51
|
Balikagala B, Fukuda N, Ikeda M, Katuro OT, Tachibana SI, Yamauchi M, Opio W, Emoto S, Anywar DA, Kimura E, Palacpac NMQ, Odongo-Aginya EI, Ogwang M, Horii T, Mita T. Evidence of Artemisinin-Resistant Malaria in Africa. N Engl J Med 2021; 385:1163-1171. [PMID: 34551228 DOI: 10.1056/nejmoa2101746] [Citation(s) in RCA: 405] [Impact Index Per Article: 135.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND In the six Southeast Asian countries that make up the Greater Mekong Subregion, Plasmodium falciparum has developed resistance to derivatives of artemisinin, the main component of first-line treatments for malaria. Clinical resistance to artemisinin monotherapy in other global regions, including Africa, would be problematic. METHODS In this longitudinal study conducted in Northern Uganda, we treated patients who had P. falciparum infection with intravenous artesunate (a water-soluble artemisinin derivative) and estimated the parasite clearance half-life. We evaluated ex vivo susceptibility of the parasite using a ring-stage survival assay and genotyped resistance-related genes. RESULTS From 2017 through 2019, a total of 14 of 240 patients who received intravenous artesunate had evidence of in vivo artemisinin resistance (parasite clearance half-life, >5 hours). Of these 14 patients, 13 were infected with P. falciparum parasites with mutations in the A675V or C469Y allele in the kelch13 gene. Such mutations were associated with prolonged parasite clearance half-lives (geometric mean, 3.95 hours for A675V and 3.30 hours for C469Y, vs. 1.78 hours for wild-type allele; P<0.001 and P = 0.05, respectively). The ring-stage survival assay showed a higher frequency of parasite survival among organisms with the A675V allele than among those with the wild-type allele. The prevalence of parasites with kelch13 mutations increased significantly, from 3.9% in 2015 to 19.8% in 2019, due primarily to the increased frequency of the A675V and C469Y alleles (P<0.001 and P = 0.004, respectively). Single-nucleotide polymorphisms flanking the A675V mutation in Uganda were substantially different from those in Southeast Asia. CONCLUSIONS The independent emergence and local spread of clinically artemisinin-resistant P. falciparum has been identified in Africa. The two kelch13 mutations may be markers for detection of these resistant parasites. (Funded by the Japan Society for the Promotion of Science and others.).
Collapse
Affiliation(s)
- Betty Balikagala
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Naoyuki Fukuda
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Mie Ikeda
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Osbert T Katuro
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Shin-Ichiro Tachibana
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Masato Yamauchi
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Walter Opio
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Sakurako Emoto
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Denis A Anywar
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Eisaku Kimura
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Nirianne M Q Palacpac
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Emmanuel I Odongo-Aginya
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Martin Ogwang
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Toshihiro Horii
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| | - Toshihiro Mita
- From the Department of Tropical Medicine and Parasitology, School of Medicine (B.B., N.F., M.I., S.-I.T., M.Y., S.E., T.M.), and the Atopy Research Center, Graduate School of Medicine (B.B.), Juntendo University, Tokyo, the School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki (E.K.), and the Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka (N.M.Q.P., T.H.) - all in Japan; and Mildmay Uganda, Nazibwa Hill, Kampala (O.T.K.), and St. Mary's Hospital Lacor (W.O., M.O.) and the Faculty of Medicine, Gulu University (D.A.A., E.I.O.-A.), Gulu - all in Uganda
| |
Collapse
|
52
|
Noreen N, Ullah A, Salman SM, Mabkhot Y, Alsayari A, Badshah SL. New insights into the spread of resistance to artemisinin and its analogues. J Glob Antimicrob Resist 2021; 27:142-149. [PMID: 34517141 DOI: 10.1016/j.jgar.2021.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022] Open
Abstract
Plasmodium falciparum, the causative agent of malaria, has been developing resistance to several drugs worldwide for more than five decades. Initially, resistance was against drugs such as chloroquine, pyrimethamine, sulfadoxine, mefloquine and quinine. Research studies are now reporting parasites with resistance to the most effective and novel drug used against malaria infection worldwide, namely artemisinin. For this reason, the first-line treatment strategy of artemisinin-based combination therapy is becoming unsuccessful in areas where drug resistance is highly prevalent. The increase in artemisinin-resistant P. falciparum strains has threatened international efforts to eliminate malarial infections and to reduce the disease burden. Detection of several phenotypes that display artemisinin resistance, specification of basic genetic factors, the discovery of molecular pathways, and evaluation of its clinical outcome are possible by the current series of research on genomics and transcriptomic levels in Asia and Africa. In artemisinin resistance, slow parasite clearance among malaria-infected patients and enhanced in vitro survival of parasites occurs at the early ring stage. This resistance is due to single nucleotide polymorphisms within the Kelch 13 gene of the parasite and is related to significantly upregulated resistance signalling pathways; thus, the pro-oxidant action of artemisinins can be antagonised. New strategies are required to halt the spread of artemisinin-resistant malarial parasites.
Collapse
Affiliation(s)
- Noreen Noreen
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan
| | - Asad Ullah
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan
| | | | - Yahia Mabkhot
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia.
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan.
| |
Collapse
|
53
|
Jin X, Zhu S, Xu W, Chen J, Ruan W, Wang X. Limited polymorphism in k13 gene of Plasmodium falciparum and k12 of Plasmodium vivax isolates imported from African and Asian countries between 2014 and 2019 in Hangzhou city, China. BMC Infect Dis 2021; 21:853. [PMID: 34418991 PMCID: PMC8379771 DOI: 10.1186/s12879-021-06579-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022] Open
Abstract
Background Malaria causes major public health problems globally and drug resistance hinders its control and elimination. Molecular markers associated with drug resistance are considered as a beneficial tool to monitor the disease trends, evolution and distribution so as to help improve drug policy. Methods We collected 148 Plasmodium falciparum and 20 Plasmodium vivax isolates imported into Hangzhou city, China between 2014 and 2019. k13 gene of P. falciparum and k12 of P. vivax were sequenced. Polymorphisms and prevalence of k13 and k12 were analyzed. Results Most (98.65%, 146/148) P. falciparum infections were imported from Africa, and half P. vivax cases came from Africa and the other half from Asia. Nucleotide mutation prevalence was 2.03% (3/148) and the proportion of amino acid mutations was 0.68% (1/148). The amino acid mutation, A676S, was observed in an isolate from Nigeria. No mutation of k12 was observed from the parasites from African and Asian countries. Conclusions Limited polymorphism in k13 gene of P. falciparum isolates imported from African countries, but no evidence for the polymorphism of k12 in P. vivax samples from African and Asian countries was found. These results provide information for drug policy update in study region. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06579-6.
Collapse
Affiliation(s)
- Xingyi Jin
- Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, China
| | - Sujuan Zhu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, China
| | - Weimin Xu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, China
| | - Junfang Chen
- Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, China
| | - Wei Ruan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Xiaoxiao Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| |
Collapse
|
54
|
Jacob CG, Thuy-Nhien N, Mayxay M, Maude RJ, Quang HH, Hongvanthong B, Vanisaveth V, Ngo Duc T, Rekol H, van der Pluijm R, von Seidlein L, Fairhurst R, Nosten F, Hossain MA, Park N, Goodwin S, Ringwald P, Chindavongsa K, Newton P, Ashley E, Phalivong S, Maude R, Leang R, Huch C, Dong LT, Nguyen KT, Nhat TM, Hien TT, Nguyen H, Zdrojewski N, Canavati S, Sayeed AA, Uddin D, Buckee C, Fanello CI, Onyamboko M, Peto T, Tripura R, Amaratunga C, Myint Thu A, Delmas G, Landier J, Parker DM, Chau NH, Lek D, Suon S, Callery J, Jittamala P, Hanboonkunupakarn B, Pukrittayakamee S, Phyo AP, Smithuis F, Lin K, Thant M, Hlaing TM, Satpathi P, Satpathi S, Behera PK, Tripura A, Baidya S, Valecha N, Anvikar AR, Ul Islam A, Faiz A, Kunasol C, Drury E, Kekre M, Ali M, Love K, Rajatileka S, Jeffreys AE, Rowlands K, Hubbart CS, Dhorda M, Vongpromek R, Kotanan N, Wongnak P, Almagro Garcia J, Pearson RD, Ariani CV, Chookajorn T, Malangone C, Nguyen T, Stalker J, Jeffery B, Keatley J, Johnson KJ, Muddyman D, Chan XHS, Sillitoe J, Amato R, Simpson V, Gonçalves S, Rockett K, Day NP, Dondorp AM, Kwiatkowski DP, Miotto O. Genetic surveillance in the Greater Mekong subregion and South Asia to support malaria control and elimination. eLife 2021; 10:e62997. [PMID: 34372970 PMCID: PMC8354633 DOI: 10.7554/elife.62997] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 06/30/2021] [Indexed: 02/04/2023] Open
Abstract
Background National Malaria Control Programmes (NMCPs) currently make limited use of parasite genetic data. We have developed GenRe-Mekong, a platform for genetic surveillance of malaria in the Greater Mekong Subregion (GMS) that enables NMCPs to implement large-scale surveillance projects by integrating simple sample collection procedures in routine public health procedures. Methods Samples from symptomatic patients are processed by SpotMalaria, a high-throughput system that produces a comprehensive set of genotypes comprising several drug resistance markers, species markers and a genomic barcode. GenRe-Mekong delivers Genetic Report Cards, a compendium of genotypes and phenotype predictions used to map prevalence of resistance to multiple drugs. Results GenRe-Mekong has worked with NMCPs and research projects in eight countries, processing 9623 samples from clinical cases. Monitoring resistance markers has been valuable for tracking the rapid spread of parasites resistant to the dihydroartemisinin-piperaquine combination therapy. In Vietnam and Laos, GenRe-Mekong data have provided novel knowledge about the spread of these resistant strains into previously unaffected provinces, informing decision-making by NMCPs. Conclusions GenRe-Mekong provides detailed knowledge about drug resistance at a local level, and facilitates data sharing at a regional level, enabling cross-border resistance monitoring and providing the public health community with valuable insights. The project provides a rich open data resource to benefit the entire malaria community. Funding The GenRe-Mekong project is funded by the Bill and Melinda Gates Foundation (OPP11188166, OPP1204268). Genotyping and sequencing were funded by the Wellcome Trust (098051, 206194, 203141, 090770, 204911, 106698/B/14/Z) and Medical Research Council (G0600718). A proportion of samples were collected with the support of the UK Department for International Development (201900, M006212), and Intramural Research Program of the National Institute of Allergy and Infectious Diseases.
Collapse
Affiliation(s)
| | | | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Research Unit (LOMWRU), Microbiology Laboratory, Mahosot HospitalVientianeLao People's Democratic Republic
- Institute of Research and Education Development (IRED), University of Health Sciences, Ministry of HealthVientianeLao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
| | - Richard J Maude
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
- Harvard TH Chan School of Public Health, Harvard UniversityBostonUnited States
| | - Huynh Hong Quang
- Institute of Malariology, Parasitology and Entomology (IMPE-QN)Quy NhonViet Nam
| | - Bouasy Hongvanthong
- Centre of Malariology, Parasitology, and EntomologyVientianeLao People's Democratic Republic
| | - Viengxay Vanisaveth
- Centre of Malariology, Parasitology, and EntomologyVientianeLao People's Democratic Republic
| | - Thang Ngo Duc
- National Institute of Malariology, Parasitology and Entomology (NIMPE)HanoiViet Nam
| | - Huy Rekol
- National Center for Parasitology, Entomology, and Malaria ControlPhnom PenhCambodia
| | - Rob van der Pluijm
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Lorenz von Seidlein
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Rick Fairhurst
- National Institute of Allergy and Infectious Diseases, National Institutes of HealthRockvilleUnited States
| | - François Nosten
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Shoklo Malaria Research UnitMae SotThailand
| | | | - Naomi Park
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | | | | | | | - Paul Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Research Unit (LOMWRU), Microbiology Laboratory, Mahosot HospitalVientianeLao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Elizabeth Ashley
- Lao-Oxford-Mahosot Hospital-Wellcome Research Unit (LOMWRU), Microbiology Laboratory, Mahosot HospitalVientianeLao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
| | - Sonexay Phalivong
- Lao-Oxford-Mahosot Hospital-Wellcome Research Unit (LOMWRU), Microbiology Laboratory, Mahosot HospitalVientianeLao People's Democratic Republic
| | - Rapeephan Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
- Faculty of Medicine, Ramathibodi Hospital, Mahidol UniversityBangkokThailand
| | - Rithea Leang
- National Center for Parasitology, Entomology, and Malaria ControlPhnom PenhCambodia
| | - Cheah Huch
- National Center for Parasitology, Entomology, and Malaria ControlPhnom PenhCambodia
| | - Le Thanh Dong
- Institute of Malariology, Parasitology and Entomology (IMPEHCM)Ho Chi Minh CityViet Nam
| | - Kim-Tuyen Nguyen
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
| | - Tran Minh Nhat
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
| | - Tran Tinh Hien
- Oxford University Clinical Research UnitHo Chi Minh CityViet Nam
| | | | | | | | | | - Didar Uddin
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Caroline Buckee
- Harvard TH Chan School of Public Health, Harvard UniversityBostonUnited States
| | - Caterina I Fanello
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Marie Onyamboko
- Kinshasa School of Public Health, University of KinshasaKinshasaDemocratic Republic of the Congo
| | - Thomas Peto
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Rupam Tripura
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Chanaki Amaratunga
- National Institute of Allergy and Infectious Diseases, National Institutes of HealthRockvilleUnited States
| | - Aung Myint Thu
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Shoklo Malaria Research UnitMae SotThailand
| | - Gilles Delmas
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Shoklo Malaria Research UnitMae SotThailand
| | - Jordi Landier
- Shoklo Malaria Research UnitMae SotThailand
- Aix-Marseille Université, INSERM, IRD, SESSTIM, Aix Marseille Institute of Public Health, ISSPAMMarseilleFrance
| | - Daniel M Parker
- Shoklo Malaria Research UnitMae SotThailand
- Susan and Henry Samueli College of Health Sciences, University of California, IrvineIrvineUnited States
| | | | - Dysoley Lek
- National Center for Parasitology, Entomology, and Malaria ControlPhnom PenhCambodia
| | - Seila Suon
- National Center for Parasitology, Entomology, and Malaria ControlPhnom PenhCambodia
| | - James Callery
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | | | | | - Sasithon Pukrittayakamee
- Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- The Royal Society of ThailandBangkokThailand
| | - Aung Pyae Phyo
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Myanmar-Oxford Clinical Research UnitYangonMyanmar
| | - Frank Smithuis
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Myanmar-Oxford Clinical Research UnitYangonMyanmar
| | - Khin Lin
- Department of Medical ResearchPyin Oo LwinMyanmar
| | - Myo Thant
- Defence Services Medical Research CentreYangonMyanmar
| | | | | | | | | | | | | | - Neena Valecha
- National Institute of Malaria Research, Indian Council of Medical ResearchNew DelhiIndia
| | - Anupkumar R Anvikar
- National Institute of Malaria Research, Indian Council of Medical ResearchNew DelhiIndia
| | | | - Abul Faiz
- Malaria Research Group and Dev Care FoundationDhakaBangladesh
| | - Chanon Kunasol
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | | | - Mihir Kekre
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | - Mozam Ali
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | - Katie Love
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | | | - Anna E Jeffreys
- Wellcome Trust Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Kate Rowlands
- Wellcome Trust Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Christina S Hubbart
- Wellcome Trust Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Mehul Dhorda
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
- Worldwide Antimalarial Resistance Network (WWARN), Asia Regional CentreBangkokThailand
| | - Ranitha Vongpromek
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
- Worldwide Antimalarial Resistance Network (WWARN), Asia Regional CentreBangkokThailand
| | - Namfon Kotanan
- Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Phrutsamon Wongnak
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Jacob Almagro Garcia
- MRC Centre for Genomics and Global Health, Big Data Institute, Oxford UniversityOxfordUnited Kingdom
| | - Richard D Pearson
- Wellcome Sanger InstituteHinxtonUnited Kingdom
- MRC Centre for Genomics and Global Health, Big Data Institute, Oxford UniversityOxfordUnited Kingdom
| | | | | | | | - T Nguyen
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | - Jim Stalker
- Wellcome Sanger InstituteHinxtonUnited Kingdom
| | - Ben Jeffery
- MRC Centre for Genomics and Global Health, Big Data Institute, Oxford UniversityOxfordUnited Kingdom
| | | | - Kimberly J Johnson
- Wellcome Sanger InstituteHinxtonUnited Kingdom
- MRC Centre for Genomics and Global Health, Big Data Institute, Oxford UniversityOxfordUnited Kingdom
| | | | - Xin Hui S Chan
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | | | | | - Victoria Simpson
- Wellcome Sanger InstituteHinxtonUnited Kingdom
- MRC Centre for Genomics and Global Health, Big Data Institute, Oxford UniversityOxfordUnited Kingdom
| | | | - Kirk Rockett
- Wellcome Sanger InstituteHinxtonUnited Kingdom
- Wellcome Trust Centre for Human Genetics, University of OxfordOxfordUnited Kingdom
| | - Nicholas P Day
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Arjen M Dondorp
- Centre for Tropical Medicine and Global Health, University of OxfordOxfordUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Dominic P Kwiatkowski
- Wellcome Sanger InstituteHinxtonUnited Kingdom
- MRC Centre for Genomics and Global Health, Big Data Institute, Oxford UniversityOxfordUnited Kingdom
| | - Olivo Miotto
- Wellcome Sanger InstituteHinxtonUnited Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
- MRC Centre for Genomics and Global Health, Big Data Institute, Oxford UniversityOxfordUnited Kingdom
| |
Collapse
|
55
|
Behrens HM, Schmidt S, Spielmann T. The newly discovered role of endocytosis in artemisinin resistance. Med Res Rev 2021; 41:2998-3022. [PMID: 34309894 DOI: 10.1002/med.21848] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/15/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022]
Abstract
Artemisinin and its derivatives (ART) are the cornerstone of malaria treatment as part of artemisinin combination therapy (ACT). However, reduced susceptibility to artemisinin as well as its partner drugs threatens the usefulness of ACTs. Single point mutations in the parasite protein Kelch13 (K13) are necessary and sufficient for the reduced sensitivity of malaria parasites to ART but several alternative mechanisms for this resistance have been proposed. Recent work found that K13 is involved in the endocytosis of host cell cytosol and indicated that this is the process responsible for resistance in parasites with mutated K13. These studies also identified a series of further proteins that act together with K13 in the same pathway, including previously suspected resistance proteins such as UBP1 and AP-2μ. Here, we give a brief overview of artemisinin resistance, present the recent evidence of the role of endocytosis in ART resistance and discuss previous hypotheses in light of this new evidence. We also give an outlook on how the new insights might affect future research.
