1151
|
Anderson AG, Kulkarni A, Harper M, Konopka G. Single-Cell Analysis of Foxp1-Driven Mechanisms Essential for Striatal Development. Cell Rep 2021; 30:3051-3066.e7. [PMID: 32130906 PMCID: PMC7137930 DOI: 10.1016/j.celrep.2020.02.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 01/16/2020] [Accepted: 02/07/2020] [Indexed: 12/30/2022] Open
Abstract
The striatum is a critical forebrain structure integrating cognitive, sensory, and motor information from diverse brain regions into meaningful behavioral output. However, the transcriptional mechanisms underlying striatal development at single-cell resolution remain unknown. Using single-cell RNA sequencing (RNA-seq), we examine the cellular diversity of the early postnatal striatum and show that Foxp1, a transcription factor strongly linked to autism and intellectual disability, regulates the cellular composition, neurochemical architecture, and connectivity of the striatum in a cell-type-dependent fashion. We also identify Foxp1-regulated target genes within distinct cell types and connect these molecular changes to functional and behavioral deficits relevant to phenotypes described in patients with FOXP1 loss-of-function mutations. Using this approach, we could also examine the non-cell-autonomous effects produced by disrupting one cell type and the molecular compensation that occurs in other populations. These data reveal the cell-type-specific transcriptional mechanisms regulated by Foxp1 that underlie distinct features of striatal circuitry.
Collapse
Affiliation(s)
- Ashley G Anderson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Matthew Harper
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
1152
|
Ellegood J, Petkova SP, Kinman A, Qiu LR, Adhikari A, Wade AA, Fernandes D, Lindenmaier Z, Creighton A, Nutter LMJ, Nord AS, Silverman JL, Lerch JP. Neuroanatomy and behavior in mice with a haploinsufficiency of AT-rich interactive domain 1B (ARID1B) throughout development. Mol Autism 2021; 12:25. [PMID: 33757588 PMCID: PMC7986278 DOI: 10.1186/s13229-021-00432-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND One of the causal mechanisms underlying neurodevelopmental disorders (NDDs) is chromatin modification and the genes that regulate chromatin. AT-rich interactive domain 1B (ARID1B), a chromatin modifier, has been linked to autism spectrum disorder and to affect rare and inherited genetic variation in a broad set of NDDs. METHODS A novel preclinical mouse model of Arid1b deficiency was created and validated to characterize and define neuroanatomical, behavioral and transcriptional phenotypes. Neuroanatomy was assessed ex vivo in adult animals and in vivo longitudinally from birth to adulthood. Behavioral testing was also performed throughout development and tested all aspects of motor, learning, sociability, repetitive behaviors, seizure susceptibility, and general milestones delays. RESULTS We validated decreased Arid1b mRNA and protein in Arid1b+/- mice, with signatures of increased axonal and synaptic gene expression, decreased transcriptional regulator and RNA processing expression in adult Arid1b+/- cerebellum. During neonatal development, Arid1b+/- mice exhibited robust impairments in ultrasonic vocalizations (USVs) and metrics of developmental growth. In addition, a striking sex effect was observed neuroanatomically throughout development. Behaviorally, as adults, Arid1b+/- mice showed low motor skills in open field exploration and normal three-chambered approach. Arid1b+/- mice had learning and memory deficits in novel object recognition but not in visual discrimination and reversal touchscreen tasks. Social interactions in the male-female social dyad with USVs revealed social deficits on some but not all parameters. No repetitive behaviors were observed. Brains of adult Arid1b+/- mice had a smaller cerebellum and a larger hippocampus and corpus callosum. The corpus callosum increase seen here contrasts previous reports which highlight losses in corpus callosum volume in mice and humans. LIMITATIONS The behavior and neuroimaging analyses were done on separate cohorts of mice, which did not allow a direct correlation between the imaging and behavioral findings, and the transcriptomic analysis was exploratory, with no validation of altered expression beyond Arid1b. CONCLUSIONS This study represents a full validation and investigation of a novel model of Arid1b+/- haploinsufficiency throughout development and highlights the importance of examining both sexes throughout development in NDDs.
Collapse
Affiliation(s)
- J Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada.
| | - S P Petkova
- Department of Psychiatry and Behavioral Sciences, MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Neuroscience Graduate Group, University of California - Davis, Davis, CA, USA
| | - A Kinman
- Mouse Imaging Centre (MICe), Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada
| | - L R Qiu
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, UK
| | - A Adhikari
- Department of Psychiatry and Behavioral Sciences, MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - A A Wade
- Neuroscience Graduate Group, University of California - Davis, Davis, CA, USA
| | - D Fernandes
- Mouse Imaging Centre (MICe), Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Z Lindenmaier
- Mouse Imaging Centre (MICe), Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - A Creighton
- The Centre for Phenogenomics, Hospital for Sick Children, Toronto, ON, Canada
| | - L M J Nutter
- The Centre for Phenogenomics, Hospital for Sick Children, Toronto, ON, Canada
| | - A S Nord
- Department of Psychiatry and Behavioral Sciences, MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Neuroscience Graduate Group, University of California - Davis, Davis, CA, USA
- Department of Neurobiology, Physiology and Behavior, University of California - Davis, Davis, CA, USA
| | - J L Silverman
- Department of Psychiatry and Behavioral Sciences, MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - J P Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, UK
| |
Collapse
|
1153
|
Hoffmann A, Spengler D. Single-Cell Transcriptomics Supports a Role of CHD8 in Autism. Int J Mol Sci 2021; 22:3261. [PMID: 33806835 PMCID: PMC8004931 DOI: 10.3390/ijms22063261] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 12/16/2022] Open
Abstract
Chromodomain helicase domain 8 (CHD8) is one of the most frequently mutated and most penetrant genes in the autism spectrum disorder (ASD). Individuals with CHD8 mutations show leading symptoms of autism, macrocephaly, and facial dysmorphisms. The molecular and cellular mechanisms underpinning the early onset and development of these symptoms are still poorly understood and prevent timely and more efficient therapies of patients. Progress in this area will require an understanding of "when, why and how cells deviate from their normal trajectories". High-throughput single-cell RNA sequencing (sc-RNAseq) directly quantifies information-bearing RNA molecules that enact each cell's biological identity. Here, we discuss recent insights from sc-RNAseq of CRISPR/Cas9-editing of Chd8/CHD8 during mouse neocorticogenesis and human cerebral organoids. Given that the deregulation of the balance between excitation and inhibition (E/I balance) in cortical and subcortical circuits is thought to represent a major etiopathogenetic mechanism in ASD, we focus on the question of whether, and to what degree, results from current sc-RNAseq studies support this hypothesis. Beyond that, we discuss the pros and cons of these approaches and further steps to be taken to harvest the full potential of these transformative techniques.
Collapse
Affiliation(s)
| | - Dietmar Spengler
- Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany;
| |
Collapse
|
1154
|
Comorbidities associated with genetic abnormalities in children with intellectual disability. Sci Rep 2021; 11:6563. [PMID: 33753861 PMCID: PMC7985145 DOI: 10.1038/s41598-021-86131-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 02/02/2021] [Indexed: 12/03/2022] Open
Abstract
Intellectual disability (ID) has emerged as the commonest manifestation of underlying genomic abnormalities. Given that molecular genetic tests for diagnosis of ID usually require high costs and yield relatively low diagnostic rates, identification of additional phenotypes or comorbidities may increase the genetic diagnostic yield and are valuable clues for pediatricians in general practice. Here, we enrolled consecutively 61 children with unexplained moderate or severe ID and performed chromosomal microarray (CMA) and sequential whole-exome sequencing (WES) analysis on them. We identified 13 copy number variants in 12 probands and 24 variants in 25 probands, and the total diagnostic rate was 60.7%. The genetic abnormalities were commonly found in ID patients with movement disorder (100%) or with autistic spectrum disorder (ASD) (93.3%). Univariate analysis showed that ASD was the significant risk factor of genetic abnormality (P = 0.003; OR 14, 95% CI 1.7–115.4). At least 14 ID-ASD associated genes were identified, and the majority of ID-ASD associated genes (85.7%) were found to be expressed in the cerebellum based on database analysis. In conclusion, genetic testing on ID children, particularly in those with ASD is highly recommended. ID and ASD may share common cerebellar pathophysiology.
Collapse
|
1155
|
Lencz T, Yu J, Khan RR, Flaherty E, Carmi S, Lam M, Ben-Avraham D, Barzilai N, Bressman S, Darvasi A, Cho JH, Clark LN, Gümüş ZH, Vijai J, Klein RJ, Lipkin S, Offit K, Ostrer H, Ozelius LJ, Peter I, Malhotra AK, Maniatis T, Atzmon G, Pe'er I. Novel ultra-rare exonic variants identified in a founder population implicate cadherins in schizophrenia. Neuron 2021; 109:1465-1478.e4. [PMID: 33756103 DOI: 10.1016/j.neuron.2021.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/16/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
The identification of rare variants associated with schizophrenia has proven challenging due to genetic heterogeneity, which is reduced in founder populations. In samples from the Ashkenazi Jewish population, we report that schizophrenia cases had a greater frequency of novel missense or loss of function (MisLoF) ultra-rare variants (URVs) compared to controls, and the MisLoF URV burden was inversely correlated with polygenic risk scores in cases. Characterizing 141 "case-only" genes (MisLoF URVs in ≥3 cases with none in controls), the cadherin gene set was associated with schizophrenia. We report a recurrent case mutation in PCDHA3 that results in the formation of cytoplasmic aggregates and failure to engage in homophilic interactions on the plasma membrane in cultured cells. Modeling purifying selection, we demonstrate that deleterious URVs are greatly overrepresented in the Ashkenazi population, yielding enhanced power for association studies. Identification of the cadherin/protocadherin family as risk genes helps specify the synaptic abnormalities central to schizophrenia.
Collapse
Affiliation(s)
- Todd Lencz
- Departments of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11550, USA; Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY 11004, USA; Institute for Behavioral Science, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA.
| | - Jin Yu
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY 11004, USA; Institute for Behavioral Science, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Raiyan Rashid Khan
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Erin Flaherty
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem 9112102, Israel
| | - Max Lam
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY 11004, USA; Institute for Behavioral Science, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Danny Ben-Avraham
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nir Barzilai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Susan Bressman
- Department of Neurology, Beth Israel Medical Center, New York, NY 10003, USA
| | - Ariel Darvasi
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Judy H Cho
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lorraine N Clark
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Taub Institute for Research of Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph Vijai
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Robert J Klein
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Taub Institute for Research of Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Steven Lipkin
- Departments of Medicine, Genetic Medicine and Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Harry Ostrer
- Departments of Pathology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Laurie J Ozelius
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anil K Malhotra
- Departments of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11550, USA; Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, NY 11004, USA; Institute for Behavioral Science, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY 10027, USA; New York Genome Center, New York, NY 10013, USA
| | - Gil Atzmon
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Human Biology, Haifa University, Haifa, Israel
| | - Itsik Pe'er
- Department of Computer Science, Columbia University, New York, NY 10027, USA; Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
1156
|
Shao Y, Bajikar SS, Tirumala HP, Gutierrez MC, Wythe JD, Zoghbi HY. Identification and characterization of conserved noncoding cis-regulatory elements that impact Mecp2 expression and neurological functions. Genes Dev 2021; 35:489-494. [PMID: 33737384 PMCID: PMC8015713 DOI: 10.1101/gad.345397.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/24/2021] [Indexed: 11/24/2022]
Abstract
In this study, Shao et al. investigated the transcriptional regulation of MeCP2, and identified six putative noncoding regulatory elements of Mecp2, two of which are conserved in humans. Their findings provide insight into transcriptional regulation of Mecp2/MECP2 and highlight genomic sites that could serve as diagnostic and therapeutic targets in Rett syndrome (RTT) and MECP2 duplication syndrome (MDS). While changes in MeCP2 dosage cause Rett syndrome (RTT) and MECP2 duplication syndrome (MDS), its transcriptional regulation is poorly understood. Here, we identified six putative noncoding regulatory elements of Mecp2, two of which are conserved in humans. Upon deletion in mice and human iPSC-derived neurons, these elements altered RNA and protein levels in opposite directions and resulted in a subset of RTT- and MDS-like behavioral deficits in mice. Our discovery provides insight into transcriptional regulation of Mecp2/MECP2 and highlights genomic sites that could serve as diagnostic and therapeutic targets in RTT or MDS.
Collapse
Affiliation(s)
- Yingyao Shao
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sameer S Bajikar
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Harini P Tirumala
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Manuel Cantu Gutierrez
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Joshua D Wythe
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
1157
|
Heinbockel T, Bhatia-Dey N, Shields VDC. Endocannabinoid-mediated neuromodulation in the main olfactory bulb at the interface of environmental stimuli and central neural processing. Eur J Neurosci 2021; 55:1002-1014. [PMID: 33724578 DOI: 10.1111/ejn.15186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022]
Abstract
The olfactory system has become an important functional gateway to understand and analyze neuromodulation since olfactory dysfunction and deficits have emerged as prodromal and, at other times, as first symptoms of many of neurodegenerative, neuropsychiatric and communication disorders. Considering olfactory dysfunction as outcome of altered, damaged and/or inefficient olfactory processing, in the current review, we analyze how olfactory processing interacts with the endocannabinoid signaling system. In the human body, endocannabinoid synthesis is a natural and on-demand response to a wide range of physiological and environmental stimuli. Our current understanding of the response dynamics of the endocannabinoid system is based in large part on research advances in limbic system areas, such as the hippocampus and the amygdala. Functional interactions of this signaling system with olfactory processing and associated pathways are just emerging but appear to grow rapidly with multidimensional approaches. Recent work analyzing the crystal structure of endocannabinoid receptors bound to their agonists in a signaling complex has opened avenues for developing specific therapeutic drugs that could help with neuroinflammation, neurodegeneration, and alleviation/reduction of pain. We discuss the role of endocannabinoids as signaling molecules in the olfactory system and the relevance of the endocannabinoid system for synaptic plasticity.
