99951
|
Ozkan E, Crick CC, Taylor A, Allan E, Parkin IP. Copper-based water repellent and antibacterial coatings by aerosol assisted chemical vapour deposition. Chem Sci 2016; 7:5126-5131. [PMID: 30155163 PMCID: PMC6020121 DOI: 10.1039/c6sc01150k] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 04/13/2016] [Indexed: 12/31/2022] Open
Abstract
The adhesion and proliferation of bacteria on solid surfaces presents a major challenge in both healthcare and industrial applications. In response to this problem, an effective and simple method is reported to fabricate superhydrophobic antibacterial copper coated polymer films via aerosol assisted chemical vapor deposition (AACVD). The material is characterized using a range of techniques including electron microscopy, water contact angle measurement and elemental mapping. The antibacterial activity of the modified film is tested against the Gram-negative bacterium, Escherichia coli, and the Gram-positive bacterium, Staphylococcus aureus and the film shows highly significant antibacterial activity against both bacteria (>4 log reduction in bacterial numbers) in 15 min and 60 min, respectively. In addition, all the CVD modified samples results in a significant reduction in bacterial cell adhesion compared to the control materials. Thus, we report a new film type that has dual mode of action-the superhydrophobicity helps limit cell adhesion combined with a cytotoxic copper induced bacteria kill.
Collapse
Affiliation(s)
- Ekrem Ozkan
- Materials Chemistry Research Centre , Department of Chemistry , University College London , 20 Gordon St , London , WC1H 0AJ , UK . ; Tel: +44 (0)207 679 4669
| | - Colin C Crick
- Department of Chemistry , Imperial College London , South Kensington Campus , London , SW7 2AZ , UK
| | - Alaric Taylor
- Department of Electronic and Electrical Engineering , University College London , Torrington Place , London , WC1E 7JE , UK
| | - Elaine Allan
- Division of Microbial Diseases , UCL Eastman Dental Institute , University College London , 256 Grays Inn Road , London , WC1X 8LD , UK
| | - Ivan P Parkin
- Materials Chemistry Research Centre , Department of Chemistry , University College London , 20 Gordon St , London , WC1H 0AJ , UK . ; Tel: +44 (0)207 679 4669
| |
Collapse
|
99952
|
Yu KH, Snyder M. Omics Profiling in Precision Oncology. Mol Cell Proteomics 2016; 15:2525-36. [PMID: 27099341 PMCID: PMC4974334 DOI: 10.1074/mcp.o116.059253] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/15/2016] [Indexed: 12/11/2022] Open
Abstract
Cancer causes significant morbidity and mortality worldwide, and is the area most targeted in precision medicine. Recent development of high-throughput methods enables detailed omics analysis of the molecular mechanisms underpinning tumor biology. These studies have identified clinically actionable mutations, gene and protein expression patterns associated with prognosis, and provided further insights into the molecular mechanisms indicative of cancer biology and new therapeutics strategies such as immunotherapy. In this review, we summarize the techniques used for tumor omics analysis, recapitulate the key findings in cancer omics studies, and point to areas requiring further research on precision oncology.
Collapse
Affiliation(s)
- Kun-Hsing Yu
- From the ‡Department of Genetics, Stanford University School of Medicine, Stanford, California; §Biomedical Informatics Program, Stanford University School of Medicine, Stanford, California
| | - Michael Snyder
- From the ‡Department of Genetics, Stanford University School of Medicine, Stanford, California;
| |
Collapse
|
99953
|
Heine D, Sundaram S, Beudert M, Martin K, Hertweck C. A widespread bacterial phenazine forms S-conjugates with biogenic thiols and crosslinks proteins. Chem Sci 2016; 7:4848-4855. [PMID: 30155132 PMCID: PMC6016718 DOI: 10.1039/c6sc00503a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/13/2016] [Indexed: 01/13/2023] Open
Abstract
Phenazines are redox-active compounds produced by a range of bacteria, including many pathogens. Endowed with various biological activities, these ubiquitous N-heterocycles are well known for their ability to generate reactive oxygen species by redox cycling. Phenazines may lead to an irreversible depletion of glutathione, but a detailed mechanism has remained elusive. Furthermore, it is not understood why phenazines have so many protein targets and cause protein misfolding as well as their aggregation. Here we report the discovery of unprecedented conjugates (panphenazines A, B) of panthetheine and phenazine-1-carboxylic (PCA) acid from a Kitasatospora sp., which prompted us to investigate their biogenesis. We found that PCA reacts with diverse biogenic thiols under radical-forming conditions, which provides a plausible model for irreversible glutathione depletion. To evaluate the scope of the reaction in cells we designed biotin and rhodamine conjugates for protein labelling and examined their covalent fusion with model proteins (ketosynthase, carbonic anhydrase III, albumin). Our results reveal important, yet overlooked biological roles of phenazines and show for the first time their function in protein conjugation and crosslinking.
Collapse
Affiliation(s)
- D Heine
- Leibniz Institute for Natural Product Research and Infection Biology , Hans Knoell Institute , Beutenbergstrasse 11a , 07745 Jena , Germany .
| | - S Sundaram
- Leibniz Institute for Natural Product Research and Infection Biology , Hans Knoell Institute , Beutenbergstrasse 11a , 07745 Jena , Germany .
| | - Matthias Beudert
- Leibniz Institute for Natural Product Research and Infection Biology , Hans Knoell Institute , Beutenbergstrasse 11a , 07745 Jena , Germany .
| | - K Martin
- Leibniz Institute for Natural Product Research and Infection Biology , Hans Knoell Institute , Beutenbergstrasse 11a , 07745 Jena , Germany .
| | - C Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology , Hans Knoell Institute , Beutenbergstrasse 11a , 07745 Jena , Germany .
- Friedrich Schiller University , 07737 Jena , Germany
| |
Collapse
|
99954
|
Lee SJ, Lee D, Yoon TR, Kim HK, Jo HH, Park JS, Lee JH, Kim WD, Kwon IK, Park SA. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Acta Biomater 2016; 40:182-191. [PMID: 26868173 DOI: 10.1016/j.actbio.2016.02.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/21/2016] [Accepted: 02/05/2016] [Indexed: 01/04/2023]
Abstract
UNLABELLED For tissue engineering, a bio-porous scaffold which is applied to bone-tissue regeneration should provide the hydrophilicity for cell attachment as well as provide for the capability to bind a bioactive molecule such as a growth factor in order to improve cell differentiation. In this work, we prepared a three-dimensional (3D) printed polycaprolactone scaffold (PCLS) grafted with recombinant human bone morphogenic protein-2 (rhBMP2) attached via polydopamine (DOPA) chemistry. The DOPA coated PCL scaffold was characterized by contact angle, water uptake, and X-ray photoelectron spectroscopy (XPS) in order to certify that the surface was successfully coated with DOPA. In order to test the loading and release of rhBMP2, we examined the release rate for 28days. For the In vitro cell study, pre-osteoblast MC3T3-E1 cells were seeded onto PCL scaffolds (PCLSs), DOPA coated PCL scaffold (PCLSD), and scaffolds with varying concentrations of rhBMP2 grafted onto the PCLSD 100 and PCLSD 500 (100 and 500ng/ml loaded), respectively. These scaffolds were evaluated by cell proliferation, alkaline phosphatase activity, and real time polymerase chain reaction with immunochemistry in order to verify their osteogenic activity. Through these studies, we demonstrated that our fabricated scaffolds were well coated with DOPA as well as grafted with rhBMP2 at a quantity of 22.7±5ng when treatment with 100ng/ml rhBMP2 and 153.3±2.4ng when treated with 500ng/ml rhBMP2. This grafting enables rhBMP2 to be released in a sustained pattern. In the in vitro results, the cell proliferation and an osteoconductivity of PCLSD 500 groups was greater than any other group. All of these results suggest that our manufactured 3D printed porous scaffold would be a useful construct for application to the bone tissue engineering field. STATEMENT OF SIGNIFICANCE Tissue-engineered scaffolds are not only extremely complex and cumbersome, but also use organic solvents which can negatively influence cellular function. Thus, a rapid, solvent-free method is necessary to improve scaffold generation. Recently, 3D printing such as a rapid prototyping technique has several benefits in that manufacturing is a simple process using computer aided design and scaffolds can be generated without using solvents. In this study, we designed a bio-active scaffold using a very simple and direct method to manufacture DOPA coated 3D PCL porous scaffold grafted with rhBMP2 as a means to create bone-tissue regenerative scaffolds. To our knowledge, our approach can allow for the generation of scaffolds which possessed good properties for use as bone-tissue scaffolds.
