99951
|
Biochemical and Pharmacological Characterization of a Mice Model of Complex Regional Pain Syndrome. Reg Anesth Pain Med 2018; 42:507-516. [PMID: 28609318 DOI: 10.1097/aap.0000000000000622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND OBJECTIVES Complex regional pain syndrome is a challenging disease to treat. Recently, a mouse fracture model of complex regional pain syndrome has been developed that has many signs of the clinical syndrome. However, many aspects of the sensory neuron biochemistry and behavioral and pharmacological characterization of this model remain to be clarified. METHODS Mice were randomly assigned to fracture/cast or control (naive) groups. Fracture/cast mice underwent a closed distal tibia facture, with hindlimb wrapped in casting tape for 3 weeks. After cast removal, mice were tested for mechanical allodynia, burrowing behavior, and motor ability over a 12-week period. Protein immunohistochemistry was performed for substance P, calcitonin gene-related peptide, tropomyosin receptor kinase A, nerve growth factor, Nav1.7, and transient receptor potential cation-channel V1, colocalized in neurons, in the ipsilateral lumbar dorsal root ganglia (DRGs). Analgesic drugs were tested for pain-relieving efficacy. RESULTS Mechanical allodynia was greater in the ipsilateral hindpaw (P = 0.0002) in the fracture/cast group versus the control group, over the 3- to 12-week period. The amount of burrowing material removed was decreased (P = 0.0026), and there were deficits in spontaneous motor-rearing behavior (P = 0.018). Immunostaining of substance P, calcitonin gene-related peptide, Trk A receptor, nerve growth factor, Nav1.7, and transient receptor potential cation-channel V1 all demonstrated up-regulation in the DRGs of fracture mice versus controls (all P < 0.05). Morphine, pregabalin, ketamine, acetaminophen, and dexamethasone transiently increased force withdrawal thresholds on the ipsilateral (fracture) side and improved burrowing activity after injection (all P < 0.05). Ketorolac improved only burrowing. CONCLUSIONS Persistent pain-related behavior was demonstrated in this mouse fracture/cast model with wide-scale DRG up-regulation of pain mediators. Antihyperalgesic drugs reduced mechanical allodynia and improved burrowing.
Collapse
|
99952
|
Zaprinast diminished pain and enhanced opioid analgesia in a rat neuropathic pain model. Eur J Pharmacol 2018; 839:21-32. [PMID: 30213497 DOI: 10.1016/j.ejphar.2018.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/25/2018] [Accepted: 09/04/2018] [Indexed: 01/11/2023]
Abstract
The mechanism of neuropathic pain is complex and unclear. Based on our results, we postulate that an intensification of the kynurenine pathway occurs as a consequence of nerve injury. The G protein-coupled receptor 35 (GPR35) is important for kynurenine pathway activation. Cyclic GMP-specific phosphodiesterase inhibitors have also been shown to have beneficial effects on neuropathic pain. Therefore, the aims of our research were to elucidate how a substance that acts as both an agonist of GPR35 and an inhibitor of phosphodiesterase influences neuropathic pain in a rat model. Here, we demonstrated that preemptive and repeated intrathecal (i.t.) administration (16 h and 1 h before injury and then after nerve ligation daily for 7 days) of zaprinast (1 μg/5 μl) significantly attenuated mechanical (von Frey test) and thermal (cold plate test) hypersensitivity measured on day 7 after chronic constriction injury, and the effect of even a single injection lasted up to 24 h. Our data indicate that zaprinast diminished the number of IBA1-positive cells and consequently attenuated the levels of IL-1beta, IL-6, IL-18, and NOS2 in the lumbar spinal cord and/or dorsal root ganglia. Our results also demonstrated that zaprinast potentiated the analgesic properties of morphine and buprenorphine. In summary, in a neuropathic pain model, zaprinast significantly reduced pain symptoms and enhanced the effectiveness of opioids. Our data provide new evidence that modulation of both GPR35 and phosphodiesterase could be an important strategy for innovative pharmacological treatments designed to decrease hypersensitivity evoked by nerve injury.
Collapse
|
99953
|
Spinal RNF20-Mediated Histone H2B Monoubiquitylation Regulates mGluR5 Transcription for Neuropathic Allodynia. J Neurosci 2018; 38:9160-9174. [PMID: 30201771 DOI: 10.1523/jneurosci.1069-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
To date, histone H2B monoubiquitination (H2Bub), a mark associated with transcriptional elongation and ongoing transcription, has not been linked to the development or maintenance of neuropathic pain states. Here, using male Sprague Dawley rats, we demonstrated spinal nerve ligation (SNL) induced behavioral allodynia and provoked ring finger protein 20 (RNF20)-dependent H2Bub in dorsal horn. Moreover, SNL provoked RNF20-mediated H2Bub phosphorylated RNA polymerase II (RNAPII) in the promoter fragments of mGluR5, thereby enhancing mGluR5 transcription/expression in the dorsal horn. Conversely, focal knockdown of spinal RNF20 expression reversed not only SNL-induced allodynia but also RNF20/H2Bub/RNAPII phosphorylation-associated spinal mGluR5 transcription/expression. Notably, TNF-α injection into naive rats and specific neutralizing antibody injection into SNL-induced allodynia rats revealed that TNF-α-associated allodynia involves the RNF20/H2Bub/RNAPII transcriptional axis to upregulate mGluR5 expression in the dorsal horn. Collectively, our findings indicated TNF-α induces RNF20-drived H2B monoubiquitination, which facilitates phosphorylated RNAPII-dependent mGluR5 transcription in the dorsal horn for the development of neuropathic allodynia.SIGNIFICANCE STATEMENT Histone H2B monoubiquitination (H2Bub), an epigenetic post-translational modification, positively correlated with gene expression. Here, TNF-α participated in neuropathic pain development by enhancing RNF20-mediated H2Bub, which facilitates phosphorylated RNAPII-dependent mGluR5 transcription in dorsal horn. Our finding potentially identified neuropathic allodynia pathophysiological processes underpinning abnormal nociception processing and opens a new avenue for the development of novel analgesics.
Collapse
|
99954
|
Neuronal Response Latencies Encode First Odor Identity Information across Subjects. J Neurosci 2018; 38:9240-9251. [PMID: 30201774 DOI: 10.1523/jneurosci.0453-18.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/10/2018] [Accepted: 08/15/2018] [Indexed: 11/21/2022] Open
Abstract
Odorants are coded in the primary olfactory processing centers by spatially and temporally distributed patterns of glomerular activity. Whereas the spatial distribution of odorant-induced responses is known to be conserved across individuals, the universality of its temporal structure is still debated. Via fast two-photon calcium imaging, we analyzed the early phase of neuronal responses in the form of the activity onset latencies in the antennal lobe projection neurons of honeybee foragers. We show that each odorant evokes a stimulus-specific response latency pattern across the glomerular coding space. Moreover, we investigate these early response features for the first time across animals, revealing that the order of glomerular firing onsets is conserved across individuals and allows them to reliably predict odorant identity, but not concentration. These results suggest that the neuronal response latencies provide the first available code for fast odor identification.SIGNIFICANCE STATEMENT Here, we studied early temporal coding in the primary olfactory processing centers of the honeybee brain by fast imaging of glomerular responses to different odorants across glomeruli and across individuals. Regarding the elusive role of rapid response dynamics in olfactory coding, we were able to clarify the following aspects: (1) the rank of glomerular activation is conserved across individuals, (2) its stimulus prediction accuracy is equal to that of the response amplitude code, and (3) it contains complementary information. Our findings suggest a substantial role of response latencies in odor identification, anticipating the static response amplitude code.
Collapse
|
99955
|
Lewis YD, Gilon Mann T, Enoch‐Levy A, Dubnov‐Raz G, Gothelf D, Weizman A, Stein D. Obsessive–compulsive symptomatology in female adolescent inpatients with restrictive compared with binge–purge eating disorders. EUROPEAN EATING DISORDERS REVIEW 2018; 27:224-235. [DOI: 10.1002/erv.2638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/05/2018] [Accepted: 08/08/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Yael Doreen Lewis
- Hanotrim Eating Disorders UnitShalvata Mental Health Center Hod Hasharon Israel
- Sackler Faculty of MedicineTel Aviv University Tel Aviv Israel
| | - Tal Gilon Mann
- Pediatric Psychosomatic DepartmentSafra Children's Hospital, Sheba Medical Center Tel Hashomer Israel
| | - Adi Enoch‐Levy
- Sackler Faculty of MedicineTel Aviv University Tel Aviv Israel
- Pediatric Psychosomatic DepartmentSafra Children's Hospital, Sheba Medical Center Tel Hashomer Israel
| | - Gal Dubnov‐Raz
- Sackler Faculty of MedicineTel Aviv University Tel Aviv Israel
- Pediatric Psychosomatic DepartmentSafra Children's Hospital, Sheba Medical Center Tel Hashomer Israel
| | - Doron Gothelf
- Sackler Faculty of MedicineTel Aviv University Tel Aviv Israel
- The Child Psychiatry DivisionSafra Children's Hospital, Sheba Medical Center Tel Hashomer Israel
- Sagol School of NeuroscienceTel Aviv University Tel Aviv Israel
| | - Abraham Weizman
- Sackler Faculty of MedicineTel Aviv University Tel Aviv Israel
- Felsenstein Medical Research Center and Geha Mental Health Center Petah Tikva Israel
| | - Daniel Stein
- Sackler Faculty of MedicineTel Aviv University Tel Aviv Israel
- Pediatric Psychosomatic DepartmentSafra Children's Hospital, Sheba Medical Center Tel Hashomer Israel
| |
Collapse
|
99956
|
Effects of the Surface Texture and Weight of a Pinch Apparatus on the Reliability and Validity of a Hand Sensorimotor Control Assessment. Arch Phys Med Rehabil 2018; 100:620-626. [PMID: 30193951 DOI: 10.1016/j.apmr.2018.07.440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVES To investigate the reliability and validity of a modified pinch apparatus devised with 3 surface textures and 2 different weights for clinical application. DESIGN Case-controlled study. SETTING A university hospital. PARTICIPANTS The participants (N=32) included carpal tunnel syndrome (CTS) patients (n=16) with 20 sensory neuropathy hands, and an equal number of age-sex matched volunteers without CTS, as well as young volunteers without CTS (n=16 with 20 hands) used to analyze both the testing validity and reliability of the modified device. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES The Semmes-Weinstein monofilament (SWM) and two-point discrimination (2PD) tests were conducted, and the force ratio between the FPpeak (peak pinch force during lifting phase) and FLmax (maximum load force at maximum upward acceleration onset) detected from a pinch-holding-up activity (PHUA) under various testing conditions was obtained. RESULTS The range of the intraclass correlation coefficient of this pinch device was 0.369-0.952. The CTS patients exhibited poorer force modulation ability according to the inertial change in a dynamic lifting task when compared to the controls under all testing conditions (P<.001). The area under the receiver operating characteristic force ratio curve was 0.841, revealing high accuracy of the test for diagnosing CTS neuropathic hands under the testing condition in which the 125-g coarse texture device was used. In addition, the weight factor was shown to have significant effects on the sensitivity and accuracy of the PHUA assessment. CONCLUSIONS This study showed that the PHUA test via the modified pinch apparatus is a sensitive tool that can be used in clinical practice for detecting neuropathic CTS hands. In addition, changing the weight of the pinch device has a significant effect on the sensitivity and accuracy of the PHUA assessment.
