951
|
Bailey DM, Young IS, McEneny J, Lawrenson L, Kim J, Barden J, Richardson RS. Regulation of free radical outflow from an isolated muscle bed in exercising humans. Am J Physiol Heart Circ Physiol 2004; 287:H1689-99. [PMID: 15155256 DOI: 10.1152/ajpheart.00148.2004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Incremental knee extensor (KE) exercise performed at 25, 70, and 100% of single-leg maximal work rate (WR(MAX)) was combined with ex vivo electron paramagnetic resonance (EPR) spectroscopic detection of alpha-phenyl-tert-butylnitrone (PBN) adducts, lipid hydroperoxides (LH), and associated parameters in five males. Blood samples were taken from the femoral arterial and venous circulation that, when combined with measured changes in femoral venous blood flow, permitted a direct examination of oxidant exchange across a functionally isolated contracting muscle bed. KE exercise progressively increased the net outflow of LH and PBN adducts (100% > 70% > 25% WR(MAX), P < 0.05) consistent with the generation of secondary, lipid-derived oxygen (O(2))-centered alkoxyl and carbon-centered alkyl radicals. Radical outflow appeared to be more intimately associated with predicted decreases in intracellular Po(2) (iPo(2)) as opposed to measured increases in leg O(2) uptake, with greater outflow recorded between 25 and 70% WR(MAX) (P < 0.05 vs. 70-100% WR(MAX)). This bias was confirmed when radical venoarterial concentration differences were expressed relative to changes in the convective components of O(2) extraction and flow (25-70% WR(MAX) P < 0.05 vs. 70-100% WR(MAX), P > 0.05). Exercise also resulted in a net outflow of other potentially related redox-reactive parameters, including hydrogen ions, norepinephrine, myoglobin, lactate dehydrogenase, and uric acid, whereas exchange of lipid/lipoproteins, ascorbic acid, and selected lipid-soluble anti-oxidants was unremarkable. These findings provide direct evidence for an exercise intensity-dependent increase in free radical outflow across an active muscle bed that was associated with an increase in sarcolemmal membrane permeability. In addition to increased mitochondrial electron flux subsequent to an increase in O(2) extraction and flow, exercise-induced free radical generation may also be regulated by changes in iPo(2), hydrogen ion generation, norepinephrine autoxidation, peroxidation of damaged tissue, and xanthine oxidase activation.
Collapse
Affiliation(s)
- Damian M Bailey
- Depts. of Anesthesiology and Surgery, Colorado Center for Altitude Medicine and Physiology, University of Colorado Health Sciences Center, PO Box 6508, Mail Stop F524, Aurora, CO 80111, USA.
| | | | | | | | | | | | | |
Collapse
|
952
|
Bosetti F, Baracca A, Lenaz G, Solaini G. Increased state 4 mitochondrial respiration and swelling in early post-ischemic reperfusion of rat heart. FEBS Lett 2004; 563:161-4. [PMID: 15063742 DOI: 10.1016/s0014-5793(04)00294-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 03/02/2004] [Accepted: 03/10/2004] [Indexed: 10/26/2022]
Abstract
Isolated rat hearts were exposed to 30 min ischemia or to 30 min ischemia followed by 2, 5 or 40 min reperfusion and mitochondria were isolated at these different time points. ADP-stimulated, succinate-dependent respiration rate (state 3) was not significantly changed at the different time points examined. In contrast, state 4 (non-ADP-stimulated) respiration rate was significantly increased after 30 min ischemia, and it increased further during the first post-ischemic reperfusion period. Mitochondrial swelling, as evaluated under conditions of the major controlled ion channels (i.e. permeability transition pore and ATP-dependent mitochondrial K(+) channel) closed, significantly increased in parallel. It is suggested that the inner mitochondrial membrane permeability is increased under exposure of the heart to ischemia and early reperfusion, and that the phenomenon is reversible upon subsequent long periods of reperfusion.
Collapse
Affiliation(s)
- F Bosetti
- Scuola Superiore di Studi Universitari e di Perfezionamento S. Anna, Pisa, Italy
| | | | | | | |
Collapse
|
953
|
Sullivan PG, Rippy NA, Dorenbos K, Concepcion RC, Agarwal AK, Rho JM. The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Ann Neurol 2004; 55:576-80. [PMID: 15048898 DOI: 10.1002/ana.20062] [Citation(s) in RCA: 284] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fatty acids are known to enhance mitochondrial uncoupling protein (UCP) activity. We asked whether a high-fat ketogenic diet (KD) increases UCP levels and activity in hippocampi of juvenile mice. Maximum mitochondrial respiration rates were significantly (p < 0.001) higher in KD- versus standard diet (SD)-treated animals, indicating increased UCP-mediated proton conductance that can reduce reactive oxygen species (ROS) production. Western blots showed significant (p < 0.05) or borderline significant increases in UCP2, UCP4, and UCP5 protein levels, and increased immunoreactivity to these three UCP isoforms was most prominently seen in the dentate gyrus of KD-fed mice. Finally, we found that oligomycin-induced ROS production was significantly (p < 0.05) lower in KD-fed mice than in SD controls. Collectively, our data suggest that a KD may exert neuroprotective effects by diminishing ROS production through activation of mitochondrial UCPs.
Collapse
Affiliation(s)
- Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | |
Collapse
|
954
|
Gustafsson H, Söderdahl T, Jönsson G, Bratteng JO, Forsby A. Insulin-like growth factor type 1 prevents hyperglycemia-induced uncoupling protein 3 down-regulation and oxidative stress. J Neurosci Res 2004; 77:285-91. [PMID: 15211595 DOI: 10.1002/jnr.20142] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Uncoupling proteins (UCPs) have been reported to decrease the mitochondrial production of reactive oxygen species (ROS) by lowering the mitochondrial inner membrane potential (MMP). We have previously shown that UCP3 expression is positively regulated by insulin-like growth factor-1 (IGF-1). The aim of this study was to investigate the role of UCPs in IGF-1-mediated protection from hyperglycemia-induced oxidative stress and neurodegeneration. Human neuroblastoma SH-SY5Y cells were differentiated with retinoic acid for 6 days, after which exposure to 8, 30, or 60 mM glucose with or without 10 nM IGF-1 was started. After 48-72 hr, the number of neurites per cell, UCP3 protein expression, MMP, and intracellular levels of ROS and total glutathione were examined. These studies showed that glucose concentration-dependently reduced the number of neurites per cell, with a 50% reduction at 60 mM. In parallel, the UCP3 protein expression was down-regulated, and the MMP was raised 3.5-fold, compared with those in cells incubated with 8 mM glucose. Also, the ROS levels were increased, showing a twofold maximum at 60 mM glucose. This was accompanied by a twofold elevation of total glutathione levels, confirming an altered cellular redox state. IGF-1 treatment prevented the glucose-induced neurite degeneration and UCP3 down-regulation. Furthermore, the MMP and the intracellular levels of ROS and glutathione were normalized to those of control cells. These data indicate that IGF-1 may protect from hyperglycemia-induced oxidative stress and neuronal injuries by regulating MMP, possibly by the involvement of UCP3.
Collapse
Affiliation(s)
- Helena Gustafsson
- Department of Neurochemistry and Neurotoxicology, Stockholm University, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
955
|
Bevilacqua L, Ramsey JJ, Hagopian K, Weindruch R, Harper ME. Effects of short- and medium-term calorie restriction on muscle mitochondrial proton leak and reactive oxygen species production. Am J Physiol Endocrinol Metab 2004; 286:E852-61. [PMID: 14736705 DOI: 10.1152/ajpendo.00367.2003] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reductions in cellular oxygen consumption (Vo2) and reactive oxygen species (ROS) production have been proposed as mechanisms underlying the anti-aging effects of calorie restriction (CR). Mitochondria are a cell's greatest "sink" for oxygen and also its primary source of ROS. The mitochondrial proton leak pathway is responsible for 20-30% of Vo2 in resting cells. We hypothesized that CR leads to decreased proton leak with consequential decreases in Vo2, ROS production, and cellular damage. Here, we report the effects of short-term (2-wk, 2-mo) and medium-term (6-mo) CR (40%) on rat muscle mitochondrial proton leak, ROS production, and whole animal Vo2. Whole body Vo2 decreased with CR at all time points, whereas mass-adjusted Vo2 was normal until the 6-mo time point, when it was 40% lower in CR compared with control rats. At all time points, maximal leak-dependent Vo2 was lower in CR rats compared with controls. Proton leak kinetics indicated that mechanisms of adaptation to CR were different between short- and medium-term treatments, with the former leading to decreases in protonmotive force (Deltap) and state 4 Vo2 and the latter to increases in Deltap and decreases in state 4 Vo2. Results from metabolic control analyses of oxidative phosphorylation are consistent with the idea that short- and medium-term responses are distinct. Mitochondrial H2O2 production was lower in all three CR groups compared with controls. Overall, this study details the rapid effects of short- and medium-term CR on proton leak, ROS production, and metabolic control of oxidative phosphorylation. Results indicate that a reduction in mitochondrial Vo2 and ROS production may be a mechanism for the actions of CR.