Collapse
Affiliation(s)
- Sang Jin Lee
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea; Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Donghyun Lee
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Taek Rim Yoon
- Department of Orthopaedics Surgery, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do 58128, Republic of Korea
| | - Hyung Keun Kim
- Department of Orthopaedics Surgery, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do 58128, Republic of Korea
| | - Ha Hyeon Jo
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea
| | - Ji Sun Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea
| | - Jun Hee Lee
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea
| | - Wan Doo Kim
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Su A Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea.
| |
Collapse
|
99955
|
Leng C, Sun S, Zhang K, Jiang S, Chen Z. Molecular level studies on interfacial hydration of zwitterionic and other antifouling polymers in situ. Acta Biomater 2016; 40:6-15. [PMID: 26923530 DOI: 10.1016/j.actbio.2016.02.030] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/19/2016] [Accepted: 02/22/2016] [Indexed: 12/16/2022]
Abstract
UNLABELLED Antifouling polymers have wide applications in biomedical engineering and marine industry. Recently, zwitterionic materials have been reported as promising candidates for antifouling applications, while strong hydration is believed to be the key antifouling mechanism. Zwitterionic materials can be designed with various molecular structures, which affect their hydration and antifouling performance. Although strong hydration has been proposed to occur at the material surfaces, probing the solid material/water interfaces is challenging with traditional analytical techniques. Here in this review, we will review our studies on surface hydration of zwitterionic materials and other antifouling materials by using sum frequency generation (SFG) vibrational spectroscopy, which provides molecular understanding of the water structures at various material surfaces. The materials studied include zwitterionic polymer brushes with different molecular structures, amphiphilic polymers with zwitterionic groups, uncharged hydrophilic polymer brushes, amphiphilic polypeptoids, and widely used antifouling material poly(ethylene glycol). We will compare the differences among zwitterionic materials with various molecular structures as well as the differences between antifouling materials and fouling surfaces of control samples. We will also discuss the effects of pH and biological molecules like proteins on the surface hydration of the zwitterionic materials. Using SFG spectroscopy, we have measured the hydration layers of antifouling materials and found that strong hydrogen bonds are key to the formation of strong hydration layers preventing protein fouling at the polymer interfaces. STATEMENT OF SIGNIFICANCE Antifouling polymers have wide applications in biomedical engineering and marine industry. Recently, zwitterionic materials have been reported as promising candidates for antifouling applications, while strong hydration is believed to be the key antifouling mechanism. However, zwitterionic materials can be designed with various molecular structures, which affect their hydration and antifouling performance. Moreover, although strong hydration has been proposed to occur at the material surfaces, probing the solid material/water interfaces is challenging with traditional analytical techniques. Here in this manuscript, we will review our studies on surface hydration of zwitterionic materials and other antifouling materials by using sum frequency generation (SFG) vibrational spectroscopy, which provides molecular understanding of the water structures at various material surfaces. The materials studied include zwitterionic polymer brushes with different molecular structures, amphiphilic polymers with zwitterionic groups, uncharged hydrophilic polymer brushes, amphiphilic polypeptoids, and widely used antifouling material poly(ethylene glycol). We will compare the differences among zwitterionic materials with various molecular structures as well as the differences between antifouling materials and fouling surfaces of control samples. We will also discuss the effects of pH and biological molecules like proteins on the surface hydration of the zwitterionic materials. All the SFG results indicate that strongly hydrogen-bonded water at the materials' surfaces (strong surface hydration) is closely correlated to the good antifouling properties of the materials. This review will be widely interested by readers of Acta Biomaterialia and will impact many different research fields in chemistry, materials, engineering, and beyond.
Collapse
|
99956
|
Velasco-Lozano S, López-Gallego F, Rocha-Martin J, Guisán JM, Favela-Torres E. Improving enantioselectivity of lipase from Candida rugosa by carrier-bound and carrier-free immobilization. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
99957
|
Danezis GP, Tsagkaris AS, Brusic V, Georgiou CA. Food authentication: state of the art and prospects. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.07.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
99958
|
Vikas V, Cohen E, Grassi R, Sozer C, Trimmer B. Design and Locomotion Control of a Soft Robot Using Friction Manipulation and Motor–Tendon Actuation. IEEE T ROBOT 2016. [DOI: 10.1109/tro.2016.2588888] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
99959
|
Enzymatic modification of polysaccharides: Mechanisms, properties, and potential applications: A review. Enzyme Microb Technol 2016; 90:1-18. [DOI: 10.1016/j.enzmictec.2016.04.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 11/24/2022]
|
99960
|
Evaluation of magnetic particles modified with a hydrophobic charge-induction ligand for antibody capture. J Chromatogr A 2016; 1460:61-7. [DOI: 10.1016/j.chroma.2016.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/30/2016] [Accepted: 07/03/2016] [Indexed: 11/21/2022]
|
99961
|
Mohammadi M, Nejatollahi F, Sakhteman A, Zarei N. Insilico analysis of three different tag polypeptides with dual roles in scFv antibodies. J Theor Biol 2016; 402:100-6. [DOI: 10.1016/j.jtbi.2016.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/13/2016] [Accepted: 04/16/2016] [Indexed: 11/26/2022]
|
99962
|
Biosynthesis, purification and characterization of polyhydroxybutyrate from Botryococcus braunii kütz. Int J Biol Macromol 2016; 89:700-6. [DOI: 10.1016/j.ijbiomac.2016.04.086] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 01/26/2023]
|
99963
|
Composite vascular scaffold combining electrospun fibers and physically-crosslinked hydrogel with copper wire-induced grooves structure. J Mech Behav Biomed Mater 2016; 61:12-25. [DOI: 10.1016/j.jmbbm.2016.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 11/20/2022]
|
99964
|
Random sample consensus combined with partial least squares regression (RANSAC-PLS) for microbial metabolomics data mining and phenotype improvement. J Biosci Bioeng 2016; 122:168-75. [DOI: 10.1016/j.jbiosc.2016.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 11/18/2022]
|
99965
|
Xie B, Sharp JS. Relative Quantification of Sites of Peptide and Protein Modification Using Size Exclusion Chromatography Coupled with Electron Transfer Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1322-1327. [PMID: 27075875 PMCID: PMC4945384 DOI: 10.1007/s13361-016-1403-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
One difficult problem in the analysis of peptide modifications is quantifying isomeric modifications that differ by the position of the amino acid modified. HPLC separation using C18 reverse phase chromatography coupled with electron transfer dissociation (ETD) in tandem mass spectrometry has recently been shown to be able to relatively quantify how much of a given modification occurs at each amino acid position for isomeric mixtures; however, the resolution of reverse phase chromatography greatly complicates quantification of isomeric modifications by ETD because of the chromatographic separation of peptides with identical modifications at different sequence positions. Using peptide oxidation as a model system, we investigated the use of size exclusion chromatography coupled with ETD fragmentation to separate peptide sequences. This approach allows for the benefits of chromatographic separation of peptide sequences while ensuring co-elution of modification isomers for accurate relative quantification of modifications using standard data-dependent acquisitions. Using this method, the relative amount of modification at each amino acid can be accurately measured from single ETD MS/MS spectra in a standard data-dependent acquisition experiment. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Boer Xie
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Joshua S Sharp
- Department of Biomolecular Sciences, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
99966
|
Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s41204-016-0004-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
99967
|
Gribas AV, Zatsepin TS, Korolev SP, Gottikh MB, Sakharov IY. Suicide inactivation of covalent peroxidase-mimicking DNAzyme with hydrogen peroxide and its protection by a reductant substrate. Talanta 2016; 155:212-5. [DOI: 10.1016/j.talanta.2016.04.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/12/2016] [Accepted: 04/16/2016] [Indexed: 12/29/2022]
|
99968
|
Rea K, Pinciroli P, Sensi M, Alciato F, Bisaro B, Lozneanu L, Raspagliesi F, Centritto F, Cabodi S, Defilippi P, Avanzi GC, Canevari S, Tomassetti A. Novel Axl-driven signaling pathway and molecular signature characterize high-grade ovarian cancer patients with poor clinical outcome. Oncotarget 2016; 6:30859-75. [PMID: 26356564 PMCID: PMC4741573 DOI: 10.18632/oncotarget.5087] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/22/2015] [Indexed: 01/12/2023] Open
Abstract
High-grade epithelial ovarian cancer (HGEOC) is a clinically diverse and molecularly heterogeneous disease comprising subtypes with distinct biological features and outcomes. The receptor tyrosine kinases, expressed by EOC cells, and their ligands, present in the microenvironment, activate signaling pathways, which promote EOC cells dissemination. Herein, we established a molecular link between the presence of Gas6 ligand in the ascites of HGEOCs, the expression and activation of its receptor Axl in ovarian cancer cell lines and biopsies, and the progression of these tumors. We demonstrated that Gas6/Axl signalling converges on the integrin β3 pathway in the presence of the adaptor protein p130Cas, thus inducing tumor cell adhesion to the extracellular matrix and invasion. Accordingly, Axl and p130Cas were significantly co-expressed in HGEOC samples. Clinically, we identified an Axl-associated signature of 62 genes able to portray the HGEOCs with the shortest overall survival. These data biologically characterize a group of HGEOCs and could help guide a more effective therapeutic approach to be taken for these patients.