Collapse
|
99957
|
|
99958
|
Momose-Sato Y, Sato K. Optical analysis of functional development of the facial motor nucleus in the embryonic rat brainstem. Eur J Neurosci 2018; 48:3273-3287. [PMID: 30118560 DOI: 10.1111/ejn.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/29/2018] [Accepted: 08/01/2018] [Indexed: 11/28/2022]
Abstract
Facial motor neurons of the rat embryo are first generated in rhombomere 4 and then migrate in the caudo-ventral direction. This migration forms a unique axonal trajectory called the genu, a loop of facial motor axons around the abducens nucleus. It is still unclear when and how this unique structure is functionally established during ontogenesis. Using voltage-sensitive dye (VSD) recording and the DiI staining method, we identified neural responses evoked by facial nerve (N.VII) stimulation and examined developmental processes of the facial motor nucleus in E12-E17 rat brainstems. We identified two types of fast spike-like signals; a long-duration signal, which corresponded to the action potential in the N.VII soma, and a short-duration signal, which reflected the action potential in the N.VII axons. The long-duration signal was detected as early as E13, suggesting that the N.VII motor neuron is already excitable at the beginning of cell migration. The response area of the long-duration signal extended caudally at E13-E14, and shifted in a ventral direction at E15. At E16-E17, the long-duration signal was concentrated in the caudo-ventral area, which was comparable to the location of the facial motor nucleus in the adult rat brainstem. These results demonstrate that developmental processes of cell migration and nuclear organization can be visualized and identified functionally with the VSD recording. We discuss the results by comparing functiogenesis and morphogenesis of the N.VII pathway.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, Yokohama, Japan
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's University, Tokyo, Japan
| |
Collapse
|
99959
|
Gregoriou GC, Kissiwaa SA, Patel SD, Bagley EE. Dopamine and opioids inhibit synaptic outputs of the main island of the intercalated neurons of the amygdala. Eur J Neurosci 2018; 50:2065-2074. [PMID: 30099803 DOI: 10.1111/ejn.14107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/11/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022]
Abstract
Neural circuits in the amygdala are important for associating the positive experience of drug taking with the coincident environmental cues. During abstinence, cue re-exposure activates the amygdala, increases dopamine release in the amygdala and stimulates relapse to drug use in an opioid dependent manner. Neural circuits in the amygdala and the learning that underlies these behaviours are inhibited by GABAergic synaptic inhibition. A specialised subtype of GABAergic neurons in the amygdala are the clusters of intercalated cells. We focussed on the main-island of intercalated cells because these neurons, located ventromedial to the basolateral amygdala, express very high levels of dopamine D1-receptor and μ-opioid receptor, release enkephalin and are densely innervated by the ventral tegmental area. However, where these neurons project to was not fully described and their regulation by opioids and dopamine was incomplete. To address this issue we electrically stimulated in the main-island of the intercalated cells in rat brain slices and made patch-clamp recordings of GABAergic synaptics from amygdala neurons. We found that main-island neurons had a strong GABAergic inhibitory output to pyramidal neurons of the basolateral nucleus and the medial central nucleus, the major output zones of the amygdala. Opioids inhibited both these synaptic outputs of the intercalated neurons and thus would disinhibit these target zones. Additionally, dopamine acting at D1-receptors inhibited main-island neuron synapses onto other main-island neurons. This data indicates that the inhibitory projections from the main-island neurons could influence multiple aspects of addiction and emotional processing in an opioid and dopamine dependent manner.
Collapse
Affiliation(s)
- Gabrielle C Gregoriou
- Discipline of Pharmacology & Charles Perkins Centre, Charles Perkins Centre D17, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Sarah A Kissiwaa
- Discipline of Pharmacology & Charles Perkins Centre, Charles Perkins Centre D17, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Sahil D Patel
- Discipline of Pharmacology & Charles Perkins Centre, Charles Perkins Centre D17, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Elena E Bagley
- Discipline of Pharmacology & Charles Perkins Centre, Charles Perkins Centre D17, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
99960
|
Kovacs ZI, Tu TW, Sundby M, Qureshi F, Lewis BK, Jikaria N, Burks SR, Frank JA. MRI and histological evaluation of pulsed focused ultrasound and microbubbles treatment effects in the brain. Theranostics 2018; 8:4837-4855. [PMID: 30279741 PMCID: PMC6160777 DOI: 10.7150/thno.24512] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Magnetic resonance imaging (MRI)-guided pulsed focused ultrasound (pFUS) combined with microbubbles (MB) contrast agent infusion has been shown to transiently disrupt the blood-brain barrier (BBBD), increasing the delivery of neurotherapeutics to treat central nervous system (CNS) diseases. pFUS interaction with the intravascular MB results in acoustic cavitation forces passing through the neurovascular unit (NVU), inducing BBBD detected on contrast-enhanced MRI. Multiple pFUS+MB exposures in Alzheimer's disease (AD) models are being investigated as a method to clear amyloid plaques by activated microglia or infiltrating immune cells. Since it has been reported that pFUS+MB can induce a sterile inflammatory response (SIR) [1-5] in the rat, the goal of this study was to investigate the potential long-term effects of SIR in the brain following single and six weekly sonications by serial high-resolution MRI and pathology. Methods: Female Sprague Dawley rats weighing 217±16.6 g prior to sonication received bromo-deoxyuridine (BrdU) to tag proliferating cells in the brain. pFUS was performed at 548 kHz, ultrasound burst 10 ms and initial peak negative pressure of 0.3 MPa (in water) for 120 s coupled with a slow infusion of ~460 µL/kg (5-8×107 MB) that started 30 s before and 30 s during sonication. Nine 2 mm focal regions in the left cortex and four regions over the right hippocampus were treated with pFUS+MB. Serial high-resolution brain MRIs at 3 T and 9.4 T were obtained following a single or during the course of six weekly pFUS+MB resulting in BBBD in the left cortex and the right hippocampus. Animals were monitored over 7 to 13 weeks and imaging results were compared to histology. Results: Fewer than half of the rats receiving a single pFUS+MB exposure displayed hypointense voxels on T2*-weighted (w) MRI at week 7 or 13 in the cortex or hippocampus without differences compared to the contralateral side on histograms of T2* maps. Single sonicated rats had evidence of limited microglia activation on pathology compared to the contralateral hemisphere. Six weekly pFUS+MB treatments resulted in pathological changes on T2*w images with multiple hypointense regions, cortical atrophy, along with 50% of rats having persistent BBBD and astrogliosis by MRI. Pathologic analysis of the multiple sonicated animals demonstrated the presence of metallophagocytic Prussian blue-positive cells in the parenchyma with significantly (p<0.05) increased areas of activated astrocytes and microglia, and high numbers of systemic infiltrating CD68+ macrophages along with BrdU+ cells compared to contralateral brain. In addition, multiple treatments caused an increase in the number of hyperphosphorylated Tau (pTau)-positive neurons containing neurofibrillary tangles (NFT) in the sonicated cortex but not in the hippocampus when compared to contralateral brain, which was confirmed by Western blot (WB) (p<0.04). Conclusions: The repeated SIR following multiple pFUS+MB treatments could contribute to changes on MR imaging including persistent BBBD, cortical atrophy, and hypointense voxels on T2w and T2*w images consistent with pathological injury. Moreover, areas of astrogliosis, activated microglia, along with higher numbers of CD68+ infiltrating macrophages and BrdU+ cells were detected in multiple sonicated areas of the cortex and hippocampus. Elevations in pTau and NFT were detected in neurons of the multiple sonicated cortex. Minimal changes on MRI and histology were observed in single pFUS+MB-treated rats at 7 and 13 weeks post sonication. In comparison, animals that received 6 weekly sonications demonstrated evidence on MRI and histology of vascular damage, inflammation and neurodegeneration associated with the NVU commonly observed in trauma. Further investigation is recommended of the long-term effects of multiple pFUS+MB in clinical trials.
Collapse
|
99961
|
Shang M, Xing J. Blocking of Dendrodendritic Inhibition Unleashes Widely Spread Lateral Propagation of Odor-evoked Activity in the Mouse Olfactory Bulb. Neuroscience 2018; 391:50-59. [PMID: 30208337 DOI: 10.1016/j.neuroscience.2018.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 01/27/2023]
Abstract
The olfactory circuitry in mice involves a well-characterized, vertical receptor type-specific organization, but the localized inhibitory effect from granule cells on action potentials that propagate laterally in secondary dendrites of mitral cell remains open to debate. To understand the functional dynamics of the lateral (horizontal) circuits, we analyzed odor-induced signaling using transgenic mice expressing a genetically encoded Ca2+ indicator specifically in mitral/tufted and some juxtaglomerular cells. Optical imaging of the dorsal olfactory bulb (dOB) revealed specific patterns of glomerular activation in response to odor presentation or direct electric stimulation of the olfactory nerve (ON). Application of a mixture of ionotropic and metabotropic glutamate receptor antagonists onto the exposed dOB completely abolished the responses to direct stimulation of the ON as well as discrete odor-evoked glomerular responses patterns, while a spatially more widespread response component increased and expanded into previously nonresponsive regions. To test whether the widespread odor response component represented signal propagation along mitral cell secondary dendrites, an NMDA receptor antagonist alone was applied to the dOB and was found to also increase and expand odor-evoked response patterns. Finally, with dOB excitatory synaptic transmission completely blocked, application of 1 mM muscimol (a GABAA receptor agonist) to a circumscribed volume in the deep external plexiform layer (EPL) induced an odor non-responsive area. These results indicate that odor stimulation can activate olfactory reciprocal synapses and control lateral interactions among olfactory glomerular modules along a wide range of mitral cell secondary dendrites by modulating the inhibitory effect from granule cells.
Collapse
Affiliation(s)
- Mengjuan Shang
- Department of Radiation Medicine, Faculty of Preventive Medicine, Airforce Medical University, 169(#) ChangLe West Road, Xi'an 710032, China
| | - Junling Xing
- Department of Radiation Biology, Faculty of Preventive Medicine, Airforce Medical University, 169(#) ChangLe West Road, Xi'an 710032, China; Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520-8001, USA.
| |
Collapse
|
99962
|
Kwaka A, Hassan Khatami M, Foster J, Cochrane E, Habibi SA, de Haan HW, Forrester SG. Molecular Characterization of Binding Loop E in the Nematode Cys-Loop GABA Receptor. Mol Pharmacol 2018; 94:1289-1297. [PMID: 30194106 DOI: 10.1124/mol.118.112821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/30/2018] [Indexed: 01/27/2023] Open
Abstract
Nematodes exhibit a vast array of cys-loop ligand-gated ion channels with unique pharmacologic characteristics. However, many of the structural components that govern the binding of various ligands are unknown. The nematode cys-loop GABA receptor uncoordinated 49 (UNC-49) is an important receptor found at neuromuscular junctions that plays an important role in the sinusoidal movement of worms. The unique pharmacologic features of this receptor suggest that there are structural differences in the agonist binding site when compared with mammalian receptors. In this study, we examined each amino acid in one of the main agonist binding loops (loop E) via the substituted cysteine accessibility method (SCAM) and analyzed the interaction of various residues by molecular dynamic simulations. We found that of the 18 loop E mutants analyzed, H142C, R147C, and S157C had significant changes in GABA EC50 and were accessible to modification by a methanethiosulfonate reagent (MTSET) resulting in a change in I GABA In addition, the residue H142, which is unique to nematode UNC-49 GABA receptors, appears to play a negative role in GABA sensitivity as its mutation to cysteine increased sensitivity to GABA and caused the UNC-49 receptor partial agonist 5-aminovaleric acid (DAVA) to behave as a full agonist. Overall, this study has revealed potential differences in the agonist binding pocket between nematode UNC-49 and mammalian GABA receptors that could be exploited in the design of novel anthelmintics.
