51
|
Reconceptualizing cancer immunotherapy based on plant production systems. Future Sci OA 2017; 3:FSO217. [PMID: 28884013 PMCID: PMC5583679 DOI: 10.4155/fsoa-2017-0018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/06/2017] [Indexed: 01/25/2023] Open
Abstract
Plants can be used as inexpensive and facile production platforms for vaccines and other biopharmaceuticals. More recently, plant-based biologics have expanded to include cancer immunotherapy agents. The following review describes the current state of the art for plant-derived strategies to prevent or reduce cancers. The review discusses avenues taken to prevent infection by oncogenic viruses, solid tumors and lymphomas. Strategies including cancer vaccines, monoclonal antibodies and virus nanoparticles are described, and examples are provided. The review ends with a discussion of the implications of plant-based cancer immunotherapy for developing countries. Cancer immunotherapy has made great strides over recent years. This review describes the use of plants as production systems to produce biopharmaceuticals such as vaccines and antibodies to treat a wide variety of cancers. The use of nanoparticle technology based on plant viruses as a novel strategy to target and combat cancers is also included. The review concludes with a discussion of plant production platforms and their relevance for the generation of cheap and effective cancer immunotherapies for developing countries.
Collapse
|
52
|
Generation of monoclonal pan-hemagglutinin antibodies for the quantification of multiple strains of influenza. PLoS One 2017; 12:e0180314. [PMID: 28662134 PMCID: PMC5491208 DOI: 10.1371/journal.pone.0180314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/13/2017] [Indexed: 11/27/2022] Open
Abstract
Vaccination is the most effective course of action to prevent influenza. About 150 million doses of influenza vaccines were distributed for the 2015–2016 season in the USA alone according to the Centers for Disease Control and Prevention. Vaccine dosage is calculated based on the concentration of hemagglutinin (HA), the main surface glycoprotein expressed by influenza which varies from strain to strain. Therefore yearly-updated strain-specific antibodies and calibrating antigens are required. Preparing these quantification reagents can take up to three months and significantly slows down the release of new vaccine lots. Therefore, to circumvent the need for strain-specific sera, two anti-HA monoclonal antibodies (mAbs) against a highly conserved sequence have been produced by immunizing mice with a novel peptide-conjugate. Immunoblots demonstrate that 40 strains of influenza encompassing HA subtypes H1 to H13, as well as B strains from the Yamagata and Victoria lineage were detected when the two mAbs are combined to from a pan-HA mAb cocktail. Quantification using this pan-HA mAbs cocktail was achieved in a dot blot assay and results correlated with concentrations measured in a hemagglutination assay with a coefficient of correlation of 0.80. A competitive ELISA was also optimised with purified viral-like particles. Regardless of the quantification method used, pan-HA antibodies can be employed to accelerate process development when strain-specific antibodies are not available, and represent a valuable tool in case of pandemics. These antibodies were also expressed in CHO cells to facilitate large-scale production using bioreactor technologies which might be required to meet industrial needs for quantification reagents. Finally, a simulation model was created to predict the binding affinity of the two anti-HA antibodies to the amino acids composing the highly conserved epitope; different probabilities of interaction between a given amino acid and the antibodies might explain the affinity of each antibody against different influenza strains.
Collapse
|
53
|
Arevalo-Villalobos JI, Govea-Alonso DO, Monreal-Escalante E, Zarazúa S, Rosales-Mendoza S. LTB-Syn: a recombinant immunogen for the development of plant-made vaccines against synucleinopathies. PLANTA 2017; 245:1231-1239. [PMID: 28315001 DOI: 10.1007/s00425-017-2675-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
MAIN CONCLUSION A recombinant antigen targeting α-synuclein was produced in the plant cell rendering an immunogenic protein capable to induce humoral responses in mice upon oral administration. Synucleinopathies are neurodegenerative diseases characterized by the abnormal accumulation of α-synuclein (α-Syn, a 140 amino acid protein that normally plays various neurophysiologic roles) aggregates. Parkinson's disease (PD) is the synucleinopathy with the highest epidemiologic impact and although its etiology remains unknown, α-Syn aggregation during disease progression pointed out α-Syn as target in the development of immunotherapies. Herein a chimeric protein, comprising the B subunit of the enterotoxin from enterotoxigenic Escherichia coli and α-Syn epitopes, was expressed in the plant cell having the potential to induce humoral responses following oral immunization. This approach will serve as the basis for the development of oral plant-based vaccines against PD with several potential advantages such as low cost, easy scale-up during production, and easy administration.
Collapse
Affiliation(s)
- Jaime I Arevalo-Villalobos
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, SLP, 78210, Mexico
| | - Dania O Govea-Alonso
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, SLP, 78210, Mexico
| | - Elizabeth Monreal-Escalante
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, SLP, 78210, Mexico
| | - Sergio Zarazúa
- Laboratorio de Neurotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, SLP, 78210, Mexico
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, SLP, 78210, Mexico.
| |
Collapse
|
54
|
Ma S, We L, Yang H, Deng S, M. Jevnikar A. Emerging technologies to achieve oral delivery of GLP-1 and GLP-1 analogs for treatment of type 2 diabetes mellitus (T2DM). CANADIAN JOURNAL OF BIOTECHNOLOGY 2017. [DOI: 10.24870/cjb.2017-000107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
55
|
Wong-Arce A, González-Ortega O, Rosales-Mendoza S. Plant-Made Vaccines in the Fight Against Cancer. Trends Biotechnol 2017; 35:241-256. [DOI: 10.1016/j.tibtech.2016.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 11/21/2016] [Accepted: 12/07/2016] [Indexed: 12/25/2022]
|
56
|
Pang EL, Loh HS. Towards development of a universal dengue vaccine – How close are we? ASIAN PAC J TROP MED 2017; 10:220-228. [DOI: 10.1016/j.apjtm.2017.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/20/2017] [Accepted: 01/26/2017] [Indexed: 11/16/2022] Open
|
57
|
Pua TL, Chan XY, Loh HS, Omar AR, Yusibov V, Musiychuk K, Hall AC, Coffin MV, Shoji Y, Chichester JA, Bi H, Streatfield SJ. Purification and immunogenicity of hemagglutinin from highly pathogenic avian influenza virus H5N1 expressed in Nicotiana benthamiana. Hum Vaccin Immunother 2017; 13:306-313. [PMID: 27929750 PMCID: PMC5328219 DOI: 10.1080/21645515.2017.1264783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/18/2015] [Accepted: 09/19/2015] [Indexed: 12/13/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 is an ongoing global health concern due to its severe sporadic outbreaks in Asia, Africa and Europe, which poses a potential pandemic threat. The development of safe and cost-effective vaccine candidates for HPAI is considered the best strategy for managing the disease and addressing the pandemic preparedness. The most potential vaccine candidate is the antigenic determinant of influenza A virus, hemagglutinin (HA). The present research was aimed at developing optimized expression in Nicotiana benthamiana and protein purification process for HA from the Malaysian isolate of H5N1 as a vaccine antigen for HPAI H5N1. Expression of HA from the Malaysian isolate of HPAI in N. benthamiana was confirmed, and more soluble protein was expressed as truncated HA, the HA1 domain over the entire ectodomain of HA. Two different purification processes were evaluated for efficiency in terms of purity and yield. Due to the reduced yield, protein degradation and length of the 3-column purification process, the 2-column method was chosen for target purification. Purified HA1 was found immunogenic in mice inducing H5 HA-specific IgG and a hemagglutination inhibition antibody. This paper offers an alternative production system of a vaccine candidate against a locally circulating HPAI, which has a regional significance.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Disease Models, Animal
- Female
- Gene Expression
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/isolation & purification
- Immunoglobulin G/blood
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/prevention & control
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- Nicotiana/genetics
- Nicotiana/metabolism
- Treatment Outcome
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Teen-Lee Pua
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Xiao Ying Chan
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Selangor, Malaysia
- Biotechnology Research Centre, The University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | | | | | - Megan V. Coffin
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - Yoko Shoji
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | | | - Hong Bi
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | | |
Collapse
|
58
|
Szeja W, Grynkiewicz G, Rusin A. Isoflavones, their Glycosides and Glycoconjugates. Synthesis and Biological Activity. CURR ORG CHEM 2016; 21:218-235. [PMID: 28553156 PMCID: PMC5427819 DOI: 10.2174/1385272820666160928120822] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/20/2016] [Accepted: 09/22/2016] [Indexed: 11/22/2022]
Abstract
Glycosylation of small biologically active molecules, either of natural or synthetic origin, has a profound impact on their solubility, stability, and bioactivity, making glycoconjugates attractive compounds as therapeutic agents or nutraceuticals. A large proportion of secondary metabolites, including flavonoids, occur in plants as glycosides, which adds to the molecular diversity that is much valued in medicinal chemistry studies. The subsequent growing market demand for glycosidic natural products has fueled the development of various chemical and biotechnological methods of glycosides preparation. The review gives an extensive overview of the processes of the synthesis of isoflavones and discusses recently developed major routes towards isoflavone-sugar formation processes. Special attention is given to the derivatives of genistein, the main isoflavone recognized as a useful lead in several therapeutic categories, with particular focus on anticancer drug design. The utility of chemical glycosylations as well as glycoconjugates preparation is discussed in some theoretical as well as practical aspects. Since novel approaches to chemical glycosylations and glycoconjugations are abundant and many of them proved suitable for derivatization of polyphenols a new body of evidence has emerged, indicating that sugar moiety can play a much more significant role, when attached to a pharmacophore, then being a mere “solubilizer”. In many cases, it has been demonstrated that semisynthetic glycoconjugates are much more potent cytostatic and cytotoxic agents than reference isoflavones. Moreover, the newly designed glycosides or glycoside mimics can act through different mechanisms than the parent active molecule.