Collapse
Affiliation(s)
- Katia Rea
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Pinciroli
- Functional Genomics and Bioinformatics Core Facility, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marialuisa Sensi
- Functional Genomics and Bioinformatics Core Facility, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Alciato
- Department of Traslational Medicine, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Brigitte Bisaro
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Ludmila Lozneanu
- Department of Morphofunctional Sciences, Histology, Morphopatology, "Grigore T. Popa" University of Medicine and Pharmacy, Iassy, Romania
| | - Francesco Raspagliesi
- Gynecology Oncology Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Floriana Centritto
- Functional Genomics and Bioinformatics Core Facility, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Cabodi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Gian Carlo Avanzi
- Department of Traslational Medicine, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Silvana Canevari
- Functional Genomics and Bioinformatics Core Facility, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Antonella Tomassetti
- Unit of Molecular Therapies, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
99969
|
Knoblauch J, Tepler Drobnitch S, Peters WS, Knoblauch M. In situ microscopy reveals reversible cell wall swelling in kelp sieve tubes: one mechanism for turgor generation and flow control? PLANT, CELL & ENVIRONMENT 2016; 39:1727-36. [PMID: 26991892 DOI: 10.1111/pce.12736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
Kelps, brown algae (Phaeophyceae) of the order Laminariales, possess sieve tubes for the symplasmic long-distance transport of photoassimilates that are evolutionarily unrelated but structurally similar to the tubes in the phloem of vascular plants. We visualized sieve tube structure and wound responses in fully functional, intact Bull Kelp (Nereocystis luetkeana [K. Mertens] Postels & Ruprecht 1840). In injured tubes, apparent slime plugs formed but were unlikely to cause sieve tube occlusion as they assembled at the downstream side of sieve plates. Cell walls expanded massively in the radial direction, reducing the volume of the wounded sieve elements by up to 90%. Ultrastructural examination showed that a layer of the immediate cell wall characterized by circumferential cellulose fibrils was responsible for swelling and suggested that alginates, abundant gelatinous polymers of the cell wall matrix, were involved. Wall swelling was rapid, reversible and depended on intracellular pressure, as demonstrated by pressure-injection of silicon oil. Our results revive the concept of turgor generation and buffering by swelling cell walls, which had fallen into oblivion over the last century. Because sieve tube transport is pressure-driven and controlled physically by tube diameter, a regulatory role of wall swelling in photoassimilate distribution is implied in kelps.
Collapse
Affiliation(s)
- Jan Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Sarah Tepler Drobnitch
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Winfried S Peters
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
99970
|
Roberts I, Smith S, Stes E, De Rybel B, Staes A, van de Cotte B, Njo MF, Dedeyne L, Demol H, Lavenus J, Audenaert D, Gevaert K, Beeckman T, De Smet I. CEP5 and XIP1/CEPR1 regulate lateral root initiation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4889-99. [PMID: 27296247 PMCID: PMC4983111 DOI: 10.1093/jxb/erw231] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Roots explore the soil for water and nutrients through the continuous production of lateral roots. Lateral roots are formed at regular distances in a steadily elongating organ, but how future sites for lateral root formation become established is not yet understood. Here, we identified C-TERMINALLY ENCODED PEPTIDE 5 (CEP5) as a novel, auxin-repressed and phloem pole-expressed signal assisting in the formation of lateral roots. In addition, based on genetic and expression data, we found evidence for the involvement of its proposed receptor, XYLEM INTERMIXED WITH PHLOEM 1 (XIP1)/CEP RECEPTOR 1 (CEPR1), during the process of lateral root initiation. In conclusion, we report here on the existence of a peptide ligand-receptor kinase interaction that impacts lateral root initiation. Our results represent an important step towards the understanding of the cellular communication implicated in the early phases of lateral root formation.
Collapse
Affiliation(s)
- Ianto Roberts
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Stephanie Smith
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Elisabeth Stes
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium Medical Biotechnology Center, VIB, B-9000 Ghent, Belgium Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Bert De Rybel
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - An Staes
- Medical Biotechnology Center, VIB, B-9000 Ghent, Belgium Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Brigitte van de Cotte
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Maria Fransiska Njo
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Lise Dedeyne
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Hans Demol
- Medical Biotechnology Center, VIB, B-9000 Ghent, Belgium Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Julien Lavenus
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Dominique Audenaert
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Kris Gevaert
- Medical Biotechnology Center, VIB, B-9000 Ghent, Belgium Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Ive De Smet
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK Centre for Plant Integrative Biology, University of Nottingham, Loughborough LE12 5RD, UK
| |
Collapse
|
99971
|
Liu ZH, Chen HZ. Mechanical property of different corn stover morphological fractions and its correlations with high solids enzymatic hydrolysis by periodic peristalsis. BIORESOURCE TECHNOLOGY 2016; 214:292-302. [PMID: 27140819 DOI: 10.1016/j.biortech.2016.04.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
Selective structure fractionation combined with periodic peristalsis was exploited to improve the conversion performance of corn stover. The increase of glucan and lignin content and the decrease of xylan content in stem pith were highest after SE, whereas they were lowest in stem node. Glucan conversion increased in this order: steam node<stem rind<whole corn stover (WCS)<stem pith<leaf sheath<leaf. Glucan conversion using periodic peristalsis increased by 10-17% before 24h compared with that using incubator shaker. Stem pith, leaf sheath, leaf, and WCS showed lower hardness and total work in texture profile analysis, resulting in higher glucan conversion compared with stem node and stem rind. Periodic peristalsis reduced hardness and total work before 24h, which was consistent with increased glucan conversion. Periodic peristalsis was an effective strategy to increase high solids enzymatic hydrolysis efficiency of different corn stover morphological fractions.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hong-Zhang Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
99972
|
Babaei P, Marashi SA, Asad S. Genome-scale reconstruction of the metabolic network in Pseudomonas stutzeri A1501. MOLECULAR BIOSYSTEMS 2016; 11:3022-32. [PMID: 26302703 DOI: 10.1039/c5mb00086f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pseudomonas stutzeri A1501 is an endophytic bacterium capable of nitrogen fixation. This strain has been isolated from the rice rhizosphere and provides the plant with fixed nitrogen and phytohormones. These interesting features encouraged us to study the metabolism of this microorganism at the systems-level. In this work, we present the first genome-scale metabolic model (iPB890) for P. stutzeri, involving 890 genes, 1135 reactions, and 813 metabolites. A combination of automatic and manual approaches was used in the reconstruction process. Briefly, using the metabolic networks of Pseudomonas aeruginosa and Pseudomonas putida as templates, a draft metabolic network of P. stutzeri was reconstructed. Then, the draft network was driven through an iterative and curative process of gap filling. In the next step, the model was evaluated using different experimental data such as specific growth rate, Biolog substrate utilization data and other experimental observations. In most of the evaluation cases, the model was successful in correctly predicting the cellular phenotypes. Thus, we posit that the iPB890 model serves as a suitable platform to explore the metabolism of P. stutzeri.
