951
|
Miyanari Y, Hijikata M, Yamaji M, Hosaka M, Takahashi H, Shimotohno K. Hepatitis C virus non-structural proteins in the probable membranous compartment function in viral genome replication. J Biol Chem 2003; 278:50301-8. [PMID: 12963739 DOI: 10.1074/jbc.m305684200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanism of hepatitis C virus(HCV) RNA replication is still unknown. Recently, a cell culture system in which the HCV subgenomic replicon is efficiently replicated and maintained for a long period in Huh-7 cells has been established. Taking advantage of this replicon system, we detected the activity to synthesize the subgenomic RNA in the digitonin-permeabilized replicon cells. To elucidate how and where this viral RNA replicates in the cells, we monitored the activity for HCV RNA synthesis in the permeabilized replicon cells under several conditions. We obtained results suggesting that HCV replication complexes functioning to synthesize the replicon RNA are protected from access of nuclease and proteinase by possible cellular lipid membranes. We also found that a large part of the replicon RNA, including newly synthesized RNA, was present in such a membranous structure but a large part of each NS protein was not. A small part of each NS protein that was resistant to the proteinase action was shown to contribute sufficiently to the synthesis of HCV subgenomic RNA in the permeabilized replicon cells. These results suggested that a major subcellular site of HCV genome replication is probably compartmentalized by lipid membranes and that only a part of each NS protein forms the active replication complex in the replicon cells.
Collapse
Affiliation(s)
- Yusuke Miyanari
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
952
|
Migliaccio G, Tomassini JE, Carroll SS, Tomei L, Altamura S, Bhat B, Bartholomew L, Bosserman MR, Ceccacci A, Colwell LF, Cortese R, De Francesco R, Eldrup AB, Getty KL, Hou XS, LaFemina RL, Ludmerer SW, MacCoss M, McMasters DR, Stahlhut MW, Olsen DB, Hazuda DJ, Flores OA. Characterization of resistance to non-obligate chain-terminating ribonucleoside analogs that inhibit hepatitis C virus replication in vitro. J Biol Chem 2003; 278:49164-70. [PMID: 12966103 DOI: 10.1074/jbc.m305041200] [Citation(s) in RCA: 270] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The urgent need for efficacious drugs to treat chronic hepatitis C virus (HCV) infection requires a concerted effort to develop inhibitors specific for virally encoded enzymes. We demonstrate that 2'-C-methyl ribonucleosides are efficient chain-terminating inhibitors of HCV genome replication. Characterization of drug-resistant HCV replicons defined a single S282T mutation within the active site of the viral polymerase that conferred loss of sensitivity to structurally related compounds in both replicon and isolated polymerase assays. Biochemical analyses demonstrated that resistance at the level of the enzyme results from a combination of reduced affinity of the mutant polymerase for the drug and an increased ability to extend the incorporated nucleoside analog. Importantly, the combination of these agents with interferon-alpha results in synergistic inhibition of HCV genome replication in cell culture. Furthermore, 2'-C-methyl-substituted ribonucleosides also inhibited replication of genetically related viruses such as bovine diarrhea virus, yellow fever, and West African Nile viruses. These observations, together with the finding that 2'-C-methyl-guanosine in particular has a favorable pharmacological profile, suggest that this class of compounds may have broad utility in the treatment of HCV and other flavivirus infections.
Collapse
Affiliation(s)
- Giovanni Migliaccio
- Department of Biochemistry, Istituto di Ricerche di Biologia Molecolare P. Angeletti (IRBM), 00040 Pomezia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
953
|
McKnight KL, Sandefur S, Phipps KM, Heinz BA. An adenine-to-guanine nucleotide change in the IRES SL-IV domain of picornavirus/hepatitis C chimeric viruses leads to a nonviable phenotype. Virology 2003; 317:345-58. [PMID: 14698672 DOI: 10.1016/j.virol.2003.08.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The inability for the internal ribosomal entry site (IRES) of hepatitis C virus (HCV) to be readily studied in the context of viral replication has been circumvented by constructing chimeras such as with poliovirus (PV), in which translation of the genome polyprotein is under control of the HCV IRES. During our attempts to configure the PV/HCV chimera for our drug discovery efforts, we discovered that an adenine- (A) to-guanine (G) change at nt 350 in domain IV of the HCV IRES resulted in a nonviable phenotype. Similarly, a mengovirus (MV)/HCV chimera using the same configuration with a G at nt 350 (G-350) was found to be nonviable. In contrast, a bovine viral diarrhea virus (BVDV)/HCV chimera remained viable with G-350 in the HCV IRES insert. Second-site, resuscitating mutations were identified from the G-350 PV/HCV and MV/HCV viruses after blind passaging. For both viruses, the resuscitating mutations involved destabilization of domain IV in the HCV IRES. The nonviability of G-350 in the picornavirus/HCV chimeric background might be linked to translation efficiency as indicated by analyses with dual reporter and PV/HCV replicon constructs.
Collapse
Affiliation(s)
- Kevin L McKnight
- Eli Lilly and Company, Lilly Research Laboratories, LCC, Indianapolis, IN 46225, USA.
| | | | | | | |
Collapse
|
954
|
Kato T, Date T, Miyamoto M, Furusaka A, Tokushige K, Mizokami M, Wakita T. Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. Gastroenterology 2003; 125:1808-17. [PMID: 14724833 DOI: 10.1053/j.gastro.2003.09.023] [Citation(s) in RCA: 476] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS Although the hepatitis C virus (HCV) subgenomic replicon system has been widely used in the study of HCV, this system is available only for a few related genotypes. To develop a new replicon system, the genotype 2a clone JFH-1 was isolated from a patient with fulminant hepatitis. METHODS A genotype 2a replicon was constructed by isolating the consensus sequence of JFH-1, transfecting G418-selectable subgenomic transcripts into Huh7 cells, and estimating the replication efficiency. RESULTS The colony formation efficiency of the JFH-1 replicon was 53,200 colonies/microg RNA, significantly higher than that of the genotype 1b cell-adapted replicon, at 909 colonies/microg RNA (P < 0.05). The JFH-1 replicon RNA was transmissible to naive Huh7 cells by transfection of cellular RNA from cells containing the replicon. Sequencing of cloned replicon RNAs revealed that all but 1 had at least 1 nonsynonymous mutation. One of these mutations was shown to enhance the colony formation efficiency of the JFH-1 replicon. Furthermore, the JFH-1 replicon RNA replicated efficiently without G418 selection in a transient replication assay. CONCLUSIONS The genotype 2a subgenomic replicon was established in Huh7 cells and replicated efficiently with or without G418 selection. This subgenomic replicon could replicate without common amino acid mutations; however, some of the mutations found in the clones might be important in conferring higher replication phenotypes. This system provides a powerful new tool for researching HCV.
Collapse
Affiliation(s)
- Takanobu Kato
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Japan
| | | | | | | | | | | | | |
Collapse
|
955
|
|
956
|
De Tomassi A, Pizzuti M, Traboni C. Hep3B human hepatoma cells support replication of the wild-type and a 5'-end deletion mutant GB virus B replicon. J Virol 2003; 77:11875-81. [PMID: 14581524 PMCID: PMC254273 DOI: 10.1128/jvi.77.22.11875-11881.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis C virus (HCV) and GB virus B (GBV-B) replicons have been reported to replicate only in Huh7 cells. Here we demonstrate that subpopulations of another human hepatoma cell line, Hep3B, are permissive for the GBV-B replicon, showing different levels of enhancement of replication from those of the unselected parental cell population. Adaptive mutations are not required for replication of the GBV-B replicon in these cells, as already demonstrated for Huh7 cells. Nonetheless, we identified a mutant replicon in one of the selected cell lines, which, although lacking the 5' end proximal stem-loop, is able to replicate in Hep3B cells as well as in Huh7 cells. This mutant indeed shows a higher replication efficiency than does wild-type replicon, especially in the Hep3B cell clone from which it was originally recovered. This indicates that the stem-loop Ia is not necessary for replication of the GBV-B replicon in human cells, unlike what occurs with HCV, and that its absence can even provide a selective advantage.