Collapse
Affiliation(s)
- Thomas Heinbockel
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Naina Bhatia-Dey
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Vonnie D C Shields
- Biological Sciences Department, Fisher College of Science and Mathematics, Towson University, Towson, MD, USA
| |
Collapse
|
1158
|
Kitagawa K, Matsumura K, Baba M, Kondo M, Takemoto T, Nagayasu K, Ago Y, Seiriki K, Hayata-Takano A, Kasai A, Takuma K, Hashimoto R, Hashimoto H, Nakazawa T. Intranasal oxytocin administration ameliorates social behavioral deficits in a POGZ WT/Q1038R mouse model of autism spectrum disorder. Mol Brain 2021; 14:56. [PMID: 33726803 PMCID: PMC7962304 DOI: 10.1186/s13041-021-00769-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 11/10/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder characterized by core symptoms of impaired social behavior and communication. Recent studies have suggested that the oxytocin system, which regulates social behavior in mammals, is potentially involved in ASD. Mouse models of ASD provide a useful system for understanding the associations between an impaired oxytocin system and social behavior deficits. However, limited studies have shown the involvement of the oxytocin system in the behavioral phenotypes in mouse models of ASD. We have previously demonstrated that a mouse model that carries the ASD patient-derived de novo mutation in the pogo transposable element derived with zinc finger domain (POGZWT/Q1038R mice), showed ASD-like social behavioral deficits. Here, we have explored whether oxytocin (OXT) administration improves impaired social behavior in POGZWT/Q1038R mice and found that intranasal oxytocin administration effectively restored the impaired social behavior in POGZWT/Q1038R mice. We also found that the expression level of the oxytocin receptor gene (OXTR) was low in POGZWT/Q1038R mice. However, we did not detect significant changes in the number of OXT-expressing neurons between the paraventricular nucleus of POGZWT/Q1038R mice and that of WT mice. A chromatin immunoprecipitation assay revealed that POGZ binds to the promoter region of OXTR and is involved in the transcriptional regulation of OXTR. In summary, our study demonstrate that the pathogenic mutation in the POGZ, a high-confidence ASD gene, impairs the oxytocin system and social behavior in mice, providing insights into the development of oxytocin-based therapeutics for ASD.
Collapse
Affiliation(s)
- Kohei Kitagawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kensuke Matsumura
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masayuki Baba
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Momoka Kondo
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tomoya Takemoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuki Nagayasu
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.,Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kaoru Seiriki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.,Interdisciplinary Program for Biomedical Sciences, Institute for Transdisciplinary Graduate Degree Programs, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Atsuko Hayata-Takano
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuhiro Takuma
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan.,Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8553, Japan.,Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan. .,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan. .,Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, 565-0871, Japan. .,Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan. .,Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Takanobu Nakazawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan. .,Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.
| |
Collapse
|
1159
|
Li K, Ling Z, Luo T, Zhao G, Zhou Q, Wang X, Xia K, Li J, Li B. Cross-Disorder Analysis of De Novo Variants Increases the Power of Prioritising Candidate Genes. Life (Basel) 2021; 11:life11030233. [PMID: 33809095 PMCID: PMC8001830 DOI: 10.3390/life11030233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 11/16/2022] Open
Abstract
De novo variants (DNVs) are critical to the treatment of neurodevelopmental disorders (NDDs). However, effectively identifying candidate genes in small cohorts is challenging in most NDDs because of high genetic heterogeneity. We hypothesised that integrating DNVs from multiple NDDs with genetic similarity can significantly increase the possibility of prioritising the candidate gene. We catalogued 66,186 coding DNVs in 50,028 individuals with nine types of NDDs in cohorts with sizes spanning from 118 to 31,260 from Gene4Denovo database to validate this hypothesis. Interestingly, we found that integrated DNVs can effectively increase the number of prioritised candidate genes for each disorder. We identified 654 candidate genes including 481 shared candidate genes carrying putative functional variants in at least two disorders. Notably, 13.51% (65/481) of shared candidate genes were prioritised only via integrated analysis including 44.62% (29/65) genes validated in recent large cohort studies. Moreover, we estimated that more novel candidate genes will be prioritised with the increase in cohort size, in particular for some disorders with high putative functional DNVs per individual. In conclusion, integrated DNVs may increase the power of prioritising candidate genes, which is important for NDDs with small cohort size.
Collapse
Affiliation(s)
- Kuokuo Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (K.L.); (G.Z.); (Q.Z.)
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China; (Z.L.); (T.L.); (X.W.); (K.X.)
| | - Zhengbao Ling
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China; (Z.L.); (T.L.); (X.W.); (K.X.)
| | - Tengfei Luo
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China; (Z.L.); (T.L.); (X.W.); (K.X.)
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (K.L.); (G.Z.); (Q.Z.)
| | - Qiao Zhou
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (K.L.); (G.Z.); (Q.Z.)
| | - Xiaomeng Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China; (Z.L.); (T.L.); (X.W.); (K.X.)
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China; (Z.L.); (T.L.); (X.W.); (K.X.)
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (K.L.); (G.Z.); (Q.Z.)
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410008, China; (Z.L.); (T.L.); (X.W.); (K.X.)
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (J.L.); (B.L.); Tel.: +86-731-8975-2406 (J.L. & B.L.); Fax: +86-731-8432-7332 (J.L. & B.L.)
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; (K.L.); (G.Z.); (Q.Z.)
- Mobile Health Ministry of Education—China Mobile Joint Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (J.L.); (B.L.); Tel.: +86-731-8975-2406 (J.L. & B.L.); Fax: +86-731-8432-7332 (J.L. & B.L.)
| |
Collapse
|
1160
|
Ozsahin I, Mustapha MT, Albarwary S, Sanlidag B, Ozsahin DU, Butler TA. An investigation to choose the proper therapy technique in the management of autism spectrum disorder. J Comp Eff Res 2021; 10:423-437. [PMID: 33709772 DOI: 10.2217/cer-2020-0162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: Autism spectrum disorder is a class of neurological disorders that affect the development of brain functions. This study aims to evaluate, compare and rank the therapy techniques used in the management of autism spectrum disorder using multicriteria decision-making approaches. Materials & methods: Fuzzy PROMETHEE and fuzzy TOPSIS approaches were used. Fuzzy PROMETHEE utilizes a pair-wise comparison of alternatives under the fuzzy environment while fuzzy TOPSIS utilizes geometric distance from the positive ideal solution under the fuzzy environment for the evaluation of the effectiveness of the alternatives.The techniques selected for evaluation are applied behavioral analysis, cognitive behavioral therapy, speech therapy and pharmacological therapy such as Risperidone and Aripiprazole. Criteria used in this study include efficacy, cost and side effects, and their weights are assigned based on specific patient conditions. Results: The results indicate that applied behavioral analysis, cognitive behavioral therapy and speech therapy are the most preferred techniques, followed by Aripiprazole and Risperidone. Conclusion: More criteria could be considered and the weights could be assigned according to the patient profile.
Collapse
Affiliation(s)
- Ilker Ozsahin
- Department of Biomedical Engineering, Faculty of Engineering & DESAM Institute, Near East University, Nicosia, Turkish Republic of Northern Cyprus 99138, Turkey.,Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mubarak T Mustapha
- Department of Biomedical Engineering, Faculty of Engineering & DESAM Institute, Near East University, Nicosia, Turkish Republic of Northern Cyprus 99138, Turkey
| | - Safa Albarwary
- Department of Biomedical Engineering, Faculty of Engineering & DESAM Institute, Near East University, Nicosia, Turkish Republic of Northern Cyprus 99138, Turkey
| | - Burcin Sanlidag
- Faculty of Medicine, Near East University, Nicosia, Turkish Republic of Northern Cyprus 99138, Turkey
| | - Dilber Uzun Ozsahin
- Department of Biomedical Engineering, Faculty of Engineering & DESAM Institute, Near East University, Nicosia, Turkish Republic of Northern Cyprus 99138, Turkey.,Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Tracy A Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
1161
|
Brennand KJ, Talkowski ME. Xenopus models suggest convergence of gene signatures on neurogenesis in autism. Neuron 2021; 109:743-745. [PMID: 33662268 DOI: 10.1016/j.neuron.2021.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Willsey et al. dissect phenotypes associated with in vivo disruption of ten ASD-associated genes using a hypothesis-free, parallelized approach in Xenopus tropicalis. These studies continue to implicate cortical neurons in ASD pathogenesis and suggest a convergence on functions related to neurogenesis.
Collapse
Affiliation(s)
- Kristen J Brennand
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
1162
|
Local Protein Translation and RNA Processing of Synaptic Proteins in Autism Spectrum Disorder. Int J Mol Sci 2021; 22:ijms22062811. [PMID: 33802132 PMCID: PMC8001067 DOI: 10.3390/ijms22062811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heritable neurodevelopmental condition associated with impairments in social interaction, communication and repetitive behaviors. While the underlying disease mechanisms remain to be fully elucidated, dysfunction of neuronal plasticity and local translation control have emerged as key points of interest. Translation of mRNAs for critical synaptic proteins are negatively regulated by Fragile X mental retardation protein (FMRP), which is lost in the most common single-gene disorder associated with ASD. Numerous studies have shown that mRNA transport, RNA metabolism, and translation of synaptic proteins are important for neuronal health, synaptic plasticity, and learning and memory. Accordingly, dysfunction of these mechanisms may contribute to the abnormal brain function observed in individuals with autism spectrum disorder (ASD). In this review, we summarize recent studies about local translation and mRNA processing of synaptic proteins and discuss how perturbations of these processes may be related to the pathophysiology of ASD.
Collapse
|
1163
|
Hammill C, Lerch JP, Taylor MJ, Ameis SH, Chakravarty MM, Szatmari P, Anagnostou E, Lai MC. Quantitative and Qualitative Sex Modulations in the Brain Anatomy of Autism. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:898-909. [PMID: 33713843 DOI: 10.1016/j.bpsc.2021.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Sex-based neurobiological heterogeneity in autism is poorly understood. Research is disproportionately biased to males, leading to an unwarranted presumption that autism neurobiology is the same across sexes. Previous neuroimaging studies using amalgamated multicenter datasets to increase autistic female samples are characterized by large statistical noise. METHODS We used a better-powered dataset of 1183 scans of 839 individuals-299 (467 scans) autistic males, 74 (102 scans) autistic females, 240 (334 scans) control males, and 226 (280 scans) control females-to test two whole-brain models of overall/global sex modulations on autism neuroanatomy, by summary measures computed across the brain: the local magnitude model, in which the same brain regions/circuitries are involved across sexes but effect sizes are larger in females, indicating quantitative sex modulation; and spatial dissimilarity model, in which the neuroanatomy differs spatially between sexes, indicating qualitative sex modulation. The male and female autism groups were matched on age, IQ, and autism symptoms. Autism brain features were defined by comparisons with same-sex control individuals. RESULTS Across five metrics (cortical thickness, surface area, volume, mean absolute curvature, and subcortical volume), we found no evidence supporting the local magnitude model. We found indicators supporting the spatial dissimilarity model on cortical mean absolute curvature and subcortical volume, but not on other metrics. CONCLUSIONS The overall/global autism neuroanatomy in females and males does not simply differ quantitatively in the same brain regions/circuitries. They may differ qualitatively in spatial involvement in cortical curvature and subcortical volume. The neuroanatomy of autism may be partly sex specific. Sex stratification to inform autism preclinical/clinical research is needed to identify sex-informed neurodevelopmental targets.
Collapse
Affiliation(s)
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences and Mental Health Program, SickKids Research Institute, Toronto, Ontario, Canada; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences and Mental Health Program, SickKids Research Institute, Toronto, Ontario, Canada
| | - Stephanie H Ameis
- Department of Psychiatry, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences and Mental Health Program, SickKids Research Institute, Toronto, Ontario, Canada; Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Peter Szatmari
- Department of Psychiatry, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences and Mental Health Program, SickKids Research Institute, Toronto, Ontario, Canada; Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Evdokia Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital and Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Meng-Chuan Lai
- Department of Psychiatry, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences and Mental Health Program, SickKids Research Institute, Toronto, Ontario, Canada; Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.
| |
Collapse
|
1164
|
Peng M, Li Y, Wamsley B, Wei Y, Roeder K. Integration and transfer learning of single-cell transcriptomes via cFIT. Proc Natl Acad Sci U S A 2021; 118:e2024383118. [PMID: 33658382 PMCID: PMC7958425 DOI: 10.1073/pnas.2024383118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Large, comprehensive collections of single-cell RNA sequencing (scRNA-seq) datasets have been generated that allow for the full transcriptional characterization of cell types across a wide variety of biological and clinical conditions. As new methods arise to measure distinct cellular modalities, a key analytical challenge is to integrate these datasets or transfer knowledge from one to the other to better understand cellular identity and functions. Here, we present a simple yet surprisingly effective method named common factor integration and transfer learning (cFIT) for capturing various batch effects across experiments, technologies, subjects, and even species. The proposed method models the shared information between various datasets by a common factor space while allowing for unique distortions and shifts in genewise expression in each batch. The model parameters are learned under an iterative nonnegative matrix factorization (NMF) framework and then used for synchronized integration from across-domain assays. In addition, the model enables transferring via low-rank matrix from more informative data to allow for precise identification in data of lower quality. Compared with existing approaches, our method imposes weaker assumptions on the cell composition of each individual dataset; however, it is shown to be more reliable in preserving biological variations. We apply cFIT to multiple scRNA-seq datasets of developing brain from human and mouse, varying by technologies and developmental stages. The successful integration and transfer uncover the transcriptional resemblance across systems. The study helps establish a comprehensive landscape of brain cell-type diversity and provides insights into brain development.