Collapse
Affiliation(s)
- Parizad Babaei
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | | | | |
Collapse
|
99973
|
Olajuyin AM, Yang M, Liu Y, Mu T, Tian J, Adaramoye OA, Xing J. Efficient production of succinic acid from Palmaria palmata hydrolysate by metabolically engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2016; 214:653-659. [PMID: 27203224 DOI: 10.1016/j.biortech.2016.04.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 06/05/2023]
Abstract
Succinic acid, a C4 dicarboxylic acid is used in many fields such as food, agriculture, pharmaceutical and polymer industries. In this study, microbial production of succinic acid from Palmaria palmata was investigated for the first time. In engineered Escherichia coli KLPPP, lactate dehydrogenase, pyruvate formate lyase, phosphotransacetylase-acetate kinase and pyruvate oxidase genes were deleted while phosphoenolpyruvate carboxykinase was overexpressed. The recombinant exhibited higher molar yield of succinic acid on galactose (1.20±0.02mol/mol) than glucose (0.48±0.03mol/mol). The concentration and molar yield of succinic acid were 22.40±0.12g/L and 1.13±0.02mol/mol total sugar respectively after 72h dual phase fermentation from P. palmata hydrolysate which composed of glucose (12.57±0.17g/L) and galactose (18.03±0.10g/L). The results demonstrate that P. palmata red macroalgae biomass represents a novel and an economically alternative feedstock for biochemicals production.
Collapse
Affiliation(s)
- Ayobami Matthew Olajuyin
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maohua Yang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yilan Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tingzhen Mu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangnan Tian
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Jianmin Xing
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
99974
|
Zhang Y, Xie C, Wang H, Foss RM, Clare M, George EV, Li S, Katz A, Cheng H, Ding Y, Tang D, Reeves WH, Yang LJ. Irisin exerts dual effects on browning and adipogenesis of human white adipocytes. Am J Physiol Endocrinol Metab 2016; 311:E530-41. [PMID: 27436609 DOI: 10.1152/ajpendo.00094.2016] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/08/2016] [Indexed: 12/20/2022]
Abstract
To better understand the role of irisin in humans, we examined the effects of irisin in human primary adipocytes and fresh human subcutaneous white adipose tissue (scWAT). Human primary adipocytes derived from 28 female donors' fresh scWAT were used to examine the effects of irisin on browning and mitochondrial respiration, and preadipocytes were used to examine the effects of irisin on adipogenesis and osteogenesis. Cultured fragments of scWAT and perirenal brown fat were used for investigating signal transduction pathways that mediate irisin's browning effect by Western blotting to detect phosphorylated forms of p38, ERK, and STAT3 as well as uncoupling protein 1 (UCP1). Individual responses to irisin in scWAT were correlated with basal expression levels of brown/beige genes. Irisin upregulated the expression of browning-associated genes and UCP1 protein in both cultured primary mature adipocytes and fresh adipose tissues. It also significantly increased thermogenesis at 5 nmol/l by elevating cellular energy metabolism (OCR and ECAR). Treating human scWAT with irisin increased UCP1 expression by activating the ERK and p38 MAPK signaling. Blocking either pathway with specific inhibitors abolished irisin-induced UCP1 upregulation. However, our results showed that UCP1 in human perirenal adipose tissue was insensitive to irisin. Basal levels of brown/beige and FNDC5 genes correlated positively with the browning response of scWAT to irisin. In addition, irisin significantly inhibited adipogenic differentiation but promoted osteogenic differentiation. We conclude that irisin promotes "browning" of mature white adipocytes by increasing cellular thermogenesis, whereas it inhibits adipogenesis and promotes osteogenesis during lineage-specific differentiation. Our findings provide a rationale for further exploring the therapeutic use of irisin in obesity and exercise-associated bone formation.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida; Center for Stem Cell and Regenerative Medicine, The Second Hospital of Shandong University, Jinan, China
| | - Chao Xie
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Hai Wang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Robin M Foss
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Morgan Clare
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Eva Vertes George
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Shiwu Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Adam Katz
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Henrique Cheng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery, and Development, College of Pharmacy, University of Florida, Gainesville, Florida; and
| | - Dongqi Tang
- Center for Stem Cell and Regenerative Medicine, The Second Hospital of Shandong University, Jinan, China
| | - Westley H Reeves
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Li-Jun Yang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida;
| |
Collapse
|
99975
|
|
99976
|
Lee J, Shin S, Choi K, Jo J, Kim J. Production of Fermentable Sugar from Lipid Extracted Algae using Hot Water Pretreatment. KOREAN CHEMICAL ENGINEERING RESEARCH 2016. [DOI: 10.9713/kcer.2016.54.4.443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
99977
|
Ibrahim B. In silico spatial simulations reveal that MCC formation and excess BubR1 are required for tight inhibition of the anaphase-promoting complex. MOLECULAR BIOSYSTEMS 2016; 11:2867-77. [PMID: 26256776 DOI: 10.1039/c5mb00395d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In response to the activation of the mitotic spindle assembly checkpoint (SAC), distinct inhibitory pathways control the activity of the anaphase-promoting complex (APC/C). It remains unclear whether the different regulatory mechanisms function in separate pathways or as part of an integrated signalling system. Here, five variant models of APC/C regulation were constructed and analysed. The simulations showed that all variant models were able to reproduce the wild type behaviour of the APC. However, only one model, which included both the mitotic checkpoint complex (MCC) as well as BubR1 as direct inhibitors of the APC/C, was able to reproduce both wild and mutant type behaviour of APC/C regulation. Interestingly, in this model, the MCC as well as the BubR1 binding rate to the APC/C was comparable to the known Cdc20-Mad2 binding rate and could not be made higher. Mad2 active transport towards the spindle mid-zone accelerated the inhibition speed of the APC/C but not its concentration level. The presented study highlights the principle that a systems biology approach is critical for the SAC mechanism and could also be used for predicting hypotheses to design future experiments. The presented work has successfully distinguished between five potent inhibitors of the APC/C using a systems biology approach. Here, the favoured model contains both BubR1 and MCC as direct inhibitors of the APC/C.
Collapse
Affiliation(s)
- Bashar Ibrahim
- Bio System Analysis Group, Friedrich-Schiller-University Jena, and Jena Centre for Bioinformatics (JCB), 07743 Jena, Germany.
| |
Collapse
|
99978
|
Lintern K, Pathak M, Smales CM, Howland K, Rathore A, Bracewell DG. Residual on column host cell protein analysis during lifetime studies of protein A chromatography. J Chromatogr A 2016; 1461:70-7. [DOI: 10.1016/j.chroma.2016.07.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/16/2016] [Accepted: 07/20/2016] [Indexed: 11/28/2022]
|
99979
|
Miyaoka Y, Chan AH, Conklin BR. Detecting Single-Nucleotide Substitutions Induced by Genome Editing. Cold Spring Harb Protoc 2016; 2016:pdb.top090845. [PMID: 27250209 DOI: 10.1101/pdb.top090845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The detection of genome editing is critical in evaluating genome-editing tools or conditions, but it is not an easy task to detect genome-editing events-especially single-nucleotide substitutions-without a surrogate marker. Here we introduce a procedure that significantly contributes to the advancement of genome-editing technologies. It uses droplet digital polymerase chain reaction (ddPCR) and allele-specific hydrolysis probes to detect single-nucleotide substitutions generated by genome editing (via homology-directed repair, or HDR). HDR events that introduce substitutions using donor DNA are generally infrequent, even with genome-editing tools, and the outcome is only one base pair difference in 3 billion base pairs of the human genome. This task is particularly difficult in induced pluripotent stem (iPS) cells, in which editing events can be very rare. Therefore, the technological advances described here have implications for therapeutic genome editing and experimental approaches to disease modeling with iPS cells.
