51
|
Burchat N, Vidola J, Pfreundschuh S, Sharma P, Rizzolo D, Guo GL, Sampath H. Intestinal Stearoyl-CoA Desaturase-1 Regulates Energy Balance via Alterations in Bile Acid Homeostasis. Cell Mol Gastroenterol Hepatol 2024; 18:101403. [PMID: 39278403 PMCID: PMC11546130 DOI: 10.1016/j.jcmgh.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND & AIMS Stearoyl-CoA desaturase-1 (SCD1) converts saturated fatty acids into monounsaturated fatty acids and plays an important regulatory role in lipid metabolism. Previous studies have demonstrated that mice deficient in SCD1 are protected from diet-induced obesity and hepatic steatosis due to altered lipid assimilation and increased energy expenditure. Previous studies in our lab have shown that intestinal SCD1 modulates intestinal and plasma lipids and alters cholesterol metabolism. Here, we investigated a novel role for intestinal SCD1 in the regulation of systemic energy balance. METHODS To interrogate the role of intestinal SCD1 in modulating whole body metabolism, intestine-specific Scd1 knockout (iKO) mice were maintained on standard chow diet or challenged with a high-fat diet (HFD). Studies included analyses of bile acid content and composition, and metabolic phenotyping, including body composition, indirect calorimetry, glucose tolerance analyses, quantification of the composition of the gut microbiome, and assessment of bile acid signaling pathways. RESULTS iKO mice displayed elevated plasma and hepatic bile acid content and decreased fecal bile acid excretion, associated with increased expression of the ileal bile acid uptake transporter, Asbt. In addition, the alpha and beta diversity of the gut microbiome was reduced in iKO mice, with several alterations in microbe species being associated with the observed increases in plasma bile acids. These increases in plasma bile acids were associated with increased expression of TGR5 targets, including Dio2 in brown adipose tissue and elevated plasma glucagon-like peptide-1 levels. Upon HFD challenge, iKO mice had reduced metabolic efficiency apparent through decreased weight gain despite higher food intake. Concomitantly, energy expenditure was increased, and glucose tolerance was improved in HFD-fed iKO mice. CONCLUSIONS Our results indicate that deletion of intestinal SCD1 has significant impacts on bile acid homeostasis and whole-body energy balance, likely via activation of TGR5.
Collapse
Affiliation(s)
- Natalie Burchat
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey
| | - Jeanine Vidola
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey
| | - Sarah Pfreundschuh
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey
| | - Priyanka Sharma
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey
| | - Daniel Rizzolo
- Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, New Jersey
| | - Grace L Guo
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey; Ernest Mario School of Pharmacy, Rutgers University, New Brunswick, New Jersey
| | - Harini Sampath
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey; Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey.
| |
Collapse
|
52
|
Tarnawski AS. Editor-in-Chief articles of choice and comments from January to June 2024. World J Gastroenterol 2024; 30:3875-3882. [PMID: 39350787 DOI: 10.3748/wjg.v30.i34.3875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
As the Editor-in-Chief of the World Journal of Gastroenterology, I carefully review all articles every week before a new issue’s online publication, including the title, clinical and research importance, originality, novelty, and ratings by the peer reviewers. Based on this review, I select the papers of choice and suggest pertinent changes (e.g., in the title or text) to the company editors responsible for publication. This process, while time-consuming, is essential for assuring the quality of publications and highlighting important articles that readers may revisit.
Collapse
Affiliation(s)
- Andrzej S Tarnawski
- Department of Gastroenterology Research, University of California Irvine and the Veterans Administration Long Beach Healthcare System, Long Beach, CA 90822, United States
| |
Collapse
|
53
|
Wu SL, Yang L, Huang C, Li Q, Ma C, Yuan F, Zhou Y, Wang X, Tong WM, Niu Y, Jin F. Genome-wide characterization of dynamic DNA 5-hydroxymethylcytosine and TET2-related DNA demethylation during breast tumorigenesis. Clin Epigenetics 2024; 16:125. [PMID: 39261937 PMCID: PMC11391647 DOI: 10.1186/s13148-024-01726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Breast tumorigenesis is a complex and multistep process accompanied by both genetic and epigenetic dysregulation. In contrast to the extensive studies on DNA epigenetic modifications 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) in malignant breast tumors, their roles in the early phases of breast tumorigenesis remain ambiguous. RESULTS DNA 5hmC and 5mC exhibited a consistent and significant decrease from usual ductal hyperplasia to atypical ductal hyperplasia and subsequently to ductal carcinoma in situ (DCIS). However, 5hmC showed a modest increase in invasive ductal breast cancer compared to DCIS. Genomic analyses showed that the changes in 5hmC and 5mC levels occurred around the transcription start sites (TSSs), and the modification levels were strongly correlated with gene expression levels. Meanwhile, it was found that differentially hydroxymethylated regions (DhMRs) and differentially methylated regions (DMRs) were overlapped in the early phases and accompanied by the enrichment of active histone marks. In addition, TET2-related DNA demethylation was found to be involved in breast tumorigenesis, and four transcription factor binding sites (TFs: ESR1, FOXA1, GATA3, FOS) were enriched in TET2-related DhMRs/DMRs. Intriguingly, we also identified a certain number of common DhMRs between tumor samples and cell-free DNA (cfDNA). CONCLUSIONS Our study reveals that dynamic changes in DNA 5hmC and 5mC play a vital role in propelling breast tumorigenesis. Both TFs and active histone marks are involved in TET2-related DNA demethylation. Concurrent changes in 5hmC signals in primary breast tumors and cfDNA may play a promising role in breast cancer screening.
Collapse
Affiliation(s)
- Shuang-Ling Wu
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110000, China
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Lin Yang
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Changcai Huang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Center for Bioinformatics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Qing Li
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Chunhui Ma
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Fang Yuan
- National Institute of Measurement and Testing Technology, Chengdu, 610021, China
| | - Yinglin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiaoyue Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100871, China
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Feng Jin
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|
54
|
Sun S, Shyr Z, McDaniel K, Fang Y, Tao D, Chen CZ, Zheng W, Zhu Q. Reversal Gene Expression Assessment for Drug Repurposing, a Case Study of Glioblastoma. RESEARCH SQUARE 2024:rs.3.rs-4765282. [PMID: 39315277 PMCID: PMC11419258 DOI: 10.21203/rs.3.rs-4765282/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Glioblastoma (GBM) is a rare brain cancer with an exceptionally high mortality rate, which illustrates the pressing demand for more effective therapeutic options. Despite considerable research efforts on GBM, its underlying biological mechanisms remain unclear. Furthermore, none of the United States Food and Drug Administration (FDA) approved drugs used for GBM deliver satisfactory survival improvement. This study presents a novel computational pipeline by utilizing gene expression data analysis for GBM for drug repurposing to address the challenges in rare disease drug development, particularly focusing on GBM. The GBM Gene Expression Profile (GGEP) was constructed with multi-omics data to identify drugs with reversal gene expression to GGEP from the Integrated Network-Based Cellular Signatures (iLINCS) database. We prioritized the candidates via hierarchical clustering of their expression signatures and quantification of their reversal strength by calculating two self-defined indices based on the GGEP genes' log2 foldchange (LFCs) that the drug candidates could induce. Among eight prioritized candidates, in-vitro experiments validated Clofarabine and Ciclopirox as highly efficacious in selectively targeting GBM cancer cells. The success of this study illustrated a promising avenue for accelerating drug development by uncovering underlying gene expression effect between drugs and diseases, which can be extended to other rare diseases and non-rare diseases.
Collapse
Affiliation(s)
- Shixue Sun
- NCATS: National Center for Advancing Translational Sciences
| | - Zeenat Shyr
- NCATS: National Center for Advancing Translational Sciences
| | - Kathleen McDaniel
- NCATS ETB: National Center for Advancing Translational Sciences Early Translation Branch
| | - Yuhong Fang
- NCATS: National Center for Advancing Translational Sciences
| | - Dingyin Tao
- NCATS: National Center for Advancing Translational Sciences
| | | | - Wei Zheng
- NCATS: National Center for Advancing Translational Sciences
| | - Qian Zhu
- NCATS: National Center for Advancing Translational Sciences
| |
Collapse
|
55
|
Li JJN, Liu G, Lok BH. Cell-Free DNA Hydroxymethylation in Cancer: Current and Emerging Detection Methods and Clinical Applications. Genes (Basel) 2024; 15:1160. [PMID: 39336751 PMCID: PMC11430939 DOI: 10.3390/genes15091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
In the era of precision oncology, identifying abnormal genetic and epigenetic alterations has transformed the way cancer is diagnosed, managed, and treated. 5-hydroxymethylcytosine (5hmC) is an emerging epigenetic modification formed through the oxidation of 5-methylcytosine (5mC) by ten-eleven translocase (TET) enzymes. DNA hydroxymethylation exhibits tissue- and cancer-specific patterns and is essential in DNA demethylation and gene regulation. Recent advancements in 5hmC detection methods and the discovery of 5hmC in cell-free DNA (cfDNA) have highlighted the potential for cell-free 5hmC as a cancer biomarker. This review explores the current and emerging techniques and applications of DNA hydroxymethylation in cancer, particularly in the context of cfDNA.
Collapse
Affiliation(s)
- Janice J N Li
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
| | - Geoffrey Liu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
56
|
Ma X, Thela SR, Zhao F, Yao B, Wen Z, Jin P, Zhao J, Chen L. Deep5hmC: predicting genome-wide 5-hydroxymethylcytosine landscape via a multimodal deep learning model. Bioinformatics 2024; 40:btae528. [PMID: 39196755 PMCID: PMC11379467 DOI: 10.1093/bioinformatics/btae528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 08/30/2024] Open
Abstract
MOTIVATION 5-Hydroxymethylcytosine (5hmC), a crucial epigenetic mark with a significant role in regulating tissue-specific gene expression, is essential for understanding the dynamic functions of the human genome. Despite its importance, predicting 5hmC modification across the genome remains a challenging task, especially when considering the complex interplay between DNA sequences and various epigenetic factors such as histone modifications and chromatin accessibility. RESULTS Using tissue-specific 5hmC sequencing data, we introduce Deep5hmC, a multimodal deep learning framework that integrates both the DNA sequence and epigenetic features such as histone modification and chromatin accessibility to predict genome-wide 5hmC modification. The multimodal design of Deep5hmC demonstrates remarkable improvement in predicting both qualitative and quantitative 5hmC modification compared to unimodal versions of Deep5hmC and state-of-the-art machine learning methods. This improvement is demonstrated through benchmarking on a comprehensive set of 5hmC sequencing data collected at four developmental stages during forebrain organoid development and across 17 human tissues. Compared to DeepSEA and random forest, Deep5hmC achieves close to 4% and 17% improvement of Area Under the Receiver Operating Characteristic (AUROC) across four forebrain developmental stages, and 6% and 27% across 17 human tissues for predicting binary 5hmC modification sites; and 8% and 22% improvement of Spearman correlation coefficient across four forebrain developmental stages, and 17% and 30% across 17 human tissues for predicting continuous 5hmC modification. Notably, Deep5hmC showcases its practical utility by accurately predicting gene expression and identifying differentially hydroxymethylated regions (DhMRs) in a case-control study of Alzheimer's disease (AD). Deep5hmC significantly improves our understanding of tissue-specific gene regulation and facilitates the development of new biomarkers for complex diseases. AVAILABILITY AND IMPLEMENTATION Deep5hmC is available via https://github.com/lichen-lab/Deep5hmC.
Collapse
Affiliation(s)
- Xin Ma
- Department of Biostatistics, University of Florida, Gainesville, FL 32603, United States
| | - Sai Ritesh Thela
- Department of Biostatistics, University of Florida, Gainesville, FL 32603, United States
| | - Fengdi Zhao
- Department of Biostatistics, University of Florida, Gainesville, FL 32603, United States
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Jinying Zhao
- Department of Epidemiology, University of Florida, Gainesville, FL 32603, United States
| | - Li Chen
- Department of Biostatistics, University of Florida, Gainesville, FL 32603, United States
| |
Collapse
|
57
|
De Vos K, Mavrogiannis A, Wolters JC, Schlenner S, Wierda K, Cortés Calabuig Á, Chinnaraj R, Dermesrobian V, Armoudjian Y, Jacquemyn M, Corthout N, Daelemans D, Annaert P. Tankyrase1/2 inhibitor XAV-939 reverts EMT and suggests that PARylation partially regulates aerobic activities in human hepatocytes and HepG2 cells. Biochem Pharmacol 2024; 227:116445. [PMID: 39053638 DOI: 10.1016/j.bcp.2024.116445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The maintenance of a highly functional metabolic epithelium in vitro is challenging. Metabolic impairments in primary human hepatocytes (PHHs) over time is primarily due to epithelial-to-mesenchymal transitioning (EMT). The immature hepatoma cell line HepG2 was used as an in vitro model to explore strategies for enhancing the hepatic phenotype. The phenotypic characterization includes measuring the urea cycle, lipid storage, tricarboxylic acid-related metabolites, reactive oxygen species, endoplasmic reticulum calcium efflux, mitochondrial membrane potentials, oxygen consumptions rate, and CYP450 biotransformation capacity. Expression studies were performed with transcriptomics, co-immunoprecipitation and proteomics. CRISPR/Cas9 was also employed to genetically engineer HepG2 cells. After confirming that PHHs develop an EMT phenotype, expression of tankyrase1/2 was found to increase over time. EMT was reverted when blocking tankyrases1/2-dependent poly-ADP-ribosylation (PARylation) activity, by biochemical and genetic perturbation. Wnt/β-catenin inhibitor XAV-939 blocks tankyrase1/2 and treatment elevated several oxygen-consuming reactions (electron-transport chain, OXHPOS, CYP450 mono-oxidase activity, phase I/II xenobiotic biotransformation, and prandial turnover), suggesting that cell metabolism was enhanced. Glutathione-dependent redox homeostasis was also significantly improved in the XAV-939 condition. Oxygen consumption rate and proteomics experiments in tankyrase1/2 double knockout HepG2 cells then uncovered PARylation as master regulator of aerobic-dependent cell respiration. Furthermore, novel tankyrase1/2-dependent PARylation targets, including mitochondrial DLST, and OGDH, were revealed. This work exposed a new mechanistic framework by linking PARylation to respiration and metabolism, thereby broadening the current understanding that underlies these vital processes. XAV-939 poses an immediate and straightforward strategy to improve aerobic activities, and metabolism, in (immature) cell cultures.
