51
|
Han J, Schmitz AJ, Richey ST, Dai YN, Turner HL, Mohammed BM, Fremont DH, Ellebedy AH, Ward AB. Polyclonal epitope mapping reveals temporal dynamics and diversity of human antibody responses to H5N1 vaccination. Cell Rep 2021; 34:108682. [PMID: 33503432 PMCID: PMC7888560 DOI: 10.1016/j.celrep.2020.108682] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 12/30/2020] [Indexed: 11/03/2022] Open
Abstract
Novel influenza A virus (IAV) strains elicit recall immune responses to conserved epitopes, making them favorable antigenic choices for universal influenza virus vaccines. Evaluating these immunogens requires a thorough understanding of the antigenic sites targeted by the polyclonal antibody (pAb) response, which single-particle electron microscopy (EM) can sensitively detect. In this study, we employ EM polyclonal epitope mapping (EMPEM) to extensively characterize the pAb response to hemagglutinin (HA) after H5N1 immunization in humans. Cross-reactive pAbs originating from memory B cells immediately bound the stem of HA and persisted for more than a year after vaccination. In contrast, de novo pAb responses to multiple sites on the head of HA, targeting previously determined key neutralizing sites on H5 HA, expanded after the second immunization and waned quickly. Thus, EMPEM provides a robust tool for comprehensively tracking the specificity and durability of immune responses elicited by novel universal influenza vaccine candidates.
Collapse
Affiliation(s)
- Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sara T Richey
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ya-Nan Dai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bassem M Mohammed
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
52
|
Walls AC, Fiala B, Schäfer A, Wrenn S, Pham MN, Murphy M, Tse LV, Shehata L, O'Connor MA, Chen C, Navarro MJ, Miranda MC, Pettie D, Ravichandran R, Kraft JC, Ogohara C, Palser A, Chalk S, Lee EC, Guerriero K, Kepl E, Chow CM, Sydeman C, Hodge EA, Brown B, Fuller JT, Dinnon KH, Gralinski LE, Leist SR, Gully KL, Lewis TB, Guttman M, Chu HY, Lee KK, Fuller DH, Baric RS, Kellam P, Carter L, Pepper M, Sheahan TP, Veesler D, King NP. Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2. Cell 2020. [PMID: 33160446 DOI: 10.1016/j.cell.2020.https:/doi.org/10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A safe, effective, and scalable vaccine is needed to halt the ongoing SARS-CoV-2 pandemic. We describe the structure-based design of self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2 in mice. The nanoparticle vaccines display 60 SARS-CoV-2 spike receptor-binding domains (RBDs) in a highly immunogenic array and induce neutralizing antibody titers 10-fold higher than the prefusion-stabilized spike despite a 5-fold lower dose. Antibodies elicited by the RBD nanoparticles target multiple distinct epitopes, suggesting they may not be easily susceptible to escape mutations, and exhibit a lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease. The high yield and stability of the assembled nanoparticles suggest that manufacture of the nanoparticle vaccines will be highly scalable. These results highlight the utility of robust antigen display platforms and have launched cGMP manufacturing efforts to advance the SARS-CoV-2-RBD nanoparticle vaccine into the clinic.
Collapse
Affiliation(s)
- Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Samuel Wrenn
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Minh N Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Michael Murphy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Longping V Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Laila Shehata
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Megan A O'Connor
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Chengbo Chen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Biological Physics Structure and Design Program, University of Washington, Seattle, WA 91895, USA
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marcos C Miranda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Deleah Pettie
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - John C Kraft
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cassandra Ogohara
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Anne Palser
- Kymab Ltd., Babraham Research Campus, Cambridge, UK
| | - Sara Chalk
- Kymab Ltd., Babraham Research Campus, Cambridge, UK
| | - E-Chiang Lee
- Kymab Ltd., Babraham Research Campus, Cambridge, UK
| | - Kathryn Guerriero
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Elizabeth Kepl
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cameron M Chow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Claire Sydeman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Edgar A Hodge
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Brieann Brown
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Jim T Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Thomas B Lewis
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Helen Y Chu
- Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Biological Physics Structure and Design Program, University of Washington, Seattle, WA 91895, USA
| | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA; Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Paul Kellam
- Kymab Ltd., Babraham Research Campus, Cambridge, UK; Department of Infectious Disease, Imperial College, London, UK
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
53
|
Subdominance in Antibody Responses: Implications for Vaccine Development. Microbiol Mol Biol Rev 2020; 85:85/1/e00078-20. [PMID: 33239435 DOI: 10.1128/mmbr.00078-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vaccines work primarily by eliciting antibodies, even when recovery from natural infection depends on cellular immunity. Large efforts have therefore been made to identify microbial antigens that elicit protective antibodies, but these endeavors have encountered major difficulties, as witnessed by the lack of vaccines against many pathogens. This review summarizes accumulating evidence that subdominant protein regions, i.e., surface-exposed regions that elicit relatively weak antibody responses, are of particular interest for vaccine development. This concept may seem counterintuitive, but subdominance may represent an immune evasion mechanism, implying that the corresponding region potentially is a key target for protective immunity. Following a presentation of the concepts of immunodominance and subdominance, the review will present work on subdominant regions in several major human pathogens: the protozoan Plasmodium falciparum, two species of pathogenic streptococci, and the dengue and influenza viruses. Later sections are devoted to the molecular basis of subdominance, its potential role in immune evasion, and general implications for vaccine development. Special emphasis will be placed on the fact that a whole surface-exposed protein domain can be subdominant, as demonstrated for all of the pathogens described here. Overall, the available data indicate that subdominant protein regions are of much interest for vaccine development, not least in bacterial and protozoal systems, for which antibody subdominance remains largely unexplored.