Collapse
Affiliation(s)
- Ariel Kwaka
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | | | - Joshua Foster
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | - Everett Cochrane
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | - Sarah A Habibi
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | - Hendrick W de Haan
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | - Sean G Forrester
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| |
Collapse
|
99963
|
Abstract
The visual system needs to solve the correspondence problem (i.e., which elements belong together across space and time) to allow stable representations of objects. It has been shown that spatiotemporal and feature information can influence this correspondence process, but it is unclear how these factors interact with each other, especially when they are more or less prominent due to changes in contrast magnitude. We investigated this question using a variation of the Ternus display, an ambiguous apparent motion display, in which three elements can either be perceived as moving together (group motion) or as one element jumping across the others (element motion). In the first experiment, we biased the percept by presenting some of the elements with the same feature (isoluminant color or luminance), such that they were either compatible with group motion or with element motion (simple feature biases). To change the strength of the feature bias, we manipulated the contrast magnitude of the feature. In three more experiments we introduced competitive displays, in which some of the elements showed a color/luminance based element bias of varying contrast magnitude, while other elements showed a luminance/color based group bias of varying contrast magnitude (competing feature bias). We found that for a simple feature bias the contrast magnitude did not affect the strength of the bias. For competing feature biases, however, the contrast magnitude did influence correspondence, as the bias strength increased with contrast. The implications of our results for current motion and feature-based theories of correspondence are discussed.
Collapse
|
99964
|
Bai R, Springer CS, Plenz D, Basser PJ. Brain active transmembrane water cycling measured by MR is associated with neuronal activity. Magn Reson Med 2018; 81:1280-1295. [PMID: 30194797 DOI: 10.1002/mrm.27473] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE fMRI is widely used to study brain activity. Unfortunately, conventional fMRI methods assess neuronal activity only indirectly, through hemodynamic coupling. Here, we show that active, steady-state transmembrane water cycling (AWC) could serve as a basis for a potential fMRI mechanism for direct neuronal activity detection. METHODS AWC and neuronal actitivity in rat organotypic cortical cultures were simultaneously measured with a hybrid MR-fluorescence system. Perfusion with a paramagnetic MRI contrast agent, Gadoteridol, allows NMR determination of the kinetics of transcytolemmal water exchange. Changes in intracellular calcium concentration, [Cai 2+ ] were used as a proxy of neuronal activity and were monitored by fluorescence imaging. RESULTS When we alter neuronal activity by titrating with extracellular [K+ ] near the normal value, we see an AWC response resembling Na+ -K+ -ATPase (NKA) Michaelis-Menten behavior. When we treat with the voltage-gated sodium channel inhibitor, or with an excitatory postsynaptic inhibitor cocktail, we see AWC decrease by up to 71%. AWC was found also to be positively correlated with the basal level of spontaneous activity, which varies in different cultures. CONCLUSIONS These results suggest that AWC is associated with neuronal activity and NKA activity is a major contributor in coupling AWC to neuronal activity. Although AWC comprises steady-state, homeostatic transmembrane water exchange, our analysis also yields a simultaneous measure of the average cell volume, which reports any slower net transmembrane water transport.
Collapse
Affiliation(s)
- Ruiliang Bai
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Section on Quantitative Imaging and Tissue Sciences, DIBGI, NICHD, National Institutes of Health, Bethesda, Maryland
| | - Charles S Springer
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, LSN, NIMH, National Institutes of Health, Bethesda, Maryland
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, DIBGI, NICHD, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
99965
|
De Sa Nogueira D, Merienne K, Befort K. Neuroepigenetics and addictive behaviors: Where do we stand? Neurosci Biobehav Rev 2018; 106:58-72. [PMID: 30205119 DOI: 10.1016/j.neubiorev.2018.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/28/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
Abstract
Substance use disorders involve long-term changes in the brain that lead to compulsive drug seeking, craving, and a high probability of relapse. Recent findings have highlighted the role of epigenetic regulations in controlling chromatin access and regulation of gene expression following exposure to drugs of abuse. In the present review, we focus on data investigating genome-wide epigenetic modifications in the brain of addicted patients or in rodent models exposed to drugs of abuse, with a particular focus on DNA methylation and histone modifications associated with transcriptional studies. We highlight critical factors for epigenomic studies in addiction. We discuss new findings related to psychostimulants, alcohol, opiate, nicotine and cannabinoids. We examine the possible transmission of these changes across generations. We highlight developing tools, specifically those that allow investigation of structural reorganization of the chromatin. These have the potential to increase our understanding of alteration of chromatin architecture at gene regulatory regions. Neuroepigenetic mechanisms involved in addictive behaviors could explain persistent phenotypic effects of drugs and, in particular, vulnerability to relapse.
Collapse
Affiliation(s)
- David De Sa Nogueira
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, CNRS, Université de Strasbourg, Team 3 « Abuse of Drugs and Neuroadaptations », Faculté de Psychologie, 12 rue Goethe, F-67000, France
| | - Karine Merienne
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, CNRS, Université de Strasbourg, Team 1 « Dynamics of Memory and Epigenetics », Faculté de Psychologie, 12 rue Goethe, F-67000, France
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, CNRS, Université de Strasbourg, Team 3 « Abuse of Drugs and Neuroadaptations », Faculté de Psychologie, 12 rue Goethe, F-67000, France.
| |
Collapse
|
99966
|
Pappalardo LW, Samad OA, Liu S, Zwinger PJ, Black JA, Waxman SG. Nav1.5 in astrocytes plays a sex-specific role in clinical outcomes in a mouse model of multiple sclerosis. Glia 2018; 66:2174-2187. [PMID: 30194875 DOI: 10.1002/glia.23470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 12/13/2022]
Abstract
Astrogliosis is a hallmark of neuroinflammatory disorders such as multiple sclerosis (MS). A detailed understanding of the underlying molecular mechanisms governing astrogliosis might facilitate the development of therapeutic targets. We investigated whether Nav1.5 expression in astrocytes plays a role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), a murine model of MS. We created a conditional knockout of Nav1.5 in astrocytes and determined whether this affects the clinical course of EAE, focal macrophage and T cell infiltration, and diffuse activation of astrocytes. We show that deletion of Nav1.5 from astrocytes leads to significantly worsened clinical outcomes in EAE, with increased inflammatory infiltrate in both early and late stages of disease, unexpectedly, in a sex-specific manner. Removal of Nav1.5 in astrocytes leads to increased inflammation in female mice with EAE, including increased astroglial response and infiltration of T cells and phagocytic monocytes. These cellular changes are consistent with more severe EAE clinical scores. Additionally, we found evidence suggesting possible dysregulation of the immune response-particularly with regard to infiltrating macrophages and activated microglia-in female Nav1.5 KO mice compared with WT littermate controls. Together, our results show that deletion of Nav1.5 from astrocytes leads to significantly worsened clinical outcomes in EAE, with increased inflammatory infiltrate in both early and late stages of disease, in a sex-specific manner.
Collapse
Affiliation(s)
- Laura W Pappalardo
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, 06510.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, Connecticut, 06516
| | - Omar A Samad
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, 06510.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, Connecticut, 06516
| | - Shujun Liu
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, 06510.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, Connecticut, 06516
| | - Pamela J Zwinger
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, 06510.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, Connecticut, 06516
| | - Joel A Black
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, 06510.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, Connecticut, 06516
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, 06510.,Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, Connecticut, 06516
| |
Collapse
|
99967
|
Richards BA, Lillicrap TP. Dendritic solutions to the credit assignment problem. Curr Opin Neurobiol 2018; 54:28-36. [PMID: 30205266 DOI: 10.1016/j.conb.2018.08.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/19/2018] [Accepted: 08/07/2018] [Indexed: 11/27/2022]
Abstract
Guaranteeing that synaptic plasticity leads to effective learning requires a means for assigning credit to each neuron for its contribution to behavior. The 'credit assignment problem' refers to the fact that credit assignment is non-trivial in hierarchical networks with multiple stages of processing. One difficulty is that if credit signals are integrated with other inputs, then it is hard for synaptic plasticity rules to distinguish credit-related activity from non-credit-related activity. A potential solution is to use the spatial layout and non-linear properties of dendrites to distinguish credit signals from other inputs. In cortical pyramidal neurons, evidence hints that top-down feedback signals are integrated in the distal apical dendrites and have a distinct impact on spike-firing and synaptic plasticity. This suggests that the distal apical dendrites of pyramidal neurons help the brain to solve the credit assignment problem.
Collapse
Affiliation(s)
- Blake A Richards
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada; Learning in Machines and Brains Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | | |
Collapse
|
99968
|
Holmgren J, Isager PM, Schubert TW. Evidence for magnitude representations of social hierarchies: Size and distance effects. PLoS One 2018; 13:e0203263. [PMID: 30192800 PMCID: PMC6128480 DOI: 10.1371/journal.pone.0203263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/19/2018] [Indexed: 11/30/2022] Open
Abstract
Social status is often metaphorically construed in terms of spatial relations such as height, size, and numerosity. This has led to the idea that social status might partially be represented by an analogue magnitude system, responsible for processing the magnitude of various physical and abstract dimensions. Accordingly, processing of social status should obey Weber’s law. We conducted three studies to investigate whether social status comparisons would indicate behavioral outcomes derived from Weber’s law: the distance effect and the size effect. Dependent variable was the latency of status comparisons for a variety of both learned and familiar hierarchies. As predicted and in line with previous findings, we observed a clear distance effect. However, the effect of size variation differed from the size effect hypothesized a priori, and an unexpected interaction between the two effects was observed. In conclusion, we provide a robust confirmation of previous observations of the distance effect in social status comparisons, but the shape of the size effect requires new theorizing.
Collapse
Affiliation(s)
- Jostein Holmgren
- Department of Psychology, University of Oslo, Oslo, Norway
- * E-mail:
| | | | | |
Collapse
|
99969
|
Nosjean A, de Chaumont F, Olivo-Marin JC, Granon S. Stress-induced brain activation: buffering role of social behavior and neuronal nicotinic receptors. Brain Struct Funct 2018; 223:4259-4274. [DOI: 10.1007/s00429-018-1745-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/30/2018] [Indexed: 11/28/2022]
|
99970
|
The peripheral eye: A neurogenic area with potential to treat retinal pathologies? Prog Retin Eye Res 2018; 68:110-123. [PMID: 30201383 DOI: 10.1016/j.preteyeres.2018.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022]
Abstract
Numerous degenerative diseases affecting visual function, including glaucoma and retinitis pigmentosa, are produced by the loss of different types of retinal cells. Cell replacement therapy has emerged as a promising strategy for treating these and other retinal diseases. The retinal margin or ciliary body (CB) of mammals has been proposed as a potential source of cells to be used in degenerative conditions affecting the retina because it has been reported it might hold neurogenic potential beyond embryonic development. However, many aspects of the origin and biology of the CB are unknown and more recent experiments have challenged the capacity of CB cells to generate different types of retinal neurons. Here we review the most recent findings about the development of the marginal zone of the retina in different vertebrates and some of the mechanisms underlying the proliferative and neurogenic capacity of this fascinating region of the vertebrates eye. In addition, we performed experiments to isolate CB cells from the mouse retina, generated neurospheres and observed that they can be expanded with a proliferative ratio similar to neural stem cells. When induced to differentiate, cells derived from the CB neurospheres start to express early neural markers but, unlike embryonic stem cells, they are not able to fully differentiate in vitro or generate retinal organoids. Together with previous reports on the neurogenic capacity of CB cells, also reviewed here, our results contribute to the current knowledge about the potentiality of this peripheral region of the eye as a therapeutic source of functional retinal neurons in degenerative diseases.