Collapse
Affiliation(s)
- Wiesław Szeja
- Silesian Technical University, Department of Chemistry, Krzywoustego 4, 44-100 Gliwice, Poland
| | | | - Aleksandra Rusin
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeze AK 15, 44-100 Gliwice, Poland
| |
Collapse
|
59
|
Jutras PV, Marusic C, Lonoce C, Deflers C, Goulet MC, Benvenuto E, Michaud D, Donini M. An Accessory Protease Inhibitor to Increase the Yield and Quality of a Tumour-Targeting mAb in Nicotiana benthamiana Leaves. PLoS One 2016; 11:e0167086. [PMID: 27893815 PMCID: PMC5125672 DOI: 10.1371/journal.pone.0167086] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/07/2016] [Indexed: 11/19/2022] Open
Abstract
The overall quality of recombinant IgG antibodies in plants is dramatically compromised by host endogenous proteases. Different approaches have been developed to reduce the impact of endogenous proteolysis on IgGs, notably involving site-directed mutagenesis to eliminate protease-susceptible sites or the in situ mitigation of host protease activities to minimize antibody processing in the cell secretory pathway. We here characterized the degradation profile of H10, a human tumour-targeting monoclonal IgG, in leaves of Nicotiana benthamiana also expressing the human serine protease inhibitor α1-antichymotrypsin or the cysteine protease inhibitor tomato cystatin SlCYS8. Leaf extracts revealed consistent fragmentation patterns for the recombinant antibody regardless of leaf age and a strong protective effect of SlCYS8 in specific regions of the heavy chain domains. As shown using an antigen-binding ELISA and LC-MS/MS analysis of antibody fragments, SlCYS8 had positive effects on both the amount of fully-assembled antibody purified from leaf tissue and the stability of biologically active antibody fragments containing the heavy chain Fc domain. Our data confirm the potential of Cys protease inhibitors as convenient antibody-stabilizing expression partners to increase the quality of therapeutic antibodies in plant protein biofactories.
Collapse
Affiliation(s)
| | - Carla Marusic
- Laboratory of Biotechnology ENEA Research Center, Casaccia, Rome, Italy
| | - Chiara Lonoce
- Laboratory of Biotechnology ENEA Research Center, Casaccia, Rome, Italy
| | - Carole Deflers
- Département de phytologie, Université Laval, Québec Quebec, Canada
| | | | - Eugenio Benvenuto
- Laboratory of Biotechnology ENEA Research Center, Casaccia, Rome, Italy
| | | | - Marcello Donini
- Laboratory of Biotechnology ENEA Research Center, Casaccia, Rome, Italy
| |
Collapse
|
60
|
Shahid N, Daniell H. Plant-based oral vaccines against zoonotic and non-zoonotic diseases. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2079-2099. [PMID: 27442628 PMCID: PMC5095797 DOI: 10.1111/pbi.12604] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 05/10/2023]
Abstract
The shared diseases between animals and humans are known as zoonotic diseases and spread infectious diseases among humans. Zoonotic diseases are not only a major burden to livestock industry but also threaten humans accounting for >60% cases of human illness. About 75% of emerging infectious diseases in humans have been reported to originate from zoonotic pathogens. Because antibiotics are frequently used to protect livestock from bacterial diseases, the development of antibiotic-resistant strains of epidemic and zoonotic pathogens is now a major concern. Live attenuated and killed vaccines are the only option to control these infectious diseases and this approach has been used since 1890. However, major problems with this approach include high cost and injectable vaccines is impractical for >20 billion poultry animals or fish in aquaculture. Plants offer an attractive and affordable platform for vaccines against animal diseases because of their low cost, and they are free of attenuated pathogens and cold chain requirement. Therefore, several plant-based vaccines against human and animals diseases have been developed recently that undergo clinical and regulatory approval. Plant-based vaccines serve as ideal booster vaccines that could eliminate multiple boosters of attenuated bacteria or viruses, but requirement of injectable priming with adjuvant is a current limitation. So, new approaches like oral vaccines are needed to overcome this challenge. In this review, we discuss the progress made in plant-based vaccines against zoonotic or other animal diseases and future challenges in advancing this field.
Collapse
Affiliation(s)
- Naila Shahid
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
61
|
Abstract
For over two decades now, plants have been explored for their potential to act as production platforms for biopharmaceuticals, such as vaccines and monoclonal antibodies. More recently, plant viruses have been designed as nontoxic nanoparticles that can target a variety of cancers and thus empower the immune system to slow or even reverse tumor progression. The following paper describes the employment of plant virus expression vectors for the treatment of some of the most challenging diseases known today. The paper concludes with a projection of the multiple avenues by which virus nanoparticles could impact developing countries.
Collapse
Affiliation(s)
- Kathleen Hefferon
- Department of Food Sciences, Cornell University, Ithaca, NY 14886, USA
| |
Collapse
|
62
|
Gottschamel J, Lössl A, Ruf S, Wang Y, Skaugen M, Bock R, Clarke JL. Production of dengue virus envelope protein domain III-based antigens in tobacco chloroplasts using inducible and constitutive expression systems. PLANT MOLECULAR BIOLOGY 2016; 91:497-512. [PMID: 27116001 DOI: 10.1007/s11103-016-0484-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 04/17/2016] [Indexed: 06/05/2023]
Abstract
Dengue fever is a disease in many parts of the tropics and subtropics and about half the world's population is at risk of infection according to the World Health Organization. Dengue is caused by any of the four related dengue virus serotypes DEN-1, -2, -3 and -4, which are transmitted to people by Aedes aegypti mosquitoes. Currently there is only one vaccine (Dengvaxia(®)) available (limited to a few countries) on the market since 2015 after half a century's intensive efforts. Affordable and accessible vaccines against dengue are hence still urgently needed. The dengue envelop protein domain III (EDIII), which is capable of eliciting serotype-specific neutralizing antibodies, has become the focus for subunit vaccine development. To contribute to the development of an accessible and affordable dengue vaccine, in the current study we have used plant-based vaccine production systems to generate a dengue subunit vaccine candidate in tobacco. Chloroplast genome engineering was applied to express serotype-specific recombinant EDIII proteins in tobacco chloroplasts using both constitutive and ethanol-inducible expression systems. Expression of a tetravalent antigen fusion construct combining EDIII polypeptides from all four serotypes was also attempted. Transplastomic EDIII-expressing tobacco lines were obtained and homoplasmy was verified by Southern blot analysis. Northern blot analyses showed expression of EDIII antigen-encoding genes. EDIII protein accumulation levels varied for the different recombinant EDIII proteins and the different expression systems, and reached between 0.8 and 1.6 % of total cellular protein. Our study demonstrates the suitability of the chloroplast compartment as a production site for an EDIII-based vaccine candidate against dengue fever and presents a Gateway(®) plastid transformation vector for inducible transgene expression.
Collapse
Affiliation(s)
- Johanna Gottschamel
- NIBIO-Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431, Ås, Norway
- BOKU-University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| | - Andreas Lössl
- BOKU-University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| | - Stephanie Ruf
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Yanliang Wang
- NIBIO-Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431, Ås, Norway
| | | | - Ralph Bock
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| | - Jihong Liu Clarke
- NIBIO-Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431, Ås, Norway.
| |
Collapse
|
63
|
Blagborough AM, Musiychuk K, Bi H, Jones RM, Chichester JA, Streatfield S, Sala KA, Zakutansky SE, Upton LM, Sinden RE, Brian I, Biswas S, Sattabonkot J, Yusibov V. Transmission blocking potency and immunogenicity of a plant-produced Pvs25-based subunit vaccine against Plasmodium vivax. Vaccine 2016; 34:3252-9. [PMID: 27177945 PMCID: PMC4915602 DOI: 10.1016/j.vaccine.2016.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/06/2016] [Accepted: 05/03/2016] [Indexed: 01/18/2023]
Abstract
Malaria transmission blocking (TB) vaccines (TBVs) directed against proteins expressed on the sexual stages of Plasmodium parasites are a potentially effective means to reduce transmission. Antibodies induced by TBVs block parasite development in the mosquito, and thus inhibit transmission to further human hosts. The ookinete surface protein P25 is a primary target for TBV development. Recently, transient expression in plants using hybrid viral vectors has demonstrated potential as a strategy for cost-effective and scalable production of recombinant vaccines. Using a plant virus-based expression system, we produced recombinant P25 protein of Plasmodium vivax (Pvs25) in Nicotiana benthamiana fused to a modified lichenase carrier protein. This candidate vaccine, Pvs25-FhCMB, was purified, characterized and evaluated for immunogenicity and efficacy using multiple adjuvants in a transgenic rodent model. An in vivo TB effect of up to a 65% reduction in intensity and 54% reduction in prevalence was observed using Abisco-100 adjuvant. The ability of this immunogen to induce a TB response was additionally combined with heterologous prime-boost vaccination with viral vectors expressing Pvs25. Significant blockade was observed when combining both platforms, achieving a 74% and 68% reduction in intensity and prevalence, respectively. This observation was confirmed by direct membrane feeding on field P. vivax samples, resulting in reductions in intensity/prevalence of 85.3% and 25.5%. These data demonstrate the potential of this vaccine candidate and support the feasibility of expressing Plasmodium antigens in a plant-based system for the production of TBVs, while demonstrating the potential advantages of combining multiple vaccine delivery systems to maximize efficacy.
