] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 06/11/2013] [Indexed: 01/07/2023] Open
Abstract
NOD2 is an intracellular pattern recognition receptor that assembles with receptor-interacting protein (RIP)-2 kinase in response to the presence of bacterial muramyl dipeptide (MDP) in the host cell cytoplasm, thereby inducing signals leading to the production of pro-inflammatory cytokines. The dysregulation of NOD2 signaling has been associated with various inflammatory disorders suggesting that small-molecule inhibitors of this signaling complex may have therapeutic utility. To identify inhibitors of the NOD2 signaling pathway, we utilized a cell-based screening approach and identified a benzimidazole diamide compound designated GSK669 that selectively inhibited an MDP-stimulated, NOD2-mediated IL-8 response without directly inhibiting RIP2 kinase activity. Moreover, GSK669 failed to inhibit cytokine production in response to the activation of Toll-like receptor (TLR)-2, tumor necrosis factor receptor (TNFR)-1 and closely related NOD1, all of which share common downstream components with the NOD2 signaling pathway. While the inhibitors blocked MDP-induced NOD2 responses, they failed to block signaling induced by NOD2 over-expression or single stranded RNA, suggesting specificity for the MDP-induced signaling complex and activator-dependent differences in NOD2 signaling. Investigation of structure-activity relationship allowed the identification of more potent analogs that maintained NOD2 selectivity. The largest boost in activity was achieved by N-methylation of the C2-ethyl amide group. These findings demonstrate that the NOD2 signaling pathway is amenable to modulation by small molecules that do not target RIP2 kinase activity. The compounds we identified should prove useful tools to investigate the importance of NOD2 in various inflammatory processes and may have potential clinical utility.
Collapse
Affiliation(s)
- David J Rickard
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Mavrogiorgos N, Mekasha S, Yang Y, Kelliher MA, Ingalls RR. Activation of NOD receptors by Neisseria gonorrhoeae modulates the innate immune response. Innate Immun 2013; 20:377-89. [PMID: 23884094 DOI: 10.1177/1753425913493453] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
NOD1 and NOD2 are members of the NOD-like receptor family of cytosolic pattern recognition receptors that recognize specific fragments of the bacterial cell wall component peptidoglycan. Neisseria species are unique amongst Gram-negative bacteria in that they turn over large amounts of peptidoglycan during growth. We examined the ability of NOD1 and NOD2 to recognize Neisseria gonorrhoeae, and determined the role of NOD-dependent signaling in regulating the immune response to gonococcal infection. Gonococci, as well as conditioned medium from mid-logarithmic phase grown bacteria, were capable of activating both human NOD1 and NOD2, as well as mouse NOD2, leading to the activation of the transcription factor NF-κB and polyubiquitination of the adaptor receptor-interacting serine-threonine kinase 2. We identified a number of cytokines and chemokines that were differentially expressed in wild type versus NOD2-deficient macrophages in response to gonococcal infection. Moreover, NOD2 signaling up-regulated complement pathway components and cytosolic nucleic acid sensors, suggesting a broad impact of NOD activation on innate immunity. Thus, NOD1 and NOD2 are important intracellular regulators of the immune response to infection with N. gonorrhoeae. Given the intracellular lifestyle of this pathogen, we believe these cytosolic receptors may provide a key innate immune defense mechanism for the host during gonococcal infection.
Collapse
Affiliation(s)
- Nikolaos Mavrogiorgos
- 1Section of Infectious Diseases, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | |
Collapse
|
88
|
Jensen CJ, Massie A, De Keyser J. Immune players in the CNS: the astrocyte. J Neuroimmune Pharmacol 2013; 8:824-39. [PMID: 23821340 DOI: 10.1007/s11481-013-9480-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 05/26/2013] [Indexed: 12/20/2022]
Abstract
In the finely balanced environment of the central nervous system astrocytes, the most numerous cell type, play a role in regulating almost every physiological system. First found to regulate extracellular ions and pH, they have since been shown to regulate neurotransmitter levels, cerebral blood flow and energy metabolism. There is also growing evidence for an essential role of astrocytes in central immunity, which is the topic of this review. In the healthy state, the central nervous system is potently anti-inflammatory but under threat astrocytes readily respond to pathogens and to both sterile and pathogen-induced cell damage. In response, astrocytes take on some of the roles of immune cells, releasing cyto- and chemokines to influence effector cells, modulating the blood-brain barrier and forming glial scars. To date, much of the data supporting a role for astrocytes in immunity have been obtained from in vitro systems; however data from experimental models and clinical samples support the suggestion that astrocytes perform similar roles in more complex environments. This review will discuss some aspects of the role of astrocytes in central nervous system immunity.