Collapse
Affiliation(s)
- Hannah Michaela Behrens
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sabine Schmidt
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Tobias Spielmann
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
56
|
Abstract
Although the last two decades have seen a substantial decline in malaria incidence and mortality due to the use of insecticide-treated bed nets and artemisinin combination therapy, the threat of drug resistance is a constant obstacle to sustainable malaria control. Given that patients can die quickly from this disease, public health officials and doctors need to understand whether drug resistance exists in the parasite population, as well as how prevalent it is so they can make informed decisions about treatment. As testing for drug efficacy before providing treatment to malaria patients is impractical, researchers need molecular markers of resistance that can be more readily tracked in parasite populations. To this end, much work has been done to unravel the genetic underpinnings of drug resistance in Plasmodium falciparum. The aim of this review is to provide a broad overview of common genomic approaches that have been used to discover the alleles that drive drug response phenotypes in the most lethal human malaria parasite.
Collapse
Affiliation(s)
- Frances Rocamora
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
57
|
Wicht KJ, Mok S, Fidock DA. Molecular Mechanisms of Drug Resistance in Plasmodium falciparum Malaria. Annu Rev Microbiol 2021; 74:431-454. [PMID: 32905757 DOI: 10.1146/annurev-micro-020518-115546] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding and controlling the spread of antimalarial resistance, particularly to artemisinin and its partner drugs, is a top priority. Plasmodium falciparum parasites resistant to chloroquine, amodiaquine, or piperaquine harbor mutations in the P. falciparum chloroquine resistance transporter (PfCRT), a transporter resident on the digestive vacuole membrane that in its variant forms can transport these weak-base 4-aminoquinoline drugs out of this acidic organelle, thus preventing these drugs from binding heme and inhibiting its detoxification. The structure of PfCRT, solved by cryogenic electron microscopy, shows mutations surrounding an electronegative central drug-binding cavity where they presumably interact with drugs and natural substrates to control transport. P. falciparum susceptibility to heme-binding antimalarials is also modulated by overexpression or mutations in the digestive vacuole membrane-bound ABC transporter PfMDR1 (P. falciparum multidrug resistance 1 transporter). Artemisinin resistance is primarily mediated by mutations in P. falciparum Kelch13 protein (K13), a protein involved in multiple intracellular processes including endocytosis of hemoglobin, which is required for parasite growth and artemisinin activation. Combating drug-resistant malaria urgently requires the development of new antimalarial drugs with novel modes of action.
Collapse
Affiliation(s)
- Kathryn J Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA; , ,
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA; , ,
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA; , , .,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
58
|
Stokes BH, Dhingra SK, Rubiano K, Mok S, Straimer J, Gnädig NF, Deni I, Schindler KA, Bath JR, Ward KE, Striepen J, Yeo T, Ross LS, Legrand E, Ariey F, Cunningham CH, Souleymane IM, Gansané A, Nzoumbou-Boko R, Ndayikunda C, Kabanywanyi AM, Uwimana A, Smith SJ, Kolley O, Ndounga M, Warsame M, Leang R, Nosten F, Anderson TJ, Rosenthal PJ, Ménard D, Fidock DA. Plasmodium falciparum K13 mutations in Africa and Asia impact artemisinin resistance and parasite fitness. eLife 2021; 10:66277. [PMID: 34279219 PMCID: PMC8321553 DOI: 10.7554/elife.66277] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/17/2021] [Indexed: 12/22/2022] Open
Abstract
The emergence of mutant K13-mediated artemisinin (ART) resistance in Plasmodium falciparum malaria parasites has led to widespread treatment failures across Southeast Asia. In Africa, K13-propeller genotyping confirms the emergence of the R561H mutation in Rwanda and highlights the continuing dominance of wild-type K13 elsewhere. Using gene editing, we show that R561H, along with C580Y and M579I, confer elevated in vitro ART resistance in some African strains, contrasting with minimal changes in ART susceptibility in others. C580Y and M579I cause substantial fitness costs, which may slow their dissemination in high-transmission settings, in contrast with R561H that in African 3D7 parasites is fitness neutral. In Cambodia, K13 genotyping highlights the increasing spatio-temporal dominance of C580Y. Editing multiple K13 mutations into a panel of Southeast Asian strains reveals that only the R561H variant yields ART resistance comparable to C580Y. In Asian Dd2 parasites C580Y shows no fitness cost, in contrast with most other K13 mutations tested, including R561H. Editing of point mutations in ferredoxin or mdr2, earlier associated with resistance, has no impact on ART susceptibility or parasite fitness. These data underline the complex interplay between K13 mutations, parasite survival, growth and genetic background in contributing to the spread of ART resistance.
Collapse
Affiliation(s)
- Barbara H Stokes
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Satish K Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Kelly Rubiano
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Judith Straimer
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Nina F Gnädig
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Kyra A Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Jade R Bath
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Kurt E Ward
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States.,Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Josefine Striepen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Leila S Ross
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Eric Legrand
- Malaria Genetics and Resistance Unit, Institut Pasteur, INSERM U1201, CNRS ERL9195, Paris, France
| | - Frédéric Ariey
- Institut Cochin, INSERM U1016, Université Paris Descartes, Paris, France
| | - Clark H Cunningham
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Issa M Souleymane
- Programme National de Lutte Contre le Paludisme au Tchad, Ndjamena, Chad
| | - Adama Gansané
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Romaric Nzoumbou-Boko
- Laboratoire de Parasitologie, Institut Pasteur de Bangui, Bangui, Central African Republic
| | | | | | - Aline Uwimana
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre, Kigali, Rwanda
| | - Samuel J Smith
- National Malaria Control Program, Freetown, Sierra Leone
| | | | - Mathieu Ndounga
- Programme National de Lutte Contre le Paludisme, Brazzaville, Democratic Republic of the Congo
| | - Marian Warsame
- School of Public Health and Community Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rithea Leang
- National Center for Parasitology, Entomology & Malaria Control, Phnom Penh, Cambodia
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Didier Ménard
- Malaria Genetics and Resistance Unit, Institut Pasteur, INSERM U1201, CNRS ERL9195, Paris, France
| | - David A Fidock
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
59
|
Watson DJ, Laing L, Gibhard L, Wong HN, Haynes RK, Wiesner L. Toward New Transmission-Blocking Combination Therapies: Pharmacokinetics of 10-Amino-Artemisinins and 11-Aza-Artemisinin and Comparison with Dihydroartemisinin and Artemether. Antimicrob Agents Chemother 2021; 65:e0099021. [PMID: 34097488 PMCID: PMC8284440 DOI: 10.1128/aac.00990-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/20/2022] Open
Abstract
As artemisinin combination therapies (ACTs) are compromised by resistance, we are evaluating triple combination therapies (TACTs) comprising an amino-artemisinin, a redox drug, and a third drug with a different mode of action. Thus, here we briefly review efficacy data on artemisone, artemiside, other amino-artemisinins, and 11-aza-artemisinin and conduct absorption, distribution, and metabolism and excretion (ADME) profiling in vitro and pharmacokinetic (PK) profiling in vivo via intravenous (i.v.) and oral (p.o.) administration to mice. The sulfamide derivative has a notably long murine microsomal half-life (t1/2 > 150 min), low intrinsic liver clearance and total plasma clearance rates (CLint 189.4, CLtot 32.2 ml/min/kg), and high relative bioavailability (F = 59%). Kinetics are somewhat similar for 11-aza-artemisinin (t1/2 > 150 min, CLint = 576.9, CLtot = 75.0 ml/min/kg), although bioavailability is lower (F = 14%). In contrast, artemether is rapidly metabolized to dihydroartemisinin (DHA) (t1/2 = 17.4 min) and eliminated (CLint = 855.0, CLtot = 119.7 ml/min/kg) and has low oral bioavailability (F) of 2%. While artemisone displays low t1/2 of <10 min and high CLint of 302.1, it displays a low CLtot of 42.3 ml/min/kg and moderate bioavailability (F) of 32%. Its active metabolite M1 displays a much-improved t1/2 of >150 min and a reduced CLint of 37.4 ml/min/kg. Artemiside has t1/2 of 12.4 min, CLint of 673.9, and CLtot of 129.7 ml/kg/min, likely a reflection of its surprisingly rapid metabolism to artemisone, reported here for the first time. DHA is not formed from any amino-artemisinin. Overall, the efficacy and PK data strongly support the development of selected amino-artemisinins as components of new TACTs.
Collapse
Affiliation(s)
- Daniel J. Watson
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Lizahn Laing
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Liezl Gibhard
- H3D, Department of Chemistry, University of Cape Town, Cape Town, South Africa
| | - Ho Ning Wong
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Richard K. Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
60
|
Ahouidi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A, Amaratunga C, Amato R, Amenga-Etego L, Andagalu B, Anderson TJC, Andrianaranjaka V, Apinjoh T, Ariani C, Ashley EA, Auburn S, Awandare GA, Ba H, Baraka V, Barry AE, Bejon P, Bertin GI, Boni MF, Borrmann S, Bousema T, Branch O, Bull PC, Busby GBJ, Chookajorn T, Chotivanich K, Claessens A, Conway D, Craig A, D'Alessandro U, Dama S, Day NPJ, Denis B, Diakite M, Djimdé A, Dolecek C, Dondorp AM, Drakeley C, Drury E, Duffy P, Echeverry DF, Egwang TG, Erko B, Fairhurst RM, Faiz A, Fanello CA, Fukuda MM, Gamboa D, Ghansah A, Golassa L, Goncalves S, Hamilton WL, Harrison GLA, Hart L, Henrichs C, Hien TT, Hill CA, Hodgson A, Hubbart C, Imwong M, Ishengoma DS, Jackson SA, Jacob CG, Jeffery B, Jeffreys AE, Johnson KJ, Jyothi D, Kamaliddin C, Kamau E, Kekre M, Kluczynski K, Kochakarn T, Konaté A, Kwiatkowski DP, Kyaw MP, Lim P, Lon C, Loua KM, Maïga-Ascofaré O, Malangone C, Manske M, Marfurt J, Marsh K, Mayxay M, Miles A, Miotto O, Mobegi V, Mokuolu OA, Montgomery J, Mueller I, Newton PN, Nguyen T, Nguyen TN, Noedl H, Nosten F, Noviyanti R, Nzila A, Ochola-Oyier LI, Ocholla H, Oduro A, Omedo I, Onyamboko MA, Ouedraogo JB, Oyebola K, Pearson RD, Peshu N, Phyo AP, Plowe CV, Price RN, Pukrittayakamee S, Randrianarivelojosia M, Rayner JC, Ringwald P, Rockett KA, Rowlands K, Ruiz L, Saunders D, Shayo A, Siba P, Simpson VJ, Stalker J, Su XZ, Sutherland C, Takala-Harrison S, Tavul L, Thathy V, Tshefu A, Verra F, Vinetz J, Wellems TE, Wendler J, White NJ, Wright I, Yavo W, Ye H. An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome Open Res 2021; 6:42. [PMID: 33824913 PMCID: PMC8008441 DOI: 10.12688/wellcomeopenres.16168.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 02/02/2023] Open
Abstract
MalariaGEN is a data-sharing network that enables groups around the world to work together on the genomic epidemiology of malaria. Here we describe a new release of curated genome variation data on 7,000 Plasmodium falciparum samples from MalariaGEN partner studies in 28 malaria-endemic countries. High-quality genotype calls on 3 million single nucleotide polymorphisms (SNPs) and short indels were produced using a standardised analysis pipeline. Copy number variants associated with drug resistance and structural variants that cause failure of rapid diagnostic tests were also analysed. Almost all samples showed genetic evidence of resistance to at least one antimalarial drug, and some samples from Southeast Asia carried markers of resistance to six commonly-used drugs. Genes expressed during the mosquito stage of the parasite life-cycle are prominent among loci that show strong geographic differentiation. By continuing to enlarge this open data resource we aim to facilitate research into the evolutionary processes affecting malaria control and to accelerate development of the surveillance toolkit required for malaria elimination.