Collapse
|
99971
|
Abreu AR, Molosh AI, Johnson PL, Shekhar A. Role of medial hypothalamic orexin system in panic, phobia and hypertension. Brain Res 2018; 1731:145942. [PMID: 30205108 DOI: 10.1016/j.brainres.2018.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/04/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
Orexin has been implicated in a number of physiological functions, including arousal, regulation of sleep, energy metabolism, appetitive behaviors, stress, anxiety, fear, panic, and cardiovascular control. In this review, we will highlight research focused on orexin system in the medial hypothalamic regions of perifornical (PeF) and dorsomedial hypothalamus (DMH), and describe the role of this hypothalamic neuropeptide in the behavioral expression of panic and consequent fear and avoidance responses, as well as sympathetic regulation and possible development of chronic hypertension. We will also outline recent data highlighting the clinical potential of single and dual orexin receptor antagonists for neuropsychiatric conditions including panic, phobia, and cardiovascular conditions, such as in hypertension.
Collapse
Affiliation(s)
- Aline R Abreu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrei I Molosh
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Philip L Johnson
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anantha Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
99972
|
Zhang W, Guo B. Freud's Dream Interpretation: A Different Perspective Based on the Self-Organization Theory of Dreaming. Front Psychol 2018; 9:1553. [PMID: 30190698 PMCID: PMC6115518 DOI: 10.3389/fpsyg.2018.01553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/06/2018] [Indexed: 11/17/2022] Open
Affiliation(s)
- Wei Zhang
- Research Institute of Moral Education/School of Psychology, Nanjing Normal University, Nanjing, China
| | - Benyu Guo
- Research Institute of Moral Education/School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
99973
|
Backofen-Wehrhahn B, Gey L, Bröer S, Petersen B, Schiff M, Handreck A, Stanslowsky N, Scharrenbroich J, Weißing M, Staege S, Wegner F, Niemann H, Löscher W, Gernert M. Anticonvulsant effects after grafting of rat, porcine, and human mesencephalic neural progenitor cells into the rat subthalamic nucleus. Exp Neurol 2018; 310:70-83. [PMID: 30205107 DOI: 10.1016/j.expneurol.2018.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/20/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022]
Abstract
Cell transplantation based therapy is a promising strategy for treating intractable epilepsies. Inhibition of the subthalamic nucleus (STN) or substantia nigra pars reticulata (SNr) is a powerful experimental approach for remote control of different partial seizure types, when targeting the seizure focus is not amenable. Here, we tested the hypothesis that grafting of embryonic/fetal neural precursor cells (NPCs) from various species (rat, human, pig) into STN or SNr of adult rats induces anticonvulsant effects. To rationally refine this approach, we included NPCs derived from the medial ganglionic eminence (MGE) and ventral mesencephalon (VM), both of which are able to develop a GABAergic phenotype. All VM- and MGE-derived cells showed intense migration behavior after grafting into adult rats, developed characteristics of inhibitory interneurons, and survived at least up to 4 months after transplantation. By using the intravenous pentylenetetrazole (PTZ) seizure threshold test in adult rats, transient anticonvulsant effects were observed after bilateral grafting of NPCs derived from human and porcine VM into STN, but not after SNr injection (site-specificity). In contrast, MGE-derived NPCs did not cause anticonvulsant effects after grafting into STN or SNr (cell-specificity). Neither induction of status epilepticus by lithium-pilocarpine to induce neuronal damage prior to the PTZ test nor pretreatment of MGE cells with retinoic acid and potassium chloride to increase differentiation into GABAergic neurons could enhance anticonvulsant effectiveness of MGE cells. This is the first proof-of-principle study showing anticonvulsant effects by bilateral xenotransplantation of NPCs into the STN. Our study highlights the value of VM-derived NPCs for interneuron-based cell grafting targeting the STN.
Collapse
Affiliation(s)
- Bianca Backofen-Wehrhahn
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Laura Gey
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Germany
| | - Miriam Schiff
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Annelie Handreck
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | | | - Jessica Scharrenbroich
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Michael Weißing
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Selma Staege
- Center for Systems Neuroscience, Hannover, Germany; Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Florian Wegner
- Center for Systems Neuroscience, Hannover, Germany; Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
99974
|
Legros N, Pohlentz G, Steil D, Müthing J. Shiga toxin-glycosphingolipid interaction: Status quo of research with focus on primary human brain and kidney endothelial cells. Int J Med Microbiol 2018; 308:1073-1084. [PMID: 30224239 DOI: 10.1016/j.ijmm.2018.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
Shiga toxin (Stx)-mediated injury of the kidneys and the brain represent the major extraintestinal complications in humans upon infection by enterohemorrhagic Escherichia coli (EHEC). Damage of renal and cerebral endothelial cells is the key event in the pathogenesis of the life-threatening hemolytic uremic syndrome (HUS). Stxs are AB5 toxins and the B-pentamers of the two clinically important Stx subtypes Stx1a and Stx2a preferentially bind to the glycosphingolipid globotriaosylceramide (Gb3Cer, Galα4Galβ4Glcβ1Cer) and to less extent to globotetraosylceramide (Gb4Cer, GalNAcβ3Galα4Galβ4Glcβ1), which are expected to reside in lipid rafts in the plasma membrane of the human endothelium. This review summarizes the current knowledge on the Stx glycosphingolipid receptors and their lipid membrane ensemble in primary human brain microvascular endothelial cells (pHBMECs) and primary human renal glomerular endothelial cells (pHRGECs). Increasing knowledge on the precise initial molecular mechanisms by which Stxs interact with cellular targets will help to develop specific therapeutics and/or preventive measures to combat EHEC-caused diseases.
Collapse
Affiliation(s)
- Nadine Legros
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Daniel Steil
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany; Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
99975
|
Becker W, Kassubek J, Maurer C, Mergner T. Targeting head movements in humans: Compensation for disturbance from simultaneous body rotations. Hum Mov Sci 2018; 61:197-218. [PMID: 30189333 DOI: 10.1016/j.humov.2018.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 11/15/2022]
Abstract
Vestibular information plays an important role in spatially oriented motor control and perception. With regard to reorienting head movements, little is known of (1) how vestibular mechanisms compensate for disturbances from concurrent passive trunk rotations (e.g. in a veering vehicle), and (2) whether and how this disturbance compensation is related to the perception of body orientation in space. We here address these two questions in a single experiment. Six healthy subjects (Ss) seated on a turning chair in darkness performed two tasks. (1) Head pointing: Ss made swift head movements in darkness towards the angular position in space of a previously shown visual target. These movements were disturbed by concurrent rotations of the chair, and hence the trunk, which were driven by scaled down versions of the Ss' own head-on-trunk rotations. Although unaware of the disturbance, Ss adjusted their head movements so as to attenuate its effect on head-in-space (HS) position by about 45%. (2) Visual straight ahead (VSA): Using a light pointer, Ss indicated their VSA before each head-pointing trial and tried to reproduce it after the trial. In all Ss, VSA accounted for the disturbing trunk rotation, although to individually varying degrees. No correlation could be detected between VSA reproduction and motor performance, neither within nor across subjects. A vestibular loss subject who performed the same two tasks made no compensatory movements during head pointing and did not account for the disturbance of his HS position during VSA reproduction. Three concepts of vestibular information processing for head movement control were explored with regard to their compatibility with the head-pointing results: (1) Conventional negative feedback, (2) Interaction with an efference copy, and (3) Interaction with neck proprioceptive information. Theoretical analyses and model simulations indicated that all three concepts can explain the observed disturbance compensation. However, they differ in terms of control stability in the presence of feedback time delays, with (3) being best and (1) worst. The different concepts might correspond to fast simple and slower complex compensation mechanisms, respectively, and possibly complement each other during natural behaviours. VSA reproduction may be based on analogous processing principles, but appears to involve different neural circuitries.
Collapse
Affiliation(s)
- W Becker
- Sektion Neurophysiologie, Universität Ulm, Germany.
| | - J Kassubek
- Sektion Neurophysiologie, Universität Ulm, Germany; Neurologische Klinik, Universität Ulm, Germany
| | - C Maurer
- Neurologische Klinik, Universität Freiburg, Germany
| | - T Mergner
- Neurologische Klinik, Universität Freiburg, Germany
| |
Collapse
|
99976
|
Crochet S, Lee SH, Petersen CCH. Neural Circuits for Goal-Directed Sensorimotor Transformations. Trends Neurosci 2018; 42:66-77. [PMID: 30201180 DOI: 10.1016/j.tins.2018.08.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/08/2018] [Accepted: 08/15/2018] [Indexed: 11/19/2022]
Abstract
Precisely wired neuronal circuits process sensory information in a learning- and context-dependent manner in order to govern behavior. Simple sensory decision-making tasks in rodents are now beginning to reveal the contributions of distinct cell types and brain regions participating in the conversion of sensory information into learned goal-directed motor output. Task learning is accompanied by target-specific routing of sensory information to specific downstream cortical regions, with higher-order cortical regions such as the posterior parietal cortex, medial prefrontal cortex, and hippocampus appearing to play important roles in learning- and context-dependent processing of sensory input. An important challenge for future research is to connect cell-type-specific activity in these brain regions with motor neurons responsible for action initiation.
Collapse
Affiliation(s)
- Sylvain Crochet
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Seung-Hee Lee
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Biological Sciences, KAIST, Daejeon, Republic of Korea.
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
99977
|
Rabinovich MI, Varona P. Discrete Sequential Information Coding: Heteroclinic Cognitive Dynamics. Front Comput Neurosci 2018; 12:73. [PMID: 30245621 PMCID: PMC6137616 DOI: 10.3389/fncom.2018.00073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/14/2018] [Indexed: 12/22/2022] Open
Abstract
Discrete sequential information coding is a key mechanism that transforms complex cognitive brain activity into a low-dimensional dynamical process based on the sequential switching among finite numbers of patterns. The storage size of the corresponding process is large because of the permutation capacity as a function of control signals in ensembles of these patterns. Extracting low-dimensional functional dynamics from multiple large-scale neural populations is a central problem both in neuro- and cognitive- sciences. Experimental results in the last decade represent a solid base for the creation of low-dimensional models of different cognitive functions and allow moving toward a dynamical theory of consciousness. We discuss here a methodology to build simple kinetic equations that can be the mathematical skeleton of this theory. Models of the corresponding discrete information processing can be designed using the following dynamical principles: (i) clusterization of the neural activity in space and time and formation of information patterns; (ii) robustness of the sequential dynamics based on heteroclinic chains of metastable clusters; and (iii) sensitivity of such sequential dynamics to intrinsic and external informational signals. We analyze sequential discrete coding based on winnerless competition low-frequency dynamics. Under such dynamics, entrainment, and heteroclinic coordination leads to a large variety of coding regimes that are invariant in time.