Collapse
Affiliation(s)
- Amedeo De Tomassi
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, 00040 Pomezia (Rome), Italy
| | | | | |
Collapse
|
957
|
|
958
|
Slater MJ, Amphlett EM, Andrews DM, Bamborough P, Carey SJ, Johnson MR, Jones PS, Mills G, Parry NR, Somers DO, Stewart AJ, Skarzynski T. Pyrrolidine-5,5-trans-lactams. 4. Incorporation of a P3/P4 Urea Leads to Potent Intracellular Inhibitors of Hepatitis C Virus NS3/4A Protease. Org Lett 2003; 5:4627-30. [PMID: 14627400 DOI: 10.1021/ol035826v] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] In this, the first of two Letters, we describe how a P3/P4 urea linking unit was used to greatly enhance the biochemical and replicon potency of inhibitors based upon the pyrrolidine-5,5-trans-lactam template. Compound 7b demonstrated a 100 nM IC(50) in the replicon cell-based surrogate HCV assay.
Collapse
Affiliation(s)
- Martin J Slater
- GlaxoSmithKline Medicines Research Center, Gunnels Wood Road, Stevenage, SG1 2NY, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
959
|
Mao HX, Lan SY, Hu YW, Xiang L, Yuan ZH. Establishment of a cell-based assay system for hepatitis C virus serine protease and its primary applications. World J Gastroenterol 2003; 9:2474-9. [PMID: 14606079 PMCID: PMC4656523 DOI: 10.3748/wjg.v9.i11.2474] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2003] [Revised: 06/01/2003] [Accepted: 06/12/2003] [Indexed: 02/07/2023] Open
Abstract
AIM To establish an efficient, sensitive, cell-based assay system for NS3 serine protease in an effort to study further the property of hepatitis C virus (HCV) and develop new antiviral agents. METHODS We constructed pCI-neo-NS3/4A-SEAP chimeric plasmid, in which the secreted alkaline phosphatase (SEAP) was fused in-frame to the downstream of NS4A/4B cleavage site. The protease activity of NS3 was reflected by the activity of SEAP in the culture media of transient or stable expression cells. Stably expressing cell lines were obtained by G418 selection. Pefabloc SC, a potent irreversible serine protease inhibitor, was used to treat the stably expressing cell lines to assess the system for screening NS3 inhibitors. To compare the activity of serine proteases from 1b and 1a, two chimeric clones were constructed and introduced into both transient and stable expression systems. RESULTS The SEAP activity in the culture media could be detected in both transient and stable expression systems, and was apparently decreased after Pefabloc SC treatment. In both transient and stable systems, NS3/4A-SEAP chimeric gene from HCV genotype 1b produced higher SEAP activity in the culture media than that from 1a. CONCLUSION The cell-based system is efficient and sensitive enough for detection and comparison of NS3 protease activity, and screening of anti-NS3 inhibitors. The functional difference between NS3/4A from 1a and 1b subtypes revealed by this system provides a clue for further investigations.
Collapse
Affiliation(s)
- Hong-Xia Mao
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
960
|
Johnston VK, Maley D, Gagnon RC, Grassmann CW, Behrens SE, Sarisky RT. Kinetic profile of a heterocyclic HCV replicon RNA synthesis inhibitor. Biochem Biophys Res Commun 2003; 311:672-7. [PMID: 14623324 DOI: 10.1016/j.bbrc.2003.10.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Recently, a benzo-1,2,4-thiadiazine was shown to be a potent, specific inhibitor of the hepatitis C virus (HCV) RNA polymerase [J. Biol. Chem. 277 (2002) 32327]. Herein, we present several lines of evidence to demonstrate that thiadiazine compound 4 (C(21)H(21)N(3)O(4)S) is highly synergistic with interferon-alpha (IFN-alpha) and disrupts HCV replicon RNA synthesis with a distinct kinetic profile. A time course analysis after a single treatment with 5 microM compound 4 showed a loss of viral RNA consistent with replicon RNA half-life, suggesting inhibition of 90% of ongoing or newly initiated replicative intermediates. This finding is consistent with the mechanism of action recently reported for compound 4, an RNA synthesis initiation inhibitor [J. Biol. Chem. 278 (2003) 16602]. Further, unlike IFN-alpha, an immediate reduction of HCV replicon RNA synthesis was apparent upon addition of compound 4. Treatment with IFN-alpha showed a delay of approximately 4h prior to inhibition of viral RNA replication, consistent with its signaling kinetics.
Collapse
Affiliation(s)
- Victor K Johnston
- Department of Virology, The Metabolic and Viral Diseases Center of Excellence for Drug Discovery, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania 19426, USA
| | | | | | | | | | | |
Collapse
|
961
|
|
962
|
El-Hage N, Luo G. Replication of hepatitis C virus RNA occurs in a membrane-bound replication complex containing nonstructural viral proteins and RNA. J Gen Virol 2003; 84:2761-2769. [PMID: 13679611 DOI: 10.1099/vir.0.19305-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Biochemical studies revealed that nonstructural proteins of hepatitis C virus (HCV) interacted with each other and were associated with intracellular membranes. The goals of this study were to determine whether nonstructural viral proteins are colocalized at specific intracellular sites where HCV RNA is replicated and to identify the virus components of the HCV replication complex (RC). Immunofluorescence and subcellular fractionation studies were performed to determine the intracellular colocalization of nonstructural HCV proteins and the replicating RNA in a human hepatoma cell line, Huh7, in which a subgenomic HCV RNA was replicated persistently. The replicating HCV RNA was labelled with 5-bromouridine 5'-triphosphate (BrUTP). Results show that each of the nonstructural HCV proteins was colocalized predominantly with the newly synthesized HCV RNA labelled with BrUTP and an endoplasmic reticulum (ER) protein, calnexin. Consistent with these findings, subcellular fractionation and Western blot analyses revealed that the nonstructural HCV proteins were colocalized with HCV RNA mainly in the membrane fractions. Conversely, the viral nonstructural proteins and RNA remained in the soluble fractions upon treatment with detergent, confirming the membrane association of the HCV RC. HCV RNA in the membrane-bound RC was resistant to RNase treatment, whereas it became sensitive to RNases once the membranes were disrupted by treatment with detergent, suggesting that the HCV RC is assembled within membrane structures. Collectively, these findings demonstrate that HCV RNA replication occurs in the perinuclear ER membrane-bound HCV RC, containing nonstructural viral proteins and RNA.
Collapse
Affiliation(s)
- Nazira El-Hage
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298, USA
| | - Guangxiang Luo
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298, USA
| |
Collapse
|
963
|
Guo JT, Zhu Q, Seeger C. Cytopathic and noncytopathic interferon responses in cells expressing hepatitis C virus subgenomic replicons. J Virol 2003; 77:10769-79. [PMID: 14512527 PMCID: PMC224980 DOI: 10.1128/jvi.77.20.10769-10779.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hepatitis C virus (HCV) is the only known positive-stranded RNA virus that causes persistent lifelong infections in humans. Accumulation of HCV RNA can be inhibited with alpha interferon (IFN-alpha) in vivo and in culture cells. We used cell-based assay systems to investigate the mechanisms responsible for the cytokine-induced inhibition of HCV replication. The results showed that IFN-alpha could suppress the accumulation of viral RNA by a noncytopathic pathway and could also induce apoptosis of virally infected cells in a concentration- and cell line-dependent fashion. Whereas the noncytopathic IFN-alpha response depended on a functional Jak-STAT signal transduction pathway, it did not appear to require double-stranded RNA-dependent pathways. Moreover, we found that functional proteasomes were required for establishment of the IFN-alpha response against HCV. Based on the results described in this study we propose a model for the mechanism by which IFN-alpha therapy suppresses HCV replication in chronic infections by both cytopathic and noncytopathic means.
Collapse
Affiliation(s)
- Ju-Tao Guo
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
964
|
Affiliation(s)
- Alfredo Alberti
- Department of Clinical and Experimental Medicine, University of Padova, Via Giustiniani 2, 35100 Padova, Italy.
| | | |
Collapse
|
965
|
Franco S, Giménez-Barcons M, Puig-Basagoiti F, Furcic I, Sánchez-Tapias JM, Rodés J, Sáiz JC. Characterization and evolution of NS5A quasispecies of hepatitis C virus genotype 1b in patients with different stages of liver disease. J Med Virol 2003; 71:195-204. [PMID: 12938193 DOI: 10.1002/jmv.10470] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The quasispecies nature of hepatitis C virus (HCV) is thought to play a central role in modulating viral functions. Recent work has linked NS5A protein with viral replication, resistance to interferon (IFN), and control of cellular growth, probably through the interaction of its protein kinase R (double stranded RNA-activated protein kinase, PKR) binding domain (PKR-bd) with cellular PKR, but knowledge of how PKR-bd viral population evolves during disease progression is limited. Since we have previously described an association between amino acid composition of the PKR-bd and the presence of HCC, in this report we further investigated the dynamic behavior of viral population parameters by sequencing an average of 20 clones per sample in 27 samples from 19 untreated patients with different degrees of liver disease, 8 of whom were followed over time. Viral population parameters varied widely from patient to patient, but no differences were observed in the complexity, diversity, types of nucleotide changes, or evolutionary pattern of the quasispecies according to the stage of liver disease. In five samples, we detected "quasispecies-tails"; that is, clones whose minimum genetic distance to the remaining clones of their own quasispecies were higher than the maximum genetic distance found between any other two clones of the same sample. In summary, independent of the degree of liver disease, or the mutations detected within the consensus sequence of the PKR-bd, the NS5A of HCV presents a flexible and variable quasispecies structure that remains largely stable during the natural course of an HCV infection, highlighting the central role of NS5A protein in viral life cycle.