Collapse
Affiliation(s)
- Kristof De Vos
- Laboratory of Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Adamantios Mavrogiannis
- Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Justina Clarinda Wolters
- Section Systems Medicine of Metabolism and Signaling, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, the Netherlands
| | - Susan Schlenner
- Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Keimpe Wierda
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | | | - Reena Chinnaraj
- KU Leuven Flow and Mass Cytometry Facility, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Vera Dermesrobian
- KU Leuven Flow and Mass Cytometry Facility, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | | | - Maarten Jacquemyn
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000 Leuven, Belgium
| | - Nikky Corthout
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; VIB Bio Imaging Core, 3000 Leuven, Belgium
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000 Leuven, Belgium
| | - Pieter Annaert
- Laboratory of Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; BioNotus GCV, 2845 Niel, Belgium.
| |
Collapse
|
58
|
Yan ZW, Liu YN, Xu Q, Yuan Y. Current trends and hotspots of depressive disorders with colorectal cancer: A bibliometric and visual study. World J Gastrointest Oncol 2024; 16:3687-3704. [PMID: 39171183 PMCID: PMC11334043 DOI: 10.4251/wjgo.v16.i8.3687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/26/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Depression is strongly associated with colorectal cancer (CRC). Few bibliometric analyses have systematically summarized the research focus and recent progress in this field. AIM To determine the research status and hotspots by bibliometric analysis of relevant publications on the relationship between CRC and depression. METHODS Articles on depression in CRC patients were collected from the Web of Science Core Collection. CiteSpace and VOSviewer software were used to visualize bibliometric networks. RESULTS From 2001 to 2022, Supportive Care in Cancer, the United States, Tilburg University, and Mols were the most productive and influential journal, country, institution, and author name. Co-occurrence cluster analysis of keywords placed quality of life, anxiety, and psychological stress in the center of the visual network diagram. Further clustering was performed for the clusters with studies of the relevant mechanism of action, which showed that: (1) Cytokines have a role essential for the occurrence and development of depressive disorders in CRC; (2) MicroRNAs have a role essential for the development of depressive disorders in CRC; (3) Some anticancer drugs have pro-depressant activity; and (4) Selective serotonin reuptake inhibitors have both antitumor and antidepressant activity. CONCLUSION Life quality and psychological nursing of the cancer population were key topics. The roles of cytokines and microRNAs, the pro-depression activity of anticancer drugs and their antitumor properties deserve in-depth study.
Collapse
Affiliation(s)
- Zi-Wei Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Ying-Nan Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
59
|
Chang W, Zhang Z, Jia B, Ding K, Pan Z, Su G, Zhang W, Liu T, Zhong Y, He G, Ren L, Wei Y, Li D, Cui X, Yang J, Shi Y, Bissonnette M, He C, Zhang W, Fan J, Xu J. A 5-Hydroxymethylcytosine-Based Noninvasive Model for Early Detection of Colorectal Carcinomas and Advanced Adenomas: The METHOD-2 Study. Clin Cancer Res 2024; 30:3337-3348. [PMID: 38814264 PMCID: PMC11490261 DOI: 10.1158/1078-0432.ccr-24-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/19/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE Detection of colorectal carcinomas at a time when there are more treatment options is associated with better outcomes. This prospective case-control study assessed the 5-hydroxymethylcytosine (5hmC) biomarkers in circulating cell-free DNA (cfDNA) for early detection of colorectal carcinoma and advanced adenomas (AA). EXPERIMENTAL DESIGN Plasma cfDNA samples from 2,576 study participants from the multicenter METHOD-2 study (NCT03676075) were collected, comprising patients with newly diagnosed colorectal carcinoma (n = 1,074), AA (n = 356), other solid tumors (n = 80), and non-colorectal carcinoma/AA controls (n = 1,066), followed by genome-wide 5hmC profiling using the 5hmC-Seal technique and the next-generation sequencing. A weighted diagnostic model for colorectal carcinoma (stage I-III) and AA was developed using the elastic net regularization in a discovery set and validated in independent samples. RESULTS Distribution of 5hmC in cfDNA reflected gene regulatory relevance and tissue of origin. Besides being confirmed in internal validation, a 96-gene model achieved an area under the curve (AUC) of 90.7% for distinguishing stage I-III colorectal carcinoma from controls in 321 samples from multiple centers for external validation, regardless of primary location or mutation status. This model also showed cancer-type specificity as well as high capacity for distinguishing AA from controls with an AUC of 78.6%. Functionally, differential 5hmC features associated with colorectal carcinoma and AA demonstrated relevance to colorectal carcinoma biology, including pathways such as calcium and MAPK signaling. CONCLUSIONS Genome-wide mapping of 5hmC in cfDNA shows promise as a highly sensitive and specific noninvasive blood test to be integrated into screening programs for improving early detection of colorectal carcinoma and high-risk AA.
Collapse
Affiliation(s)
- Wenju Chang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Technology, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian 361015, China
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Baoqing Jia
- Department of General Surgery, The 301 Hospital, Beijing, 100853, China
| | - Kefeng Ding
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhizhong Pan
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Guoqiang Su
- Department of Colorectal Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361000, China
| | - Wei Zhang
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, 200433, China
| | - Tianyu Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Technology, Shanghai 200032, China
| | - Yunshi Zhong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Xuhui Hospital, Fudan University, Shanghai 200032, China
| | - Guodong He
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Technology, Shanghai 200032, China
| | - Li Ren
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Technology, Shanghai 200032, China
| | - Ye Wei
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Technology, Shanghai 200032, China
| | - Dongdong Li
- Shanghai Epican Genetech Co., Ltd., Shanghai 201203, China
| | - Xiaolong Cui
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jun Yang
- Bionova (Shanghai) MedTech Co., Ltd., Shanghai 201318, China
| | - Yixiang Shi
- Bionova (Shanghai) MedTech Co., Ltd., Shanghai 201318, China
| | - Marc Bissonnette
- Department of Medicine and The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, Illinois 60637, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Biochemistry and Molecular Biology; Institute for Biophysical Dynamics; and The Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Jia Fan
- Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jianmin Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Technology, Shanghai 200032, China
| |
Collapse
|
60
|
Blackford AL, Canto MI, Dbouk M, Hruban RH, Katona BW, Chak A, Brand RE, Syngal S, Farrell J, Kastrinos F, Stoffel EM, Rustgi A, Klein AP, Kamel I, Fishman EK, He J, Burkhart R, Shin EJ, Lennon AM, Goggins M. Pancreatic Cancer Surveillance and Survival of High-Risk Individuals. JAMA Oncol 2024; 10:1087-1096. [PMID: 38959011 PMCID: PMC11223057 DOI: 10.1001/jamaoncol.2024.1930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/05/2024] [Indexed: 07/04/2024]
Abstract
Importance Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with increasing incidence. The majority of PDACs are incurable at presentation, but population-based screening is not recommended. Surveillance of high-risk individuals for PDAC may lead to early detection, but the survival benefit is unproven. Objective To compare the survival of patients with surveillance-detected PDAC with US national data. Design, Setting, and Participants This comparative cohort study was conducted in multiple US academic medical centers participating in the Cancer of the Pancreas Screening program, which screens high-risk individuals with a familial or genetic predisposition for PDAC. The comparison cohort comprised patients with PDAC matched for age, sex, and year of diagnosis from the Surveillance, Epidemiology, and End Results (SEER) program. The Cancer of the Pancreas Screening program originated in 1998, and data collection was done through 2021. The data analysis was performed from April 29, 2022, through April 10, 2023. Exposures Endoscopic ultrasonography or magnetic resonance imaging performed annually and standard-of-care surgical and/or oncologic treatment. Main Outcomes and Measures Stage of PDAC at diagnosis, overall survival (OS), and PDAC mortality were compared using descriptive statistics and conditional logistic regression, Cox proportional hazards regression, and competing risk regression models. Sensitivity analyses and adjustment for lead-time bias were also conducted. Results A total of 26 high-risk individuals (mean [SD] age at diagnosis, 65.8 [9.5] years; 15 female [57.7%]) with PDAC were compared with 1504 SEER control patients with PDAC (mean [SD] age at diagnosis, 66.8 [7.9] years; 771 female [51.3%]). The median primary tumor diameter of the 26 high-risk individuals was smaller than in the control patients (2.5 [range, 0.6-5.0] vs 3.6 [range, 0.2-8.0] cm, respectively; P < .001). The high-risk individuals were more likely to be diagnosed with a lower stage (stage I, 10 [38.5%]; stage II, 8 [30.8%]) than matched control patients (stage I, 155 [10.3%]; stage II, 377 [25.1%]; P < .001). The PDAC mortality rate at 5 years was lower for high-risk individuals than control patients (43% vs 86%; hazard ratio, 3.58; 95% CI, 2.01-6.39; P < .001), and high-risk individuals lived longer than matched control patients (median OS, 61.7 [range, 1.9-147.3] vs 8.0 [range, 1.0-131.0] months; 5-year OS rate, 50% [95% CI, 32%-80%] vs 9% [95% CI, 7%-11%]). Conclusions and Relevance These findings suggest that surveillance of high-risk individuals may lead to detection of smaller, lower-stage PDACs and improved survival.
Collapse
Affiliation(s)
- Amanda L. Blackford
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Marcia Irene Canto
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Medicine (Gastroenterology), The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Mohamad Dbouk
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ralph H. Hruban
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Bryson W. Katona
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Amitabh Chak
- Division of Gastroenterology and Liver Disease, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Randall E. Brand
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pennsylvania
| | - Sapna Syngal
- Cancer Genetics and Prevention, Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Gastroenterology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - James Farrell
- Yale Center for Pancreatic Disease, Section of Digestive Disease, Yale University, New Haven, Connecticut
| | - Fay Kastrinos
- Division of Digestive and Liver Diseases, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Elena M. Stoffel
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Anil Rustgi
- Division of Digestive and Liver Diseases, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Alison P. Klein
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ihab Kamel
- Department of Radiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Elliot K. Fishman
- Department of Radiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Jin He
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Richard Burkhart
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Eun Ji Shin
- Department of Medicine (Gastroenterology), The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Anne Marie Lennon
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Medicine (Gastroenterology), The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Radiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Michael Goggins
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Medicine (Gastroenterology), The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
61
|
Kenakin T. Know your molecule: pharmacological characterization of drug candidates to enhance efficacy and reduce late-stage attrition. Nat Rev Drug Discov 2024; 23:626-644. [PMID: 38890494 DOI: 10.1038/s41573-024-00958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 06/20/2024]
Abstract
Despite advances in chemical, computational and biological sciences, the rate of attrition of drug candidates in clinical development is still high. A key point in the small-molecule discovery process that could provide opportunities to help address this challenge is the pharmacological characterization of hit and lead compounds, culminating in the selection of a drug candidate. Deeper characterization is increasingly important, because the 'quality' of drug efficacy, at least for G protein-coupled receptors (GPCRs), is now understood to be much more than activation of commonly evaluated pathways such as cAMP signalling, with many more 'efficacies' of ligands that could be harnessed therapeutically. Such characterization is being enabled by novel assays to characterize the complex behaviour of GPCRs, such as biased signalling and allosteric modulation, as well as advances in structural biology, such as cryo-electron microscopy. This article discusses key factors in the assessments of the pharmacology of hit and lead compounds in the context of GPCRs as a target class, highlighting opportunities to identify drug candidates with the potential to address limitations of current therapies and to improve the probability of them succeeding in clinical development.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
62
|
Lam WKJ, Bai J, Ma MJL, Cheung YTT, Jiang P. Circulating tumour DNA analysis for early detection of lung cancer: a systematic review. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:64. [PMID: 39118954 PMCID: PMC11304429 DOI: 10.21037/atm-23-1572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 01/11/2024] [Indexed: 08/10/2024]
Abstract
Background Circulating tumor DNA (ctDNA) analysis has been applied in cancer diagnostics including lung cancer. Specifically for the early detection purpose, various modalities of ctDNA analysis have demonstrated their potentials. Such analyses have showed diverse performance across different studies. Methods We performed a systematic review of original studies published before 1 January 2023. Studies that evaluated ctDNA alone and in combination with other biomarkers for early detection of lung cancer were included. Results The systematic review analysis included 56 original studies that were aimed for early detection of lung cancer. There were 39 studies for lung cancer only and 17 for pan-cancer early detection. Cancer and control cases included were heterogenous across studies. Different molecular features of ctDNA have been evaluated, including 7 studies on cell-free DNA concentration, 17 on mutation, 29 on methylation, 5 on hydroxymethylation and 8 on fragmentation patterns. Among these 56 studies, 17 have utilised different combinations of the above-mentioned ctDNA features and/or circulation protein markers. For all the modalities, lower sensitivities were reported for the detection of early-stage cancer. Conclusions The systematic review suggested the clinical utility of ctDNA analysis for early detection of lung cancer, alone or in combination with other biomarkers. Future validation with standardised testing protocols would help integration into clinical care.