Collapse
Affiliation(s)
- Lisa Bevilacqua
- Dept. of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Univ. of Ottawa, Ottawa, ON, Canada K1H 8M5
| | | | | | | | | |
Collapse
|
956
|
Jastroch M, Withers K, Klingenspor M. Uncoupling protein 2 and 3 in marsupials: identification, phylogeny, and gene expression in response to cold and fasting in Antechinus flavipes. Physiol Genomics 2004; 17:130-9. [PMID: 14970361 DOI: 10.1152/physiolgenomics.00165.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We searched for the presence of uncoupling protein genes so far unknown in marsupials and monotremes and identified uncoupling protein 2 (UCP2) and UCP3 full-length cDNAs in libraries constructed from the marsupials Antechinus flavipes and Sminthopsis macroura. Marsupial UCP2 is 89–90% identical to rodent UCP2, whereas UCP3 exhibits 80% identity to mouse UCP3. A phylogenetic tree including all known UCPs positions the novel marsupial UCP2 and UCP3 at the base of the mammalian orthologs. In the 5′-untranslated region of UCP2 a second open reading frame encoding for a 36-amino acid peptide was identified which is highly conserved in all vertebrate UCP2 transcripts. Analysis of tissue specificity in A. flavipes with homologous cDNA probes revealed ubiquitous presence of UCP2 mRNA and striated muscle specificity of UCP3 mRNA resembling the known expression pattern in rodents. Neither UCP2 nor UCP3 gene expression was stimulated in adipose tissue and skeletal muscle of cold exposed A. flavipes. However, UCP3 mRNA expression was upregulated 6-fold in heart and 2.5-fold in skeletal muscle as reported for rodents in response to fasting. Furthermore, UCP3 mRNA seems to be coregulated with PDK4 mRNA, indicating a relation to enhanced lipid metabolism. In contrast, UCP2 gene expression was not regulated in response to fasting in adipose tissue and skeletal muscle but was diminished in the lung and increased in adipose tissue. Taken together, the sequence analysis, tissue specificity and physiological regulation suggest a conserved function of UCP2 and UCP3 during 130 million years of mammalian evolution.
Collapse
Affiliation(s)
- Martin Jastroch
- Animal Physiology, Department of Biology, Philipps-University Marburg, 35032 Marburg, Germany
| | | | | |
Collapse
|
957
|
Talbot DA, Hanuise N, Rey B, Rouanet JL, Duchamp C, Brand MD. Superoxide activates a GDP-sensitive proton conductance in skeletal muscle mitochondria from king penguin (Aptenodytes patagonicus). Biochem Biophys Res Commun 2004; 312:983-8. [PMID: 14651968 DOI: 10.1016/j.bbrc.2003.11.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present the partial nucleotide sequence of the avian uncoupling protein (avUCP) gene from king penguin (Aptenodytes patagonicus), showing that the protein is 88-92% identical to chicken (Gallus gallus), turkey (Meleagris gallopavo), and hummingbird (Eupetomena macroura). We show that superoxide activates the proton conductance of mitochondria isolated from king penguin skeletal muscle. GDP abolishes the superoxide-activated proton conductance, indicating that it is mediated via avUCP. In the absence of superoxide there is no GDP-sensitive component of the proton conductance from penguin muscle mitochondria demonstrating that avUCP plays no role in the basal proton leak.
Collapse
Affiliation(s)
- Darren A Talbot
- Medical Research Council Dunn Human Nutrition Unit, Hills Road, CB2 2XY, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
958
|
Talbot DA, Lambert AJ, Brand MD. Production of endogenous matrix superoxide from mitochondrial complex I leads to activation of uncoupling protein 3. FEBS Lett 2004; 556:111-5. [PMID: 14706836 DOI: 10.1016/s0014-5793(03)01386-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Superoxide generated using exogenous xanthine oxidase indirectly activates an uncoupling protein (UCP)-mediated proton conductance of the mitochondrial inner membrane. We investigated whether endogenous mitochondrial superoxide production could also activate proton conductance. When respiring on succinate, rat skeletal muscle mitochondria produced large amounts of matrix superoxide. Addition of GDP to inhibit UCP3 markedly inhibited proton conductance and increased superoxide production. Both superoxide production and the GDP-sensitive proton conductance were suppressed by rotenone plus an antioxidant. Thus, endogenous superoxide can activate the proton conductance of UCP3, which in turn limits mitochondrial superoxide production. These observations provide a departure point for studies under more physiological conditions.
Collapse
Affiliation(s)
- Darren A Talbot
- MRC Dunn Human Nutrition Unit, Hills Road, CB2 2XY, Cambridge, UK
| | | | | |
Collapse
|
959
|
Sommer AM, Pörtner HO. Mitochondrial Function in Seasonal Acclimatization versus Latitudinal Adaptation to Cold in the LugwormArenicola marina(L.). Physiol Biochem Zool 2004; 77:174-86. [PMID: 15095238 DOI: 10.1086/381468] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2003] [Indexed: 11/03/2022]
Abstract
Previous studies in marine ectotherms from a latitudinal cline have led to the hypothesis that eurythermal adaptation to low mean annual temperatures is energetically costly. To obtain more information on the trade-offs and with that the constraints of thermal adaptation, mitochondrial functions were studied in subpolar lugworms (Arenicola marina L.) adapted to summer cold at the White Sea and were compared with those in boreal specimens from the North Sea, either acclimatized to summer temperatures or to winter cold. During summer, a comparison of mitochondria from subpolar and boreal worms revealed higher succinate oxidation rates and reduced Arrhenius activation energies (Ea) in state 3 respiration at low temperatures, as well as higher proton leakage rates in subpolar lugworms. These differences reflect a higher aerobic capacity in subpolar worms, which is required to maintain motor activity at low but variable environmental temperatures--however, at the expense of an elevated metabolic rate. The lower activity of citrate synthase (CS) found in subpolar worms may indicate a shift in metabolic control within mitochondria. In contrast, acclimatization of boreal lugworms to winter conditions elicited elevated mitochondrial CS activities in parallel with enhanced mitochondrial respiration rates. With falling acclimation temperatures, the significant Arrhenius break temperature in state 3 respiration (11 degrees C) became insignificant (5 degrees C) or even disappeared (0 degrees C) at lower levels of Arrhenius activation energies in the cold, similar to a phenomenon known from hibernating vertebrates. The efficiency of aerobic energy production in winter mitochondria rose as proton leakage in relation to state 3 decreased with cold acclimation, indicated by higher respiratory control ratio values and increased adenosine diphosphate/oxygen (ADP/O) ratios. These transitions indicate reduced metabolic flexibility, possibly paralleled by a loss in aerobic scope and metabolic depression during winter cold. Accordingly, these patterns contrast those found in summer-active, cold-adapted eurytherms at high latitudes.
Collapse
Affiliation(s)
- A M Sommer
- Alfred-Wegener-Institute for Polar and Marine Research, Ecophysiology/Ecotoxicology, Columbusstrasse, 27568 Bremerhaven, Germany.
| | | |
Collapse
|
960
|
Lindholm E, Klannemark M, Agardh E, Groop L, Agardh CD. Putative role of polymorphisms in UCP1-3 genes for diabetic nephropathy. J Diabetes Complications 2004; 18:103-7. [PMID: 15120704 DOI: 10.1016/s1056-8727(03)00019-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2002] [Revised: 01/26/2003] [Accepted: 01/31/2003] [Indexed: 10/25/2022]
Abstract
Increased production of reactive oxygen species (ROS) has been suggested as a cause of diabetic complications. Uncoupling proteins (UCPs) have been ascribed a role in reducing the formation of ROS, and genetic variation in genes encoding for UCPs could thus be putative candidate genes for diabetic nephropathy. To test this hypothesis we searched for association between the A-->G (-3862) variant in UCP1, the insertion/deletion (I/D) polymorphism in exon 8 in UCP2, and the C-->T (-55) polymorphism in UCP3 and diabetic nephropathy in 218 diabetic patients with normal urinary albumin excretion rate (AER), 216 with micro- or macroalbuminuria, and in 106 control subjects without a family history of diabetes. We did not find any association between the different polymorphisms and diabetic nephropathy, nor did we observe any difference in AER among carriers of different UCP1-3 genotypes. We could, however, confirm the reported association between BMI and the UCP3 -55 C-->T polymorphism; patients carrying the T allele had higher BMI than patients homozygous for the C allele (26.4+/-4.2 vs. 25.3+/-4.3 kg/m(2); P=.01). We conclude that studied polymorphisms in the UCP1-3 genes do not play a major role in the development of micro- or macroalbuminuria in Scandinavian diabetic patients.
Collapse
Affiliation(s)
- Eero Lindholm
- Department of Endocrinology, University Hospital MAS, SE-205 02 Malmo, Sweden
| | | | | | | | | |
Collapse
|
961
|
Vincent AM, Olzmann JA, Brownlee M, Sivitz WI, Russell JW. Uncoupling proteins prevent glucose-induced neuronal oxidative stress and programmed cell death. Diabetes 2004; 53:726-34. [PMID: 14988258 DOI: 10.2337/diabetes.53.3.726] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The central role of mitochondria in most pathways leading to programmed cell death (PCD) has focused our investigations into the mechanisms of glucose-induced neuronal degeneration. It has been postulated that hyperglycemic neuronal injury results from mitochondria membrane hyperpolarization and reactive oxygen species formation. The present study not only provides further evidence to support our model of glucose-induced PCD but also demonstrates a potent ability for uncoupling proteins (UCPs) to prevent this process. Dorsal root ganglion (DRG) neurons were screened for UCP expression by Western blotting and immunocytochemistry. The abilities of individual UCPs to prevent hyperglycemic PCD were assessed by adenovirus-mediated overexpression of UCP1 and UCP3. Interestingly, UCP3 is expressed not only in muscle, but also in DRG neurons under control conditions. UCP3 expression is rapidly downregulated by hyperglycemia in diabetic rats and by high glucose in cultured neurons. Overexpression of UCPs prevents glucose-induced transient mitochondrial membrane hyperpolarization, reactive oxygen species formation, and induction of PCD. The loss of UCP3 in DRG neurons may represent a significant contributing factor in glucose-induced injury. Furthermore, the ability to prevent UCP3 downregulation or to reproduce the uncoupling response in DRG neurons constitutes promising novel approaches to avert diabetic complications such as neuropathy.