Collapse
Affiliation(s)
- Sandra Franco
- Liver Unit, Institut de Malalties Digestives, Departament de Medicina (IMD), Institut d' Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
966
|
Sen A, Steele R, Ghosh AK, Basu A, Ray R, Ray RB. Inhibition of hepatitis C virus protein expression by RNA interference. Virus Res 2003; 96:27-35. [PMID: 12951263 DOI: 10.1016/s0168-1702(03)00170-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatitis C virus (HCV) is a serious human pathogen and an estimated 170 million people are infected worldwide. Current therapeutic regimens have shown limited efficacy against selected genotypes of the virus. The phenomenon of RNA interference can be used to selectively block homologous genes post-transcriptionally, and has revolutionized approaches to study gene function. In this report, we have demonstrated that small interfering RNAs (siRNAs) targeted against NS5A of HCV genotype 1a specifically inhibit NS5A RNA and protein expression in a human hepatoma (HepG2) cell line. Expression of endogenous alpha-actin and the ds-RNA activated serine/threonine kinase-PKR were unaltered, demonstrating that the inhibitory effect observed from siRNA was specific to the HCV NS5A protein. We next examined whether siRNA directed against NS5A could inhibit core protein expression, the first gene product synthesized in virus infected cells due to its localization at the 5' end of the HCV polyprotein. For this purpose, a full-length cDNA clone from HCV (H77, genotype 1a) was used, and results indicated that the introduction of NS5A targeted siRNA resulted in an inhibition of NS5A and core protein expression. Moreover, we observed that this siRNA effectively inhibited NS5A mediated activation of the IL-8 promoter. Taken together, our results demonstrated that siRNA was effective in inhibiting HCV protein expression, and may have therapeutic potential to limit HCV replication in chronically infected patients.
Collapse
Affiliation(s)
- Adrish Sen
- Department of Pathology, Saint Louis University, St. Louis, MO 63104, USA
| | | | | | | | | | | |
Collapse
|
967
|
Houshmand H, Bergqvist A. Interaction of hepatitis C virus NS5A with La protein revealed by T7 phage display. Biochem Biophys Res Commun 2003; 309:695-701. [PMID: 12963047 DOI: 10.1016/j.bbrc.2003.08.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although the hepatitis C virus (HCV) genome is synthesized by the virus-encoded RNA-dependent RNA polymerase NS5B, other viral and cellular factors are assumed to be required for template-specific initiation and regulation of RNA-synthesis. The cellular protein La, which normally associates with RNA polymerase III transcripts, also interacts with the 5'- and 3'-untranslated regions of several RNA viruses, including HCV. To investigate whether other viral gene products may be involved in this interaction, we constructed an HCV cDNA expression library in bacteriophage T7 allowing portions of the HCV polyprotein to be displayed on the phage surface. Screening of the phage library against La resulted in selection of clones displaying the N-terminal region of HCV NS5A. Co-precipitation of full-length and truncated forms of recombinant NS5A with La revealed that the N-terminal region of NS5A was both necessary and sufficient for binding to La. Although this region of NS5A is essential for HCV replication, the role of the NS5A-La interaction in the infected cell remains to be established.
Collapse
Affiliation(s)
- Hamid Houshmand
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | | |
Collapse
|
968
|
Sakai A, Claire MS, Faulk K, Govindarajan S, Emerson SU, Purcell RH, Bukh J. The p7 polypeptide of hepatitis C virus is critical for infectivity and contains functionally important genotype-specific sequences. Proc Natl Acad Sci U S A 2003; 100:11646-51. [PMID: 14504405 PMCID: PMC208812 DOI: 10.1073/pnas.1834545100] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The role of the hepatitis C virus (HCV) p7 protein in the virus life cycle is not known. Previous in vitro data indicated that this 63-aa polypeptide is located in the endoplasmic reticulum and has two transmembrane domains (TMDs) connected by a cytoplasmic loop; the amino- and carboxyl-terminal tails are oriented toward the endoplasmic reticulum lumen. Furthermore, recent in vitro studies suggested that HCV p7 could function as a virus-encoded ion channel. It might therefore be a relevant target for future drug development. We studied the role of HCV p7 in vivo. Because HCV does not replicate efficiently in cell culture, we mutagenized p7 of an infectious genotype 1a cDNA clone and tested RNA transcripts of each mutant for infectivity in chimpanzees by intrahepatic transfection. Appropriate processing of mutant polypeptides was confirmed by studies in transfected mammalian cells. Mutants with deletions of all or part of p7 and a mutant with substitutions of two conserved residues in the cytoplasmic loop were not viable. Thus, p7 is essential for infectivity of HCV. A chimera in which the p7 of the 1a clone was replaced with p7 from an infectious genotype 2a clone also was not viable. This finding suggests a genotype-specific interaction between p7 and other genomic regions. To define which portions of p7 played the most significant role for this interaction, we tested three chimeras with the 1a backbone in which only specific domains of p7 had the 2a sequence. A p7 chimera with 2a tails and TMDs and the 1a cytoplasmic loop was not viable. A mutant with 2a tails and cytoplasmic loop and 1a TMDs also was not viable. However, a p7 chimera with 2a TMDs and cytoplasmic loop and 1a tails was viable. The transfected chimpanzee became viremic at week 2, and recovered viruses had the chimeric sequence. These data indicate that the amino- and/or carboxyl-terminal intraluminal tails of p7 contain sequences with genotype-specific function.
Collapse
Affiliation(s)
- Akito Sakai
- Hepatitis Viruses and Molecular Hepatitis Sections, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
969
|
Abstract
The hepatitis C virus (HCV) serine protease is necessary for viral replication and represents a valid target for developing new therapies for HCV infection. Potent and selective inhibitors of this enzyme have been identified and shown to inhibit HCV replication in tissue culture. The optimization of these inhibitors for clinical development would greatly benefit from in vitro systems for the identification and the study of resistant variants. We report the use of HCV subgenomic replicons to isolate and characterize mutants resistant to a protease inhibitor. Taking advantage of the replicons' ability to transduce resistance to neomycin, we selected replicons with decreased sensitivity to the inhibitor by culturing the host cells in the presence of the inhibitor and neomycin. The selected replicons replicated to the same extent as those in parental cells. Sequence analysis followed by transfection of replicons containing isolated mutations revealed that resistance was mediated by amino acid substitutions in the protease. These results were confirmed by in vitro experiments with mutant enzymes and by modeling the inhibitor in the three-dimensional structure of the protease.
Collapse
Affiliation(s)
- Brett D Lindenbach
- Center for the Study of Hepatitis C, Laboratory for Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | | |
Collapse
|
970
|
Blanchard E, Hourioux C, Brand D, Ait-Goughoulte M, Moreau A, Trassard S, Sizaret PY, Dubois F, Roingeard P. Hepatitis C virus-like particle budding: role of the core protein and importance of its Asp111. J Virol 2003; 77:10131-8. [PMID: 12941925 PMCID: PMC224611 DOI: 10.1128/jvi.77.18.10131-10138.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In the absence of a hepatitis C virus (HCV) culture system, the use of a Semliki Forest virus replicon expressing genes encoding HCV structural proteins that assemble into HCV-like particles provides an opportunity to study HCV morphogenesis. Using this system, we showed that the HCV core protein constitutes the budding apparatus of the virus and that its targeting to the endoplasmic reticulum by means of the signal sequence of E1 protein is essential for budding. In addition, the aspartic acid at position 111 in the HCV core protein sequence was found to be crucial for virus assembly, demonstrating the usefulness of this system for mapping amino acids critical to HCV morphogenesis.