Collapse
Affiliation(s)
- W. K. Jacky Lam
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Jinyue Bai
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Mary-Jane L. Ma
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Y. T. Tommy Cheung
- Department of Pathology, Princess Margaret Hospital, Kwai Chung, Hong Kong, China
| | - Peiyong Jiang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| |
Collapse
|
63
|
Ma J, Veeragoni D, Ghosh H, Mutter N, Barbosa G, Webster L, Schobert R, van de Sande W, Dandawate P, Biersack B. Superior Anticancer and Antifungal Activities of New Sulfanyl-Substituted Niclosamide Derivatives. Biomedicines 2024; 12:1621. [PMID: 39062194 PMCID: PMC11275179 DOI: 10.3390/biomedicines12071621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The approved anthelmintic salicylanilide drug niclosamide has shown promising anticancer and antimicrobial activities. In this study, new niclosamide derivatives with trifluoromethyl, trifluoromethylsulfanyl, and pentafluorosulfanyl substituents replacing the nitro group of niclosamide were prepared (including the ethanolamine salts of two promising salicylanilides) and tested for their anticancer activities against esophageal adenocarcinoma (EAC) cells. In addition, antifungal activity against a panel of Madurella mycetomatis strains, the most abundant causative agent of the neglected tropical disease eumycetoma, was evaluated. The new compounds revealed higher activities against EAC and fungal cells than the parent compound niclosamide. The ethanolamine salt 3a was the most active compound against EAC cells (IC50 = 0.8-1.0 µM), and its anticancer effects were mediated by the downregulation of anti-apoptotic proteins (BCL2 and MCL1) and by decreasing levels of β-catenin and the phosphorylation of STAT3. The plausibility of binding to the latter factors was confirmed by molecular docking. The compounds 2a and 2b showed high in vitro antifungal activity against M. mycetomatis (IC50 = 0.2-0.3 µM) and were not toxic to Galleria mellonella larvae. Slight improvements in the survival rate of G. mellonella larvae infected with M. mycetomatis were observed. Thus, salicylanilides such as 2a and 3a can become new anticancer and antifungal drugs.
Collapse
Affiliation(s)
- Jingyi Ma
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Dileepkumar Veeragoni
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (D.V.); (H.G.)
| | - Hindole Ghosh
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (D.V.); (H.G.)
| | - Nicole Mutter
- Wellcome Centre—Antiinfectives Research, School of Life Sciences, University of Dundee, Nethergate, Dundee DD1 4HN, UK; (N.M.); (G.B.); (L.W.)
| | - Gisele Barbosa
- Wellcome Centre—Antiinfectives Research, School of Life Sciences, University of Dundee, Nethergate, Dundee DD1 4HN, UK; (N.M.); (G.B.); (L.W.)
| | - Lauren Webster
- Wellcome Centre—Antiinfectives Research, School of Life Sciences, University of Dundee, Nethergate, Dundee DD1 4HN, UK; (N.M.); (G.B.); (L.W.)
| | - Rainer Schobert
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany;
| | - Wendy van de Sande
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (D.V.); (H.G.)
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany;
| |
Collapse
|
64
|
Wan DD, Li XJ, Wang XR, Liu TX. Metachronous multifocal carcinoma: A case report. World J Gastrointest Oncol 2024; 16:3350-3356. [PMID: 39072183 PMCID: PMC11271799 DOI: 10.4251/wjgo.v16.i7.3350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/21/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND The incidence of multiple primary carcinomas (MPC) varies greatly, ranging from 0.73% to 11.70% in foreign countries, with duo-duplex carcinoma being the most common, trio-duplex carcinoma and above being rare, and simultaneous multigenic carcinoma being even rarer, accounting for 18.4% to 25.3% of the incidence of MPC. However, there is no report regarding patients presenting with simultaneous dual-origin carcinoma of the liver and colon and heterochronous pancreatic cancer. CASE SUMMARY We report a special case of multifocal carcinoma, in which one patient had a medical condition of primary liver and colon cancer and pancreatic cystadenocarcinoma 2 years after surgery. Through aggressive advanced fluorescent laparoscopic techniques, standardized immunotherapy, targeting, and chemotherapy, a better prognosis and a desirable survival period were achieved for the patient. CONCLUSION There is a need to clarify the nature of MPC through advanced surgical means to ensure better diagnosis and treatment.
Collapse
Affiliation(s)
- Dan-Dan Wan
- School of Clinical Medicine, Qujing Medical College, Qujing 655000, Yunnan Province, China
| | - Xiao-Ju Li
- Department of Hepatobiliary Surgery, Qujing Second People’s of Yunnan Province, Qujing 655000, Yunnan Province, China
| | - Xing-Ru Wang
- Institute of Hepatobiliary Surgery, The First Affiliated Hospital, Army Medical University, Chongqing 400038, China
| | - Tian-Xi Liu
- Department of Hepatobiliary Surgery, Qujing Central Hospital of Yunnan Regional Medical Center, Qujing 655000, Yunnan Province, China
| |
Collapse
|
65
|
Zhang DY, Bai FH. Research trends and hotspots in the immune microenvironment related to hepatocellular carcinoma: A bibliometric and visualization study. World J Gastrointest Oncol 2024; 16:3321-3330. [PMID: 39072164 PMCID: PMC11271783 DOI: 10.4251/wjgo.v16.i7.3321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND The immune microenvironment (IME) in hepatocellular carcinoma (HCC) plays a pivotal role in determining patient outcomes and responses to treatment. This area is witnessing rapid growth in research interest. However, there is a lack of comprehensive bibliometric analyses that dissect trends and potential focal points in this field. AIM To explore the evolution of research on the IME in HCC from January 1, 2004, to December 31, 2023, using bibliometric methodologies. METHODS English articles and reviews concerning the IME of HCC were retrieved from the Web of Science Core Collection with a search date of December 31, 2023. The R package Bibliometrix was employed to compute basic bibliometric characteristics, illustrate collaborations among countries and authors, and create a three-field diagram illustrating the connections between authors, affiliations, and keywords. Analyses of country and institutional co-authorship, as well as keyword co-occurrence, were conducted using VOSviewer. Additionally, CiteSpace was utilized for the cite burst analysis of keywords and cited literature. RESULTS The study encompassed 3125 documents in the research areas related to HCC of IME, revealing a substantial and continuous increase in the annual publication trend over time. China and Fudan University emerged as leading contributors, with 2103 and 165 publications, respectively. Frontiers in immunology was the most prolific journal in this domain. Among the top ten researchers in the field, eight are based in China. Key research terms identified include tumour microenvironment, expression, immunotherapy, and prognosis. CONCLUSION The relationship between HCC and IME is receiving increasing attention, and related research is in a highly developed stage. Key focus areas, including IME and immune checkpoint inhibitors, immunotherapy are poised to be central to future research endeavors, offering promising pathways for further exploration.
Collapse
Affiliation(s)
- Da-Ya Zhang
- Department of Graduate School, Hainan Medical University, Haikou 571199, Hainan Province, China
| | - Fei-Hu Bai
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, Hainan Province, China
- Department of Gastroenterology, The Gastroenterology Clinical Medical Center of Hainan Province, Haikou 570216, Hainan Province, China
| |
Collapse
|
66
|
Rubinstein WS, Patriotis C, Dickherber A, Han PKJ, Katki HA, LeeVan E, Pinsky PF, Prorok PC, Skarlupka AL, Temkin SM, Castle PE, Minasian LM. Cancer screening with multicancer detection tests: A translational science review. CA Cancer J Clin 2024; 74:368-382. [PMID: 38517462 PMCID: PMC11226362 DOI: 10.3322/caac.21833] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Multicancer detection (MCD) tests use a single, easily obtainable biospecimen, such as blood, to screen for more than one cancer concurrently. MCD tests can potentially be used to improve early cancer detection, including cancers that currently lack effective screening methods. However, these tests have unknown and unquantified benefits and harms. MCD tests differ from conventional cancer screening tests in that the organ responsible for a positive test is unknown, and a broad diagnostic workup may be necessary to confirm the location and type of underlying cancer. Among two prospective studies involving greater than 16,000 individuals, MCD tests identified those who had some cancers without currently recommended screening tests, including pancreas, ovary, liver, uterus, small intestine, oropharyngeal, bone, thyroid, and hematologic malignancies, at early stages. Reported MCD test sensitivities range from 27% to 95% but differ by organ and are lower for early stage cancers, for which treatment toxicity would be lowest and the potential for cure might be highest. False reassurance from a negative MCD result may reduce screening adherence, risking a loss in proven public health benefits from standard-of-care screening. Prospective clinical trials are needed to address uncertainties about MCD accuracy to detect different cancers in asymptomatic individuals, whether these tests can detect cancer sufficiently early for effective treatment and mortality reduction, the degree to which these tests may contribute to cancer overdiagnosis and overtreatment, whether MCD tests work equally well across all populations, and the appropriate diagnostic evaluation and follow-up for patients with a positive test.
Collapse
Affiliation(s)
- Wendy S. Rubinstein
- Division of Cancer Prevention, US National Cancer Institute, Rockville, Maryland, USA
| | - Christos Patriotis
- Division of Cancer Prevention, US National Cancer Institute, Rockville, Maryland, USA
| | - Anthony Dickherber
- Center for Strategic Scientific Initiatives, US National Cancer Institute, Rockville, Maryland, USA
| | - Paul K. J. Han
- Division of Cancer Control and Population Sciences, US National Cancer Institute, Rockville, Maryland, USA
| | - Hormuzd A. Katki
- Division of Cancer Epidemiology and Genetics, US National Cancer Institute, Rockville, Maryland, USA
| | - Elyse LeeVan
- Division of Cancer Prevention, US National Cancer Institute, Rockville, Maryland, USA
| | - Paul F. Pinsky
- Division of Cancer Prevention, US National Cancer Institute, Rockville, Maryland, USA
| | - Philip C. Prorok
- Division of Cancer Prevention, US National Cancer Institute, Rockville, Maryland, USA
| | - Amanda L. Skarlupka
- Division of Cancer Prevention, US National Cancer Institute, Rockville, Maryland, USA
| | - Sarah M. Temkin
- National Institutes of Health Office of Research on Women’s Health, Bethesda, Maryland, USA
| | - Philip E. Castle
- Division of Cancer Prevention, US National Cancer Institute, Rockville, Maryland, USA
- Division of Cancer Epidemiology and Genetics, US National Cancer Institute, Rockville, Maryland, USA
| | - Lori M. Minasian
- Division of Cancer Prevention, US National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
67
|
Zhang W, Huang RS. Computer-aided drug discovery strategies for novel therapeutics for prostate cancer leveraging next-generating sequencing data. Expert Opin Drug Discov 2024; 19:841-853. [PMID: 38860709 PMCID: PMC11537242 DOI: 10.1080/17460441.2024.2365370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Prostate cancer (PC) is the most common malignancy and accounts for a significant proportion of cancer deaths among men. Although initial therapy success can often be observed in patients diagnosed with localized PC, many patients eventually develop disease recurrence and metastasis. Without effective treatments, patients with aggressive PC display very poor survival. To curb the current high mortality rate, many investigations have been carried out to identify efficacious therapeutics. Compared to de novo drug designs, computational methods have been widely employed to offer actionable drug predictions in a fast and cost-efficient way. Particularly, powered by an increasing availability of next-generation sequencing molecular profiles from PC patients, computer-aided approaches can be tailored to screen for candidate drugs. AREAS COVERED Herein, the authors review the recent advances in computational methods for drug discovery utilizing molecular profiles from PC patients. Given the uniqueness in PC therapeutic needs, they discuss in detail the drug discovery goals of these studies, highlighting their translational values for clinically impactful drug nomination. EXPERT OPINION Evolving molecular profiling techniques may enable new perspectives for computer-aided approaches to offer drug candidates for different tumor microenvironments. With ongoing efforts to incorporate new compounds into large-scale high-throughput screens, the authors envision continued expansion of drug candidate pools.