Collapse
Affiliation(s)
- Andrea M Vincent
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
962
|
Horimoto M, Fülöp P, Derdák Z, Wands JR, Baffy G. Uncoupling protein-2 deficiency promotes oxidant stress and delays liver regeneration in mice. Hepatology 2004; 39:386-92. [PMID: 14767991 DOI: 10.1002/hep.20047] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The control of liver regeneration remains elusive. Because reactive oxygen species (ROS) are able to mediate cell growth arrest and activate proteins that inhibit the cell cycle, ROS production may have a negative impact on liver regeneration. We examined how liver regeneration is affected by uncoupling protein-2 (UCP2), an inner mitochondrial membrane carrier that senses and negatively regulates superoxide production. Liver regeneration was monitored up to 5 days and was found to be significantly delayed in UCP2(-/-) mice after partial hepatectomy. Apoptosis rates in UCP2(+/+) and UCP2(- /-) liver remnants were similar, while parameters of cell proliferation indicated a diminished response in UCP2(- /-) mice with corresponding changes in the expression of key cell cycle regulatory proteins and prolonged activation of stress-responsive protein kinase p38. Levels of malondialdehyde, a marker of ROS generation and oxidant stress, were elevated in UCP2(- /-) livers at every examined time point. Liver remnants of UCP2(+ /+) mice 48 hours post-hepatectomy showed a fourfold increase in the expression of UCP2 protein primarily detected in hepatocytes. In conclusion, our results suggest that absent or insufficient UCP2 function in the regenerating liver results in increased ROS production and negatively modulates the control of cell cycle.
Collapse
Affiliation(s)
- Masayoshi Horimoto
- Liver Research Center, Rhode Island Hospital and Brown Medical School, Providence, RI 02903, USA
| | | | | | | | | |
Collapse
|
963
|
Rousset S, Alves-Guerra MC, Mozo J, Miroux B, Cassard-Doulcier AM, Bouillaud F, Ricquier D. The biology of mitochondrial uncoupling proteins. Diabetes 2004; 53 Suppl 1:S130-5. [PMID: 14749278 DOI: 10.2337/diabetes.53.2007.s130] [Citation(s) in RCA: 372] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Uncoupling proteins (UCPs) are mitochondrial transporters present in the inner membrane of mitochondria. They are found in all mammals and in plants. They belong to the family of anion mitochondrial carriers including adenine nucleotide transporters. The term "uncoupling protein" was originally used for UCP1, which is uniquely present in mitochondria of brown adipocytes, the thermogenic cells that maintain body temperature in small rodents. In these cells, UCP1 acts as a proton carrier activated by free fatty acids and creates a shunt between complexes of the respiratory chain and ATP synthase. Activation of UCP1 enhances respiration, and the uncoupling process results in a futile cycle and dissipation of oxidation energy as heat. UCP2 is ubiquitous and highly expressed in the lymphoid system, macrophages, and pancreatic islets. UCP3 is mainly expressed in skeletal muscles. In comparison to the established uncoupling and thermogenic activities of UCP1, UCP2 and UCP3 appear to be involved in the limitation of free radical levels in cells rather than in physiological uncoupling and thermogenesis. Moreover, UCP2 is a regulator of insulin secretion and UCP3 is involved in fatty acid metabolism.
Collapse
Affiliation(s)
- Sophie Rousset
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 9078, Faculté de Médecine and Institut de Recherches Necker-Enfants Malades (IRNEM), Paris, France
| | | | | | | | | | | | | |
Collapse
|
964
|
Abstract
Hyperglycemia causes many of the pathological consequences of both type 1 and type 2 diabetes. Much of this damage is suggested to be a consequence of elevated production of reactive oxygen species by the mitochondrial respiratory chain during hyperglycemia. Mitochondrial radical production associated with hyperglycemia will also disrupt glucose-stimulated insulin secretion by pancreatic beta-cells, because pancreatic beta-cells are particularly susceptible to oxidative damage. Therefore, mitochondrial radical production in response to hyperglycemia contributes to both the progression and pathological complications of diabetes. Consequently, strategies to decrease mitochondrial radical production and oxidative damage may have therapeutic potential. This could be achieved by the use of antioxidants or by decreasing the mitochondrial membrane potential. Here, we outline the background to these strategies and discuss how antioxidants targeted to mitochondria, or selective mitochondrial uncoupling, may be potential therapies for diabetes.
Collapse
Affiliation(s)
- Katherine Green
- Medical Research Council Dunn Human Nutrition Unit, Cambridge, UK
| | | | | |
Collapse
|
965
|
Krauss S, Zhang CY, Scorrano L, Dalgaard LT, St-Pierre J, Grey ST, Lowell BB. Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction. J Clin Invest 2004; 112:1831-42. [PMID: 14679178 PMCID: PMC297000 DOI: 10.1172/jci19774] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Failure to secrete adequate amounts of insulin in response to increasing concentrations of glucose is an important feature of type 2 diabetes. The mechanism for loss of glucose responsiveness is unknown. Uncoupling protein 2 (UCP2), by virtue of its mitochondrial proton leak activity and consequent negative effect on ATP production, impairs glucose-stimulated insulin secretion. Of interest, it has recently been shown that superoxide, when added to isolated mitochondria, activates UCP2-mediated proton leak. Since obesity and chronic hyperglycemia increase mitochondrial superoxide production, as well as UCP2 expression in pancreatic beta cells, a superoxide-UCP2 pathway could contribute importantly to obesity- and hyperglycemia-induced beta cell dysfunction. This study demonstrates that endogenously produced mitochondrial superoxide activates UCP2-mediated proton leak, thus lowering ATP levels and impairing glucose-stimulated insulin secretion. Furthermore, hyperglycemia- and obesity-induced loss of glucose responsiveness is prevented by reduction of mitochondrial superoxide production or gene knockout of UCP2. Importantly, reduction of superoxide has no beneficial effect in the absence of UCP2, and superoxide levels are increased further in the absence of UCP2, demonstrating that the adverse effects of superoxide on beta cell glucose sensing are caused by activation of UCP2. Therefore, superoxide-mediated activation of UCP2 could play an important role in the pathogenesis of beta cell dysfunction and type 2 diabetes.
Collapse
Affiliation(s)
- Stefan Krauss
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
966
|
Lambert AJ, Merry BJ. Effect of caloric restriction on mitochondrial reactive oxygen species production and bioenergetics: reversal by insulin. Am J Physiol Regul Integr Comp Physiol 2004; 286:R71-9. [PMID: 12969875 DOI: 10.1152/ajpregu.00341.2003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To gain insight into the antiaging mechanisms of caloric restriction (CR), mitochondria from liver tissue of male Brown Norway rats were used to study the effects of CR and insulin on mitochondrial reactive oxygen species production and bioenergetics. As assessed by hydrogen peroxide measurement, CR resulted in a decrease in the production rate of reactive oxygen species. This decrease was attributed to a decrease in protonmotive force in mitochondria from the CR animals. The decrease in protonmotive force resulted from an increase in proton leak activity and a concomitant decrease in substrate oxidation activity. Each of these effects of CR was reversed by subjecting CR animals to 2 wk of insulin treatment. To achieve continuous and stable insulin delivery, animals were placed under temporary halothane anesthesia and miniosmotic pumps were implanted subcutaneously. To gain further insight into how CR and insulin exerted its effects on mitochondrial bioenergetics, the effects of CR and insulin were quantified using modular metabolic control analysis. This analysis revealed that the effects of CR were transmitted through different reaction branches of the bioenergetic system, and insulin reversed the effects of CR by acting through the same branches. These results provide a plausible mechanism by which mitochondrial reactive oxygen species production is lowered by CR and a complete description of the effects of CR on mitochondrial bioenergetics. They also indicate that these changes may be due to lowered insulin concentrations and altered insulin signaling in the CR animal.