Collapse
Affiliation(s)
- Emmanuelle Blanchard
- Laboratoire de Virologie, Faculté de Médecine et Centre Hospitalier Universitaire, 2 bis Boulevard Tonnellé, 37032 Tours, France
| | | | | | | | | | | | | | | | | |
Collapse
|
971
|
Aizaki H, Nagamori S, Matsuda M, Kawakami H, Hashimoto O, Ishiko H, Kawada M, Matsuura T, Hasumura S, Matsuura Y, Suzuki T, Miyamura T. Production and release of infectious hepatitis C virus from human liver cell cultures in the three-dimensional radial-flow bioreactor. Virology 2003; 314:16-25. [PMID: 14517056 DOI: 10.1016/s0042-6822(03)00383-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lack of efficient culture systems for hepatitis C virus (HCV) has been a major obstacle in HCV research. Human liver cells grown in a three-dimensional radial-flow bioreactor were successfully infected following inoculation with plasma from an HCV carrier. Subsequent detection of increased HCV RNA suggested viral replication. Furthermore, transfection of HCV RNA transcribed from full-length cDNA also resulted in the production and release of HCV virions into supernatant. Infectivity was shown by successful secondary passage to a new culture. Introduction of mutations in RNA helicase and polymerase regions of HCV cDNA abolished virus replication, indicating that reverse genetics of this system is possible. The ability to replicate and detect the extracellular release of HCV might provide clues with regard to the persistent nature of HCV infection. It will also accelerate research into the pathogenicity of HCV, as well as the development of prophylactic agents and new therapy.
Collapse
Affiliation(s)
- Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
972
|
Li Y, Zhang T, Douglas SD, Lai JP, Xiao WD, Pleasure DE, Ho WZ. Morphine enhances hepatitis C virus (HCV) replicon expression. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1167-75. [PMID: 12937158 PMCID: PMC1868275 DOI: 10.1016/s0002-9440(10)63476-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Little information is available regarding whether substance abuse enhances hepatitis C virus (HCV) replication and promotes HCV disease progression. We investigated whether morphine alters HCV mRNA expression in HCV replicon-containing liver cells. Morphine significantly increased HCV mRNA expression, an effect which could be abolished by either of the opioid receptor antagonists, naltrexone or beta-funaltrexamine. Investigation of the mechanism responsible for this enhancement of HCV replicon expression demonstrated that morphine activated NF-kappaB promoter and that caffeic acid phenethyl ester, a specific inhibitor of the activation of NF-kappaB, blocked morphine-activated HCV RNA expression. In addition, morphine compromised the anti-HCV effect of interferon alpha (IFN-alpha). Our in vitro data indicate that morphine may play an important role as a positive regulator of HCV replication in human hepatic cells and may compromise IFN-alpha therapy.
Collapse
Affiliation(s)
- Yuan Li
- Division of Immunologic and Infectious Diseases, Department of Pediatrics, Stokes Research Institute, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, 34th Street & Civic Center Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
973
|
Zhu Q, Guo JT, Seeger C. Replication of hepatitis C virus subgenomes in nonhepatic epithelial and mouse hepatoma cells. J Virol 2003; 77:9204-10. [PMID: 12915536 PMCID: PMC187424 DOI: 10.1128/jvi.77.17.9204-9210.2003] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The hepatitis C virus (HCV) pandemic affects the health of more than 170 million people and is the major indication for orthotopic liver transplantations. Although the human liver is the primary site for HCV replication, it is not known whether extrahepatic tissues are also infected by the virus and whether nonprimate cells are permissive for RNA replication. Because HCV exists as a quasispecies, it is conceivable that a viral population may include variants that can replicate in different cell types and in other species. We have tested this hypothesis and found that subgenomic HCV RNAs can replicate in mouse hepatoma and nonhepatic human epithelial cells. Replicons isolated from these cell lines carry new mutations that could be involved in the control of tropism of the virus. Our results demonstrated that translation and RNA-directed RNA replication of HCV do not depend on hepatocyte or primate-specific factors. Moreover, our results could open the path for the development of animal models for HCV infection.
Collapse
Affiliation(s)
- Qing Zhu
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
974
|
Abstract
The study of hepatitis C virus (HCV), a major cause of chronic liver disease, has been hampered by the lack of a cell culture system supporting its replication. Here, we have successfully generated infectious pseudo-particles that were assembled by displaying unmodified and functional HCV glycoproteins onto retroviral and lentiviral core particles. The presence of a green fluorescent protein marker gene packaged within these HCV pseudo-particles allowed reliable and fast determination of infectivity mediated by the HCV glycoproteins. Primary hepatocytes as well as hepato-carcinoma cells were found to be the major targets of infection in vitro. High infectivity of the pseudo-particles required both E1 and E2 HCV glycoproteins, and was neutralized by sera from HCV-infected patients and by some anti-E2 monoclonal antibodies. In addition, these pseudo-particles allowed investigation of the role of putative HCV receptors. Although our results tend to confirm their involvement, they provide evidence that neither LDLr nor CD81 is sufficient to mediate HCV cell entry. Altogether, these studies indicate that these pseudo-particles may mimic the early infection steps of parental HCV and will be suitable for the development of much needed new antiviral therapies.
Collapse
Affiliation(s)
- Valérie Castet
- Department of Medicine II, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
975
|
Amin A, Zaccardi J, Mullen S, Olland S, Orlowski M, Feld B, Labonte P, Mak P. Identification of constrained peptides that bind to and preferentially inhibit the activity of the hepatitis C viral RNA-dependent RNA polymerase. Virology 2003; 313:158-69. [PMID: 12951030 DOI: 10.1016/s0042-6822(03)00313-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A class of disulfide constrained peptides containing a core motif FPWG was identified from a screen of phage displayed library using the HCV RNA-dependent RNA polymerase (NS5B) as a bait. Surface plasmon resonance studies showed that three highly purified synthetic constrained peptides bound to immobilized NS5B with estimated K(d) values ranging from 30 to 60 microM. In addition, these peptides inhibited the NS5B activity in vitro with IC(50) ranging from 6 to 48 microM, whereas in contrast they had no inhibitory effect on the enzymatic activities of calf thymus polymerase alpha, human polymerase beta, RSV polymerase, and HIV reverse transcriptase in vitro. Two peptides demonstrated conformation-dependent inhibition since their synthetic linear versions were not inhibitory in the NS5B assay. A constrained peptide with the minimum core motif FPWG retained selective inhibition of NS5B activity with an IC(50) of 50 microM. Alanine scan analyses of a representative constrained peptide, FPWGNTW, indicated that residues F1 and W7 were critical for the inhibitory effect of this peptide, although residues P2 and N5 had some measurable inhibitory effect as well. Further analyses of the mechanism of inhibition indicated that these peptides inhibited the formation of preelongation complexes required for the elongation reaction. However, once the preelongation complex was formed, its activity was refractory to peptide inhibition. Furthermore, the constrained peptide FPWGNTW inhibited de novo initiated RNA synthesis by NS5B from a poly(rC) template. These data indicate that the peptides confer selective inhibition of NS5B activity by binding to the enzyme and perturbing an early step preceding the processive elongation step of RNA synthesis.
Collapse
Affiliation(s)
- Anthony Amin
- Department of Infectious Disease, Wyeth Research, 401 N. Middletown Road, Pearl River, NY 10965, USA
| | | | | | | | | | | | | | | |
Collapse
|
976
|
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer, but the third leading cause of cancer death, in the world, with more than 500,000 fatalities annually. The major etiology of HCC/liver cancer in people is hepatitis B virus (HBV), followed by hepatitis C virus infection (HCV), although nonviral causes also play a role in a minority of cases. Recent molecular studies confirm what was suspected: that HCC tissue from different individuals have many phenotypic differences. However, there are clearly features that unify HCC occurring in a background of viral hepatitis B and C. HCC due to HBV and HCV may be an indirect result of enhanced hepatocyte turnover that occurs in an effort to replace infected cells that have been immunologically attacked. Viral functions may also play a more direct role in mediating oncogenesis. This review considers the molecular and cellular mechanisms involved in primary hepatocellular carcinoma, using a viral perspective.