Collapse
Affiliation(s)
- Minshi Peng
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Yue Li
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Brie Wamsley
- Neurogenetics Program, University of California, Los Angeles, CA 90095
| | - Yuting Wei
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Kathryn Roeder
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA 15213;
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
1165
|
Chen X, Zhou J, Zhang R, Wong AK, Park CY, Theesfeld CL, Troyanskaya OG. Tissue-specific enhancer functional networks for associating distal regulatory regions to disease. Cell Syst 2021; 12:353-362.e6. [PMID: 33689683 DOI: 10.1016/j.cels.2021.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/13/2020] [Accepted: 02/08/2021] [Indexed: 12/22/2022]
Abstract
Systematic study of tissue-specific function of enhancers and their disease associations is a major challenge. We present an integrative machine-learning framework, FENRIR, that integrates thousands of disparate epigenetic and functional genomics datasets to infer tissue-specific functional relationships between enhancers for 140 diverse human tissues and cell types, providing a regulatory-region-centric approach to systematically identify disease-associated enhancers. We demonstrated its power to accurately prioritize enhancers associated with 25 complex diseases. In a case study on autism, FENRIR-prioritized enhancers showed a significant proband-specific de novo mutation enrichment in a large, sibling-controlled cohort, indicating pathogenic signal. We experimentally validated transcriptional regulatory activities of eight enhancers, including enhancers not previously reported with autism, and demonstrated their differential regulatory potential between proband and sibling alleles. Thus, FENRIR is an accurate and effective framework for the study of tissue-specific enhancers and their role in disease. FENRIR can be accessed at fenrir.flatironinstitute.org/.
Collapse
Affiliation(s)
- Xi Chen
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Jian Zhou
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Ran Zhang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Aaron K Wong
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Christopher Y Park
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA
| | - Chandra L Theesfeld
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Olga G Troyanskaya
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Computer Science, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
1166
|
Hiraide T, Yamoto K, Masunaga Y, Asahina M, Endoh Y, Ohkubo Y, Matsubayashi T, Tsurui S, Yamada H, Yanagi K, Nakashima M, Hirano K, Sugimura H, Fukuda T, Ogata T, Saitsu H. Genetic and phenotypic analysis of 101 patients with developmental delay or intellectual disability using whole-exome sequencing. Clin Genet 2021; 100:40-50. [PMID: 33644862 DOI: 10.1111/cge.13951] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
Whole-exome sequencing (WES) enables identification of pathogenic variants, including copy number variants (CNVs). In this study, we performed WES in 101 Japanese patients with unexplained developmental delay (DD) or intellectual disability (ID) (63 males and 38 females), 98 of them with trio-WES. Pathogenic variants were identified in 54 cases (53.5%), including four cases with pathogenic CNVs. In one case, a pathogenic variant was identified by reanalysis of exome data; and in two cases, two molecular diagnoses were identified. Among 58 pathogenic variants, 49 variants occurred de novo in 48 patients, including two somatic variants. The accompanying autism spectrum disorder and external ear anomalies were associated with detection of pathogenic variants with odds ratios of 11.88 (95% confidence interval [CI] 2.52-56.00) and 3.46 (95% CI 1.23-9.73), respectively. These findings revealed the importance of reanalysis of WES data and detection of CNVs and somatic variants in increasing the diagnostic yield for unexplained DD/ID. In addition, genetic testing is recommended when patients suffer from the autism spectrum disorder or external ear anomalies, which potentially suggests the involvement of genetic factors associated with gene expression regulation.
Collapse
Affiliation(s)
- Takuya Hiraide
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kaori Yamoto
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yohei Masunaga
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Miki Asahina
- Department of Pediatrics, Hamamatsu City Welfare and Medical Center for Development, Hamamatsu, Japan
| | - Yusaku Endoh
- Department of Pediatrics, Hamamatsu City Welfare and Medical Center for Development, Hamamatsu, Japan
| | - Yumiko Ohkubo
- Department of Pediatrics, Shizuoka Saiseikai Hospital, Shizuoka, Japan
| | - Tomoko Matsubayashi
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Pediatric Neurology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Satoshi Tsurui
- Department of Pediatrics, Seirei-Numazu Hospital, Numazu, Japan
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kouichi Hirano
- Department of Pediatrics, Hamamatsu City Welfare and Medical Center for Development, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tokiko Fukuda
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
1167
|
Pavinato L, Trajkova S, Grosso E, Giorgio E, Bruselles A, Radio FC, Pippucci T, Dimartino P, Tartaglia M, Petlichkovski A, De Rubeis S, Buxbaum J, Ferrero GB, Keller R, Brusco A. Expanding the clinical phenotype of the ultra-rare Skraban-Deardorff syndrome: Two novel individuals with WDR26 loss-of-function variants and a literature review. Am J Med Genet A 2021; 185:1712-1720. [PMID: 33675273 DOI: 10.1002/ajmg.a.62157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022]
Abstract
De novo variants in the WDR26 gene leading to haploinsufficiency have recently been associated with Skraban-Deardorff syndrome. This condition is an ultra-rare autosomal dominant neurodevelopmental disorder characterized by a broad range of clinical signs, including intellectual disability (ID), developmental delay (DD), seizures, abnormal facial features, feeding difficulties, and minor skeletal anomalies. Currently, 18 cases have been reported in the literature and for only 15 of them a clinical description is available. Here, we describe a child with Skraban-Deardorff syndrome associated with the WDR26 pathogenic de novo variant NM_025160.6:c.69dupC, p.(Gly24ArgfsTer48), and an adult associated with the pathogenic de novo variant c.1076G > A, p.(Trp359Ter). The adult patient was a 29-year-old female with detailed information on clinical history and pharmacological treatments since birth, providing an opportunity to map disease progression and patient management. By comparing our cases with published reports of Skraban-Deardorff syndrome, we provide a genetic and clinical summary of this ultrarare condition, describe the clinical management from childhood to adult age, and further expand on the clinical phenotype.
Collapse
Affiliation(s)
- Lisa Pavinato
- Department of Medical Sciences, University of Turin, Turin, Italy.,Institute of Human Genetics and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Slavica Trajkova
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Enrico Grosso
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Tommaso Pippucci
- Medical Genetics Unit, Polyclinic Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Paola Dimartino
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Aleksandar Petlichkovski
- Institute for Immunobiology and Human Genetics, Faculty of Medicine, University "Sv. Kiril I Metodij", Skopje, Macedonia
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joseph Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Giovanni Battista Ferrero
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Roberto Keller
- Adult autism center, Mental Health Department, Local Health Unit ASL Città di Torino, Turin, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, Turin, Italy.,Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| |
Collapse
|
1168
|
González-Calvo I, Iyer K, Carquin M, Khayachi A, Giuliani FA, Sigoillot SM, Vincent J, Séveno M, Veleanu M, Tahraoui S, Albert M, Vigy O, Bosso-Lefèvre C, Nadjar Y, Dumoulin A, Triller A, Bessereau JL, Rondi-Reig L, Isope P, Selimi F. Sushi domain-containing protein 4 controls synaptic plasticity and motor learning. eLife 2021; 10:65712. [PMID: 33661101 PMCID: PMC7972451 DOI: 10.7554/elife.65712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/03/2021] [Indexed: 01/28/2023] Open
Abstract
Fine control of protein stoichiometry at synapses underlies brain function and plasticity. How proteostasis is controlled independently for each type of synaptic protein in a synapse-specific and activity-dependent manner remains unclear. Here, we show that Susd4, a gene coding for a complement-related transmembrane protein, is expressed by many neuronal populations starting at the time of synapse formation. Constitutive loss-of-function of Susd4 in the mouse impairs motor coordination adaptation and learning, prevents long-term depression at cerebellar synapses, and leads to misregulation of activity-dependent AMPA receptor subunit GluA2 degradation. We identified several proteins with known roles in the regulation of AMPA receptor turnover, in particular ubiquitin ligases of the NEDD4 subfamily, as SUSD4 binding partners. Our findings shed light on the potential role of SUSD4 mutations in neurodevelopmental diseases.
Collapse
Affiliation(s)
- Inés González-Calvo
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS, Université de Strasbourg, Strasbourg, France
| | - Keerthana Iyer
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Mélanie Carquin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Anouar Khayachi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Fernando A Giuliani
- Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS, Université de Strasbourg, Strasbourg, France
| | - Séverine M Sigoillot
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Jean Vincent
- Institut Biology Paris Seine (IBPS), Neuroscience Paris Seine (NPS), CeZaMe, CNRS, Sorbonne University, INSERM, Paris, France
| | - Martial Séveno
- BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Maxime Veleanu
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Sylvana Tahraoui
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Mélanie Albert
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Oana Vigy
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Célia Bosso-Lefèvre
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Yann Nadjar
- École Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL Research University, Paris, France
| | - Andréa Dumoulin
- École Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL Research University, Paris, France
| | - Antoine Triller
- École Normale Supérieure, Institut de Biologie de l'ENS, INSERM, CNRS, PSL Research University, Paris, France
| | - Jean-Louis Bessereau
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut Neuromyogène, Lyon, France
| | - Laure Rondi-Reig
- Institut Biology Paris Seine (IBPS), Neuroscience Paris Seine (NPS), CeZaMe, CNRS, Sorbonne University, INSERM, Paris, France
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS, Université de Strasbourg, Strasbourg, France
| | - Fekrije Selimi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France
| |
Collapse
|
1169
|
Striessnig J. Voltage-Gated Ca 2+-Channel α1-Subunit de novo Missense Mutations: Gain or Loss of Function - Implications for Potential Therapies. Front Synaptic Neurosci 2021; 13:634760. [PMID: 33746731 PMCID: PMC7966529 DOI: 10.3389/fnsyn.2021.634760] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
This review summarizes our current knowledge of human disease-relevant genetic variants within the family of voltage gated Ca2+ channels. Ca2+ channelopathies cover a wide spectrum of diseases including epilepsies, autism spectrum disorders, intellectual disabilities, developmental delay, cerebellar ataxias and degeneration, severe cardiac arrhythmias, sudden cardiac death, eye disease and endocrine disorders such as congential hyperinsulinism and hyperaldosteronism. A special focus will be on the rapidly increasing number of de novo missense mutations identified in the pore-forming α1-subunits with next generation sequencing studies of well-defined patient cohorts. In contrast to likely gene disrupting mutations these can not only cause a channel loss-of-function but can also induce typical functional changes permitting enhanced channel activity and Ca2+ signaling. Such gain-of-function mutations could represent therapeutic targets for mutation-specific therapy of Ca2+-channelopathies with existing or novel Ca2+-channel inhibitors. Moreover, many pathogenic mutations affect positive charges in the voltage sensors with the potential to form gating-pore currents through voltage sensors. If confirmed in functional studies, specific blockers of gating-pore currents could also be of therapeutic interest.
Collapse
Affiliation(s)
- Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
1170
|
Disruption of RFX family transcription factors causes autism, attention-deficit/hyperactivity disorder, intellectual disability, and dysregulated behavior. Genet Med 2021; 23:1028-1040. [PMID: 33658631 DOI: 10.1038/s41436-021-01114-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/30/2022] Open
Abstract
PURPOSE We describe a novel neurobehavioral phenotype of autism spectrum disorder (ASD), intellectual disability, and/or attention-deficit/hyperactivity disorder (ADHD) associated with de novo or inherited deleterious variants in members of the RFX family of genes. RFX genes are evolutionarily conserved transcription factors that act as master regulators of central nervous system development and ciliogenesis. METHODS We assembled a cohort of 38 individuals (from 33 unrelated families) with de novo variants in RFX3, RFX4, and RFX7. We describe their common clinical phenotypes and present bioinformatic analyses of expression patterns and downstream targets of these genes as they relate to other neurodevelopmental risk genes. RESULTS These individuals share neurobehavioral features including ASD, intellectual disability, and/or ADHD; other frequent features include hypersensitivity to sensory stimuli and sleep problems. RFX3, RFX4, and RFX7 are strongly expressed in developing and adult human brain, and X-box binding motifs as well as RFX ChIP-seq peaks are enriched in the cis-regulatory regions of known ASD risk genes. CONCLUSION These results establish a likely role of deleterious variation in RFX3, RFX4, and RFX7 in cases of monogenic intellectual disability, ADHD and ASD, and position these genes as potentially critical transcriptional regulators of neurobiological pathways associated with neurodevelopmental disease pathogenesis.
Collapse
|
1171
|
Riva V, Caruso A, Apicella F, Valeri G, Vicari S, Molteni M, Scattoni ML. Early developmental trajectories of expressive vocabulary and gesture production in a longitudinal cohort of Italian infants at high-risk for Autism Spectrum Disorder. Autism Res 2021; 14:1421-1433. [PMID: 33644995 DOI: 10.1002/aur.2493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/14/2021] [Indexed: 11/06/2022]
Abstract
Delays in language are a hallmark feature of Autism Spectrum Disorder (ASD). However, little is known about the predictive role of language developmental trajectories on ASD. The present study aimed at identifying early different language developmental profiles of infants at high familial risk for ASD (HR-ASD) and testing their predictive role on ASD symptoms at 2 years. The role of gestures on socio-communicative skills has also been explored. Trajectories of expressive vocabulary were investigated in 137 HR-ASD infants at 12, 18, and, 24 months of age. Parents were requested to complete the Italian version of the MacArthur-Bates Communicative Development Inventory and ASD symptoms were measured by ADOS-2. Latent class growth analysis defined four trajectories: above average language development group (above-average LD, 18.2%), normal language development group (NLD, 38.7%), late-onset language development group (late-onset LD, 11.7%), and a group of children with stable language delay (SLD, 31.4%). Results showed that the SLD group obtained higher communicative difficulties and restricted/repetitive behavior compared to the other groups. Examining early increase of produced gestures in the different language classes, we found fewer produced gestures between 12 and 18 months in the SLD group compared to the late-onset LD group. The results identified clusters of HR infants who follow similar estimated trajectories based on individual differences in language development. These patterns of early language acquisition, together with produced gestures, may be predictive of later ASD symptoms and useful for planning prompt intervention. LAY SUMMARY: Language/gesture deficits are hallmark features of Autism Spectrum Disorder (ASD), but the predictive role of communicative trajectories on ASD remains unclear. In a longitudinal Italian sample of infants at high familial risk for ASD (HR-ASD), we tested if language trajectories and their link with gestures can predict ASD symptoms. We found four trajectories and HR infants with a stable language delay (SLD) trajectory showed more ASD symptoms later on. SLD infants produced fewer gestures compared to late-onset language development group that show more typical communicative skills.