Collapse
Affiliation(s)
- A M Blagborough
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London SW7 2AZ, UK.
| | - K Musiychuk
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - H Bi
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - R M Jones
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - J A Chichester
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - S Streatfield
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - K A Sala
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London SW7 2AZ, UK
| | - S E Zakutansky
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London SW7 2AZ, UK
| | - L M Upton
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, Imperial College Road, South Kensington, London SW7 2AZ, UK
| | - R E Sinden
- Jenner Institute, The University of Oxford, Roosevelt Road, Oxford OX9 2PP, UK
| | - I Brian
- Jenner Institute, The University of Oxford, Roosevelt Road, Oxford OX9 2PP, UK
| | - S Biswas
- Jenner Institute, The University of Oxford, Roosevelt Road, Oxford OX9 2PP, UK
| | - J Sattabonkot
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - V Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| |
Collapse
|
64
|
Current Developments and Future Prospects for Plant-Made Biopharmaceuticals Against Rabies. Mol Biotechnol 2016; 57:869-79. [PMID: 26163274 DOI: 10.1007/s12033-015-9880-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rabies is a prevalent health problem in developing countries. Although vaccines and immunoglobulin treatments are available, their cost and multiple-dose treatments restrict availability. During the last two decades, plants have served as a low-cost platform for biopharmaceuticals production and have been applied to fight against rabies during the last two decades. Herein, I provide a description of the state of the art in the development of plant-made pharmaceuticals against rabies and identify key prospects for the field in terms of novel strategies, immunogen design, and therapeutic antibodies production.
Collapse
|
65
|
Sasou A, Shigemitsu T, Saito Y, Tanaka M, Morita S, Masumura T. Control of foreign polypeptide localization in specific layers of protein body type I in rice seed. PLANT CELL REPORTS 2016; 35:1287-1295. [PMID: 26910860 PMCID: PMC4865541 DOI: 10.1007/s00299-016-1960-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/17/2016] [Indexed: 05/30/2023]
Abstract
Prolamin-GFP fusion proteins, expressed under the control of native prolamin promoters, were localized in specific layers of PB-Is. Prolamin-GFP fusion proteins were gradually digested from outside by pepsin digestion. In rice seed endosperm, protein body type I (PB-I) has a layered structure consisting of prolamin species and is the resistant to digestive juices in the intestinal tract. We propose the utilization of PB-Is as an oral vaccine carrier to induce mucosal immune response effectively. If vaccine antigens are localized in a specific layer within PB-Is, they could be protected from gastric juice and be delivered intact to the small intestine. We observed the localization of GFP fluorescence in transgenic rice endosperm expressing prolamin-GFP fusion proteins with native prolamin promoters, and we confirmed that the foreign proteins were located in specific layers of PB-Is artificially. Each prolamin-GFP fusion protein was localized in specific layers of PB-Is, such as the outer-most layer, middle layer, and core region. Furthermore, to investigate the resistance of prolamin-GFP fusion proteins against pepsin digestion, we performed in vitro pepsin treatment. Prolamin-GFP fusion proteins were gradually digested from the peripheral region and the contours of PB-Is were made rough by in vitro pepsin treatment. These findings suggested that prolamin-GFP fusion proteins accumulating specific layers of PB-Is were gradually digested and exposed from the outside by pepsin digestion.
Collapse
Affiliation(s)
- Ai Sasou
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto, 606-8522, Japan
| | - Takanari Shigemitsu
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto, 606-8522, Japan
| | - Yuhi Saito
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto, 606-8522, Japan
| | - Manami Tanaka
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto, 606-8522, Japan
| | - Shigeto Morita
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto, 606-8522, Japan
- Biotechnology Research Department, Kyoto Prefectural Agriculture, Forestry, and Fisheries Technology Research Center, Kitainayazuma, Seika-cho, Soraku-gun, Kyoto, 619-0244, Japan
| | - Takehiro Masumura
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto, 606-8522, Japan.
- Biotechnology Research Department, Kyoto Prefectural Agriculture, Forestry, and Fisheries Technology Research Center, Kitainayazuma, Seika-cho, Soraku-gun, Kyoto, 619-0244, Japan.
| |
Collapse
|
66
|
Xu N, Wang Y, Ma J, Jin L, Xing S, Jiang C, Li X. Over-expression of fHbp in Arabdopsis for development of meningococcal serogroup B subunit vaccine. Biotechnol J 2016; 11:973-80. [PMID: 27119621 DOI: 10.1002/biot.201500656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/27/2016] [Accepted: 04/19/2016] [Indexed: 01/04/2023]
Abstract
Due to lack of commercial vaccine against the serogroup B (MenB) of Neisseria meningitides, the incidence of meningococcal disease remains high. To solve the issue, transgenic plants are used as bioreactors to produce a plant-derived fHbp subunit vaccine. In this study, the fHbp gene was optimized according to the codon usage bias of Arabidopsis thaliana, synthesized artificially, cloned into an expression vector, driven by a seed-specific promoter, and introduced into A. thaliana by Agrobacterium-mediated floral-dip transformation. Transgenic plants were identified by glufosinate selection, quickstix strips for PAT/bar tests and PCR analysis. The five plants showing higher expression of recombinant fHbp were screened through indirect ELISA. Southern blot analysis showed that the transgenic line rHF-22 had a single-copy integration and the highest expression of fHbp. Recombinant fHbp was purified from seeds of rHF-22 by nitrilotriacetic acid-mediated affinity chromatography, and the purity was 82.5%. BALB/c mice were tested for fHbp vaccine protection from lethal MenB infection, and the relative percent survival was found to be 80%. This study indicates that the recombinant fHbp produced from seeds of rHF-22 is a potential candidate for commercial MenB vaccine. It also provides a reference for safe, cheap and large-scale production of other plant-made vaccines.
Collapse
Affiliation(s)
- Nuo Xu
- College of Life Sciences, Jilin University, Changchun, China.,Wenzhou University, Wenzhou, China
| | - Yunpeng Wang
- Agro-Biotechnology Research Institute, Jilin Academy of Agriculture Science, Changchun, China.,Wenzhou University, Wenzhou, China.,School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jisheng Ma
- School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Libo Jin
- Wenzhou University, Wenzhou, China.,School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Shaochen Xing
- Agro-Biotechnology Research Institute, Jilin Academy of Agriculture Science, Changchun, China
| | - Chao Jiang
- Wenzhou University, Wenzhou, China. .,School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Xiaokun Li
- College of Life Sciences, Jilin University, Changchun, China. .,Wenzhou University, Wenzhou, China. .,School of Pharmaceutical Sciences, Zhejiang Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
67
|
Yusibov V, Kushnir N, Streatfield SJ. Antibody Production in Plants and Green Algae. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:669-701. [PMID: 26905655 DOI: 10.1146/annurev-arplant-043015-111812] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.
Collapse
Affiliation(s)
- Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware 19711; , ,
| | - Natasha Kushnir
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware 19711; , ,
| | | |
Collapse
|
68
|
Mamedov T, Chichester JA, Jones RM, Ghosh A, Coffin MV, Herschbach K, Prokhnevsky AI, Streatfield SJ, Yusibov V. Production of Functionally Active and Immunogenic Non-Glycosylated Protective Antigen from Bacillus anthracis in Nicotiana benthamiana by Co-Expression with Peptide-N-Glycosidase F (PNGase F) of Flavobacterium meningosepticum. PLoS One 2016; 11:e0153956. [PMID: 27101370 PMCID: PMC4839623 DOI: 10.1371/journal.pone.0153956] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 04/06/2016] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis has long been considered a potential biological warfare agent, and therefore, there is a need for a safe, low-cost and highly efficient anthrax vaccine with demonstrated long-term stability for mass vaccination in case of an emergency. Many efforts have been made towards developing an anthrax vaccine based on recombinant protective antigen (rPA) of B. anthracis, a key component of the anthrax toxin, produced using different expression systems. Plants represent a promising recombinant protein production platform due to their relatively low cost, rapid scalability and favorable safety profile. Previous studies have shown that full-length rPA produced in Nicotiana benthamiana (pp-PA83) is immunogenic and can provide full protection against lethal spore challenge; however, further improvement in the potency and stability of the vaccine candidate is necessary. PA of B. anthracis is not a glycoprotein in its native host; however, this protein contains potential N-linked glycosylation sites, which can be aberrantly glycosylated during expression in eukaryotic systems including plants. This glycosylation could affect the availability of certain key epitopes either due to masking or misfolding of the protein. Therefore, a non-glycosylated form of pp-PA83 was engineered and produced in N. benthamiana using an in vivo deglycosylation approach based on co-expression of peptide-N-glycosidase F (PNGase F) from Flavobacterium meningosepticum. For comparison, versions of pp-PA83 containing point mutations in six potential N-glycosylation sites were also engineered and expressed in N. benthamiana. The in vivo deglycosylated pp-PA83 (pp-dPA83) was shown to have in vitro activity, in contrast to glycosylated pp-PA83, and to induce significantly higher levels of toxin-neutralizing antibody responses in mice compared with glycosylated pp-PA83, in vitro deglycosylated pp-PA83 or the mutated versions of pp-PA83. These results suggest that pp-dPA83 may offer advantages in terms of dose sparing and enhanced immunogenicity as a promising candidate for a safe, effective and low-cost subunit vaccine against anthrax.