Collapse
Affiliation(s)
- Weijie Zhang
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - R. Stephanie Huang
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
68
|
Abstract
This review delves into the rapidly evolving landscape of liquid biopsy technologies based on cell-free DNA (cfDNA) and cell-free RNA (cfRNA) and their increasingly prominent role in precision medicine. With the advent of high-throughput DNA sequencing, the use of cfDNA and cfRNA has revolutionized noninvasive clinical testing. Here, we explore the physical characteristics of cfDNA and cfRNA, present an overview of the essential engineering tools used by the field, and highlight clinical applications, including noninvasive prenatal testing, cancer testing, organ transplantation surveillance, and infectious disease testing. Finally, we discuss emerging technologies and the broadening scope of liquid biopsies to new areas of diagnostic medicine.
Collapse
Affiliation(s)
- Conor Loy
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA;
| | - Lauren Ahmann
- Department of Pathology, Stanford University, Stanford, California, USA;
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA;
| | - Wei Gu
- Department of Pathology, Stanford University, Stanford, California, USA;
| |
Collapse
|
69
|
Shakhshir M, Zyoud SH. Mapping global research trends: Nutrition associations with nonalcoholic fatty liver disease - a Scopus bibliometric analysis. World J Gastroenterol 2024; 30:3106-3119. [PMID: 38983957 PMCID: PMC11230064 DOI: 10.3748/wjg.v30.i24.3106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Several bibliometric analyses have been carried out to identify research hotspots and trends in nonalcoholic fatty liver disease (NAFLD) research. Nonetheless, there are still significant knowledge gaps that must be filled to advance our understanding of and ability to treat NAFLD. AIM To evaluate, through bibliometric and visual analysis, the current status of related research, related research frontiers, and the developmental trends in the field of diet and NAFLD. METHODS We retrieved publications about diet and NAFLD published between 1987 and 2022 from Scopus. Next, we used VOSviewer 1.6.20 to perform bibliometric analysis and visualization. RESULTS We found a total of 1905 studies, including 1637 (85.93%) original articles and 195 (10.24%) reviews, focused on the examination of NAFLD and its correlation with diet that were published between 1987 and 2022. Among the remaining five types of documents, 38 were letters, notes, editorials, meeting minutes, or brief surveys, representing 1.99% of the total documents. The countries with the most publications on this topic were China (n = 539; 28.29%), followed by the United States (n = 379; 19.90%), Japan (n = 133; 6.98%), and South Korea (n = 127; 6.6%). According to the citation analysis, the retrieved papers were cited an average of 32.3 times and had an h-index of 106, with 61014 total citations. The two main clusters on the map included those related to: (1) Inflammation and oxidative stress; and (2) Dietary interventions for NAFLD. CONCLUSION This was the first study to use data taken from Scopus to visualize network mapping in a novel bibliometric analysis of studies focused on diet and NAFLD. After 2017, the two domains that received the most attention were "dietary interventions for NAFL"' and "'inflammation and oxidative stress implicated in NAFLD and its correlation with diet." We believe that this study provides important information for academics, dietitians, and doctors, and that additional research on dietary interventions and NAFLD is warranted.
Collapse
Affiliation(s)
- Muna Shakhshir
- Department of Nutrition, An-Najah National University Hospital, Nablus 44839, Palestine
- Department of Public Health, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
| | - Sa'ed H Zyoud
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
- Poison Control and Drug Information Center, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
- Clinical Research Center, An-Najah National University Hospital, Nablus 44839, Palestine
| |
Collapse
|
70
|
Zyoud SH, Hegazi OE, Alalalmeh SO, Shakhshir M, Abushamma F, Khilfeh S, Al-Jabi SW. Mapping the global research landscape on nonalcoholic fatty liver disease and insulin resistance: A visualization and bibliometric study. World J Hepatol 2024; 16:951-965. [PMID: 38948442 PMCID: PMC11212647 DOI: 10.4254/wjh.v16.i6.951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/29/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a liver condition that is prevalent worldwide and associated with significant health risks and economic burdens. As it has been linked to insulin resistance (IR), this study aimed to perform a bibliometric analysis and visually represent the scientific literature on IR and NAFLD. AIM To map the research landscape to underscore critical areas of focus, influential studies, and future directions of NAFLD and IR. METHODS This study conducted a bibliometric analysis of the literature on IR and NAFLD indexed in the SciVerse Scopus database from 1999 to 2022. The search strategy used terms from the literature and medical subject headings, focusing on terms related to IR and NAFLD. VOSviewer software was used to visualize research trends, collaborations, and key thematic areas. The analysis examined publication type, annual research output, contributing countries and institutions, funding agencies, journal impact factors, citation patterns, and highly cited references. RESULTS This analysis identified 23124 documents on NAFLD, revealing a significant increase in the number of publications between 1999 and 2022. The search retrieved 715 papers on IR and NAFLD, including 573 (80.14%) articles and 88 (12.31%) reviews. The most productive countries were China (n = 134; 18.74%), the United States (n = 122; 17.06%), Italy (n = 97; 13.57%), and Japan (n = 41; 5.73%). The leading institutions included the Università degli Studi di Torino, Italy (n = 29; 4.06%), and the Consiglio Nazionale delle Ricerche, Italy (n = 19; 2.66%). The top funding agencies were the National Institute of Diabetes and Digestive and Kidney Diseases in the United States (n = 48; 6.71%), and the National Natural Science Foundation of China (n = 37; 5.17%). The most active journals in this field were Hepatology (27 publications), the Journal of Hepatology (17 publications), and the Journal of Clinical Endocrinology and Metabolism (13 publications). The main research hotspots were "therapeutic approaches for IR and NAFLD" and "inflammatory and high-fat diet impacts on NAFLD". CONCLUSION This is the first bibliometric analysis to examine the relationship between IR and NAFLD. In response to the escalating global health challenge of NAFLD, this research highlights an urgent need for a better understanding of this condition and for the development of intervention strategies. Policymakers need to prioritize and address the increasing prevalence of NAFLD.
Collapse
Affiliation(s)
- Sa'ed H Zyoud
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
- Clinical Research Center, An-Najah National University Hospital, Nablus 44839, Palestine.
| | - Omar E Hegazi
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Samer O Alalalmeh
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Muna Shakhshir
- Department of Nutrition, An-Najah National University Hospital, Nablus 44839, Palestine
| | - Faris Abushamma
- Department of Medicine, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
- Department of Urology, An-Najah National University Hospital, Nablus 44839, Palestine
| | - Shadi Khilfeh
- Department of Medicine, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
- Department of Gastroenterology, Hepatology and Endoscopy, An-Najah National University Hospital, Nablus 44839, Palestine
| | - Samah W Al-Jabi
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus 44839, Palestine
| |
Collapse
|
71
|
Tong X, Qu N, Kong X, Ni S, Zhou J, Wang K, Zhang L, Wen Y, Shi J, Zhang S, Li X, Zheng M. Deep representation learning of chemical-induced transcriptional profile for phenotype-based drug discovery. Nat Commun 2024; 15:5378. [PMID: 38918369 PMCID: PMC11199551 DOI: 10.1038/s41467-024-49620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Artificial intelligence transforms drug discovery, with phenotype-based approaches emerging as a promising alternative to target-based methods, overcoming limitations like lack of well-defined targets. While chemical-induced transcriptional profiles offer a comprehensive view of drug mechanisms, inherent noise often obscures the true signal, hindering their potential for meaningful insights. Here, we highlight the development of TranSiGen, a deep generative model employing self-supervised representation learning. TranSiGen analyzes basal cell gene expression and molecular structures to reconstruct chemical-induced transcriptional profiles with high accuracy. By capturing both cellular and compound information, TranSiGen-derived representations demonstrate efficacy in diverse downstream tasks like ligand-based virtual screening, drug response prediction, and phenotype-based drug repurposing. Notably, in vitro validation of TranSiGen's application in pancreatic cancer drug discovery highlights its potential for identifying effective compounds. We envisage that integrating TranSiGen into the drug discovery and mechanism research holds significant promise for advancing biomedicine.
Collapse
Affiliation(s)
- Xiaochu Tong
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Ning Qu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xiangtai Kong
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Shengkun Ni
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Jingyi Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Kun Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Lehan Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yiming Wen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Jiangshan Shi
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Xutong Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
72
|
Lee DH, Yoo JK, Um KH, Ha W, Lee SM, Park J, Kye MJ, Suh J, Choi JW. Intravesical instillation-based mTOR-STAT3 dual targeting for bladder cancer treatment. J Exp Clin Cancer Res 2024; 43:170. [PMID: 38886756 PMCID: PMC11184849 DOI: 10.1186/s13046-024-03088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Recent intravesical administration of adenoviral vectors, either as a single injection or in combination with immune checkpoint inhibitors, exemplified by cretostimogene grenadenorepvec and nadofaragene firadenovec, has demonstrated remarkable efficacy in clinical trials for non-muscle invasive bladder cancer. Despite their ability to induce an enhanced immune reaction within the lesion, the intracellular survival signaling of cancer cells has not been thoroughly addressed. METHODS An analysis of the prognostic data revealed a high probability of therapeutic efficacy with simultaneous inhibition of mTOR and STAT3. Considering the challenges of limited pharmaco-accessibility to the bladder due to its pathophysiological structure and the partially undruggable nature of target molecules, we designed a dual siRNA system targeting both mRNAs. Subsequently, this dual siRNA system was encoded into the adenovirus 5/3 (Ad 5/3) to enhance in vivo delivery efficiency. RESULTS Gene-targeting efficacy was assessed using cells isolated from xenografted tumors using a single-cell analysis system. Our strategy demonstrated a balanced downregulation of mTOR and STAT3 at the single-cell resolution, both in vitro and in vivo. This approach reduced tumor growth in bladder cancer xenograft and orthotopic animal experiments. In addition, increased infiltration of CD8+ T cells was observed in a humanized mouse model. We provided helpful and safe tissue distribution data for intravesical therapy of siRNAs coding adenoviruses. CONCLUSIONS The bi-specific siRNA strategy, encapsulated in an adenovirus, could be a promising tool to augment cancer treatment efficacy and overcome conventional therapy limitations associated with "undruggability." Hence, we propose that dual targeting of mTOR and STAT3 is an advantageous strategy for intravesical therapy using adenoviruses.
Collapse
Affiliation(s)
- Dae Hoon Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- R&D Center of Curigin Ltd., Curigin, Seoul, 04778, Republic of Korea
| | - Jung Ki Yoo
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- R&D Center of Curigin Ltd., Curigin, Seoul, 04778, Republic of Korea
| | - Ki Hwan Um
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- R&D Center of Curigin Ltd., Curigin, Seoul, 04778, Republic of Korea
- Department of Regulatory Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Wootae Ha
- R&D Center of Curigin Ltd., Curigin, Seoul, 04778, Republic of Korea
| | - Soo Min Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Regulatory Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Junseong Park
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Min Jeong Kye
- R&D Center of Curigin Ltd., Curigin, Seoul, 04778, Republic of Korea
| | - Jungyo Suh
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jin Woo Choi
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
- R&D Center of Curigin Ltd., Curigin, Seoul, 04778, Republic of Korea.
- Department of Regulatory Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
73
|
Ali FEM, Abdel-Reheim MA, Hassanein EHM, Abd El-Aziz MK, Althagafy HS, Badran KSA. Exploring the potential of drug repurposing for liver diseases: A comprehensive study. Life Sci 2024; 347:122642. [PMID: 38641047 DOI: 10.1016/j.lfs.2024.122642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Drug repurposing involves the investigation of existing drugs for new indications. It offers a great opportunity to quickly identify a new drug candidate at a lower cost than novel discovery and development. Despite the importance and potential role of drug repurposing, there is no specific definition that healthcare providers and the World Health Organization credit. Unfortunately, many similar and interchangeable concepts are being used in the literature, making it difficult to collect and analyze uniform data on repurposed drugs. This research was conducted based on understanding general criteria for drug repurposing, concentrating on liver diseases. Many drugs have been investigated for their effect on liver diseases even though they were originally approved (or on their way to being approved) for other diseases. Some of the hypotheses for drug repurposing were first captured from the literature and then processed further to test the hypothesis. Recently, with the revolution in bioinformatics techniques, scientists have started to use drug libraries and computer systems that can analyze hundreds of drugs to give a short list of candidates to be analyzed pharmacologically. However, this study revealed that drug repurposing is a potential aid that may help deal with liver diseases. It provides available or under-investigated drugs that could help treat hepatitis, liver cirrhosis, Wilson disease, liver cancer, and fatty liver. However, many further studies are needed to ensure the efficacy of these drugs on a large scale.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Mostafa K Abd El-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Khalid S A Badran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
74
|
He B, Yao H, Yi C. Advances in the joint profiling technologies of 5mC and 5hmC. RSC Chem Biol 2024; 5:500-507. [PMID: 38846078 PMCID: PMC11151843 DOI: 10.1039/d4cb00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/21/2024] [Indexed: 06/09/2024] Open
Abstract
DNA cytosine methylation, a crucial epigenetic modification, involves the dynamic interplay of 5-methylcytosine (5mC) and its oxidized form, 5-hydroxymethylcytosine (5hmC), generated by ten-eleven translocation (TET) DNA dioxygenases. This process is central to regulating gene expression, influencing critical biological processes such as development, disease progression, and aging. Recognizing the distinct functions of 5mC and 5hmC, researchers often employ restriction enzyme-based or chemical treatment methods for their simultaneous measurement from the same genomic sample. This enables a detailed understanding of the relationship between these modifications and their collective impact on cellular function. This review focuses on summarizing the technologies for detecting 5mC and 5hmC together but also discusses the limitations and potential future directions in this evolving field.