Collapse
Affiliation(s)
- Cathy J Jensen
- Department of Neurology, Universitair Ziekenhuis Brussel, Center for Neurosciences, Vrije Universiteit Brussel-VUB, Brussels, Belgium.
| | | | | |
Collapse
|
89
|
Shenderov K, Barber DL, Mayer-Barber KD, Gurcha SS, Jankovic D, Feng CG, Oland S, Hieny S, Caspar P, Yamasaki S, Lin X, Ting JPY, Trinchieri G, Besra GS, Cerundolo V, Sher A. Cord factor and peptidoglycan recapitulate the Th17-promoting adjuvant activity of mycobacteria through mincle/CARD9 signaling and the inflammasome. THE JOURNAL OF IMMUNOLOGY 2013; 190:5722-30. [PMID: 23630357 DOI: 10.4049/jimmunol.1203343] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although adjuvants are critical vaccine components, their modes of action are poorly understood. In this study, we investigated the mechanisms by which the heat-killed mycobacteria in CFA promote Th17 CD4(+) T cell responses. We found that IL-17 secretion by CD4(+) T cells following CFA immunization requires MyD88 and IL-1β/IL-1R signaling. Through measurement of Ag-specific responses after adoptive transfer of OTII cells, we confirmed that MyD88-dependent signaling controls Th17 differentiation rather than simply production of IL-17. Additional experiments showed that CFA-induced Th17 differentiation involves IL-1β processing by the inflammasome, as mice lacking caspase-1, ASC, or NLRP3 exhibit partially defective responses after immunization. Biochemical fractionation studies further revealed that peptidoglycan is the major component of heat-killed mycobacteria responsible for inflammasome activation. By assaying Il1b transcripts in the injection site skin of CFA-immunized mice, we found that signaling through the adaptor molecule caspase activation and recruitment domain 9 (CARD9) plays a major role in triggering pro-IL-1β expression. Moreover, we demonstrated that recognition of the mycobacterial glycolipid trehalose dimycolate (cord factor) by the C-type lectin receptor mincle partially explains this CARD9 requirement. Importantly, purified peptidoglycan and cord factor administered in mineral oil synergized to recapitulate the Th17-promoting activity of CFA, and, as expected, this response was diminished in caspase-1- and CARD9-deficient mice. Taken together, these findings suggest a general strategy for the rational design of Th17-skewing adjuvants by combining agonists of the CARD9 pathway with inflammasome activators.
Collapse
Affiliation(s)
- Kevin Shenderov
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Shafique M, Meijerhof T, Wilschut J, de Haan A. Evaluation of an intranasal virosomal vaccine against respiratory syncytial virus in mice: effect of TLR2 and NOD2 ligands on induction of systemic and mucosal immune responses. PLoS One 2013; 8:e61287. [PMID: 23593453 PMCID: PMC3620164 DOI: 10.1371/journal.pone.0061287] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/06/2013] [Indexed: 11/18/2022] Open
Abstract
Introduction RSV infection remains a serious threat to newborns and the elderly. Currently, there is no vaccine available to prevent RSV infection. A mucosal RSV vaccine would be attractive as it could induce mucosal as well as systemic antibodies, capable of protecting both the upper and lower respiratory tract. Previously, we reported on a virosomal RSV vaccine for intramuscular injection with intrinsic adjuvant properties mediated by an incorporated lipophilic Toll-like receptor 2 (TLR2) ligand. However, it has not been investigated whether this virosomal RSV vaccine candidate would be suitable for use in mucosal immunization strategies and if additional incorporation of other innate receptor ligands, like NOD2-ligand, could further enhance the immunogenicity and protective efficacy of the vaccine. Objective To explore if intranasal (IN) immunization with a virosomal RSV vaccine, supplemented with TLR2 and/or NOD2-ligands, is an effective strategy to induce RSV-specific immunity. Methods We produced RSV-virosomes carrying TLR2 (Pam3CSK4) and/or NOD2 (L18-MDP) ligands. We tested the immunopotentiating properties of these virosomes in vitro, using TLR2- and/or NOD2-ligand-responsive murine and human cell lines, and in vivo by assessing induction of protective antibody and cellular responses upon IN immunization of BALB/c mice. Results Incorporation of Pam3CSK4 and/or L18-MDP potentiates the capacity of virosomes to activate (antigen-presenting) cells in vitro, as demonstrated by NF-κB induction. In vivo, incorporation of Pam3CSK4 in virosomes boosted serum IgG antibody responses and mucosal antibody responses after IN immunization. While L18-MDP alone was ineffective, incorporation of L18-MDP in Pam3CSK4-carrying virosomes further boosted mucosal antibody responses. Finally, IN immunization with adjuvanted virosomes, particularly Pam3CSK4/L18-MDP-adjuvanted-virosomes, protected mice against infection with RSV, without priming for enhanced disease. Conclusion Mucosal immunization with RSV-virosomes, supplemented with incorporated TLR2- and/or NOD2-ligands, represents a promising approach to induce effective and safe RSV-specific immunity.