Collapse
Affiliation(s)
- A J Lambert
- School of Biological Sciences, Biosciences Building, University of Liverpool, Liverpool L69 7ZB, United Kingdom.
| | | |
Collapse
|
967
|
Roles for Reactive Oxygen Species and Antioxidants in Plant Mitochondria. PLANT MITOCHONDRIA: FROM GENOME TO FUNCTION 2004. [DOI: 10.1007/978-1-4020-2400-9_14] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
968
|
Kanno T, Yorimitsu M, Muranaka S, Sato EF, Nagano M, Inoue A, Inoue M, Utsumi K. Role of α-Tocopherol in the Regulation of Mitochondrial Membrane Permeability Transition. J Clin Biochem Nutr 2004. [DOI: 10.3164/jcbn.35.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Tomoko Kanno
- Institute of Medical Science, Kurashiki Medical Center
| | | | | | - Eisuke F. Sato
- Department of Biochemistry and Molecular Pathology, Osaka City University Medical School
| | - Makoto Nagano
- Institute of Medical Science, Kurashiki Medical Center
| | - Akiko Inoue
- Department of Pediatrics, Osaka Medical College
| | - Masayasu Inoue
- Department of Biochemistry and Molecular Pathology, Osaka City University Medical School
| | - Kozo Utsumi
- Institute of Medical Science, Kurashiki Medical Center
| |
Collapse
|
969
|
Higami Y, Pugh TD, Page GP, Allison DB, Prolla TA, Weindruch R. Adipose tissue energy metabolism: altered gene expression profile of mice subjected to long-term caloric restriction. FASEB J 2003; 18:415-7. [PMID: 14688200 DOI: 10.1096/fj.03-0678fje] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We investigated the influences of short-term and lifespan-prolonging long-term caloric restriction (LCR) on gene expression in white adipose tissue (WAT). Over 11,000 genes were examined using high-density oligonucleotide microarrays in four groups of 10- to 11-month-old male C57Bl6 mice that were either fasted for 18 h before death (F), subjected to short-term caloric restriction for 23 days (SCR), or LCR for 9 months and compared with nonfasted control (CO) mice. Only a few transcripts of F and SCR were differentially expressed compared with CO mice. In contrast, 345 transcripts of 6,266 genes found to be expressed in WAT were altered significantly by LCR. The expression of several genes encoding proteins involved in energy metabolism was increased by LCR. Further, many of the shifts in gene expression after LCR are known to occur during adipocyte differentiation. Selected LCR-associated alterations of gene expression were supported by quantitative reverse transcriptase-polymerase chain reaction, histology, and histochemical examinations. Our data provide new insights on the metabolic state associated with aging retardation by LCR.
Collapse
|
970
|
Krauss S, Zhang CY, Scorrano L, Dalgaard LT, St-Pierre J, Grey ST, Lowell BB. Superoxide-mediated activation of uncoupling protein 2 causes pancreatic β cell dysfunction. J Clin Invest 2003. [DOI: 10.1172/jci200319774] [Citation(s) in RCA: 278] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
971
|
|
972
|
Gustafsson H, Tamm C, Forsby A. Signalling pathways for insulin-like growth factor type 1-mediated expression of uncoupling protein 3. J Neurochem 2003; 88:462-8. [PMID: 14690534 DOI: 10.1046/j.1471-4159.2003.02162.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Uncoupling protein 3 (UCP3) is a mitochondrial protein with antioxidant properties and its regulation by factors promoting cell-survival may be important for protection of, for instance, neurons in states of oxidative stress. In the present study, we investigated regulatory pathways for UCP3 expression mediated by the neuroprotective hormone insulin-like growth factor type 1 (IGF-1) in human neuroblastoma SH-SY5Y cells. Northern blot analysis and RT-PCR showed that treatment with 10 nm IGF-1 increased the UCP3 mRNA levels 2.5-fold after 5 h. Co-incubation with the phosphatidylinositol 3 (PI3)-kinase inhibitor LY294002 prohibited IGF-1-mediated induction of both UCP3 mRNA and protein in a concentration-dependent manner, with a complete blockage at 1 microm, as shown by RT-PCR and western blot analyses. The mitogen-activated protein (MAP) kinase kinase 1 (MKK1 or MEK) inhibitor PD98059 also decreased the UCP3 mRNA expression at 10 microm, however, this concentration only partly inhibited the protein expression. We conclude that IGF-1 enhanced UCP3 expression at transcriptional level, primarily through the PI3-kinase-dependent pathway and partly through the MAP kinase pathway.
Collapse
Affiliation(s)
- Helena Gustafsson
- Department of Neurochemistry and Neurotoxicology, Stockholm University, Stockholm, Sweden.
| | | | | |
Collapse
|
973
|
Murphy MP, Echtay KS, Blaikie FH, Asin-Cayuela J, Cocheme HM, Green K, Buckingham JA, Taylor ER, Hurrell F, Hughes G, Miwa S, Cooper CE, Svistunenko DA, Smith RAJ, Brand MD. Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: studies using a mitochondria-targeted spin trap derived from alpha-phenyl-N-tert-butylnitrone. J Biol Chem 2003; 278:48534-45. [PMID: 12972420 DOI: 10.1074/jbc.m308529200] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the physiological role of uncoupling proteins (UCPs) 2 and 3 is uncertain, their activation by superoxide and by lipid peroxidation products suggest that UCPs are central to the mitochondrial response to reactive oxygen species. We examined whether superoxide and lipid peroxidation products such as 4-hydroxy-2-trans-nonenal act independently to activate UCPs, or if they share a common pathway, perhaps by superoxide exposure leading to the formation of lipid peroxidation products. This possibility can be tested by blocking the putative reactive oxygen species cascade with selective antioxidants and then reactivating UCPs with distal cascade components. We synthesized a mitochondria-targeted derivative of the spin trap alpha-phenyl-N-tert-butylnitrone, which reacts rapidly with carbon-centered radicals but is unreactive with superoxide and lipid peroxidation products. [4-[4-[[(1,1-Dimethylethyl)-oxidoimino]methyl]phenoxy]butyl]triphenylphosphonium bromide (MitoPBN) prevented the activation of UCPs by superoxide but did not block activation by hydroxynonenal. This was not due to MitoPBN reacting with superoxide or the hydroxyl radical or by acting as a chain-breaking antioxidant. MitoPBN did react with carbon-centered radicals and also prevented lipid peroxidation by the carbon-centered radical generator 2,2'-azobis(2-methyl propionamidine) dihydrochloride (AAPH). Furthermore, AAPH activated UCPs, and this was blocked by MitoPBN. These data suggest that superoxide and lipid peroxidation products share a common pathway for the activation of UCPs. Superoxide releases iron from iron-sulfur center proteins, which then generates carbon-centered radicals that initiate lipid peroxidation, yielding breakdown products that activate UCPs.
Collapse
Affiliation(s)
- Michael P Murphy
- Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust-MRC Building, Hills Road, Cambridge CB2 2XY, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
974
|
de Lange P, Ragni M, Silvestri E, Moreno M, Schiavo L, Lombardi A, Farina P, Feola A, Goglia F, Lanni A. Combined cDNA array/RT‐PCR analysis of gene expression profile in rat gastrocnemius muscle: relation to its adaptive function in energy metabolism during fasting. FASEB J 2003; 18:350-2. [PMID: 14656997 DOI: 10.1096/fj.03-0342fje] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We evaluated the effects of fasting on the gene expression profile in rat gastrocnemius muscle using a combined cDNA array and RT-PCR approach. Of the 1176 distinct rat genes analyzed on the cDNA array, 114 were up-regulated more than twofold in response to fasting, including all 17 genes related to lipid metabolism present on the membranes and all 10 analyzed components of the proteasome machinery. Only 7 genes were down-regulated more than twofold. On the basis of our analysis of genes on the cDNA array plus the data from our RT-PCR assays, the metabolic adaptations shown by rat gastrocnemius muscle during fasting are reflected by i) increased transcription both of myosin heavy chain (MHC) Ib (associated with type I fibers) and of at least three factors involved in the shift toward type I fibers [p27kip1, muscle LIM protein (MLP), cystein rich protein-2], of which one (MLP) has been shown to enhance the activity of MyoD, which would explain the known increase in the expression of skeletal muscle uncoupling protein-3 (UCP3); ii) increased lipoprotein lipase (LPL) expression, known to trigger UCP3 transcription, which tends, together with the first point, to underline the suggested role of UCP3 in mitochondrial lipid handling (the variations under the first point and this one have not been observed in mice, indicating a species-specific regulation of these mechanisms); iii) reduced expression of the muscle-specific coenzyme Q (CoQ)7 gene, which is necessary for mitochondrial CoQ synthesis, together with an increased expression of mitochondrial adenylate kinase 3, which inactivates the resident key enzyme for CoQ synthesis, 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), the mRNA level for which fell during fasting; and iv) increased transcription of components of the proteasomal pathways involved in protein degradation/turnover.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Energy Metabolism
- Fasting
- Free Radical Scavengers/metabolism
- Gene Expression Profiling
- Heat-Shock Proteins/genetics
- Lipid Metabolism
- Mitochondria/metabolism
- Muscle Fibers, Slow-Twitch
- Muscle, Skeletal/metabolism
- Myosin Heavy Chains/genetics
- Oligonucleotide Array Sequence Analysis
- Oxidative Phosphorylation
- Protein Kinases/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Receptor, Insulin/genetics
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Retinoic Acid/genetics
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor, Type I
- Retinoid X Receptors
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/genetics
- Ubiquinone/biosynthesis
- Ubiquitin/genetics
- Ubiquitin-Conjugating Enzymes/genetics
Collapse
Affiliation(s)
- Pieter de Lange
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli (SUN), Caserta,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
975
|
Mancini FP, Sabatino L, Colantuoni V, Pasanisi F, Finelli C, Contaldo F, Masulli M, Riccardi G, Vaccaro O. Variants of uncoupling protein-2 gene and obesity: interaction with peroxisome proliferator-activated receptorgamma2. Clin Endocrinol (Oxf) 2003; 59:817-22. [PMID: 14974928 DOI: 10.1046/j.1365-2265.2003.01926.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To analyse the association of the UCP2 gene, alone or in combination with the PPARgamma2 gene, with obesity. DESIGN Cross-sectional, case-control study. STUDY POPULATION From a working population of 4500 Italian Caucasian employees of the Italian telephone company participating in a firm-sponsored health screening programme, we selected all those with obesity [n = 122; body mass index (BMI) > or = 30 kg/m2]. For each case, three nonobese age- and sex-matched individuals were selected as controls from the same population (n = 374). Included in the study were also 76 severely obese (BMI > or = 40 kg/m2) patients consecutively admitted to the obesity clinic of the department. Diabetic individuals were excluded. MEASUREMENTS The -866G/A UCP2 and the Pro12Ala PPARgamma2 polymorphisms were determined on genomic DNA of the studied individuals. Several metabolic and anthropometric measures were also obtained, like plasma glucose, insulin, triglycerides, total cholesterol, high-density lipoprotein (HDL) cholesterol and BMI. RESULTS BMI, plasma glucose, insulin, triglycerides, total and HDL cholesterol were not significantly different in carriers and noncarriers of the -866G/A variant. No significant association was observed between the -866G/A UCP2 gene polymorphism and moderate or severe obesity. This was also observed when the UCP2 polymorphism was analysed in combination with the PPARgamma2 polymorphisms. CONCLUSIONS The -866G/A variants of the UCP2 gene are not associated with either obesity or other features of the metabolic syndrome in the studied groups of the Italian population. This negative finding is not modified after a combined analysis of the UCP2 polymorphism and the Pro12Ala polymorphism of PPARgamma2.