Collapse
Affiliation(s)
- Valentina Riva
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Angela Caruso
- Research Coordination and Support Service, Istituto Superiore di Sanità, Rome, Italy
| | - Fabio Apicella
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Giovanni Valeri
- Department of Neuroscience, Child Neuropsychiatric Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Stefano Vicari
- Department of Neuroscience, Child Neuropsychiatric Unit, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,Catholic University, Rome, Italy
| | - Massimo Molteni
- Child Psychopathology Unit, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
1172
|
Mossink B, Negwer M, Schubert D, Nadif Kasri N. The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cell Mol Life Sci 2021; 78:2517-2563. [PMID: 33263776 PMCID: PMC8004494 DOI: 10.1007/s00018-020-03714-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorders (ASD), are a large group of disorders in which early insults during brain development result in a wide and heterogeneous spectrum of clinical diagnoses. Mutations in genes coding for chromatin remodelers are overrepresented in NDD cohorts, pointing towards epigenetics as a convergent pathogenic pathway between these disorders. In this review we detail the role of NDD-associated chromatin remodelers during the developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation. We discuss how defects in chromatin remodelling during these early developmental time points compound over time and result in impaired brain circuit establishment. In particular, we focus on their role in the three largest cell populations: glutamatergic neurons, GABAergic neurons, and glia cells. An in-depth understanding of the spatiotemporal role of chromatin remodelers during neurodevelopment can contribute to the identification of molecular targets for treatment strategies.
Collapse
Affiliation(s)
- Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Moritz Negwer
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
1173
|
Activity-dependent regulome of human GABAergic neurons reveals new patterns of gene regulation and neurological disease heritability. Nat Neurosci 2021; 24:437-448. [PMID: 33542524 PMCID: PMC7933108 DOI: 10.1038/s41593-020-00786-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/18/2020] [Indexed: 01/30/2023]
Abstract
Neuronal activity-dependent gene expression is essential for brain development. Although transcriptional and epigenetic effects of neuronal activity have been explored in mice, such an investigation is lacking in humans. Because alterations in GABAergic neuronal circuits are implicated in neurological disorders, we conducted a comprehensive activity-dependent transcriptional and epigenetic profiling of human induced pluripotent stem cell-derived GABAergic neurons similar to those of the early developing striatum. We identified genes whose expression is inducible after membrane depolarization, some of which have specifically evolved in primates and/or are associated with neurological diseases, including schizophrenia and autism spectrum disorder (ASD). We define the genome-wide profile of human neuronal activity-dependent enhancers, promoters and the transcription factors CREB and CRTC1. We found significant heritability enrichment for ASD in the inducible promoters. Our results suggest that sequence variation within activity-inducible promoters of developing human forebrain GABAergic neurons contributes to ASD risk.
Collapse
|
1174
|
Maynard KR, Collado-Torres L, Weber LM, Uytingco C, Barry BK, Williams SR, Catallini JL, Tran MN, Besich Z, Tippani M, Chew J, Yin Y, Kleinman JE, Hyde TM, Rao N, Hicks SC, Martinowich K, Jaffe AE. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat Neurosci 2021; 24:425-436. [PMID: 33558695 PMCID: PMC8095368 DOI: 10.1038/s41593-020-00787-0] [Citation(s) in RCA: 529] [Impact Index Per Article: 132.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
We used the 10x Genomics Visium platform to define the spatial topography of gene expression in the six-layered human dorsolateral prefrontal cortex. We identified extensive layer-enriched expression signatures and refined associations to previous laminar markers. We overlaid our laminar expression signatures on large-scale single nucleus RNA-sequencing data, enhancing spatial annotation of expression-driven clusters. By integrating neuropsychiatric disorder gene sets, we showed differential layer-enriched expression of genes associated with schizophrenia and autism spectrum disorder, highlighting the clinical relevance of spatially defined expression. We then developed a data-driven framework to define unsupervised clusters in spatial transcriptomics data, which can be applied to other tissues or brain regions in which morphological architecture is not as well defined as cortical laminae. Last, we created a web application for the scientific community to explore these raw and summarized data to augment ongoing neuroscience and spatial transcriptomics research ( http://research.libd.org/spatialLIBD ).
Collapse
Affiliation(s)
- Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Lukas M Weber
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Brianna K Barry
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Joseph L Catallini
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matthew N Tran
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Genetic Medicine, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zachary Besich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Genetic Medicine, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | | | | | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Stephanie C Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Genetic Medicine, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
1175
|
Zhang C, Xu L, Zheng X, Liu S, Che F. Role of Ash1l in Tourette syndrome and other neurodevelopmental disorders. Dev Neurobiol 2021; 81:79-91. [PMID: 33258273 PMCID: PMC8048680 DOI: 10.1002/dneu.22795] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023]
Abstract
Ash1l potentially contributes to neurodevelopmental diseases. Although specific Ash1l mutations are rare, they have led to informative studies in animal models that may bring therapeutic advances. Ash1l is highly expressed in the brain and correlates with the neuropathology of Tourette syndrome (TS), autism spectrum disorder, and intellectual disability during development, implicating shared epigenetic factors and overlapping neuropathological mechanisms. Functional convergence of Ash1l generated several significant signaling pathways: chromatin remodeling and transcriptional regulation, protein synthesis and cellular metabolism, and synapse development and function. Here, we systematically review the literature on Ash1l, including its discovery, expression, function, regulation, implication in the nervous system, signaling pathway, mutations, and putative involvement in TS and other neurodevelopmental traits. Such findings highlight Ash1l pleiotropy and the necessity of transcending a single gene to complicated mechanisms of network convergence underlying these diseases. With the progress in functional genomic analysis (highlighted in this review), and although the importance and necessity of Ash1l becomes increasingly apparent in the medical field, further research is required to discover the precise function and molecular regulatory mechanisms related to Ash1l. Thus, a new perspective is proposed for basic scientific research and clinical interventions for cross-disorder diseases.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of NeurologyThe Eleventh Clinical Medical College of Qingdao University, Linyi People's HospitalLinyiChina
| | - Lulu Xu
- Department of Geriatric MedicineThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xueping Zheng
- Department of Geriatric MedicineThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Shiguo Liu
- Medical Genetic DepartmentThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Fengyuan Che
- Department of NeurologyThe Eleventh Clinical Medical College of Qingdao University, Linyi People's HospitalLinyiChina
| |
Collapse
|
1176
|
Luo T, Li K, Ling Z, Zhao G, Li B, Wang Z, Wang X, Han Y, Xia L, Zhang Y, Zhou Q, Fang Z, Wang Y, Chen Q, Zhou X, Pan H, Zhao Y, Wang Y, Dong L, Huang Y, Hu Z, Pan Q, Xia K, Li J. De novo mutations in folate-related genes associated with common developmental disorders. Comput Struct Biotechnol J 2021; 19:1414-1422. [PMID: 33777337 PMCID: PMC7966843 DOI: 10.1016/j.csbj.2021.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 01/23/2023] Open
Abstract
Folate deficiency is an environmental risk factor for several developmental disorders. De novo mutations (DNMs) also play important etiological roles in various developmental disorders. However, it remains unclear whether DNMs in folate-related genes (FRGs) contribute to developmental disorders. We obtained a list of 1,821 FRGs from folate metabolism pathways and the Comparative Toxicogenomics Database, along with data concerning DNMs in 15,404 cases and 3,391 controls from the Gene4Denovo database. We used a TADA-Denovo model to prioritize candidate disease-associated FRGs, and characterized these genes in terms of genic intolerance, functional networks, and expression patterns. Compared with the controls, FRGs were significantly enriched in likely damaging DNMs (ldDNMs) in patients with developmental disorders (1.54 ≤ odds ratio ≤ 3.39, Padj ≤ 0.0075). Furthermore, FRGs with ldDNMs rather than with likely non-damaging DNMs (lndDNMs) overlapped significantly among the five developmental disorders included in the datasets. The TADA-Denovo model prioritized 96 candidate disease-associated FRGs, which were intolerant to genetic variants. Their functional networks mainly involved pathways associated with chromatin modification, organ development, and signal transduction pathways. DNMT3A, KMT2B, KMT2C, and YY1 emerged as hub FRGs from the protein–protein interaction network. These candidate disease-associated FRGs are preferentially expressed in the excitatory neurones during embryonic development, and in the cortex, cerebellum, striatum, and amygdala during foetal development. Overall, these findings show that DNMs in FRGs are associated with the risk of developmental disorders. Further research on these DNMs may facilitate the discovery of developmental disorder biomarkers and therapeutic targets, enabling detailed, personalized, and precise folate treatment plan.
Collapse
Key Words
- ADD, all five developmental disorders
- ASD, autism spectrum disorder
- CHD, congenital heart disease
- Candidate disease-associated genes
- DNMs, De novo mutations
- De novo mutation
- Developmental disorders
- Dmis, deleterious missense variants
- EE, epileptic encephalopathy
- Expression patterns
- FRGs, folate-related genes
- Folate-related gene
- ID, intellectual disability
- PPI, Protein–protein interaction
- PTV, protein-truncating variants
- RVIS, residual variation intolerance scores
- SNPs, single nucleotide polymorphisms
- TADA, Transmitted And De novo Association
- Tmis, tolerant missense variants
- UDD, undiagnosed developmental disorder
- ldDNMs, likely damaging DNMs
- lndDNMs, likely non-damaging DNMs
- pLI, probability of loss-of-function intolerance
Collapse
Affiliation(s)
- Tengfei Luo
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kuokuo Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Zhengbao Ling
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bin Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zheng Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaomeng Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ying Han
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lu Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yi Zhang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiao Zhou
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenghuan Fang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yijing Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qian Chen
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xun Zhou
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongxu Pan
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuwen Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yige Wang
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lijie Dong
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yuanfeng Huang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhengmao Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qian Pan
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
1177
|
Andrews DS, Lee JK, Harvey DJ, Waizbard-Bartov E, Solomon M, Rogers SJ, Nordahl CW, Amaral DG. A Longitudinal Study of White Matter Development in Relation to Changes in Autism Severity Across Early Childhood. Biol Psychiatry 2021; 89:424-432. [PMID: 33349451 PMCID: PMC7867569 DOI: 10.1016/j.biopsych.2020.10.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cross-sectional diffusion-weighted magnetic resonance imaging studies suggest that young autistic children have alterations in white matter structure that differ from older autistic individuals. However, it is unclear whether these differences result from atypical neurodevelopment or sampling differences between young and older cohorts. Furthermore, the relationship between altered white matter development and longitudinal changes in autism symptoms is unknown. METHODS Using longitudinal diffusion-weighted magnetic resonance imaging acquired over 2 to 3 time points between the ages of approximately 2.5 to 7.0 years in 125 autistic children and 69 typically developing control participants, we directly tested the hypothesis that autistic individuals have atypical white matter development across childhood. Additionally, we sought to determine whether changes in white matter diffusion parameters were associated with longitudinal changes in autism severity. RESULTS Autistic children were found to have slower development of fractional anisotropy in the cingulum bundle, superior longitudinal fasciculus, internal capsule, and splenium of the corpus callosum. Furthermore, in the sagittal stratum, autistic individuals who increased in autism severity over time had a slower developmental trajectory of fractional anisotropy compared with individuals whose autism decreased in severity. In the uncinate fasciculus, autistic individuals who decreased in autism symptom severity also had greater increases in fractional anisotropy with age. CONCLUSIONS These longitudinal findings indicate that previously reported differences in diffusion-weighted magnetic resonance imaging measures between younger and older autism cohorts are attributable to an atypical developmental trajectory of white matter. Differences in white matter development between individuals whose autism severity increased, remained stable, or decreased suggest that these functional differences are associated with fiber development in the autistic brain.
Collapse
Affiliation(s)
- Derek Sayre Andrews
- Medical Investigation of Neurodevelopmental Disorders Institute and Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California.
| | - Joshua K Lee
- Medical Investigation of Neurodevelopmental Disorders Institute and Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California
| | - Danielle Jenine Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, Davis, California
| | - Einat Waizbard-Bartov
- Medical Investigation of Neurodevelopmental Disorders Institute and Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California
| | - Marjorie Solomon
- Medical Investigation of Neurodevelopmental Disorders Institute and Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California
| | - Sally J Rogers
- Medical Investigation of Neurodevelopmental Disorders Institute and Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California
| | - Christine Wu Nordahl
- Medical Investigation of Neurodevelopmental Disorders Institute and Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California
| | - David G Amaral
- Medical Investigation of Neurodevelopmental Disorders Institute and Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, California
| |
Collapse
|
1178
|
Jourdon A, Vaccarino FM. One for All: A Pooled Approach to Classify Functional Impacts of Multiple Mutations. Cell Stem Cell 2021; 27:1-3. [PMID: 32619508 DOI: 10.1016/j.stem.2020.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Understanding common biological consequences of heterogenous mutations in complex polygenic conditions is challenging. In this issue of Cell Stem Cell, Cederquist et al. (2020) implement an in vitro pooled assay where 30 high-confidence ASD mutations engineered in subclones of a human pluripotent stem cell line can be investigated in parallel to reveal their effects on prefrontal cortex neurogenesis.