Collapse
Affiliation(s)
- Muhammad Shafique
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Tjarko Meijerhof
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Jan Wilschut
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Aalzen de Haan
- Department of Medical Microbiology, Molecular Virology Section, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
91
|
Wong CK, Hu S, Leung KML, Dong J, He L, Chu YJ, Chu IMT, Qiu HN, Liu KYP, Lam CWK. NOD-like receptors mediated activation of eosinophils interacting with bronchial epithelial cells: a link between innate immunity and allergic asthma. Cell Mol Immunol 2013; 10:317-29. [PMID: 23524653 DOI: 10.1038/cmi.2012.77] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Key intracytosolic pattern recognition receptors of innate immunity against bacterial infections are nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs). We elucidated the NOD1 and NOD2-mediated activation of human eosinophils, the principal effector cells for allergic inflammation, upon interacting with human bronchial epithelial BEAS-2B cells in allergic asthma. Eosinophils constitutively expressed NOD1,2 but exhibited nonsignificant responses to release chemokines upon the stimulation by NOD1 ligand γ-D-glutamyl-meso-diaminopimelic acid (iE-DAP) and NOD2 ligand muramyl dipeptide (MDP). However, iE-DAP and MDP could significantly upregulate cell surface expression of CD18 and intercellular adhesion molecule (ICAM)-1 on eosinophils and ICAM-1 on BEAS-2B cells, as well as induce chemokines CCL2 and CXCL8 release in the coculture system (all P<0.05). Both eosinophils and BEAS-2B cells were the main source for CXCL8 and CCL2 release in the coculture system upon iE-DAP or MDP stimulation. Direct interaction between eosinophils and BEAS-2B cells is responsible for CCL2 release, and soluble mediators are implicated in CXCL8 release. ERK and NF-κB play regulatory roles for the expression of adhesion molecules and chemokines in coculture. Treatment with NOD1,2 ligand could induce the subepithelial fibrosis and significantly enhance the serum concentration of total IgE, chemokine CCL5 for eosinophils and T helper type 2 (Th2) cells and asthma Th2 cytokine IL-13 in bronchoalveolar lavage fluid of ovalbumin-sensitized allergic asthmatic mice (all P<0.05). This study provides further evidence of bacterial infection-mediated activation of NOD1,2 in triggering allergic asthma via the activation of eosinophils interacting with bronchial epithelial cells at inflammatory airway.
Collapse
Affiliation(s)
- Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Schäffler H, Schneider N, Hsieh CJ, Reiner J, Nadalin S, Witte M, Königsrainer A, Blumenstock G, Lamprecht G. NOD2 mutations are associated with the development of intestinal failure in the absence of Crohn's disease. Clin Nutr 2013; 32:1029-35. [PMID: 23562557 DOI: 10.1016/j.clnu.2013.02.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 01/08/2013] [Accepted: 02/28/2013] [Indexed: 12/28/2022]
Abstract
BACKGROUND & AIMS Short bowel syndrome (SBS) and intestinal failure (IF) are multi-factorial conditions which in adults result from extensive intestinal resection. NOD2 is an intracellular pattern recognition receptor associated with CD. An unexpected high frequency of NOD2 mutations has been found in patients undergoing intestinal transplantation (35%). The role of NOD2 in a cohort with SBS/IF not specifically requiring intestinal transplantation has not been studied yet. METHODS The course of 85 patients with non-malignant SBS/IF was characterized. The major NOD2 mutations, as well as ATG16L1 and IL23R were determined. The allele frequencies were compared to the published frequencies of CD patients and controls. RESULTS In non-CD patients (72%) allele frequencies of NOD2 mutations were statistically more frequent than in controls (14% vs 6%, p = 0.006). In CD patients (28%) allele frequencies were not different between SBS and controls (29% vs 22%, p = 0.23). NOD2 mutations were neither associated with parameters potentially heralding the need for transplantation nor with an earlier time to the indication for intestinal transplantation. CONCLUSIONS NOD2 mutations are associated with the development of SBS/IF in the absence of CD, but not with specific complications. NOD2 mutations may increase the risk for more extensive intestinal resection or may impair intestinal adaptation.