Collapse
Affiliation(s)
- Timothy M Block
- Department of Molecular Pharmacology and Biochemistry, Jefferson Center for Biomedical Research of Thomas Jefferson University, 700 East Butler Ave., Doylestown, PA 18901, USA.
| | | | | | | |
Collapse
|
977
|
Gehrke R, Ecker M, Aberle SW, Allison SL, Heinz FX, Mandl CW. Incorporation of tick-borne encephalitis virus replicons into virus-like particles by a packaging cell line. J Virol 2003; 77:8924-33. [PMID: 12885909 PMCID: PMC167216 DOI: 10.1128/jvi.77.16.8924-8933.2003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA replicons derived from flavivirus genomes show considerable potential as gene transfer and immunization vectors. A convenient and efficient encapsidation system is an important prerequisite for the practical application of such vectors. In this work, tick-borne encephalitis (TBE) virus replicons and an appropriate packaging cell line were constructed and characterized. A stable CHO cell line constitutively expressing the two surface proteins prM/M and E (named CHO-ME cells) was generated and shown to efficiently export mature recombinant subviral particles (RSPs). When replicon NdDeltaME lacking the prM/M and E genes was introduced into CHO-ME cells, virus-like particles (VLPs) capable of initiating a single round of infection were released, yielding titers of up to 5 x 10(7)/ml in the supernatant of these cells. Another replicon (NdDeltaCME) lacking the region encoding most of the capsid protein C in addition to proteins prM/M and E was not packaged by CHO-ME cells. As observed with other flavivirus replicons, both TBE virus replicons appeared to exert no cytopathic effect on their host cells. Sedimentation analysis revealed that the NdDeltaME-containing VLPs were physically distinct from RSPs and similar to infectious virions. VLPs could be repeatedly passaged in CHO-ME cells but maintained the property of being able to initiate only a single round of infection in other cells during these passages. CHO-ME cells can thus be used both as a source for mature TBE virus RSPs and as a safe and convenient replicon packaging cell line, providing the TBE virus surface proteins prM/M and E in trans.
Collapse
Affiliation(s)
- Rainer Gehrke
- Institute of Virology, University of Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
978
|
Ahlquist P, Noueiry AO, Lee WM, Kushner DB, Dye BT. Host factors in positive-strand RNA virus genome replication. J Virol 2003; 77:8181-6. [PMID: 12857886 PMCID: PMC165243 DOI: 10.1128/jvi.77.15.8181-8186.2003] [Citation(s) in RCA: 384] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Paul Ahlquist
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | | | | | | | |
Collapse
|
979
|
Venkatesan A, Sharma R, Dasgupta A. Cell cycle regulation of hepatitis C and encephalomyocarditis virus internal ribosome entry site-mediated translation in human embryonic kidney 293 cells. Virus Res 2003; 94:85-95. [PMID: 12902037 DOI: 10.1016/s0168-1702(03)00136-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have established stably transformed human embryonic kidney cell lines (HEK293) containing bicistronic constructs to study regulation of viral internal ribosome entry site (IRES)-mediated translation in vivo. These cells produce Renilla luciferase (Rluc) in a cap-dependent manner, while Firefly luciferase (Luc) synthesis is mediated by IRES elements. Using these cell lines, we demonstrate here that IRES-mediated translation directed by both hepatitis C (HCV) and encephalomyocarditis (EMCV) virus varies with the cell cycle. Experiments involving arrest of the cell lines at different phases of the cell cycle, release of synchronized cells from cell cycle arrest, as well as direct sorting of the cells based on position in the cell cycle have shown that the activity of the HCV and EMCV IRES elements is lowest during the G2/M phase in HEK293 cells. These results suggest that cellular trans-acting factors either stimulate viral IRES-mediated translation during G1 and S phases or repress translation during the G2/M phase in HEK293 cells.
Collapse
Affiliation(s)
- Arun Venkatesan
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
980
|
Abstract
Hepatitis C virus (HCV) uses complex and unique mechanisms to prevent, evade or subvert innate and adaptive immune responses and to establish persistent infection and chronic hepatitis. Recently developed experimental systems have significantly facilitated the analysis of HCV replication, virus-host interaction and pathogenesis of chronic hepatitis and have provided new insights into the mechanisms of HCV clearance and persistence.
Collapse
Affiliation(s)
- Vito Racanelli
- Liver Diseases Section, NIDDK, National Institutes of Health, 10 Center Drive, Room 9B16, Bethesda, MD 20892, USA
| | | |
Collapse
|
981
|
|
982
|
Kato N, Sugiyama K, Namba K, Dansako H, Nakamura T, Takami M, Naka K, Nozaki A, Shimotohno K. Establishment of a hepatitis C virus subgenomic replicon derived from human hepatocytes infected in vitro. Biochem Biophys Res Commun 2003; 306:756-66. [PMID: 12810084 DOI: 10.1016/s0006-291x(03)01047-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The hepatitis C virus (HCV) replicon system is a potent tool for understanding the mechanisms of HCV replication and proliferation, and for the development of treatments for patients with HCV. Recently, we established an HCV subgenomic replicon (50-1) using HCV genome RNA obtained from the cultured human T cell line MT-2C infected with HCV (isolate 1B-1) in vitro. In order to further obtain other HCV replicons without difficulty, we generated a replicon RNA library derived from human non-neoplastic hepatocytes infected with HCV (isolate 1B-2) in vitro. Upon transfection of the generated RNA library to "cured cells," from which the 50-1 subgenomic replicon was eliminated by prolonged treatment with interferon-alpha, we successfully established a new HCV subgenomic replicon, 1B-2R1. We characterized 1B-2R1 replicon in terms of efficiency of replication, HCV sequence, and sensitivity to interferons. The results revealed that the replication level of the 1B-2R1 replicon was comparable to that of the 50-1 replicon. We also found that the 1B-2R1 replicon possessed an HCV sequence distinct from those of other replicons established to date, and that the 1B-2R1 replicon was sensitive to interferon-alpha, interferon-beta, and interferon-gamma. Taken together, present results indicate that the replicon RNA library generated using an in vitro HCV infection system is useful for the establishment of an HCV subgenomic replicon.
Collapse
Affiliation(s)
- Nobuyuki Kato
- Department of Molecular Biology, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, 700-8558, Okayama, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
983
|
Abstract
Hepatitis C virus encodes two envelope glycoproteins, E1 and E2, that are released from a polyprotein precursor after cleavage by host signal peptidase(s). These proteins contain a large N-terminal ectodomain and a C-terminal transmembrane domain, and they assemble as a noncovalent heterodimer. The transmembrane domains of hepatitis C virus envelope glycoproteins have been shown to be multifunctional: (1) they are membrane anchors, (2) they bear ER retention signals, (3) they contain a signal sequence function, and (4) they are involved in E1-E2 heterodimerisation. Due to these multiple functions, the topology adopted by these transmembrane domains has given rise to much controversy. They are less than 30 amino acid residues long and are composed of two stretches of hydrophobic residues separated by a short segment containing one or two fully conserved positively charged residues. The presence of a signal sequence function in the C-terminal half of the transmembrane domains of E1 and E2 had suggested that these domains are composed of two membrane spanning segments. However, the two hydrophobic stretches are too short to make two membrane spanning alpha-helices. These discrepancies can now be explained by a dynamic model, based on experimental data, describing the early steps of the biogenesis of hepatitis C virus envelope glycoproteins. In this model, the transmembrane domains of E1 and E2 form a hairpin structure before cleavage by a signal peptidase, and a reorientation of the second hydrophobic stretch occurs after cleavage to produce a single membrane spanning domain.
Collapse
Affiliation(s)
- Anne Op De Beeck
- CNRS-UPR2511, Institut de Biologie de Lille & Institut Pasteur de Lille, 59021 Lille, France
| | | |
Collapse
|
984
|
Pizzuti M, De Tomassi A, Traboni C. Replication and IRES-dependent translation are both affected by core coding sequences in subgenomic GB virus B replicons. J Virol 2003; 77:7502-9. [PMID: 12805450 PMCID: PMC164834 DOI: 10.1128/jvi.77.13.7502-7509.2003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The yield of G418-resistant Huh7 cell clones bearing subgenomic dicistronic GB virus B (GBV-B) is significantly affected by the insertion of a portion of the viral core gene between the GBV-B 5' untranslated region and the exogenous neomycin phosphotransferase selector gene (A. De Tomassi, M. Pizzuti, R. Graziani, A. Sbardellati, S. Altamura, G. Paonessa, and C. Traboni, J. Virol. 76:7736-7746, 2002). In this report, we have dissected this phenomenon, examining the effects of the insertion of core sequences of different lengths on GBV-B IRES-dependent translation and RNA replication by using experimental approaches aimed at analyzing these two aspects independently. The results achieved indicate that an enhancement of translation efficiency does occur and that it correlates with the length of the inserted core sequences. Interestingly, the insertion of these sequences also has a direct similar effect on the efficiency of replication of the GBV-B replicon. These results suggest that in GBV-B replicon RNA and potentially in the complete viral genome, the core coding sequences not only are part of the IRES but also take part in the replication process, independently of the presence of the corresponding whole protein.