Collapse
Affiliation(s)
| | | | - Mozam Ali
- Wellcome Sanger Institute, Hinxton, UK
| | - Jacob Almagro-Garcia
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Alfred Amambua-Ngwa
- Wellcome Sanger Institute, Hinxton, UK,Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Chanaki Amaratunga
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Roberto Amato
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Lucas Amenga-Etego
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana,West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Ben Andagalu
- United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute/Walter Reed Project, Kisumu, Kenya
| | | | | | | | | | - Elizabeth A Ashley
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Sarah Auburn
- Menzies School of Health Research, Darwin, Australia,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana,University of Ghana, Legon, Ghana
| | - Hampate Ba
- Institut National de Recherche en Santé Publique, Nouakchott, Mauritania
| | - Vito Baraka
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania,Department of Epidemiology, International Health Unit, University of Antwerp, Antwerp, Belgium
| | - Alyssa E. Barry
- Deakin University, Geelong, Australia,Burnet Institute, Melbourne, Australia,Walter and Eliza Hall Institute, Melbourne, Australia
| | - Philip Bejon
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Maciej F. Boni
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Steffen Borrmann
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Teun Bousema
- London School of Hygiene and Tropical Medicine, London, UK,Radboud University Medical Center, Nijmegen, The Netherlands
| | - Oralee Branch
- NYU School of Medicine Langone Medical Center, New York, USA
| | - Peter C. Bull
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya,Department of Pathology, University of Cambridge, Cambridge, UK
| | - George B. J. Busby
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | | | - Antoine Claessens
- Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia,LPHI, MIVEGEC, INSERM, CNRS, IRD, University of Montpellier, Montpellier, France
| | - David Conway
- London School of Hygiene and Tropical Medicine, London, UK
| | - Alister Craig
- Liverpool School of Tropical Medicine, Liverpool, UK,Malawi-Liverpool-Wellcome Trust Clinical Research, Blantyre, Malawi
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Souleymane Dama
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Nicholas PJ Day
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Brigitte Denis
- Malawi-Liverpool-Wellcome Trust Clinical Research, Blantyre, Malawi
| | - Mahamadou Diakite
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye Djimdé
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Patrick Duffy
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Diego F. Echeverry
- Centro Internacional de Entrenamiento e Investigaciones Médicas - CIDEIM, Cali, Colombia,Universidad Icesi, Cali, Colombia
| | | | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | | | - Mark M. Fukuda
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anita Ghansah
- Nogouchi Memorial Institute for Medical Research, Legon-Accra, Ghana
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - William L. Hamilton
- Wellcome Sanger Institute, Hinxton, UK,Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Lee Hart
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Christa Henrichs
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | | | - Christina Hubbart
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Deus S. Ishengoma
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania,East African Consortium for Clinical Research (EACCR), Dar es Salaam, Tanzania
| | - Scott A. Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | | | - Ben Jeffery
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Anna E. Jeffreys
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kimberly J. Johnson
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | | | - Edwin Kamau
- Walter Reed Army Institute of Research, U.S. Military HIV Research Program, Silver Spring, MD, USA
| | | | - Krzysztof Kluczynski
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Theerarat Kochakarn
- Wellcome Sanger Institute, Hinxton, UK,Mahidol University, Bangkok, Thailand
| | | | - Dominic P. Kwiatkowski
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Myat Phone Kyaw
- The Myanmar Oxford Clinical Research Unit, University of Oxford, Yangon, Myanmar,University of Public Health, Yangon, Myanmar
| | - Pharath Lim
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA,Medical Care Development International, Maryland, USA
| | - Chanthap Lon
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | | | - Oumou Maïga-Ascofaré
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany,Research in Tropical Medicine, Kwame Nkrumah University of Sciences and Technology, Kumasi, Ghana
| | | | | | - Jutta Marfurt
- Menzies School of Health Research, Darwin, Australia
| | - Kevin Marsh
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,African Academy of Sciences, Nairobi, Kenya
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Lao People's Democratic Republic,Institute of Research and Education Development (IRED), University of Health Sciences, Ministry of Health, Vientiane, Lao People's Democratic Republic
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Olivo Miotto
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Victor Mobegi
- School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Olugbenga A. Mokuolu
- Department of Paediatrics and Child Health, University of Ilorin, Ilorin, Nigeria
| | - Jacqui Montgomery
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Melbourne, Australia,Barcelona Centre for International Health Research, Barcelona, Spain
| | - Paul N. Newton
- Wellcome Trust-Mahosot Hospital-Oxford Tropical Medicine Research Collaboration, Vientiane, Lao People's Democratic Republic
| | | | - Thuy-Nhien Nguyen
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Harald Noedl
- MARIB - Malaria Research Initiative Bandarban, Bandarban, Bangladesh
| | - Francois Nosten
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,Shoklo Malaria Research Unit, Bangkok, Thailand
| | | | - Alexis Nzila
- King Fahid University of Petroleum and Minerals (KFUMP), Dharhran, Saudi Arabia
| | | | - Harold Ocholla
- KEMRI - Centres for Disease Control and Prevention (CDC) Research Program, Kisumu, Kenya,Centre for Bioinformatics and Biotechnology, University of Nairobi, Nairobi, Kenya
| | - Abraham Oduro
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Irene Omedo
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Marie A. Onyamboko
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Congo, Democratic Republic
| | | | - Kolapo Oyebola
- Nigerian Institute of Medical Research, Lagos, Nigeria,Parasitology and Bioinformatics Unit, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Richard D. Pearson
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Norbert Peshu
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Aung Pyae Phyo
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand,Shoklo Malaria Research Unit, Bangkok, Thailand
| | - Chris V. Plowe
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Ric N. Price
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand,Menzies School of Health Research, Darwin, Australia,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | - Milijaona Randrianarivelojosia
- Institut Pasteur de Madagascar, Antananarivo, Madagascar,Universités d'Antananarivo et de Mahajanga, Antananarivo, Madagascar
| | | | | | - Kirk A. Rockett
- Wellcome Sanger Institute, Hinxton, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Lastenia Ruiz
- Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | - David Saunders
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Alex Shayo
- Nelson Mandela Institute of Science and Technology, Arusha, Tanzania
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Victoria J. Simpson
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | - Xin-zhuan Su
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | | | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Livingstone Tavul
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Vandana Thathy
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya,Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | | | | | - Joseph Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru,Yale School of Medicine, New Haven, CT, USA
| | - Thomas E. Wellems
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Jason Wendler
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Ian Wright
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - William Yavo
- University Félix Houphouët-Boigny, Abidjan, Cote d'Ivoire,Malaria Research and Control Center of the National Institute of Public Health, Abidjan, Cote d'Ivoire
| | - Htut Ye
- Department of Medical Research, Yangon, Myanmar
| |
Collapse
|
61
|
Ahouidi A, Ali M, Almagro-Garcia J, Amambua-Ngwa A, Amaratunga C, Amato R, Amenga-Etego L, Andagalu B, Anderson TJC, Andrianaranjaka V, Apinjoh T, Ariani C, Ashley EA, Auburn S, Awandare GA, Ba H, Baraka V, Barry AE, Bejon P, Bertin GI, Boni MF, Borrmann S, Bousema T, Branch O, Bull PC, Busby GBJ, Chookajorn T, Chotivanich K, Claessens A, Conway D, Craig A, D'Alessandro U, Dama S, Day NPJ, Denis B, Diakite M, Djimdé A, Dolecek C, Dondorp AM, Drakeley C, Drury E, Duffy P, Echeverry DF, Egwang TG, Erko B, Fairhurst RM, Faiz A, Fanello CA, Fukuda MM, Gamboa D, Ghansah A, Golassa L, Goncalves S, Hamilton WL, Harrison GLA, Hart L, Henrichs C, Hien TT, Hill CA, Hodgson A, Hubbart C, Imwong M, Ishengoma DS, Jackson SA, Jacob CG, Jeffery B, Jeffreys AE, Johnson KJ, Jyothi D, Kamaliddin C, Kamau E, Kekre M, Kluczynski K, Kochakarn T, Konaté A, Kwiatkowski DP, Kyaw MP, Lim P, Lon C, Loua KM, Maïga-Ascofaré O, Malangone C, Manske M, Marfurt J, Marsh K, Mayxay M, Miles A, Miotto O, Mobegi V, Mokuolu OA, Montgomery J, Mueller I, Newton PN, Nguyen T, Nguyen TN, Noedl H, Nosten F, Noviyanti R, Nzila A, Ochola-Oyier LI, Ocholla H, Oduro A, Omedo I, Onyamboko MA, Ouedraogo JB, Oyebola K, Pearson RD, Peshu N, Phyo AP, Plowe CV, Price RN, Pukrittayakamee S, Randrianarivelojosia M, Rayner JC, Ringwald P, Rockett KA, Rowlands K, Ruiz L, Saunders D, Shayo A, Siba P, Simpson VJ, Stalker J, Su XZ, Sutherland C, Takala-Harrison S, Tavul L, Thathy V, Tshefu A, Verra F, Vinetz J, Wellems TE, Wendler J, White NJ, Wright I, Yavo W, Ye H. An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples. Wellcome Open Res 2021; 6:42. [PMID: 33824913 PMCID: PMC8008441.2 DOI: 10.12688/wellcomeopenres.16168.2] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 02/02/2023] Open
Abstract
MalariaGEN is a data-sharing network that enables groups around the world to work together on the genomic epidemiology of malaria. Here we describe a new release of curated genome variation data on 7,000 Plasmodium falciparum samples from MalariaGEN partner studies in 28 malaria-endemic countries. High-quality genotype calls on 3 million single nucleotide polymorphisms (SNPs) and short indels were produced using a standardised analysis pipeline. Copy number variants associated with drug resistance and structural variants that cause failure of rapid diagnostic tests were also analysed. Almost all samples showed genetic evidence of resistance to at least one antimalarial drug, and some samples from Southeast Asia carried markers of resistance to six commonly-used drugs. Genes expressed during the mosquito stage of the parasite life-cycle are prominent among loci that show strong geographic differentiation. By continuing to enlarge this open data resource we aim to facilitate research into the evolutionary processes affecting malaria control and to accelerate development of the surveillance toolkit required for malaria elimination.
Collapse
Affiliation(s)
| | | | - Mozam Ali
- Wellcome Sanger Institute, Hinxton, UK
| | - Jacob Almagro-Garcia
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Alfred Amambua-Ngwa
- Wellcome Sanger Institute, Hinxton, UK,Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Chanaki Amaratunga
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Roberto Amato
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Lucas Amenga-Etego
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana,West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Ben Andagalu
- United States Army Medical Research Directorate-Africa, Kenya Medical Research Institute/Walter Reed Project, Kisumu, Kenya
| | | | | | | | | | - Elizabeth A Ashley
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Sarah Auburn
- Menzies School of Health Research, Darwin, Australia,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana,University of Ghana, Legon, Ghana
| | - Hampate Ba
- Institut National de Recherche en Santé Publique, Nouakchott, Mauritania
| | - Vito Baraka
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania,Department of Epidemiology, International Health Unit, University of Antwerp, Antwerp, Belgium
| | - Alyssa E. Barry
- Deakin University, Geelong, Australia,Burnet Institute, Melbourne, Australia,Walter and Eliza Hall Institute, Melbourne, Australia
| | - Philip Bejon
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Maciej F. Boni
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Steffen Borrmann
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Teun Bousema
- London School of Hygiene and Tropical Medicine, London, UK,Radboud University Medical Center, Nijmegen, The Netherlands
| | - Oralee Branch
- NYU School of Medicine Langone Medical Center, New York, USA
| | - Peter C. Bull
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya,Department of Pathology, University of Cambridge, Cambridge, UK
| | - George B. J. Busby
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | | | - Antoine Claessens
- Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia,LPHI, MIVEGEC, INSERM, CNRS, IRD, University of Montpellier, Montpellier, France
| | - David Conway
- London School of Hygiene and Tropical Medicine, London, UK
| | - Alister Craig
- Liverpool School of Tropical Medicine, Liverpool, UK,Malawi-Liverpool-Wellcome Trust Clinical Research, Blantyre, Malawi
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Souleymane Dama
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Nicholas PJ Day
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Brigitte Denis
- Malawi-Liverpool-Wellcome Trust Clinical Research, Blantyre, Malawi
| | - Mahamadou Diakite
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye Djimdé
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Chris Drakeley
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Patrick Duffy
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Diego F. Echeverry
- Centro Internacional de Entrenamiento e Investigaciones Médicas - CIDEIM, Cali, Colombia,Universidad Icesi, Cali, Colombia
| | | | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | | | - Mark M. Fukuda
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anita Ghansah
- Nogouchi Memorial Institute for Medical Research, Legon-Accra, Ghana
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - William L. Hamilton
- Wellcome Sanger Institute, Hinxton, UK,Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Lee Hart
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Christa Henrichs
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | | | - Christina Hubbart
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Deus S. Ishengoma
- National Institute for Medical Research (NIMR), Dar es Salaam, Tanzania,East African Consortium for Clinical Research (EACCR), Dar es Salaam, Tanzania
| | - Scott A. Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, USA
| | | | - Ben Jeffery
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Anna E. Jeffreys
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kimberly J. Johnson
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | | | - Edwin Kamau
- Walter Reed Army Institute of Research, U.S. Military HIV Research Program, Silver Spring, MD, USA
| | | | - Krzysztof Kluczynski
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Theerarat Kochakarn
- Wellcome Sanger Institute, Hinxton, UK,Mahidol University, Bangkok, Thailand
| | | | - Dominic P. Kwiatkowski
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Myat Phone Kyaw
- The Myanmar Oxford Clinical Research Unit, University of Oxford, Yangon, Myanmar,University of Public Health, Yangon, Myanmar
| | - Pharath Lim
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA,Medical Care Development International, Maryland, USA
| | - Chanthap Lon
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | | | - Oumou Maïga-Ascofaré
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany,Research in Tropical Medicine, Kwame Nkrumah University of Sciences and Technology, Kumasi, Ghana
| | | | | | - Jutta Marfurt
- Menzies School of Health Research, Darwin, Australia
| | - Kevin Marsh
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,African Academy of Sciences, Nairobi, Kenya
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Lao People's Democratic Republic,Institute of Research and Education Development (IRED), University of Health Sciences, Ministry of Health, Vientiane, Lao People's Democratic Republic
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Olivo Miotto
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Victor Mobegi
- School of Medicine, University of Nairobi, Nairobi, Kenya
| | - Olugbenga A. Mokuolu
- Department of Paediatrics and Child Health, University of Ilorin, Ilorin, Nigeria
| | - Jacqui Montgomery
- Institute of Vector-Borne Disease, Monash University, Clayton, Victoria, 3800, Australia
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Melbourne, Australia,Barcelona Centre for International Health Research, Barcelona, Spain
| | - Paul N. Newton
- Wellcome Trust-Mahosot Hospital-Oxford Tropical Medicine Research Collaboration, Vientiane, Lao People's Democratic Republic
| | | | - Thuy-Nhien Nguyen
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | - Harald Noedl
- MARIB - Malaria Research Initiative Bandarban, Bandarban, Bangladesh
| | - Francois Nosten
- Nuffield Department of Medicine, University of Oxford, Oxford, UK,Shoklo Malaria Research Unit, Bangkok, Thailand
| | | | - Alexis Nzila
- King Fahid University of Petroleum and Minerals (KFUMP), Dharhran, Saudi Arabia
| | | | - Harold Ocholla
- KEMRI - Centres for Disease Control and Prevention (CDC) Research Program, Kisumu, Kenya,Centre for Bioinformatics and Biotechnology, University of Nairobi, Nairobi, Kenya
| | - Abraham Oduro
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Irene Omedo
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Marie A. Onyamboko
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Congo, Democratic Republic
| | | | - Kolapo Oyebola
- Nigerian Institute of Medical Research, Lagos, Nigeria,Parasitology and Bioinformatics Unit, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Richard D. Pearson
- Wellcome Sanger Institute, Hinxton, UK,MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Norbert Peshu
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Aung Pyae Phyo
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand,Shoklo Malaria Research Unit, Bangkok, Thailand
| | - Chris V. Plowe
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Ric N. Price
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand,Menzies School of Health Research, Darwin, Australia,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | - Milijaona Randrianarivelojosia
- Institut Pasteur de Madagascar, Antananarivo, Madagascar,Universités d'Antananarivo et de Mahajanga, Antananarivo, Madagascar
| | | | | | - Kirk A. Rockett
- Wellcome Sanger Institute, Hinxton, UK,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Lastenia Ruiz
- Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | - David Saunders
- Department of Immunology and Medicine, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Alex Shayo
- Nelson Mandela Institute of Science and Technology, Arusha, Tanzania
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Victoria J. Simpson
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | | | - Xin-zhuan Su
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | | | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Livingstone Tavul
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Vandana Thathy
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya,Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | | | | | - Joseph Vinetz
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru,Yale School of Medicine, New Haven, CT, USA
| | - Thomas E. Wellems
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, USA
| | - Jason Wendler
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
| | - Ian Wright
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - William Yavo
- University Félix Houphouët-Boigny, Abidjan, Cote d'Ivoire,Malaria Research and Control Center of the National Institute of Public Health, Abidjan, Cote d'Ivoire
| | - Htut Ye
- Department of Medical Research, Yangon, Myanmar
| |
Collapse
|
62
|
L'Episcopia M, Bartoli TA, Corpolongo A, Mariano A, D'Abramo A, Vulcano A, Paglia MG, Perrotti E, Menegon M, Nicastri E, Severini C. Artemisinin resistance surveillance in African Plasmodium falciparum isolates from imported malaria cases to Italy. J Travel Med 2021; 28:6028740. [PMID: 33295621 DOI: 10.1093/jtm/taaa231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND Plasmodium falciparum (P. falciparum) malaria is a significant public health problem in returning travellers, and artemisinin combination therapy (ACT) remains the first choice for treatment. Several single nucleotide polymorphisms (SNPs) in the P. falciparum kelch 13 (Pfk13) gene have been associated with artemisinin (ART) resistance. Moreover, the increase in the P. falciparum plasmepsin 2 (Pfpm2) gene copy number was shown to be linked with reduced susceptibility of P. falciparum to piperaquine (PPQ), a partner drug in an ACT regimen. Active molecular surveillance for imported drug-resistant malaria parasites is a pivotal activity to provide adequate chemoprophylaxis and treatment guidelines. METHODS A retrospective study to review imported P. falciparum malaria in patients admitted to Spallanzani Institute between 2014 and 2015 was conducted. Information collected included clinic and epidemiological characteristics such as age, gender, country of origin, time since arrival to our country, travel history. All P.falciparum isolates were analysed for SNPs in the Pfk13 gene and for copy number variations in the Pfpm2 gene. RESULTS P. falciparum malaria was identified in 54 travellers. The mean age was 37 years, 44 were males. All cases were imported from non-EU countries. In the Pfk13 gene two mutations (R561R and F673L) were detected. Six P. falciparum isolates carried two copies of Pfpm2 gene, and one three copies, representing ≈16% of the analysed isolates. CONCLUSIONS None of the SNPs known to be associated with ART resistance were detected in the examined parasites. Our results provide evidence that Pfpm2 duplications (associated with piperaquine resistance) occur in Africa, emphasizing the necessity to better decode the genetic background associated with PPQ resistance. Further epidemiological investigations in Pfpm2 amplification along with mutations in the Pfk13 gene will be useful for developing and updating anti-malarial guidance in travellers.
Collapse
Affiliation(s)
- Mariangela L'Episcopia
- Department of Infectious Diseases, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Tommaso Ascoli Bartoli
- National Institute for Infectious Diseases, IRCCS "Lazzaro Spallanzani", Via Portuense 292, 00149 Rome, Italy
| | - Angela Corpolongo
- National Institute for Infectious Diseases, IRCCS "Lazzaro Spallanzani", Via Portuense 292, 00149 Rome, Italy
| | - Andrea Mariano
- National Institute for Infectious Diseases, IRCCS "Lazzaro Spallanzani", Via Portuense 292, 00149 Rome, Italy
| | - Alessandra D'Abramo
- National Institute for Infectious Diseases, IRCCS "Lazzaro Spallanzani", Via Portuense 292, 00149 Rome, Italy
| | - Antonella Vulcano
- National Institute for Infectious Diseases, IRCCS "Lazzaro Spallanzani", Via Portuense 292, 00149 Rome, Italy
| | - Maria G Paglia
- National Institute for Infectious Diseases, IRCCS "Lazzaro Spallanzani", Via Portuense 292, 00149 Rome, Italy
| | - Edvige Perrotti
- Department of Infectious Diseases, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Michela Menegon
- Department of Infectious Diseases, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Emanuele Nicastri
- National Institute for Infectious Diseases, IRCCS "Lazzaro Spallanzani", Via Portuense 292, 00149 Rome, Italy
| | - Carlo Severini
- Department of Infectious Diseases, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
63
|
Schmedes SE, Patel D, Dhal S, Kelley J, Svigel SS, Dimbu PR, Adeothy AL, Kahunu GM, Nkoli PM, Beavogui AH, Kariuki S, Mathanga DP, Koita O, Ishengoma D, Mohamad A, Hawela M, Moriarty LF, Samuels AM, Gutman J, Plucinski MM, Udhayakumar V, Zhou Z, Lucchi NW, Venkatesan M, Halsey ES, Talundzic E. Plasmodium falciparum kelch 13 Mutations, 9 Countries in Africa, 2014-2018. Emerg Infect Dis 2021; 27:1902-1908. [PMID: 34152946 PMCID: PMC8237877 DOI: 10.3201/eid2707.203230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The spread of drug resistance to antimalarial treatments poses a serious public health risk globally. To combat this risk, molecular surveillance of drug resistance is imperative. We report the prevalence of mutations in the Plasmodium falciparum kelch 13 propeller domain associated with partial artemisinin resistance, which we determined by using Sanger sequencing samples from patients enrolled in therapeutic efficacy studies from 9 sub-Saharan countries during 2014-2018. Of the 2,865 samples successfully sequenced before treatment (day of enrollment) and on the day of treatment failure, 29 (1.0%) samples contained 11 unique nonsynonymous mutations and 83 (2.9%) samples contained 27 unique synonymous mutations. Two samples from Kenya contained the S522C mutation, which has been associated with delayed parasite clearance; however, no samples contained validated or candidate artemisinin-resistance mutations.