Collapse
|
54
|
Walls AC, Fiala B, Schäfer A, Wrenn S, Pham MN, Murphy M, Tse LV, Shehata L, O'Connor MA, Chen C, Navarro MJ, Miranda MC, Pettie D, Ravichandran R, Kraft JC, Ogohara C, Palser A, Chalk S, Lee EC, Guerriero K, Kepl E, Chow CM, Sydeman C, Hodge EA, Brown B, Fuller JT, Dinnon KH, Gralinski LE, Leist SR, Gully KL, Lewis TB, Guttman M, Chu HY, Lee KK, Fuller DH, Baric RS, Kellam P, Carter L, Pepper M, Sheahan TP, Veesler D, King NP. Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2. Cell 2020; 183:1367-1382.e17. [PMID: 33160446 PMCID: PMC7604136 DOI: 10.1016/j.cell.2020.10.043] [Citation(s) in RCA: 400] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/10/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022]
Abstract
A safe, effective, and scalable vaccine is needed to halt the ongoing SARS-CoV-2 pandemic. We describe the structure-based design of self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2 in mice. The nanoparticle vaccines display 60 SARS-CoV-2 spike receptor-binding domains (RBDs) in a highly immunogenic array and induce neutralizing antibody titers 10-fold higher than the prefusion-stabilized spike despite a 5-fold lower dose. Antibodies elicited by the RBD nanoparticles target multiple distinct epitopes, suggesting they may not be easily susceptible to escape mutations, and exhibit a lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease. The high yield and stability of the assembled nanoparticles suggest that manufacture of the nanoparticle vaccines will be highly scalable. These results highlight the utility of robust antigen display platforms and have launched cGMP manufacturing efforts to advance the SARS-CoV-2-RBD nanoparticle vaccine into the clinic.
Collapse
Affiliation(s)
- Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Samuel Wrenn
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Minh N Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Michael Murphy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Longping V Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Laila Shehata
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Megan A O'Connor
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Chengbo Chen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Biological Physics Structure and Design Program, University of Washington, Seattle, WA 91895, USA
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marcos C Miranda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Deleah Pettie
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - John C Kraft
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cassandra Ogohara
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Anne Palser
- Kymab Ltd., Babraham Research Campus, Cambridge, UK
| | - Sara Chalk
- Kymab Ltd., Babraham Research Campus, Cambridge, UK
| | - E-Chiang Lee
- Kymab Ltd., Babraham Research Campus, Cambridge, UK
| | - Kathryn Guerriero
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Elizabeth Kepl
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cameron M Chow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Claire Sydeman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Edgar A Hodge
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Brieann Brown
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Jim T Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Thomas B Lewis
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Helen Y Chu
- Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; Biological Physics Structure and Design Program, University of Washington, Seattle, WA 91895, USA
| | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA; Washington National Primate Research Center, Seattle, WA 98121, USA; Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Paul Kellam
- Kymab Ltd., Babraham Research Campus, Cambridge, UK; Department of Infectious Disease, Imperial College, London, UK
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
55
|
Morris DH, Petrova VN, Rossine FW, Parker E, Grenfell BT, Neher RA, Levin SA, Russell CA. Asynchrony between virus diversity and antibody selection limits influenza virus evolution. eLife 2020; 9:e62105. [PMID: 33174838 PMCID: PMC7748417 DOI: 10.7554/elife.62105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Seasonal influenza viruses create a persistent global disease burden by evolving to escape immunity induced by prior infections and vaccinations. New antigenic variants have a substantial selective advantage at the population level, but these variants are rarely selected within-host, even in previously immune individuals. Using a mathematical model, we show that the temporal asynchrony between within-host virus exponential growth and antibody-mediated selection could limit within-host antigenic evolution. If selection for new antigenic variants acts principally at the point of initial virus inoculation, where small virus populations encounter well-matched mucosal antibodies in previously-infected individuals, there can exist protection against reinfection that does not regularly produce observable new antigenic variants within individual infected hosts. Our results provide a theoretical explanation for how virus antigenic evolution can be highly selective at the global level but nearly neutral within-host. They also suggest new avenues for improving influenza control.
Collapse
MESH Headings
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Biological Evolution
- Genetic Variation/genetics
- Humans
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza, Human/immunology
- Influenza, Human/transmission
- Influenza, Human/virology
- Models, Statistical
- Selection, Genetic/genetics
- Selection, Genetic/immunology
- Virion/genetics
- Virion/immunology
Collapse
Affiliation(s)
- Dylan H Morris
- Department of Ecology & Evolutionary Biology, Princeton UniversityPrincetonUnited States
| | - Velislava N Petrova
- Department of Human Genetics, Wellcome Trust Sanger InstituteCambridgeUnited Kingdom
| | - Fernando W Rossine
- Department of Ecology & Evolutionary Biology, Princeton UniversityPrincetonUnited States
| | - Edyth Parker
- Department of Veterinary Medicine, University of CambridgeCambridgeUnited Kingdom
- Department of Medical Microbiology, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| | - Bryan T Grenfell
- Department of Ecology & Evolutionary Biology, Princeton UniversityPrincetonUnited States
- Fogarty International Center, National Institutes of HealthBethesdaUnited States
| | | | - Simon A Levin
- Department of Ecology & Evolutionary Biology, Princeton UniversityPrincetonUnited States
| | - Colin A Russell
- Department of Medical Microbiology, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
56
|
Greaney AJ, Starr TN, Gilchuk P, Zost SJ, Binshtein E, Loes AN, Hilton SK, Huddleston J, Eguia R, Crawford KH, Dingens AS, Nargi RS, Sutton RE, Suryadevara N, Rothlauf PW, Liu Z, Whelan SP, Carnahan RH, Crowe JE, Bloom JD. Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that escape antibody recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.10.292078. [PMID: 32935107 PMCID: PMC7491521 DOI: 10.1101/2020.09.10.292078] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibodies targeting the SARS-CoV-2 spike receptor-binding domain (RBD) are being developed as therapeutics and make a major contribution to the neutralizing antibody response elicited by infection. Here, we describe a deep mutational scanning method to map how all amino-acid mutations in the RBD affect antibody binding, and apply this method to 10 human monoclonal antibodies. The escape mutations cluster on several surfaces of the RBD that broadly correspond to structurally defined antibody epitopes. However, even antibodies targeting the same RBD surface often have distinct escape mutations. The complete escape maps predict which mutations are selected during viral growth in the presence of single antibodies, and enable us to design escape-resistant antibody cocktails-including cocktails of antibodies that compete for binding to the same surface of the RBD but have different escape mutations. Therefore, complete escape-mutation maps enable rational design of antibody therapeutics and assessment of the antigenic consequences of viral evolution.