Collapse
Affiliation(s)
- Francesco P Mancini
- Department of Biological and Environmental Sciences, University of Sannio, Benevento, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
976
|
Porras A, Zuluaga S, Valladares A, Alvarez AM, Herrera B, Fabregat I, Benito M. Long-term treatment with insulin induces apoptosis in brown adipocytes: role of oxidative stress. Endocrinology 2003; 144:5390-401. [PMID: 14500576 DOI: 10.1210/en.2003-0622] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Trying to define the precise role played by insulin regulating the survival of brown adipocytes, we have used rat fetal brown adipocytes maintained in primary culture. The effect of insulin on apoptosis and the mechanisms involved were assessed. Different from the known effects of insulin as a survival factor, we have found that long-term treatment (72 h) with insulin induces apoptosis in rat fetal brown adipocytes. This process is dependent on the phosphatidylinositol 3-kinase/mammalian target of rapamycin/p70 S6 kinase pathway. Short-term treatment with the conditioned medium from brown adipocytes treated with insulin for 72 h mimicked the apoptotic effect of insulin. During the process, caspase 8 activation, Bid cleavage, cytochrome c release, and activation of caspases 9 and 3 are sequentially produced. Treatment with the caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp (Z-VAD), prevents activation of this apoptotic cascade. The antioxidants, ascorbic acid and superoxide dismutase, also impair this process of apoptosis. Moreover, generation of reactive oxygen species (ROS), probably through reduced nicotinamide adenine dinucleotide phosphate oxidases, and a late decrease in reduced glutathione content are produced. According to this, antioxidants prevent caspase 8 activation and Bid cleavage, suggesting that ROS production is an important event mediating this process of apoptosis. However, the participation of uncoupling protein-1, -2, and -3 regulating ROS is unclear because their levels remain unchanged upon insulin treatment for 72 h. Our data suggest that the prolonged hyperinsulinemia might cause insulin resistance through the loss of brown adipose tissue.
Collapse
Affiliation(s)
- Almudena Porras
- Departament of Biochemistry and Molecualr Biology II, Biochemistry Institute, Concejo Superior de Investigaciones Cientificas-Unioversidad Complutense de Madrid, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
977
|
Paradis E, Clavel S, Bouillaud F, Ricquier D, Richard D. Uncoupling protein 2: a novel player in neuroprotection. Trends Mol Med 2003; 9:522-5. [PMID: 14659466 DOI: 10.1016/j.molmed.2003.10.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Eric Paradis
- Centre de Recherche de l'Hôpital Laval (Institut universitaire de Cardiologie et de Pneumologie) et Faculté de Médecine de l'Université Laval, Québec, Canada G1K 7P4
| | | | | | | | | |
Collapse
|
978
|
Abstract
The development of type 2 diabetes requires impaired beta cell function. Hyperglycemia itself causes further decreases in glucose-stimulated insulin secretion. A new study demonstrates that hyperglycemia-induced mitochondrial superoxide production activates uncoupling protein 2, which decreases the ATP/ADP ratio and thus reduces the insulin-secretory response. These data suggest that pharmacologic inhibition of mitochondrial superoxide overproduction in beta cells exposed to hyperglycemia could prevent a positive feed-forward loop of glucotoxicity that drives impaired glucose tolerance toward frank type 2 diabetes.
Collapse
Affiliation(s)
- Michael Brownlee
- Diabetes Research Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, New York 10461, USA.
| |
Collapse
|
979
|
Fernström M, Tonkonogi M, Sahlin K. Effects of acute and chronic endurance exercise on mitochondrial uncoupling in human skeletal muscle. J Physiol 2003; 554:755-63. [PMID: 14634202 PMCID: PMC1664806 DOI: 10.1113/jphysiol.2003.055202] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mitochondrial proteins such as uncoupling protein 3 (UCP3) and adenine nucleotide translocase (ANT) may mediate back-leakage of protons and serve as uncouplers of oxidative phosphorylation. We hypothesized that UCP3 and ANT increase after prolonged exercise and/or endurance training, resulting in increased uncoupled respiration (UCR). Subjects were investigated with muscle biopsies before and after acute exercise (75 min of cycling at 70% of .VO2peak) or 6 weeks endurance training. Mitochondria were isolated and respiration measured in the absence (UCR or state 4) and presence of ADP (coupled respiration or state 3). Protein expression of UCP3 and ANT was measured with Western blotting. After endurance training, .VO2peak, citrate synthase activity (CS), state 3 respiration and ANT increased by 24, 47, 40 and 95%, respectively (all P < 0.05), whereas UCP3 remained unchanged. When expressed per unit of CS (a marker of mitochondrial volume) UCP3 and UCR decreased by 54% and 18%(P < 0.05). CS increased by 43% after acute exercise and remained elevated after 3 h of recovery (P < 0.05), whereas the other muscle parameters remained unchanged. An intriguing finding was that acute exercise reversibly enhanced the capacity of mitochondria to accumulate Ca2+(P < 0.05) before opening of permeability transition pores. In conclusion, UCP3 protein and UCR decrease after endurance training when related to mitochondrial volume. These changes may prevent excessive basal thermogenesis. Acute exercise enhances mitochondrial resistance to Ca2+ overload but does not influence UCR or protein expression of UCP3 and ANT. The increased Ca2+ resistance may prevent mitochondrial degradation and the mechanism needs to be further explored.
Collapse
Affiliation(s)
- Maria Fernström
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| | | | | |
Collapse
|
980
|
Ran H, Hassett DJ, Lau GW. Human targets of Pseudomonas aeruginosa pyocyanin. Proc Natl Acad Sci U S A 2003; 100:14315-20. [PMID: 14605211 PMCID: PMC283589 DOI: 10.1073/pnas.2332354100] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa produces copious amounts of the redoxactive tricyclic compound pyocyanin that kills competing microbes and mammalian cells, especially during cystic fibrosis lung infection. Cross-phylum susceptibility to pyocyanin suggests the existence of evolutionarily conserved physiological targets. We screened a Saccharomyces cerevisiae deletion library to identify presumptive pyocyanin targets with the expectation that similar targets would be conserved in humans. Fifty S. cerevisiae targets were provisionally identified, of which 60% have orthologous human counterparts. These targets encompassed major cellular pathways involved in the cell cycle, electron transport and respiration, epidermal cell growth, protein sorting, vesicle transport, and the vacuolar ATPase. Using cultured human lung epithelial cells, we showed that pyocyanin-mediated reactive oxygen intermediates inactivate human vacuolar ATPase, supporting the validity of the yeast screen. We discuss how the inactivation of V-ATPase may negatively impact the lung function of cystic fibrosis patients.
Collapse
Affiliation(s)
- Huimin Ran
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0564, USA
| | | | | |
Collapse
|
981
|
Palmieri F. The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch 2003; 447:689-709. [PMID: 14598172 DOI: 10.1007/s00424-003-1099-7] [Citation(s) in RCA: 572] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2003] [Revised: 04/24/2003] [Accepted: 04/28/2003] [Indexed: 12/17/2022]
Abstract
The mitochondrial carriers (MCs) shuttle a variety of metabolites across the inner mitochondrial membrane (i.m.m.). In man they are encoded by the SLC25 genes. Some MCs have isoforms encoded by different SLC25 genes, whereas the phosphate carrier has two variants arising from an alternative splicing of SLC25A3. Six MCs have been sequenced after purification, and many more have been identified from their transport and kinetic properties following heterologous over-expression and reconstitution into liposomes. All MCs of known function belong to the same protein family, since their polypeptide chains consist of three tandemly related sequences of about 100 amino acids, and the repeats of the different carriers are homologous. They probably function as homodimers, each monomer being folded in the membrane into six transmembrane segments. The functional information obtained in studies with mitochondria and/or the reconstituted system has helped to gain an insight into the physiological role of the MCs in cell metabolism, as have tissue distribution, the use of knock-out mice (and/or yeast) and over-expression in human cell lines (or yeast) of individual carriers and isoforms. At the same time, the cloning and functional identification of many SLC25 genes has made it possible (i) to identify the genes (and their defects) responsible for some diseases, e.g. Stanley syndrome and Amish microcephaly, and (ii) where the genes were already known, to characterize the function of the gene products and hence understand the molecular basis and the symptoms of the diseases, e.g. hyperornithinaemia, hyperammonaemia and homocitrullinuria (HHH) syndrome and type II citrullinemia. It is likely that further extension and functional characterization of the SLC25 gene family will elucidate other diseases caused by MC deficiency.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Via Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
982
|
Clavel S, Paradis E, Ricquier D, Richard D. Kainic acid upregulates uncoupling protein-2 mRNA expression in the mouse brain. Neuroreport 2003; 14:2015-7. [PMID: 14600489 DOI: 10.1097/00001756-200311140-00002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intraperitoneal injection of kainic acid (KA) in C57BL/6J and 129T2SvEmsJ mice led to a transient induction of uncoupling protein-2 (Ucp2) mRNA expression in several brain regions, which included the CA1 subfield of the hippocampus, the dorsal endopiriform nucleus and the piriform cortex in both strains. In all those regions, levels of Ucp2 mRNA expression, as determined by in situ hybridization, peaked at 24 h and returned to basal levels within 72 h post-injection. The increase in mRNA expression was mainly observed in neurons, with microglial cells displaying only scattered expression of the gene. The neuronal induction of Ucp2 in response to KA was stronger in 129T2SvEmsJ mice than in C57BL/6J, which suggests a role for Ucp2 in excitotoxic challenges and neuroprotection.