Collapse
|
64
|
Mathews ES, Jezewski AJ, Odom John AR. Protein Prenylation and Hsp40 in Thermotolerance of Plasmodium falciparum Malaria Parasites. mBio 2021; 12:e0076021. [PMID: 34182772 PMCID: PMC8262983 DOI: 10.1128/mbio.00760-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/01/2021] [Indexed: 12/31/2022] Open
Abstract
During its complex life cycle, the malaria parasite survives dramatic environmental stresses, including large temperature shifts. Protein prenylation is required during asexual replication of Plasmodium falciparum, and the canonical heat shock protein 40 protein (HSP40; PF3D7_1437900) is posttranslationally modified with a 15-carbon farnesyl isoprenyl group. In other organisms, farnesylation of Hsp40 orthologs controls their localization and function in resisting environmental stress. In this work, we find that plastidial isopentenyl pyrophosphate (IPP) synthesis and protein farnesylation are required for malaria parasite survival after cold and heat shock. Furthermore, loss of HSP40 farnesylation alters its membrane attachment and interaction with proteins in essential pathways in the parasite. Together, this work reveals that farnesylation is essential for parasite survival during temperature stress. Farnesylation of HSP40 may promote thermotolerance by guiding distinct chaperone-client protein interactions.
Collapse
Affiliation(s)
- Emily S. Mathews
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew J. Jezewski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Audrey R. Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Infectious Disease, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
65
|
Rovira-Vallbona E, Van Hong N, Kattenberg JH, Huan RM, Hien NTT, Ngoc NTH, Guetens P, Hieu NL, Mai TT, Duong NTT, Duong TT, Phuc BQ, Xa NX, Erhart A, Rosanas-Urgell A. Efficacy of dihydroartemisinin/piperaquine and artesunate monotherapy for the treatment of uncomplicated Plasmodium falciparum malaria in Central Vietnam. J Antimicrob Chemother 2021; 75:2272-2281. [PMID: 32437557 DOI: 10.1093/jac/dkaa172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/20/2020] [Accepted: 04/03/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Artemisinin-based combination therapies (ACTs) have significantly contributed to reduce Plasmodium falciparum malaria burden in Vietnam, but their efficacy is challenged by treatment failure of dihydroartemisinin/piperaquine ACT in Southern provinces. OBJECTIVES To assess the efficacy of dihydroartemisinin/piperaquine for uncomplicated P. falciparum malaria in Gia Lai, Central Vietnam, and determine parasite resistance to artemisinin (ClinicalTrials.gov identifier NCT02604966). METHODS Sixty patients received either dihydroartemisinin/piperaquine (4 mg/kg/day, 3 days; n = 33) or artesunate monotherapy (4 mg/kg/day, 3 days; n = 27) followed by dihydroartemisinin/piperaquine (AS + DHA/PPQ). Clinical phenotypes were determined during a 42 day follow-up and analysed together with ex vivo susceptibility to antimalarials and molecular markers of drug resistance. RESULTS Day 3 positivity rate was significantly higher in the AS + DHA/PPQ arm compared with dihydroartemisinin/piperaquine (70.4% versus 39.4%, P = 0.016). Parasite clearance time was 95.2 h (AS + DHA/PPQ) versus 71.9 h (dihydroartemisinin/piperaquine, P = 0.063) and parasite clearance half-life was 7.4 h (AS + DHA/PPQ) versus 7.0 h (dihydroartemisinin/piperaquine, P = 0.140). Adequate clinical and parasitological response at Day 42 was 100% in both arms. By RT-qPCR, 36% (19/53) patients remained positive until Day 7. No recurrences were detected. kelch13 artemisinin resistance mutations were found in 87% (39/45) of isolates and 50% (20/40) were KEL1/C580Y. The piperaquine resistance marker plasmepsin-2 was duplicated in 10.4% (5/48). Isolates from Day 3-positive patients (n = 18) had higher ex vivo survival rates to artemisinin compounds (P < 0.048) and prevalence of kelch13 mutations (P = 0.005) than Day 3-negative patients (n = 5). The WHO definition of artemisinin resistance was fulfilled in 60% (24/40) of cases. CONCLUSIONS Although dihydroartemisinin/piperaquine remained effective to treat P. falciparum, the high Day 3 positivity rate and prevalence of KEL1 strains calls for continuous monitoring of dihydroartemisinin/piperaquine efficacy in Central Vietnam.
Collapse
Affiliation(s)
| | - Nguyen Van Hong
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Johanna H Kattenberg
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ro Mah Huan
- Centre for Disease Control and Prevention, Gia Lai Province, Vietnam
| | - Nguyen Thi Thu Hien
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | | | - Pieter Guetens
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Nguyen Luong Hieu
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Tran Tuyet Mai
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | | | - Tran Thanh Duong
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Bui Quang Phuc
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Nguyen Xuan Xa
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Annette Erhart
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Medical Research Council Unit The Gambia (MRCG) at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
66
|
Ndwiga L, Osoti V, Ochwedo KO, Wamae K, Bejon P, Rayner JC, Githinji G, Ochola-Oyier LI. The Plasmodium falciparum Rh5 invasion protein complex reveals an excess of rare variant mutations. Malar J 2021; 20:278. [PMID: 34162366 PMCID: PMC8220363 DOI: 10.1186/s12936-021-03815-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The invasion of the red blood cells by Plasmodium falciparum merozoites involves the interplay of several proteins that are also targets for vaccine development. The proteins PfRh5-PfRipr-PfCyRPA-Pfp113 assemble into a complex at the apical end of the merozoite and are together essential for erythrocyte invasion. They have also been shown to induce neutralizing antibodies and appear to be less polymorphic than other invasion-associated proteins, making them high priority blood-stage vaccine candidates. Using available whole genome sequencing data (WGS) and new capillary sequencing data (CS), this study describes the genetic polymorphism in the Rh5 complex in P. falciparum isolates obtained from Kilifi, Kenya. METHODS 162 samples collected in 2013 and 2014 were genotyped by capillary sequencing (CS) and re-analysed WGS from 68 culture-adapted P. falciparum samples obtained from a drug trial conducted from 2005 to 2007. The frequency of polymorphisms in the merozoite invasion proteins, PfRh5, PfRipr, PfCyRPA and PfP113 were examined and where possible polymorphisms co-occurring in the same isolates. RESULTS From a total 70 variants, including 2 indels, 19 SNPs [27.1%] were identified by both CS and WGS, while an additional 15 [21.4%] and 36 [51.4%] SNPs were identified only by either CS or WGS, respectively. All the SNPs identified by CS were non-synonymous, whereas WGS identified 8 synonymous and 47 non-synonymous SNPs. CS identified indels in repeat regions in the p113 gene in codons 275 and 859 that were not identified in the WGS data. The minor allele frequencies of the SNPs ranged between 0.7 and 34.9% for WGS and 1.1-29.6% for CS. Collectively, 12 high frequency SNPs (> 5%) were identified: four in Rh5 codon 147, 148, 203 and 429, two in p113 at codons 7 and 267 and six in Ripr codons 190, 259, 524, 985, 1003 and 1039. CONCLUSION This study reveals that the majority of the polymorphisms are rare variants and confirms a low level of genetic polymorphisms in all proteins within the Rh5 complex.
Collapse
Affiliation(s)
- Leonard Ndwiga
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Victor Osoti
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Kevin Omondi Ochwedo
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Kevin Wamae
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108, Kenya
- Nuffield Department of Medicine, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, UK
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - George Githinji
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | | |
Collapse
|
67
|
Ikeda M, Hirai M, Tachibana SI, Mori T, Mita T. Isolation of Mutants With Reduced Susceptibility to Piperaquine From a Mutator of the Rodent Malaria Parasite Plasmodium berghei. Front Cell Infect Microbiol 2021; 11:672691. [PMID: 34222045 PMCID: PMC8242943 DOI: 10.3389/fcimb.2021.672691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Elucidation of the mechanisms of drug resistance in malaria parasites is crucial for combatting the emergence and spread of resistant parasites, which can be achieved by tracing resistance-associated mutations and providing useful information for drug development. Previously, we produced a novel genetic tool, a Plasmodium berghei mutator (PbMut), whose base substitution rate is 36.5 times higher than that of wild-type parasites. Here, we report the isolation of a mutant with reduced susceptibility to piperaquine (PPQ) from PbMut under PPQ pressure by sequential nine-cycle screening and named it PbMut-PPQ-R-P9. The ED50 of PbMut-PPQ-R-P9 was 1.79 times higher than that of wild-type parasites, suggesting that its PPQ resistance is weak. In the 1st screen, recrudescence occurred in the mice infected with PbMut but not in those infected with wild-type parasites, suggesting earlier emergence of PPQ-resistant parasites from PbMut. Whole-genome sequence analysis of PbMut-PPQ-R-P9 clones revealed that eight nonsynonymous mutations were conserved in all clones, including N331I in PbCRT, the gene encoding chloroquine resistance transporter (CRT). The PbCRT(N331I) mutation already existed in the parasite population after the 2nd screen and was predominant in the population after the 8th screen. An artificially inserted PbCRT(N331I) mutation gave rise to reduced PPQ susceptibility in genome-edited parasites (PbCRT-N331I). The PPQ susceptibility and growth rates of PbCRT-N331I parasites were significantly lower than those of PbMut-PPQ-R-P9, implying that additional mutations in the PbMut-PPQ-R9 parasites could compensate for the fitness cost of the PbCRT(N331I) mutation and contribute to reduced PPQ susceptibility. In summary, PbMut could serve as a novel genetic tool for predicting gene mutations responsible for drug resistance. Further study on PbMut-PPQ-R-P9 could identify genetic changes that compensate for fitness costs owing to drug resistance acquisition.
Collapse
Affiliation(s)
| | - Makoto Hirai
- *Correspondence: Makoto Hirai, ; Toshihiro Mita,
| | | | | | - Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
68
|
Pegoraro M, Weedall GD. Malaria in the 'Omics Era'. Genes (Basel) 2021; 12:843. [PMID: 34070769 PMCID: PMC8228830 DOI: 10.3390/genes12060843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
Genomics has revolutionised the study of the biology of parasitic diseases. The first Eukaryotic parasite to have its genome sequenced was the malaria parasite Plasmodium falciparum. Since then, Plasmodium genomics has continued to lead the way in the study of the genome biology of parasites, both in breadth-the number of Plasmodium species' genomes sequenced-and in depth-massive-scale genome re-sequencing of several key species. Here, we review some of the insights into the biology, evolution and population genetics of Plasmodium gained from genome sequencing, and look at potential new avenues in the future genome-scale study of its biology.
Collapse
Affiliation(s)
| | - Gareth D. Weedall
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
| |
Collapse
|
69
|
Verma K, Lahariya AK, Dubey S, Verma AK, Das A, Schneider KA, Bharti PK. An integrated virtual screening and drug repurposing strategy for the discovery of new antimalarial drugs against Plasmodium falciparum phosphatidylinositol 3-kinase. J Cell Biochem 2021; 122:1326-1336. [PMID: 33998049 DOI: 10.1002/jcb.29954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 11/10/2022]
Abstract
The emergence and spread of drug resistance in Plasmodium falciparum, the parasite causing the most severe form of human malaria, is a major threat to malaria control and elimination programs around the globe. With P. falciparum having evolved widespread resistance against a number of previously widely used drugs, currently, artemisinin (ART) and its derivatives are the cornerstones of first-line treatments of uncomplicated malaria. However, growing incidences of ART failure reflect the spread of ART-resistant P. falciparum strains. Despite current efforts to understand the primary cause of ART resistance due to mutations in the Kelch 13 gene (PfK13), the mechanism underlying ART resistance is still not completely unclear and no feasible strategies to counteract the causes and thereby restoring the efficiency of ART have been developed. We use a polypharmacology approach to identify potential drugs that can be used for the novel purpose (target). Of note, we have designed a multimodal stratagem to identify approved drugs with a potential antimalarial activity using computational drug reprofiling. Our investigations suggest that oxetacaine, simvastatin, repaglinide, aclidinium, propafenone, and lovastatin could be repurposed for malaria control and prevention.
Collapse
Affiliation(s)
- Kanika Verma
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - Ayush K Lahariya
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - Shivangee Dubey
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - Anil K Verma
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - Aparup Das
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | | | - Praveen K Bharti
- Division of Vector-Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| |
Collapse
|
70
|
Abstract
There is an urgent need for alternative antimalarials with the emergence of artemisinin-resistant malaria parasites. Blocking sugar uptake in Plasmodium falciparum by selectively inhibiting the hexose transporter P. falciparum hexose transporter 1 (PfHT1) kills the blood-stage parasites without affecting the host cells, making PfHT1 a promising therapeutic target. Here, we report the development of a series of small-molecule inhibitors that simultaneously target the orthosteric and the allosteric binding sites of PfHT1. These inhibitors all exhibit selective potency on the P. falciparum strains over human cell lines. Our findings establish the basis for the rational design of next-generation antimalarial drugs. Artemisinin-resistant malaria parasites have emerged and have been spreading, posing a significant public health challenge. Antimalarial drugs with novel mechanisms of action are therefore urgently needed. In this report, we exploit a “selective starvation” strategy by inhibiting Plasmodium falciparum hexose transporter 1 (PfHT1), the sole hexose transporter in P. falciparum, over human glucose transporter 1 (hGLUT1), providing an alternative approach to fight against multidrug-resistant malaria parasites. The crystal structure of hGLUT3, which shares 80% sequence similarity with hGLUT1, was resolved in complex with C3361, a moderate PfHT1-specific inhibitor, at 2.3-Å resolution. Structural comparison between the present hGLUT3-C3361 and our previously reported PfHT1-C3361 confirmed the unique inhibitor binding-induced pocket in PfHT1. We then designed small molecules to simultaneously block the orthosteric and allosteric pockets of PfHT1. Through extensive structure–activity relationship studies, the TH-PF series was identified to selectively inhibit PfHT1 over hGLUT1 and potent against multiple strains of the blood-stage P. falciparum. Our findings shed light on the next-generation chemotherapeutics with a paradigm-shifting structure-based design strategy to simultaneously target the orthosteric and allosteric sites of a transporter.
Collapse
|
71
|
Shah Z, Naung MT, Moser KA, Adams M, Buchwald AG, Dwivedi A, Ouattara A, Seydel KB, Mathanga DP, Barry AE, Serre D, Laufer MK, Silva JC, Takala-Harrison S. Whole-genome analysis of Malawian Plasmodium falciparum isolates identifies possible targets of allele-specific immunity to clinical malaria. PLoS Genet 2021; 17:e1009576. [PMID: 34033654 PMCID: PMC8184011 DOI: 10.1371/journal.pgen.1009576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/07/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Individuals acquire immunity to clinical malaria after repeated Plasmodium falciparum infections. Immunity to disease is thought to reflect the acquisition of a repertoire of responses to multiple alleles in diverse parasite antigens. In previous studies, we identified polymorphic sites within individual antigens that are associated with parasite immune evasion by examining antigen allele dynamics in individuals followed longitudinally. Here we expand this approach by analyzing genome-wide polymorphisms using whole genome sequence data from 140 parasite isolates representing malaria cases from a longitudinal study in Malawi and identify 25 genes that encode possible targets of naturally acquired immunity that should be validated immunologically and further characterized for their potential as vaccine candidates.
Collapse
Affiliation(s)
- Zalak Shah
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Myo T. Naung
- Population Health and Immunity Division, Walter Eliza Hall of Medical Institute for Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Carlton, Victoria, Australia
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Kara A. Moser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew Adams
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Andrea G. Buchwald
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ankit Dwivedi
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Amed Ouattara
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Karl B. Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - Don P. Mathanga
- University of Malawi College of Medicine, Malaria Alert Centre, Blantyre, Malawi
| | - Alyssa E. Barry
- Population Health and Immunity Division, Walter Eliza Hall of Medical Institute for Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Carlton, Victoria, Australia
- School of Medicine, Deakin University, Geelong, Victoria, Australia
- Disease Elimination and Maternal and Child Health, Burnet Institute, Melbourne, Victoria, Australia
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Miriam K. Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
72
|
L'Episcopia M, Kelley J, Djeunang Dongho BG, Patel D, Schmedes S, Ravishankar S, Perrotti E, Modiano D, Lucchi NW, Russo G, Talundzic E, Severini C. Targeted deep amplicon sequencing of antimalarial resistance markers in Plasmodium falciparum isolates from Cameroon. Int J Infect Dis 2021; 107:234-241. [PMID: 33940188 DOI: 10.1016/j.ijid.2021.04.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Recent studies showed the first emergence of the R561H artemisinin-associated resistance marker in Africa, which highlights the importance of continued molecular surveillance to assess the selection and spread of this and other drug resistance markers in the region. METHOD In this study, we used targeted amplicon deep sequencing of 116 isolates collected in two areas of Cameroon to genotype the major drug resistance genes, k13, crt, mdr1, dhfr, and dhps, and the cytochrome b gene (cytb) in Plasmodium falciparum. RESULTS No confirmed or associated artemisinin resistance markers were observed in Pfk13. In comparison, both major and minor alleles associated with drug resistance were found in Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps. Notably, a high frequency of other nonsynonymous mutations was observed across all the genes, except for Pfcytb, suggesting continued selection pressure. CONCLUSIONS The results from this study supported the continued use of artemisinin-based combination therapy and administration of sulfadoxine-pyrimethamine for intermittent preventive therapy in pregnant women, and for seasonal chemoprevention in these study sites in Cameroon.