Collapse
Affiliation(s)
- Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Seth J. Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrea N. Loes
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Sarah K. Hilton
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - John Huddleston
- Molecular and Cell Biology, University of Washington, Seattle, WA, 98195 USA
| | - Rachel Eguia
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Katharine H.D. Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Adam S. Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rachel S. Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel E. Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Paul W. Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Program in Virology, Harvard Medical School, Boston, MA, 02115, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sean P.J. Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
| |
Collapse
|
57
|
Dearlove B, Lewitus E, Bai H, Li Y, Reeves DB, Joyce MG, Scott PT, Amare MF, Vasan S, Michael NL, Modjarrad K, Rolland M. A SARS-CoV-2 vaccine candidate would likely match all currently circulating variants. Proc Natl Acad Sci U S A 2020; 117:23652-23662. [PMID: 32868447 PMCID: PMC7519301 DOI: 10.1073/pnas.2008281117] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The magnitude of the COVID-19 pandemic underscores the urgency for a safe and effective vaccine. Many vaccine candidates focus on the Spike protein, as it is targeted by neutralizing antibodies and plays a key role in viral entry. Here we investigate the diversity seen in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences and compare it to the sequence on which most vaccine candidates are based. Using 18,514 sequences, we perform phylogenetic, population genetics, and structural bioinformatics analyses. We find limited diversity across SARS-CoV-2 genomes: Only 11 sites show polymorphisms in >5% of sequences; yet two mutations, including the D614G mutation in Spike, have already become consensus. Because SARS-CoV-2 is being transmitted more rapidly than it evolves, the viral population is becoming more homogeneous, with a median of seven nucleotide substitutions between genomes. There is evidence of purifying selection but little evidence of diversifying selection, with substitution rates comparable across structural versus nonstructural genes. Finally, the Wuhan-Hu-1 reference sequence for the Spike protein, which is the basis for different vaccine candidates, matches optimized vaccine inserts, being identical to an ancestral sequence and one mutation away from the consensus. While the rapid spread of the D614G mutation warrants further study, our results indicate that drift and bottleneck events can explain the minimal diversity found among SARS-CoV-2 sequences. These findings suggest that a single vaccine candidate should be efficacious against currently circulating lineages.
Collapse
Affiliation(s)
- Bethany Dearlove
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Eric Lewitus
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Hongjun Bai
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Yifan Li
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Daniel B Reeves
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Paul T Scott
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Mihret F Amare
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
| | - Sandhya Vasan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Nelson L Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910;
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Morgane Rolland
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910;
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| |
Collapse
|
58
|
Loes AN, Gentles LE, Greaney AJ, Crawford KHD, Bloom JD. Attenuated Influenza Virions Expressing the SARS-CoV-2 Receptor-Binding Domain Induce Neutralizing Antibodies in Mice. Viruses 2020; 12:E987. [PMID: 32899480 PMCID: PMC7552029 DOI: 10.3390/v12090987] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
An effective vaccine is essential for controlling the spread of the SARS-CoV-2 virus. Here, we describe an influenza virus-based vaccine for SARS-CoV-2. We incorporated a membrane-anchored form of the SARS-CoV-2 spike receptor binding domain (RBD) in place of the neuraminidase (NA) coding sequence in an influenza virus also possessing a mutation that reduces the affinity of hemagglutinin for its sialic acid receptor. The resulting ΔNA(RBD)-Flu virus can be generated by reverse genetics and grown to high titers in cell culture. A single-dose intranasal inoculation of mice with ΔNA(RBD)-Flu elicits serum neutralizing antibody titers against SAR-CoV-2 comparable to those observed in humans following natural infection (~1:200). Furthermore, ΔNA(RBD)-Flu itself causes no apparent disease in mice. It might be possible to produce a vaccine similar to ΔNA(RBD)-Flu at scale by leveraging existing platforms for the production of influenza vaccines.
Collapse
Affiliation(s)
- Andrea N. Loes
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (A.N.L.); (L.E.G.); (A.J.G.); (K.H.D.C.)
- Howard Hughes Medical Institute, Seattle, WA 98103, USA
| | - Lauren E. Gentles
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (A.N.L.); (L.E.G.); (A.J.G.); (K.H.D.C.)
- Department of Microbiology, University of Washington, Seattle, WA 98195-7735, USA
| | - Allison J. Greaney
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (A.N.L.); (L.E.G.); (A.J.G.); (K.H.D.C.)
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Katharine H. D. Crawford
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (A.N.L.); (L.E.G.); (A.J.G.); (K.H.D.C.)
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Jesse D. Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (A.N.L.); (L.E.G.); (A.J.G.); (K.H.D.C.)