Collapse
Affiliation(s)
- Mikhail I Rabinovich
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, United States
| | - Pablo Varona
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
99978
|
Lok R, Smolders KCHJ, Beersma DGM, de Kort YAW. Light, Alertness, and Alerting Effects of White Light: A Literature Overview. J Biol Rhythms 2018; 33:589-601. [PMID: 30191746 PMCID: PMC6236641 DOI: 10.1177/0748730418796443] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Light is known to elicit non-image-forming responses, such as effects on alertness. This has been reported especially during light exposure at night. Nighttime results might not be translatable to the day. This article aims to provide an overview of (1) neural mechanisms regulating alertness, (2) ways of measuring and quantifying alertness, and (3) the current literature specifically regarding effects of different intensities of white light on various measures and correlates of alertness during the daytime. In general, the present literature provides inconclusive results on alerting effects of the intensity of white light during daytime, particularly for objective measures and correlates of alertness. However, the various research paradigms employed in earlier studies differed substantially, and most studies tested only a limited set of lighting conditions. Therefore, the alerting potential of exposure to more intense white light should be investigated in a systematic, dose-dependent manner with multiple correlates of alertness and within one experimental paradigm over the course of day.
Collapse
Affiliation(s)
- Renske Lok
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Karin C H J Smolders
- Human-Technology Interaction, School of Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Domien G M Beersma
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Yvonne A W de Kort
- Human-Technology Interaction, School of Innovation Sciences, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
99979
|
Xiao K, Sun Z, Jin X, Ma W, Song Y, Lai S, Chen Q, Fan M, Zhang J, Yue W, Huang Z. ERG3 potassium channel-mediated suppression of neuronal intrinsic excitability and prevention of seizure generation in mice. J Physiol 2018; 596:4729-4752. [PMID: 30016551 DOI: 10.1113/jp275970] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/05/2018] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS ERG3 channels have a high expression level in the central nervous system. Knockdown of ERG3 channels enhances neuronal intrinsic excitability (caused by decreased fast afterhyperpolarization, shortened delay time to the generation of an action potential and enhanced summation of somatic excitatory postsynaptic potentials) in hippocampal CA1 pyramidal neurons and dentate gyrus granule cells. The expression of ERG3 protein is reduced in human and mouse hippocampal epileptogenic foci. Knockdown of ERG3 channels in hippocampus enhanced seizure susceptibility, while mice treated with the ERG channel activator NS-1643 were less prone to epileptogenesis. The results provide strong evidence that ERG3 channels have a crucial role in the regulation of neuronal intrinsic excitability in hippocampal CA1 pyramidal neurons and dentate gyrus granule cells and are critically involved in the onset and development of epilepsy. ABSTRACT The input-output relationship of neuronal networks depends heavily on the intrinsic properties of their neuronal elements. Profound changes in intrinsic properties have been observed in various physiological and pathological processes, such as learning, memory and epilepsy. However, the cellular and molecular mechanisms underlying acquired changes in intrinsic excitability are still not fully understood. Here, we demonstrate that ERG3 channels are critically involved in the regulation of intrinsic excitability in hippocampal CA1 pyramidal neurons and dentate gyrus granule cells. Knock-down of ERG3 channels significantly increases neuronal intrinsic excitability, which is mainly caused by decreased fast afterhyperpolarization, shortened delay time to the generation of an action potential and enhanced summation of somatic excitatory postsynaptic potentials. Interestingly, the expression level of ERG3 protein is significantly reduced in human and mouse brain tissues with temporal lobe epilepsy. Moreover, ERG3 channel knockdown in hippocampus significantly enhanced seizure susceptibility, while mice treated with the ERG channel activator NS-1643 were less prone to epileptogenesis. Taken together, our results suggest ERG3 channels play an important role in determining the excitability of hippocampal neurons and dysregulation of these channels may be involved in the generation of epilepsy. ERG3 channels may thus be a novel therapeutic target for the prevention of epilepsy.
Collapse
Affiliation(s)
- Kuo Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zhiming Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xueqin Jin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Weining Ma
- Department of Neurology, Shengjing Hospital affiliated to China Medical University, Shenyang, 110000, China
| | - Yan Song
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shirong Lai
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Qian Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Minghua Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jingliang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Weihua Yue
- Peking University Sixth Hospital (Institute of Mental Health), Beijing, 100191, China.,National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100191, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China.,Key Laboratory for Neuroscience, Ministry of Education, Beijing, 100191, China
| |
Collapse
|
99980
|
Fiandaca MS, Gross TJ, Johnson TM, Hu MT, Evetts S, Wade-Martins R, Merchant-Borna K, Bazarian J, Cheema AK, Mapstone M, Federoff HJ. Potential Metabolomic Linkage in Blood between Parkinson's Disease and Traumatic Brain Injury. Metabolites 2018; 8:metabo8030050. [PMID: 30205491 PMCID: PMC6161135 DOI: 10.3390/metabo8030050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022] Open
Abstract
The etiologic basis for sporadic forms of neurodegenerative diseases has been elusive but likely represents the product of genetic predisposition and various environmental factors. Specific gene-environment interactions have become more salient owing, in part, to the elucidation of epigenetic mechanisms and their impact on health and disease. The linkage between traumatic brain injury (TBI) and Parkinson's disease (PD) is one such association that currently lacks a mechanistic basis. Herein, we present preliminary blood-based metabolomic evidence in support of potential association between TBI and PD. Using untargeted and targeted high-performance liquid chromatography-mass spectrometry we identified metabolomic biomarker profiles in a cohort of symptomatic mild TBI (mTBI) subjects (n = 75) 3⁻12 months following injury (subacute) and TBI controls (n = 20), and a PD cohort with known PD (n = 20) or PD dementia (PDD) (n = 20) and PD controls (n = 20). Surprisingly, blood glutamic acid levels in both the subacute mTBI (increased) and PD/PDD (decreased) groups were notably altered from control levels. The observed changes in blood glutamic acid levels in mTBI and PD/PDD are discussed in relation to other metabolite profiling studies. Should our preliminary results be replicated in comparable metabolomic investigations of TBI and PD cohorts, they may contribute to an "excitotoxic" linkage between TBI and PD/PDD.
Collapse
Affiliation(s)
- Massimo S Fiandaca
- Translational Laboratory and Biorepository, Department of Neurology, University of California Irvine School of Medicine, Irvine, CA 92697-3910, USA.
- Department of Neurological Surgery, University of California Irvine School of Medicine, Irvine, CA 92697-3910, USA.
- Department of Anatomy & Neurobiology, University of California Irvine School of Medicine, Irvine, CA 92697-3910, USA.
| | - Thomas J Gross
- Translational Laboratory and Biorepository, Department of Neurology, University of California Irvine School of Medicine, Irvine, CA 92697-3910, USA.
- Department of Anatomy & Neurobiology, University of California Irvine School of Medicine, Irvine, CA 92697-3910, USA.
| | - Thomas M Johnson
- Intrepid Spirit Concussion Recovery Center, Naval Medical Center Camp Lejeune, Jacksonville, NC 28540, USA.
| | - Michele T Hu
- Nuffield Department of Clinical Neurosciences, University of Oxford, 01865 Oxford, UK.
- Department of Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford 01865, UK.
| | - Samuel Evetts
- Nuffield Department of Clinical Neurosciences, University of Oxford, 01865 Oxford, UK.
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford 01865, UK.
| | - Kian Merchant-Borna
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14604, USA.
| | - Jeffrey Bazarian
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14604, USA.
| | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20001, USA.
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20001, USA.
| | - Mark Mapstone
- Translational Laboratory and Biorepository, Department of Neurology, University of California Irvine School of Medicine, Irvine, CA 92697-3910, USA.
| | - Howard J Federoff
- Translational Laboratory and Biorepository, Department of Neurology, University of California Irvine School of Medicine, Irvine, CA 92697-3910, USA.
| |
Collapse
|
99981
|
Abstract
A complex web of social and moral norms governs many everyday human behaviors, acting as the glue for social harmony. The existence of moral norms helps elucidate the psychological motivations underlying a wide variety of seemingly puzzling behavior, including why humans help or trust total strangers. In this review, we examine four widespread moral norms: Fairness, altruism, trust, and cooperation, and consider how a single social instrument-reciprocity-underpins compliance to these norms. Using a game theoretic framework, we examine how both context and emotions moderate moral standards, and by extension, moral behavior. We additionally discuss how a mechanism of reciprocity facilitates the adherence to, and enforcement of, these moral norms through a core network of brain regions involved in processing reward. In contrast, violating this set of moral norms elicits neural activation in regions involved in resolving decision conflict and exerting cognitive control. Finally, we review how a reinforcement mechanism likely governs learning about morally normative behavior. Together, this review aims to explain how moral norms are deployed in ways that facilitate flexible moral choices.
Collapse
|
99982
|
Meng HJ, Pi YL, Liu K, Cao N, Wang YQ, Wu Y, Zhang J. Differences between motor execution and motor imagery of grasping movements in the motor cortical excitatory circuit. PeerJ 2018; 6:e5588. [PMID: 30186707 PMCID: PMC6118197 DOI: 10.7717/peerj.5588] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/15/2018] [Indexed: 11/20/2022] Open
Abstract
Background Both motor imagery (MI) and motor execution (ME) can facilitate motor cortical excitability. Although cortical excitability is modulated by intracortical inhibitory and excitatory circuits in the human primary motor cortex, it is not clear which intracortical circuits determine the differences in corticospinal excitability between ME and MI. Methods We recruited 10 young healthy subjects aged 18-28 years (mean age: 22.1 ± 3.14 years; five women and five men) for this study. The experiment consisted of two sets of tasks involving grasp actions of the right hand: imagining and executing them. Corticospinal excitability and short-interval intracortical inhibition (SICI) were measured before the interventional protocol using transcranial magnetic stimulation (baseline), as well as at 0, 20, and 40 min (T0, T20, and T40) thereafter. Results Facilitation of corticospinal excitability was significantly greater after ME than after MI in the right abductor pollicis brevis (APB) at T0 and T20 (p < 0.01 for T0, and p < 0.05 for T20), but not in the first dorsal interosseous (FDI) muscle. On the other hand, no significant differences in SICI between ME and MI were found in the APB and FDI muscles. The facilitation of corticospinal excitability at T20 after MI correlated with the Movement Imagery Questionnaire (MIQ) scores for kinesthetic items (Rho = -0.646, p = 0.044) but did not correlate with the MIQ scores for visual items (Rho = -0.265, p = 0.458). Discussion The present results revealed significant differences between ME and MI on intracortical excitatory circuits of the human motor cortex, suggesting that cortical excitability differences between ME and MI may be attributed to the activation differences of the excitatory circuits in the primary motor cortex.