Collapse
Affiliation(s)
| | - Julia Kelley
- Atlanta Research and Education Foundation, VAMC, Atlanta, GA, USA.
| | | | - Dhruviben Patel
- Atlanta Research and Education Foundation, VAMC, Atlanta, GA, USA.
| | - Sarah Schmedes
- Association of Public Health Laboratories, Silver Spring, MD, USA.
| | | | - Edvige Perrotti
- Istituto Superiore di Sanità, Department of Infectious Diseases, Rome, Italy.
| | - David Modiano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| | - Naomi W Lucchi
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, GA, USA.
| | - Gianluca Russo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| | - Eldin Talundzic
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, GA, USA.
| | - Carlo Severini
- Istituto Superiore di Sanità, Department of Infectious Diseases, Rome, Italy.
| |
Collapse
|
73
|
Tandoh KZ, Amenga-Etego L, Quashie NB, Awandare G, Wilson M, Duah-Quashie NO. Plasmodium falciparum Malaria Parasites in Ghana Show Signatures of Balancing Selection at Artemisinin Resistance Predisposing Background Genes. Evol Bioinform Online 2021; 17:1176934321999640. [PMID: 33746510 PMCID: PMC7940735 DOI: 10.1177/1176934321999640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Sub-Saharan Africa is courting the risk of artemisinin resistance (ARTr) emerging in Plasmodium falciparum malaria parasites. Current molecular surveillance efforts for ARTr have been built on the utility of P. falciparum kelch13 (pfk13) validated molecular markers. However, whether these molecular markers will serve the purpose of early detection of artemisinin-resistant parasites in Ghana is hinged on a pfk13 dependent evolution. Here, we tested the hypothesis that the background pfk13 genome may be present before the pfk13 ARTr-conferring variant(s) is selected and that signatures of balancing selection on these genomic loci may serve as an early warning signal of ARTr. We analyzed 12 198 single nucleotide polymorphisms (SNPs) in Ghanaian clinical isolates in the Pf3K MalariaGEN dataset that passed a stringent filtering regimen. We identified signatures of balancing selection in 2 genes (phosphatidylinositol 4-kinase and chloroquine resistance transporter) previously reported as background loci for ARTr. These genes showed statistically significant and high positive values for Tajima's D, Fu and Li's F, and Fu and Li's D. This indicates that the biodiversity required to establish a pfk13 background genome may have been primed in clinical isolates of P. falciparum from Ghana as of 2010. Despite the absence of ARTr in Ghana to date, our finding supports the current use of pfk13 for molecular surveillance of ARTr in Ghana and highlights the potential utility of monitoring malaria parasite populations for balancing selection in ARTr precursor background genes as early warning molecular signatures for the emergence of ARTr.
Collapse
Affiliation(s)
- Kwesi Z Tandoh
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Lucas Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Neils B Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana.,Centre for Tropical Clinical Pharmacology and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Gordon Awandare
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Michael Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health sciences, University of Ghana, Accra, Ghana
| | - Nancy O Duah-Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
74
|
Montenegro LM, de Las Salas B, Neal AT, Tobon-Castaño A, Fairhurst RM, Lopera-Mesa TM. State of Artemisinin and Partner Drug Susceptibility in Plasmodium falciparum Clinical Isolates from Colombia. Am J Trop Med Hyg 2021; 104:263-270. [PMID: 33289466 DOI: 10.4269/ajtmh.20-0148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Delayed parasite clearance time observed in Southeast Asia provided the first evidence of Plasmodium falciparum resistance to artemisinins. The ex vivo ring-stage survival assay (RSA) mimics parasite exposure to pharmacologically relevant artemisinin concentrations. Mutations in the C-terminal propeller domain of the putative kelch protein Pf3D7_1343700 (K13) are associated with artemisinin resistance. Variations in the pfmdr1 gene are associated with reduced susceptibility to the artemisinin partner drugs mefloquine (MQ) and lumefantrine (LF). To clarify the unknown landscape of artemisinin resistance in Colombia, 71 patients with uncomplicated P. falciparum malaria were enrolled in a non-randomized observational study in three endemic localities in 2014-2015. Each patient's parasite isolate was assessed for ex vivo RSA, K13-propeller mutations, pfmdr1 copy number, and pfmdr1 mutations at codons 86, 184, 1034, 1042, and 1246, associated with reduced susceptibility, and 50% inhibitory concentration (IC50) for other antimalarial drugs. Ex vivo RSAs were successful in 56% (40/71) of samples, and nine isolates showed survival rates > 1%. All isolates had wild-type K13-propeller sequences. All isolates harbored either of two pfmdr1 haplotypes, NFSDD (79.3%) and NFSDY (20.7%), and 7.1% of isolates had > 1 pfmdr1 gene. In vitro IC50 assays showed that variable proportions of isolates had decreased susceptibility to chloroquine (52.4%, > 100 nM), amodiaquine (31.2%, > 30 nM), MQ (34.3%, > 30 nM), and LF (3.2%, > 10 nM). In this study, we report ex vivo RSA and K13 data on P. falciparum isolates from Colombia. The identification of isolates with increased ex vivo RSA rates in the absence of K13-propeller mutations and no positivity at day three requires further investigation.
Collapse
Affiliation(s)
| | - Briegel de Las Salas
- 1Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Aaron T Neal
- 2Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | | | - Rick M Fairhurst
- 2Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | | |
Collapse
|
75
|
Mok S, Stokes BH, Gnädig NF, Ross LS, Yeo T, Amaratunga C, Allman E, Solyakov L, Bottrill AR, Tripathi J, Fairhurst RM, Llinás M, Bozdech Z, Tobin AB, Fidock DA. Artemisinin-resistant K13 mutations rewire Plasmodium falciparum's intra-erythrocytic metabolic program to enhance survival. Nat Commun 2021; 12:530. [PMID: 33483501 PMCID: PMC7822823 DOI: 10.1038/s41467-020-20805-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence and spread of artemisinin resistance, driven by mutations in Plasmodium falciparum K13, has compromised antimalarial efficacy and threatens the global malaria elimination campaign. By applying systems-based quantitative transcriptomics, proteomics, and metabolomics to a panel of isogenic K13 mutant or wild-type P. falciparum lines, we provide evidence that K13 mutations alter multiple aspects of the parasite's intra-erythrocytic developmental program. These changes impact cell-cycle periodicity, the unfolded protein response, protein degradation, vesicular trafficking, and mitochondrial metabolism. K13-mediated artemisinin resistance in the Cambodian Cam3.II line was reversed by atovaquone, a mitochondrial electron transport chain inhibitor. These results suggest that mitochondrial processes including damage sensing and anti-oxidant properties might augment the ability of mutant K13 to protect P. falciparum against artemisinin action by helping these parasites undergo temporary quiescence and accelerated growth recovery post drug elimination.
Collapse
Affiliation(s)
- Sachel Mok
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Barbara H Stokes
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nina F Gnädig
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Leila S Ross
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Erik Allman
- Department of Biochemistry & Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Lev Solyakov
- Protein Nucleic Acid Laboratory, University of Leicester, Leicester, UK
| | - Andrew R Bottrill
- Protein Nucleic Acid Laboratory, University of Leicester, Leicester, UK
| | - Jaishree Tripathi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Astra Zeneca, Gaithersburg, MD, 20878, USA
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, USA.,Department of Chemistry, Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Andrew B Tobin
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA. .,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
76
|
Adam R, Mukhtar MM, Abubakar UF, Damudi HA, Muhammad A, Ibrahim SS. Polymorphism Analysis of pfmdr1 and pfcrt from Plasmodium falciparum Isolates in Northwestern Nigeria Revealed the Major Markers Associated with Antimalarial Resistance. Diseases 2021; 9:6. [PMID: 33406727 PMCID: PMC7838797 DOI: 10.3390/diseases9010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
Suspicion of failure in the effectiveness of artemisinin-based combination therapies (currently the first-line treatment of malaria, worldwide) is leading to the unofficial use of alternative antimalarials, including chloroquine and sulfadoxine/pyrimethamine, across northern Nigeria. To facilitate evidence-based resistance management, antimalarial resistance mutations were investigated in Plasmodium falciparum multidrug resistance-1 (pfmdr1) and chloroquine resistance transporter (pfcrt), in isolates from Kano, northwestern Nigeria. Out of the 88 samples genotyped for pfmdr1N86Y mutation using PCR/restriction fragment length polymorphism, one sample contained the 86Y mutation (86Yfrequency = 1.14%). The analysis of 610 bp fragments of pfmdr1 from 16 isolates revealed two polymorphic sites and low haplotype diversity (Hd = 0.492), with only 86 Y mutations in one isolate, and 184 F replacements in five isolates (184Ffrequency = 31.25%). The analysis of 267 bp fragments of pfcrt isolates revealed high polymorphism (Hd = 0.719), with six haplotypes and seven non-synonymous polymorphic sites. Eleven isolates (61.11%) were chloroquine-resistant, CQR (C72V73I74E75T76 haplotype), two of which had an additional mutation, D57E. An additional sequence was CQR, but of the C72V73M74E75T76 haplotype, while the rest of the sequences (33.33%) were chloroquine susceptible (C72V73M74N75K76 haplotype). The findings of these well characterized resistance markers should be considered when designing resistance management strategies in the northwestern Nigeria.
Collapse
Affiliation(s)
- Ruqayya Adam
- Department of Biological Sciences, Federal University Dutsinma, Katsina PMB 5001, Nigeria;
| | - Muhammad M. Mukhtar
- Department of Biochemistry, Bayero University, Kano PMB 3011, Nigeria; (M.M.M.); (H.A.D.)
| | - Umar F. Abubakar
- Laboratory Department, Public Health and Diagnostic Institute, Yusuf Maitama Sule University, Kwanar Dawaki, Kano PMB 3220, Nigeria;
| | - Hajara A. Damudi
- Department of Biochemistry, Bayero University, Kano PMB 3011, Nigeria; (M.M.M.); (H.A.D.)
| | - Abdullahi Muhammad
- Centre for Biotechnology Research, Bayero University, Kano PMB 3011, Nigeria;
- Liverpool School of Tropical Medicine LSTM, Pembroke Place L3 5QA, UK
| | - Sulaiman S. Ibrahim
- Department of Biochemistry, Bayero University, Kano PMB 3011, Nigeria; (M.M.M.); (H.A.D.)
- Liverpool School of Tropical Medicine LSTM, Pembroke Place L3 5QA, UK
| |
Collapse
|
77
|
Bergmann C, van Loon W, Habarugira F, Tacoli C, Jäger JC, Savelsberg D, Nshimiyimana F, Rwamugema E, Mbarushimana D, Ndoli J, Sendegeya A, Bayingana C, Mockenhaupt FP. Increase in Kelch 13 Polymorphisms in Plasmodium falciparum, Southern Rwanda. Emerg Infect Dis 2021; 27:294-296. [PMID: 33350925 PMCID: PMC7774571 DOI: 10.3201/eid2701.203527] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Artemisinin resistance in Plasmodium falciparum is associated with nonsynonymous mutations in the Kelch 13 (K13) propeller domain. We found that 12.1% (8/66) of clinical P. falciparum isolates from Huye district, Rwanda, exhibited K13 mutations, including R561H, a validated resistance marker. K13 mutations appear to be increasing in this region.
Collapse
|
78
|
Okombo J, Fidock DA. Pyronaridine-artesunate Shows Promise as an Effective and Well-tolerated Treatment for Artemisinin-resistant Plasmodium falciparum Malaria. Clin Infect Dis 2020; 70:2196-2198. [PMID: 31251323 DOI: 10.1093/cid/ciz583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- John Okombo
- Department of Microbiology & Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - David A Fidock
- Department of Microbiology & Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, New York.,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
79
|
Miotto O, Sekihara M, Tachibana SI, Yamauchi M, Pearson RD, Amato R, Gonçalves S, Mehra S, Noviyanti R, Marfurt J, Auburn S, Price RN, Mueller I, Ikeda M, Mori T, Hirai M, Tavul L, Hetzel MW, Laman M, Barry AE, Ringwald P, Ohashi J, Hombhanje F, Kwiatkowski DP, Mita T. Emergence of artemisinin-resistant Plasmodium falciparum with kelch13 C580Y mutations on the island of New Guinea. PLoS Pathog 2020; 16:e1009133. [PMID: 33320907 PMCID: PMC7771869 DOI: 10.1371/journal.ppat.1009133] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/29/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022] Open
Abstract
The rapid and aggressive spread of artemisinin-resistant Plasmodium falciparum carrying the C580Y mutation in the kelch13 gene is a growing threat to malaria elimination in Southeast Asia, but there is no evidence of their spread to other regions. We conducted cross-sectional surveys in 2016 and 2017 at two clinics in Wewak, Papua New Guinea (PNG) where we identified three infections caused by C580Y mutants among 239 genotyped clinical samples. One of these mutants exhibited the highest survival rate (6.8%) among all parasites surveyed in ring-stage survival assays (RSA) for artemisinin. Analyses of kelch13 flanking regions, and comparisons of deep sequencing data from 389 clinical samples from PNG, Indonesian Papua and Western Cambodia, suggested an independent origin of the Wewak C580Y mutation, showing that the mutants possess several distinctive genetic features. Identity by descent (IBD) showed that multiple portions of the mutants' genomes share a common origin with parasites found in Indonesian Papua, comprising several mutations within genes previously associated with drug resistance, such as mdr1, ferredoxin, atg18 and pnp. These findings suggest that a P. falciparum lineage circulating on the island of New Guinea has gradually acquired a complex ensemble of variants, including kelch13 C580Y, which have affected the parasites' drug sensitivity. This worrying development reinforces the need for increased surveillance of the evolving parasite populations on the island, to contain the spread of resistance.
Collapse
Affiliation(s)
- Olivo Miotto
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Makoto Sekihara
- Department of Tropical Medicine and Parasitology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Shin-Ichiro Tachibana
- Department of Tropical Medicine and Parasitology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masato Yamauchi
- Department of Tropical Medicine and Parasitology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Richard D. Pearson
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | | | | | - Somya Mehra
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Sarah Auburn
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Ric N. Price
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Mie Ikeda
- Department of Tropical Medicine and Parasitology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Toshiyuki Mori
- Department of Tropical Medicine and Parasitology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Makoto Hirai
- Department of Tropical Medicine and Parasitology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Livingstone Tavul
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Manuel W. Hetzel
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Moses Laman
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Alyssa E. Barry
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
- Burnet Institute, Melbourne, Australia
| | | | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Francis Hombhanje
- Centre for Health Research & Diagnostics, Divine Word University, Madang, Papua New Guinea
| | - Dominic P. Kwiatkowski
- MRC Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
80
|
Sharma AI, Shin SH, Bopp S, Volkman SK, Hartl DL, Wirth DF. Genetic background and PfKelch13 affect artemisinin susceptibility of PfCoronin mutants in Plasmodium falciparum. PLoS Genet 2020; 16:e1009266. [PMID: 33370279 PMCID: PMC7793257 DOI: 10.1371/journal.pgen.1009266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/08/2021] [Accepted: 11/10/2020] [Indexed: 11/21/2022] Open
Abstract
Malaria continues to impose a significant health burden in the continent of Africa with 213 million cases in 2018 alone, representing 93% of cases worldwide. Because of high transmission of malaria within the continent, the selection pressures to develop drug resistance in African parasites are distinct compared to the rest of the world. In light of the spread of resistance to artemisinin conferred by the C580Y mutation in the PfKelch13 propeller domain in Southeast Asia, and its independent emergence in South America, it is important to study genetic determinants of resistance in the African context using African parasites. Through in vitro evolution of Senegalese parasites, we had previously generated the artemisinin-resistant parasites Pikine_R and Thiès_R and established pfcoronin mutations to be sufficient to confer artemisinin resistance in the standard ring-stage survival assay (RSA). In the current study, we used genetic analysis of revertants to demonstrate pfcoronin to be the major driver of elevated RSA in the artemisinin-resistant parasites Pikine_R and Thiès_R evolved in vitro. We interrogated the role of a second gene PF3D7_1433800, which also had mutations in both the Pikine_R and Thiès_R selected lines, but found no evidence of a contribution to reduced susceptibility in the RSA survival assay. Nevertheless, our genetic analysis demonstrates that parasite genetic background is important in the level of pfcoronin mediated RSA survival, and therefore we cannot rule out a role for PF3D7_1433800 in other genetic backgrounds. Finally, we tested the potential synergy between the mutations of pfcoronin and pfkelch13 through the generation of single and double mutants in the Pikine genetic background and found that the contribution of pfcoronin to reduced susceptibility is masked by the presence of pfkelch13. This phenomenon was also observed in the 3D7 background, suggesting that pfcoronin may mediate its effects via the same pathway as pfkelch13. Investigating the biology of proteins containing the beta-propeller domain could further elucidate the different pathways that the parasite could use to attain resistance.