Collapse
Affiliation(s)
- Bo He
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University Beijing China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies Chengdu China
| | - Haojun Yao
- College of Chemistry and Chemical Engineering, Hunan University Changsha China
| | - Chengqi Yi
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University Beijing China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University Beijing China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University Beijing China
| |
Collapse
|
75
|
Gonzalez-Avalos E, Onodera A, Samaniego-Castruita D, Rao A, Ay F. Predicting gene expression state and prioritizing putative enhancers using 5hmC signal. Genome Biol 2024; 25:142. [PMID: 38825692 PMCID: PMC11145787 DOI: 10.1186/s13059-024-03273-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/11/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Like its parent base 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) is a direct epigenetic modification of cytosines in the context of CpG dinucleotides. 5hmC is the most abundant oxidized form of 5mC, generated through the action of TET dioxygenases at gene bodies of actively-transcribed genes and at active or lineage-specific enhancers. Although such enrichments are reported for 5hmC, to date, predictive models of gene expression state or putative regulatory regions for genes using 5hmC have not been developed. RESULTS Here, by using only 5hmC enrichment in genic regions and their vicinity, we develop neural network models that predict gene expression state across 49 cell types. We show that our deep neural network models distinguish high vs low expression state utilizing only 5hmC levels and these predictive models generalize to unseen cell types. Further, in order to leverage 5hmC signal in distal enhancers for expression prediction, we employ an Activity-by-Contact model and also develop a graph convolutional neural network model with both utilizing Hi-C data and 5hmC enrichment to prioritize enhancer-promoter links. These approaches identify known and novel putative enhancers for key genes in multiple immune cell subsets. CONCLUSIONS Our work highlights the importance of 5hmC in gene regulation through proximal and distal mechanisms and provides a framework to link it to genome function. With the recent advances in 6-letter DNA sequencing by short and long-read techniques, profiling of 5mC and 5hmC may be done routinely in the near future, hence, providing a broad range of applications for the methods developed here.
Collapse
Affiliation(s)
- Edahi Gonzalez-Avalos
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Atsushi Onodera
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Daniela Samaniego-Castruita
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Anjana Rao
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA.
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Ferhat Ay
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
76
|
Sun L, Xing J, Zhou X, Song X, Gao S. Wnt/β-catenin signalling, epithelial-mesenchymal transition and crosslink signalling in colorectal cancer cells. Biomed Pharmacother 2024; 175:116685. [PMID: 38710151 DOI: 10.1016/j.biopha.2024.116685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Colorectal cancer (CRC), with its significant incidence and metastatic rates, profoundly affects human health. A common oncogenic event in CRC is the aberrant activation of the Wnt/β-catenin signalling pathway, which drives both the initiation and progression of the disease. Persistent Wnt/β-catenin signalling facilitates the epithelial-mesenchymal transition (EMT), which accelerates CRC invasion and metastasis. This review provides a summary of recent molecular studies on the role of the Wnt/β-catenin signalling axis in regulating EMT in CRC cells, which triggers metastatic pathogenesis. We present a comprehensive examination of the EMT process and its transcriptional controllers, with an emphasis on the crucial functions of β-catenin, EMT transcription factors (EMT-TFs). We also review recent evidences showing that hyperactive Wnt/β-catenin signalling triggers EMT and metastatic phenotypes in CRC via "Destruction complex" of β-catenin mechanisms. Potential therapeutic and challenges approache to suppress EMT and prevent CRC cells metastasis by targeting Wnt/β-catenin signalling are also discussed. These include direct β-catenin inhibitors and novel targets of the Wnt pathway, and finally highlight novel potential combinational treatment options based on the inhibition of the Wnt pathway.
Collapse
Affiliation(s)
- Luanbiao Sun
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Jianpeng Xing
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Xuanpeng Zhou
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Xinyuan Song
- The Chinese University of Hong Kong, New Territories 999077, Hong Kong Special Administrative Region of China
| | - Shuohui Gao
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130000, PR China.
| |
Collapse
|
77
|
Liu BN, Gao XL, Piao Y. Mapping the intellectual structure and emerging trends for the application of nanomaterials in gastric cancer: A bibliometric study. World J Gastrointest Oncol 2024; 16:2181-2199. [PMID: 38764848 PMCID: PMC11099444 DOI: 10.4251/wjgo.v16.i5.2181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/11/2024] [Accepted: 03/21/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Recent reviews have outlined the main nanomaterials used in relation to gastrointestinal tumors and described the basic properties of these materials. However, the research hotspots and trends in the application of nanomaterials in gastric cancer (GC) remain obscure. AIM To demonstrate the knowledge structure and evolutionary trends of research into the application of nanomaterials in GC. METHODS Publications related to the application of nanomaterials in GC were retrieved from the Web of Science Core Collection for this systematic review and bibliometric study. VOSviewer and CiteSpace were used for bibliometric and visualization analyses. RESULTS From 2000 to 2022, the application of nanomaterials in GC developed rapidly. The keyword co-occurrence analysis showed that the related research topics were divided into three clusters: (1) The application of nanomaterials in GC treatment; (2) The application and toxicity of nanomaterials in GC diagnosis; and (3) The effects of nanomaterials on the biological behavior of GC cells. Complexes, silver nanoparticles, and green synthesis are the latest high-frequency keywords that represent promising future research directions. CONCLUSION The application of nanomaterials in GC diagnosis and treatment and the mechanisms of their effects on GC cells have been major themes in this field over the past 23 years.
Collapse
Affiliation(s)
- Bo-Na Liu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang 110015, Liaoning Province, China
| | - Xiao-Li Gao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang 110015, Liaoning Province, China
| | - Ying Piao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang 110015, Liaoning Province, China
| |
Collapse
|
78
|
Bui NL, Hoang DA, Ho QA, Nguyen Thi TN, Singh V, Chu DT. Drug repurposing for metabolic disorders: Scientific, technological and economic issues. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:321-336. [PMID: 38942542 DOI: 10.1016/bs.pmbts.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Obesity, diabetes, and other metabolic disorders place a huge burden on both the physical health and financial well-being of the community. While the need for effective treatment of metabolic disorders remains urgent and the reality is that traditional drug development involves high costs and a very long time with many pre-clinical and clinical trials, the need for drug repurposing has emerged as a potential alternative. Scientific evidence has shown the anti-diabetic and anti-obesity effects of old drugs, which were initially utilized for the treatment of inflammation, depression, infections, and even cancers. The drug library used modern technological methods to conduct drug screening. Computational molecular docking, genome-wide association studies, or omics data mining are advantageous and unavoidable methods for drug repurposing. Drug repurposing offers a promising avenue for economic efficiency in healthcare, especially for less common metabolic diseases, despite the need for rigorous research and validation. In this chapter, we aim to explore the scientific, technological, and economic issues surrounding drug repurposing for metabolic disorders. We hope to shed light on the potential of this approach and the challenges that need to be addressed to make it a viable option in the treatment of metabolic disorders, especially in the future fight against metabolic disorders.
Collapse
Affiliation(s)
- Nhat-Le Bui
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Duc-Anh Hoang
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Quang-Anh Ho
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Thao-Nguyen Nguyen Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, India
| | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
79
|
Fisher JL, Wilk EJ, Oza VH, Gary SE, Howton TC, Flanary VL, Clark AD, Hjelmeland AB, Lasseigne BN. Signature reversion of three disease-associated gene signatures prioritizes cancer drug repurposing candidates. FEBS Open Bio 2024; 14:803-830. [PMID: 38531616 PMCID: PMC11073506 DOI: 10.1002/2211-5463.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Drug repurposing is promising because approving a drug for a new indication requires fewer resources than approving a new drug. Signature reversion detects drug perturbations most inversely related to the disease-associated gene signature to identify drugs that may reverse that signature. We assessed the performance and biological relevance of three approaches for constructing disease-associated gene signatures (i.e., limma, DESeq2, and MultiPLIER) and prioritized the resulting drug repurposing candidates for four low-survival human cancers. Our results were enriched for candidates that had been used in clinical trials or performed well in the PRISM drug screen. Additionally, we found that pamidronate and nimodipine, drugs predicted to be efficacious against the brain tumor glioblastoma (GBM), inhibited the growth of a GBM cell line and cells isolated from a patient-derived xenograft (PDX). Our results demonstrate that by applying multiple disease-associated gene signature methods, we prioritized several drug repurposing candidates for low-survival cancers.
Collapse
Affiliation(s)
- Jennifer L. Fisher
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamALUSA
| | - Elizabeth J. Wilk
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamALUSA
| | - Vishal H. Oza
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamALUSA
| | - Sam E. Gary
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamALUSA
| | - Timothy C. Howton
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamALUSA
| | - Victoria L. Flanary
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamALUSA
| | - Amanda D. Clark
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamALUSA
| | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamALUSA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamALUSA
| |
Collapse
|
80
|
Rivas SR, Mendez Valdez MJ, Chandar JS, Desgraves JF, Lu VM, Ampie L, Singh EB, Seetharam D, Ramsoomair CK, Hudson A, Ingle SM, Govindarajan V, Doucet-O’Hare TT, DeMarino C, Heiss JD, Nath A, Shah AH. Antiretroviral Drug Repositioning for Glioblastoma. Cancers (Basel) 2024; 16:1754. [PMID: 38730705 PMCID: PMC11083594 DOI: 10.3390/cancers16091754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/13/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Outcomes for glioblastoma (GBM) remain poor despite standard-of-care treatments including surgical resection, radiation, and chemotherapy. Intratumoral heterogeneity contributes to treatment resistance and poor prognosis, thus demanding novel therapeutic approaches. Drug repositioning studies on antiretroviral therapy (ART) have shown promising potent antineoplastic effects in multiple cancers; however, its efficacy in GBM remains unclear. To better understand the pleiotropic anticancer effects of ART on GBM, we conducted a comprehensive drug repurposing analysis of ART in GBM to highlight its utility in translational neuro-oncology. To uncover the anticancer role of ART in GBM, we conducted a comprehensive bioinformatic and in vitro screen of antiretrovirals against glioblastoma. Using the DepMap repository and reversal of gene expression score, we conducted an unbiased screen of 16 antiretrovirals in 40 glioma cell lines to identify promising candidates for GBM drug repositioning. We utilized patient-derived neurospheres and glioma cell lines to assess neurosphere viability, proliferation, and stemness. Our in silico screen revealed that several ART drugs including reverse transcriptase inhibitors (RTIs) and protease inhibitors (PIs) demonstrated marked anti-glioma activity with the capability of reversing the GBM disease signature. RTIs effectively decreased cell viability, GBM stem cell markers, and proliferation. Our study provides mechanistic and functional insight into the utility of ART repurposing for malignant gliomas, which supports the current literature. Given their safety profile, preclinical efficacy, and neuropenetrance, ARTs may be a promising adjuvant treatment for GBM.
Collapse
Affiliation(s)
- Sarah R. Rivas
- Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892, USA; (S.R.R.); (L.A.); (A.N.)
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| | - Mynor J. Mendez Valdez
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| | - Jay S. Chandar
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| | - Jelisah F. Desgraves
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| | - Victor M. Lu
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| | - Leo Ampie
- Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892, USA; (S.R.R.); (L.A.); (A.N.)
| | - Eric B. Singh
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| | - Deepa Seetharam
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| | - Christian K. Ramsoomair
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| | - Anna Hudson
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| | - Shreya M. Ingle
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| | - Vaidya Govindarajan
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| | - Tara T. Doucet-O’Hare
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Catherine DeMarino
- Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892, USA; (S.R.R.); (L.A.); (A.N.)
| | - John D. Heiss
- Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892, USA; (S.R.R.); (L.A.); (A.N.)
| | - Avindra Nath
- Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892, USA; (S.R.R.); (L.A.); (A.N.)
| | - Ashish H. Shah
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA (E.B.S.)
| |
Collapse
|
81
|
Nicolò E, Gianni C, Pontolillo L, Serafini MS, Munoz-Arcos LS, Andreopoulou E, Curigliano G, Reduzzi C, Cristofanilli M. Circulating tumor cells et al.: towards a comprehensive liquid biopsy approach in breast cancer. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2024; 5:10. [PMID: 38751670 PMCID: PMC11093063 DOI: 10.21037/tbcr-23-55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
Liquid biopsy has emerged as a crucial tool in managing breast cancer (BC) patients, offering a minimally invasive approach to detect circulating tumor biomarkers. Until recently, the majority of the studies in BC focused on evaluating a single liquid biopsy analyte, primarily circulating tumor DNA and circulating tumor cells (CTCs). Despite the proven prognostic and predictive value of CTCs, their low abundance when detected using enrichment methods, especially in the early stages, poses a significant challenge. It is becoming evident that combining diverse circulating biomarkers, each representing different facets of tumor biology, has the potential to enhance the management of patients with BC. This article emphasizes the importance of considering these biomarkers as complementary/synergistic rather than competitive, recognizing their ability to contribute to a comprehensive disease profile. The review provides an overview of the clinical significance of simultaneously analyzing CTCs and other biomarkers, including cell-free circulating DNA, extracellular vesicles, non-canonical CTCs, cell-free RNAs, and non-malignant cells. Such a comprehensive liquid biopsy approach holds promise not only in BC but also in other cancer types, offering opportunities for early detection, prognostication, and therapy monitoring. However, addressing associated challenges, such as refining detection methods and establishing standardized protocols, is crucial for realizing the full potential of liquid biopsy in transforming our understanding and approach to BC. As the field evolves, collaborative efforts will be instrumental in unlocking the revolutionary impact of liquid biopsy in BC research and management.