- Howard Hughes Medical Institute, Seattle, WA 98103, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195-7735, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
59
|
Loes AN, Gentles LE, Greaney AJ, Crawford KHD, Bloom JD. Attenuated influenza virions expressing the SARS-CoV-2 receptor-binding domain induce neutralizing antibodies in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.12.248823. [PMID: 32817935 PMCID: PMC7430565 DOI: 10.1101/2020.08.12.248823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
An effective vaccine is essential to controlling the spread of SARS-CoV-2 virus. Here, we describe an influenza-virus-based vaccine for SARS-CoV-2. We incorporated a membrane-anchored form of the SARS-CoV-2 Spike receptor binding domain (RBD) in place of the neuraminidase (NA) coding sequence in an influenza virus also possessing a mutation that reduces the affinity of hemagglutinin for its sialic acid receptor. The resulting ΔNA(RBD)-Flu virus can be generated by reverse genetics and grown to high titers in cell culture. A single-dose intranasal inoculation of mice with ΔNA(RBD)-Flu elicits serum neutralizing antibody titers against SAR-CoV-2 comparable to those observed in humans following natural infection (~1:200). Furthermore, ΔNA(RBD)-Flu itself causes no apparent disease in mice. It might be possible to produce a vaccine similar to ΔNA(RBD)-Flu at scale by leveraging existing platforms for production of influenza vaccines.
Collapse
Affiliation(s)
- Andrea N. Loes
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98103, USA
| | - Lauren E. Gentles
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195-7735, USA
| | - Allison J. Greaney
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Katharine H. D. Crawford
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Jesse D. Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98103, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195-7735, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
60
|
Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS, Navarro MJ, Bowen JE, Tortorici MA, Walls AC, King NP, Veesler D, Bloom JD. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell 2020; 182:1295-1310.e20. [PMID: 32841599 PMCID: PMC7418704 DOI: 10.1016/j.cell.2020.08.012] [Citation(s) in RCA: 1425] [Impact Index Per Article: 285.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
The receptor binding domain (RBD) of the SARS-CoV-2 spike glycoprotein mediates viral attachment to ACE2 receptor and is a major determinant of host range and a dominant target of neutralizing antibodies. Here, we experimentally measure how all amino acid mutations to the RBD affect expression of folded protein and its affinity for ACE2. Most mutations are deleterious for RBD expression and ACE2 binding, and we identify constrained regions on the RBD's surface that may be desirable targets for vaccines and antibody-based therapeutics. But a substantial number of mutations are well tolerated or even enhance ACE2 binding, including at ACE2 interface residues that vary across SARS-related coronaviruses. However, we find no evidence that these ACE2-affinity-enhancing mutations have been selected in current SARS-CoV-2 pandemic isolates. We present an interactive visualization and open analysis pipeline to facilitate use of our dataset for vaccine design and functional annotation of mutations observed during viral surveillance.
Collapse
Affiliation(s)
- Tyler N Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Allison J Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Sarah K Hilton
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Daniel Ellis
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Katharine H D Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
61
|
Huddleston J, Barnes JR, Rowe T, Xu X, Kondor R, Wentworth DE, Whittaker L, Ermetal B, Daniels RS, McCauley JW, Fujisaki S, Nakamura K, Kishida N, Watanabe S, Hasegawa H, Barr I, Subbarao K, Barrat-Charlaix P, Neher RA, Bedford T. Integrating genotypes and phenotypes improves long-term forecasts of seasonal influenza A/H3N2 evolution. eLife 2020; 9:e60067. [PMID: 32876050 PMCID: PMC7553778 DOI: 10.7554/elife.60067] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
Seasonal influenza virus A/H3N2 is a major cause of death globally. Vaccination remains the most effective preventative. Rapid mutation of hemagglutinin allows viruses to escape adaptive immunity. This antigenic drift necessitates regular vaccine updates. Effective vaccine strains need to represent H3N2 populations circulating one year after strain selection. Experts select strains based on experimental measurements of antigenic drift and predictions made by models from hemagglutinin sequences. We developed a novel influenza forecasting framework that integrates phenotypic measures of antigenic drift and functional constraint with previously published sequence-only fitness estimates. Forecasts informed by phenotypic measures of antigenic drift consistently outperformed previous sequence-only estimates, while sequence-only estimates of functional constraint surpassed more comprehensive experimentally-informed estimates. Importantly, the best models integrated estimates of both functional constraint and either antigenic drift phenotypes or recent population growth.