Collapse
Affiliation(s)
- Hai-Jiang Meng
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,School of Sports, Anqing Normal University, Anqing, China
| | - Yan-Ling Pi
- Shanghai Punan Hosptial of Pudong New District, Shanghai, China
| | - Ke Liu
- Shanghai Punan Hosptial of Pudong New District, Shanghai, China
| | - Na Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yan-Qiu Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yin Wu
- School of Economics and Management, Shanghai University of Sport, Shanghai, China
| | - Jian Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
99983
|
Abstract
This review takes a historical perspective on concepts in the psychology of motivation and emotion, and surveys recent developments, debates and applications. Old debates over emotion have recently risen again. For example, are emotions necessarily subjective feelings? Do animals have emotions? I review evidence that emotions exist as core psychological processes, which have objectively detectable features, and which can occur either with subjective feelings or without them. Evidence is offered also that studies of emotion in animals can give new insights into human emotions. Beyond emotion, motivation concepts have changed over decades too, and debates still continue. Motivation was once thought in terms of aversive drives, and reward was thought of in terms of drive reduction. Motivation-as-drive concepts were largely replaced by motivation-as-incentive concepts, yet aversive drive concepts still occasionally surface in reward neuroscience today. Among incentive concepts, incentive salience is a core motivation process, mediated by brain mesocorticolimbic systems (dopamine-related systems) and sometimes called 'wanting' (in quotation marks), to distinguish it from cognitive forms of desire (wanting without quotation marks). Incentive salience as 'wanting' is separable also from pleasure 'liking' for the same reward, which has important implications for several human clinical disorders. Ordinarily, incentive salience adds motivational urgency to cognitive desires, but 'wanting' and cognitive desires can dissociate in some conditions. Excessive incentive salience can cause addictions, in which excessive 'wanting' can diverge from cognitive desires. Conversely, lack of incentive salience may cause motivational forms of anhedonia in depression or schizophrenia, whereas a negatively-valenced form of 'fearful salience' may contribute to paranoia. Finally, negative 'fear' and 'disgust' have both partial overlap but also important neural differences.
Collapse
Affiliation(s)
- Kent C. Berridge
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
99984
|
Zaccaro A, Piarulli A, Laurino M, Garbella E, Menicucci D, Neri B, Gemignani A. How Breath-Control Can Change Your Life: A Systematic Review on Psycho-Physiological Correlates of Slow Breathing. Front Hum Neurosci 2018; 12:353. [PMID: 30245619 PMCID: PMC6137615 DOI: 10.3389/fnhum.2018.00353] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Background: The psycho-physiological changes in brain-body interaction observed in most of meditative and relaxing practices rely on voluntary slowing down of breath frequency. However, the identification of mechanisms linking breath control to its psychophysiological effects is still under debate. This systematic review is aimed at unveiling psychophysiological mechanisms underlying slow breathing techniques (<10 breaths/minute) and their effects on healthy subjects. Methods: A systematic search of MEDLINE and SCOPUS databases, using keywords related to both breathing techniques and to their psychophysiological outcomes, focusing on cardio-respiratory and central nervous system, has been conducted. From a pool of 2,461 abstracts only 15 articles met eligibility criteria and were included in the review. The present systematic review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results: The main effects of slow breathing techniques cover autonomic and central nervous systems activities as well as the psychological status. Slow breathing techniques promote autonomic changes increasing Heart Rate Variability and Respiratory Sinus Arrhythmia paralleled by Central Nervous System (CNS) activity modifications. EEG studies show an increase in alpha and a decrease in theta power. Anatomically, the only available fMRI study highlights increased activity in cortical (e.g., prefrontal, motor, and parietal cortices) and subcortical (e.g., pons, thalamus, sub-parabrachial nucleus, periaqueductal gray, and hypothalamus) structures. Psychological/behavioral outputs related to the abovementioned changes are increased comfort, relaxation, pleasantness, vigor and alertness, and reduced symptoms of arousal, anxiety, depression, anger, and confusion. Conclusions: Slow breathing techniques act enhancing autonomic, cerebral and psychological flexibility in a scenario of mutual interactions: we found evidence of links between parasympathetic activity (increased HRV and LF power), CNS activities (increased EEG alpha power and decreased EEG theta power) related to emotional control and psychological well-being in healthy subjects. Our hypothesis considers two different mechanisms for explaining psychophysiological changes induced by voluntary control of slow breathing: one is related to a voluntary regulation of internal bodily states (enteroception), the other is associated to the role of mechanoceptors within the nasal vault in translating slow breathing in a modulation of olfactory bulb activity, which in turn tunes the activity of the entire cortical mantle.
Collapse
Affiliation(s)
- Andrea Zaccaro
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Andrea Piarulli
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy.,Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
| | - Marco Laurino
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
| | | | - Danilo Menicucci
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Bruno Neri
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy.,National Research Council, Institute of Clinical Physiology, Pisa, Italy.,Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| |
Collapse
|
99985
|
Bhattacharya M, Ghosh S, Malick RC, Patra BC, Das BK. Therapeutic applications of zebrafish (Danio rerio) miRNAs linked with human diseases: A prospective review. Gene 2018; 679:202-211. [PMID: 30201335 DOI: 10.1016/j.gene.2018.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are the class of small, non-coding RNAs that are produced from precursor transcripts by subsequent processing steps mediated by members of the RNaseIII family, Dicer and Drosha protein within cell. The importance of zebrafish miRNAs in regulation of normal cellular development and support to various kinds of metabolism process. Although the zebrafish model provides a fundamental platform for the study of developmental biology but recent work with zebrafish model has expanded its appliance to a broad range of experimental studies relevant to different kind of human diseases. Presently, the zebrafish model is used for the study of cardiovascular disease, schizophrenia, bipolar I disorder in eyes, psoriasis, spinal cord injury, cancer and diabetes that showing in some selected miRNAs are regulate these diseases in molecular levels. Here, a superior drive performed to depict the fundamental utilization of the zebrafish miRNAs that targeted to several clinical diseases connected to human. This review aims to provide a summary of understanding of the cellular mechanism which is responsible for selected diseases and suggests some therapeutic application for inhibition of miRNA functions.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Soumendu Ghosh
- Centre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Ramesh Chandra Malick
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Bidhan Chandra Patra
- Centre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India.
| |
Collapse
|
99986
|
Alayrangues J, Torrecillos F, Jahani A, Malfait N. Error-related modulations of the sensorimotor post-movement and foreperiod beta-band activities arise from distinct neural substrates and do not reflect efferent signal processing. Neuroimage 2018; 184:10-24. [PMID: 30201465 DOI: 10.1016/j.neuroimage.2018.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/30/2018] [Accepted: 09/05/2018] [Indexed: 01/06/2023] Open
Abstract
While beta activity has been extensively studied in relation to voluntary movement, its role in sensorimotor adaptation remains largely uncertain. Recently, it has been shown that the post-movement beta rebound as well as beta activity during movement-preparation are modulated by movement errors. However, there are critical functional differences between pre- and post-movement beta activities. Here, we addressed two related open questions. Do the pre- and post-movement error-related modulations arise from distinct neural substrates? Do these modulations relate to efferent signals shaping muscle-activation patterns or do they reflect integration of sensory information, intervening upstream of the motor output? For this purpose, first we exploited independent component analysis (ICA) which revealed a double dissociation suggesting that distinct neural substrates are recruited in error-related beta-power modulations observed before and after movement. Second, we compared error-related beta oscillation responses observed in two bimanual reaching tasks involving similar movements but different interlimb coordination, and in which the same mechanical perturbations induced different behavioral adaptive responses. While the task difference was not reflected in the post-movement beta rebound, the pre-movement beta activity was differently modulated according to the interlimb coordination. Critically, we show an uncoupling between the behavioral and the electrophysiological responses during the movement preparation phase, which demonstrates that the error-related modulation of the foreperiod beta activity does not reflect changes in the motor output from primary motor cortex. It seems instead to relate to higher level processing of sensory afferents, essential for sensorimotor adaptation.
Collapse
Affiliation(s)
- Julie Alayrangues
- Institut de Neurosciences de la Timone, UMR7289, Aix-Marseille Université/CNRS, Marseille, France
| | - Flavie Torrecillos
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Amirhossein Jahani
- Institut de Neurosciences de la Timone, UMR7289, Aix-Marseille Université/CNRS, Marseille, France
| | - Nicole Malfait
- Institut de Neurosciences de la Timone, UMR7289, Aix-Marseille Université/CNRS, Marseille, France.
| |
Collapse
|
99987
|
|
99988
|
Lok R, Woelders T, Gordijn MCM, Hut RA, Beersma DGM. White Light During Daytime Does Not Improve Alertness in Well-rested Individuals. J Biol Rhythms 2018; 33:637-648. [PMID: 30191761 PMCID: PMC6236585 DOI: 10.1177/0748730418796036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Broad-spectrum light applied during the night has been shown to affect alertness in a
dose-dependent manner. The goal of this experiment was to investigate whether a similar
relationship could be established for light exposure during daytime. Fifty healthy
participants were subjected to a paradigm (0730-1730 h) in which they were intermittently
exposed to 1.5 h of dim light (<10 lux) and 1 h of experimental light (24-2000 lux).
The same intensity of experimental light was used throughout the day, resulting in groups
of 10 subjects per intensity. Alertness was assessed with subjective and multiple
objective measures. A significant effect of time of day was found in all parameters of
alertness (p < 0.05). Significant dose-response relationships between
light intensity and alertness during the day could be determined in a few of the
parameters of alertness at some times of the day; however, none survived correction for
multiple testing. We conclude that artificial light applied during daytime at intensities
up to 2000 lux does not elicit significant improvements in alertness in non-sleep-deprived
subjects.
Collapse
Affiliation(s)
- Renske Lok
- University of Groningen, Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, Groningen, the Netherlands
| | - Tom Woelders
- University of Groningen, Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, Groningen, the Netherlands
| | - Marijke C M Gordijn
- University of Groningen, Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, Groningen, the Netherlands.,Chrono@Work, Groningen, the Netherlands
| | - Roelof A Hut
- University of Groningen, Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, Groningen, the Netherlands
| | - Domien G M Beersma
- University of Groningen, Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, Groningen, the Netherlands
| |
Collapse
|
99989
|
Perea JR, Lleó A, Alcolea D, Fortea J, Ávila J, Bolós M. Decreased CX3CL1 Levels in the Cerebrospinal Fluid of Patients With Alzheimer's Disease. Front Neurosci 2018; 12:609. [PMID: 30245615 PMCID: PMC6137321 DOI: 10.3389/fnins.2018.00609] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by the presence of neurofibrillary tangles, constituted by tau protein, and plaques formed by amyloid-beta protein. The disease courses with high neural damage, which leads to memory loss and death. Here we analyzed the presence of CX3CL1, a chemokine expressed by neurons, in cerebrospinal fluid (CSF) samples from control subjects and patients with mild cognitive impairment and AD dementia. CX3CL1 was decreased in the CSF of AD dementia patients compared to control subjects. However, there was not difference in plasma samples from the same subjects.