Collapse
Affiliation(s)
- Eleonora Nicolò
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
| | - Caterina Gianni
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Letizia Pontolillo
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
- Medical Oncology Department, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Mara Serena Serafini
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Laura Sofia Munoz-Arcos
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Eleni Andreopoulou
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Giuseppe Curigliano
- Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
| | - Carolina Reduzzi
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
82
|
Oskotsky TT, Bhoja A, Bunis D, Le BL, Tang AS, Kosti I, Li C, Houshdaran S, Sen S, Vallvé-Juanico J, Wang W, Arthurs E, Govil A, Mahoney L, Lang L, Gaudilliere B, Stevenson DK, Irwin JC, Giudice LC, McAllister SL, Sirota M. Identifying therapeutic candidates for endometriosis through a transcriptomics-based drug repositioning approach. iScience 2024; 27:109388. [PMID: 38510116 PMCID: PMC10952035 DOI: 10.1016/j.isci.2024.109388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/29/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Existing medical treatments for endometriosis-related pain are often ineffective, underscoring the need for new therapeutic strategies. In this study, we applied a computational drug repurposing pipeline to stratified and unstratified disease signatures based on endometrial gene expression data to identify potential therapeutics from existing drugs, based on expression reversal. Of 3,131 unique genes differentially expressed by at least one of six endometriosis signatures, only 308 (9.8%) were in common; however, 221 out of 299 drugs identified, (73.9%) were shared. We selected fenoprofen, an uncommonly prescribed NSAID that was the top therapeutic candidate for further investigation. When testing fenoprofen in an established rat model of endometriosis, fenoprofen successfully alleviated endometriosis-associated vaginal hyperalgesia, a surrogate marker for endometriosis-related pain. These findings validate fenoprofen as a therapeutic that could be utilized more frequently for endometriosis and suggest the utility of the aforementioned computational drug repurposing approach for endometriosis.
Collapse
Affiliation(s)
- Tomiko T. Oskotsky
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA
- Department of Pediatrics, UCSF, San Francisco, CA, USA
| | - Arohee Bhoja
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - Daniel Bunis
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA
- Department of Pediatrics, UCSF, San Francisco, CA, USA
| | - Brian L. Le
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA
- Department of Pediatrics, UCSF, San Francisco, CA, USA
| | - Alice S. Tang
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA
- Department of Pediatrics, UCSF, San Francisco, CA, USA
| | - Idit Kosti
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA
- Department of Pediatrics, UCSF, San Francisco, CA, USA
| | - Christine Li
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA
| | - Sahar Houshdaran
- Department of Obstetrics, Gynecology and Reproductive Sciences, UCSF, San Francisco, CA, USA
| | - Sushmita Sen
- Department of Obstetrics, Gynecology and Reproductive Sciences, UCSF, San Francisco, CA, USA
| | - Júlia Vallvé-Juanico
- Department of Obstetrics, Gynecology and Reproductive Sciences, UCSF, San Francisco, CA, USA
| | - Wanxin Wang
- Department of Obstetrics, Gynecology and Reproductive Sciences, UCSF, San Francisco, CA, USA
| | - Erin Arthurs
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | - Arpita Govil
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | - Lauren Mahoney
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | - Lindsey Lang
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | - Brice Gaudilliere
- Department of Anesthesiology, Pain and Perioperative Medicine, Stanford University, Stanford, CA, USA
| | | | - Juan C. Irwin
- Department of Obstetrics, Gynecology and Reproductive Sciences, UCSF, San Francisco, CA, USA
| | - Linda C. Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, UCSF, San Francisco, CA, USA
| | | | - Marina Sirota
- Bakar Computational Health Sciences Institute, UCSF, San Francisco, CA, USA
- Department of Pediatrics, UCSF, San Francisco, CA, USA
| |
Collapse
|
83
|
Qian ZY, Pan YQ, Li XX, Chen YX, Wu HX, Liu ZX, Kosar M, Bartek J, Wang ZX, Xu RH. Modulator of TMB-associated immune infiltration (MOTIF) predicts immunotherapy response and guides combination therapy. Sci Bull (Beijing) 2024; 69:803-822. [PMID: 38320897 DOI: 10.1016/j.scib.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/04/2023] [Accepted: 12/07/2023] [Indexed: 02/08/2024]
Abstract
Patients with high tumor mutational burden (TMB) levels do not consistently respond to immune checkpoint inhibitors (ICIs), possibly because a high TMB level does not necessarily result in adequate infiltration of CD8+ T cells. Using bulk ribonucleic acid sequencing (RNA-seq) data from 9311 tumor samples across 30 cancer types, we developed a novel tool called the modulator of TMB-associated immune infiltration (MOTIF), which comprises genes that can determine the extent of CD8+ T cell infiltration prompted by a certain TMB level. We confirmed that MOTIF can accurately reflect the integrity and defects of the cancer-immunity cycle. By analyzing 84 human single-cell RNA-seq datasets from 32 types of solid tumors, we revealed that MOTIF can provide insights into the diverse roles of various cell types in the modulation of CD8+ T cell infiltration. Using pretreatment RNA-seq data from 13 ICI-treated cohorts, we validated the use of MOTIF in predicting CD8+ T cell infiltration and ICI efficacy. Among the components of MOTIF, we identified EMC3 as a negative regulator of CD8+ T cell infiltration, which was validated via in vivo studies. Additionally, MOTIF provided guidance for the potential combinations of programmed death 1 blockade with certain immunostimulatory drugs to facilitate CD8+ T cell infiltration and improve ICI efficacy.
Collapse
Affiliation(s)
- Zheng-Yu Qian
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Yi-Qian Pan
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Xue-Xin Li
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm S-171 21, Sweden; Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, China
| | - Yan-Xing Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Hao-Xiang Wu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China
| | - Ze-Xian Liu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China; Bioinformatics Platform, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Laboratory of Artificial Intelligence and Data Science, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Martin Kosar
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm S-171 21, Sweden; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China; Edinburgh Medical School, Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH1 1LT, UK
| | - Jiri Bartek
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm S-171 21, Sweden; Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark.
| | - Zi-Xian Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China; Laboratory of Artificial Intelligence and Data Science, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou 510060, China; Laboratory of Artificial Intelligence and Data Science, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
84
|
Skardžiūtė K, Kvederavičiūtė K, Pečiulienė I, Narmontė M, Gibas P, Ličytė J, Klimašauskas S, Kriukienė E. One-pot trimodal mapping of unmethylated, hydroxymethylated, and open chromatin sites unveils distinctive 5hmC roles at dynamic chromatin loci. Cell Chem Biol 2024; 31:607-621.e9. [PMID: 38154461 PMCID: PMC10962225 DOI: 10.1016/j.chembiol.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
We present a method, named Mx-TOP, for profiling of three epigenetic regulatory layers-chromatin accessibility, general DNA modification, and DNA hydroxymethylation-from a single library. The approach is based on chemo-enzymatic covalent tagging of unmodified CG sites and hydroxymethylated cytosine (5hmC) along with GC sites in chromatin, which are then mapped using tag-selective base-resolution TOP-seq sequencing. Our in-depth validation of the approach revealed its sensitivity and informativity in evaluating chromatin accessibility and DNA modification interactions that drive transcriptional regulation. We employed the technology in a study of chromatin and DNA demethylation dynamics during in vitro neuronal differentiation. The study highlighted the involvement of gene body 5hmC in modulating an extensive decoupling between promoter accessibility and transcription. The importance of 5hmC in chromatin remodeling was further demonstrated by the observed resistance of the developmentally acquired open loci to the global 5hmC erasure in neuronal progenitors.
Collapse
Affiliation(s)
- Kotryna Skardžiūtė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Kotryna Kvederavičiūtė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Inga Pečiulienė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Milda Narmontė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Povilas Gibas
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Janina Ličytė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Saulius Klimašauskas
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Edita Kriukienė
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania.
| |
Collapse
|
85
|
Liu Y, Guerrero DQ, Lechuga-Ballesteros D, Tan M, Ahmad F, Aleiwi B, Ellsworth EL, Chen B, Chua MS, So S. Lipid-Based Self-Microemulsion of Niclosamide Achieved Enhanced Oral Delivery and Anti-Tumor Efficacy in Orthotopic Patient-Derived Xenograft of Hepatocellular Carcinoma in Mice. Int J Nanomedicine 2024; 19:2639-2653. [PMID: 38500681 PMCID: PMC10946447 DOI: 10.2147/ijn.s442143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction We previously identified niclosamide as a promising repurposed drug candidate for hepatocellular carcinoma (HCC) treatment. However, it is poorly water soluble, limiting its tissue bioavailability and clinical application. To overcome these challenges, we developed an orally bioavailable self-microemulsifying drug delivery system encapsulating niclosamide (Nic-SMEDDS). Methods Nic-SMEDDS was synthesized and characterized for its physicochemical properties, in vivo pharmacokinetics and absorption mechanisms, and in vivo therapeutic efficacy in an orthotopic patient-derived xenograft (PDX)-HCC mouse model. Niclosamide ethanolamine salt (NEN), with superior water solubility, was used as a positive control. Results Nic-SMEDDS (5.6% drug load) displayed favorable physicochemical properties and drug release profiles in vitro. In vivo, Nic-SMEDDS displayed prolonged retention time and plasma release profile compared to niclosamide or NEN. Oral administration of Nic-SMEDDS to non-tumor bearing mice improved niclosamide bioavailability and Cmax by 4.1- and 1.8-fold, respectively, compared to oral niclosamide. Cycloheximide pre-treatment blocked niclosamide absorption from orally administered Nic-SMEDDS, suggesting that its absorption was facilitated through the chylomicron pathway. Nic-SMEDDS (100 mg/kg, bid) showed greater anti-tumor efficacy compared to NEN (200 mg/kg, qd); this correlated with higher levels (p < 0.01) of niclosamide, increased caspase-3, and decreased Ki-67 in the harvested PDX tissues when Nic-SMEDDS was given. Biochemical analysis at the treatment end-point indicated that Nic-SMEDDS elevated lipid levels in treated mice. Conclusion We successfully developed an orally bioavailable formulation of niclosamide, which significantly enhanced oral bioavailability and anti-tumor efficacy in an HCC PDX mouse model. Our data support its clinical translation for the treatment of solid tumors.
Collapse
Affiliation(s)
- Yi Liu
- Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - David Quintanar Guerrero
- Laboratorio de Investigación y Posgrado en Tecnologías Farmacéuticas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, CP, 54745, Mexico
| | | | - Mingdian Tan
- Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Faiz Ahmad
- Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Bilal Aleiwi
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Edmund Lee Ellsworth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Bin Chen
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Mei-Sze Chua
- Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Samuel So
- Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
86
|
Habib M, Lalagkas PN, Melamed RD. Mapping drug biology to disease genetics to discover drug impacts on the human phenome. BIOINFORMATICS ADVANCES 2024; 4:vbae038. [PMID: 38736684 PMCID: PMC11087821 DOI: 10.1093/bioadv/vbae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 05/14/2024]
Abstract
Motivation Medications can have unexpected effects on disease, including not only harmful drug side effects, but also beneficial drug repurposing. These effects on disease may result from hidden influences of drugs on disease gene networks. Then, discovering how biological effects of drugs relate to disease biology can both provide insight into the mechanism of latent drug effects, and can help predict new effects. Results Here, we develop Draphnet, a model that integrates molecular data on 429 drugs and gene associations of nearly 200 common phenotypes to learn a network that explains drug effects on disease in terms of these molecular signals. We present evidence that our method can both predict drug effects, and can provide insight into the biology of unexpected drug effects on disease. Using Draphnet to map a drug's known molecular effects to downstream effects on the disease genome, we put forward disease genes impacted by drugs, and we suggest a new grouping of drugs based on shared effects on the disease genome. Our approach has multiple applications, including predicting drug uses and learning drug biology, with implications for personalized medicine. Availability and implementation Code to reproduce the analysis is available at https://github.com/RDMelamed/drug-phenome.