Collapse
Affiliation(s)
- Tarlan Mamedov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Jessica A. Chichester
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - R. Mark Jones
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Ananya Ghosh
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Megan V. Coffin
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Kristina Herschbach
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Alexey I. Prokhnevsky
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Stephen J. Streatfield
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
| |
Collapse
|
69
|
Rosales-Mendoza S, Salazar-González JA, Decker EL, Reski R. Implications of plant glycans in the development of innovative vaccines. Expert Rev Vaccines 2016; 15:915-25. [DOI: 10.1586/14760584.2016.1155987] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, Mexico
| | - Jorge A. Salazar-González
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, Mexico
| | - Eva L. Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, Freiburg, Germany
- BIOSS – Centre for Biological Signalling Studies, Freiburg, Germany
- FRIAS – Freiburg Institute for Advanced Studies, Freiburg, Germany
| |
Collapse
|
70
|
Monreal-Escalante E, Govea-Alonso DO, Hernández M, Cervantes J, Salazar-González JA, Romero-Maldonado A, Rosas G, Garate T, Fragoso G, Sciutto E, Rosales-Mendoza S. Towards the development of an oral vaccine against porcine cysticercosis: expression of the protective HP6/TSOL18 antigen in transgenic carrots cells. PLANTA 2016; 243:675-685. [PMID: 26613600 DOI: 10.1007/s00425-015-2431-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 11/07/2015] [Indexed: 06/05/2023]
Abstract
The Taenia solium HP6/TSOL18 antigen was produced in carrot cells, yielding an immunogenic protein that induced significant protection in an experimental murine model against T. crassiceps cysticercosis when orally administered. This result supports the potential of HP6/TSOL18-carrot as a low-cost anti-cysticercosis vaccine candidate. Cysticercosis is a zoonosis caused by Taenia solium that can be prevented by interrupting the parasite life cycle through pig vaccination. Several injectable vaccine candidates have been reported, but the logistic difficulties and costs for its application limited its use in nationwide control programs. Oral plant-based vaccines can deal with this limitation, because of their easy administration and low cost. A stable expression of the HP6/TSOL18 anti-T. solium cysticercosis protective antigen in carrot calli transformed with an optimized transgene is herein reported. An antigen accumulation up to 14 µg g(-1) of dry-weight biomass was achieved in the generated carrot lines. Mouse immunization with one of the transformed calli induced both specific IgG and IgA anti-HP6/TSOL18 antibodies. A statistically significant reduction in the expected number of T. crassiceps cysticerci was observed in mice orally immunized with carrot-made HP6/TSOL18, in a similar extent to that obtained by subcutaneous immunization with recombinant HP6/TSOL18 protein. In this study, a new oral plant-made version of the HP6/TSOL18 anti-cysticercosis vaccine is reported. The vaccine candidate should be further tested against porcine cysticercosis.
Collapse
Affiliation(s)
- Elizabeth Monreal-Escalante
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, Mexico
| | - Dania O Govea-Alonso
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, Mexico
| | - Marisela Hernández
- Dpto. Inmunología. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, 04510, Mexico, D.F., Mexico
| | - Jacquelynne Cervantes
- Dpto. Inmunología. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, 04510, Mexico, D.F., Mexico
| | - Jorge A Salazar-González
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, Mexico
| | - Andrea Romero-Maldonado
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, Mexico
| | - Gabriela Rosas
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Teresa Garate
- Dpto. de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220, Madrid, Spain
| | - Gladis Fragoso
- Dpto. Inmunología. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, 04510, Mexico, D.F., Mexico
| | - Edda Sciutto
- Dpto. Inmunología. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, 04510, Mexico, D.F., Mexico.
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, Mexico.
| |
Collapse
|
71
|
The case for plant-made veterinary immunotherapeutics. Biotechnol Adv 2016; 34:597-604. [PMID: 26875776 DOI: 10.1016/j.biotechadv.2016.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/14/2016] [Accepted: 02/11/2016] [Indexed: 12/11/2022]
Abstract
The excessive use of antibiotics in food animal production has contributed to resistance in pathogenic bacteria, thereby triggering regulations and consumer demands to limit their use. Alternatives for disease control are therefore required that are cost-effective and compatible with intensive production. While vaccines are widely used and effective, they are available against a minority of animal diseases, and development of novel vaccines and other immunotherapeutics is therefore needed. Production of such proteins recombinantly in plants can provide products that are effective and safe, can be orally administered with minimal processing, and are easily scalable with a relatively low capital investment. The present report thus advocates the use of plants for producing vaccines and antibodies to protect farm animals from diseases that have thus far been managed with antibiotics; and highlights recent advances in product efficacy, competitiveness, and regulatory approval.
Collapse
|
72
|
Madeira LM, Szeto TH, Henquet M, Raven N, Runions J, Huddleston J, Garrard I, Drake PMW, Ma JKC. High-yield production of a human monoclonal IgG by rhizosecretion in hydroponic tobacco cultures. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:615-24. [PMID: 26038982 PMCID: PMC11388865 DOI: 10.1111/pbi.12407] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 05/28/2023]
Abstract
Rhizosecretion of recombinant pharmaceuticals from in vitro hydroponic transgenic plant cultures is a simple, low cost, reproducible and controllable production method. Here, we demonstrate the application and adaptation of this manufacturing platform to a human antivitronectin IgG1 monoclonal antibody (mAb) called M12. The rationale for specific growth medium additives was established by phenotypic analysis of root structure and by LC-ESI-MS/MS profiling of the total protein content profile of the hydroponic medium. Through a combination of optimization approaches, mAb yields in hydroponic medium reached 46 μg/mL in 1 week, the highest figure reported for a recombinant mAb in a plant secretion-based system to date. The rhizosecretome was determined to contain 104 proteins, with the mAb heavy and light chains the most abundant. This enabled evaluation of a simple, scalable extraction and purification protocol and demonstration that only minimal processing was necessary prior to protein A affinity chromatography. MALDI-TOF MS revealed that purified mAb contained predominantly complex-type plant N-glycans, in three major glycoforms. The binding of M12 purified from hydroponic medium to vitronectin was comparable to its Chinese hamster ovary (CHO)-derived counterpart. This study demonstrates that in vitro hydroponic cultivation coupled with recombinant protein rhizosecretion can be a practical, low-cost production platform for monoclonal antibodies.
Collapse
Affiliation(s)
- Luisa M Madeira
- The Hotung Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, UK
| | - Tim H Szeto
- The Hotung Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, UK
| | - Maurice Henquet
- Plant Research International, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Nicole Raven
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - John Runions
- Department of Biological and Medical Sciences - Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Jon Huddleston
- Brunel Institute for Bioengineering, Brunel University, London, UK
| | - Ian Garrard
- Brunel Institute for Bioengineering, Brunel University, London, UK
| | - Pascal M W Drake
- The Hotung Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, UK
| | - Julian K-C Ma
- The Hotung Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, London, UK
| |
Collapse
|
73
|
Waheed MT, Sameeullah M, Khan FA, Syed T, Ilahi M, Gottschamel J, Lössl AG. Need of cost-effective vaccines in developing countries: What plant biotechnology can offer? SPRINGERPLUS 2016; 5:65. [PMID: 26839758 PMCID: PMC4722051 DOI: 10.1186/s40064-016-1713-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/13/2016] [Indexed: 12/22/2022]
Abstract
To treat current infectious diseases, different therapies are used that include drugs or vaccines or both. Currently, the world is facing an increasing problem of drug resistance from many pathogenic microorganisms. In majority of cases, when vaccines are used, formulations consist of live attenuated microorganisms. This poses an additional risk of infection in immunocompromised patients and people suffering from malnutrition in developing countries. Therefore, there is need to improve drug therapy as well as to develop next generation vaccines, in particular against infectious diseases with highest mortality rates. For patients in developing countries, costs related to treatments are one of the major hurdles to reduce the disease burden. In many cases, use of prophylactic vaccines can help to control the incidence of infectious diseases. In the present review, we describe some infectious diseases with high impact on health of people in low and middle income countries. We discuss the prospects of plants as alternative platform for the development of next-generation subunit vaccines that can be a cost-effective source for mass immunization of people in developing countries.