Collapse
Affiliation(s)
- John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Molecular and Cell Biology Program, University of WashingtonSeattleUnited States
| | - John R Barnes
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC)AtlantaUnited States
| | - Thomas Rowe
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC)AtlantaUnited States
| | - Xiyan Xu
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC)AtlantaUnited States
| | - Rebecca Kondor
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC)AtlantaUnited States
| | - David E Wentworth
- Virology Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention (CDC)AtlantaUnited States
| | - Lynne Whittaker
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick InstituteLondonUnited Kingdom
| | - Burcu Ermetal
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick InstituteLondonUnited Kingdom
| | - Rodney Stuart Daniels
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick InstituteLondonUnited Kingdom
| | - John W McCauley
- WHO Collaborating Centre for Reference and Research on Influenza, Crick Worldwide Influenza Centre, The Francis Crick InstituteLondonUnited Kingdom
| | - Seiichiro Fujisaki
- Influenza Virus Research Center, National Institute of Infectious DiseasesTokyoJapan
| | - Kazuya Nakamura
- Influenza Virus Research Center, National Institute of Infectious DiseasesTokyoJapan
| | - Noriko Kishida
- Influenza Virus Research Center, National Institute of Infectious DiseasesTokyoJapan
| | - Shinji Watanabe
- Influenza Virus Research Center, National Institute of Infectious DiseasesTokyoJapan
| | - Hideki Hasegawa
- Influenza Virus Research Center, National Institute of Infectious DiseasesTokyoJapan
| | - Ian Barr
- The WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Kanta Subbarao
- The WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Pierre Barrat-Charlaix
- Biozentrum, University of BaselBaselSwitzerland
- Swiss Institute of BioinformaticsBaselSwitzerland
| | - Richard A Neher
- Biozentrum, University of BaselBaselSwitzerland
- Swiss Institute of BioinformaticsBaselSwitzerland
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
62
|
Hilton SK, Huddleston J, Black A, North K, Dingens AS, Bedford T, Bloom JD. dms-view: Interactive visualization tool for deep mutational scanning data. JOURNAL OF OPEN SOURCE SOFTWARE 2020; 5:2353. [PMID: 34189395 PMCID: PMC8237788 DOI: 10.21105/joss.02353] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Sarah K Hilton
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Molecular and Cell Biology, University of Washington, Seattle, WA, USA
| | - Allison Black
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Khrystyna North
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Adam S Dingens
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jesse D Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
63
|
Walls AC, Fiala B, Schäfer A, Wrenn S, Pham MN, Murphy M, Tse LV, Shehata L, O’Connor MA, Chen C, Navarro MJ, Miranda MC, Pettie D, Ravichandran R, Kraft JC, Ogohara C, Palser A, Chalk S, Lee EC, Kepl E, Chow CM, Sydeman C, Hodge EA, Brown B, Fuller JT, Dinnon KH, Gralinski LE, Leist SR, Gully KL, Lewis TB, Guttman M, Chu HY, Lee KK, Fuller DH, Baric RS, Kellam P, Carter L, Pepper M, Sheahan TP, Veesler D, King NP. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.11.247395. [PMID: 32817941 PMCID: PMC7430571 DOI: 10.1101/2020.08.11.247395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A safe, effective, and scalable vaccine is urgently needed to halt the ongoing SARS-CoV-2 pandemic. Here, we describe the structure-based design of self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2 in mice. The nanoparticle vaccines display 60 copies of the SARS-CoV-2 spike (S) glycoprotein receptor-binding domain (RBD) in a highly immunogenic array and induce neutralizing antibody titers roughly ten-fold higher than the prefusion-stabilized S ectodomain trimer despite a more than five-fold lower dose. Antibodies elicited by the nanoparticle immunogens target multiple distinct epitopes on the RBD, suggesting that they may not be easily susceptible to escape mutations, and exhibit a significantly lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease. The high yield and stability of the protein components and assembled nanoparticles, especially compared to the SARS-CoV-2 prefusion-stabilized S trimer, suggest that manufacture of the nanoparticle vaccines will be highly scalable. These results highlight the utility of robust antigen display platforms for inducing potent neutralizing antibody responses and have launched cGMP manufacturing efforts to advance the lead RBD nanoparticle vaccine into the clinic.
Collapse
Affiliation(s)
- Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Brooke Fiala
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Samuel Wrenn
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Minh N. Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Michael Murphy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Longping V. Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Laila Shehata
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Megan A. O’Connor
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
- Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Chengbo Chen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
- Biological Physics Structure and Design Program, University of Washington, Seattle, WA 91895, USA
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marcos C. Miranda
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Deleah Pettie
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - John C. Kraft
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cassandra Ogohara
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Anne Palser
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Sara Chalk
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - E-Chiang Lee
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Elizabeth Kepl
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Cameron M. Chow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Claire Sydeman
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Edgar A. Hodge
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Brieann Brown
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
- Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Jim T. Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Kenneth H. Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Lisa E. Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Kendra L. Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Thomas B. Lewis
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
- Washington National Primate Research Center, Seattle, WA 98121, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Helen Y. Chu
- Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
- Biological Physics Structure and Design Program, University of Washington, Seattle, WA 91895, USA
| | - Deborah H. Fuller
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
- Washington National Primate Research Center, Seattle, WA 98121, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Paul Kellam
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Timothy P. Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
64
|
Arevalo P, McLean HQ, Belongia EA, Cobey S. Earliest infections predict the age distribution of seasonal influenza A cases. eLife 2020; 9:e50060. [PMID: 32633233 PMCID: PMC7367686 DOI: 10.7554/elife.50060] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 06/29/2020] [Indexed: 12/02/2022] Open
Abstract
Seasonal variation in the age distribution of influenza A cases suggests that factors other than age shape susceptibility to medically attended infection. We ask whether these differences can be partly explained by protection conferred by childhood influenza infection, which has lasting impacts on immune responses to influenza and protection against new influenza A subtypes (phenomena known as original antigenic sin and immune imprinting). Fitting a statistical model to data from studies of influenza vaccine effectiveness (VE), we find that primary infection appears to reduce the risk of medically attended infection with that subtype throughout life. This effect is stronger for H1N1 compared to H3N2. Additionally, we find evidence that VE varies with both age and birth year, suggesting that VE is sensitive to early exposures. Our findings may improve estimates of age-specific risk and VE in similarly vaccinated populations and thus improve forecasting and vaccination strategies to combat seasonal influenza.
Collapse
Affiliation(s)
- Philip Arevalo
- Department of Ecology and Evolutionary Biology, University of ChicagoChicagoUnited States
| | - Huong Q McLean
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research InstituteMarshfieldUnited States
| | - Edward A Belongia
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research InstituteMarshfieldUnited States
| | - Sarah Cobey
- Department of Ecology and Evolutionary Biology, University of ChicagoChicagoUnited States
| |
Collapse
|
65
|
Starr TN, Greaney AJ, Hilton SK, Crawford KH, Navarro MJ, Bowen JE, Tortorici MA, Walls AC, Veesler D, Bloom JD. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.17.157982. [PMID: 32587970 PMCID: PMC7310626 DOI: 10.1101/2020.06.17.157982] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The receptor binding domain (RBD) of the SARS-CoV-2 spike glycoprotein mediates viral attachment to ACE2 receptor, and is a major determinant of host range and a dominant target of neutralizing antibodies. Here we experimentally measure how all amino-acid mutations to the RBD affect expression of folded protein and its affinity for ACE2. Most mutations are deleterious for RBD expression and ACE2 binding, and we identify constrained regions on the RBD's surface that may be desirable targets for vaccines and antibody-based therapeutics. But a substantial number of mutations are well tolerated or even enhance ACE2 binding, including at ACE2 interface residues that vary across SARS-related coronaviruses. However, we find no evidence that these ACE2-affinity enhancing mutations have been selected in current SARS-CoV-2 pandemic isolates. We present an interactive visualization and open analysis pipeline to facilitate use of our dataset for vaccine design and functional annotation of mutations observed during viral surveillance.