Collapse
Affiliation(s)
| | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
1179
|
Huang H, Chamness LM, Vanoye CG, Kuenze G, Meiler J, George AL, Schlebach JP, Sanders CR. Disease-linked supertrafficking of a potassium channel. J Biol Chem 2021; 296:100423. [PMID: 33600800 PMCID: PMC7988323 DOI: 10.1016/j.jbc.2021.100423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
Gain-of-function (GOF) mutations in the voltage-gated potassium channel subfamily Q member 1 (KCNQ1) can induce cardiac arrhythmia. In this study, it was tested whether any of the known human GOF disease mutations in KCNQ1 act by increasing the amount of KCNQ1 that reaches the cell surface-"supertrafficking." Seven of the 15 GOF mutants tested were seen to surface traffic more efficiently than the WT channel. Among these, we found that the levels of R231C KCNQ1 in the plasma membrane were fivefold higher than the WT channel. This was shown to arise from the combined effects of enhanced efficiency of translocon-mediated membrane integration of the S4 voltage-sensor helix and from enhanced post-translational folding/trafficking related to the energetic linkage of C231 with the V129 and F166 side chains. Whole-cell electrophysiology recordings confirmed that R231C KCNQ1 in complex with the voltage-gated potassium channel-regulatory subfamily E member 1 not only exhibited constitutive conductance but also revealed that the single-channel activity of this mutant is only 20% that of WT. The GOF phenotype associated with R231C therefore reflects the effects of supertrafficking and constitutive channel activation, which together offset reduced channel activity. These investigations show that membrane protein supertrafficking can contribute to human disease.
Collapse
Affiliation(s)
- Hui Huang
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Laura M Chamness
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Carlos G Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Georg Kuenze
- Departments of Chemistry and Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Department of Bioinformatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Departments of Chemistry and Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Department of Bioinformatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
1180
|
Jash S, Sharma S. In utero immune programming of autism spectrum disorder (ASD). Hum Immunol 2021; 82:379-384. [PMID: 33612392 DOI: 10.1016/j.humimm.2021.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022]
Abstract
Maladaptation of immune tolerance at the maternal-fetal interface affects balanced maternal-fetal cross-talk and placental health and is associated with adverse pregnancy outcomes. The concept of in utero programming of childhood and adulthood diseases has revolutionized the research on the role of pregnancy in maternal, neonatal, and adult health. However, it is not yet well understood whether dysregulation of uterine immunity contributes to any health consequences during childhood or later in life. Recent observations in mice and humans have strongly supported the notion that uterine immunity during pregnancy determines the health trajectory of the offspring and significantly impacts cognitive function and mental health. Importantly, IL-17a producing Th17 T cells have been projected as the main contributors to heterogeneous pathological and behavioral phenotypes associated with autism spectrum disorder (ASD). However, since normal pregnancy is associated with little or no Th17 cells at the maternal-fetal interface, it is not clear how and when the Th17 T cells are generated and which interventions can ameliorate the ASD-like features in newborns. We propose that infection-associated uterine immune activation within a critical window of development may propel trans-differentiation of Th17 T cells that eventually affect fetal brain development and induce ASD-like behavioral phenotype in the offspring.
Collapse
Affiliation(s)
- Sukanta Jash
- Department of Pediatrics, Women and Infants Hospital of Rhode Island-Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants Hospital of Rhode Island-Warren Alpert Medical School of Brown University, Providence, RI, United States.
| |
Collapse
|
1181
|
Neonatal Rotenone Administration Induces Psychiatric Disorder-Like Behavior and Changes in Mitochondrial Biogenesis and Synaptic Proteins in Adulthood. Mol Neurobiol 2021; 58:3015-3030. [PMID: 33608825 DOI: 10.1007/s12035-021-02317-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022]
Abstract
Since psychiatric disorders are associated with changes in the development of the nervous system, an energy-dependent mechanism, we investigated whether mitochondrial inhibition during the critical neurodevelopment window in rodents would be able to induce metabolic alterations culminating in psychiatric-like behavior. We treated male Wistar rat puppies (P) with rotenone (Rot), an inhibitor of mitochondrial complex I, from postnatal days 5 to 11 (P5-P11). We demonstrated that at P60 and P120, Rot-treated animals showed hyperlocomotion and deficits in social interaction and aversive contextual memory, features observed in animal models of schizophrenia, autism spectrum disorder, and attention deficit hyperactivity disorder. During adulthood, Rot-treated rodents also presented modifications in CBP and CREB levels in addition to a decrease in mitochondrial biogenesis and Nrf1 expression. Additionally, NFE2L2-activation was not altered in Rot-treated P60 and P120 animals; an upregulation of pNFE2L2/ NFE2L2 was only observed in P12 cortices. Curiously, ATP/ADP levels did not change in all ages evaluated. Rot administration in newborn rodents also promoted modification in Rest and Mecp2 expression, and in synaptic protein levels, named PSD-95, Synaptotagmin-1, and Synaptophysin in the adult rats. Altogether, our data indicate that behavioral abnormalities and changes in synaptic proteins in adulthood induced by neonatal Rot administration might be a result of adjustments in CREB pathways and alterations in mitochondrial biogenesis and Nrf1 expression, rather than a direct deficiency of energy supply, as previously speculated. Consequently, Rot-induced psychiatric-like behavior would be an outcome of alterations in neuronal paths due to mitochondrial deregulation.
Collapse
|
1182
|
Cerminara M, Spirito G, Pisciotta L, Squillario M, Servetti M, Divizia MT, Lerone M, Berloco B, Boeri S, Nobili L, Vozzi D, Sanges R, Gustincich S, Puliti A. Case Report: Whole Exome Sequencing Revealed Disease-Causing Variants in Two Genes in a Patient With Autism Spectrum Disorder, Intellectual Disability, Hyperactivity, Sleep and Gastrointestinal Disturbances. Front Genet 2021; 12:625564. [PMID: 33679889 PMCID: PMC7930735 DOI: 10.3389/fgene.2021.625564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
Autism Spectrum Disorder (ASD) refers to a broad range of conditions characterized by difficulties in communication, social interaction and behavior, and may be accompanied by other medical or psychiatric conditions. Patients with ASD and comorbidities are often difficult to diagnose because of the tendency to consider the multiple symptoms as the presentation of a complicated syndromic form. This view influences variant filtering which might ignore causative variants for specific clinical features shown by the patient. Here we report on a male child diagnosed with ASD, showing cognitive and motor impairments, stereotypies, hyperactivity, sleep, and gastrointestinal disturbances. The analysis of whole exome sequencing (WES) data with bioinformatic tools for oligogenic diseases helped us to identify two major previously unreported pathogenetic variants: a maternally inherited missense variant (p.R4122H) in HUWE1, an ubiquitin protein ligase associated to X-linked intellectual disability and ASD; and a de novo stop variant (p.Q259X) in TPH2, encoding the tryptophan hydroxylase 2 enzyme involved in serotonin synthesis and associated with susceptibility to attention deficit-hyperactivity disorder (ADHD). TPH2, expressed in central and peripheral nervous tissues, modulates various physiological functions, including gut motility and sleep. To the best of our knowledge, this is the first case presenting with ASD, cognitive impairment, sleep, and gastrointestinal disturbances linked to both HUWE1 and TPH2 genes. Our findings could contribute to the existing knowledge on clinical and genetic diagnosis of patients with ASD presentation with comorbidities.
Collapse
Affiliation(s)
- Maria Cerminara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Giovanni Spirito
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Livia Pisciotta
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,Child Neuropsychiatry Unit, Azienda Socio Sanitaria Territoriale Fatebenefratelli Sacco (ASST Fbf Sacco), Milan, Italy
| | - Margherita Squillario
- Medical Genetics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Martina Servetti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,Medical Genetics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Maria Teresa Divizia
- Medical Genetics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Margherita Lerone
- Medical Genetics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Bianca Berloco
- Child Neuropsychiatry Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Silvia Boeri
- Child Neuropsychiatry Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Lino Nobili
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,Child Neuropsychiatry Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Diego Vozzi
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Remo Sanges
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy.,Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Stefano Gustincich
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Aldamaria Puliti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,Medical Genetics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
1183
|
Sragovich S, Gershovits M, Lam JC, Li VO, Gozes I. Putative Blood Somatic Mutations in Post-Traumatic Stress Disorder-Symptomatic Soldiers: High Impact of Cytoskeletal and Inflammatory Proteins. J Alzheimers Dis 2021; 79:1723-1734. [DOI: 10.3233/jad-201158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: We recently discovered autism/intellectual disability somatic mutations in postmortem brains, presenting higher frequency in Alzheimer’s disease subjects, compared with the controls. We further revealed high impact cytoskeletal gene mutations, coupled with potential cytoskeleton-targeted repair mechanisms. Objective: The current study was aimed at further discerning if somatic mutations in brain diseases are presented only in the most affected tissue (the brain), or if blood samples phenocopy the brain, toward potential diagnostics. Methods: Variant calling analyses on an RNA-seq database including peripheral blood samples from 85 soldiers (58 controls and 27 with symptoms of post-traumatic stress disorder, PTSD) was performed. Results: High (e.g., protein truncating) as well as moderate impact (e.g., single amino acid change) germline and putative somatic mutations in thousands of genes were found. Further crossing the mutated genes with autism, intellectual disability, cytoskeleton, inflammation, and DNA repair databases, identified the highest number of cytoskeletal-mutated genes (187 high and 442 moderate impact). Most of the mutated genes were shared and only when crossed with the inflammation database, more putative high impact mutated genes specific to the PTSD-symptom cohorts versus the controls (14 versus 13) were revealed, highlighting tumor necrosis factor specifically in the PTSD-symptom cohorts. Conclusion: With microtubules and neuro-immune interactions playing essential roles in brain neuroprotection and Alzheimer-related neurodegeneration, the current mutation discoveries contribute to mechanistic understanding of PTSD and brain protection, as well as provide future diagnostics toward personalized military deployment strategies and drug design.
Collapse
Affiliation(s)
- Shlomo Sragovich
- The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - Michael Gershovits
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Jacqueline C.K. Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Department of Computer Science and Technology, The University of Cambridge, Cambridge, UK
| | - Victor O.K. Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Illana Gozes
- The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
1184
|
Yap CX, Alvares GA, Henders AK, Lin T, Wallace L, Farrelly A, McLaren T, Berry J, Vinkhuyzen AAE, Trzaskowski M, Zeng J, Yang Y, Cleary D, Grove R, Hafekost C, Harun A, Holdsworth H, Jellett R, Khan F, Lawson L, Leslie J, Levis Frenk M, Masi A, Mathew NE, Muniandy M, Nothard M, Visscher PM, Dawson PA, Dissanayake C, Eapen V, Heussler HS, Whitehouse AJO, Wray NR, Gratten J. Analysis of common genetic variation and rare CNVs in the Australian Autism Biobank. Mol Autism 2021; 12:12. [PMID: 33568206 PMCID: PMC7874616 DOI: 10.1186/s13229-020-00407-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/17/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex neurodevelopmental condition whose biological basis is yet to be elucidated. The Australian Autism Biobank (AAB) is an initiative of the Cooperative Research Centre for Living with Autism (Autism CRC) to establish an Australian resource of biospecimens, phenotypes and genomic data for research on autism. METHODS Genome-wide single-nucleotide polymorphism genotypes were available for 2,477 individuals (after quality control) from 546 families (436 complete), including 886 participants aged 2 to 17 years with diagnosed (n = 871) or suspected (n = 15) ASD, 218 siblings without ASD, 1,256 parents, and 117 unrelated children without an ASD diagnosis. The genetic data were used to confirm familial relationships and assign ancestry, which was majority European (n = 1,964 European individuals). We generated polygenic scores (PGS) for ASD, IQ, chronotype and height in the subset of Europeans, and in 3,490 unrelated ancestry-matched participants from the UK Biobank. We tested for group differences for each PGS, and performed prediction analyses for related phenotypes in the AAB. We called copy-number variants (CNVs) in all participants, and intersected these with high-confidence ASD- and intellectual disability (ID)-associated CNVs and genes from the public domain. RESULTS The ASD (p = 6.1e-13), sibling (p = 4.9e-3) and unrelated (p = 3.0e-3) groups had significantly higher ASD PGS than UK Biobank controls, whereas this was not the case for height-a control trait. The IQ PGS was a significant predictor of measured IQ in undiagnosed children (r = 0.24, p = 2.1e-3) and parents (r = 0.17, p = 8.0e-7; 4.0% of variance), but not the ASD group. Chronotype PGS predicted sleep disturbances within the ASD group (r = 0.13, p = 1.9e-3; 1.3% of variance). In the CNV analysis, we identified 13 individuals with CNVs overlapping ASD/ID-associated CNVs, and 12 with CNVs overlapping ASD/ID/developmental delay-associated genes identified on the basis of de novo variants. LIMITATIONS This dataset is modest in size, and the publicly-available genome-wide-association-study (GWAS) summary statistics used to calculate PGS for ASD and other traits are relatively underpowered. CONCLUSIONS We report on common genetic variation and rare CNVs within the AAB. Prediction analyses using currently available GWAS summary statistics are largely consistent with expected relationships based on published studies. As the size of publicly-available GWAS summary statistics grows, the phenotypic depth of the AAB dataset will provide many opportunities for analyses of autism profiles and co-occurring conditions, including when integrated with other omics datasets generated from AAB biospecimens (blood, urine, stool, hair).