Collapse
Affiliation(s)
- Yuichiro Miyaoka
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158
| | - Amanda H Chan
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158
| | - Bruce R Conklin
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158; Departments of Medicine, and Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143
| |
Collapse
|
99980
|
Raghavendra KR, Renuka N, Kameshwar VH, Srinivasan B, Ajay Kumar K, Shashikanth S. Synthesis of lignan conjugates via cyclopropanation: Antimicrobial and antioxidant studies. Bioorg Med Chem Lett 2016; 26:3621-5. [DOI: 10.1016/j.bmcl.2016.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/23/2016] [Accepted: 06/03/2016] [Indexed: 01/21/2023]
|
99981
|
Hill MJ, Cheah C, Sarkar D. Interfacial energetics approach for analysis of endothelial cell and segmental polyurethane interactions. Colloids Surf B Biointerfaces 2016; 144:46-56. [DOI: 10.1016/j.colsurfb.2016.03.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/24/2016] [Accepted: 03/30/2016] [Indexed: 01/27/2023]
|
99982
|
Fan T, Yang L, Wu X, Ni J, Jiang H, Zhang Q, Fang L, Sheng Y, Ren Y, Cao S. The PSE1 gene modulates lead tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4685-95. [PMID: 27335453 PMCID: PMC4973742 DOI: 10.1093/jxb/erw251] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lead (Pb) is a dangerous heavy metal contaminant with high toxicity to plants. However, the regulatory mechanism of plant Pb tolerance is poorly understood. Here, we showed that the PSE1 gene confers Pb tolerance in Arabidopsis. A novel Pb-sensitive mutant pse1-1 (Pb-sensitive1) was isolated by screening T-DNA insertion mutants. PSE1 encodes an unknown protein with an NC domain and was localized in the cytoplasm. PSE1 was induced by Pb stress, and the pse1-1 loss-of-function mutant showed enhanced Pb sensitivity; overexpression of PSE1 resulted in increased Pb tolerance. PSE1-overexpressing plants showed increased Pb accumulation, which was accompanied by the activation of phytochelatin (PC) synthesis and related gene expression. In contrast, the pse1-1 mutant showed reduced Pb accumulation, which was associated with decreased PC synthesis and related gene expression. In addition, the expression of PDR12 was also increased in PSE1-overexpressing plants subjected to Pb stress. Our results suggest that PSE1 regulates Pb tolerance mainly through glutathione-dependent PC synthesis by activating the expression of the genes involved in PC synthesis and at least partially through activating the expression of the ABC transporter PDR12/ABCG40.
Collapse
Affiliation(s)
- Tingting Fan
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Libo Yang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Xi Wu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Jiaojiao Ni
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Haikun Jiang
- Horticulture Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Qi'an Zhang
- Horticulture Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Ling Fang
- Horticulture Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Yibao Sheng
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Yongbing Ren
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Shuqing Cao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| |
Collapse
|
99983
|
Ramzan N, Noreen N, Perveen Z, Shahzad S. Effect of seed pelleting with biocontrol agents on growth and colonisation of roots of mungbean by root-infecting fungi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3694-3700. [PMID: 26619828 DOI: 10.1002/jsfa.7553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/24/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Mungbean (Vigna radiata (L.) Wilczek) is a leguminous pulse crop that is a major source of proteins, vitamins and minerals. Root-infecting fungi produce severe plant diseases like root rot, charcoal rot, damping-off and stem rot. The soil-borne pathogens can be controlled by chemicals, but these chemicals have several negative effects. Use of microbial antagonist such as fungi and bacteria is a safe, effective and eco-friendly method for the control of many soil-borne pathogens. Biological control agents promote plant growth and develop disease resistance. Application of bacteria and fungi as seed dressing suppressed the root-infecting fungi on leguminous crops. RESULTS Seeds of mungbean were pelleted with different biocontrol agents to determine their effect on plant growth and colonisation of roots by root-infecting fungi, viz. Fusarium solani, Macrophomina phaseolina, Pythium aphanidermatum, Rhizoctonia solani and Sclerotium rolfsii. Treatment of mungbean seeds with fungal antagonists showed more shoot and root length as compared to bacterial antagonists, whereas seed treated with bacterial antagonists showed maximum shoot and root weight. Trichoderma harzianum and Bacillus subtilis were the best among all the biocontrol agents since they provided the highest plant growth and greater reduction in root colonisation by all root-infecting fungi. Bacillus cereus, Trichoderma virens, Pseudomonas fluorescens and Micrococcus varians were also effective against root-infecting fungi but to a lesser extent. T. harzianum, T. virens, B. subtilis and P. fluorescens were found to be best among all biocontrol agents. CONCLUSION The root-infecting fungi can be controlled by pelleting seeds with biocontrol agents as it is safe and effective method. Additionally, plant growth was promoted more by this method. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nadia Ramzan
- Pest & Disease Research Lab., Department of Agriculture & Agribusiness Management, University of Karachi, Karachi, 75270, Pakistan
| | - Nayara Noreen
- Pest & Disease Research Lab., Department of Agriculture & Agribusiness Management, University of Karachi, Karachi, 75270, Pakistan
| | - Zahida Perveen
- Pest & Disease Research Lab., Department of Agriculture & Agribusiness Management, University of Karachi, Karachi, 75270, Pakistan
| | - Saleem Shahzad
- Pest & Disease Research Lab., Department of Agriculture & Agribusiness Management, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
99984
|
Asensio Y, Fernandez-Marchante CM, Lobato J, Cañizares P, Rodrigo MA. Influence of the fuel and dosage on the performance of double-compartment microbial fuel cells. WATER RESEARCH 2016; 99:16-23. [PMID: 27130968 DOI: 10.1016/j.watres.2016.04.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
This manuscript focuses on the evaluation of the use of different types and dosages of fuels in the performance of double-compartment microbial fuel cell equipped with carbon felt electrodes and cationic membrane. Five types of fuels (ethanol, glycerol, acetate, propionate and fructose) have been tested for the same organic load (5,000 mg L(-1) measured as COD) and for one of them (acetate), the range of dosages between 500 and 20,000 mg L(-1) of COD was also studied. Results demonstrate that production of electricity depends strongly on the fuel used. Carboxylic acids are much more efficient than alcohols or fructose for the same organic load and within the range 500-5,000 mg L(-1) of acetate the production of electricity increases linearly with the amount of acetate fed but over these concentrations a change in the population composition may explain a worse performance.
Collapse
Affiliation(s)
- Y Asensio
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - C M Fernandez-Marchante
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - J Lobato
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - P Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - M A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
99985
|
Kinet R, Dzaomuho P, Baert J, Taminiau B, Daube G, Nezer C, Brostaux Y, Nguyen F, Dumont G, Thonart P, Delvigne F. Flow cytometry community fingerprinting and amplicon sequencing for the assessment of landfill leachate cellulolytic bioaugmentation. BIORESOURCE TECHNOLOGY 2016; 214:450-459. [PMID: 27160955 DOI: 10.1016/j.biortech.2016.04.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Abstract
Flow cytometry (FCM) is a high throughput single cell technology that is actually becoming widely used for studying phenotypic and genotypic diversity among microbial communities. This technology is considered in this work for the assessment of a bioaugmentation treatment in order to enhance cellulolytic potential of landfill leachate. The experimental results reveal the relevant increase of leachate cellulolytic potential due to bioaugmentation. Cytometric monitoring of microbial dynamics along these assays is then realized. The flow FP package is used to establish microbial samples fingerprint from initial 2D cytometry histograms. This procedure allows highlighting microbial communities' variation along the assays. Cytometric and 16S rRNA gene sequencing fingerprinting methods are then compared. The two approaches give same evidence about microbial dynamics throughout digestion assay. There are however a lack of significant correlation between cytometric and amplicon sequencing fingerprint at genus or species level. Same phenotypical profiles of microbiota during assays matched to several 16S rRNA gene sequencing ones. Flow cytometry fingerprinting can thus be considered as a promising routine on-site method suitable for the detection of stability/variation/disturbance of complex microbial communities involved in bioprocesses.