Collapse
Affiliation(s)
- Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Co-first authors
| | - Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
- Co-first authors
| | - Sarah K. Hilton
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Katharine H.D. Crawford
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Mary Jane Navarro
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John E. Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
- Lead Contact
| |
Collapse
|
66
|
Lam EKS, Morris DH, Hurt AC, Barr IG, Russell CA. The impact of climate and antigenic evolution on seasonal influenza virus epidemics in Australia. Nat Commun 2020; 11:2741. [PMID: 32488106 PMCID: PMC7265451 DOI: 10.1038/s41467-020-16545-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 05/09/2020] [Indexed: 11/08/2022] Open
Abstract
Although seasonal influenza viruses circulate globally, prevention and treatment occur at the level of regions, cities, and communities. At these scales, the timing, duration and magnitude of epidemics vary substantially, but the underlying causes of this variation are poorly understood. Here, based on analyses of a 15-year city-level dataset of 18,250 laboratory-confirmed and antigenically-characterised influenza virus infections from Australia, we investigate the effects of previously hypothesised environmental and virological drivers of influenza epidemics. We find that anomalous fluctuations in temperature and humidity do not predict local epidemic onset timings. We also find that virus antigenic change has no consistent effect on epidemic size. In contrast, epidemic onset time and heterosubtypic competition have substantial effects on epidemic size and composition. Our findings suggest that the relationship between influenza population immunity and epidemiology is more complex than previously supposed and that the strong influence of short-term processes may hinder long-term epidemiological forecasts.
Collapse
Affiliation(s)
- Edward K S Lam
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Dylan H Morris
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia
- School of Applied Biomedical Sciences, Federation University, Churchill, VIC, Australia
| | - Colin A Russell
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
67
|
Gentles LE, Wan H, Eichelberger MC, Bloom JD. Antibody Neutralization of an Influenza Virus that Uses Neuraminidase for Receptor Binding. Viruses 2020; 12:v12060597. [PMID: 32486222 PMCID: PMC7354634 DOI: 10.3390/v12060597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Influenza virus infection elicits antibodies against the receptor-binding protein hemagglutinin (HA) and the receptor-cleaving protein neuraminidase (NA). Because HA is essential for viral entry, antibodies targeting HA often potently neutralize the virus in single-cycle infection assays. However, antibodies against NA are not potently neutralizing in such assays, since NA is dispensable for single-cycle infection. Here we show that a modified influenza virus that depends on NA for receptor binding is much more sensitive than a virus with receptor-binding HA to neutralization by some anti-NA antibodies. Specifically, a virus with a receptor-binding G147R N1 NA and a binding-deficient HA is completely neutralized in single-cycle infections by an antibody that binds near the NA active site. Infection is also substantially inhibited by antibodies that bind NA epitopes distant from the active site. Finally, we demonstrate that this modified virus can be used to efficiently select mutations in NA that escape antibody binding, a task that can be laborious with typical influenza viruses that are not well neutralized by anti-NA antibodies. Thus, viruses dependent on NA for receptor binding allow for sensitive in vitro detection of antibodies binding near the catalytic site of NA and enable the selection of viral escape mutants.
Collapse
MESH Headings
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/metabolism
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Epitopes/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/metabolism
- Influenza, Human/immunology
- Influenza, Human/virology
- Neuraminidase/metabolism
- Neutralization Tests
- Orthomyxoviridae/genetics
- Orthomyxoviridae/immunology
- Orthomyxoviridae/metabolism
- RNA, Viral/genetics
- Receptors, Virus/metabolism
- Sequence Analysis, RNA
Collapse
Affiliation(s)
- Lauren E. Gentles
- Division of Basic Sciences Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA;
- Department of Microbiology, University of Washington, 1705 NE Pacific St., Seattle, WA 98195-7735, USA
| | - Hongquan Wan
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Maryna C. Eichelberger
- Division of Biological Standards and Quantity Control, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Jesse D. Bloom
- Division of Basic Sciences Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA;
- Department of Microbiology, University of Washington, 1705 NE Pacific St., Seattle, WA 98195-7735, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
- Correspondence:
| |
Collapse
|
68
|
Wong J, Tai CM, Hurt AC, Tan HX, Kent SJ, Wheatley AK. Sequencing B cell receptors from ferrets (Mustela putorius furo). PLoS One 2020; 15:e0233794. [PMID: 32470013 PMCID: PMC7259655 DOI: 10.1371/journal.pone.0233794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
The domestic ferret (Mustela putorius furo) provides a critical animal model to study human respiratory diseases. However immunological insights are restricted due to a lack of ferret-specific reagents and limited genetic information about ferret B and T cell receptors. Here, variable, diversity and joining genes within the ferret kappa, lambda and heavy chain immunoglobulin loci were annotated using available genomic information. A multiplex PCR approach was derived that facilitated the recovery of paired heavy and light chain immunoglobulin sequences from single sorted ferret B cells, allowing validation of predicted germline gene sequences and the identification of putative novel germlines. Eukaryotic expression vectors were developed that enabled the generation of recombinant ferret monoclonal antibodies. This work advances the ferret as an informative immunological model for viral diseases by allowing the in-depth interrogation of antibody-based immunity.