Collapse
Affiliation(s)
- Chloe X Yap
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia
| | - Gail A Alvares
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Anjali K Henders
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia
| | - Tian Lin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Leanne Wallace
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Alaina Farrelly
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Tiana McLaren
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jolene Berry
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Anna A E Vinkhuyzen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Maciej Trzaskowski
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Max Kelsen, Fortitude Valley, QLD, Australia
| | - Jian Zeng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Yuanhao Yang
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Dominique Cleary
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Rachel Grove
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Claire Hafekost
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Alexis Harun
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Helen Holdsworth
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Rachel Jellett
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia
- Olga Tennison Autism Research Centre, La Trobe University, Melbourne, VIC, Australia
| | - Feroza Khan
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Lauren Lawson
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia
- Olga Tennison Autism Research Centre, La Trobe University, Melbourne, VIC, Australia
| | - Jodie Leslie
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Mira Levis Frenk
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Anne Masi
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Nisha E Mathew
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Melanie Muniandy
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia
- Olga Tennison Autism Research Centre, La Trobe University, Melbourne, VIC, Australia
| | - Michaela Nothard
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Paul A Dawson
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia
| | - Cheryl Dissanayake
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia
- Olga Tennison Autism Research Centre, La Trobe University, Melbourne, VIC, Australia
| | - Valsamma Eapen
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
- Academic Unit of Child Psychiatry South West Sydney, Ingham Institute, Liverpool Hospital, Sydney, NSW, Australia
| | - Helen S Heussler
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Child Development Program, Children's Health Queensland, Brisbane, QLD, Australia
| | - Andrew J O Whitehouse
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jacob Gratten
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
- Cooperative Research Centre for Living With Autism (Autism CRC), Long Pocket, Brisbane, QLD, Australia.
| |
Collapse
|
1185
|
Pintacuda G, Martín JM, Eggan KC. Mind the translational gap: using iPS cell models to bridge from genetic discoveries to perturbed pathways and therapeutic targets. Mol Autism 2021; 12:10. [PMID: 33557935 PMCID: PMC7869517 DOI: 10.1186/s13229-021-00417-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders characterized by impaired social interactions as well as the presentation of restrictive and repetitive behaviors. ASD is highly heritable but genetically heterogenous with both common and rare genetic variants collaborating to predispose individuals to the disorder. In this review, we synthesize recent efforts to develop human induced pluripotent stem cell (iPSC)-derived models of ASD-related phenotypes. We firstly address concerns regarding the relevance and validity of available neuronal iPSC-derived models. We then critically evaluate the robustness of various differentiation and cell culture protocols used for producing cell types of relevance to ASD. By exploring iPSC models of ASD reported thus far, we examine to what extent cellular and neuronal phenotypes with potential relevance to ASD can be linked to genetic variants found to underlie it. Lastly, we outline promising strategies by which iPSC technology can both enhance the power of genetic studies to identify ASD risk factors and nominate pathways that are disrupted across groups of ASD patients that might serve as common points for therapeutic intervention.
Collapse
Affiliation(s)
- Greta Pintacuda
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Jacqueline M Martín
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kevin C Eggan
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
1186
|
den Hoed J, de Boer E, Voisin N, Dingemans AJM, Guex N, Wiel L, Nellaker C, Amudhavalli SM, Banka S, Bena FS, Ben-Zeev B, Bonagura VR, Bruel AL, Brunet T, Brunner HG, Chew HB, Chrast J, Cimbalistienė L, Coon H, Délot EC, Démurger F, Denommé-Pichon AS, Depienne C, Donnai D, Dyment DA, Elpeleg O, Faivre L, Gilissen C, Granger L, Haber B, Hachiya Y, Abedi YH, Hanebeck J, Hehir-Kwa JY, Horist B, Itai T, Jackson A, Jewell R, Jones KL, Joss S, Kashii H, Kato M, Kattentidt-Mouravieva AA, Kok F, Kotzaeridou U, Krishnamurthy V, Kučinskas V, Kuechler A, Lavillaureix A, Liu P, Manwaring L, Matsumoto N, Mazel B, McWalter K, Meiner V, Mikati MA, Miyatake S, Mizuguchi T, Moey LH, Mohammed S, Mor-Shaked H, Mountford H, Newbury-Ecob R, Odent S, Orec L, Osmond M, Palculict TB, Parker M, Petersen AK, Pfundt R, Preikšaitienė E, Radtke K, Ranza E, Rosenfeld JA, Santiago-Sim T, Schwager C, Sinnema M, Snijders Blok L, Spillmann RC, Stegmann APA, Thiffault I, Tran L, Vaknin-Dembinsky A, Vedovato-Dos-Santos JH, Schrier Vergano SA, Vilain E, Vitobello A, Wagner M, Waheeb A, Willing M, Zuccarelli B, Kini U, Newbury DF, Kleefstra T, Reymond A, Fisher SE, Vissers LELM. Mutation-specific pathophysiological mechanisms define different neurodevelopmental disorders associated with SATB1 dysfunction. Am J Hum Genet 2021; 108:346-356. [PMID: 33513338 DOI: 10.1016/j.ajhg.2021.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023] Open
Abstract
Whereas large-scale statistical analyses can robustly identify disease-gene relationships, they do not accurately capture genotype-phenotype correlations or disease mechanisms. We use multiple lines of independent evidence to show that different variant types in a single gene, SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical evaluation of 42 individuals carrying SATB1 variants identified overt genotype-phenotype relationships, associated with different pathophysiological mechanisms, established by functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in stronger chromatin binding, increased transcriptional repression, and a severe phenotype. In contrast, variants predicted to result in haploinsufficiency are associated with a milder clinical presentation. A similarly mild phenotype is observed for individuals with premature protein truncating variants that escape nonsense-mediated decay, which are transcriptionally active but mislocalized in the cell. Our results suggest that in-depth mutation-specific genotype-phenotype studies are essential to capture full disease complexity and to explain phenotypic variability.
Collapse
Affiliation(s)
- Joery den Hoed
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6500 AH Nijmegen, the Netherlands; International Max Planck Research School for Language Sciences, Max Planck Institute for Psycholinguistics, 6500 AH Nijmegen, the Netherlands
| | - Elke de Boer
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 GL Nijmegen, the Netherlands
| | - Norine Voisin
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Alexander J M Dingemans
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 GL Nijmegen, the Netherlands
| | - Nicolas Guex
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Center, University of Lausanne, 1015 Lausanne, Switzerland
| | - Laurens Wiel
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Center for Molecular and Biomolecular Informatics of the Radboudumc, 6500 HB Nijmegen, the Netherlands
| | - Christoffer Nellaker
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| | - Shivarajan M Amudhavalli
- University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA; Department of Pediatrics, Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - Frederique S Bena
- Service of Genetic Medicine, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Bruria Ben-Zeev
- Edmomd and Lilly Safra Pediatric Hospital, Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Vincent R Bonagura
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; Pediatrics and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Ange-Line Bruel
- UMR1231-Inserm, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, 21070 Dijon, France; Laboratoire de Génétique chromosomique et moléculaire, UF6254 Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, 21070 Dijon, France
| | - Theresa Brunet
- Institute of Human Genetics, Technical University of Munich, 81675 Munich, Germany
| | - Han G Brunner
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 GL Nijmegen, the Netherlands; Maastricht University Medical Center, Department of Clinical Genetics, GROW School for Oncology and Developmental Biology, and MHeNS School for Mental health and Neuroscience, PO Box 5800, 6202AZ Maastricht, the Netherlands
| | - Hui B Chew
- Department of Genetics, Kuala Lumpur Hospital, Jalan Pahang, 50586 Kuala Lumpur, Malaysia
| | - Jacqueline Chrast
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Loreta Cimbalistienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 08661 Vilnius, Lithuania
| | - Hilary Coon
- Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Emmanuèlle C Délot
- Center for Genetic Medicine Research, Children's National Hospital, Children's Research Institute and Department of Genomics and Precision Medicine, George Washington University, Washington, DC 20010, USA
| | - Florence Démurger
- Department of clinical genetics, Vannes hospital, 56017 Vannes, France
| | - Anne-Sophie Denommé-Pichon
- UMR1231-Inserm, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, 21070 Dijon, France; Laboratoire de Génétique chromosomique et moléculaire, UF6254 Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, 21070 Dijon, France
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Dian Donnai
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 5B2, Canada
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Laurence Faivre
- UMR1231-Inserm, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, 21070 Dijon, France; Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, 21079 Dijon, France; Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon, 21079 Dijon, France
| | - Christian Gilissen
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Leslie Granger
- Department of Rehabilitation and Development, Randall Children's Hospital at Legacy Emanuel Medical Center, Portland, OR 97227, USA
| | - Benjamin Haber
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Yasuo Hachiya
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo 183-0042, Japan
| | - Yasmin Hamzavi Abedi
- Division of Allergy and Immunology, Northwell Health, Great Neck, NY 11021, USA; Departments of Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Jennifer Hanebeck
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Jayne Y Hehir-Kwa
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | | | - Toshiyuki Itai
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Adam Jackson
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Rosalyn Jewell
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Kelly L Jones
- Division of Medical Genetics & Metabolism, Children's Hospital of The King's Daughters, Norfolk, VA 23507, USA; Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Shelagh Joss
- West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Hirofumi Kashii
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo 183-0042, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Shinagawa-ku, Tokyo 142-8666, Japan
| | | | - Fernando Kok
- Mendelics Genomic Analysis, Sao Paulo, SP 04013-000, Brazil; University of Sao Paulo, School of Medicine, Sao Paulo, SP 01246-903, Brazil
| | - Urania Kotzaeridou
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | | | - Vaidutis Kučinskas
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 08661 Vilnius, Lithuania
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Alinoë Lavillaureix
- CHU Rennes, Univ Rennes, CNRS, IGDR, Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN ITHACA, Hôpital Sud, 35033 Rennes, France
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Linda Manwaring
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Benoît Mazel
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, 21079 Dijon, France
| | | | - Vardiella Meiner
- Department of Genetics, Hadassah Medical Center, Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Mohamad A Mikati
- Division of Pediatric Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | - Lip H Moey
- Department of Genetics, Penang General Hospital, Jalan Residensi, 10990 Georgetown, Penang, Malaysia
| | - Shehla Mohammed
- Clinical Genetics, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Hagar Mor-Shaked
- Department of Genetics, Hadassah Medical Center, Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Hayley Mountford
- Department of Biological and Medical Sciences, Headington Campus, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Ruth Newbury-Ecob
- Clinical Genetics, St Michael's Hospital Bristol, University Hospitals Bristol NHS Foundation Trust, Bristol BS2 8EG, UK
| | - Sylvie Odent
- CHU Rennes, Univ Rennes, CNRS, IGDR, Service de Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN ITHACA, Hôpital Sud, 35033 Rennes, France
| | - Laura Orec
- Division of Child Neurology and Inherited Metabolic Diseases, Centre for Paediatrics and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 5B2, Canada
| | | | - Michael Parker
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield S5 7AU, UK
| | - Andrea K Petersen
- Department of Rehabilitation and Development, Randall Children's Hospital at Legacy Emanuel Medical Center, Portland, OR 97227, USA
| | - Rolph Pfundt
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands
| | - Eglė Preikšaitienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 08661 Vilnius, Lithuania
| | - Kelly Radtke
- Clinical Genomics Department, Ambry Genetics, Aliso Viejo, CA 92656, USA
| | - Emmanuelle Ranza
- Service of Genetic Medicine, University Hospitals of Geneva, 1205 Geneva, Switzerland; Medigenome, Swiss Institute of Genomic Medicine, 1207 Geneva, Switzerland
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Caitlin Schwager
- University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA; Department of Pediatrics, Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center+, azM, 6202 AZ Maastricht, the Netherlands; Department of Genetics and Cell Biology, Faculty of Health Medicine Life Sciences, Maastricht University Medical Center+, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Lot Snijders Blok
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6500 AH Nijmegen, the Netherlands; Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 GL Nijmegen, the Netherlands
| | - Rebecca C Spillmann
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC 27713, USA
| | - Alexander P A Stegmann
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Center+, azM, 6202 AZ Maastricht, the Netherlands
| | - Isabelle Thiffault
- University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA; Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA; Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Linh Tran
- Division of Pediatric Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Adi Vaknin-Dembinsky
- Department of Neurology and Laboratory of Neuroimmunology, The Agnes Ginges Center for Neurogenetics, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | | | - Samantha A Schrier Vergano
- Division of Medical Genetics & Metabolism, Children's Hospital of The King's Daughters, Norfolk, VA 23507, USA
| | - Eric Vilain
- Center for Genetic Medicine Research, Children's National Hospital, Children's Research Institute and Department of Genomics and Precision Medicine, George Washington University, Washington, DC 20010, USA
| | - Antonio Vitobello
- UMR1231-Inserm, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, 21070 Dijon, France; Laboratoire de Génétique chromosomique et moléculaire, UF6254 Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, 21070 Dijon, France
| | - Matias Wagner
- Institute of Human Genetics, Technical University of Munich, 81675 Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Androu Waheeb
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 5B2, Canada; Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - Marcia Willing
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Britton Zuccarelli
- The University of Kansas School of Medicine Salina Campus, Salina, KS 67401, USA
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
| | - Dianne F Newbury
- Department of Biological and Medical Sciences, Headington Campus, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 GL Nijmegen, the Netherlands
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6500 AH Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 GL Nijmegen, the Netherlands.
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 GL Nijmegen, the Netherlands
| |
Collapse
|
1187
|
Feurle P, Abentung A, Cera I, Wahl N, Ablinger C, Bucher M, Stefan E, Sprenger S, Teis D, Fischer A, Laighneach A, Whitton L, Morris DW, Apostolova G, Dechant G. SATB2-LEMD2 interaction links nuclear shape plasticity to regulation of cognition-related genes. EMBO J 2021; 40:e103701. [PMID: 33319920 PMCID: PMC7849313 DOI: 10.15252/embj.2019103701] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/22/2020] [Accepted: 11/06/2020] [Indexed: 01/22/2023] Open
Abstract
SATB2 is a schizophrenia risk gene and is genetically associated with human intelligence. How it affects cognition at molecular level is currently unknown. Here, we show that interactions between SATB2, a chromosomal scaffolding protein, and the inner nuclear membrane protein LEMD2 orchestrate the response of pyramidal neurons to neuronal activation. Exposure to novel environment in vivo causes changes in nuclear shape of CA1 hippocampal neurons via a SATB2-dependent mechanism. The activity-driven plasticity of the nuclear envelope requires not only SATB2, but also its protein interactor LEMD2 and the ESCRT-III/VPS4 membrane-remodeling complex. Furthermore, LEMD2 depletion in cortical neurons, similar to SATB2 ablation, affects neuronal activity-dependent regulation of multiple rapid and delayed primary response genes. In human genetic data, LEMD2-regulated genes are enriched for de novo mutations reported in intellectual disability and schizophrenia and are, like SATB2-regulated genes, enriched for common variants associated with schizophrenia and cognitive function. Hence, interactions between SATB2 and the inner nuclear membrane protein LEMD2 influence gene expression programs in pyramidal neurons that are linked to cognitive ability and psychiatric disorder etiology.