Collapse
Affiliation(s)
- Maura Pizzuti
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, 00040 Pomezia, Rome, Italy
| | | | | |
Collapse
|
985
|
Konan KV, Giddings TH, Ikeda M, Li K, Lemon SM, Kirkegaard K. Nonstructural protein precursor NS4A/B from hepatitis C virus alters function and ultrastructure of host secretory apparatus. J Virol 2003; 77:7843-55. [PMID: 12829824 PMCID: PMC161946 DOI: 10.1128/jvi.77.14.7843-7855.2003] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nonstructural proteins of hepatitis C virus (HCV) have been shown previously to localize to the endoplasmic reticulum (ER) when expressed singly or in the context of other HCV proteins. To determine whether the expression of HCV nonstructural proteins alters ER function, we tested the effect of expression of NS2/3/4A, NS4A, NS4B, NS4A/B, NS4B/5A, NS5A, and NS5B from genotype 1b HCV on anterograde traffic from the ER to the Golgi apparatus. Only the nominal precursor protein NS4A/B affected the rate of ER-to-Golgi traffic, slowing the rate of Golgi-specific modification of the vesicular stomatitis virus G protein expressed by transfection by approximately threefold. This inhibition of ER-to-Golgi traffic was not observed upon expression of the processed proteins NS4A and NS4B, singly or in combination. To determine whether secretion of other cargo proteins was inhibited by NS4A/B expression, we monitored the appearance of newly synthesized proteins on the cell surface in the presence and absence of NS4A/B expression; levels of all were reduced in the presence of NS4A/B. This reduction is also seen in cells that contain genome length HCV replicons: the rate of appearance of major histocompatibility complex class I (MHC-I) on the cell surface was reduced by three- to fivefold compared to that for a cured cell line. The inhibition of protein secretion caused by NS4A/B does not correlate with the ultrastructural changes leading to the formation a "membranous web" (D. Egger et al., J. Virol. 76:5974-5984, 2002), which can be caused by expression of NS4B alone. Inhibition of global ER-to-Golgi traffic could, by reducing cytokine secretion, MHC-I presentation, and transport of labile membrane proteins to the cell surface, have significant effects on the host immune response to HCV infection.
Collapse
Affiliation(s)
- Kouacou V Konan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|
986
|
Givens MD, Dykstra CC, Brock KV, Stringfellow DA, Kumar A, Stephens CE, Goker H, Boykin DW. Detection of inhibition of bovine viral diarrhea virus by aromatic cationic molecules. Antimicrob Agents Chemother 2003; 47:2223-30. [PMID: 12821472 PMCID: PMC161853 DOI: 10.1128/aac.47.7.2223-2230.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) is an economically significant pathogen of cattle and a problematic contaminant in the laboratory. BVDV is often used as an in vitro model for hepatitis C virus during drug discovery efforts. Aromatic dicationic molecules have exhibited inhibitory activity against several RNA viruses. Thus, the purpose of this research was to develop and apply a method for screening the aromatic cationic compounds for in vitro cytotoxicity and activity against a noncytopathic strain of BVDV. The screening method evaluated the concentration of BVDV in medium and cell lysates after 72 h of cell culture in the presence of either a 25 or 5 microM concentration of the test compound. Five of 93 screened compounds were selected for further determination of inhibitory (90 and 50%) and cytotoxic (50 and 10%) concentration endpoints. The screening method identified compounds that exhibited inhibition of BVDV at nanomolar concentrations while exhibiting no cytotoxicity at 25 microM concentrations. The leading compounds require further investigation to determine their mechanism of action, in vivo activity, and specific activity against hepatitis C virus.
Collapse
Affiliation(s)
- M Daniel Givens
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849, USA.
| | | | | | | | | | | | | | | |
Collapse
|
987
|
Abstract
The innate immune system has a role not only in protecting the host during the initial period of virus infection, but also in shaping the nature of the adaptive immune response. In this review, we follow the kinetics of the virologic and immunologic events occurring from the time of hepatitis B virus (HBV) and hepatitis C virus (HCV) infection. We primarily discuss how the early events after infection might influence the development of the adaptive immune response in these 2 important viral infections and how new strategies for more efficient preventive and therapeutic vaccines can be derived from this knowledge.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Institute of Hepatology, University College London, Royal Free and University College of London Medical School, London, UK.
| | | |
Collapse
|
988
|
Zhang T, Li Y, Lai JP, Douglas SD, Metzger DS, O'Brien CP, Ho WZ. Alcohol potentiates hepatitis C virus replicon expression. Hepatology 2003; 38:57-65. [PMID: 12829987 DOI: 10.1053/jhep.2003.50295] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alcohol consumption accelerates liver damage and diminishes the anti-hepatitis C virus (HCV) effect of interferon alfa (IFN-alpha) in patients with HCV infection. It is unknown, however, whether alcohol enhances HCV replication and promotes HCV disease progression. The availability of the HCV replicon containing hepatic cells has provided a unique opportunity to investigate the interaction between alcohol and HCV replicon expression. We determined whether alcohol enhances HCV RNA expression in the replicon containing hepatic cells. Alcohol, in a concentration-dependent fashion, significantly increased HCV replicon expression. Alcohol also compromised the anti-HCV effect of IFN-alpha. Investigation of the mechanism(s) responsible for the alcohol action on HCV replicon indicated that alcohol activated nuclear factor kappaB (NF-kappaB) promoter. Caffeic acid phenethyl ester (CAPE), a specific inhibitor of the activation of NF-kappaB, abolished alcohol-induced HCV RNA expression. In addition, naltrexone, an opiate receptor antagonist, abrogated the enhancing effect of alcohol on HCV replicon expression. In conclusion, alcohol, probably through the activation of NF-kappaB and the endogenous opioid system, enhances HCV replicon expression and compromises the anti-HCV effect of IFN-alpha. Thus, alcohol may play an important role in vivo as a cofactor in HCV disease progression and compromise IFN-alpha-based therapy against HCV infection.
Collapse
Affiliation(s)
- Ting Zhang
- Division of Allergy and Immunology, Joseph Stokes Jr. Research Institute at The Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
989
|
Vrolijk JM, Kaul A, Hansen BE, Lohmann V, Haagmans BL, Schalm SW, Bartenschlager R. A replicon-based bioassay for the measurement of interferons in patients with chronic hepatitis C. J Virol Methods 2003; 110:201-9. [PMID: 12798249 DOI: 10.1016/s0166-0934(03)00134-4] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Overall treatment results of chronic hepatitis C have improved markedly with the introduction of pegylated interferon-alpha (PEG-IFN-alpha) and ribavirin combination therapy. However, cure rates in the most common genotype 1 infection are still unsatisfactory. IFN-alpha dose-response studies on viral kinetics suggest that inadequate dosing might be a key factor but drug levels have hardly been tested, which is in part due to difficulties in measuring this cytokine in patient samples. We have shown recently that hepatitis C virus (HCV) replicons are highly sensitive to IFN-alpha. In this report we tested whether the replicon system could be used as a sensitive bioassay to determine the amount of biologically active IFN-alpha in serum or heparinized plasma of patients under therapy. To facilitate the measurements, a stably replicating subgenomic HCV RNA was developed that carries the gene encoding the firefly luciferase. Dose response studies with IFN-alpha demonstrate that the amount of expressed luciferase directly correlates with the level of HCV replication. By using this cell-based assay, serum samples of HCV patients treated with different types and doses of IFN-alpha were analyzed in parallel to IFN-alpha standards made by serial dilutions of the same type of IFN-alpha the patient was treated with. Based on nonlinear logistic models serum concentrations corresponding to 1.3-19 U/ml were determined in patients under standard or high dose IFN-alpha therapy, and from 3.8 to 4.1 ng/ml in patients treated with PEG IFN-alpha. In conclusion, the HCV-replicon based bioassay allows determining the levels of biologically active IFN-alpha in serum and heparinized plasma of patients under treatment.
Collapse
Affiliation(s)
- Jan M Vrolijk
- Department of Hepatology and Gastroenterology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
990
|
Kieft JS, Grech A, Adams P, Doudna JA. Mechanisms of internal ribosome entry in translation initiation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:277-83. [PMID: 12762029 DOI: 10.1101/sqb.2001.66.277] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- J S Kieft
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06511, USA
| | | | | | | |
Collapse
|
991
|
Lanford RE, Chavez D, Notvall L, Brasky KM. Comparison of tamarins and marmosets as hosts for GBV-B infections and the effect of immunosuppression on duration of viremia. Virology 2003; 311:72-80. [PMID: 12832204 DOI: 10.1016/s0042-6822(03)00193-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
GBV-B virus is a close relative to hepatitis C virus (HCV) that causes hepatitis in tamarins, and thus, is an attractive surrogate model for HCV. In this study, we demonstrate that the host range of GBV-B extends to the common marmoset with an infection profile similar to that observed for tamarins. Marmoset hepatocytes were susceptible to in vitro infection with GBV-B. Virus was efficiently secreted into the medium, and approximately 25% of hepatocytes were positive for NS3 staining. In an attempt to induce persistent infections, tamarins were immunosuppressed with FK506 and inoculated with GBV-B. Although no chronic infections were induced, the duration of viremia was increased in most animals. In one animal, the duration of viremia was extended to 46 weeks, but viral clearance occurred 18 weeks after stopping FK506 therapy. The greater availability of marmosets in comparison to tamarins will greatly facilitate future research efforts with this model.