Collapse
Affiliation(s)
- Holger Schäffler
- 1st Medical Department, University of Tübingen, Germany; Department of Internal Medicine, Division of Gastroenterology and Endocrinology, University of Rostock, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Participation of MyD88 and interleukin-33 as innate drivers of Th2 immunity to Trichinella spiralis. Infect Immun 2013; 81:1354-63. [PMID: 23403558 DOI: 10.1128/iai.01307-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trichinella spiralis is a highly destructive parasitic nematode that invades and destroys intestinal epithelial cells, injures many different tissues during its migratory phase, and occupies and transforms myotubes during the final phase of its life cycle. We set out to investigate the role in immunity of innate receptors for potential pathogen- or danger-associated molecular patterns (PAMPs or DAMPs). Focusing on the MyD88-dependent receptors, which include Toll-like receptors (TLRs) and interleukin-1 (IL-1) family members, we found that MyD88-deficient mice expelled worms normally, while TLR2/4-deficient mice showed accelerated worm expulsion, suggesting that MyD88 was active in signaling pathways for more than one receptor during intestinal immunity. A direct role for PAMPs in TLR activation was not supported in a transactivation assay involving a panel of murine and human TLRs. Mice deficient in the IL-1 family receptor for the DAMP, IL-33 (called ST2), displayed reduced intestinal Th2 responses and impaired mast cell activation. IL-33 was constitutively expressed in intestinal epithelial cells, where it became concentrated in nuclei within 2 days of infection. Nuclear localization was an innate response to infection that occurred in intestinal regions where worms were actively migrating. Th2 responses were also compromised in the lymph nodes draining the skeletal muscles of ST2-deficient mice, and this correlated with increased larval burdens in muscle. Our results support a mechanism in which the immune system recognizes and responds to tissue injury in a way that promotes Th2 responses.
Collapse
|
94
|
Jamontt J, Petit S, Clark N, Parkinson SJ, Smith P. Nucleotide-binding oligomerization domain 2 signaling promotes hyperresponsive macrophages and colitis in IL-10-deficient mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:2948-58. [PMID: 23396949 DOI: 10.4049/jimmunol.1201332] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
IL-10 contributes to the maintenance of intestinal homeostasis via the regulation of inflammatory responses to enteric bacteria. Loss of IL-10 signaling results in spontaneous colitis in mice and early onset enterocolitis in humans. Nucleotide-binding oligomerization domain (NOD) 2 is an intracellular receptor of bacterial peptidoglycan products, and, although NOD2 mutations are associated with Crohn's disease, the precise role of NOD2 in the development of intestinal inflammation remains undefined. To determine the role of NOD2 in the development of colitis on the clinically relevant genetic background of IL-10-deficient signaling, we generated mice lacking IL-10 and NOD2 (IL-10(-/-)NOD2(-/-)). Loss of NOD2 in IL-10(-/-) mice resulted in significant amelioration of chronic colitis, indicating that NOD2 signaling promotes the development of intestinal inflammation in IL-10(-/-) mice. Contrary to previous reports investigating immune function in NOD2(-/-) mice, T cell proliferative capacity and IL-2 production were not impaired, and immune polarization toward type 1 immunity was not affected. However, loss of NOD2 in IL-10-deficient macrophages reduced IL-6, TNF-α, and IL-12p40 production in response to bacterial stimulation. Further analysis of the intrinsic macrophage response before the onset of inflammation revealed that, in the absence of IL-10, synergistic signaling between various TLRs and NOD2 resulted in hyperresponsive, proinflammatory macrophages, thus providing the appropriate immune environment for the development of colitis. Data presented in this study demonstrate that NOD2 signaling contributes to intestinal inflammation that arises through loss of IL-10 and provides mechanistic insight into the development of colitis in inflammatory bowel disease patients with impaired IL-10 signaling.