Collapse
Affiliation(s)
- Patrick Feurle
- Institute for NeuroscienceMedical University of InnsbruckInnsbruckAustria
| | - Andreas Abentung
- Institute for NeuroscienceMedical University of InnsbruckInnsbruckAustria
| | - Isabella Cera
- Institute for NeuroscienceMedical University of InnsbruckInnsbruckAustria
| | - Nico Wahl
- Institute for NeuroscienceMedical University of InnsbruckInnsbruckAustria
| | - Cornelia Ablinger
- Institute for NeuroscienceMedical University of InnsbruckInnsbruckAustria
| | - Michael Bucher
- Institute of Biochemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular BiosciencesUniversity of InnsbruckInnsbruckAustria
| | - Simon Sprenger
- Institute for Cell BiologyMedical University of InnsbruckInnsbruckAustria
| | - David Teis
- Institute for Cell BiologyMedical University of InnsbruckInnsbruckAustria
| | - Andre Fischer
- Department of Systems Medicine and EpigeneticsGerman Center for Neurodegenerative Diseases (DZNE)GoettingenGermany
- Department of Psychiatry and PsychotherapyUniversity Medical CenterGoettingenGermany
| | - Aodán Laighneach
- Neuroimaging, Cognition & Genomics (NICOG) CentreSchool of Psychology and Discipline of BiochemistryNational University of Ireland GalwayGalwayIreland
| | - Laura Whitton
- Neuroimaging, Cognition & Genomics (NICOG) CentreSchool of Psychology and Discipline of BiochemistryNational University of Ireland GalwayGalwayIreland
| | - Derek W Morris
- Neuroimaging, Cognition & Genomics (NICOG) CentreSchool of Psychology and Discipline of BiochemistryNational University of Ireland GalwayGalwayIreland
| | - Galina Apostolova
- Institute for NeuroscienceMedical University of InnsbruckInnsbruckAustria
| | - Georg Dechant
- Institute for NeuroscienceMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
1188
|
Garcia-Oscos F, Koch TMI, Pancholi H, Trusel M, Daliparthi V, Co M, Park SE, Ayhan F, Alam DH, Holdway JE, Konopka G, Roberts TF. Autism-linked gene FoxP1 selectively regulates the cultural transmission of learned vocalizations. SCIENCE ADVANCES 2021; 7:eabd2827. [PMID: 33536209 PMCID: PMC7857683 DOI: 10.1126/sciadv.abd2827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/17/2020] [Indexed: 05/08/2023]
Abstract
Autism spectrum disorders (ASDs) are characterized by impaired learning of social skills and language. Memories of how parents and other social models behave are used to guide behavioral learning. How ASD-linked genes affect the intertwined aspects of observational learning and behavioral imitation is not known. Here, we examine how disrupted expression of the ASD gene FOXP1, which causes severe impairments in speech and language learning, affects the cultural transmission of birdsong between adult and juvenile zebra finches. FoxP1 is widely expressed in striatal-projecting forebrain mirror neurons. Knockdown of FoxP1 in this circuit prevents juvenile birds from forming memories of an adult song model but does not interrupt learning how to vocally imitate a previously memorized song. This selective learning deficit is associated with potent disruptions to experience-dependent structural and synaptic plasticity in mirror neurons. Thus, FoxP1 regulates the ability to form memories essential to the cultural transmission of behavior.
Collapse
Affiliation(s)
- F Garcia-Oscos
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - T M I Koch
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - H Pancholi
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - M Trusel
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - V Daliparthi
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - M Co
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - S E Park
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - F Ayhan
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - D H Alam
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - J E Holdway
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - G Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - T F Roberts
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
1189
|
Rodin RE, Dou Y, Kwon M, Sherman MA, D'Gama AM, Doan RN, Rento LM, Girskis KM, Bohrson CL, Kim SN, Nadig A, Luquette LJ, Gulhan DC, Park PJ, Walsh CA. The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing. Nat Neurosci 2021; 24:176-185. [PMID: 33432195 PMCID: PMC7983596 DOI: 10.1038/s41593-020-00765-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 11/21/2020] [Indexed: 01/29/2023]
Abstract
We characterize the landscape of somatic mutations-mutations occurring after fertilization-in the human brain using ultra-deep (~250×) whole-genome sequencing of prefrontal cortex from 59 donors with autism spectrum disorder (ASD) and 15 control donors. We observe a mean of 26 somatic single-nucleotide variants per brain present in ≥4% of cells, with enrichment of mutations in coding and putative regulatory regions. Our analysis reveals that the first cell division after fertilization produces ~3.4 mutations, followed by 2-3 mutations in subsequent generations. This suggests that a typical individual possesses ~80 somatic single-nucleotide variants present in ≥2% of cells-comparable to the number of de novo germline mutations per generation-with about half of individuals having at least one potentially function-altering somatic mutation somewhere in the cortex. ASD brains show an excess of somatic mutations in neural enhancer sequences compared with controls, suggesting that mosaic enhancer mutations may contribute to ASD risk.
Collapse
Affiliation(s)
- Rachel E Rodin
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Yanmei Dou
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Minseok Kwon
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Maxwell A Sherman
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alissa M D'Gama
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Ryan N Doan
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Lariza M Rento
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Kelly M Girskis
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Craig L Bohrson
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Sonia N Kim
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Ajay Nadig
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Lovelace J Luquette
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Doga C Gulhan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
1190
|
Exner CRT, Willsey HR. Xenopus leads the way: Frogs as a pioneering model to understand the human brain. Genesis 2021; 59:e23405. [PMID: 33369095 PMCID: PMC8130472 DOI: 10.1002/dvg.23405] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
From its long history in the field of embryology to its recent advances in genetics, Xenopus has been an indispensable model for understanding the human brain. Foundational studies that gave us our first insights into major embryonic patterning events serve as a crucial backdrop for newer avenues of investigation into organogenesis and organ function. The vast array of tools available in Xenopus laevis and Xenopus tropicalis allows interrogation of developmental phenomena at all levels, from the molecular to the behavioral, and the application of CRISPR technology has enabled the investigation of human disorder risk genes in a higher-throughput manner. As the only major tetrapod model in which all developmental stages are easily manipulated and observed, frogs provide the unique opportunity to study organ development from the earliest stages. All of these features make Xenopus a premier model for studying the development of the brain, a notoriously complex process that demands an understanding of all stages from fertilization to organogenesis and beyond. Importantly, core processes of brain development are conserved between Xenopus and human, underlining the advantages of this model. This review begins by summarizing discoveries made in amphibians that form the cornerstones of vertebrate neurodevelopmental biology and goes on to discuss recent advances that have catapulted our understanding of brain development in Xenopus and in relation to human development and disease. As we engage in a new era of patient-driven gene discovery, Xenopus offers exceptional potential to uncover conserved biology underlying human brain disorders and move towards rational drug design.
Collapse
Affiliation(s)
- Cameron R T Exner
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143, USA
| |
Collapse
|
1191
|
Dobrindt K, Zhang H, Das D, Abdollahi S, Prorok T, Ghosh S, Weintraub S, Genovese G, Powell SK, Lund A, Akbarian S, Eggan K, McCarroll S, Duan J, Avramopoulos D, Brennand KJ. Publicly Available hiPSC Lines with Extreme Polygenic Risk Scores for Modeling Schizophrenia. Complex Psychiatry 2021; 6:68-82. [PMID: 34883504 PMCID: PMC7923934 DOI: 10.1159/000512716] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/27/2020] [Indexed: 07/23/2023] Open
Abstract
Schizophrenia (SZ) is a common and debilitating psychiatric disorder with limited effective treatment options. Although highly heritable, risk for this polygenic disorder depends on the complex interplay of hundreds of common and rare variants. Translating the growing list of genetic loci significantly associated with disease into medically actionable information remains an important challenge. Thus, establishing platforms with which to validate the impact of risk variants in cell-type-specific and donor-dependent contexts is critical. Towards this, we selected and characterized a collection of 12 human induced pluripotent stem cell (hiPSC) lines derived from control donors with extremely low and high SZ polygenic risk scores (PRS). These hiPSC lines are publicly available at the California Institute for Regenerative Medicine (CIRM). The suitability of these extreme PRS hiPSCs for CRISPR-based isogenic comparisons of neurons and glia was evaluated across 3 independent laboratories, identifying 9 out of 12 meeting our criteria. We report a standardized resource of publicly available hiPSCs on which we hope to perform genome engineering and generate diverse kinds of functional data, with comparisons across studies facilitated by the use of a common set of genetic backgrounds.
Collapse
Affiliation(s)
- Kristina Dobrindt
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hanwen Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Debamitra Das
- Department of Genetic Medicine and Psychiatry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sara Abdollahi
- Department of Genetic Medicine and Psychiatry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tim Prorok
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Sulagna Ghosh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Weintraub
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel K. Powell
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anina Lund
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Schahram Akbarian
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kevin Eggan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Steven McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, USA
| | - Dimitrios Avramopoulos
- Department of Genetic Medicine and Psychiatry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kristen J. Brennand
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
1192
|
Pembroke WG, Hartl CL, Geschwind DH. Evolutionary conservation and divergence of the human brain transcriptome. Genome Biol 2021; 22:52. [PMID: 33514394 PMCID: PMC7844938 DOI: 10.1186/s13059-020-02257-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/20/2020] [Indexed: 12/20/2022] Open
Abstract
Background Mouse models have allowed for the direct interrogation of genetic effects on molecular, physiological, and behavioral brain phenotypes. However, it is unknown to what extent neurological or psychiatric traits may be human- or primate-specific and therefore which components can be faithfully recapitulated in mouse models. Results We compare conservation of co-expression in 116 independent data sets derived from human, mouse, and non-human primate representing more than 15,000 total samples. We observe greater changes occurring on the human lineage than mouse, and substantial regional variation that highlights cerebral cortex as the most diverged region. Glia, notably microglia, astrocytes, and oligodendrocytes are the most divergent cell type, three times more on average than neurons. We show that cis-regulatory sequence divergence explains a significant fraction of co-expression divergence. Moreover, protein coding sequence constraint parallels co-expression conservation, such that genes with loss of function intolerance are enriched in neuronal, rather than glial modules. We identify dozens of human neuropsychiatric and neurodegenerative disease risk genes, such as COMT, PSEN-1, LRRK2, SHANK3, and SNCA, with highly divergent co-expression between mouse and human and show that 3D human brain organoids recapitulate in vivo co-expression modules representing several human cell types. Conclusions We identify robust co-expression modules reflecting whole-brain and regional patterns of gene expression. Compared with those that represent basic metabolic processes, cell-type-specific modules, most prominently glial modules, are the most divergent between species. These data and analyses serve as a foundational resource to guide human disease modeling and its interpretation. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-020-02257-z.
Collapse
Affiliation(s)
- William G Pembroke
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Christopher L Hartl
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA. .,Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA. .,Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
1193
|
Lu MH, Hsueh YP. Protein synthesis as a modifiable target for autism-related dendritic spine pathophysiologies. FEBS J 2021; 289:2282-2300. [PMID: 33511762 DOI: 10.1111/febs.15733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022]
Abstract
Autism spectrum disorder (ASD) is increasingly recognized as a condition of altered brain connectivity. As synapses are fundamental subcellular structures for neuronal connectivity, synaptic pathophysiology has become one of central themes in autism research. Reports disagree upon whether the density of dendritic spines, namely excitatory synapses, is increased or decreased in ASD and whether the protein synthesis that is critical for dendritic spine formation and function is upregulated or downregulated. Here, we review recent evidence supporting a subgroup of ASD models with decreased dendritic spine density (hereafter ASD-DSD), including Nf1 and Vcp mutant mice. We discuss the relevance of branched-chain amino acid (BCAA) insufficiency in relation to unmet protein synthesis demand in ASD-DSD. In contrast to ASD-DSD, ASD models with hyperactive mammalian target of rapamycin (mTOR) may represent the opposite end of the disease spectrum, often characterized by increases in protein synthesis and dendritic spine density (denoted ASD-ISD). Finally, we propose personalized dietary leucine as a strategy tailored to balancing protein synthesis demand, thereby ameliorating dendritic spine pathophysiologies and autism-related phenotypes in susceptible patients, especially those with ASD-DSD.
Collapse
Affiliation(s)
- Ming-Hsuan Lu
- Department of Medical Education, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| |
Collapse
|
1194
|
Martin HC, Gardner EJ, Samocha KE, Kaplanis J, Akawi N, Sifrim A, Eberhardt RY, Tavares ALT, Neville MDC, Niemi MEK, Gallone G, McRae J, Wright CF, FitzPatrick DR, Firth HV, Hurles ME. The contribution of X-linked coding variation to severe developmental disorders. Nat Commun 2021; 12:627. [PMID: 33504798 PMCID: PMC7840967 DOI: 10.1038/s41467-020-20852-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Over 130 X-linked genes have been robustly associated with developmental disorders, and X-linked causes have been hypothesised to underlie the higher developmental disorder rates in males. Here, we evaluate the burden of X-linked coding variation in 11,044 developmental disorder patients, and find a similar rate of X-linked causes in males and females (6.0% and 6.9%, respectively), indicating that such variants do not account for the 1.4-fold male bias. We develop an improved strategy to detect X-linked developmental disorders and identify 23 significant genes, all of which were previously known, consistent with our inference that the vast majority of the X-linked burden is in known developmental disorder-associated genes. Importantly, we estimate that, in male probands, only 13% of inherited rare missense variants in known developmental disorder-associated genes are likely to be pathogenic. Our results demonstrate that statistical analysis of large datasets can refine our understanding of modes of inheritance for individual X-linked disorders.