Collapse
Affiliation(s)
- Mohammad Tahir Waheed
- />Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Muhammad Sameeullah
- />Department of Horticulture, Faculty of Agriculture and Natural Sciences, Abant Izzet Baysal University, Golkoy Campus, 14280 Bolu, Turkey
| | - Faheem Ahmed Khan
- />Molecular Biotechnology Laboratory for Triticeae Crops, Huazhong Agricultural University, Wuhan, China
| | - Tahira Syed
- />Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Manzoor Ilahi
- />Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | | | - Andreas Günter Lössl
- />Department of Applied Plant Sciences and Plant Biotechnology, University of Natural Resources and Applied Life Sciences, Konrad Lorenz Straße 24, 3430 Tulln an der Donau, Austria
- />AIT Austrian Institute of Technology GmbH, Donau-City-Straße 1, 1220 Vienna, Austria
| |
Collapse
|
74
|
The Art of Gene Redesign and Recombinant Protein Production: Approaches and Perspectives. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
75
|
Shahid N, Tahir S, Rao AQ, Hassan S, Khan A, Latif A, Au Khan M, Tabassum B, Shahid AA, Zafar AU, Husnain T. Escherichia coli expression of NDV fusion protein gene and determination of its antigenic epitopes. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
76
|
Łojewska E, Kowalczyk T, Olejniczak S, Sakowicz T. Extraction and purification methods in downstream processing of plant-based recombinant proteins. Protein Expr Purif 2015; 120:110-7. [PMID: 26742898 DOI: 10.1016/j.pep.2015.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 01/02/2023]
Abstract
During the last two decades, the production of recombinant proteins in plant systems has been receiving increased attention. Currently, proteins are considered as the most important biopharmaceuticals. However, high costs and problems with scaling up the purification and isolation processes make the production of plant-based recombinant proteins a challenging task. This paper presents a summary of the information regarding the downstream processing in plant systems and provides a comprehensible overview of its key steps, such as extraction and purification. To highlight the recent progress, mainly new developments in the downstream technology have been chosen. Furthermore, besides most popular techniques, alternative methods have been described.
Collapse
Affiliation(s)
- Ewelina Łojewska
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland.
| | - Tomasz Kowalczyk
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Szymon Olejniczak
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Tomasz Sakowicz
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| |
Collapse
|
77
|
Takeyama N, Kiyono H, Yuki Y. Plant-based vaccines for animals and humans: recent advances in technology and clinical trials. THERAPEUTIC ADVANCES IN VACCINES 2015; 3:139-54. [PMID: 26668752 DOI: 10.1177/2051013615613272] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It has been about 30 years since the first plant engineering technology was established. Although the concept of plant-based pharmaceuticals or vaccines motivates us to develop practicable commercial products using plant engineering, there are some difficulties in reaching the final goal: to manufacture an approved product. At present, the only plant-made vaccine approved by the United States Department of Agriculture is a Newcastle disease vaccine for poultry that is produced in suspension-cultured tobacco cells. The progress toward commercialization of plant-based vaccines takes much effort and time, but several candidate vaccines for use in humans and animals are in clinical trials. This review discusses plant engineering technologies and regulations relevant to the development of plant-based vaccines and provides an overview of human and animal vaccines currently under clinical trials.
Collapse
Affiliation(s)
- Natsumi Takeyama
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Yuki
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
78
|
Critical review of current and emerging quantification methods for the development of influenza vaccine candidates. Vaccine 2015; 33:5913-9. [DOI: 10.1016/j.vaccine.2015.07.104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/10/2015] [Accepted: 07/28/2015] [Indexed: 01/08/2023]
|
79
|
McComb RC, Ho CL, Bradley KA, Grill LK, Martchenko M. Presentation of peptides from Bacillus anthracis protective antigen on Tobacco Mosaic Virus as an epitope targeted anthrax vaccine. Vaccine 2015; 33:6745-51. [PMID: 26514421 DOI: 10.1016/j.vaccine.2015.10.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/26/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
Abstract
The current anthrax vaccine requires improvements for rapidly invoking longer-lasting neutralizing antibody responses with fewer doses from a well-defined formulation. Designing antigens that target neutralizing antibody epitopes of anthrax protective antigen, a component of anthrax toxin, may offer a solution for achieving a vaccine that can induce strong and long lasting antibody responses with fewer boosters. Here we report implementation of a strategy for developing epitope focused virus nanoparticle vaccines against anthrax by using immunogenic virus particles to present peptides derived from anthrax toxin previously identified in (1) neutralizing antibody epitope mapping studies, (2) toxin crystal structure analyses to identify functional regions, and (3) toxin mutational analyses. We successfully expressed two of three peptide epitopes from anthrax toxin that, in previous reports, bound antibodies that were partially neutralizing against toxin activity, discovered cross-reactivity between vaccine constructs and toxin specific antibodies raised in goats against native toxin and showed that antibodies induced by our vaccine constructs also cross-react with native toxin. While protection against intoxication in cellular and animal studies were not as effective as in previous studies, partial toxin neutralization was observed in animals, demonstrating the feasibility of using plant-virus nanoparticles as a platform for epitope defined anthrax vaccines.
Collapse
Affiliation(s)
| | - Chi-Lee Ho
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kenneth A Bradley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | |
Collapse
|
80
|
Chan HT, Daniell H. Plant-made oral vaccines against human infectious diseases-Are we there yet? PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1056-70. [PMID: 26387509 PMCID: PMC4769796 DOI: 10.1111/pbi.12471] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 05/13/2023]
Abstract
Although the plant-made vaccine field started three decades ago with the promise of developing low-cost vaccines to prevent infectious disease outbreaks and epidemics around the globe, this goal has not yet been achieved. Plants offer several major advantages in vaccine generation, including low-cost production by eliminating expensive fermentation and purification systems, sterile delivery and cold storage/transportation. Most importantly, oral vaccination using plant-made antigens confers both mucosal (IgA) and systemic (IgG) immunity. Studies in the past 5 years have made significant progress in expressing vaccine antigens in edible leaves (especially lettuce), processing leaves or seeds through lyophilization and achieving antigen stability and efficacy after prolonged storage at ambient temperatures. Bioencapsulation of antigens in plant cells protects them from the digestive system; the fusion of antigens to transmucosal carriers enhances efficiency of their delivery to the immune system and facilitates successful development of plant vaccines as oral boosters. However, the lack of oral priming approaches diminishes these advantages because purified antigens, cold storage/transportation and limited shelf life are still major challenges for priming with adjuvants and for antigen delivery by injection. Yet another challenge is the risk of inducing tolerance without priming the host immune system. Therefore, mechanistic aspects of these two opposing processes (antibody production or suppression) are discussed in this review. In addition, we summarize recent progress made in oral delivery of vaccine antigens expressed in plant cells via the chloroplast or nuclear genomes and potential challenges in achieving immunity against infectious diseases using cold-chain-free vaccine delivery approaches.
Collapse
Affiliation(s)
| | - Henry Daniell
- Correspondence (Tel 215 746 2563; fax 215 898 3695; )
| |
Collapse
|
81
|
Peyret H, Lomonossoff GP. When plant virology met Agrobacterium: the rise of the deconstructed clones. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1121-35. [PMID: 26073158 PMCID: PMC4744784 DOI: 10.1111/pbi.12412] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 05/20/2023]
Abstract
In the early days of molecular farming, Agrobacterium-mediated stable genetic transformation and the use of plant virus-based vectors were considered separate and competing technologies with complementary strengths and weaknesses. The demonstration that 'agroinfection' was the most efficient way of delivering virus-based vectors to their target plants blurred the distinction between the two technologies and permitted the development of 'deconstructed' vectors based on a number of plant viruses. The tobamoviruses, potexviruses, tobraviruses, geminiviruses and comoviruses have all been shown to be particularly well suited to the development of such vectors in dicotyledonous plants, while the development of equivalent vectors for use in monocotyledonous plants has lagged behind. Deconstructed viral vectors have proved extremely effective at the rapid, high-level production of a number of pharmaceutical proteins, some of which are currently undergoing clinical evaluation.
Collapse
Affiliation(s)
- Hadrien Peyret
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| | - George P Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
82
|
Streatfield SJ, Kushnir N, Yusibov V. Plant-produced candidate countermeasures against emerging and reemerging infections and bioterror agents. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1136-59. [PMID: 26387510 PMCID: PMC7167919 DOI: 10.1111/pbi.12475] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/06/2015] [Accepted: 08/19/2015] [Indexed: 05/20/2023]
Abstract
Despite progress in the prevention and treatment of infectious diseases, they continue to present a major threat to public health. The frequency of emerging and reemerging infections and the risk of bioterrorism warrant significant efforts towards the development of prophylactic and therapeutic countermeasures. Vaccines are the mainstay of infectious disease prophylaxis. Traditional vaccines, however, are failing to satisfy the global demand because of limited scalability of production systems, long production timelines and product safety concerns. Subunit vaccines are a highly promising alternative to traditional vaccines. Subunit vaccines, as well as monoclonal antibodies and other therapeutic proteins, can be produced in heterologous expression systems based on bacteria, yeast, insect cells or mammalian cells, in shorter times and at higher quantities, and are efficacious and safe. However, current recombinant systems have certain limitations associated with production capacity and cost. Plants are emerging as a promising platform for recombinant protein production due to time and cost efficiency, scalability, lack of harboured mammalian pathogens and possession of the machinery for eukaryotic post-translational protein modification. So far, a variety of subunit vaccines, monoclonal antibodies and therapeutic proteins (antivirals) have been produced in plants as candidate countermeasures against emerging, reemerging and bioterrorism-related infections. Many of these have been extensively evaluated in animal models and some have shown safety and immunogenicity in clinical trials. Here, we overview ongoing efforts to producing such plant-based countermeasures.