Collapse
Affiliation(s)
- Mamoon Habib
- Department of Computer Science, University of Massachusetts Lowell, Lowell, MA 01854, United States
| | | | - Rachel D Melamed
- Department of Biological Science, University of Massachusetts Lowell, Lowell, MA 01854, United States
| |
Collapse
|
87
|
Atri P, Shah A, Natarajan G, Rachagani S, Rauth S, Ganguly K, Carmicheal J, Ghersi D, Cox JL, Smith LM, Jain M, Kumar S, Ponnusamy MP, Seshacharyulu P, Batra SK. Connectivity mapping-based identification of pharmacological inhibitor targeting HDAC6 in aggressive pancreatic ductal adenocarcinoma. NPJ Precis Oncol 2024; 8:66. [PMID: 38454151 PMCID: PMC10920818 DOI: 10.1038/s41698-024-00562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains highly lethal due to limited therapeutic options and expensive/burdensome drug discovery processes. Utilizing genomic-data-driven Connectivity Mapping (CMAP) to identify a drug closer to real-world PC targeting may improve pancreatic cancer (PC) patient outcomes. Initially, we mapped CMAP data to gene expression from 106 PC patients, identifying nine negatively connected drugs. These drugs were further narrowed down using a similar analysis for PC cell lines, human tumoroids, and patient-derived xenografts datasets, where ISOX emerged as the most potent agent to target PC. We used human and mouse syngeneic PC cells, human and mouse tumoroids, and in vivo mice to assess the ability of ISOX alone and in combination with 5FU to inhibit tumor growth. Global transcriptomic and pathway analysis of the ISOX-LINCS signature identified HDAC 6/cMyc as the target axis for ISOX. Specifically, we discovered that genetic and pharmacological targeting of HDAC 6 affected non-histone protein cMyc acetylation, leading to cMyc instability, thereby disrupting PC growth and metastasis by affecting cancer stemness. Finally, KrasG12D harboring tumoroids and mice responded effectively against ISOX and 5FU treatment by enhancing survival and controlling metastasis incidence. Overall, our data validate ISOX as a new drug to treat advanced PC patients without toxicity to normal cells. Our study supports the clinical utility of ISOX along with 5FU in future PC clinical trials.
Collapse
Affiliation(s)
- Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joseph Carmicheal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dario Ghersi
- School of Interdisciplinary Informatics, College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lynette M Smith
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
88
|
Ma X, Thela SR, Zhao F, Yao B, Wen Z, Jin P, Zhao J, Chen L. Deep5hmC: Predicting genome-wide 5-Hydroxymethylcytosine landscape via a multimodal deep learning model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583444. [PMID: 38496575 PMCID: PMC10942288 DOI: 10.1101/2024.03.04.583444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
5-hydroxymethylcytosine (5hmC), a critical epigenetic mark with a significant role in regulating tissue-specific gene expression, is essential for understanding the dynamic functions of the human genome. Using tissue-specific 5hmC sequencing data, we introduce Deep5hmC, a multimodal deep learning framework that integrates both the DNA sequence and the histone modification information to predict genome-wide 5hmC modification. The multimodal design of Deep5hmC demonstrates remarkable improvement in predicting both qualitative and quantitative 5hmC modification compared to unimodal versions of Deep5hmC and state-of-the-art machine learning methods. This improvement is demonstrated through benchmarking on a comprehensive set of 5hmC sequencing data collected at four time points during forebrain organoid development and across 17 human tissues. Notably, Deep5hmC showcases its practical utility by accurately predicting gene expression and identifying differentially hydroxymethylated regions in a case-control study of Alzheimer's disease.
Collapse
Affiliation(s)
- Xin Ma
- Department of Biostatistics, University of Florida, Gainesville, FL, 32603, USA
| | - Sai Ritesh Thela
- Department of Biostatistics, University of Florida, Gainesville, FL, 32603, USA
| | - Fengdi Zhao
- Department of Biostatistics, University of Florida, Gainesville, FL, 32603, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jinying Zhao
- Department of Epidemiology, University of Florida, Gainesville, FL, 32603, USA
| | - Li Chen
- Department of Biostatistics, University of Florida, Gainesville, FL, 32603, USA
| |
Collapse
|
89
|
Kriukienė E, Tomkuvienė M, Klimašauskas S. 5-Hydroxymethylcytosine: the many faces of the sixth base of mammalian DNA. Chem Soc Rev 2024; 53:2264-2283. [PMID: 38205583 DOI: 10.1039/d3cs00858d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Epigenetic phenomena play a central role in cell regulatory processes and are important factors for understanding complex human disease. One of the best understood epigenetic mechanisms is DNA methylation. In the mammalian genome, cytosines (C) in CpG dinucleotides were long known to undergo methylation at the 5-position of the pyrimidine ring (mC). Later it was found that mC can be oxidized to 5-hydroxymethylcytosine (hmC) or even further to 5-formylcytosine (fC) and to 5-carboxylcytosine (caC) by the action of 2-oxoglutarate-dependent dioxygenases of the TET family. These findings unveiled a long elusive mechanism of active DNA demethylation and bolstered a wave of studies in the area of epigenetic regulation in mammals. This review is dedicated to critical assessment of recent data on biochemical and chemical aspects of the formation and conversion of hmC in DNA, analytical techniques used for detection and mapping of this nucleobase in mammalian genomes as well as epigenetic roles of hmC in DNA replication, transcription, cell differentiation and human disease.
Collapse
Affiliation(s)
- Edita Kriukienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Miglė Tomkuvienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
90
|
Ren Y, Zhang Z, She Y, He Y, Li D, Shi Y, He C, Yang Y, Zhang W, Chen C. A Highly Sensitive and Specific Non-Invasive Test through Genome-Wide 5-Hydroxymethylation Mapping for Early Detection of Lung Cancer. SMALL METHODS 2024; 8:e2300747. [PMID: 37990399 DOI: 10.1002/smtd.202300747] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/04/2023] [Indexed: 11/23/2023]
Abstract
Low-dose computed tomography screening can increase the detection for non-small-cell lung cancer (NSCLC). To improve the diagnostic accuracy of early-stage NSCLC detection, ultrasensitive methods are used to detect cell-free DNA (cfDNA) 5-hydroxymethylcytosine (5hmC) in plasma. Genome-wide 5hmC is profiled in 1990 cfDNA samples collected from patients with non-small cell lung cancer (NSCLC, n = 727), healthy controls (HEA, n = 1,092), as well as patients with small cell lung cancer (SCLC, n = 41), followed by sample randomization, differential analysis, feature selection, and modeling using a machine learning approach. Differentially modified features reflecting tissue origin. A weighted diagnostic model comprised of 105 features is developed to compute a detection score for each individual, which showed an area under the curve (AUC) range of 86.4%-93.1% in the internal and external validation sets for distinguishing lung cancer from HEA controls, significantly outperforming serum biomarkers (p < 0.001). The 5hmC-based model detected high-risk pulmonary nodules (AUC: 82%)and lung cancer of different subtypes with high accuracy as well. A highly sensitive and specific blood-based test is developed for detecting lung cancer. The 5hmC biomarkers in cfDNA offer a promising blood-based test for lung cancer.
Collapse
Affiliation(s)
- Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yayi He
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongdong Li
- Shanghai Epican Genetech, Co., Ltd., Shanghai, China
| | - Yixiang Shi
- Bionova (Shanghai) Medical Technology Co., Ltd, Shanghai, China
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- The Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| |
Collapse
|
91
|
Yakkala PA, Naaz F, Shafi S, Kamal A. PI3K and tankyrase inhibitors as therapeutic targets in colorectal cancer. Expert Opin Ther Targets 2024; 28:159-177. [PMID: 38497299 DOI: 10.1080/14728222.2024.2331015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION The pathways like Wingless-related integration (Wnt/β-catenin) and PI3K play an important role in colorectal cancer (CRC) development; however, their roles are distinct in the process of oncogenesis. Despite their differences, these pathways interact through feedback mechanisms and regulate the common effectors both in the upstream and the downstream processes in normal and pathological conditions. Their ability to reciprocally control each other is a primary resistance mechanism for the selective inhibitors in CRC. AREA COVERED This review highlights the Wnt/β-catenin and PI3K pathways that are interrelated in CRC, recent advances and some key perspectives in developing inhibitors that could target the tankyrase enzyme and PI3K, apart from a brief description of the potential of dual inhibitors of PI3K and Tankyrases (TNKS). EXPERT OPINION Recent research has focused on overcoming the challenges particularly relating to the resistance and efficacy of dual inhibitors targeting PI3K and tankyrase proteins. Despite these challenges, PI3K as well as tankyrases remain promising therapeutic targets for the treatment of solid tumors. The design of potent inhibitors is crucial to effectively block these protein signaling pathways. Moreover, it is essential to explore the potential of dual-target inhibition of other signaling pathways in conjunction with PI3K and tankyrase.
Collapse
Affiliation(s)
- Prasanna Anjaneyulu Yakkala
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Fatima Naaz
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Syed Shafi
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Ahmed Kamal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Medchal, India
- Environment, Forests, Science & Technology Department, Telangana State Council of Science & Technlogy, Hyderabad, India
| |
Collapse
|
92
|
Gajos-Michniewicz A, Czyz M. WNT/β-catenin signaling in hepatocellular carcinoma: The aberrant activation, pathogenic roles, and therapeutic opportunities. Genes Dis 2024; 11:727-746. [PMID: 37692481 PMCID: PMC10491942 DOI: 10.1016/j.gendis.2023.02.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/28/2022] [Accepted: 02/14/2023] [Indexed: 09/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a liver cancer, highly heterogeneous both at the histopathological and molecular levels. It arises from hepatocytes as the result of the accumulation of numerous genomic alterations in various signaling pathways, including canonical WNT/β-catenin, AKT/mTOR, MAPK pathways as well as signaling associated with telomere maintenance, p53/cell cycle regulation, epigenetic modifiers, and oxidative stress. The role of WNT/β-catenin signaling in liver homeostasis and regeneration is well established, whereas in development and progression of HCC is extensively studied. Herein, we review recent advances in our understanding of how WNT/β-catenin signaling facilitates the HCC development, acquisition of stemness features, metastasis, and resistance to treatment. We outline genetic and epigenetic alterations that lead to activated WNT/β-catenin signaling in HCC. We discuss the pivotal roles of CTNNB1 mutations, aberrantly expressed non-coding RNAs and complexity of crosstalk between WNT/β-catenin signaling and other signaling pathways as challenging or advantageous aspects of therapy development and molecular stratification of HCC patients for treatment.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz 92-215, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz 92-215, Poland
| |
Collapse
|
93
|
Weigert M, Cui XL, West-Szymanski D, Yu X, Bilecz AJ, Zhang Z, Dhir R, Kehoe M, Zhang W, He C, Lengyel E. 5-Hydroxymethylcytosine signals in serum are a predictor of chemoresistance in high-grade serous ovarian cancer. Gynecol Oncol 2024; 182:82-90. [PMID: 38262243 PMCID: PMC11246748 DOI: 10.1016/j.ygyno.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/11/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
OBJECTIVE The genome-wide profiling of 5-hydroxymethylcytosines (5hmC) on circulating cell-free DNA (cfDNA) has revealed promising biomarkers for various diseases. The purpose of this study was to investigate 5hmC signals in serum cfDNA and identify novel predictive biomarkers for the development of chemoresistance in high-grade serous ovarian cancer (HGSOC). We hypothesized that 5hmC profiles in cfDNA reflect the development of chemoresistance and elucidate pathways that may drive chemoresistance in HGSOC. Moreover, we sought to identify predictors that would better stratify outcomes for women with intermediate-sensitive HGSOC. METHODS Women diagnosed with HGSOC and known platinum sensitivity status were selected for this study. Nano-hmC-Seal was performed on cfDNA isolated from archived serum samples, and differential 5hmC features were identified using DESeq2 to establish a model predictive of chemoresistance. RESULTS A multivariate model consisting of three features (preoperative CA-125, largest residual implant after surgery, 5hmC level of OSGEPL), stratified samples from intermediate sensitive, chemo-naive women diagnosed with HGSOC into chemotherapy-resistant- and sensitive-like strata with a significant difference in overall survival (OS). Independent analysis of The Cancer Genome Atlas data further confirmed that high OSGEPL1 expression is a favorable prognostic factor for HGSOC. CONCLUSIONS We have developed a novel multivariate model based on clinico-pathologic data and a cfDNA-derived 5hmC modified gene, OSGEPL1, that predicted response to platinum-based chemotherapy in intermediate-sensitive HGSOC. Our multivariate model applies to chemo-naïve samples regardless if the patint was treated with adjuvant or neoadjuvant chemotherapy. These results merit further investigation of the predictive capability of our model in larger cohorts.
Collapse
Affiliation(s)
- Melanie Weigert
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, The University of Chicago, Chicago, IL, USA
| | - Xiao-Long Cui
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Diana West-Szymanski
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Xianbin Yu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | | | - Zhou Zhang
- Department of Preventive Medicine and The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rohin Dhir
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, The University of Chicago, Chicago, IL, USA
| | - Mia Kehoe
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, The University of Chicago, Chicago, IL, USA
| | - Wei Zhang
- Department of Preventive Medicine and The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
94
|
Wagenpfeil J, Kupczyk PA, Bruners P, Siepmann R, Guendel E, Luetkens JA, Isaak A, Meyer C, Kuetting F, Pieper CC, Attenberger UI, Kuetting D. Outcome of transarterial radioembolization in patients with hepatocellular carcinoma as a first-line interventional therapy and after a previous transarterial chemoembolization. FRONTIERS IN RADIOLOGY 2024; 4:1346550. [PMID: 38445105 PMCID: PMC10912470 DOI: 10.3389/fradi.2024.1346550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/23/2024] [Indexed: 03/07/2024]
Abstract
Purpose Due to a lack of data, there is an ongoing debate regarding the optimal frontline interventional therapy for unresectable hepatocellular carcinoma (HCC). The aim of the study is to compare the results of transarterial radioembolization (TARE) as the first-line therapy and as a subsequent therapy following prior transarterial chemoembolization (TACE) in these patients. Methods A total of 83 patients were evaluated, with 38 patients having undergone at least one TACE session prior to TARE [27 male; mean age 67.2 years; 68.4% stage Barcelona clinic liver cancer (BCLC) B, 31.6% BCLC C]; 45 patients underwent primary TARE (33 male; mean age 69.9 years; 40% BCLC B, 58% BCLC C). Clinical [age, gender, BCLC stage, activity in gigabecquerel (GBq), Child-Pugh status, portal vein thrombosis, tumor volume] and procedural [overall survival (OS), local tumor control (LTC), and progression-free survival (PFS)] data were compared. A regression analysis was performed to evaluate OS, LTC, and PFS. Results No differences were found in OS (95% CI: 1.12, P = 0.289), LTC (95% CI: 0.003, P = 0.95), and PFS (95% CI: 0.4, P = 0.525). The regression analysis revealed a relationship between Child-Pugh score (P = 0.005), size of HCC lesions (>10 cm) (P = 0.022), and OS; neither prior TACE (Child-Pugh B patients; 95% CI: 0.120, P = 0.729) nor number of lesions (>10; 95% CI: 2.930, P = 0.087) correlated with OS. Conclusion Prior TACE does not affect the outcome of TARE in unresectable HCC.