Collapse
Affiliation(s)
- Juan R Perea
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases, Madrid, Spain
| | - Alberto Lleó
- Network Center for Biomedical Research on Neurodegenerative Diseases, Madrid, Spain.,Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Alcolea
- Network Center for Biomedical Research on Neurodegenerative Diseases, Madrid, Spain.,Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Fortea
- Network Center for Biomedical Research on Neurodegenerative Diseases, Madrid, Spain.,Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jesús Ávila
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases, Madrid, Spain
| | - Marta Bolós
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases, Madrid, Spain
| |
Collapse
|
99990
|
Choi SH, Bylykbashi E, Chatila ZK, Lee SW, Pulli B, Clemenson GD, Kim E, Rompala A, Oram MK, Asselin C, Aronson J, Zhang C, Miller SJ, Lesinski A, Chen JW, Kim DY, van Praag H, Spiegelman BM, Gage FH, Tanzi RE. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer's mouse model. Science 2018; 361:eaan8821. [PMID: 30190379 PMCID: PMC6149542 DOI: 10.1126/science.aan8821] [Citation(s) in RCA: 496] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/04/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
Adult hippocampal neurogenesis (AHN) is impaired before the onset of Alzheimer's disease (AD) pathology. We found that exercise provided cognitive benefit to 5×FAD mice, a mouse model of AD, by inducing AHN and elevating levels of brain-derived neurotrophic factor (BDNF). Neither stimulation of AHN alone, nor exercise, in the absence of increased AHN, ameliorated cognition. We successfully mimicked the beneficial effects of exercise on AD mice by genetically and pharmacologically inducing AHN in combination with elevating BDNF levels. Suppressing AHN later led to worsened cognitive performance and loss of preexisting dentate neurons. Thus, pharmacological mimetics of exercise, enhancing AHN and elevating BDNF levels, may improve cognition in AD. Furthermore, applied at early stages of AD, these mimetics may protect against subsequent neuronal cell death.
Collapse
Affiliation(s)
- Se Hoon Choi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Enjana Bylykbashi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Zena K Chatila
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Star W Lee
- Laboratoy of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Benjamin Pulli
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gregory D Clemenson
- Laboratoy of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Eunhee Kim
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Alexander Rompala
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Mary K Oram
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Caroline Asselin
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jenna Aronson
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Can Zhang
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sean J Miller
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Andrea Lesinski
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - John W Chen
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Henriette van Praag
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, and Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Fred H Gage
- Laboratoy of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
99991
|
Iritani S, Torii Y, Habuchi C, Sekiguchi H, Fujishiro H, Yoshida M, Go Y, Iriki A, Isoda M, Ozaki N. The neuropathological investigation of the brain in a monkey model of autism spectrum disorder with ABCA13 deletion. Int J Dev Neurosci 2018; 71:130-139. [PMID: 30201574 DOI: 10.1016/j.ijdevneu.2018.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/31/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023] Open
Abstract
The precise biological etiology of autism spectrum disorder (ASD) remains unknown. In this study, we investigated the neuropathology of a monkey model of autism Human ABCA13 is the largest ABC transporter protein, with a length of 5058 amino acids and a predicted molecular weight of >450 kDa. However, the function of this protein remains to be elucidated. This protein is thought to be associated with major psychiatric disease. Using this monkey model of autism with an ABCA13 deletion and a mutation of 5HT2c, we neuropathologically investigated the changes in the neuronal formation in the frontal cortex. As a result, the neuronal formation in the cortex was found to be disorganized with regard to the neuronal size and laminal distribution in the ABCA13 deletion monkey. The catecholaminergic and GABAergic neuronal systems, serotoninergic neuronal formation (5HT2c) were also found to be impaired by an immunohistochemical evaluation. This study suggested that ABCA13 deficit induces the impairment of neuronal maturation or migration, and the function of the neuronal network. This protein might thus play a role in the neurodevelopmental function of the central nervous system and the dysfunction of this protein may be a pathophysiological cause of mental disorders including autism.
Collapse
Affiliation(s)
- Shuji Iritani
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.
| | - Youta Torii
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Chikako Habuchi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hirotaka Sekiguchi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroshige Fujishiro
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Yasuhiro Go
- Department of Brain Sciences, Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan; The Graduate University for Advanced Studies (Sokendai), Okazaki, Japan
| | - Astushi Iriki
- Laboratory for Symbolic Cognitive Developmen RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Masaki Isoda
- Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan; Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan; Department of Physiology, Kansai Medical University School of Medicine, Hirakata, Osaka, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
99992
|
The Nogo Receptor Ligand LGI1 Regulates Synapse Number and Synaptic Activity in Hippocampal and Cortical Neurons. eNeuro 2018; 5:eN-NWR-0185-18. [PMID: 30225353 PMCID: PMC6140115 DOI: 10.1523/eneuro.0185-18.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/31/2018] [Accepted: 08/14/2018] [Indexed: 12/20/2022] Open
Abstract
Leucine-rich glioma-inactivated protein 1 (LGI1) is a secreted neuronal protein and a Nogo receptor 1 (NgR1) ligand. Mutations in LGI1 in humans causes autosomal dominant lateral temporal lobe epilepsy and homozygous deletion of LGI1 in mice results in severe epileptic seizures that cause early postnatal death. NgR1 plays an important role in the development of CNS synapses and circuitry by limiting plasticity in the adult cortex via the activation of RhoA. These relationships and functions prompted us to examine the effect of LGI1 on synapse formation in vitro and in vivo. We report that application of LGI1 increases synaptic density in neuronal culture and that LGI1 null hippocampus has fewer dendritic mushroom spines than in wild-type (WT) littermates. Further, our electrophysiological investigations demonstrate that LGI1 null hippocampal neurons possess fewer and weaker synapses. RhoA activity is significantly increased in cortical cultures derived from LGI1 null mice and using a reconstituted system; we show directly that LGI1 antagonizes NgR1-tumor necrosis factor receptor orphan Y (TROY) signaling. Our data suggests that LGI1 enhances synapse formation in cortical and hippocampal neurons by reducing NgR1 signaling.
Collapse
|
99993
|
Trobiani L, Favaloro FL, Di Castro MA, Di Mattia M, Cariello M, Miranda E, Canterini S, De Stefano ME, Comoletti D, Limatola C, De Jaco A. UPR activation specifically modulates glutamate neurotransmission in the cerebellum of a mouse model of autism. Neurobiol Dis 2018; 120:139-150. [PMID: 30201312 DOI: 10.1016/j.nbd.2018.08.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/01/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
An increasing number of rare mutations linked to autism spectrum disorders have been reported in genes encoding for proteins involved in synapse formation and maintenance, such as the post-synaptic cell adhesion proteins neuroligins. Most of the autism-linked mutations in the neuroligin genes map on the extracellular protein domain. The autism-linked substitution R451C in Neuroligin3 (NLGN3) induces a local misfolding of the extracellular domain, causing defective trafficking and retention of the mutant protein in the endoplasmic reticulum (ER). The activation of the unfolded protein response (UPR), due to misfolded proteins accumulating in the ER, has been implicated in pathological and physiological conditions of the nervous system. It was previously shown that the over-expression of R451C NLGN3 in a cellular system leads to the activation of the UPR. Here, we have investigated whether this protective cellular response is detectable in the knock-in mouse model of autism endogenously expressing R451C NLGN3. Our data showed up-regulation of UPR markers uniquely in the cerebellum of the R451C mice compared to WT littermates, at both embryonic and adult stages, but not in other brain regions. Miniature excitatory currents in the Purkinje cells of the R451C mice showed higher frequency than in the WT, which was rescued inhibiting the PERK branch of UPR. Taken together, our data indicate that the R451C mutation in neuroligin3 elicits UPR in vivo, which appears to trigger alterations of synaptic function in the cerebellum of a mouse model expressing the R451C autism-linked mutation.
Collapse
Affiliation(s)
- L Trobiani
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy
| | - F L Favaloro
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy
| | - M A Di Castro
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - M Di Mattia
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy
| | - M Cariello
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy
| | - E Miranda
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy.; Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Italy
| | - S Canterini
- Department of Psychology, Section of Neuroscience, Center for Research in Neurobiology 'Daniel Bovet', Sapienza University of Rome, 00185 Rome, Italy
| | - M E De Stefano
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy
| | - D Comoletti
- Department of Neuroscience and Cell Biology, Department of Pediatrics, Child Health Institute of New Jersey, Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - C Limatola
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy.; Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Italy.; IRCCS Neuromed, Pozzilli (IS), Italy
| | - A De Jaco
- Department Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Center for Research in Neurobiology 'Daniel Bovet', 00185 Rome, Italy..
| |
Collapse
|
99994
|
Wollman I, Morillon B. Organizational principles of multidimensional predictions in human auditory attention. Sci Rep 2018; 8:13466. [PMID: 30194376 PMCID: PMC6128843 DOI: 10.1038/s41598-018-31878-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/17/2018] [Indexed: 11/09/2022] Open
Abstract
Anticipating the future rests upon our ability to exploit contextual cues and to formulate valid internal models or predictions. It is currently unknown how multiple predictions combine to bias perceptual information processing, and in particular whether this is determined by physiological constraints, behavioral relevance (task demands), or past knowledge (perceptual expertise). In a series of behavioral auditory experiments involving musical experts and non-musicians, we investigated the respective and combined contribution of temporal and spectral predictions in multiple detection tasks. We show that temporal and spectral predictions alone systematically increase perceptual sensitivity, independently of task demands or expertise. When combined, however, spectral predictions benefit more to non-musicians and dominate over temporal ones, and the extent of the spectrotemporal synergistic interaction depends on task demands. This suggests that the hierarchy of dominance primarily reflects the tonotopic organization of the auditory system and that expertise or attention only have a secondary modulatory influence.
Collapse
Affiliation(s)
- Indiana Wollman
- Montreal Neurological Institute, McGill University, Montreal, Canada
- CIRMMT, Schulich School of Music, McGill University, Montreal, Canada
| | - Benjamin Morillon
- Montreal Neurological Institute, McGill University, Montreal, Canada.
- Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France.
| |
Collapse
|
99995
|
Cleal M, Parker MO. Moderate developmental alcohol exposure reduces repetitive alternation in a zebrafish model of fetal alcohol spectrum disorders. Neurotoxicol Teratol 2018; 70:1-9. [PMID: 30201482 DOI: 10.1016/j.ntt.2018.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/30/2022]
Abstract
The damaging effects of alcohol on a developing fetus are well known and cause a range of conditions known as fetal alcohol spectrum disorder (FASD). High levels of alcohol exposure lead to physical deformity and severe cognitive deficits, but more moderate exposure leads to a range of subtle cognitive effects such as reduced social behavior, higher propensity to develop addictions, and reduced spatial working memory. Previous studies have demonstrated that following exposure to relatively low levels of ethanol during early brain development (equivalent in humans to moderate exposure) zebrafish display a range of social and behavioral differences. Here, our aim was to test the hypothesis that moderate developmental ethanol exposure would affect aspects of learning and memory in zebrafish. In order to do this, we exposed zebrafish embryos to 20 mM [0.12% v/v] ethanol from 2 to 9 dpf to model the effects of moderate prenatal ethanol (MPE) exposure. At 3 months old, adult fish were tested for appetitive and aversive learning, and for spatial alternation in a novel unconditioned y-maze protocol. We found that MPE did not affect appetitive or aversive learning, but exposed-fish showed a robust reduction in repetitive alternations in the y-maze when compared to age matched controls. This study confirms that moderate levels of ethanol exposure to developing embryos have subtle effects on spatial working memory in adulthood. Our data thus suggest that zebrafish may be a promising model system for studying the effects of alcohol on learning and decision-making, but also for developing treatments and interventions to reduce the negative effects of prenatal alcohol.