Collapse
Affiliation(s)
| | - Natasha Kushnir
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| |
Collapse
|
83
|
Sack M, Rademacher T, Spiegel H, Boes A, Hellwig S, Drossard J, Stoger E, Fischer R. From gene to harvest: insights into upstream process development for the GMP production of a monoclonal antibody in transgenic tobacco plants. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1094-105. [PMID: 26214282 DOI: 10.1111/pbi.12438] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 05/22/2023]
Abstract
The EU Sixth Framework Programme Integrated Project 'Pharma-Planta' developed an approved manufacturing process for recombinant plant-made pharmaceutical proteins (PMPs) using the human HIV-neutralizing monoclonal antibody 2G12 as a case study. In contrast to the well-established Chinese hamster ovary platform, which has been used for the production of therapeutic antibodies for nearly 30 years, only draft regulations were initially available covering the production of recombinant proteins in transgenic tobacco plants. Whereas recombinant proteins produced in animal cells are secreted into the culture medium during fermentation in bioreactors, intact plants grown under nonsterile conditions in a glasshouse environment provide various 'plant-specific' regulatory and technical challenges for the development of a process suitable for the acquisition of a manufacturing licence for clinical phase I trials. During upstream process development, several generic steps were addressed (e.g. plant transformation and screening, seed bank generation, genetic stability, host plant uniformity) as well as product-specific aspects (e.g. product quantity). This report summarizes the efforts undertaken to analyse and define the procedures for the GMP/GACP-compliant upstream production of 2G12 in transgenic tobacco plants from gene to harvest, including the design of expression constructs, plant transformation, the generation of production lines, master and working seed banks and the detailed investigation of cultivation and harvesting parameters and their impact on biomass, product yield and intra/interbatch variability. The resulting procedures were successfully translated into a prototypic manufacturing process that has been approved by the German competent authority.
Collapse
Affiliation(s)
- Markus Sack
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Thomas Rademacher
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stephan Hellwig
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Juergen Drossard
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology (IAGZ), University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rainer Fischer
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| |
Collapse
|
84
|
Ruiz V, Mozgovoj MV, Dus Santos MJ, Wigdorovitz A. Plant-produced viral bovine vaccines: what happened during the last 10 years? PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1071-1077. [PMID: 26250843 DOI: 10.1111/pbi.12440] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/05/2015] [Accepted: 06/27/2015] [Indexed: 06/04/2023]
Abstract
Vaccination has proved to be an efficient strategy to deal with viral infections in both human and animal species. However, protection of cattle against viral infections is still a major concern in veterinary science. During the last two decades, the development of efficient plant-based expression strategies for recombinant proteins prompted the application of this methodology for veterinary vaccine purposes. The main goals of viral bovine vaccines are to improve the health and welfare of cattle and increase the production of livestock, in a cost-effective manner. This review explores some of the more prominent recent advances in plant-made viral bovine vaccines against foot-and-mouth disease virus (FMDV), bovine rotavirus (BRV), bovine viral diarrhoea virus (BVDV), bluetongue virus (BTV) and bovine papillomavirus (BPV), some of which are considered to be the most important viral causative agents of economic loss in cattle production.
Collapse
Affiliation(s)
- Vanesa Ruiz
- Instituto de Virología, CICVyA, INTA, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Marina V Mozgovoj
- Instituto de Virología, CICVyA, INTA, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - María José Dus Santos
- Instituto de Virología, CICVyA, INTA, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrés Wigdorovitz
- Instituto de Virología, CICVyA, INTA, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
85
|
Salazar-González JA, González-Ortega O, Rosales-Mendoza S. Gold nanoparticles and vaccine development. Expert Rev Vaccines 2015; 14:1197-211. [DOI: 10.1586/14760584.2015.1064772] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jorge Alberto Salazar-González
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, México
| | - Omar González-Ortega
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, México
| | | |
Collapse
|
86
|
Firsov A, Tarasenko I, Mitiouchkina T, Ismailova N, Shaloiko L, Vainstein A, Dolgov S. High-Yield Expression of M2e Peptide of Avian Influenza Virus H5N1 in Transgenic Duckweed Plants. Mol Biotechnol 2015; 57:653-61. [PMID: 25740321 DOI: 10.1007/s12033-015-9855-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Avian influenza is a major viral disease in poultry. Antigenic variation of this virus hinders vaccine development. However, the extracellular domain of the virus-encoded M2 protein (peptide M2e) is nearly invariant in all influenza A strains, enabling the development of a broad-range vaccine against them. Antigen expression in transgenic plants is becoming a popular alternative to classical expression methods. Here we expressed M2e from avian influenza virus A/chicken/Kurgan/5/2005(H5N1) in nuclear-transformed duckweed plants for further development of avian influenza vaccine. The N-terminal fragment of M2, including M2e, was selected for expression. The M2e DNA sequence fused in-frame to the 5' end of β-glucuronidase was cloned into pBI121 under the control of CaMV 35S promoter. The resulting plasmid was successfully used for duckweed transformation, and western analysis with anti-β-glucuronidase and anti-M2e antibodies confirmed accumulation of the target protein (M130) in 17 independent transgenic lines. Quantitative ELISA of crude protein extracts from these lines showed M130-β-glucuronidase accumulation ranging from 0.09-0.97 mg/g FW (0.12-1.96 % of total soluble protein), equivalent to yields of up to 40 μg M2e/g plant FW. This relatively high yield holds promise for the development of a duckweed-based expression system to produce an edible vaccine against avian influenza.
Collapse
Affiliation(s)
- Aleksey Firsov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Prospekt Nauki, 6, Pushchino, Moscow region, Russian Federation, 142290,
| | | | | | | | | | | | | |
Collapse
|
87
|
Monreal-Escalante E, Bañuelos-Hernández B, Hernández M, Fragoso G, Garate T, Sciutto E, Rosales-Mendoza S. Expression of Multiple Taenia Solium Immunogens in Plant Cells Through a Ribosomal Skip Mechanism. Mol Biotechnol 2015; 57:635-43. [PMID: 25761936 DOI: 10.1007/s12033-015-9853-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Taenia solium cysticercosis is a major parasitic disease that affects the human health and the economy in underdeveloped countries. Porcine cysticercosis, an obligatory stage in the parasite life cycle, is a suitable target for vaccination. While several recombinant and synthetic antigens proved to be effective as vaccines, the cost and logistic difficulties have prevented their massive use. Taking this into account, a novel strategy for developing a multi-epitope low-cost vaccine is herein explored. The S3Pvac vaccine components (KETc1, KETc12, KETc7, and GK1 [KETc7]) and the protective HP6/TSOL18 antigen were expressed in a Helios2A polyprotein system, based on the 'ribosomal skip' mechanism mediated by the 2A sequence (LLNFDLLKLAGDVESNPG-P) derived from the Foot-and-mouth disease virus, which induces self-cleavage events at a translational level. This protein arrangement was expressed in transgenic tobacco cells. The inserted sequence and its transcript were detected in several Helios2A lines, with some lines showing recombinant protein accumulation levels up to 1.3 µg/g of fresh weight in leaf tissues. The plant-derived Helios2A vaccine was recognized by antibodies in the cerebral spinal fluid from neurocysticercosis patients and elicited specific antibodies in BALB/c immunized mice. These evidences point to the Helios2A polyprotein as a promising system for expressing multiple antigens of interest for vaccination and diagnosis in one single construction.
Collapse
Affiliation(s)
- Elizabeth Monreal-Escalante
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosi, SLP, Mexico
| | | | | | | | | | | | | |
Collapse
|
88
|
Salazar-González JA, Angulo C, Rosales-Mendoza S. Chikungunya virus vaccines: Current strategies and prospects for developing plant-made vaccines. Vaccine 2015; 33:3650-8. [PMID: 26073010 DOI: 10.1016/j.vaccine.2015.05.104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 05/25/2015] [Accepted: 05/28/2015] [Indexed: 12/18/2022]
Abstract
Chikungunya virus is an emerging pathogen initially found in East Africa and currently spread into the Indian Ocean Islands, many regions of South East Asia, and in the Americas. No licensed vaccines against this eminent pathogen are available and thus intensive research in this field is a priority. This review presents the current scenario on the developments of Chikungunya virus vaccines and identifies the use of genetic engineered plants to develop attractive vaccines. The possible avenues to develop plant-made vaccines with distinct antigenic designs and expression modalities are identified and discussed considering current trends in the field.