Collapse
Affiliation(s)
- Aabha I. Sharma
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, United States of America
| | - Sara H. Shin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, United States of America
| | - Selina Bopp
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, United States of America
| | - Sarah K. Volkman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, United States of America
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, United States of America
- College of Natural, Behavioral and Health Sciences, Simmons University, Boston, United States of America
| | - Daniel L. Hartl
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States of America
| | - Dyann F. Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, United States of America
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, United States of America
| |
Collapse
|
81
|
Aninagyei E, Tetteh CD, Oppong M, Boye A, Acheampong DO. Efficacy of Artemether-Lumefantrine on various Plasmodium falciparum Kelch 13 and Pfmdr1 genes isolated in Ghana. Parasite Epidemiol Control 2020; 11:e00190. [PMID: 33163636 PMCID: PMC7607505 DOI: 10.1016/j.parepi.2020.e00190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/03/2022] Open
Abstract
Introduction Artemether-Lumefantrine (A-L) remains the drug of choice for the treatment of uncomplicated malaria in Ghana. However, the pharmaco-activity of A-L has not been assessed on various Plasmodium falciparum Kelch 13 and Pfmdr1 genes. Therefore, this study sought to determine the therapeutic efficacy of A-L on P. falciparum parasites isolated from Ghana. Methods The clinical study was done in Ga West Municipality, Ghana, where 78 uncomplicated malaria patients were recruited with prior consent. The patients were treated orally with A-L according to national treatment guidelines. Baseline parasitaemia was determined before treatment and 8-hourly parasitaemia posttreatment were determined till initial clearance of parasitaemia and at days 7, 14, 21, and 28. Kelch 13 and Pfmdr1 genes were genotyped by sequencing using baseline samples. Parasite clearance characteristics were determined using Parasite Clearance Estimator beta 0.9 application. Results Five Kelch 13 (F446I, S466N, R539I, A578S, and A676S) and three Pfmdr1 mutations (N86Y, Y184F and D1246Y) were identified in 78 infected samples. About 8% of the samples contained two Pfmdr1 double mutations (N86Y & D1246Y and Y184F & N86Y). Additionally, three samples (3.8%) were found to contain both Kelch 13 mutations and Pfmdr1 wild type genes. In all patients, parasitaemia persisted within the first 24 h of A-L therapy. However, at hour 40, only two patients were parasitaemic while all patients were aparasitaemic at hour 48. The genotypic profiles of the two persistent parasites at hour 40 were F446I and D1246Y, and R539I, Y184F, and N86Y. The slope half-life of the former was 6.4 h while the latter was 6.9 h and their respective PCT99 were 47.9 h and 49.2 h as well as a clearance rate constants of 0.109 and 0.092 respectively. Conclusion This study reports the effectiveness of A-L on various P. falciparum mutant alleles. However, continuous surveillance of Kelch 13 mutations and Pfmdr1 gene in Ghana and regular assessment of the therapeutic efficacy of A-L and other artemisinin derivatives is recommended.
Collapse
Key Words
- A, alanine
- A-L, Artemether-Lumefantrine
- ACT, Artemisinin-based Combination Therapy
- AS-AQ, Artesunate-Amodiaquine
- Amino acids:, A-alanine
- Artemether-Lumefantrine
- C, cysteine
- CRC, clearance rate constant
- D, aspartic acid
- DHAP, Dihydroartemisinin-Piperaquine
- F, phenylalanine
- G, glycine
- G-6-PD, Glucose-6-phosphate dehydrogenase
- GHS, Ghana Health Service
- Ga West Municipal
- Ghana
- I, isoleucine
- Kelch 13 gene mutations
- N, asparagine
- PCTs, parasite clearance times
- Parasite clearance characteristics
- Pfmdr1 genes
- Pfmdr1, Plasmodium multidrug resistance gene
- SNPs, Single nucleotide polymorphisms
- V, valine
- WHO, World Health Organization
- Y, tyrosine
- dsDNA, double stranded DNA
- sWGA, selective whole genome amplification
Collapse
Affiliation(s)
- Enoch Aninagyei
- University of Health and Allied Sciences, School of Basic and Biomedical Sciences, Department of Biomedical Sciences, PMB 31, Ho-Volta Region, Ghana
- Corresponding authors.
| | - Comfort Dede Tetteh
- Ghana Health Service, Municipal Health Directorate, Ga West Municipal, Amasaman, Ghana
| | - Martin Oppong
- Ghana Health Service, Municipal Health Directorate, Ga West Municipal, Amasaman, Ghana
| | - Alex Boye
- University of Cape Coast, School of Allied Health Sciences, Department of Medical Laboratory Science, Cape Coast, Ghana
| | - Desmond Omane Acheampong
- University of Cape Coast, School of Allied Health Sciences, Department of Biomedical Sciences, Cape Coast, Ghana
- Corresponding authors.
| |
Collapse
|
82
|
Dafalla OM, Alzahrani M, Sahli A, Al Helal MA, Alhazmi MM, Noureldin EM, Mohamed WS, Hamid TB, Abdelhaleem AA, Hobani YA, Arif OA, Bokar IM, Hakami AM, Eisa ZM. Kelch 13-propeller polymorphisms in Plasmodium falciparum from Jazan region, southwest Saudi Arabia. Malar J 2020; 19:397. [PMID: 33168025 PMCID: PMC7653757 DOI: 10.1186/s12936-020-03467-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Artemisinin-based combination therapy (ACT) is recommended at the initial phase for treatment of Plasmodium falciparum, to reduce morbidity and mortality in all countries where malaria is endemic. Polymorphism in portions of P. falciparum gene encoding kelch (K13)-propeller domains is associated with delayed parasite clearance after ACT. Of about 124 different non-synonymous mutations, 46 have been identified in Southeast Asia (SEA), 62 in sub-Saharan Africa (SSA) and 16 in both the regions. This is the first study designed to analyse the prevalence of polymorphism in the P. falciparum k13-propeller domain in the Jazan region of southwest Saudi Arabia, where malaria is endemic. METHODS One-hundred and forty P. falciparum samples were collected from Jazan region of southwest Saudi Arabia at three different times: 20 samples in 2011, 40 samples in 2016 and 80 samples in 2020 after the implementation of ACT. Plasmodium falciparum kelch13 (k13) gene DNA was extracted, amplified, sequenced, and analysed using a basic local alignment search tool (BLAST). RESULTS This study obtained 51 non-synonymous (NS) mutations in three time groups, divided as follows: 6 single nucleotide polymorphisms (SNPs) '11.8%' in samples collected in 2011 only, 3 (5.9%) in 2011and 2016, 5 (9.8%) in 2011 and 2020, 5 (9.8%) in 2016 only, 8 (15.7%) in 2016 and 2020, 14 (27.5%) in 2020 and 10 (19.6%) in all the groups. The BLAST revealed that the 2011 isolates were genetically closer to African isolates (53.3%) than Asian ones (46.7%). Interestingly, this proportion changed completely in 2020, to become closer to Asian isolates (81.6%) than to African ones (18.4%). CONCLUSIONS Despite the diversity of the identified mutations in the k13-propeller gene, these data did not report widespread artemisinin-resistant polymorphisms in the Jazan region where these samples were collected. Such a process would be expected to increase frequencies of mutations associated with the resistance of ACT.
Collapse
Affiliation(s)
| | - Mohammed Alzahrani
- Zoonotic and Vector - Borne Diseases Ministry of Health, Riyadh, Saudi Arabia
| | - Ahmed Sahli
- Zoonotic and Vector - Borne Diseases Ministry of Health, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | - Yahya Ali Hobani
- National Center for Diseases Prevention and Control, Jazan, Saudi Arabia
| | - Ommar Ali Arif
- National Center for Diseases Prevention and Control, Jazan, Saudi Arabia
| | | | | | - Zaki Manawar Eisa
- National Center for Diseases Prevention and Control, Jazan, Saudi Arabia
| |
Collapse
|
83
|
Plasmodium berghei K13 Mutations Mediate In Vivo Artemisinin Resistance That Is Reversed by Proteasome Inhibition. mBio 2020; 11:mBio.02312-20. [PMID: 33173001 PMCID: PMC7667033 DOI: 10.1128/mbio.02312-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent successes in malaria control have been seriously threatened by the emergence of Plasmodium falciparum parasite resistance to the frontline artemisinin drugs in Southeast Asia. P. falciparum artemisinin resistance is associated with mutations in the parasite K13 protein, which associates with a delay in the time required to clear the parasites upon drug treatment. Gene editing technologies have been used to validate the role of several candidate K13 mutations in mediating P. falciparum artemisinin resistance in vitro under laboratory conditions. Nonetheless, the causal role of these mutations under in vivo conditions has been a matter of debate. Here, we have used CRISPR/Cas9 gene editing to introduce K13 mutations associated with artemisinin resistance into the related rodent-infecting parasite, Plasmodium berghei. Phenotyping of these P. berghei K13 mutant parasites provides evidence of their role in mediating artemisinin resistance in vivo, which supports in vitro artemisinin resistance observations. However, we were unable to introduce some of the P. falciparum K13 mutations (C580Y and I543T) into the corresponding amino acid residues, while other introduced mutations (M476I and R539T equivalents) carried pronounced fitness costs. Our study provides evidence of a clear causal role of K13 mutations in modulating susceptibility to artemisinins in vitro and in vivo using the well-characterized P. berghei model. We also show that inhibition of the P. berghei proteasome offsets parasite resistance to artemisinins in these mutant lines. The recent emergence of Plasmodium falciparum parasite resistance to the first line antimalarial drug artemisinin is of particular concern. Artemisinin resistance is primarily driven by mutations in the P. falciparum K13 protein, which enhance survival of early ring-stage parasites treated with the artemisinin active metabolite dihydroartemisinin in vitro and associate with delayed parasite clearance in vivo. However, association of K13 mutations with in vivo artemisinin resistance has been problematic due to the absence of a tractable model. Herein, we have employed CRISPR/Cas9 genome editing to engineer selected orthologous P. falciparum K13 mutations into the K13 gene of an artemisinin-sensitive Plasmodium berghei rodent model of malaria. Introduction of the orthologous P. falciparum K13 F446I, M476I, Y493H, and R539T mutations into P. berghei K13 yielded gene-edited parasites with reduced susceptibility to dihydroartemisinin in the standard 24-h in vitro assay and increased survival in an adapted in vitro ring-stage survival assay. Mutant P. berghei K13 parasites also displayed delayed clearance in vivo upon treatment with artesunate and achieved faster recrudescence upon treatment with artemisinin. Orthologous C580Y and I543T mutations could not be introduced into P. berghei, while the equivalents of the M476I and R539T mutations resulted in significant growth defects. Furthermore, a Plasmodium-selective proteasome inhibitor strongly synergized dihydroartemisinin action in these P. berghei K13 mutant lines, providing further evidence that the proteasome can be targeted to overcome artemisinin resistance. Taken together, our findings provide clear experimental evidence for the involvement of K13 polymorphisms in mediating susceptibility to artemisinins in vitro and, most importantly, under in vivo conditions.
Collapse
|
84
|
Tagliamonte MS, Yowell CA, Elbadry MA, Boncy J, Raccurt CP, Okech BA, Goss EM, Salemi M, Dame JB. Genetic Markers of Adaptation of Plasmodium falciparum to Transmission by American Vectors Identified in the Genomes of Parasites from Haiti and South America. mSphere 2020; 5:e00937-20. [PMID: 33087522 PMCID: PMC7580960 DOI: 10.1128/msphere.00937-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/30/2022] Open
Abstract
The malaria parasite, Plasmodium falciparum, was introduced into Hispaniola and other regions of the Americas through the slave trade spanning the 16th through the 19th centuries. During this period, more than 12 million Africans were brought across the Atlantic to the Caribbean and other regions of the Americas. Since malaria is holoendemic in West Africa, a substantial percentage of these individuals carried the parasite. St. Domingue on Hispaniola, now modern-day Haiti, was a major port of disembarkation, and malaria is still actively transmitted there. We undertook a detailed study of the phylogenetics of the Haitian parasites and those from Colombia and Peru utilizing whole-genome sequencing. Principal-component and phylogenetic analyses, based upon single nucleotide polymorphisms (SNPs) in protein coding regions, indicate that, despite the potential for millions of introductions from Africa, the Haitian parasites share an ancestral relationship within a well-supported monophyletic clade with parasites from South America, while belonging to a distinct lineage. This result, in stark contrast to the historical record of parasite introductions, is best explained by a severe population bottleneck experienced by the parasites introduced into the Americas. Here, evidence is presented for targeted selection of rare African alleles in genes which are expressed in the mosquito stages of the parasite's life cycle. These genetic markers support the hypothesis that the severe population bottleneck was caused by the required adaptation of the parasite to transmission by new definitive hosts among the Anopheles (Nyssorhynchus) spp. found in the Caribbean and South America.IMPORTANCE Historical data suggest that millions of P. falciparum parasite lineages were introduced into the Americas during the trans-Atlantic slave trade, which would suggest a paraphyletic origin of the extant isolates in the Western Hemisphere. Our analyses of whole-genome variants show that the American parasites belong to a well-supported monophyletic clade. We hypothesize that the required adaptation to American vectors created a severe bottleneck, reducing the effective introduction to a few lineages. In support of this hypothesis, we discovered genes expressed in the mosquito stages of the life cycle that have alleles with multiple, high-frequency or fixed, nonsynonymous mutations in the American populations which are rarely found in African isolates. These alleles appear to be in gene products critical for transmission through the anopheline vector. Thus, these results may inform efforts to develop novel transmission-blocking vaccines by identifying parasite proteins functionally interacting with the vector that are important for successful transmission. Further, to the best of our knowledge, these are the first whole-genome data available from Haitian P. falciparum isolates. Defining the genome of these parasites provides genetic markers useful for mapping parasite populations and monitoring parasite movements/introductions.
Collapse
Affiliation(s)
- Massimiliano S Tagliamonte
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Charles A Yowell
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Maha A Elbadry
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Jacques Boncy
- Laboratoire National de Santé Publique, Ministère de la Santé Publique et de la Population, Port-au-Prince, Haiti
| | - Christian P Raccurt
- Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine, University of Quisqueya, Port-au-Prince, Haiti
| | - Bernard A Okech
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Erica M Goss
- Department of Plant Pathology, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - John B Dame
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
85
|
Baker KS. Microbe hunting in the modern era: reflecting on a decade of microbial genomic epidemiology. Curr Biol 2020; 30:R1124-R1130. [PMID: 33022254 PMCID: PMC7534602 DOI: 10.1016/j.cub.2020.06.097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Since the first recognition that infectious microbes serve as the causes of many human diseases, physicians and scientists have sought to understand and control their spread. For the past 150+ years, these ‘microbe hunters’ have learned to combine epidemiological information with knowledge of the infectious agent(s). In this essay, I reflect on the evolution of microbe hunting, beginning with the history of pre-germ theory epidemiological studies, through the microbiological and molecular eras. Now in the genomic age, modern-day microbe hunters are combining pathogen whole-genome sequencing with epidemiological data to enhance epidemiological investigations, advance our understanding of the natural history of pathogens and drivers of disease, and ultimately reshape our plans and priorities for global disease control and eradication. Indeed, as we have seen during the ongoing Covid-19 pandemic, the role of microbe hunters is now more important than ever. Despite the advances already made by microbial genomic epidemiology, the field is still maturing, with many more exciting developments on the horizon.
Collapse
Affiliation(s)
- Kate S Baker
- University of Liverpool, Institute for Infection, Ecology and Veterinary Sciences, Department of Clinical Infection, Microbiology, and Immunology, Liverpool L69 7ZB, UK.
| |
Collapse
|
86
|
Watson JA, Taylor AR, Ashley EA, Dondorp A, Buckee CO, White NJ, Holmes CC. A cautionary note on the use of unsupervised machine learning algorithms to characterise malaria parasite population structure from genetic distance matrices. PLoS Genet 2020; 16:e1009037. [PMID: 33035220 PMCID: PMC7577480 DOI: 10.1371/journal.pgen.1009037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/21/2020] [Accepted: 08/08/2020] [Indexed: 11/20/2022] Open
Abstract
Genetic surveillance of malaria parasites supports malaria control programmes, treatment guidelines and elimination strategies. Surveillance studies often pose questions about malaria parasite ancestry (e.g. how antimalarial resistance has spread) and employ statistical methods that characterise parasite population structure. Many of the methods used to characterise structure are unsupervised machine learning algorithms which depend on a genetic distance matrix, notably principal coordinates analysis (PCoA) and hierarchical agglomerative clustering (HAC). PCoA and HAC are sensitive to both the definition of genetic distance and algorithmic specification. Importantly, neither algorithm infers malaria parasite ancestry. As such, PCoA and HAC can inform (e.g. via exploratory data visualisation and hypothesis generation), but not answer comprehensively, key questions about malaria parasite ancestry. We illustrate the sensitivity of PCoA and HAC using 393 Plasmodium falciparum whole genome sequences collected from Cambodia and neighbouring regions (where antimalarial resistance has emerged and spread recently) and we provide tentative guidance for the use and interpretation of PCoA and HAC in malaria parasite genetic epidemiology. This guidance includes a call for fully transparent and reproducible analysis pipelines that feature (i) a clearly outlined scientific question; (ii) a clear justification of analytical methods used to answer the scientific question along with discussion of any inferential limitations; (iii) publicly available genetic distance matrices when downstream analyses depend on them; and (iv) sensitivity analyses. To bridge the inferential disconnect between the output of non-inferential unsupervised learning algorithms and the scientific questions of interest, tailor-made statistical models are needed to infer malaria parasite ancestry. In the absence of such models speculative reasoning should feature only as discussion but not as results.
Collapse
Affiliation(s)
- James A. Watson
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Aimee R. Taylor
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Elizabeth A. Ashley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Vientiane, Laos
| | - Arjen Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Caroline O. Buckee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Chris C. Holmes
- Department of Statistics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
87
|
Plasmodium falciparum Knockout for the GPCR-Like PfSR25 Receptor Displays Greater Susceptibility to 1,2,3-Triazole Compounds That Block Malaria Parasite Development. Biomolecules 2020; 10:biom10081197. [PMID: 32824696 PMCID: PMC7465636 DOI: 10.3390/biom10081197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 01/05/2023] Open
Abstract
The search for new compounds with antimalarial activity is urgent, as resistance to ones in the classical drug, has already been described in more than one continent. Compounds derived from 1,2,3-triazoles are effective against parasites and bacteria. Here, we evaluated the potential antimalarial activity against the human malaria parasite Plasmodium falciparum in a culture of fifty-four triazole compounds derived from 1H-and 2H-1,2,3-triazole. We identified thirty-one compounds with potential antimalarial activity at concentrations in the micromolar order (µM) and IC50 values ranging from 2.80 µM (9) to 29.27 µM (21). Then, we selected some of these compounds to perform the same tests on the PfSR25- strain (knockout for P. falciparum G-protein coupled receptor-like, SR25). Our experiences with the PfSR25- strain showed that both compounds with higher antimalarial activity for the 3D7 strain and those with less activity resulted in lower IC50 values for the knockout strain. The cytotoxicity of the compounds was evaluated in human renal embryonic cells (HEK 293), using MTT assays. This demonstrated that the compounds with the highest activity (9, 13, 19, 22, 24, 29), showed no toxicity at the tested concentrations.