Collapse
Affiliation(s)
- R Kinet
- University of Liège, Gembloux Agro-Bio Tech, Microbial Processes and Interactions (MiPI), Passage des déportés 2, Gembloux, B-5030, Belgium
| | - P Dzaomuho
- University of Liège, Gembloux Agro-Bio Tech, Microbial Processes and Interactions (MiPI), Passage des déportés 2, Gembloux, B-5030, Belgium
| | - J Baert
- University of Liège, Gembloux Agro-Bio Tech, Microbial Processes and Interactions (MiPI), Passage des déportés 2, Gembloux, B-5030, Belgium
| | - B Taminiau
- Fundamental and Applied Research for Animal & Health (FARAH), Food Science Department, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman, B43b, Liège B-4000, Belgium
| | - G Daube
- Fundamental and Applied Research for Animal & Health (FARAH), Food Science Department, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman, B43b, Liège B-4000, Belgium
| | - C Nezer
- Quality Partner S.A., Rue Hayeneux, 62, Herstal, B-4040, Belgium
| | - Y Brostaux
- Computer Science and Modeling, Applied Statistics, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, Gembloux, B-5030, Belgium
| | - F Nguyen
- University of Liege, Applied Geophysics, Department ArGEnCo, Engineering Faculty, B52, B-4000 Liege, Belgium
| | - G Dumont
- University of Liege, Applied Geophysics, Department ArGEnCo, Engineering Faculty, B52, B-4000 Liege, Belgium
| | - P Thonart
- Artechno S.A., Rue Herman Méganck, 21, Isnes, B-5032, Belgium
| | - F Delvigne
- University of Liège, Gembloux Agro-Bio Tech, Microbial Processes and Interactions (MiPI), Passage des déportés 2, Gembloux, B-5030, Belgium.
| |
Collapse
|
99986
|
Sleenhoff S, Osseweijer P. How people feel their engagement can have efficacy for a bio-based society. PUBLIC UNDERSTANDING OF SCIENCE (BRISTOL, ENGLAND) 2016; 25:719-736. [PMID: 25605747 DOI: 10.1177/0963662514566749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Up till now, the transition to a bio-based economy mainly involves expert stakeholders. However, the actions required are of a collective scale necessitating public engagement for support and action. Such engagement is only successful if members of the public believe their participation holds efficacy. This belief is closely linked to their personal representation of the issue. We report findings from our Q methodology workshop that explored public's efficacy beliefs on their perceived ways for engagement with a bio-based economy. Participants were provided with stakeholders' visual representations depicting a concourse of the transition to a bio-based economy for Q sorting. We found five efficacy beliefs that differ in scale on which participants consider themselves capable for action. These results indicate that members of the public foresee distinct and shared ways and levels in how they can engage with the transition to a bio-based society that do not always concur with stakeholders' views.
Collapse
Affiliation(s)
- Susanne Sleenhoff
- Delft University of Technology, The NetherlandsCSG Centre for Society and the Life Sciences, The NetherlandsKluyver Centre for Genomics of Industrial Fermentation, The Netherlands
| | - Patricia Osseweijer
- Delft University of Technology, The NetherlandsCSG Centre for Society and the Life Sciences, The NetherlandsKluyver Centre for Genomics of Industrial Fermentation, The Netherlands
| |
Collapse
|
99987
|
Chang SP, Jeon YH, Kim YH. Defense-Related Responses in Fruit of the Nonhost Chili Pepper against Xanthomonas axonopodis pv. glycines Infection. THE PLANT PATHOLOGY JOURNAL 2016; 32:311-320. [PMID: 27493606 PMCID: PMC4968641 DOI: 10.5423/ppj.oa.12.2015.0256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/25/2016] [Accepted: 02/24/2016] [Indexed: 06/06/2023]
Abstract
Xanthomonas axonopodis pv. glycines (Xag ) is a necrotrophic bacterial pathogen of the soybean that causes bacterial pustules and is a nonhost pathogen of the chili pepper. In the current study, chili pepper fruit wound inoculated in planta with Xag 8ra formed necrotic lesions on the fruit surface and induced several structural and chemical barriers systemically in the fruit tissue. The initial defense response included programmed cell death of necrotizing and necrotized cells, which was characterized by nuclear DNA cleavage, as detected by TUNEL-confocal laser scanning microscopy (CLSM), and phosphatidylserine exposure on cell walls distal to the infection site, as detected by Annexin V FLUOS-CLSM. These two responses may facilitate cell killing and enhance transportation of cell wall materials used for cell wall thickening, respectively. The cells beneath the necrotic tissue were enlarged and divided to form periclinal cell walls, resulting in extensive formation of several parallel boundary layers at the later stages of infection, accompanying the deposition of wall fortification materials for strengthening structural defenses. These results suggest that nonhost resistance of chili pepper fruit against the nonhost necrotrophic pathogen Xag 8ra is activated systematically from the initial infection until termination of the infection cycle, resulting in complete inhibition of bacterial pathogenesis by utilizing organ-specific in situ physiological events governed by the expression of genes in the plant fruit organ.
Collapse
Affiliation(s)
- Sung Pae Chang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
- Animal and Plant Quarantine Agency, Anyang 14089,
Korea
| | - Yong Ho Jeon
- Department of Bioresource Sciences, Andong National University, Andong 36729,
Korea
| | - Young Ho Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
99988
|
Ghobadi M, Rana A, Esfahani ET, Esfandiari L. Quantitative estimation of electro-osmosis force on charged particles inside a borosilicate resistive-pulse sensor. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:4228-4231. [PMID: 28269215 DOI: 10.1109/embc.2016.7591660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nano and micron-scale pore sensors have been widely used for biomolecular sensing application due to its sensitive, label-free and potentially cost-effective criteria. Electrophoretic and electroosmosis are major forces which play significant roles on the sensor's performance. In this work, we have developed a mathematical model based on experimental and simulation results of negatively charged particles passing through a 2μm diameter solid-state borosilicate pore under a constant applied electric field. The mathematical model has estimated the ratio of electroosmosis force to electrophoretic force on particles to be 77.5%.
Collapse
|
99989
|
Kim H, Kim ST, Ryu J, Choi MK, Kweon J, Kang BC, Ahn HM, Bae S, Kim J, Kim JS, Kim SG. A simple, flexible and high-throughput cloning system for plant genome editing via CRISPR-Cas system. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:705-12. [PMID: 26946469 DOI: 10.1111/jipb.12474] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/03/2016] [Indexed: 05/03/2023]
Abstract
CRISPR-Cas9 system is now widely used to edit a target genome in animals and plants. Cas9 protein derived from Streptococcus pyogenes (SpCas9) cleaves double-stranded DNA targeted by a chimeric single-guide RNA (sgRNA). For plant genome editing, Agrobacterium-mediated T-DNA transformation has been broadly used to express Cas9 proteins and sgRNAs under the control of CaMV 35S and U6/U3 promoter, respectively. We here developed a simple and high-throughput binary vector system to clone a 19-20 bp of sgRNA, which binds to the reverse complement of a target locus, in a large T-DNA binary vector containing an SpCas9 expressing cassette. Two-step cloning procedures: (1) annealing two target-specific oligonucleotides with overhangs specific to the AarI restriction enzyme site of the binary vector; and (2) ligating the annealed oligonucleotides into the two AarI sites of the vector, facilitate the high-throughput production of the positive clones. In addition, Cas9-coding sequence and U6/U3 promoter can be easily exchanged via the Gateway(TM) system and unique EcoRI/XhoI sites on the vector, respectively. We examined the mutation ratio and patterns when we transformed these constructs into Arabidopsis thaliana and a wild tobacco, Nicotiana attenuata. Our vector system will be useful to generate targeted large-scale knock-out lines of model as well as non-model plant.