Collapse
Affiliation(s)
- Madeleine Cleal
- School of Pharmacy and Biomedical Science, University of Portsmouth, UK
| | - Matthew O Parker
- School of Pharmacy and Biomedical Science, University of Portsmouth, UK.
| |
Collapse
|
99996
|
Malan A, Ciocca D, Challet E, Pévet P. Implicating a Temperature-Dependent Clock in the Regulation of Torpor Bout Duration in Classic Hibernation. J Biol Rhythms 2018; 33:626-636. [PMID: 30189779 DOI: 10.1177/0748730418797820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Syrian hamsters may present 2 types of torpor when exposed to ambient temperatures in the winter season, from 8°C to 22°C (short photoperiod). The first is daily torpor, which is controlled by the master circadian clock of the body, located in the SCN. In this paper, we show that daily torpor bout duration is unchanged over the 8°C to 22°C temperature range, as predicted from the thermal compensation of circadian clocks. These findings contrast with the second type of torpor: multi-day torpor or classic hibernation. In multi-day torpor, bout duration increases as temperature decreases, following Arrhenius thermodynamics. We found no evidence of hysteresis from metabolic inhibition and the process was thus reversible. As a confirmation, at any temperature, the arousal from multi-day torpor occurred at about the same subjective time given by this temperature-dependent clock. The temperature-dependent clock controls the reduced torpor metabolic rate while providing a reversible recovery of circadian synchronization on return to euthermy.
Collapse
Affiliation(s)
- André Malan
- Institute for Cellular and Integrative Neurosciences, UPR 3212, Centre National de la Recherche Scientifique (CNRS) and University of Strasbourg, Strasbourg, France
| | - Dominique Ciocca
- Chronobiotron, UMS 3415, CNRS and University of Strasbourg, Strasbourg, France
| | - Etienne Challet
- Institute for Cellular and Integrative Neurosciences, UPR 3212, Centre National de la Recherche Scientifique (CNRS) and University of Strasbourg, Strasbourg, France
| | - Paul Pévet
- Institute for Cellular and Integrative Neurosciences, UPR 3212, Centre National de la Recherche Scientifique (CNRS) and University of Strasbourg, Strasbourg, France
| |
Collapse
|
99997
|
Chen G, Dong B, Zhang Y, Lin W, Shen D, Yap PT. Angular Upsampling in Infant Diffusion MRI Using Neighborhood Matching in x- q Space. Front Neuroinform 2018; 12:57. [PMID: 30245622 PMCID: PMC6137306 DOI: 10.3389/fninf.2018.00057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 08/16/2018] [Indexed: 01/02/2023] Open
Abstract
Diffusion MRI requires sufficient coverage of the diffusion wavevector space, also known as the q-space, to adequately capture the pattern of water diffusion in various directions and scales. As a result, the acquisition time can be prohibitive for individuals who are unable to stay still in the scanner for an extensive period of time, such as infants. To address this problem, in this paper we harness non-local self-similar information in the x-q space of diffusion MRI data for q-space upsampling. Specifically, we first perform neighborhood matching to establish the relationships of signals in x-q space. The signal relationships are then used to regularize an ill-posed inverse problem related to the estimation of high angular resolution diffusion MRI data from its low-resolution counterpart. Our framework allows information from curved white matter structures to be used for effective regularization of the otherwise ill-posed problem. Extensive evaluations using synthetic and infant diffusion MRI data demonstrate the effectiveness of our method. Compared with the widely adopted interpolation methods using spherical radial basis functions and spherical harmonics, our method is able to produce high angular resolution diffusion MRI data with greater quality, both qualitatively and quantitatively.
Collapse
Affiliation(s)
- Geng Chen
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Bin Dong
- Beijing International Center for Mathematical Research, Peking University, Beijing, China
| | - Yong Zhang
- Vancouver Research Center, Huawei Technologies Canada, Burnaby, BC, Canada
| | - Weili Lin
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dinggang Shen
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Pew-Thian Yap
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
99998
|
Steinemann NA, O'Connell RG, Kelly SP. Decisions are expedited through multiple neural adjustments spanning the sensorimotor hierarchy. Nat Commun 2018; 9:3627. [PMID: 30194305 PMCID: PMC6128824 DOI: 10.1038/s41467-018-06117-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 08/09/2018] [Indexed: 01/10/2023] Open
Abstract
When decisions are made under speed pressure, "urgency" signals elevate neural activity toward action-triggering thresholds independent of the sensory evidence, thus incurring a cost to choice accuracy. While urgency signals have been observed in brain circuits involved in preparing actions, their influence at other levels of the sensorimotor pathway remains unknown. We used a novel contrast-comparison paradigm to simultaneously trace the dynamics of sensory evidence encoding, evidence accumulation, motor preparation, and muscle activation in humans. Results indicate speed pressure impacts multiple sensorimotor levels but in crucially distinct ways. Evidence-independent urgency was applied to cortical action-preparation signals and downstream muscle activation, but not directly to upstream levels. Instead, differential sensory evidence encoding was enhanced in a way that partially countered the negative impact of motor-level urgency on accuracy, and these opposing sensory-boost and motor-urgency effects had knock-on effects on the buildup and pre-response amplitude of a motor-independent representation of cumulative evidence.
Collapse
Affiliation(s)
- Natalie A Steinemann
- Department of Biomedical Engineering, The City College of The City University of New York, New York, NY, 10031, USA.
- Zuckerman Mind Brain Behavior Institute, Columbia University, 3227 Broadway, New York, NY, 10027, USA.
| | - Redmond G O'Connell
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, 2, Ireland
| | - Simon P Kelly
- Department of Biomedical Engineering, The City College of The City University of New York, New York, NY, 10031, USA.
- School of Electrical and Electronic Engineering, University College Dublin, Dublin, 4, Ireland.
| |
Collapse
|
99999
|
Neuronal network maturation differently affects secretory vesicles and mitochondria transport in axons. Sci Rep 2018; 8:13429. [PMID: 30194421 PMCID: PMC6128875 DOI: 10.1038/s41598-018-31759-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/14/2018] [Indexed: 11/09/2022] Open
Abstract
Studying intracellular dynamics in neurons is crucial to better understand how brain circuits communicate and adapt to environmental changes. In neurons, axonal secretory vesicles underlie various functions from growth during development to plasticity in the mature brain. Similarly, transport of mitochondria, the power plant of the cell, regulates both axonal development and synaptic homeostasis. However, because of their submicrometric size and rapid velocities, studying the kinetics of these organelles in projecting axons in vivo is technically challenging. In parallel, primary neuronal cultures are adapted to study axonal transport but they lack the physiological organization of neuronal networks, which in turn may bias observations. We previously developed a microfluidic platform to reconstruct a physiologically-relevant and functional corticostriatal network in vitro that is compatible with high-resolution videorecording of axonal trafficking. Here, using this system we report progressive changes in axonal transport kinetics of both dense core vesicles and mitochondria that correlate with network development and maturation. Interestingly, axonal flow of both types of organelles change in opposite directions, with rates increasing for vesicles and decreasing for mitochondria. Overall, our observations highlight the need for a better spatiotemporal control for the study of intracellular dynamics in order to avoid misinterpretations and improve reproducibility.
Collapse
|
100000
|
Labate A, Baggetta R, Trimboli M, Tripepi G, Bisulli F, D'Aniello A, Daniele O, Di Bonaventura C, Di Gennaro G, Fattouch J, Ferlazzo E, Ferrari A, Gasparini S, Giallonardo A, La Neve A, Romigi A, Sofia V, Tinuper P, Zummo L, Aguglia U, Gambardella A. Insight into epileptic and physiological déjà vu: from a multicentric cohort study. Eur J Neurol 2018; 26:407-414. [PMID: 30184312 DOI: 10.1111/ene.13806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/28/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE The presence of a continuum between physiological déjà vu (DV) and epileptic DV is still not known as well as epidemiological data in the Italian population. The aim was to identify the epidemiological distribution of DV in Italy, and secondly to look for specific features of DV able to discriminate between epileptic and non-epileptic DV. METHODS In all, 1000 individuals, 543 healthy controls (C) (313 women; age 40 ± 15 years) and 457 patients with epilepsy (E) (260 women; age 39 ± 14 years), were prospectively recruited from 10 outpatient neurological clinics throughout Italy. All populations were screened using the Italian Inventory for Déjà Vu Experiences Assessment (I-IDEA) test and E and pairwise C underwent a comprehensive epilepsy interview. RESULTS Of E, 69% stated that they experienced 'recognition' and 13.2% reported that this feeling occurred from a few times a month to at least weekly (versus 7.7% of the control group). Furthermore, a greater percentage of E (6.8% vs. 2.2%) reported that from a few times a month to at least weekly they felt that it seemed as though everything around was not real. In E, the feeling of recognition raised fright (22.3% vs. 13.2%) and a sense of oppression (19.4% vs. 9.4%). A fifth of E felt recognition during epileptic seizures. CONCLUSION Only E regardless of aetiology firmly answered that they had the feeling of recognition during an epileptic seizure; thus question 14 of the I-IDEA test part 2 discriminated E from C. Paranormal activity, remembering dreams and travel frequency were mostly correlated to DV in E suggesting that the visual-memory network might be involved in epileptic DV.
Collapse
Affiliation(s)
- A Labate
- Institute of Neurology, University Magna Graecia, Catanzaro, Italy
| | - R Baggetta
- Institute of Clinical Physiology, Research Unit, National Research Council (IFC-CNR), Reggio Calabria, Italy
| | - M Trimboli
- Institute of Neurology, University Magna Graecia, Catanzaro, Italy
| | - G Tripepi
- Institute of Clinical Physiology, Research Unit, National Research Council (IFC-CNR), Reggio Calabria, Italy
| | - F Bisulli
- IRCCS Institute of Neurological Science of Bologna and Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - O Daniele
- Experimental Biomedicine and Clinical Neuroscience Department (BioNeC), University of Palermo, Palermo, Italy
| | - C Di Bonaventura
- Department of Neuroscience, Neurology Unit, 'Sapienza' University, Rome, Italy
| | | | - J Fattouch
- Department of Neuroscience, Neurology Unit, 'Sapienza' University, Rome, Italy
| | - E Ferlazzo
- Institute of Neurology, University Magna Graecia, Catanzaro, Italy.,Regional Epilepsy Center, Bianchi Melacrino Morelli Hospital, Reggio Calabria, Italy
| | - A Ferrari
- Clinical Neurophysiology, Department of Neuroscience, Ophthalmology and Genetics, University of Genoa, Genova, Italy
| | - S Gasparini
- Institute of Neurology, University Magna Graecia, Catanzaro, Italy.,Regional Epilepsy Center, Bianchi Melacrino Morelli Hospital, Reggio Calabria, Italy
| | - A Giallonardo
- Department of Neuroscience, Neurology Unit, 'Sapienza' University, Rome, Italy
| | - A La Neve
- Department of Neurological and Psychiatric Sciences, Centre for Epilepsy, University of Bari, Bari, Italy
| | | | - V Sofia
- Department 'G. F. Ingrassia' University of Catania, Catania, Italy
| | - P Tinuper
- IRCCS Institute of Neurological Science of Bologna and Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - L Zummo
- Experimental Biomedicine and Clinical Neuroscience Department (BioNeC), University of Palermo, Palermo, Italy
| | - U Aguglia
- Institute of Neurology, University Magna Graecia, Catanzaro, Italy.,Regional Epilepsy Center, Bianchi Melacrino Morelli Hospital, Reggio Calabria, Italy
| | - A Gambardella
- Institute of Neurology, University Magna Graecia, Catanzaro, Italy
| |
Collapse
|