Collapse
|
88
|
Uwimana A, Legrand E, Stokes BH, Ndikumana JLM, Warsame M, Umulisa N, Ngamije D, Munyaneza T, Mazarati JB, Munguti K, Campagne P, Criscuolo A, Ariey F, Murindahabi M, Ringwald P, Fidock DA, Mbituyumuremyi A, Menard D. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat Med 2020; 26:1602-1608. [PMID: 32747827 PMCID: PMC7541349 DOI: 10.1038/s41591-020-1005-2] [Citation(s) in RCA: 430] [Impact Index Per Article: 107.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022]
Abstract
Artemisinin resistance (delayed P. falciparum clearance following artemisinin-based combination therapy), is widespread across Southeast Asia but to date has not been reported in Africa1–4. Here we genotyped the P. falciparum K13 (Pfkelch13) propeller domain, mutations in which can mediate artemisinin resistance5,6, in pretreatment samples collected from recent dihydroarteminisin-piperaquine and artemether-lumefantrine efficacy trials in Rwanda7. While cure rates were >95% in both treatment arms, the Pfkelch13 R561H mutation was identified in 19 of 257 (7.4%) patients at Masaka. Phylogenetic analysis revealed the expansion of an indigenous R561H lineage. Gene editing confirmed that this mutation can drive artemisinin resistance in vitro. This study provides evidence for the de novo emergence of Pfkelch13-mediated artemisinin resistance in Rwanda, potentially compromising the continued success of antimalarial chemotherapy in Africa. Identification in Rwanda of mutations in Plasmodium falciparum capable of conferring in vitro resistance to artemisinin, an essential medicine for the treatment of malaria, underscore the crucial need for surveillance in Africa to safeguard efficacy of life-saving therapies.
Collapse
Affiliation(s)
- Aline Uwimana
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre (RBC), Kigali, Rwanda.
| | - Eric Legrand
- Malaria Genetics and Resistance Unit-Institut Pasteur, INSERM U1201, CNRS ERL9195, Paris, France
| | - Barbara H Stokes
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, USA
| | | | | | - Noella Umulisa
- Maternal and Child Survival Program/JHPIEGO, Baltimore, MD, USA.,Impact Malaria Rwanda, Kigali, Rwanda
| | | | - Tharcisse Munyaneza
- National Reference Laboratory (NRL), BIOS /Rwanda Biomedical Centre (RBC), Kigali, Rwanda
| | - Jean-Baptiste Mazarati
- National Reference Laboratory (NRL), BIOS /Rwanda Biomedical Centre (RBC), Kigali, Rwanda
| | | | - Pascal Campagne
- Hub de Bioinformatique et Biostatistique-Département Biologie Computationnelle, Paris, France
| | - Alexis Criscuolo
- Hub de Bioinformatique et Biostatistique-Département Biologie Computationnelle, Paris, France
| | - Frédéric Ariey
- INSERM 1016, Institut Cochin, Service de Parasitologie-Mycologie, Hôpital Cochin, Université de Paris, Paris, France
| | | | - Pascal Ringwald
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, USA.,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Aimable Mbituyumuremyi
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre (RBC), Kigali, Rwanda
| | - Didier Menard
- Malaria Genetics and Resistance Unit-Institut Pasteur, INSERM U1201, CNRS ERL9195, Paris, France.
| |
Collapse
|
89
|
Aninagyei E, Duedu KO, Rufai T, Tetteh CD, Chandi MG, Ampomah P, Acheampong DO. Characterization of putative drug resistant biomarkers in Plasmodium falciparum isolated from Ghanaian blood donors. BMC Infect Dis 2020; 20:533. [PMID: 32698879 PMCID: PMC7376723 DOI: 10.1186/s12879-020-05266-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum parasites, which could harbour anti-malaria drug resistance genes, are commonly detected in blood donors in malaria-endemic areas. Notwithstanding, anti-malaria drug resistant biomarkers have not been characterized in blood donors with asymptomatic P. falciparum infection. METHODS A total of 771 blood donors were selected from five districts in the Greater Accra Region, Ghana. Each donor sample was screened with malaria rapid diagnostic test (RDT) kit and parasitaemia quantified microscopically. Dried blood spots from malaria positive samples were genotyped for P. falciparum chloroquine resistance transporter (Pfcrt), P. falciparum multi-drug resistance (Pfmdr1), P. falciparum dihydropteroate-synthetase (Pfdhps), P. falciparum dihydrofolate-reductase (Pfdhfr) and Kelch 13 propeller domain on chromosome 13 (Kelch 13) genes. RESULTS Of the 771 blood donors, 91 (11.8%) were positive by RDT. Analysis of sequence reads indicated successful genotyping of Pfcrt, Pfmdr1, Pfdhfr, Pfdhps and Kelch 13 genes in 84.6, 81.3, 86.8, 86.9 and 92.3% of the isolates respectively. Overall, 21 different mutant haplotypes were identified in 69 isolates (75.8%). In Pfcrt, CVIET haplotype was observed in 11.6% samples while in Pfmdr1, triple mutation (resulting in YFN haplotype) was detected in 8.1% of isolates. In Pfdhfr gene, triple mutation resulting in IRNI haplotype and in Pfdhps gene, quintuple mutation resulting in AGESS haplotype was identified in 17.7% parasite isolates. Finally, five non-synonymous Kelch 13 alleles were detected; C580Y (3.6%), P615L (4.8%), A578S (4.8%), I543V (2.4%) and A676S (1.2%) were detected. CONCLUSION Results obtained in this study indicated various frequencies of mutant alleles in Pfcrt, Pfmdr1, Pfdhfr, Pfdhps and Kelch 13 genes from P. falciparum infected blood donors. These alleles could reduce the efficacy of standard malaria treatment in transfusion-transmitted malaria cases. Incorporating malaria screening into donor screening protocol to defer infected donors is therefore recommended.
Collapse
Affiliation(s)
- Enoch Aninagyei
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Volta Region, Ghana.
| | - Kwabena Obeng Duedu
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Tanko Rufai
- Ghana Health Service, Accra, Ghana
- New Juabeng Municipal Health Directorate, Koforidua, Ghana
| | - Comfort Dede Tetteh
- Ghana Health Service, Municipal Health Directorate, Ga West Municipal, Amasaman, Ghana
| | | | - Paulina Ampomah
- School of Allied Health Sciences, Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Science, University of Cape Coast, Cape Coast, Ghana
| | - Desmond Omane Acheampong
- School of Allied Health Sciences, Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Science, University of Cape Coast, Cape Coast, Ghana.
- Malaria Genome Laboratory, Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
| |
Collapse
|
90
|
A Natural Peptide Antigen within the Plasmodium Ribosomal Protein RPL6 Confers Liver TRM Cell-Mediated Immunity against Malaria in Mice. Cell Host Microbe 2020; 27:950-962.e7. [DOI: 10.1016/j.chom.2020.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/19/2020] [Accepted: 04/02/2020] [Indexed: 01/24/2023]
|
91
|
Abubakar UF, Adam R, Mukhtar MM, Muhammad A, Yahuza AA, Ibrahim SS. Identification of Mutations in Antimalarial Resistance Gene Kelch13 from plasmodium falciparum Isolates in Kano, Nigeria. Trop Med Infect Dis 2020; 5:E85. [PMID: 32471273 PMCID: PMC7345473 DOI: 10.3390/tropicalmed5020085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 11/16/2022] Open
Abstract
Malaria control relies on first-line treatments that use artemisinin-combination therapies (ACT). Unfortunately, mutations in the plasmodium falciparum kelch13 gene result in delayed parasite clearance. Research on what is causing ACT failure is non-existent in northwestern Nigeria. Thus, the presence of mutations in kelch13 in P. falciparum isolates from Kano, Nigeria was investigated in this study. Microscopic examination of 154 blood samples obtained from patients revealed a high prevalence of P. falciparum infection (114 positive individuals, slide positivity rate = 74.03%). The 114 patients were administered Cartef® (ACT) and out of the 50 patients that returned for the 14-day follow up, 11 were positive for P. falciparum (slide positivity rate = 22%). On day 0, 80 samples out of 114 and 11 samples on day 14 (91 out of 125 microscopy-positive samples) were positive with Plasmodium according to the PCR of cytochrome oxidase I, which corresponds to 72.8%. A fragment of the kelch13 gene encompassing the propeller domains was sequenced in 49 samples, alongside samples of the susceptible strain pf_3D7. Low polymorphism was observed, suggesting a lack of selection on this gene, and only six mutations (Glu433Gly, Phe434Ile, Phe434Ser, Ile684Asn, Ile684Thr and Glu688Lys) were found. The epidemiologic impact of these mutations and their potential role in ACT resistance needs to be investigated further.
Collapse
Affiliation(s)
- Umar F. Abubakar
- Laboratory Department, Public Health and Diagnostic Institute, Yusuf Maitama Sule University, Kwanar Dawaki, PMB 3220 Kano, Nigeria;
| | - Ruqayya Adam
- Department of Biological Sciences, Faculty of Sciences, Federal University Dutsinma, PMB 5001 Katsina, Nigeria;
| | - Muhammad M. Mukhtar
- Department of Biochemistry, Bayero University, PMB 3011 Kano, Nigeria; (M.M.M.); (A.M.)
| | - Abdullahi Muhammad
- Department of Biochemistry, Bayero University, PMB 3011 Kano, Nigeria; (M.M.M.); (A.M.)
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK
| | - Adamu A. Yahuza
- Department of Medical Microbiology and Parasitology, Faculty of Clinical Sciences, Bayero University, PMB 3011 Kano, Nigeria;
| | - Sulaiman S. Ibrahim
- Department of Biochemistry, Bayero University, PMB 3011 Kano, Nigeria; (M.M.M.); (A.M.)
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK
| |
Collapse
|
92
|
Different Plasmodium falciparum clearance times in two Malian villages following artesunate monotherapy. Int J Infect Dis 2020; 95:399-405. [PMID: 32320811 PMCID: PMC7294218 DOI: 10.1016/j.ijid.2020.03.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 11/23/2022] Open
Abstract
High prevalence of residual parasitemia at day 3 post-artesunate monotherapy treatment using qPCR while no parasites were detected by microscopy at the same timepoint. A longer parasite clearance time observed in a Malian village. Artesunate treatment is still efficacious on Plasmodium falciparum in Mali.
Background Artemisinin resistance described as increased parasite clearance time (PCT) is rare in Africa. More sensitive methods such as qPCR might better characterize the clearance phenotype in sub-Saharan Africa. Methods PCT is explored in Mali using light microscopy and qPCR after artesunate for uncomplicated malaria. In two villages, patients were followed for 28 days. Blood smears and spots were collected respectively for microscopy and qPCR. Parasitemia slope half-life was calculated after microscopy. Patient residual parasitemia were measured by qPCR. Results Uncorrected adequate clinical and parasitological responses (ACPR) observed in Faladje and Bougoula-Hameau were 78% and 92%, respectively (p = 0.01). This reached 100% for both after molecular correction. Proportions of 24H microscopy positive patients in Faladje and Bougoula-Hameau were 97.2% and 72%, respectively (p < 0.0001). Slope half-life was 2.8 h in Faladje vs 2H in Bougoula-Hameau (p < 0.001) and Proportions of 72H patients with residual parasitemia were 68.5% and 40% in Faladje and Bougoula-Hameau, respectively (p = 0.003). The mean residual parasitemia was 2.9 in Faladje vs. 0.008 in Bougoula-Hameau (p = 0.002). Although artesunate is efficacious in Mali, the longer parasite clearance time with submicroscopic parasitemia observed may represent early signs of developing P. falciparum resistance to artemisinins.
Collapse
|
93
|
Li Y, Shetty AC, Lon C, Spring M, Saunders DL, Fukuda MM, Hien TT, Pukrittayakamee S, Fairhurst RM, Dondorp AM, Plowe CV, O’Connor TD, Takala-Harrison S, Stewart K. Detecting geospatial patterns of Plasmodium falciparum parasite migration in Cambodia using optimized estimated effective migration surfaces. Int J Health Geogr 2020; 19:13. [PMID: 32276636 PMCID: PMC7149848 DOI: 10.1186/s12942-020-00207-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/01/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Understanding the genetic structure of natural populations provides insight into the demographic and adaptive processes that have affected those populations. Such information, particularly when integrated with geospatial data, can have translational applications for a variety of fields, including public health. Estimated effective migration surfaces (EEMS) is an approach that allows visualization of the spatial patterns in genomic data to understand population structure and migration. In this study, we developed a workflow to optimize the resolution of spatial grids used to generate EEMS migration maps and applied this optimized workflow to estimate migration of Plasmodium falciparum in Cambodia and bordering regions of Thailand and Vietnam. METHODS The optimal density of EEMS grids was determined based on a new workflow created using density clustering to define genomic clusters and the spatial distance between genomic clusters. Topological skeletons were used to capture the spatial distribution for each genomic cluster and to determine the EEMS grid density; i.e., both genomic and spatial clustering were used to guide the optimization of EEMS grids. Model accuracy for migration estimates using the optimized workflow was tested and compared to grid resolutions selected without the optimized workflow. As a test case, the optimized workflow was applied to genomic data generated from P. falciparum sampled in Cambodia and bordering regions, and migration maps were compared to estimates of malaria endemicity, as well as geographic properties of the study area, as a means of validating observed migration patterns. RESULTS Optimized grids displayed both high model accuracy and reduced computing time compared to grid densities selected in an unguided manner. In addition, EEMS migration maps generated for P. falciparum using the optimized grid corresponded to estimates of malaria endemicity and geographic properties of the study region that might be expected to impact malaria parasite migration, supporting the validity of the observed migration patterns. CONCLUSIONS Optimized grids reduce spatial uncertainty in the EEMS contours that can result from user-defined parameters, such as the resolution of the spatial grid used in the model. This workflow will be useful to a broad range of EEMS users as it can be applied to analyses involving other organisms of interest and geographic areas.
Collapse
Affiliation(s)
- Yao Li
- Center for Geospatial Information Science, Department of Geographical Sciences, University of Maryland, College Park, 20742 MD USA
| | - Amol C. Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, 21201 MD USA
| | - Chanthap Lon
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Michele Spring
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - David L. Saunders
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mark M. Fukuda
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | | | - Timothy D. O’Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, 21201 MD USA
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, 21201 MD USA
| | - Kathleen Stewart
- Center for Geospatial Information Science, Department of Geographical Sciences, University of Maryland, College Park, 20742 MD USA
| |
Collapse
|
94
|
Gnädig NF, Stokes BH, Edwards RL, Kalantarov GF, Heimsch KC, Kuderjavy M, Crane A, Lee MCS, Straimer J, Becker K, Trakht IN, Odom John AR, Mok S, Fidock DA. Insights into the intracellular localization, protein associations and artemisinin resistance properties of Plasmodium falciparum K13. PLoS Pathog 2020; 16:e1008482. [PMID: 32310999 PMCID: PMC7192513 DOI: 10.1371/journal.ppat.1008482] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 04/30/2020] [Accepted: 03/17/2020] [Indexed: 12/23/2022] Open
Abstract
The emergence of artemisinin (ART) resistance in Plasmodium falciparum intra-erythrocytic parasites has led to increasing treatment failure rates with first-line ART-based combination therapies in Southeast Asia. Decreased parasite susceptibility is caused by K13 mutations, which are associated clinically with delayed parasite clearance in patients and in vitro with an enhanced ability of ring-stage parasites to survive brief exposure to the active ART metabolite dihydroartemisinin. Herein, we describe a panel of K13-specific monoclonal antibodies and gene-edited parasite lines co-expressing epitope-tagged versions of K13 in trans. By applying an analytical quantitative imaging pipeline, we localize K13 to the parasite endoplasmic reticulum, Rab-positive vesicles, and sites adjacent to cytostomes. These latter structures form at the parasite plasma membrane and traffic hemoglobin to the digestive vacuole wherein artemisinin-activating heme moieties are released. We also provide evidence of K13 partially localizing near the parasite mitochondria upon treatment with dihydroartemisinin. Immunoprecipitation data generated with K13-specific monoclonal antibodies identify multiple putative K13-associated proteins, including endoplasmic reticulum-resident molecules, mitochondrial proteins, and Rab GTPases, in both K13 mutant and wild-type isogenic lines. We also find that mutant K13-mediated resistance is reversed upon co-expression of wild-type or mutant K13. These data help define the biological properties of K13 and its role in mediating P. falciparum resistance to ART treatment.