Collapse
Affiliation(s)
- Jorge A Salazar-González
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, SLP, Mexico
| | - Carlos Angulo
- Grupo de Inmunología y Vacunología, Centro de Investigaciones Biológicas del Noroeste, SC., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., C.P. 23096 Mexico City, Mexico
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, SLP, Mexico.
| |
Collapse
|
89
|
Moustafa K, Makhzoum A, Trémouillaux-Guiller J. Molecular farming on rescue of pharma industry for next generations. Crit Rev Biotechnol 2015; 36:840-50. [DOI: 10.3109/07388551.2015.1049934] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
90
|
Rosales-Mendoza S, Govea-Alonso DO. The potential of plants for the production and delivery of human papillomavirus vaccines. Expert Rev Vaccines 2015; 14:1031-41. [PMID: 25882610 DOI: 10.1586/14760584.2015.1037744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The available vaccines against human papillomavirus have some limitations such as low coverage due to their high cost, reduced immune coverage and the lack of therapeutic effects. Recombinant vaccines produced in plants (genetically engineered using stable or transient expression systems) offer the possibility to obtain low cost, efficacious and easy to administer vaccines. The status on the development of plant-based vaccines against human papillomavirus is analyzed and placed in perspective in this review. Some candidates have been characterized at a preclinical level with interesting outcomes. However, there is a need to perform the immunological characterization of several vaccine prototypes, especially through the oral administration route, as well as develop new candidates based on new chimeric designs intended to provide broader immunoprotection and therapeutic activity.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, México, USA
| | | |
Collapse
|
91
|
Permyakova NV, Zagorskaya AA, Belavin PA, Uvarova EA, Nosareva OV, Nesterov AE, Novikovskaya AA, Zav'yalov EL, Moshkin MP, Deineko EV. Transgenic carrot expressing fusion protein comprising M. tuberculosis antigens induces immune response in mice. BIOMED RESEARCH INTERNATIONAL 2015; 2015:417565. [PMID: 25949997 PMCID: PMC4407408 DOI: 10.1155/2015/417565] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/20/2015] [Indexed: 01/26/2023]
Abstract
Tuberculosis remains one of the major infectious diseases, which continues to pose a major global health problem. Transgenic plants may serve as bioreactors to produce heterologous proteins including antibodies, antigens, and hormones. In the present study, a genetic construct has been designed that comprises the Mycobacterium tuberculosis genes cfp10, esat6 and dIFN gene, which encode deltaferon, a recombinant analog of the human γ-interferon designed for expression in plant tissues. This construct was transferred to the carrot (Daucus carota L.) genome by Agrobacterium-mediated transformation. This study demonstrates that the fusion protein CFP10-ESAT6-dIFN is synthesized in the transgenic carrot storage roots. The protein is able to induce both humoral and cell-mediated immune responses in laboratory animals (mice) when administered either orally or by injection. It should be emphasized that M. tuberculosis antigens contained in the fusion protein have no cytotoxic effect on peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- Natalia V. Permyakova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Prospect Lavrentieva 10, Novosibirsk 630090, Russia
| | - Alla A. Zagorskaya
- Institute of Cytology and Genetics, Russian Academy of Sciences, Prospect Lavrentieva 10, Novosibirsk 630090, Russia
| | - Pavel A. Belavin
- Institute of Cytology and Genetics, Russian Academy of Sciences, Prospect Lavrentieva 10, Novosibirsk 630090, Russia
| | - Elena A. Uvarova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Prospect Lavrentieva 10, Novosibirsk 630090, Russia
| | - Olesya V. Nosareva
- Institute of Cytology and Genetics, Russian Academy of Sciences, Prospect Lavrentieva 10, Novosibirsk 630090, Russia
- State Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk 630559, Russia
| | - Andrey E. Nesterov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Prospect Lavrentieva 10, Novosibirsk 630090, Russia
- State Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk 630559, Russia
| | - Anna A. Novikovskaya
- Institute of Cytology and Genetics, Russian Academy of Sciences, Prospect Lavrentieva 10, Novosibirsk 630090, Russia
| | - Evgeniy L. Zav'yalov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Prospect Lavrentieva 10, Novosibirsk 630090, Russia
| | - Mikhail P. Moshkin
- Institute of Cytology and Genetics, Russian Academy of Sciences, Prospect Lavrentieva 10, Novosibirsk 630090, Russia
| | - Elena V. Deineko
- Institute of Cytology and Genetics, Russian Academy of Sciences, Prospect Lavrentieva 10, Novosibirsk 630090, Russia
| |
Collapse
|
92
|
Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, Samaj J. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnol Adv 2015; 33:1024-42. [PMID: 25819757 DOI: 10.1016/j.biotechadv.2015.03.012] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 03/05/2015] [Accepted: 03/19/2015] [Indexed: 12/20/2022]
Abstract
Agrobacterium tumefaciens is widely used as a versatile tool for development of stably transformed model plants and crops. However, the development of Agrobacterium based transient plant transformation methods attracted substantial attention in recent years. Transient transformation methods offer several applications advancing stable transformations such as rapid and scalable recombinant protein production and in planta functional genomics studies. Herein, we highlight Agrobacterium and plant genetics factors affecting transfer of T-DNA from Agrobacterium into the plant cell nucleus and subsequent transient transgene expression. We also review recent methods concerning Agrobacterium mediated transient transformation of model plants and crops and outline key physical, physiological and genetic factors leading to their successful establishment. Of interest are especially Agrobacterium based reverse genetics studies in economically important crops relying on use of RNA interference (RNAi) or virus-induced gene silencing (VIGS) technology. The applications of Agrobacterium based transient plant transformation technology in biotech industry are presented in thorough detail. These involve production of recombinant proteins (plantibodies, vaccines and therapeutics) and effectoromics-assisted breeding of late blight resistance in potato. In addition, we also discuss biotechnological potential of recombinant GFP technology and present own examples of successful Agrobacterium mediated transient plant transformations.
Collapse
Affiliation(s)
- Pavel Krenek
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Olga Samajova
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Ivan Luptovciak
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Anna Doskocilova
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Jozef Samaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
93
|
Rosales-Mendoza S, Ríos-Huerta R, Angulo C. An overview of tuberculosis plant-derived vaccines. Expert Rev Vaccines 2015; 14:877-89. [PMID: 25683476 DOI: 10.1586/14760584.2015.1015996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tuberculosis (TB) is a leading fatal infectious disease to which the current BCG vaccine has a questionable efficacy in adults. Thus, the development of improved vaccines against TB is needed. In addition, decreasing the cost of vaccine formulations is required for broader vaccination coverage through global vaccination programs. In this regard, the use of plants as biofactories and delivery vehicles of TB vaccines has been researched over the last decade. These studies are systematically analyzed in the present review and placed in perspective. It is considered that substantial preclinical trials are still required to address improvements in expression levels as well as immunological data. Approaches for testing additional antigenic configurations with higher yields and improved immunogenic properties are also discussed.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, 78210, México
| | | | | |
Collapse
|
94
|
Raven N, Rasche S, Kuehn C, Anderlei T, Klöckner W, Schuster F, Henquet M, Bosch D, Büchs J, Fischer R, Schillberg S. Scaled-up manufacturing of recombinant antibodies produced by plant cells in a 200-L orbitally-shaken disposable bioreactor. Biotechnol Bioeng 2015; 112:308-21. [PMID: 25117428 DOI: 10.1002/bit.25352] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/16/2014] [Accepted: 07/22/2014] [Indexed: 12/18/2022]
Abstract
Tobacco BY-2 cells have emerged as a promising platform for the manufacture of biopharmaceutical proteins, offering efficient protein secretion, favourable growth characteristics and cultivation in containment under a controlled environment. The cultivation of BY-2 cells in disposable bioreactors is a useful alternative to conventional stainless steel stirred-tank reactors, and orbitally-shaken bioreactors could provide further advantages such as simple bag geometry, scalability and predictable process settings. We carried out a scale-up study, using a 200-L orbitally-shaken bioreactor holding disposable bags, and BY-2 cells producing the human monoclonal antibody M12. We found that cell growth and recombinant protein accumulation were comparable to standard shake flask cultivation, despite a 200-fold difference in cultivation volume. Final cell fresh weights of 300-387 g/L and M12 yields of ∼20 mg/L were achieved with both cultivation methods. Furthermore, we established an efficient downstream process for the recovery of M12 from the culture broth. The viscous spent medium prevented clarification using filtration devices, but we used expanded bed adsorption (EBA) chromatography with SP Sepharose as an alternative for the efficient capture of the M12 antibody. EBA was introduced as an initial purification step prior to protein A affinity chromatography, resulting in an overall M12 recovery of 75-85% and a purity of >95%. Our results demonstrate the suitability of orbitally-shaken bioreactors for the scaled-up cultivation of plant cell suspension cultures and provide a strategy for the efficient purification of antibodies from the BY-2 culture medium.