Collapse
Affiliation(s)
- Sébastien Clavel
- Centre de recherche de l'Hôpital Laval, Institut universitaire de cardiologie et de pneumologie, Université Laval, Québec GIK7P4, Canada
| | | | | | | |
Collapse
|
983
|
Arruda AP, Da-Silva WS, Carvalho DP, De Meis L. Hyperthyroidism increases the uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPase. Biochem J 2003; 375:753-60. [PMID: 12887329 PMCID: PMC1223713 DOI: 10.1042/bj20031015] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Revised: 07/25/2003] [Accepted: 07/30/2003] [Indexed: 01/26/2023]
Abstract
The sarcoplasmic reticulum Ca2+-ATPase is able to modulate the distribution of energy released during ATP hydrolysis, so that a portion of energy is used for Ca2+ transport (coupled ATPase activity) and a portion is converted into heat (uncoupled ATPase activity). In this report it is shown that T4 administration to rabbits promotes an increase in the rates of both the uncoupled ATPase activity and heat production in sarcoplasmic reticulum vesicles, and that the degree of activation varies depending on the muscle type used. In white muscles hyperthyroidism promotes a 0.8-fold increase of the uncoupled ATPase activity and in red muscle a 4-fold increase. The yield of vesicles from hyperthyroid muscles is 3-4-fold larger than that obtained from normal muscles; thus the rate of heat production by the Ca2+-ATPase expressed in terms of g of muscle in hyperthyroidism is increased by a factor of 3.6 in white muscles and 12.0 in red muscles. The data presented suggest that the Ca2+-ATPase uncoupled activity may represent one of the heat sources that contributes to the enhanced thermogenesis noted in hyperthyroidism.
Collapse
Affiliation(s)
- Ana Paula Arruda
- Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, RJ, 21941-590, Brasil
| | | | | | | |
Collapse
|
984
|
Hildebrandt AL, Pilegaard H, Neufer PD. Differential transcriptional activation of select metabolic genes in response to variations in exercise intensity and duration. Am J Physiol Endocrinol Metab 2003; 285:E1021-7. [PMID: 12902322 DOI: 10.1152/ajpendo.00234.2003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular adaptations to endurance training are influenced by the intensity and duration of exercise. To examine the impact of exercise intensity and duration on the acute transcriptional regulation of metabolic genes in red (RG) and white (WG) gastrocnemius muscle, rats completed either low-intensity [ approximately 50% maximal O2 uptake (VO2 max)] treadmill exercise (LIE) for 45 min, LIE for 180 min, or high-intensity ( approximately 75% VO2 max) exercise (HIE) for 45 min. LIE for 45 min activated (P < 0.05) transcription of the pyruvate dehydrogenase kinase-4 (PDK4), uncoupling protein-3 (UCP3), heme oxygenase-1 (HO-1), and hexokinase II (HK II) genes in RG within 1 h after exercise. In WG, transcription of PDK4, UCP3, HKII, and lipoprotein lipase (LPL) was also induced, whereas transcription of the HO-1 gene did not change. In RG, extending LIE duration from 45 to 180 min elicited a similar activation of PDK4 and UCP3 ( approximately 15-fold) but a far greater increase in HO-1 (>30-fold) and HKII transcription (>25-fold). In WG, extending LIE for 180 min induced a much greater and prolonged (through 2- to 4-h recovery) activation of PDK4, UCP3 (both >200-fold), and HO-1 (>10-fold). HIE elicited a similar pattern of gene activation to LIE in both RG and WG, with the exception that HIE triggered >10-fold activation of HO-1 in WG. These data provide evidence that both the intensity and the duration of exercise affect the transcriptional regulation of metabolic genes in muscle in a fiber type-specific manner, possibly reflecting the relative stress imposed by the exercise bout.
Collapse
|
985
|
Diano S, Matthews RT, Patrylo P, Yang L, Beal MF, Barnstable CJ, Horvath TL. Uncoupling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for preconditioning. Endocrinology 2003; 144:5014-21. [PMID: 12960023 DOI: 10.1210/en.2003-0667] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mitochondrial uncoupling protein (UCP2) is expressed in selected regions of the brain. Here we demonstrate that up-regulation of UCP2 is part of a neuroprotective set of responses to various cellular stresses in vitro and in vivo. PC12 cells, when transfected with UCP2, were protected against free radical-induced cell death. Seizure activity was associated with elevated UCP2 levels and mitochondrial uncoupling activity. In transgenic mice that expressed UCP2 constitutively in the hippocampus before seizure induction, a robust reduction in cell death was seen. Because UCP2 increased mitochondrial number and ATP levels with a parallel decrease in free radical-induced damage, it is reasonable to suggest that mitochondrial UCPs precondition neurons by dissociating cellular energy production from that of free radicals to withstand the harmful effects of cellular stress occurring in a variety of neurodegenerative disorders, including epilepsy.
Collapse
Affiliation(s)
- Sabrina Diano
- Department of Obstetrics and Gynecology, Yale Medical School, 333 Cedar Street, New Haven Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
986
|
Alves-Guerra MC, Rousset S, Pecqueur C, Mallat Z, Blanc J, Tedgui A, Bouillaud F, Cassard-Doulcier AM, Ricquier D, Miroux B. Bone marrow transplantation reveals the in vivo expression of the mitochondrial uncoupling protein 2 in immune and nonimmune cells during inflammation. J Biol Chem 2003; 278:42307-12. [PMID: 12907675 DOI: 10.1074/jbc.m306951200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial uncoupling protein 2 (UCP2) is expressed in spleen, lung, intestine, white adipose tissue, and immune cells. Bone marrow transplantation in mice was used to assess the contribution of immune cells to the expression of UCP2 in basal condition and during inflammation. Immune cells accounted for the total amount of UCP2 expression in the spleen, one-third of its expression in the lung, and did not participate in its expression in the intestine. LPS injection stimulated UCP2 expression in lung, spleen, and intestine in both immune and non-immune cells. Successive injections of LPS and dexamethasone or N-acetyl-cysteine prevented the induction of UCP2 in all three tissues, suggesting that oxygen free radical generation plays a role in UCP2 regulation. Finally, both previous studies and our data show that there is down-regulation of UCP2 in immune cells during their activation in the early stages of the LPS response followed by an up-regulation in UCP2 during the later stages to protect all cells against oxidative stress.
Collapse
Affiliation(s)
- Marie-Clotilde Alves-Guerra
- CNRS UPR 9078, Faculté de Médecine Necker-Enfants Malades, 156 rue de Vaugirard, 75730 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
987
|
Nicholls DG, Vesce S, Kirk L, Chalmers S. Interactions between mitochondrial bioenergetics and cytoplasmic calcium in cultured cerebellar granule cells. Cell Calcium 2003; 34:407-24. [PMID: 12909085 DOI: 10.1016/s0143-4160(03)00144-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mitochondrion has moved to the center stage in the drama of the life and death of the neuron. The mitochondrial membrane potential controls the ability of the organelle to generate ATP, generate reactive oxygen species and sequester Ca(2+) entering the cell. Each of these processes interact, and their deconvolution is far from trivial. The cultured cerebellar granule cell provides a model in which knowledge gained from studies on isolated mitochondria can be applied to study the role played by the organelles in the maintenance of Ca(2+) homeostasis in the cell under resting, stimulated and pathophysiological conditions. In particular, mitochondria play a complex role in the response of the neuron to excitotoxic stimulation of NMDA and AMPA-kainate selective glutamate receptors. One goal of research in this area is to provide clues as to possible ways in which modulators of mitochondrial function may be used as neuroprotective agents, since mitochondrial Ca(2+) accumulation seems to play a key role in glutamate excitotoxicity.