Collapse
Affiliation(s)
- Joanna Jamontt
- Cardiovascular and Metabolic Diseases, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
95
|
Abstract
PURPOSE OF REVIEW Nod-like receptors (NLRs) are intracellular innate immune sensors of microbes and danger signals that control multiple aspects of inflammatory responses. We review the evidence that highlights the critical importance of NLRs in the host response to intestinal pathogens. Moreover, we discuss the potential roles played by NLRs in the dynamic control of the intestinal microbiota and how commensal microorganisms may affect host susceptibility to enteric bacterial pathogens through interactions with NLRs as well as with invading pathogens. RECENT FINDINGS Recent studies targeting the intestinal microbiota in the context of NLR deficiencies suggest inherent alterations in bacterial density or abundance may underlie the development of inflammatory diseases. As commensal microorganisms may also affect host susceptibility to enteric bacterial pathogens, NLRs might promote intestinal innate immune defense through mechanisms more complex than previously anticipated. SUMMARY The inclusion of the intestinal microbiota as a critical parameter in innate immunity represents an exciting new dimension for understanding NLR functioning and the clinical implications for human health.
Collapse
|
96
|
Soares F, Tattoli I, Wortzman ME, Arnoult D, Philpott DJ, Girardin SE. NLRX1 does not inhibit MAVS-dependent antiviral signalling. Innate Immun 2012; 19:438-48. [PMID: 23212541 DOI: 10.1177/1753425912467383] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
NLRX1 is a member of the Nod-like receptor family of intracellular sensors of microbial- and danger-associated molecular patterns. NLRX1 has a N-terminal mitochondrial addressing sequence that localizes the protein to the mitochondrial matrix. Recently, conflicting reports have been presented with regard to the putative implication of NLRX1 as a negative regulator of MAVS-dependent cytosolic antiviral responses. Here, we generated a new NLRX1 knockout mouse strain and observed that bone marrow-derived macrophages and murine embryonic fibroblasts from NLRX1-deficient mice displayed normal antiviral and inflammatory responses following Sendai virus infection. Importantly, wild type and NLRX1-deficient mice exhibited unaltered antiviral and inflammatory gene expression following intranasal challenge with influenza A virus or i.p. injection of Poly (I:C). Together, our results demonstrate that NLRX1 does not participate in the negative regulation of MAVS-dependent antiviral responses.
Collapse
Affiliation(s)
- Fraser Soares
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
97
|
Moreira LO, Zamboni DS. NOD1 and NOD2 Signaling in Infection and Inflammation. Front Immunol 2012; 3:328. [PMID: 23162548 PMCID: PMC3492658 DOI: 10.3389/fimmu.2012.00328] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/17/2012] [Indexed: 12/12/2022] Open
Abstract
Sensing intracellular pathogens is a process mediated by innate immune cells that is crucial for the induction of inflammatory processes and effective adaptive immune responses against pathogenic microbes. NOD-like receptors (NLRs) comprise a family of intracellular pattern recognition receptors that are important for the recognition of damage and microbial-associated molecular patterns. NOD1 and NOD2 are specialized NLRs that participate in the recognition of a subset of pathogenic microorganisms that are able to invade and multiply intracellularly. Once activated, these molecules trigger intracellular signaling pathways that lead to the activation of transcriptional responses culminating in the expression of a subset of inflammatory genes. In this review, we will focus on the role of NOD1 and NOD2 in the recognition and response to intracellular pathogens, including Gram-positive and Gram-negative bacteria, and on their ability to signal in response to non-peptidoglycan-containing pathogens, such as viruses and protozoan parasites.