Collapse
Affiliation(s)
- Julia Wagenpfeil
- Department of Diagnostic and Interventional Radiology, University Hospital of Bonn, Bonn, Germany
- Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Germany
| | - Patrick Arthur Kupczyk
- Department of Diagnostic and Interventional Radiology, University Hospital of Bonn, Bonn, Germany
- Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Germany
| | - Philipp Bruners
- Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital of Aachen, Aachen, Germany
| | - Robert Siepmann
- Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital of Aachen, Aachen, Germany
| | - Emelie Guendel
- Department of Diagnostic and Interventional Radiology, University Hospital of Bonn, Bonn, Germany
- Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Germany
| | - Julian Alexander Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital of Bonn, Bonn, Germany
- Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Germany
| | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology, University Hospital of Bonn, Bonn, Germany
- Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Germany
| | - Carsten Meyer
- Department of Diagnostic and Interventional Radiology, University Hospital of Bonn, Bonn, Germany
- Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Germany
| | - Fabian Kuetting
- Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Germany
| | - Claus Christian Pieper
- Department of Diagnostic and Interventional Radiology, University Hospital of Bonn, Bonn, Germany
- Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Germany
| | - Ulrike Irmgard Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital of Bonn, Bonn, Germany
- Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Germany
| | - Daniel Kuetting
- Department of Diagnostic and Interventional Radiology, University Hospital of Bonn, Bonn, Germany
- Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Germany
| |
Collapse
|
95
|
Sun C, Pan Q, Du M, Zheng J, Bai M, Sun W. Decoding the roles of heat shock proteins in liver cancer. Cytokine Growth Factor Rev 2024; 75:81-92. [PMID: 38182465 DOI: 10.1016/j.cytogfr.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common gastrointestinal malignancies, characterized by insidious onset and high propensity for metastasis and recurrence. Apart from surgical resection, there are no effective curative methods for HCC in recent years, due to resistance to radiotherapy and chemotherapy. Heat shock proteins (HSP) play a crucial role in maintaining cellular homeostasis and normal organism development as molecular chaperones for intracellular proteins. Both basic research and clinical data have shown that HSPs are crucial participants in the HCC microenvironment, as well as the occurrence, development, metastasis, and resistance to radiotherapy and chemotherapy in various malignancies, particularly liver cancer. This review aims to discuss the molecular mechanisms and potential clinical value of HSPs in HCC, which may provide new insights for HSP-based therapeutic interventions for HCC.
Collapse
Affiliation(s)
- Chen Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Qi Pan
- Department of Hepatobiliary Surgery and Organ Transplantation, First Hospital of China Medical University, Shenyang 110004, China
| | - Mingyang Du
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jiahe Zheng
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ming Bai
- Second Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China.
| | - Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
96
|
Pang Z, Cravatt BF, Ye L. Deciphering Drug Targets and Actions with Single-Cell and Spatial Resolution. Annu Rev Pharmacol Toxicol 2024; 64:507-526. [PMID: 37722721 DOI: 10.1146/annurev-pharmtox-033123-123610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Recent advances in chemical, molecular, and genetic approaches have provided us with an unprecedented capacity to identify drug-target interactions across the whole proteome and genome. Meanwhile, rapid developments of single-cell and spatial omics technologies are revolutionizing our understanding of the molecular architecture of biological systems. However, a significant gap remains in how we align our understanding of drug actions, traditionally based on molecular affinities, with the in vivo cellular and spatial tissue heterogeneity revealed by these newer techniques. Here, we review state-of-the-art methods for profiling drug-target interactions and emerging multiomics tools to delineate the tissue heterogeneity at single-cell resolution. Highlighting the recent technical advances enabling high-resolution, multiplexable in situ small-molecule drug imaging (clearing-assisted tissue click chemistry, or CATCH), we foresee the integration of single-cell and spatial omics platforms, data, and concepts into the future framework of defining and understanding in vivo drug-target interactions and mechanisms of actions.
Collapse
Affiliation(s)
- Zhengyuan Pang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA;
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA;
| | - Li Ye
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA;
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
97
|
Chang Y, Li S, Li Z, Wang X, Chang F, Geng S, Zhu D, Zhong G, Wu W, Chang Y, Tu S, Mao M. Non-invasive detection of lymphoma with circulating tumor DNA features and protein tumor markers. Front Oncol 2024; 14:1341997. [PMID: 38313801 PMCID: PMC10834776 DOI: 10.3389/fonc.2024.1341997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
Background According to GLOBOCAN 2020, lymphoma ranked as the 9th most common cancer and the 12th leading cause of cancer-related deaths worldwide. Traditional diagnostic methods rely on the invasive excisional lymph node biopsy, which is an invasive approach with some limitations. Most lymphoma patients are diagnosed at an advanced stage since they are asymptomatic at the beginning, which has significantly impacted treatment efficacy and prognosis of the disease. Method This study assessed the performance and utility of a newly developed blood-based assay (SeekInCare) for lymphoma early detection. SeekInCare utilized protein tumor markers and a comprehensive set of cancer-associated genomic features, including copy number aberration (CNA), fragment size (FS), end motif, and lymphoma-related virus, which were profiled by shallow WGS of cfDNA. Results Protein marker CA125 could be used for lymphoma detection independent of gender, and the sensitivity was 27.8% at specificity of 98.0%. After integrating these multi-dimensional features, 77.8% sensitivity was achieved at specificity of 98.0%, while its NPV and PPV were both more than 92% for lymphoma detection. The sensitivity of early-stage (I-II) lymphoma was up to 51.3% (47.4% and 55.0% for stage I and II respectively). After 2 cycles of treatment, the molecular response of SeekInCare was correlated with the clinical outcome. Conclusion In summary, a blood-based assay can be an alternative to detect lymphoma with adequate performance. This approach becomes particularly valuable in cases where obtaining tissue biopsy is difficult to obtain or inconclusive.
Collapse
Affiliation(s)
- Yu Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shiyong Li
- Research and Development, SeekIn Inc, Shenzhen, China
| | - Zhiming Li
- Department of Internal Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinhua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | - Dandan Zhu
- Clinical Laboratories, Shenyou Bio, Zhengzhou, China
| | - Guolin Zhong
- Research and Development, SeekIn Inc, Shenzhen, China
| | - Wei Wu
- Research and Development, SeekIn Inc, Shenzhen, China
| | - Yinyin Chang
- Clinical Laboratories, Shenyou Bio, Zhengzhou, China
| | - Shichun Tu
- Clinical Laboratories, Shenyou Bio, Zhengzhou, China
| | - Mao Mao
- Research and Development, SeekIn Inc, Shenzhen, China
- Yonsei Song-Dang Institute for Cancer Research, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
98
|
Burchat N, Vidola J, Pfreundschuh S, Sharma P, Rizzolo D, Guo GL, Sampath H. Intestinal stearoyl-CoA desaturase-1 regulates energy balance via alterations in bile acid homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575400. [PMID: 38260602 PMCID: PMC10802577 DOI: 10.1101/2024.01.12.575400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background and Aims Stearoyl-CoA desaturase-1 (SCD1) converts saturated fatty acids into monounsaturated fatty acids and plays an important regulatory role in lipid metabolism. Previous studies have demonstrated that mice deficient in SCD1 are protected from diet-induced obesity and hepatic steatosis due to altered lipid esterification and increased energy expenditure. Previous studies in our lab have shown that intestinal SCD1 modulates intestinal and plasma lipids and alters cholesterol metabolism. Here we investigated a novel role for intestinal SCD1 in the regulation of systemic energy balance. Methods To interrogate the role of intestinal SCD1 in modulating whole body metabolism, intestine-specific Scd1 knockout (iKO) mice were maintained on standard chow diet or challenged with a high-fat diet (HFD). Studies included analyses of bile acid content and composition, metabolic phenotyping including body composition, indirect calorimetry, glucose tolerance analyses, and assessment of bile acid signaling pathways. Results iKO mice displayed elevated plasma and hepatic bile acid content and decreased fecal bile acid excretion, associated with increased expression of the ileal bile acid uptake transporter, Asbt . These increases were associated with increased expression of TGR5 targets, including Dio2 in brown adipose tissue and elevated plasma glucagon-like peptide-1 levels. Upon HFD challenge, iKO mice had reduced metabolic efficiency apparent through decreased weight gain despite higher food intake. Concomitantly, energy expenditure was increased, and glucose tolerance was improved in HFD-fed iKO mice. Conclusion Our results indicate that deletion of intestinal SCD1 has significant impacts on bile acid metabolism and whole-body energy balance, likely via activation of TGR5.
Collapse
|
99
|
Pillai M, Wu D. Validation approaches for computational drug repurposing: a review. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2024; 2023:559-568. [PMID: 38222367 PMCID: PMC10785886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Affiliation(s)
- Malvika Pillai
- Stanford University, Stanford, CA
- University of North Carolina, Chapel Hill, NC
| | - Di Wu
- University of North Carolina, Chapel Hill, NC
| |
Collapse
|
100
|
Guler GD, Ning Y, Coruh C, Mognol GP, Phillips T, Nabiyouni M, Hazen K, Scott A, Volkmuth W, Levy S. Plasma cell-free DNA hydroxymethylation profiling reveals anti-PD-1 treatment response and resistance biology in non-small cell lung cancer. J Immunother Cancer 2024; 12:e008028. [PMID: 38212123 PMCID: PMC10806554 DOI: 10.1136/jitc-2023-008028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Treatment with immune checkpoint inhibitors (ICIs) targeting programmed death-1 (PD-1) can yield durable antitumor responses, yet not all patients respond to ICIs. Current approaches to select patients who may benefit from anti-PD-1 treatment are insufficient. 5-hydroxymethylation (5hmC) analysis of plasma-derived cell-free DNA (cfDNA) presents a novel non-invasive approach for identification of therapy response biomarkers which can tackle challenges associated with tumor biopsies such as tumor heterogeneity and serial sample collection. METHODS 151 blood samples were collected from 31 patients with non-small cell lung cancer (NSCLC) before therapy started and at multiple time points while on therapy. Blood samples were processed to obtain plasma-derived cfDNA, followed by enrichment of 5hmC-containing cfDNA fragments through biotinylation via a two-step chemistry and binding to streptavidin coated beads. 5hmC-enriched cfDNA and whole genome libraries were prepared in parallel and sequenced to obtain whole hydroxymethylome and whole genome plasma profiles, respectively. RESULTS Comparison of on-treatment time point to matched pretreatment samples from same patients revealed that anti-PD-1 treatment induced distinct changes in plasma cfDNA 5hmC profiles of responding patients, as judged by Response evaluation criteria in solid tumors, relative to non-responders. In responders, 5hmC accumulated over genes involved in immune activation such as inteferon (IFN)-γ and IFN-α response, inflammatory response and tumor necrosis factor (TNF)-α signaling, whereas in non-responders 5hmC increased over epithelial to mesenchymal transition genes. Molecular response to anti-PD-1 treatment, as measured by 5hmC changes in plasma cfDNA profiles were observed early on, starting with the first cycle of treatment. Comparison of pretreatment plasma samples revealed that anti-PD-1 treatment response and resistance associated genes can be captured by 5hmC profiling of plasma-derived cfDNA. Furthermore, 5hmC profiling of pretreatment plasma samples was able to distinguish responders from non-responders using T cell-inflamed gene expression profile, which was previously identified by tissue RNA analysis. CONCLUSIONS These results demonstrate that 5hmC profiling can identify response and resistance associated biological pathways in plasma-derived cfDNA, offering a novel approach for non-invasive prediction and monitoring of immunotherapy response in NSCLC.
Collapse
Affiliation(s)
| | - Yuhong Ning
- ClearNote Health Inc, San Diego, California, USA
| | - Ceyda Coruh
- ClearNote Health Inc, San Diego, California, USA
| | | | | | | | - Kyle Hazen
- ClearNote Health Inc, San Diego, California, USA
| | - Aaron Scott
- ClearNote Health Inc, San Diego, California, USA
| | | | - Samuel Levy
- ClearNote Health Inc, San Diego, California, USA
| |
Collapse
|