Collapse
Affiliation(s)
- Nicole Raven
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Boes A, Spiegel H, Edgue G, Kapelski S, Scheuermayer M, Fendel R, Remarque E, Altmann F, Maresch D, Reimann A, Pradel G, Schillberg S, Fischer R. Detailed functional characterization of glycosylated and nonglycosylated variants of malaria vaccine candidate PfAMA1 produced in Nicotiana benthamiana and analysis of growth inhibitory responses in rabbits. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:222-34. [PMID: 25236489 DOI: 10.1111/pbi.12255] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/07/2014] [Accepted: 08/10/2014] [Indexed: 06/03/2023]
Abstract
One of the most promising malaria vaccine candidate antigens is the Plasmodium falciparum apical membrane antigen 1 (PfAMA1). Several studies have shown that this blood-stage antigen can induce strong parasite growth inhibitory antibody responses. PfAMA1 contains up to six recognition sites for N-linked glycosylation, a post-translational modification that is absent in P. falciparum. To prevent any potential negative impact of N-glycosylation, the recognition sites have been knocked out in most PfAMA1 variants expressed in eukaryotic hosts. However, N-linked glycosylation may increase efficacy by improving immunogenicity and/or focusing the response towards relevant epitopes by glycan masking. We describe the production of glycosylated and nonglycosylated PfAMA1 in Nicotiana benthamiana and its detailed characterization in terms of yield, integrity and protective efficacy. Both PfAMA1 variants accumulated to high levels (>510 μg/g fresh leaf weight) after transient expression, and high-mannose-type N-glycans were confirmed for the glycosylated variant. No significant differences between the N. benthamiana and Pichia pastoris PfAMA1 variants were detected in conformation-sensitive ligand-binding studies. Specific titres of >2 × 10(6) were induced in rabbits, and strong reactivity with P. falciparum schizonts was observed in immunofluorescence assays, as well as up to 100% parasite growth inhibition for both variants, with IC₅₀ values of ~35 μg/mL. Competition assays indicated that a number of epitopes were shielded from immune recognition by N-glycans, warranting further studies to determine how glycosylation can be used for the directed targeting of immune responses. These results highlight the potential of plant transient expression systems as a production platform for vaccine candidates.
Collapse
Affiliation(s)
- Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Fahad S, Khan FA, Pandupuspitasari NS, Ahmed MM, Liao YC, Waheed MT, Sameeullah M, Darkhshan, Hussain S, Saud S, Hassan S, Jan A, Jan MT, Wu C, Chun MX, Huang J. Recent developments in therapeutic protein expression technologies in plants. Biotechnol Lett 2015; 37:265-79. [PMID: 25326175 PMCID: PMC7088338 DOI: 10.1007/s10529-014-1699-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/06/2014] [Indexed: 12/17/2022]
Abstract
Infectious diseases and cancers are some of the commonest causes of deaths throughout the world. The previous two decades have witnessed a combined endeavor across various biological sciences to address this issue in novel ways. The advent of recombinant DNA technologies has provided the tools for producing recombinant proteins that can be used as therapeutic agents. A number of expression systems have been developed for the production of pharmaceutical products. Recently, advances have been made using plants as bioreactors to produce therapeutic proteins directed against infectious diseases and cancers. This review highlights the recent progress in therapeutic protein expression in plants (stable and transient), the factors affecting heterologous protein expression, vector systems and recent developments in existing technologies and steps towards the industrial production of plant-made vaccines, antibodies, and biopharmaceuticals.
Collapse
Affiliation(s)
- Shah Fahad
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei China
| | - Faheem Ahmed Khan
- Molecular Biotechnology Laboratory for Triticeae Crops, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070 China
| | | | | | - Yu Cai Liao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Muhammad Sameeullah
- Biotechnology Lab., Department of Biology, Faculty of Science and Arts, Abant Izzet Baysal University, Golkoy Campus, 14280 Bolu, Turkey
| | - Darkhshan
- Women Institute of Learning, Abbottabad, Pakistan
| | - Saddam Hussain
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei China
| | - Shah Saud
- Department of Horticultural, Northeast Agricultural University, Harbin, 150030 China
| | - Shah Hassan
- Agriculture University, Peshawar, 25000 Pakistan
| | | | | | - Chao Wu
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei China
| | - Ma Xiao Chun
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei China
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070 Hubei China
| |
Collapse
|
97
|
Salazar-González JA, Bañuelos-Hernández B, Rosales-Mendoza S. Current status of viral expression systems in plants and perspectives for oral vaccines development. PLANT MOLECULAR BIOLOGY 2015; 87:203-17. [PMID: 25560432 DOI: 10.1007/s11103-014-0279-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/22/2014] [Indexed: 05/23/2023]
Abstract
During the last 25 years, the technology to produce recombinant vaccines in plant cells has evolved from modest proofs of the concept to viable technologies adopted by some companies due to significant improvements in the field. Viral-based expression strategies have importantly contributed to this success owing to high yields, short production time (which is in most cases free of tissue culture steps), and the implementation of confined processes for production under GMPs. Herein the distinct expression systems based on viral elements are analyzed. This review also presents the outlook on how these technologies have been successfully applied to the development of plant-based vaccines, some of them being in advanced stages of development. Perspectives on how viral expression systems could allow for the development of innovative oral vaccines constituted by minimally-processed plant biomass are discussed.
Collapse
Affiliation(s)
- Jorge A Salazar-González
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, SLP, Mexico
| | | | | |
Collapse
|
98
|
Burman R, Yeshak MY, Larsson S, Craik DJ, Rosengren KJ, Göransson U. Distribution of circular proteins in plants: large-scale mapping of cyclotides in the Violaceae. FRONTIERS IN PLANT SCIENCE 2015; 6:855. [PMID: 26579135 PMCID: PMC4621522 DOI: 10.3389/fpls.2015.00855] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/28/2015] [Indexed: 05/02/2023]
Abstract
During the last decade there has been increasing interest in small circular proteins found in plants of the violet family (Violaceae). These so-called cyclotides consist of a circular chain of approximately 30 amino acids, including six cysteines forming three disulfide bonds, arranged in a cyclic cystine knot (CCK) motif. In this study we map the occurrence and distribution of cyclotides throughout the Violaceae. Plant material was obtained from herbarium sheets containing samples up to 200 years of age. Even the oldest specimens contained cyclotides in the preserved leaves, with no degradation products observable, confirming their place as one of the most stable proteins in nature. Over 200 samples covering 17 of the 23-31 genera in Violaceae were analyzed, and cyclotides were positively identified in 150 species. Each species contained a unique set of between one and 25 cyclotides, with many exclusive to individual plant species. We estimate the number of different cyclotides in the Violaceae to be 5000-25,000, and propose that cyclotides are ubiquitous among all Violaceae species. Twelve new cyclotides from six phylogenetically dispersed genera were sequenced. Furthermore, the first glycosylated derivatives of cyclotides were identified and characterized, further increasing the diversity and complexity of this unique protein family.
Collapse
Affiliation(s)
- Robert Burman
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala UniversityUppsala, Sweden
| | - Mariamawit Y. Yeshak
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala UniversityUppsala, Sweden
- Department of Pharmacognosy, School of Pharmacy, Addis Ababa UniversityAddis Ababa, Ethiopia
| | - Sonny Larsson
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala UniversityUppsala, Sweden
| | - David J. Craik
- Craik Lab, Chemistry and Structural Biology Division, Institute for Molecular Bioscience, The University of QueenslandBrisbane, QLD, Australia
| | - K. Johan Rosengren
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala UniversityUppsala, Sweden
- Laboratory for Peptide Structural Biology, School of Biomedical Sciences, The University of QueenslandBrisbane, QLD, Australia
| | - Ulf Göransson
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala UniversityUppsala, Sweden
- *Correspondence: Ulf Göransson
| |
Collapse
|
99
|
Mucosal Vaccines from Plant Biotechnology. Mucosal Immunol 2015. [PMCID: PMC7158328 DOI: 10.1016/b978-0-12-415847-4.00065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of plants for production of recombinant proteins has evolved over the past 25 years. The first plant-based vaccines were expressed in stably transgenic plants, with the idea to conveniently deliver “edible vaccines” by ingestion of the antigen-containing plant material. These systems provided a proof of concept that oral delivery of vaccines in crude plant material could stimulate antigen-specific serum and mucosal antibodies. Transgenic grains like rice in particular provide a stable and robust vehicle for antigen delivery. However, some issues exist with stably transgenic plants, including relatively low expression levels and regulatory issues. Thus, many recent studies use transient expression with plant viral vectors to achieve rapid high expression in Nicotiana benthamiana, followed by purification of antigen and intranasal delivery for effective stimulation of mucosal immune responses.
Collapse
|
100
|
Abstract
Whereas active immunity refers to the process of exposing the individual to an antigen to generate an adaptive immune response, passive immunity refers to the transfer of antibodies from one individual to another. Passive immunity provides immediate but short-lived protection, lasting several weeks up to 3 or 4 months. Passive immunity can occur naturally, when maternal antibodies are transferred to the fetus through the placenta or from breast milk to the gut of the infant. It can also be produced artificially, when antibody preparations derived from sera or secretions of immunized donors or, more recently, different antibody producing platforms are transferred via systemic or mucosal route to nonimmune individuals. Passive immunization has recently become an attractive approach because of the emergence of new and drug-resistant microorganisms, diseases that are unresponsive to drug therapy and individuals with an impaired immune system who are unable to respond to conventional vaccines. This chapter addresses the contributions of natural and artificial acquired passive immunity in understanding the concept of passive immunization. We will mainly focus on administration of antibodies for protection against various infectious agents entering through mucosal surfaces.
Collapse
|