Collapse
Affiliation(s)
- David G Nicholls
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| | | | | | | |
Collapse
|
988
|
Dupuis L, di Scala F, Rene F, de Tapia M, Oudart H, Pradat PF, Meininger V, Loeffler JP. Up-regulation of mitochondrial uncoupling protein 3 reveals an early muscular metabolic defect in amyotrophic lateral sclerosis. FASEB J 2003; 17:2091-3. [PMID: 14500553 DOI: 10.1096/fj.02-1182fje] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting primarily motor neurons. Growing evidence suggests a mitochondrial defect in ALS. The precise molecular mechanisms underlying those defects are unknown. We studied the expression of mitochondrial uncoupling proteins (UCPs), key regulators of mitochondrial functions, in tissues from a mouse model of ALS (SOD1 G86R transgenic mice) and from muscular biopsies of human sporadic ALS. Surprisingly, in SOD1 G86R mice, UCPs, and particularly UCP3, were upregulated in skeletal muscle but not in spinal cord. Consistent with this pattern of expression, ATP levels were selectively depleted in muscle but not in neural tissues 1 month before disease onset and the respiratory control ratio of isolated mitochondria is decreased. UCP3 up-regulation was not observed in experimentally denervated muscles, suggesting that changes in muscular UCP3 expression are associated with the physiopathological processes of ALS. This is further supported by our observation of increased UCP3 levels in human ALS muscular biopsies. We propose that UCP3 up-regulation in skeletal muscle contributes to the characteristic mitochondrial damage of ALS and to the onset of the disease. Moreover, since skeletal muscle is a key metabolic tissue, our findings suggest that ALS may not solely arise from neuronal events but also from more generalized metabolic defects.
Collapse
Affiliation(s)
- Luc Dupuis
- Laboratoire de Signalisations Moléculaires et Neurodégénérescence, EA 3433, Université Louis Pasteur, Faculté de Médecine, 11 rue Humann, 67085 Strasbourg Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
989
|
Starkov AA, Fiskum G. Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J Neurochem 2003; 86:1101-7. [PMID: 12911618 DOI: 10.1046/j.1471-4159.2003.01908.x] [Citation(s) in RCA: 405] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mitochondrial production of reactive oxygen species (ROS) at Complex I of the electron transport chain is implicated in the etiology of neural cell death in acute and chronic neurodegenerative disorders. However, little is known regarding the regulation of mitochondrial ROS production by NADH-linked respiratory substrates under physiologically realistic conditions in the absence of respiratory chain inhibitors. This study used Amplex Red fluorescence measurements of H2O2 to test the hypothesis that ROS production by isolated brain mitochondria is regulated by membrane potential (DeltaPsi) and NAD(P)H redox state. DeltaPsi was monitored by following the medium concentration of the lipophilic cation tetraphenylphosphonium with a selective electrode. NAD(P)H autofluorescence was used to monitor NAD(P)H redox state. While the rate of H2O2 production was closely related to DeltaPsi and the level of NAD(P)H reduction at high values of DeltaPsi, 30% of the maximal rate of H2O2 formation was still observed in the presence of uncoupler (p-trifluoromethoxycarbonylcyanide phenylhydrazone) concentrations that provided for maximum depolarization of DeltaPsi and oxidation of NAD(P)H. Our findings indicate that ROS production by mitochondria oxidizing physiological NADH-dependent substrates is regulated by DeltaPsi and by the NAD(P)H redox state over ranges consistent with those that exist at different levels of cellular energy demand.
Collapse
Affiliation(s)
- Anatoly A Starkov
- Department of Anesthesiology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
990
|
Abstract
Mitochondrial dysfunction secondary to mitochondrial and nuclear DNA mutations has been associated with energy deficiency in multiple organ systems and a variety of severe, often fatal, clinical syndromes. Although the production of energy is indeed the primary function of mitochondria, attention has also been directed toward their role producing reactive oxygen and nitrogen species and the subsequent widespread deleterious effects of these intermediates. The generation of toxic reactive intermediates has been implicated in a number of relatively common disorders, including neurodegenerative diseases, diabetes, and cancer. Understanding the role mitochondrial dysfunction plays in the pathogenesis of common disorders has provided unique insights into a number of diseases and offers hope for potential new therapies.
Collapse
Affiliation(s)
- Gregory M Enns
- Department of Pediatrics, Division of Medical Genetics, Stanford University, 300 Pasteur Drive, H-315, Stanford, CA 94305-5208, USA.
| |
Collapse
|
991
|
Goglia F, Skulachev VP. A function for novel uncoupling proteins: antioxidant defense of mitochondrial matrix by translocating fatty acid peroxides from the inner to the outer membrane leaflet. FASEB J 2003; 17:1585-91. [PMID: 12958165 DOI: 10.1096/fj.03-0159hyp] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
It is hypothesized that mitochondrial uncoupling proteins operate as carriers of fatty acid peroxide anions. This is assumed to result in electrophoretic extrusion of such anions from the inner to the outer leaflet of the inner mitochondrial membrane, being driven by membrane potential (mitochondrial interior negative). In this way, the inner leaflet is ridded of fatty acid peroxides that otherwise can form very aggressive oxidants damaging mitochondrial DNA, aconitase, and other mitochondrial matrix-localized components of vital importance. The steady-state concentration the fatty acid peroxides is known to be low. This explains why UCP2, 3, 4, and 5 are present in small amounts usually insufficient to make a large contribution to the H+ conductance of the mitochondrial membrane.
Collapse
Affiliation(s)
- Fernando Goglia
- Dipartimento di Scienze Biologiche ed Ambientali, 082100, Benevento, Italy
| | | |
Collapse
|
992
|
Echtay KS, Esteves TC, Pakay JL, Jekabsons MB, Lambert AJ, Portero-Otín M, Pamplona R, Vidal-Puig AJ, Wang S, Roebuck SJ, Brand MD. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J 2003; 22:4103-10. [PMID: 12912909 PMCID: PMC175801 DOI: 10.1093/emboj/cdg412] [Citation(s) in RCA: 447] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Revised: 06/30/2003] [Accepted: 07/01/2003] [Indexed: 11/12/2022] Open
Abstract
Oxidative stress and mitochondrial dysfunction are associated with disease and aging. Oxidative stress results from overproduction of reactive oxygen species (ROS), often leading to peroxidation of membrane phospholipids and production of reactive aldehydes, particularly 4-hydroxy-2-nonenal. Mild uncoupling of oxidative phosphorylation protects by decreasing mitochondrial ROS production. We find that hydroxynonenal and structurally related compounds (such as trans-retinoic acid, trans-retinal and other 2-alkenals) specifically induce uncoupling of mitochondria through the uncoupling proteins UCP1, UCP2 and UCP3 and the adenine nucleotide translocase (ANT). Hydroxynonenal-induced uncoupling was inhibited by potent inhibitors of ANT (carboxyatractylate and bongkrekate) and UCP (GDP). The GDP-sensitive proton conductance induced by hydroxynonenal correlated with tissue expression of UCPs, appeared in yeast mitochondria expressing UCP1 and was absent in skeletal muscle mitochondria from UCP3 knockout mice. The carboxyatractylate-sensitive hydroxynonenal stimulation correlated with ANT content in mitochondria from Drosophila melanogaster expressing different amounts of ANT. Our findings indicate that hydroxynonenal is not merely toxic, but may be a biological signal to induce uncoupling through UCPs and ANT and thus decrease mitochondrial ROS production.
Collapse
Affiliation(s)
- Karim S Echtay
- MRC Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
993
|
Abstract
Uncoupling proteins (UCPs) are located in the mitochondrial inner membrane and partially dissipate the transmembrane proton electrochemical gradient. UCP2 is expressed in various human and rodent tissues, including the heart, where its functional role is unknown. In the present study, we tested the hypothesis that UCP2 overexpression could protect cardiomyocytes from oxidative stress-induced cell death by reducing reactive oxygen species (ROS) production in mitochondria. Using an adenoviral vector containing human UCP2, we investigated the effects of UCP2 overexpression on the mitochondrial death pathway induced by oxidative stress (100 micromol/L H2O2) in cultured neonatal cardiomyocytes. UCP2 overexpression significantly suppressed markers of cell death, including TUNEL positivity, phosphatidylserine exposure, propidium iodide uptake, and caspase-3 cleavage. Furthermore, UCP2 remarkably prevented the catastrophic loss of mitochondrial inner membrane potential induced by H2O2, which is a critical early event in cell death. Ca2+ overload and the production of ROS in mitochondria, both of which contribute to mitochondrial inner membrane potential loss, were dramatically attenuated by UCP2 overexpression. Thus, overexpression of UCP2 attenuates ROS generation and prevents mitochondrial Ca2+ overload, revealing a novel mechanism of cardioprotection.
Collapse
Affiliation(s)
- Yasushi Teshima
- Institute of Molecular Cardiobiology, The Johns Hopkins University, Baltimore, Md 21205, USA
| | | | | | | |
Collapse
|
994
|
Lowell BB, Bachman ES. Beta-Adrenergic receptors, diet-induced thermogenesis, and obesity. J Biol Chem 2003; 278:29385-8. [PMID: 12788929 DOI: 10.1074/jbc.r300011200] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Bradford B Lowell
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
995
|
Mattiasson G, Shamloo M, Gido G, Mathi K, Tomasevic G, Yi S, Warden CH, Castilho RF, Melcher T, Gonzalez-Zulueta M, Nikolich K, Wieloch T. Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat Med 2003; 9:1062-8. [PMID: 12858170 DOI: 10.1038/nm903] [Citation(s) in RCA: 401] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2003] [Accepted: 06/25/2003] [Indexed: 01/09/2023]
Abstract
Whereas uncoupling protein 1 (UCP-1) is clearly involved in thermogenesis, the role of UCP-2 is less clear. Using hybridization, cloning techniques and cDNA array analysis to identify inducible neuroprotective genes, we found that neuronal survival correlates with increased expression of Ucp2. In mice overexpressing human UCP-2, brain damage was diminished after experimental stroke and traumatic brain injury, and neurological recovery was enhanced. In cultured cortical neurons, UCP-2 reduced cell death and inhibited caspase-3 activation induced by oxygen and glucose deprivation. Mild mitochondrial uncoupling by 2,4-dinitrophenol (DNP) reduced neuronal death, and UCP-2 activity was enhanced by palmitic acid in isolated mitochondria. Also in isolated mitochondria, UCP-2 shifted the release of reactive oxygen species from the mitochondrial matrix to the extramitochondrial space. We propose that UCP-2 is an inducible protein that is neuroprotective by activating cellular redox signaling or by inducing mild mitochondrial uncoupling that prevents the release of apoptogenic proteins.