Collapse
Affiliation(s)
- Robert E Lanford
- Department of Virology and Immunology, Southwest National Primate Research Center, and Southwest Foundation for Biomedical Research, San Antonio, TX 78227, USA.
| | | | | | | |
Collapse
|
992
|
Zhou S, Liu R, Baroudy BM, Malcolm BA, Reyes GR. The effect of ribavirin and IMPDH inhibitors on hepatitis C virus subgenomic replicon RNA. Virology 2003; 310:333-42. [PMID: 12781720 DOI: 10.1016/s0042-6822(03)00152-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The recent development of in vitro hepatitis C virus (HCV) RNA replication systems has provided useful tools for studying the intracellular anti-HCV activity of ribavirin. Ribavirin has been shown to: (1) induce "error catastrophe" in poliovirus, Proc. Natl. Acad. Sci. USA 98, 6895-6900), (2) be a pseudo-substrate of the HCV RNA-dependent RNA polymerase (RdRp) in vitro, J. Biol. Chem. 276, 46094-46098), and (3) increase mutations in HCV RNA in the binary T7 polymerase/HCV cDNA replication system, J. Virol. 76, 8505-8517). These findings have led to the hypothesis that ribavirin may also induce error catastrophe in HCV. However, the functional relevance of ribavirin-induced HCV RNA mutagenesis is unclear. By use of a colony formation assay, in which RNA is isolated from the HCV subgenomic replicon system following treatment, the impact of ribavirin, inosine-5'-monophosphate dehydrogenase (IMPDH) inhibitors, and the combination was assessed. Ribavirin reduced HCV replicon colony-forming efficiency (CFE) in a dose-dependent fashion, suggesting that ribavirin may be misincorporated into replicon RNA and result in an anti-replicon effect analogous to error catastrophe. This effect was markedly suppressed by addition of exogenous guanosine. Combination treatment with ribavirin and mycophenolic acid (MPA) or VX-497, both potent, nonnucleoside IMPDH inhibitors, led to a greatly enhanced anti-replicon effect. This enhancement was reversed by inclusion of guanosine with the treatment. In contrast, MPA or VX-497 alone had only marginal effects on both the quantity and quality (CFE) of replicon RNA, suggesting that although IMPDH inhibition is an important contributing factor to the overall ribavirin anti-HCV replicon activity, IMPDH inhibition by itself is not sufficient to exert an anti-HCV effect. Sequencing data targeting the neo gene segment of the HCV replicon indicated that ribavirin together with MPA or VX-497 increased the replicon error rate by about two-fold. Taken together these results further suggest that lethal mutagenesis may be an effective anti-HCV strategy. The colony formation assay provides a useful tool for evaluating mutagenic nucleoside analogs for HCV therapy. Finally, the data from combination treatment indicate potential therapeutic value for an enhanced anti-HCV effect when using ribavirin in combination with IMPDH inhibition.
Collapse
Affiliation(s)
- Sifang Zhou
- Antiviral Therapy, Schering-Plough Research Institute, Kenilworth, NJ 07033, USA
| | | | | | | | | |
Collapse
|
993
|
Geiss GK, Carter VS, He Y, Kwieciszewski BK, Holzman T, Korth MJ, Lazaro CA, Fausto N, Bumgarner RE, Katze MG. Gene expression profiling of the cellular transcriptional network regulated by alpha/beta interferon and its partial attenuation by the hepatitis C virus nonstructural 5A protein. J Virol 2003; 77:6367-75. [PMID: 12743294 PMCID: PMC155033 DOI: 10.1128/jvi.77.11.6367-6375.2003] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Alpha/beta interferons (IFN-alpha/beta) induce potent antiviral and antiproliferative responses and are used to treat a wide range of human diseases, including chronic hepatitis C virus (HCV) infection. However, for reasons that remain poorly understood, many HCV isolates are resistant to IFN therapy. To better understand the nature of the cellular IFN response, we examined the effects of IFN treatment on global gene expression by using several types of human cells, including HeLa cells, liver cell lines, and primary fetal hepatocytes. In response to IFN, 50 of the approximately 4,600 genes examined were consistently induced in each of these cell types and another 60 were induced in a cell type-specific manner. A search for IFN-stimulated response elements (ISREs) in genomic DNA located upstream of IFN-stimulated genes revealed both previously identified and novel putative ISREs. To determine whether HCV can alter IFN-regulated gene expression, we performed microarray analyses on IFN-treated HeLa cells expressing the HCV nonstructural 5A (NS5A) protein and on IFN-treated Huh7 cells containing an HCV subgenomic replicon. NS5A partially blocked the IFN-mediated induction of 14 IFN-stimulated genes, an effect that may play a role in HCV resistance to IFN. This block may occur through repression of ISRE-mediated transcription, since NS5A also inhibited the IFN-mediated induction of a reporter gene driven from an ISRE-containing promoter. In contrast, the HCV replicon had very little effect on IFN-regulated gene expression. These differences highlight the importance of comparing results from multiple model systems when investigating complex phenomena such as the cellular response to IFN and viral mechanisms of IFN resistance.
Collapse
Affiliation(s)
- Gary K Geiss
- Department of Microbiology, School of Medicine, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
994
|
Scherer L, Rossi JJ. Recent applications of RNA interference (RNAi) in mammalian systems. Int J Pept Res Ther 2003. [DOI: 10.1007/s10989-004-4924-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
995
|
Liu C, Zhu H, Tu Z, Xu YL, Nelson DR. CD8+ T-cell interaction with HCV replicon cells: evidence for both cytokine- and cell-mediated antiviral activity. Hepatology 2003; 37:1335-42. [PMID: 12774012 DOI: 10.1053/jhep.2003.50207] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The interaction between the host immune response and infected hepatocytes plays a central role in the pathogenesis of hepatitis C virus (HCV). The lack of a suitable animal or in vitro model has hindered our understanding of the host T-cell/HCV interaction. Our aim was to develop an in vitro model to study the mechanisms of HCV-specific T-cell-mediated antiviral and cytolytic function. The HCV replicon was HLA typed and lymphocytes were obtained from an HLA class I-matched subject. CD8(+) T cells were expanded with 2 HCV-specific/HLA-restricted peptides for NS3. Lymphocyte preparations were cocultured with HCV replicon (FCA1) and control (Huh7) cells labeled with (51)Cr. After a 48-hour incubation, the cells were harvested for RNA extraction. Standard blocking assays were performed in the presence of anti-interferon gamma (IFN-gamma), anti-tumor necrosis factor alpha (TNF-alpha), and anti-FasL. Cytolytic activity was measured by (51)Cr release. HCV replicon cells express homozygous HLA-A11 alleles and present HCV nonstructural proteins. HCV-specific expansion of CD8(+) cells led to a 10-fold decrease in HCV replication by Northern blot analysis and 21% specific lysis of FCA1 cells (compared with 2% of control Huh7 cells). Twenty percent of this antiviral activity was independent of T-cell binding, suggesting cytokine-mediated antiviral activity. The CD8(+) antiviral effect was markedly reduced by blocking either IFN-gamma or FasL but was unaffected by blocking TNF-alpha. In conclusion, HCV-specific CD8(+) cells inhibit viral RNA replication by cytokine-mediated and direct cytolytic effects. This T-cell/HCV subgenomic replicon system represents a model for the investigation of CD8 cell interaction with HCV-infected hepatocytes.