Collapse
Affiliation(s)
- Lilian O Moreira
- Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | |
Collapse
|
98
|
A discrete ubiquitin-mediated network regulates the strength of NOD2 signaling. Mol Cell Biol 2012; 33:146-58. [PMID: 23109427 DOI: 10.1128/mcb.01049-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dysregulation of NOD2 signaling is implicated in the pathology of various inflammatory diseases, including Crohn's disease, asthma, and sarcoidosis, making signaling proteins downstream of NOD2 potential therapeutic targets. Inhibitor-of-apoptosis (IAP) proteins, particularly cIAP1, are essential mediators of NOD2 signaling, and in this work, we describe a molecular mechanism for cIAP1's regulation in the NOD2 signaling pathway. While cIAP1 promotes RIP2's tyrosine phosphorylation and subsequent NOD2 signaling, this positive regulation is countered by another E3 ubiquitin ligase, ITCH, through direct ubiquitination of cIAP1. This ITCH-mediated ubiquitination leads to cIAP1's lysosomal degradation. Pharmacologic inhibition of cIAP1 expression in ITCH(-/-) macrophages attenuates heightened ITCH(-/-) macrophage muramyl dipeptide-induced responses. Transcriptome analysis, combined with pharmacologic inhibition of cIAP1, further defines specific pathways within the NOD2 signaling pathway that are targeted by cIAP1. This information provides genetic signatures that may be useful in repurposing cIAP1-targeted therapies to correct NOD2-hyperactive states and identifies a ubiquitin-regulated signaling network centered on ITCH and cIAP1 that controls the strength of NOD2 signaling.
Collapse
|
99
|
Shin JH, Kim SW, Park YS. Role of NOD1-mediated signals in a mouse model of allergic rhinitis. Otolaryngol Head Neck Surg 2012; 147:1020-6. [PMID: 23032918 DOI: 10.1177/0194599812461999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The purpose of the present study was to investigate the effect of nucleotide-binding oligomerization domain 1 (NOD1), an innate immune sensor, on allergic inflammation and induction of regulatory T cells in a mouse model of allergic rhinitis. We also aimed to explore whether there were differences in the effect of NOD1 ligand according to the timing of administration. Study Design An in vivo study using an animal model. SETTING Catholic Research Institutes of Medical Science. SUBJECTS AND METHODS Forty BALB/c mice were divided into 4 groups: control, OVA, pre-NOD1, and post-NOD1. Ovalbumin (OVA) was used for sensitization and challenge. The pre-NOD1 group received NOD1 ligand intranasally before sensitization, whereas the post-NOD1 group received it after sensitization. The effects of allergic inflammation and regulatory T cells were compared among the groups. RESULTS In the post-NOD1 group, serum OVA-specific IgE, eosinophil counts, interleukin (IL)-13 levels, and GATA-3 mRNA expression were significantly increased and Foxp3(+) mRNA expression and CD4(+) Foxp3(+) T cells were decreased compared with the OVA group. In the pre-NOD1 group, Foxp3 mRNA expression and CD4(+) Foxp3(+) T cells were significantly decreased compared with the OVA group. Although not significant, the pre-NOD1 group showed increases in serum OVA-specific IgE, eosinophil counts, IL-13 levels, and GATA-3 mRNA expression compared with the OVA group. CONCLUSION The innate immune response through NOD1 enhances allergen-specific Th2 response and suppresses induction of regulatory T cells in a mouse model of allergic rhinitis, and the effects are different depending on the timing of exposure to NOD1 ligand.
Collapse
Affiliation(s)
- Ji-Hyeon Shin
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Catholic University of Korea, Seoul, Korea
| | | | | |
Collapse
|
100
|
Abstract
Recently, we demonstrated a novel role for gastrointestinal mast cells (MCs) in the early events that lead to the generation of Th2 immunity to helminth infection. Mice lacking MCs (Kit(W) /Kit(W-v) and Kit(W-Sh)) showed a significant inhibition of Th2 cell priming following infection with the parasitic helminth Heligmosomoides polygyrus bakeri (Hp). We showed that MCs degranulate during the early stages of infection when the helminth larvae invade the small intestinal tissue. Furthermore, MC degranulation was required for the enhanced expression and production of the tissue-derived cytokines IL-25, IL-33 and TSLP, which are required for the optimal orchestration and priming of type 2 immunity. In this addendum we aim to address several questions raised by our findings - in particular, the mechanisms through which MCs may recognize helminth exposure in the early stages of infection and by which they may enhance expression of critical tissue cytokines thus, enabling Th2 priming. Furthermore, we will discuss these findings in the context of recently described novel innate immune cells, such as type 2 hematopoietic progenitors and type 2 innate lymphoid cells.
Collapse
Affiliation(s)
- Matthew R. Hepworth
- Department of Veterinary Medicine; Institute of Immunology; Free University Berlin; Berlin, Germany,Correspondence to: Matthew R. Hepworth,
| | - Marcus Maurer
- Department of Dermatology and Allergy; Allergy Centre Charité; Charité University Medicine; Berlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine; Institute of Immunology; Free University Berlin; Berlin, Germany
| |
Collapse
|