Collapse
Affiliation(s)
- Hyeran Kim
- Center for Genome Engineering, Institute for Basic Science, Yuseong-gu, Daejeon, 34047, South Korea
| | - Sang-Tae Kim
- Center for Genome Engineering, Institute for Basic Science, Yuseong-gu, Daejeon, 34047, South Korea
| | - Jahee Ryu
- Center for Genome Engineering, Institute for Basic Science, Yuseong-gu, Daejeon, 34047, South Korea
| | - Min Kyung Choi
- Center for Genome Engineering, Institute for Basic Science, Yuseong-gu, Daejeon, 34047, South Korea
| | - Jiyeon Kweon
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Beum-Chang Kang
- Center for Genome Engineering, Institute for Basic Science, Yuseong-gu, Daejeon, 34047, South Korea
| | - Hyo-Min Ahn
- Center for Genome Engineering, Institute for Basic Science, Yuseong-gu, Daejeon, 34047, South Korea
| | - Suji Bae
- Center for Genome Engineering, Institute for Basic Science, Yuseong-gu, Daejeon, 34047, South Korea
| | - Jungeun Kim
- Center for Genome Engineering, Institute for Basic Science, Yuseong-gu, Daejeon, 34047, South Korea
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Yuseong-gu, Daejeon, 34047, South Korea
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Sang-Gyu Kim
- Center for Genome Engineering, Institute for Basic Science, Yuseong-gu, Daejeon, 34047, South Korea
| |
Collapse
|
99990
|
Lee KJ, Kim DS, Kim JB, Jo SH, Kang SY, Choi HI, Ha BK. Identification of candidate genes for an early-maturing soybean mutant by genome resequencing analysis. Mol Genet Genomics 2016; 291:1561-71. [PMID: 27033554 DOI: 10.1007/s00438-016-1183-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
Abstract
Flowering is indicative of the transition from vegetative to reproductive phase, a critical event in the life cycle of plants. In this study, we performed whole genome resequencing by Illumina HiSeq to identify changes in flowering genes using an early-flowering phenotype of soybean mutant line Josaengserori (JS) derived from Korean landrace, Seoritae (SR), and we obtained mapped reads of 131,769,690 and 167,669,640 bp in JS and SR, respectively. From the whole genome sequencing results between JS and SR, we identified 332,821 polymorphic SNPs and 65,178 indels, respectively. Among these, 30 flowering genes were in SNPs and 25 were in indels. Among 30 flowering genes detected in SNPs, Glyma02g33040, Glyma06g22650, Glyma10g36600, Glyma13g01290, Glyma14g10530, Glyma16g01980, Glyma17g11040, Glyma18g53690, and Glyma20g29300 were non-synonymous substitutions between JS and SR. Changes in Glyma10g36600 (GI), Glya02g33040 (AGL18), Glyma17g11040 (TOC1), and Glyma14g10530 (ELF3) in JS affected the expression of GmFT2a and resulted in early flowering. These results provide insight into the regulatory pathways of flowering in soybean mutants and help to improve our knowledge of soybean mutation breeding.
Collapse
Affiliation(s)
- Kyung Jun Lee
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Republic of Korea
- National Agrobiodiversity Center, NAAS, RDA, Jeonju, 560-500, Republic of Korea
| | - Dong Sub Kim
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Republic of Korea
| | - Jin-Baek Kim
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Republic of Korea.
| | - Sung-Hwan Jo
- Seeders Inc., Daejeon, 305-509, Republic of Korea
| | - Si-Yong Kang
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Republic of Korea
| | - Hong-Il Choi
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Republic of Korea
| | - Bo-Keun Ha
- Division of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757, Republic of Korea.
| |
Collapse
|
99991
|
Xiong KC, Wang J, Li JH, Deng YQ, Pu P, Fan H, Liu YH. RNA interference of a trehalose-6-phosphate synthase gene reveals its roles during larval-pupal metamorphosis in Bactrocera minax (Diptera: Tephritidae). JOURNAL OF INSECT PHYSIOLOGY 2016; 91-92:84-92. [PMID: 27405007 DOI: 10.1016/j.jinsphys.2016.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
Trehalose is the major blood sugar in insects, which plays a crucial role as an instant source of energy and the starting substrate for chitin biosynthesis. In insects, trehalose is synthesized by catalysis of an important enzyme, trehalose-6-phosphate synthase (TPS). In the present study, a trehalose-6-phosphate synthase gene from Bactrocera minax (BmTPS) was cloned and characterized. BmTPS contained an open reading frame of 2445 nucleotides encoding a protein of 814 amino acids with a predicted molecular weight of 92.05kDa. BmTPS was detectable in all developmental stages of Bactrocera minax and expressed higher in the final- (third-) instar larvae. Tissue-specific expression patterns of BmTPS showed that it was mainly expressed in the fat body. The 20-hydroxyecdysone (20E) induced the expression of BmTPS and three genes in the chitin biosynthesis pathway. Moreover, injection of double-stranded RNA into third-instar larvae successfully silenced the transcription of BmTPS in B. minax, and thereby decreased the activity of TPS and trehalose content. Additionally, silencing of BmTPS inhibited the expression of three key genes in the chitin biosynthesis pathway and exhibited 52% death and abnormal phenotypes. The findings demonstrate that BmTPS is indispensable for larval-pupal metamorphosis. Besides, the establishment of RNAi experimental system in B. minax would lay a solid foundation for further investigation of molecular biology and physiology of this pest.
Collapse
Affiliation(s)
- Ke-Cai Xiong
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Jia Wang
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Jia-Hao Li
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Yu-Qing Deng
- National Citrus Virus Exclusion Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Po Pu
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Huan Fan
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Ying-Hong Liu
- Institute of Entomology, College of Plant Protection, Southwest University, Chongqing 400716, China.
| |
Collapse
|
99992
|
A scientific workflow framework for 13C metabolic flux analysis. J Biotechnol 2016; 232:12-24. [DOI: 10.1016/j.jbiotec.2015.12.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 12/15/2022]
|
99993
|
Synthetic biology — application-oriented cell engineering. Curr Opin Biotechnol 2016; 40:139-148. [DOI: 10.1016/j.copbio.2016.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/02/2016] [Accepted: 04/05/2016] [Indexed: 01/01/2023]
|
99994
|
Cigognini D, Gaspar D, Kumar P, Satyam A, Alagesan S, Sanz-Nogués C, Griffin M, O'Brien T, Pandit A, Zeugolis DI. Macromolecular crowding meets oxygen tension in human mesenchymal stem cell culture - A step closer to physiologically relevant in vitro organogenesis. Sci Rep 2016; 6:30746. [PMID: 27478033 PMCID: PMC4967872 DOI: 10.1038/srep30746] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/07/2016] [Indexed: 01/03/2023] Open
Abstract
Modular tissue engineering is based on the cells’ innate ability to create bottom-up supramolecular assemblies with efficiency and efficacy still unmatched by man-made devices. Although the regenerative potential of such tissue substitutes has been documented in preclinical and clinical setting, the prolonged culture time required to develop an implantable device is associated with phenotypic drift and/or cell senescence. Herein, we demonstrate that macromolecular crowding significantly enhances extracellular matrix deposition in human bone marrow mesenchymal stem cell culture at both 20% and 2% oxygen tension. Although hypoxia inducible factor - 1α was activated at 2% oxygen tension, increased extracellular matrix synthesis was not observed. The expression of surface markers and transcription factors was not affected as a function of oxygen tension and macromolecular crowding. The multilineage potential was also maintained, albeit adipogenic differentiation was significantly reduced in low oxygen tension cultures, chondrogenic differentiation was significantly increased in macromolecularly crowded cultures and osteogenic differentiation was not affected as a function of oxygen tension and macromolecular crowding. Collectively, these data pave the way for the development of bottom-up tissue equivalents based on physiologically relevant developmental processes.