Collapse
Affiliation(s)
- Chen Liu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
996
|
Pause A, Kukolj G, Bailey M, Brault M, Dô F, Halmos T, Lagacé L, Maurice R, Marquis M, McKercher G, Pellerin C, Pilote L, Thibeault D, Lamarre D. An NS3 serine protease inhibitor abrogates replication of subgenomic hepatitis C virus RNA. J Biol Chem 2003; 278:20374-80. [PMID: 12646587 DOI: 10.1074/jbc.m210785200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hepatitis C virus (HCV) NS3 protease is essential for polyprotein maturation and viral propagation, and it has been proposed as a suitable target for antiviral drug discovery. An N-terminal hexapeptide cleavage product of a dodecapeptide substrate identified as a weak competitive inhibitor of the NS3 protease activity was optimized to a potent and highly specific inhibitor of the enzyme. The effect of this potent NS3 protease inhibitor was evaluated on replication of subgenomic HCV RNA and compared with interferon-alpha (IFN-alpha), which is currently used in the treatment of HCV-infected patients. Treatment of replicon-containing cells with the NS3 protease inhibitor or IFN-alpha showed a dose-dependent decrease in subgenomic HCV RNA that reached undetectable levels following a 14-day treatment. Kinetic studies in the presence of either NS3 protease inhibitor or IFN-alpha also revealed similar profiles in HCV RNA decay with half-lives of 11 and 14 h, respectively. The finding that an antiviral specifically targeting the NS3 protease activity inhibits HCV RNA replication further validates the NS3 enzyme as a prime target for drug discovery and supports the development of NS3 protease inhibitors as a novel therapeutic approach for HCV infection.
Collapse
Affiliation(s)
- Arnim Pause
- Department of Biological Sciences, Boehringer Ingelheim (Canada) Ltd., Research and Development, Laval, Québec H7S 2G5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
997
|
Foy E, Li K, Wang C, Sumpter R, Ikeda M, Lemon SM, Gale M. Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease. Science 2003; 300:1145-8. [PMID: 12702807 DOI: 10.1126/science.1082604] [Citation(s) in RCA: 597] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Persistent infections with hepatitis C virus (HCV) are likely to depend on viral inhibition of host defenses. We show that the HCV NS3/4A serine protease blocks the phosphorylation and effector action of interferon regulatory factor-3 (IRF-3), a key cellular antiviral signaling molecule. Disruption of NS3/4A protease function by mutation or a ketoamide peptidomimetic inhibitor relieved this blockade and restored IRF-3 phosphorylation after cellular challenge with an unrelated virus. Furthermore, dominant-negative or constitutively active IRF-3 mutants, respectively, enhanced or suppressed HCV RNA replication in hepatoma cells. Thus, the NS3/4A protease represents a dual therapeutic target, the inhibition of which may both block viral replication and restore IRF-3 control of HCV infection.
Collapse
Affiliation(s)
- Eileen Foy
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9048, USA
| | | | | | | | | | | | | |
Collapse
|
998
|
Lee JC, Shih YF, Hsu SP, Chang TY, Chen LH, Hsu JTA. Development of a cell-based assay for monitoring specific hepatitis C virus NS3/4A protease activity in mammalian cells. Anal Biochem 2003; 316:162-70. [PMID: 12711336 DOI: 10.1016/s0003-2697(03)00053-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The hepatitis C virus (HCV) contains a positive-sense RNA genome that encodes a unique polyprotein precursor, which must be processed by proteases to enable viral maturation. Virally encoded NS3/4A protease has thus become an attractive target for the development of antiviral drugs. To establish an assay system for monitoring NS3/4A protease activity in mammalian cells, this study describes a substrate vector, pEG(Delta4AB)SEAP, in which enhanced green fluorescent protein (EGFP) was fused to secreted alkaline phosphatase (SEAP) through the NS3/4A protease decapeptide recognition sequence, Delta4AB, which spans the NS4A and NS4B junction region. Secretion of SEAP into the culture medium was demonstrated to depend on the cleavage of Delta4AB by HCV NS3/4A protease. We demonstrated that the accumulation of SEAP activity in the culture medium depends on time up to 60h with the coexpression of active NS3/4A protease. The amount of SEAP in the culture medium was around 10 times greater than that of cells with coexpression of inactive NS3/4A mutant protease. This strategy has made it possible to monitor NS3/4A activity inside mammalian cells. Moreover, by using cells containing the HCV subgenomic replicon, the EG(Delta4AB)SEAP reporter can be used to detect the anti-HCV activity of interferon-alpha (IFN-alpha). Consequently, this EG(Delta4AB)SEAP reporter can be used to screen for NS3/4A protease inhibitors in the cellular environment and for anti-HCV drugs in replicon cells.
Collapse
Affiliation(s)
- Jin-Ching Lee
- Division of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Taipei 115, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
999
|
Grobler JA, Markel EJ, Fay JF, Graham DJ, Simcoe AL, Ludmerer SW, Murray EM, Migliaccio G, Flores OA. Identification of a key determinant of hepatitis C virus cell culture adaptation in domain II of NS3 helicase. J Biol Chem 2003; 278:16741-6. [PMID: 12615931 DOI: 10.1074/jbc.m212602200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Efficient replication of hepatitis C virus (HCV) replicons in cell culture is associated with specific sequences not generally observed in vivo. These cell culture adaptive mutations dramatically increase the frequency with which replication is established in vitro. However, replicons derived from HCV isolates that have been shown to replicate in chimpanzees do not replicate in cell culture even when these adaptive mutations are introduced. To better understand this apparent paradox, we performed a gain-of-function screen to identify sequences that could confer cell culture replication competence to replicons derived from chimpanzee infectious HCV isolates. We found that residue 470 in domain II of the NS3 helicase is a critical determinant in cell culture adaptation. Substitutions in residue 470 when combined with the NS5A-S232I adaptive mutation are both necessary and sufficient to confer cell culture replication to otherwise inactive replicons, including those derived from genotype 1b HCV-BK and genotype 1a HCV-H77 isolates. The specific substitution at residue 470 required for replication is context-dependent, with R470M and P470L being optimal for the activity of HCV-BK and HCV-H77 replicons, respectively. Together these data indicate that mutations in the NS3 helicase domain II act in concert with previously identified adaptive mutations and predict that introduction of compatible residues at these positions can confer cell culture replication activity to diverse HCV isolates.
Collapse
Affiliation(s)
- Jay A Grobler
- Department of Biological Chemistry, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1000
|
Gu B, Johnston VK, Gutshall LL, Nguyen TT, Gontarek RR, Darcy MG, Tedesco R, Dhanak D, Duffy KJ, Kao CC, Sarisky RT. Arresting initiation of hepatitis C virus RNA synthesis using heterocyclic derivatives. J Biol Chem 2003; 278:16602-7. [PMID: 12554734 DOI: 10.1074/jbc.m210891200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hepatitis C virus (HCV) NS5B protein encodes an RNA-dependent RNA polymerase (RdRp), the primary catalytic enzyme of the HCV replicase complex. Recently, two benzo-1,2,4-thiadiazine compounds were shown to be potent, highly specific inhibitors of the genotype 1b HCV RdRp containing a carboxyl-terminal 21 residue truncation (delta21 HCV RdRp) (Dhanak, D., Duffy, K., Johnston, V. K., Lin-Goerke, J., Darcy, M., Shaw, A. N. G. B., Silverman, C., Gates, A. T., Earnshaw, D. L., Casper, D. J., Kaura, A., Baker, A., Greenwood, C., Gutshall, L. L., Maley, D., DelVecchio, A., Macarron, R., Hofmann, G. A., Alnoah, Z., Cheng, H.-Y., Chan, G., Khandekar, S., Keenan, R. M., and Sarisky, R. T. (2002) J. Biol. Chem. 277, 38322-38327). Compound 4 (C(21)H(21)N(3)O(4)S) reduces viral replication by virtue of its direct interaction with the viral polymerase rather than by nonspecific titration of nucleic acid template. In this study, we present several lines of evidence to demonstrate that this inhibitor interferes with the initiation step of RNA synthesis rather than acting as an elongation inhibitor. Inhibition of initial phosphodiester bond formation occurred regardless of whether replication was initiated by primer-dependent or de novo mechanisms. Filter binding studies using increasing concentrations of compound 4 did not interfere with the ability of delta21 HCV RdRp to interact with nucleic acid. Furthermore, varying the order of reagent addition in the primer extension assay showed no distinct differences in inhibition profile. Finally, surface plasmon resonance analyses provided evidence that a ternary complex is capable of forming between the RNA template, RdRp, and compound 4. Together, these data suggest that this heterocyclic agent interacts with the apoenzyme, as well as with the RNA-bound form of delta21 HCV RdRp, and therefore does not directly interfere with the RdRp-RNA interaction to mediate inhibition.
Collapse
Affiliation(s)
- Baohua Gu
- Department of Virology, The Metabolic and Viral Diseases Center of Excellence for Drug Discovery, GlaxoSmithKline Pharmaceuticals, Bloomington, Indiana 47405, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|