Collapse
Affiliation(s)
- Julius Wong
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Celeste M. Tai
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Aeron C. Hurt
- World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (AKW); (SJK)
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (AKW); (SJK)
| |
Collapse
|
69
|
Hay JA, Minter A, Ainslie KEC, Lessler J, Yang B, Cummings DAT, Kucharski AJ, Riley S. An open source tool to infer epidemiological and immunological dynamics from serological data: serosolver. PLoS Comput Biol 2020; 16:e1007840. [PMID: 32365062 PMCID: PMC7241836 DOI: 10.1371/journal.pcbi.1007840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/21/2020] [Accepted: 04/01/2020] [Indexed: 11/19/2022] Open
Abstract
We present a flexible, open source R package designed to obtain biological and epidemiological insights from serological datasets. Characterising past exposures for multi-strain pathogens poses a specific statistical challenge: observed antibody responses measured in serological assays depend on multiple unobserved prior infections that produce cross-reactive antibody responses. We provide a general modelling framework to jointly infer infection histories and describe immune responses generated by these infections using antibody titres against current and historical strains. We do this by linking latent infection dynamics with a mechanistic model of antibody kinetics that generates expected antibody titres over time. Our aim is to provide a flexible package to identify infection histories that can be applied to a range of pathogens. We present two case studies to illustrate how our model can infer key immunological parameters, such as antibody titre boosting, waning and cross-reaction, as well as latent epidemiological processes such as attack rates and age-stratified infection risk.
Collapse
Affiliation(s)
- James A. Hay
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Amanda Minter
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Kylie E. C. Ainslie
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Justin Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Bingyi Yang
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Derek A. T. Cummings
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Adam J. Kucharski
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Steven Riley
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
70
|
Plant EP, Manukyan H, Sanchez JL, Laassri M, Ye Z. Immune Pressure on Polymorphous Influenza B Populations Results in Diverse Hemagglutinin Escape Mutants and Lineage Switching. Vaccines (Basel) 2020; 8:vaccines8010125. [PMID: 32168968 PMCID: PMC7157493 DOI: 10.3390/vaccines8010125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Mutations arise in the genomes of progeny viruses during infection. Mutations that occur in epitopes targeted by host antibodies allow the progeny virus to escape the host adaptive, B-cell mediated antibody immune response. Major epitopes have been identified in influenza B virus (IBV) hemagglutinin (HA) protein. However, IBV strains maintain a seasonal presence in the human population and changes in IBV genomes in response to immune pressure are not well characterized. There are two lineages of IBV that have circulated in the human population since the 1980s, B-Victoria and B-Yamagata. It is hypothesized that early exposure to one influenza subtype leads to immunodominance. Subsequent seasonal vaccination or exposure to new subtypes may modify subsequent immune responses, which, in turn, results in selection of escape mutations in the viral genome. Here we show that while some mutations do occur in known epitopes suggesting antibody escape, many mutations occur in other parts of the HA protein. Analysis of mutations outside of the known epitopes revealed that these mutations occurred at the same amino acid position in viruses from each of the two IBV lineages. Interestingly, where the amino acid sequence differed between viruses from each lineage, reciprocal amino acid changes were observed. That is, the virus from the Yamagata lineage become more like the Victoria lineage virus and vice versa. Our results suggest that some IBV HA sequences are constrained to specific amino acid codons when viruses are cultured in the presence of antibodies. Some changes to the known antigenic regions may also be restricted in a lineage-dependent manner. Questions remain regarding the mechanisms underlying these results. The presence of amino acid residues that are constrained within the HA may provide a new target for universal vaccines for IBV.
Collapse
Affiliation(s)
- Ewan P. Plant
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (H.M.); (M.L.); (Z.Y.)
- Correspondence: ; Tel.: +1-240-402-7319
| | - Hasmik Manukyan
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (H.M.); (M.L.); (Z.Y.)
| | - Jose L. Sanchez
- Armed Forces Health Surveillance Branch, Public Health Division, Assistant Director for Combat Support (AD-CS), Defense Health Agency, Silver Spring, MD 20904, USA;
| | - Majid Laassri
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (H.M.); (M.L.); (Z.Y.)
| | - Zhiping Ye
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA; (H.M.); (M.L.); (Z.Y.)
| |
Collapse
|
71
|
Valesano AL, Fitzsimmons WJ, McCrone JT, Petrie JG, Monto AS, Martin ET, Lauring AS. Influenza B Viruses Exhibit Lower Within-Host Diversity than Influenza A Viruses in Human Hosts. J Virol 2020; 94:e01710-19. [PMID: 31801858 PMCID: PMC7022338 DOI: 10.1128/jvi.01710-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
Influenza B virus (IBV) undergoes seasonal antigenic drift more slowly than influenza A virus, but the reasons for this difference are unclear. While the evolutionary dynamics of influenza viruses play out globally, they are fundamentally driven by mutation, reassortment, drift, and selection at the level of individual hosts. These processes have recently been described for influenza A virus, but little is known about the evolutionary dynamics of IBV during individual infections and transmission events. Here, we define the within-host evolutionary dynamics of IBV by sequencing virus populations from naturally infected individuals enrolled in a prospective, community-based cohort over 8,176 person-seasons of observation. Through analysis of high depth-of-coverage sequencing data from samples from 91 individuals with influenza B, we find that IBV accumulates lower genetic diversity than previously observed for influenza A virus during acute infections. Consistent with studies of influenza A viruses, the within-host evolution of IBVs is characterized by purifying selection and the general absence of widespread positive selection of within-host variants. Analysis of shared genetic diversity across 15 sequence-validated transmission pairs suggests that IBV experiences a tight transmission bottleneck similar to that of influenza A virus. These patterns of local-scale evolution are consistent with the lower global evolutionary rate of IBV.IMPORTANCE The evolution of influenza virus is a significant public health problem and necessitates the annual evaluation of influenza vaccine formulation to keep pace with viral escape from herd immunity. Influenza B virus is a serious health concern for children, in particular, yet remains understudied compared to influenza A virus. Influenza B virus evolves more slowly than influenza A virus, but the factors underlying this are not completely understood. We studied how the within-host diversity of influenza B virus relates to its global evolution by sequencing viruses from a community-based cohort. We found that influenza B virus populations have lower within-host genetic diversity than influenza A virus and experience a tight genetic bottleneck during transmission. Our work provides insights into the varying dynamics of influenza viruses in human infection.