Collapse
Affiliation(s)
- Daniela Cigognini
- Regenerative, Modular &Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, NUI Galway, Galway, Ireland
| | - Diana Gaspar
- Regenerative, Modular &Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, NUI Galway, Galway, Ireland
| | - Pramod Kumar
- Regenerative, Modular &Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, NUI Galway, Galway, Ireland
| | - Abhigyan Satyam
- Regenerative, Modular &Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, NUI Galway, Galway, Ireland
| | - Senthilkumar Alagesan
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, NUI Galway, Galway, Ireland
| | - Clara Sanz-Nogués
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, NUI Galway, Galway, Ireland
| | - Matthew Griffin
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, NUI Galway, Galway, Ireland
| | - Timothy O'Brien
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, NUI Galway, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, NUI Galway, Galway, Ireland
| | - Abhay Pandit
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, NUI Galway, Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular &Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, NUI Galway, Galway, Ireland
| |
Collapse
|
99995
|
Sieblist C, Jenzsch M, Pohlscheidt M. Equipment characterization to mitigate risks during transfers of cell culture manufacturing processes. Cytotechnology 2016; 68:1381-401. [PMID: 26231834 PMCID: PMC4960186 DOI: 10.1007/s10616-015-9899-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 06/18/2015] [Indexed: 11/28/2022] Open
Abstract
The production of monoclonal antibodies by mammalian cell culture in bioreactors up to 25,000 L is state of the art technology in the biotech industry. During the lifecycle of a product, several scale up activities and technology transfers are typically executed to enable the supply chain strategy of a global pharmaceutical company. Given the sensitivity of mammalian cells to physicochemical culture conditions, process and equipment knowledge are critical to avoid impacts on timelines, product quantity and quality. Especially, the fluid dynamics of large scale bioreactors versus small scale models need to be described, and similarity demonstrated, in light of the Quality by Design approach promoted by the FDA. This approach comprises an associated design space which is established during process characterization and validation in bench scale bioreactors. Therefore the establishment of predictive models and simulation tools for major operating conditions of stirred vessels (mixing, mass transfer, and shear force.), based on fundamental engineering principles, have experienced a renaissance in the recent years. This work illustrates the systematic characterization of a large variety of bioreactor designs deployed in a global manufacturing network ranging from small bench scale equipment to large scale production equipment (25,000 L). Several traditional methods to determine power input, mixing, mass transfer and shear force have been used to create a data base and identify differences for various impeller types and configurations in operating ranges typically applied in cell culture processes at manufacturing scale. In addition, extrapolation of different empirical models, e.g. Cooke et al. (Paper presented at the proceedings of the 2nd international conference of bioreactor fluid dynamics, Cranfield, UK, 1988), have been assessed for their validity in these operational ranges. Results for selected designs are shown and serve as examples of structured characterization to enable fast and agile process transfers, scale up and troubleshooting.
Collapse
Affiliation(s)
- Christian Sieblist
- Pharma Biotech Production, Roche Diagnostics GmbH, 82377, Penzberg, Germany.
| | - Marco Jenzsch
- Pharma Biotech Production, Roche Diagnostics GmbH, 82377, Penzberg, Germany
| | | |
Collapse
|
99996
|
Chakrapani V, Patra SK, Panda RP, Rasal KD, Jayasankar P, Barman HK. Establishing targeted carp TLR22 gene disruption via homologous recombination using CRISPR/Cas9. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:242-247. [PMID: 27079451 DOI: 10.1016/j.dci.2016.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Abstract
Recent advances in gene editing techniques have not been exploited in farmed fishes. We established a gene targeting technique, using the CRISPR/Cas9 system in Labeo rohita, a farmed carp (known as rohu). We demonstrated that donor DNA was integrated via homologous recombination (HR) at the site of targeted double-stranded nicks created by CRISPR/Cas9 nuclease. This resulted in the successful disruption of rohu Toll-like receptor 22 (TLR22) gene, involved in innate immunity and exclusively present in teleost fishes and amphibians. The null mutant, thus, generated lacked TLR22 mRNA expression. Altogether, this is the first evidence that the CRISPR/Cas9 system is a highly efficient tool for targeted gene disruption via HR in teleosts for generating model large-bodied farmed fishes.
Collapse
Affiliation(s)
- Vemulawada Chakrapani
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, Odisha, India
| | - Swagat Kumar Patra
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, Odisha, India
| | - Rudra Prasanna Panda
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, Odisha, India
| | - Kiran Dashrath Rasal
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, Odisha, India
| | - Pallipuram Jayasankar
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, Odisha, India
| | - Hirak Kumar Barman
- Fish Genetics and Biotechnology Division, ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar 751 002, Odisha, India.
| |
Collapse
|
99997
|
Li Z, Li X, McCracken B, Shao Y, Ward K, Fu J. A Miniaturized Hemoretractometer for Blood Clot Retraction Testing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3926-34. [PMID: 27248117 PMCID: PMC4980575 DOI: 10.1002/smll.201600274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/16/2016] [Indexed: 05/13/2023]
Abstract
Blood coagulation is a critical hemostatic process that must be properly regulated to maintain a delicate balance between bleeding and clotting. Disorders of blood coagulation can expose patients to the risk of either bleeding disorders or thrombotic diseases. Coagulation diagnostics using whole blood is very promising for assessing the complexity of the coagulation system and for global measurements of hemostasis. Despite the clinic values that existing whole blood coagulation tests have demonstrated, these systems have significant limitations that diminish their potential for point-of-care applications. Here, recent advancements in device miniaturization using functional soft materials are leveraged to develop a miniaturized clot retraction force assay device termed mHemoRetractoMeter (mHRM). The mHRM is capable of precise measurements of dynamic clot retraction forces in real time using minute amounts of whole blood. To further demonstrate the clinical utility of the mHRM, systematic studies are conducted using the mHRM to examine the effects of assay temperature, treatments of clotting agents, and pro- and anti-coagulant drugs on clot retraction force developments of whole blood samples. The mHRM's low fabrication cost, small size, and consumption of only minute amounts of blood samples make the technology promising as a point-of-care tool for future coagulation monitoring.
Collapse
Affiliation(s)
- Zida Li
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiang Li
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Brendan McCracken
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA, Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yue Shao
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kevin Ward
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA, Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA, Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan 48109, USA, Department of Biomedical Engineering, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
99998
|
Jeon TY, Kim DJ, Park SG, Kim SH, Kim DH. Nanostructured plasmonic substrates for use as SERS sensors. NANO CONVERGENCE 2016; 3:18. [PMID: 28191428 PMCID: PMC5271569 DOI: 10.1186/s40580-016-0078-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 06/29/2016] [Indexed: 05/22/2023]
Abstract
Plasmonic nanostructures strongly localize electric fields on their surfaces via the collective oscillations of conducting electrons under stimulation by incident light at a certain wavelength. Molecules adsorbed onto the surfaces of plasmonic structures experience a strongly enhanced electric field due to the localized surface plasmon resonance (LSPR), which amplifies the Raman scattering signal obtained from these adsorbed molecules. This phenomenon is referred to as surface-enhanced Raman scattering (SERS). Because Raman spectra serve as molecular fingerprints, SERS has been intensively studied for its ability to facilely detect molecules and provide a chemical analysis of a solution. Further enhancements in the Raman intensity and therefore higher sensitivity in SERS-based molecular analysis have been achieved by designing plasmonic nanostructures with a controlled size, shape, composition, and arrangement. This review paper focuses on the current state of the art in the fabrication of SERS-active substrates and their use as chemical and biosensors. Starting with a brief description of the basic principles underlying LSPR and SERS, we discuss three distinct nanofabrication methods, including the bottom-up assembly of nanoparticles, top-down nanolithography, and lithography-free random nanoarray formation. Finally, typical applications of SERS-based sensors are discussed, along with their perspectives and challenges.
Collapse
Affiliation(s)
- Tae Yoon Jeon
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, Daejeon, 305-701 Republic of Korea
| | - Dong Jae Kim
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, Daejeon, 305-701 Republic of Korea
| | - Sung-Gyu Park
- Advanced Functional Thin Films Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 641-831 Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering (BK21+ Program), KAIST, Daejeon, 305-701 Republic of Korea
| | - Dong-Ho Kim
- Advanced Functional Thin Films Department, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam 641-831 Republic of Korea
| |
Collapse
|
99999
|
Liu D, Ding L, Sun J, Boussetta N, Vorobiev E. Yeast cell disruption strategies for recovery of intracellular bio-active compounds — A review. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.06.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
100000
|
Effect of some abiotic stresses on the biotransformation of α-pinene by a psychrotrophic Chrysosporium pannorum. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|