Collapse
|
996
|
Erlanson-Albertsson C. The role of uncoupling proteins in the regulation of metabolism. ACTA PHYSIOLOGICA SCANDINAVICA 2003; 178:405-12. [PMID: 12864746 DOI: 10.1046/j.1365-201x.2003.01159.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Investigations of variations in metabolic efficiency and thermogenesis have a short and turbulent history. In small animals, non-shivering thermogenesis and diet-induced thermogenesis have a great impact on overall body weight, and the question is whether mechanisms to waste energy have evolved also in human energy metabolism. The candidate molecules for this adaptive thermogenesis are the uncoupling proteins. This is a newly discovered family of proteins, consisting of at least five proteins, namely UCP1, UCP2, UCP3, UCP4 and UCP5. Although a role for UCP1 in thermogenesis is unequivocal, the physiological function of the newer uncoupling proteins is as yet unclear. UCP1 is present in brown adipose tissue and has a well-documented role in cold-induced thermogenesis. The targeted disruption of the UCP1-gene rendered animals that were cold sensitive, but not obese. UCP2 mRNA has a ubiquitous distribution in tissue, namely, in skeletal muscle, white and brown adipose tissue, the gastro-intestinal tract, the lung and the spleen. By targeting the UCP2-gene there was no effect on whole body energy metabolism, but instead, a reduced ability to protect against free-radical oxygen species. UCP2 has also been shown to act as a negative regulator for insulin secretion. UCP3 is present in skeletal muscle. Targeted disruption of the UCP3-gene gave no effect on whole body energy metabolism, but showed the mitochondria in muscle to be more coupled. In conclusion, the uncoupling proteins may be important in various specific ways, as protectors of free radical oxygen species and as regulators of ATP-dependent processes.
Collapse
Affiliation(s)
- C Erlanson-Albertsson
- Department of Cell and Molecular Biology, Medical Faculty, University of Lund, Lund, Sweden
| |
Collapse
|
997
|
St-Pierre J, Lin J, Krauss S, Tarr PT, Yang R, Newgard CB, Spiegelman BM. Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. J Biol Chem 2003; 278:26597-603. [PMID: 12734177 DOI: 10.1074/jbc.m301850200] [Citation(s) in RCA: 443] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator (PGC)-1alpha is a coactivator of nuclear receptors and other transcription factors that regulates several components of energy metabolism, particularly certain aspects of adaptive thermogenesis in brown fat and skeletal muscle, hepatic gluconeogenesis, and fiber type switching in skeletal muscle. PGC-1alpha has been shown to induce mitochondrial biogenesis when expressed in muscle cells, and preliminary analysis has suggested that this molecule may specifically increase the fraction of uncoupled versus coupled respiration. In this paper, we have performed detailed bioenergetic analyses of the function of PGC-1alpha and its homolog PGC-1beta in muscle cells by monitoring simultaneously oxygen consumption and membrane potential. Cells expressing PGC-1alpha or PGC-1beta display higher proton leak rates at any given membrane potential than control cells. However, cells expressing PGC-1alpha have a higher proportion of their mitochondrial respiration linked to proton leak than cells expressing PGC-1beta. Although these two proteins cause a similar increase in the expression of many mitochondrial genes, PGC-1beta preferentially induces certain genes involved in the removal of reactive oxygen species, recently recognized as activators of uncoupling proteins. Together, these data indicate that PGC-1alpha and PGC-1beta profoundly alter mitochondrial metabolism and suggest that these proteins are likely to play different physiological functions.
Collapse
Affiliation(s)
- Julie St-Pierre
- Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
998
|
Cunningham O, McElligott AM, Carroll AM, Breen E, Reguenga C, Oliveira MEM, Azevedo JE, Porter RK. Selective detection of UCP 3 expression in skeletal muscle: effect of thyroid status and temperature acclimation. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1604:170-9. [PMID: 12837549 DOI: 10.1016/s0005-2728(03)00057-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A novel peptide antibody to UCP 3 is characterized which is sensitive and discriminatory for UCP 3 over UCP 2, UCP 1 and other mitochondrial transporters. The peptide antibody detects UCP 3 expression in E. coli, COS cells and yeast expression systems. The peptide antibody detects a single approximately 33 kDa protein band in mitochondria from isolated rat skeletal muscle, mouse and rat brown adipose tissue, and in whole muscle groups (soleus and extensor digitorum longus) from mice. No 33 kDa band is detectable in isolated mitochondria from liver, heart, brain, kidney and lungs of rats, or gastrocnemius mitochondria from UCP 3 knock-out mice. From our data, we conclude that the peptide antibody is detecting UCP 3 in skeletal muscle, skeletal muscle mitochondria and brown adipose tissue mitochondria. It is also noteworthy that the peptide antibody can detect human, mouse and rat forms of UCP 3. Using the UCP 3 peptide antibody, we confirm and quantify the increased (2.8-fold) UCP 3 expression observed in skeletal muscle mitochondria isolated from 48-h-starved rats. We show that UCP 3 expression is increased (1.6-fold) in skeletal muscle of rats acclimated over 8 weeks to 8 degrees C and that UCP 3 expression is decreased (1.4-fold) in rats acclimated to 30 degrees C. Furthermore, UCP 3 expression is increased (2.3-fold) in skeletal muscle from hyperthyroid rats compared to euthyroid controls. In addition, we show that UCP 3 expression is only coincident with the mitochondrial fraction of skeletal muscle homogenates and not peroxisomal, nuclear or cytosolic and microsomal fractions.
Collapse
Affiliation(s)
- O Cunningham
- Department of Biochemistry, Trinity College Dublin, Biotechnology Building, Room 0.16, Dublin 2, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
999
|
Yoon JC, Xu G, Deeney JT, Yang SN, Rhee J, Puigserver P, Levens AR, Yang R, Zhang CY, Lowell BB, Berggren PO, Newgard CB, Bonner-Weir S, Weir G, Spiegelman BM. Suppression of beta cell energy metabolism and insulin release by PGC-1alpha. Dev Cell 2003; 5:73-83. [PMID: 12852853 DOI: 10.1016/s1534-5807(03)00170-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
beta cell dysfunction is an important component of type 2 diabetes, but the molecular basis for this defect is poorly understood. The transcriptional coactivator PGC-1alpha mRNA and protein levels are significantly elevated in islets from multiple animal models of diabetes; adenovirus-mediated expression of PGC-1alpha to levels similar to those present in diabetic rodents produces a marked inhibition of glucose-stimulated insulin secretion from islets in culture and in live mice. This inhibition coincides with changes in metabolic gene expression associated with impaired beta cell function, including the induction of glucose-6-phosphatase and suppression of GLUT2, glucokinase, and glycerol-3-phosphate dehydrogenase. These changes result in blunting of the glucose-induced rise in cellular ATP levels and membrane electrical activity responsible for Ca(2+) influx and insulin exocytosis. These results strongly suggest that PGC-1alpha plays a key functional role in the beta cell and is involved in the pathogenesis of the diabetic phenotype.
Collapse
Affiliation(s)
- J Cliff Yoon
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1000
|
Hlavatá L, Aguilaniu H, Pichová A, Nyström T. The oncogenic RAS2(val19) mutation locks respiration, independently of PKA, in a mode prone to generate ROS. EMBO J 2003; 22:3337-45. [PMID: 12839995 PMCID: PMC165639 DOI: 10.1093/emboj/cdg314] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The RAS2(val19) allele, which renders the cAMP-PKA pathway constitutively active and decreases the replicative life-span of yeast cells, is demonstrated to increase production of reactive oxygen species (ROS) and to elevate oxidative protein damage. Mitochondrial respiration in the mutant is locked in a non-phosphorylating mode prone to generate ROS but this phenotype is not linked to a constitutively active PKA pathway. In contrast, providing RAS2(val19) cells with the mammalian uncoupling protein UCP1 restores phosphorylating respiration and reduces ROS levels, but does not correct for PKA-dependent defects. Thus, the RAS2(val19) allele acts like a double-edged sword with respect to oxidation management: (i). it diminishes expression of STRE element genes required for oxidative stress defenses in a PKA-dependent fashion, and (ii). it affects endogenous ROS production and the respiratory state in a PKA-independent way. The effect of the oncogenic RAS allele on the replicative life-span is primarily asserted via the PKA-dependent pathway since Pde2p, but not UCP1, overproduction suppressed premature aging of the RAS2(val19) mutant.
Collapse
Affiliation(s)
- Lydie Hlavatá
- Institute of Microbiology, Czech Academy of Sciences, CZ-142 20 Prague, Czech Republic
| | | | | | | |
Collapse
|