Collapse
Affiliation(s)
- Nina F. Gnädig
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Barbara H. Stokes
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Rachel L. Edwards
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Gavreel F. Kalantarov
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Kim C. Heimsch
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | | | - Audrey Crane
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Marcus C. S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Judith Straimer
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | - Ilya N. Trakht
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States of America
| | - Audrey R. Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States of America
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Sachel Mok
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, United States of America
| | - David A. Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, United States of America
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States of America
| |
Collapse
|
95
|
Gaye A, Sy M, Ndiaye T, Siddle KJ, Park DJ, Deme AB, Mbaye A, Dieye B, Ndiaye YD, Neafsey DE, Early A, Farrell T, Yade MS, Diallo MA, Diongue K, Bei A, Ndiaye IM, Volkman SK, Badiane AS, Ndiaye D. Amplicon deep sequencing of kelch13 in Plasmodium falciparum isolates from Senegal. Malar J 2020; 19:134. [PMID: 32228566 PMCID: PMC7106636 DOI: 10.1186/s12936-020-03193-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In 2006, the Senegalese National Malaria Control Programme recommended artemisinin-based combination therapy (ACT) with artemether-lumefantrine as the first-line treatment for uncomplicated Plasmodium falciparum malaria. To date, multiple mutations associated with artemisinin delayed parasite clearance have been described in Southeast Asia in the Pfk13 gene, such as Y493H, R539T, I543T and C580Y. Even though ACT remains clinically and parasitologically efficacious in Senegal, the spread of resistance is possible as shown by the earlier emergence of resistance to chloroquine in Southeast Asia that subsequently spread to Africa. Therefore, surveillance of artemisinin resistance in malaria endemic regions is crucial and requires the implementation of sensitive tools, such as next-generation sequencing (NGS) which can detect novel mutations at low frequency. METHODS Here, an amplicon sequencing approach was used to identify mutations in the Pfk13 gene in eighty-one P. falciparum isolates collected from three different regions of Senegal. RESULTS In total, 10 SNPs around the propeller domain were identified; one synonymous SNP and nine non-synonymous SNPs, and two insertions. Three of these SNPs (T478T, A578S and V637I) were located in the propeller domain. A578S, is the most frequent mutation observed in Africa, but has not previously been reported in Senegal. A previous study has suggested that A578S could disrupt the function of the Pfk13 propeller region. CONCLUSION As the genetic basis of possible artemisinin resistance may be distinct in Africa and Southeast Asia, further studies are necessary to assess the new SNPs reported in this study.
Collapse
Affiliation(s)
- Amy Gaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal.
| | - Mouhamad Sy
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Tolla Ndiaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | | | - Daniel J Park
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Awa B Deme
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Aminata Mbaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Baba Dieye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Yaye Die Ndiaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Daniel E Neafsey
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Angela Early
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Mamadou Samb Yade
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Mamadou Alpha Diallo
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Khadim Diongue
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Amy Bei
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal.,Yale School of Public Health, Laboratory of Epidemiology and Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Ibrahima Mbaye Ndiaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Sarah K Volkman
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Aida Sadikh Badiane
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - Daouda Ndiaye
- Laboratory of Parasitology and Mycology, Aristide le Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| |
Collapse
|
96
|
Sinha I, Sayeed AA, Uddin D, Wesolowski A, Zaman SI, Faiz MA, Ghose A, Rahman MR, Islam A, Karim MJ, Saha A, Rezwan MK, Shamsuzzaman AKM, Jhora ST, Aktaruzzaman MM, Chang HH, Miotto O, Kwiatkowski D, Dondorp AM, Day NPJ, Hossain MA, Buckee C, Maude RJ. Mapping the travel patterns of people with malaria in Bangladesh. BMC Med 2020; 18:45. [PMID: 32127002 PMCID: PMC7055101 DOI: 10.1186/s12916-020-1512-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/05/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Spread of malaria and antimalarial resistance through human movement present major threats to current goals to eliminate the disease. Bordering the Greater Mekong Subregion, southeast Bangladesh is a potentially important route of spread to India and beyond, but information on travel patterns in this area are lacking. METHODS Using a standardised short survey tool, 2090 patients with malaria were interviewed at 57 study sites in 2015-2016 about their demographics and travel patterns in the preceding 2 months. RESULTS Most travel was in the south of the study region between Cox's Bazar district (coastal region) to forested areas in Bandarban (31% by days and 45% by nights), forming a source-sink route. Less than 1% of travel reported was between the north and south forested areas of the study area. Farmers (21%) and students (19%) were the top two occupations recorded, with 67 and 47% reporting travel to the forest respectively. Males aged 25-49 years accounted for 43% of cases visiting forests but only 24% of the study population. Children did not travel. Women, forest dwellers and farmers did not travel beyond union boundaries. Military personnel travelled the furthest especially to remote forested areas. CONCLUSIONS The approach demonstrated here provides a framework for identifying key traveller groups and their origins and destinations of travel in combination with knowledge of local epidemiology to inform malaria control and elimination efforts. Working with the NMEP, the findings were used to derive a set of policy recommendations to guide targeting of interventions for elimination.
Collapse
Affiliation(s)
- Ipsita Sinha
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | | | - Didar Uddin
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Amy Wesolowski
- John Hopkins Bloomberg School of Public Health, Baltimore, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, USA
| | - Sazid Ibna Zaman
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- BRAC (Building Resources Across Communities), BRAC Centre, Mohakhali, Dhaka, Bangladesh
| | - M Abul Faiz
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Dev Care Foundation, Dhaka, Bangladesh
| | - Aniruddha Ghose
- Chittagong Medical College and Hospital, Chittagong, Bangladesh
| | | | - Akramul Islam
- BRAC (Building Resources Across Communities), BRAC Centre, Mohakhali, Dhaka, Bangladesh
| | - Mohammad Jahirul Karim
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Communicable Disease Control, Directorate General of Health Services, Dhaka, Bangladesh
- Filariasis Elimination, STH Control, Dhaka, Bangladesh
| | - Anjan Saha
- National Malaria Elimination Programme, Dhaka, Bangladesh
| | - M Kamar Rezwan
- Vector-Borne Disease Control, World Health Organization, Dhaka, Bangladesh
| | | | - Sanya Tahmina Jhora
- Communicable Disease Control, Directorate General of Health Services, Dhaka, Bangladesh
| | - M M Aktaruzzaman
- Communicable Disease Control, Directorate General of Health Services, Dhaka, Bangladesh
- National Malaria Elimination Programme, Dhaka, Bangladesh
| | - Hsiao-Han Chang
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, USA
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Big Data Institute, University of Oxford, Oxford, UK
| | - Dominic Kwiatkowski
- Big Data Institute, University of Oxford, Oxford, UK
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - M Amir Hossain
- Chittagong Medical College and Hospital, Chittagong, Bangladesh
| | - Caroline Buckee
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, USA
| | - Richard J Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, USA
| |
Collapse
|
97
|
Talman AM, Ouologuem DTD, Love K, Howick VM, Mulamba C, Haidara A, Dara N, Sylla D, Sacko A, Coulibaly MM, Dao F, Sangare CPO, Djimde A, Lawniczak MKN. Uptake of Plasmodium falciparum Gametocytes During Mosquito Bloodmeal by Direct and Membrane Feeding. Front Microbiol 2020; 11:246. [PMID: 32194521 PMCID: PMC7062676 DOI: 10.3389/fmicb.2020.00246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/03/2020] [Indexed: 11/25/2022] Open
Abstract
Plasmodium falciparum remains one of the leading causes of child mortality, and nearly half of the world's population is at risk of contracting malaria. While pathogenesis results from replication of asexual forms in human red blood cells, it is the sexually differentiated forms, gametocytes, which are responsible for the spread of the disease. For transmission to succeed, both mature male and female gametocytes must be taken up by a female Anopheles mosquito during its blood meal for subsequent differentiation into gametes and mating inside the mosquito gut. Observed circulating numbers of gametocytes in the human host are often surprisingly low. A pre-fertilization behavior, such as skin sequestration, has been hypothesized to explain the efficiency of human-to-mosquito transmission but has not been sufficiently tested due to a lack of appropriate tools. In this study, we describe the optimization of a qPCR tool that enables the relative quantification of gametocytes within very small input samples. Such a tool allows for the quantification of gametocytes in different compartments of the host and the vector that could potentially unravel mechanisms that enable highly efficient malaria transmission. We demonstrate the use of our gametocyte quantification method in mosquito blood meals from both direct skin feeding on Plasmodium gametocyte carriers and standard membrane feeding assay. Relative gametocyte abundance was not different between mosquitoes fed through a membrane or directly on the skin suggesting that there is no systematic enrichment of gametocytes picked up in the skin.
Collapse
Affiliation(s)
- Arthur M. Talman
- Wellcome Sanger Institute, Hinxton, United Kingdom
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Dinkorma T. D. Ouologuem
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Katie Love
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | | | | | - Aboubecrin Haidara
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Niawanlou Dara
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Daman Sylla
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Adama Sacko
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mamadou M. Coulibaly
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Francois Dao
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Cheick P. O. Sangare
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Abdoulaye Djimde
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | |
Collapse
|
98
|
Role of Plasmodium falciparum Kelch 13 Protein Mutations in P. falciparum Populations from Northeastern Myanmar in Mediating Artemisinin Resistance. mBio 2020; 11:mBio.01134-19. [PMID: 32098812 PMCID: PMC7042691 DOI: 10.1128/mbio.01134-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Artemisinin resistance has emerged in Southeast Asia, endangering the substantial progress in malaria elimination worldwide. It is associated with mutations in the PfK13 protein, but how PfK13 mediates artemisinin resistance is not completely understood. Here we used a new antibody against PfK13 to show that the PfK13 protein is expressed in all stages of the asexual intraerythrocytic cycle as well as in gametocytes and is partially localized in the endoplasmic reticulum. By introducing four PfK13 mutations into the 3D7 strain and reverting these mutations in field parasite isolates, we determined the impacts of these mutations identified in the parasite populations from northern Myanmar on the ring stage using the in vitro ring survival assay. The introduction of the N458Y mutation into the 3D7 background significantly increased the survival rates of the ring-stage parasites but at the cost of the reduced fitness of the parasites. Introduction of the F446I mutation, the most prevalent PfK13 mutation in northern Myanmar, did not result in a significant increase in ring-stage survival after exposure to dihydroartemisinin (DHA), but these parasites showed extended ring-stage development. Further, parasites with the F446I mutation showed only a marginal loss of fitness, partially explaining its high frequency in northern Myanmar. Conversely, reverting all these mutations, except for the C469Y mutation, back to their respective wild types reduced the ring-stage survival of these isolates in response to in vitro DHA treatment. Mutations in the Plasmodium falciparum Kelch 13 (PfK13) protein are associated with artemisinin resistance. PfK13 is essential for asexual erythrocytic development, but its function is not known. We tagged the PfK13 protein with green fluorescent protein in P. falciparum to study its expression and localization in asexual and sexual stages. We used a new antibody against PfK13 to show that the PfK13 protein is expressed ubiquitously in both asexual erythrocytic stages and gametocytes and is localized in punctate structures, partially overlapping an endoplasmic reticulum marker. We introduced into the 3D7 strain four PfK13 mutations (F446I, N458Y, C469Y, and F495L) identified in parasites from the China-Myanmar border area and characterized the in vitro artemisinin response phenotypes of the mutants. We found that all the parasites with the introduced PfK13 mutations showed higher survival rates in the ring-stage survival assay (RSA) than the wild-type (WT) control, but only parasites with N458Y displayed a significantly higher RSA value (26.3%) than the WT control. After these PfK13 mutations were reverted back to the WT in field parasite isolates, all revertant parasites except those with the C469Y mutation showed significantly lower RSA values than their respective parental isolates. Although the 3D7 parasites with introduced F446I, the predominant PfK13 mutation in northern Myanmar, did not show significantly higher RSA values than the WT, they had prolonged ring-stage development and showed very little fitness cost in in vitro culture competition assays. In comparison, parasites with the N458Y mutations also had a prolonged ring stage and showed upregulated resistance pathways in response to artemisinin, but this mutation produced a significant fitness cost, potentially leading to their lower prevalence in the Greater Mekong subregion.
Collapse
|
99
|
Morgan AP, Brazeau NF, Ngasala B, Mhamilawa LE, Denton M, Msellem M, Morris U, Filer DL, Aydemir O, Bailey JA, Parr JB, Mårtensson A, Bjorkman A, Juliano JJ. Falciparum malaria from coastal Tanzania and Zanzibar remains highly connected despite effective control efforts on the archipelago. Malar J 2020; 19:47. [PMID: 31992305 PMCID: PMC6988337 DOI: 10.1186/s12936-020-3137-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tanzania's Zanzibar archipelago has made significant gains in malaria control over the last decade and is a target for malaria elimination. Despite consistent implementation of effective tools since 2002, elimination has not been achieved. Importation of parasites from outside of the archipelago is thought to be an important cause of malaria's persistence, but this paradigm has not been studied using modern genetic tools. METHODS Whole-genome sequencing (WGS) was used to investigate the impact of importation, employing population genetic analyses of Plasmodium falciparum isolates from both the archipelago and mainland Tanzania. Ancestry, levels of genetic diversity and differentiation, patterns of relatedness, and patterns of selection between these two populations were assessed by leveraging recent advances in deconvolution of genomes from polyclonal malaria infections. RESULTS Significant decreases in the effective population sizes were inferred in both populations that coincide with a period of decreasing malaria transmission in Tanzania. Identity by descent analysis showed that parasites in the two populations shared long segments of their genomes, on the order of 5 cM, suggesting shared ancestry within the last 10 generations. Even with limited sampling, two of isolates between the mainland and Zanzibar were identified that are related at the expected level of half-siblings, consistent with recent importation. CONCLUSIONS These findings suggest that importation plays an important role for malaria incidence on Zanzibar and demonstrate the value of genomic approaches for identifying corridors of parasite movement to the island.
Collapse
Affiliation(s)
- Andrew P Morgan
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nicholas F Brazeau
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Billy Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Lwidiko E Mhamilawa
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Madeline Denton
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mwinyi Msellem
- Training and Research, Mnazi Mmoja Hospital, Zanzibar, Tanzania
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Dayne L Filer
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ozkan Aydemir
- Department of Laboratory Medicine and Pathology, Brown University, Providence, RI, 02912, USA
| | - Jeffrey A Bailey
- Department of Laboratory Medicine and Pathology, Brown University, Providence, RI, 02912, USA
| | - Jonathan B Parr
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andreas Mårtensson
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Anders Bjorkman
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Jonathan J Juliano
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
100
|
Moser KA, Drábek EF, Dwivedi A, Stucke EM, Crabtree J, Dara A, Shah Z, Adams M, Li T, Rodrigues PT, Koren S, Phillippy AM, Munro JB, Ouattara A, Sparklin BC, Dunning Hotopp JC, Lyke KE, Sadzewicz L, Tallon LJ, Spring MD, Jongsakul K, Lon C, Saunders DL, Ferreira MU, Nyunt MM, Laufer MK, Travassos MA, Sauerwein RW, Takala-Harrison S, Fraser CM, Sim BKL, Hoffman SL, Plowe CV, Silva JC. Strains used in whole organism Plasmodium falciparum vaccine trials differ in genome structure, sequence, and immunogenic potential. Genome Med 2020; 12:6. [PMID: 31915075 PMCID: PMC6950926 DOI: 10.1186/s13073-019-0708-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Plasmodium falciparum (Pf) whole-organism sporozoite vaccines have been shown to provide significant protection against controlled human malaria infection (CHMI) in clinical trials. Initial CHMI studies showed significantly higher durable protection against homologous than heterologous strains, suggesting the presence of strain-specific vaccine-induced protection. However, interpretation of these results and understanding of their relevance to vaccine efficacy have been hampered by the lack of knowledge on genetic differences between vaccine and CHMI strains, and how these strains are related to parasites in malaria endemic regions. METHODS Whole genome sequencing using long-read (Pacific Biosciences) and short-read (Illumina) sequencing platforms was conducted to generate de novo genome assemblies for the vaccine strain, NF54, and for strains used in heterologous CHMI (7G8 from Brazil, NF166.C8 from Guinea, and NF135.C10 from Cambodia). The assemblies were used to characterize sequences in each strain relative to the reference 3D7 (a clone of NF54) genome. Strains were compared to each other and to a collection of clinical isolates (sequenced as part of this study or from public repositories) from South America, sub-Saharan Africa, and Southeast Asia. RESULTS While few variants were detected between 3D7 and NF54, we identified tens of thousands of variants between NF54 and the three heterologous strains. These variants include SNPs, indels, and small structural variants that fall in regulatory and immunologically important regions, including transcription factors (such as PfAP2-L and PfAP2-G) and pre-erythrocytic antigens that may be key for sporozoite vaccine-induced protection. Additionally, these variants directly contributed to diversity in immunologically important regions of the genomes as detected through in silico CD8+ T cell epitope predictions. Of all heterologous strains, NF135.C10 had the highest number of unique predicted epitope sequences when compared to NF54. Comparison to global clinical isolates revealed that these four strains are representative of their geographic origin despite long-term culture adaptation; of note, NF135.C10 is from an admixed population, and not part of recently formed subpopulations resistant to artemisinin-based therapies present in the Greater Mekong Sub-region. CONCLUSIONS These results will assist in the interpretation of vaccine efficacy of whole-organism vaccines against homologous and heterologous CHMI.
Collapse
Affiliation(s)
- Kara A. Moser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Present address: Institute for Global Health and Infectious Diseases, University of North Carolina Chapel Hill, Chapel Hill, USA
| | - Elliott F. Drábek
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Ankit Dwivedi
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Emily M. Stucke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Jonathan Crabtree
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Antoine Dara
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Zalak Shah
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Matthew Adams
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Tao Li
- Sanaria, Inc., Rockville, MD 20850 USA
| | - Priscila T. Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD 20892 USA
| | - Adam M. Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD 20892 USA
| | - James B. Munro
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Amed Ouattara
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Benjamin C. Sparklin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Luke J. Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Michele D. Spring
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Krisada Jongsakul
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chanthap Lon
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - David L. Saunders
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- Present address: Warfighter Expeditionary Medicine and Treatment, US Army Medical Material Development Activity, Frederick, USA
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Myaing M. Nyunt
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Present address: Duke Global Health Institute, Duke University, Durham, NC 27708 USA
| | - Miriam K. Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Mark A. Travassos
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Claire M. Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | | | | | - Christopher V. Plowe
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Present address: Duke Global Health Institute, Duke University, Durham, NC 27708 USA
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201 USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| |
Collapse
|