Collapse
Affiliation(s)
- Andrew L Valesano
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, USA
| | - William J Fitzsimmons
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - John T McCrone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Joshua G Petrie
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Arnold S Monto
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily T Martin
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
72
|
Mathew NR, Angeletti D. Recombinant Influenza Vaccines: Saviors to Overcome Immunodominance. Front Immunol 2020; 10:2997. [PMID: 31998299 PMCID: PMC6966699 DOI: 10.3389/fimmu.2019.02997] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/06/2019] [Indexed: 11/24/2022] Open
Abstract
It has been almost a decade since the 2009 influenza A virus pandemic hit the globe causing significant morbidity and mortality. Nonetheless, annual influenza vaccination, which elicits antibodies mainly against the head region of influenza hemagglutinin (HA), remains as the mainstay to combat and reduce symptoms of influenza infection. Influenza HA is highly antigenically variable, thus limiting vaccine efficacy. In addition, the variable HA head occupies the upper strata of the immunodominance hierarchy, thereby clouding the antibody response toward subdominant epitopes, which are usually conserved across different influenza strains. Isolation of monoclonal antibodies from individuals recognizing such epitopes has facilitated the development of recombinant vaccines that focus the adaptive immune response toward conserved, protective targets. Here, we review some significant leaps in recombinant vaccine development, which could possibly help to overcome B cell and antibody immunodominance and provide heterosubtypic immunity to influenza A virus.
Collapse
Affiliation(s)
- Nimitha R Mathew
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
73
|
Deep Mutational Scanning Comprehensively Maps How Zika Envelope Protein Mutations Affect Viral Growth and Antibody Escape. J Virol 2019; 93:JVI.01291-19. [PMID: 31511387 DOI: 10.1128/jvi.01291-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
Functional constraints on viral proteins are often assessed by examining sequence conservation among natural strains, but this approach is relatively ineffective for Zika virus because all known sequences are highly similar. Here, we take an alternative approach to map functional constraints on Zika virus's envelope (E) protein by using deep mutational scanning to measure how all amino acid mutations to the E protein affect viral growth in cell culture. The resulting sequence-function map is consistent with existing knowledge about E protein structure and function but also provides insight into mutation-level constraints in many regions of the protein that have not been well characterized in prior functional work. In addition, we extend our approach to completely map how mutations affect viral neutralization by two monoclonal antibodies, thereby precisely defining their functional epitopes. Overall, our study provides a valuable resource for understanding the effects of mutations to this important viral protein and also offers a roadmap for future work to map functional and antigenic selection to Zika virus at high resolution.IMPORTANCE Zika virus has recently been shown to be associated with severe birth defects. The virus's E protein mediates its ability to infect cells and is also the primary target of the antibodies that are elicited by natural infection and vaccines that are being developed against the virus. Therefore, determining the effects of mutations to this protein is important for understanding its function, its susceptibility to vaccine-mediated immunity, and its potential for future evolution. We completely mapped how amino acid mutations to the E protein affected the virus's ability to grow in cells in the laboratory and escape from several antibodies. The resulting maps relate changes in the E protein's sequence to changes in viral function and therefore provide a valuable complement to existing maps of the physical structure of the protein.
Collapse
|
74
|
Yan L, Neher RA, Shraiman BI. Phylodynamic theory of persistence, extinction and speciation of rapidly adapting pathogens. eLife 2019; 8:e44205. [PMID: 31532393 PMCID: PMC6809594 DOI: 10.7554/elife.44205] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 09/14/2019] [Indexed: 11/13/2022] Open
Abstract
Rapidly evolving pathogens like influenza viruses can persist by changing their antigenic properties fast enough to evade the adaptive immunity, yet they rarely split into diverging lineages. By mapping the multi-strain Susceptible-Infected-Recovered model onto the traveling wave model of adapting populations, we demonstrate that persistence of a rapidly evolving, Red-Queen-like state of the pathogen population requires long-ranged cross-immunity and sufficiently large population sizes. This state is unstable and the population goes extinct or 'speciates' into two pathogen strains with antigenic divergence beyond the range of cross-inhibition. However, in a certain range of evolutionary parameters, a single cross-inhibiting population can exist for times long compared to the time to the most recent common ancestor ([Formula: see text]) and gives rise to phylogenetic patterns typical of influenza virus. We demonstrate that the rate of speciation is related to fluctuations of [Formula: see text] and construct a 'phase diagram' identifying different phylodynamic regimes as a function of evolutionary parameters.
Collapse
Affiliation(s)
- Le Yan
- Kavli Institute for Theoretical PhysicsUniversity of California, Santa BarbaraSanta BarbaraUnited States
| | - Richard A Neher
- BiozentrumUniversity of Basel, Swiss Institute for BioinformaticsBaselSwitzerland
| | - Boris I Shraiman
- Kavli Institute for Theoretical PhysicsUniversity of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|