Collapse
Affiliation(s)
- Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| | | | | | - Joanna Kaplanis
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nadia Akawi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Alejandro Sifrim
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Human Genetics, University of Leuven, Leuven, Belgium
| | | | - Ana Lisa Taylor Tavares
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Genomics England, Queen Mary University of London, London, EC1M 6BQ, UK
| | | | - Mari E K Niemi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Institute for Molecular Medicine Finland, University of Helsinki, Tukholmankatu 8, Helsinki, FI-00014, Finland
| | - Giuseppe Gallone
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Max Planck Institute for Molecular Genetics, Ihnestraße 63, 14195, Berlin, Germany
| | - Jeremy McRae
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Illumina Inc., 5200 Illumina Way, San Diego, CA, 92122, USA
| | - Caroline F Wright
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, EX2 5DW, UK
| | - David R FitzPatrick
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Helen V Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | |
Collapse
|
1195
|
Briuglia S, Calabrò M, Capra AP, Briguori S, La Rosa MA, Crisafulli C. Molecular Pathways within Autism Spectrum Disorder Endophenotypes. J Mol Neurosci 2021; 71:1357-1367. [PMID: 33492615 DOI: 10.1007/s12031-020-01782-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Abstract
Autism spectrum disorder (ASD) is a condition that includes a number of neurodevelopmental mental disorders. Recent genetic/genomic investigations have reported an increased prevalence of copy number variations (CNVs) in individuals with autism. Despite the extensive evidence of a genetic component, the genes involved are not known and the background is heterogeneous among subjects. As such, it is highly likely that multiple events (molecular cascades) are implicated in the development of autism. The aim of this work was to shed some light on the biological background behind this condition. We hypothesized that the heterogeneous alterations found within different individuals may converge into one or more specific biological functions (pathways) linked to the heterogeneous phenotypes commonly observed in subjects with ASD. We analyzed a sample of 107 individuals for CNV alterations and checked the genes located within the altered loci (1366). Then, we characterized the subjects for distinct phenotypes. After creating subsamples based on symptoms, the CNVs related to each specific symptom were used to create distinct networks associated with each phenotype (18 in total in the sample under analysis). These networks were independently clustered and enriched to identify potential common pathways involved in autism and variably combined with the clinical phenotype. The first 10 pathways of the analysis are discussed.
Collapse
Affiliation(s)
- Silvana Briuglia
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Torre Biologica Via C. Valeria-Gazzi, Messina, 98125, Italy
| | - Marco Calabrò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Torre Biologica Via C. Valeria-Gazzi, Messina, 98125, Italy
| | - Anna Paola Capra
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Torre Biologica Via C. Valeria-Gazzi, Messina, 98125, Italy
| | - Sara Briguori
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Torre Biologica Via C. Valeria-Gazzi, Messina, 98125, Italy
| | - Maria Angela La Rosa
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Torre Biologica Via C. Valeria-Gazzi, Messina, 98125, Italy
| | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Torre Biologica Via C. Valeria-Gazzi, Messina, 98125, Italy.
| |
Collapse
|
1196
|
Willsey HR, Exner CRT, Xu Y, Everitt A, Sun N, Wang B, Dea J, Schmunk G, Zaltsman Y, Teerikorpi N, Kim A, Anderson AS, Shin D, Seyler M, Nowakowski TJ, Harland RM, Willsey AJ, State MW. Parallel in vivo analysis of large-effect autism genes implicates cortical neurogenesis and estrogen in risk and resilience. Neuron 2021; 109:788-804.e8. [PMID: 33497602 DOI: 10.1016/j.neuron.2021.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/02/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022]
Abstract
Gene Ontology analyses of autism spectrum disorders (ASD) risk genes have repeatedly highlighted synaptic function and transcriptional regulation as key points of convergence. However, these analyses rely on incomplete knowledge of gene function across brain development. Here we leverage Xenopus tropicalis to study in vivo ten genes with the strongest statistical evidence for association with ASD. All genes are expressed in developing telencephalon at time points mapping to human mid-prenatal development, and mutations lead to an increase in the ratio of neural progenitor cells to maturing neurons, supporting previous in silico systems biological findings implicating cortical neurons in ASD vulnerability, but expanding the range of convergent functions to include neurogenesis. Systematic chemical screening identifies that estrogen, via Sonic hedgehog signaling, rescues this convergent phenotype in Xenopus and human models of brain development, suggesting a resilience factor that may mitigate a range of ASD genetic risks.
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cameron R T Exner
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yuxiao Xu
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Amanda Everitt
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nawei Sun
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Galina Schmunk
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yefim Zaltsman
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nia Teerikorpi
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Albert Kim
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Aoife S Anderson
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David Shin
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Meghan Seyler
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J Nowakowski
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Richard M Harland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - A Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
1197
|
Tan L, Ma W, Wu H, Zheng Y, Xing D, Chen R, Li X, Daley N, Deisseroth K, Xie XS. Changes in genome architecture and transcriptional dynamics progress independently of sensory experience during post-natal brain development. Cell 2021; 184:741-758.e17. [PMID: 33484631 DOI: 10.1016/j.cell.2020.12.032] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/14/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
Both transcription and three-dimensional (3D) architecture of the mammalian genome play critical roles in neurodevelopment and its disorders. However, 3D genome structures of single brain cells have not been solved; little is known about the dynamics of single-cell transcriptome and 3D genome after birth. Here, we generated a transcriptome (3,517 cells) and 3D genome (3,646 cells) atlas of the developing mouse cortex and hippocampus by using our high-resolution multiple annealing and looping-based amplification cycles for digital transcriptomics (MALBAC-DT) and diploid chromatin conformation capture (Dip-C) methods and developing multi-omic analysis pipelines. In adults, 3D genome "structure types" delineate all major cell types, with high correlation between chromatin A/B compartments and gene expression. During development, both transcriptome and 3D genome are extensively transformed in the first post-natal month. In neurons, 3D genome is rewired across scales, correlated with gene expression modules, and independent of sensory experience. Finally, we examine allele-specific structure of imprinted genes, revealing local and chromosome (chr)-wide differences. These findings uncover an unknown dimension of neurodevelopment.
Collapse
Affiliation(s)
- Longzhi Tan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Wenping Ma
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Honggui Wu
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Yinghui Zheng
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
| | - Dong Xing
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
| | - Ritchie Chen
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Xiang Li
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Nicholas Daley
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Belmont Hill School, Belmont, MA 02478, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - X Sunney Xie
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China.
| |
Collapse
|
1198
|
Warren WC, Harris RA, Haukness M, Fiddes IT, Murali SC, Fernandes J, Dishuck PC, Storer JM, Raveendran M, Hillier LW, Porubsky D, Mao Y, Gordon D, Vollger MR, Lewis AP, Munson KM, DeVogelaere E, Armstrong J, Diekhans M, Walker JA, Tomlinson C, Graves-Lindsay TA, Kremitzki M, Salama SR, Audano PA, Escalona M, Maurer NW, Antonacci F, Mercuri L, Maggiolini FAM, Catacchio CR, Underwood JG, O'Connor DH, Sanders AD, Korbel JO, Ferguson B, Kubisch HM, Picker L, Kalin NH, Rosene D, Levine J, Abbott DH, Gray SB, Sanchez MM, Kovacs-Balint ZA, Kemnitz JW, Thomasy SM, Roberts JA, Kinnally EL, Capitanio JP, Skene JHP, Platt M, Cole SA, Green RE, Ventura M, Wiseman RW, Paten B, Batzer MA, Rogers J, Eichler EE. Sequence diversity analyses of an improved rhesus macaque genome enhance its biomedical utility. Science 2021; 370:370/6523/eabc6617. [PMID: 33335035 DOI: 10.1126/science.abc6617] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
The rhesus macaque (Macaca mulatta) is the most widely studied nonhuman primate (NHP) in biomedical research. We present an updated reference genome assembly (Mmul_10, contig N50 = 46 Mbp) that increases the sequence contiguity 120-fold and annotate it using 6.5 million full-length transcripts, thus improving our understanding of gene content, isoform diversity, and repeat organization. With the improved assembly of segmental duplications, we discovered new lineage-specific genes and expanded gene families that are potentially informative in studies of evolution and disease susceptibility. Whole-genome sequencing (WGS) data from 853 rhesus macaques identified 85.7 million single-nucleotide variants (SNVs) and 10.5 million indel variants, including potentially damaging variants in genes associated with human autism and developmental delay, providing a framework for developing noninvasive NHP models of human disease.
Collapse
Affiliation(s)
- Wesley C Warren
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA. .,Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65211, USA.,Institute of Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - R Alan Harris
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marina Haukness
- Computational Genomics Laboratory, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Shwetha C Murali
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Jason Fernandes
- Department of Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Philip C Dishuck
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jessica M Storer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.,Institue for Systems Biology, Seattle, WA 98109, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - LaDeana W Hillier
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Yafei Mao
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - David Gordon
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Mitchell R Vollger
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Alexandra P Lewis
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth DeVogelaere
- Computational Genomics Laboratory, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Joel Armstrong
- Computational Genomics Laboratory, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mark Diekhans
- Computational Genomics Laboratory, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jerilyn A Walker
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University, St. Louis, MO 63108, USA
| | | | - Milinn Kremitzki
- McDonnell Genome Institute, Washington University, St. Louis, MO 63108, USA
| | - Sofie R Salama
- Department of Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Peter A Audano
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Nicholas W Maurer
- Department of Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Ludovica Mercuri
- Department of Biology, University of Bari 'Aldo Moro', 70125 Bari, Italy
| | | | | | | | - David H O'Connor
- Department of Pathology and Laboratory Medicine, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Ashley D Sanders
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Betsy Ferguson
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | - Louis Picker
- Oregon National Primate Research Center and Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Beaverton, OR 97006, USA
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | - Douglas Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jon Levine
- Department of Neuroscience, University of Wisconsin, Madison, WI 53175, USA.,Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53171, USA
| | - David H Abbott
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53171, USA.,Department of Obstetrics and Gynecology, Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | - Stanton B Gray
- The University of Texas MD Anderson Cancer Center, Michale E. Keeling Center for Comparative Medicine and Research, Bastrop, TX 78602, USA
| | - Mar M Sanchez
- Yerkes National Primate Research Center, Atlanta, GA 30329, USA.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA
| | | | - Joseph W Kemnitz
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53171, USA.,Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53706, USA
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA.,Department of Ophthalmology and Vision Science, School of Medicine, University of California-Davis, Davis, CA 95817, USA
| | | | - Erin L Kinnally
- California National Primate Research Center, Davis, CA 95616, USA.,Department of Psychology, University of California, Davis, CA 95616, USA
| | - John P Capitanio
- California National Primate Research Center, Davis, CA 95616, USA.,Department of Psychology, University of California, Davis, CA 95616, USA
| | - J H Pate Skene
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael Platt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute and Southwest National Primate Research Center, San Antonio, TX 78227, USA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mario Ventura
- Department of Biology, University of Bari 'Aldo Moro', 70125 Bari, Italy
| | - Roger W Wiseman
- Department of Pathology and Laboratory Medicine, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Benedict Paten
- Computational Genomics Laboratory, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. .,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
1199
|
Qi H, Zhang H, Zhao Y, Chen C, Long JJ, Chung WK, Guan Y, Shen Y. MVP predicts the pathogenicity of missense variants by deep learning. Nat Commun 2021; 12:510. [PMID: 33479230 PMCID: PMC7820281 DOI: 10.1038/s41467-020-20847-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Accurate pathogenicity prediction of missense variants is critically important in genetic studies and clinical diagnosis. Previously published prediction methods have facilitated the interpretation of missense variants but have limited performance. Here, we describe MVP (Missense Variant Pathogenicity prediction), a new prediction method that uses deep residual network to leverage large training data sets and many correlated predictors. We train the model separately in genes that are intolerant of loss of function variants and the ones that are tolerant in order to take account of potentially different genetic effect size and mode of action. We compile cancer mutation hotspots and de novo variants from developmental disorders for benchmarking. Overall, MVP achieves better performance in prioritizing pathogenic missense variants than previous methods, especially in genes tolerant of loss of function variants. Finally, using MVP, we estimate that de novo coding variants contribute to 7.8% of isolated congenital heart disease, nearly doubling previous estimates.
Collapse
Affiliation(s)
- Hongjian Qi
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Applied Mathematics and Applied Physics, Columbia University, New York, NY, USA
| | - Haicang Zhang
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Yige Zhao
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Chen Chen
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - John J Long
- Department of Applied Mathematics and Applied Physics, Columbia University, New York, NY, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | - Yongtao Guan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, NY, USA.
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.
- JP Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA.
| |
Collapse
|
1200
|
Cameli C, Viggiano M, Rochat MJ, Maresca A, Caporali L, Fiorini C, Palombo F, Magini P, Duardo RC, Ceroni F, Scaduto MC, Posar A, Seri M, Carelli V, Visconti P, Bacchelli E, Maestrini E. An increased burden of rare exonic variants in NRXN1 microdeletion carriers is likely to enhance the penetrance for autism spectrum disorder. J Cell Mol Med 2021; 25:2459-2470. [PMID: 33476483 PMCID: PMC7933976 DOI: 10.1111/jcmm.16161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by a complex polygenic background, but with the unique feature of a subset of cases (~15%‐30%) presenting a rare large‐effect variant. However, clinical interpretation in these cases is often complicated by incomplete penetrance, variable expressivity and different neurodevelopmental trajectories. NRXN1 intragenic deletions represent the prototype of such ASD‐associated susceptibility variants. From chromosomal microarrays analysis of 104 ASD individuals, we identified an inherited NRXN1 deletion in a trio family. We carried out whole‐exome sequencing and deep sequencing of mitochondrial DNA (mtDNA) in this family, to evaluate the burden of rare variants which may contribute to the phenotypic outcome in NRXN1 deletion carriers. We identified an increased burden of exonic rare variants in the ASD child compared to the unaffected NRXN1 deletion‐transmitting mother, which remains significant if we restrict the analysis to potentially deleterious rare variants only (P = 6.07 × 10−5). We also detected significant interaction enrichment among genes with damaging variants in the proband, suggesting that additional rare variants in interacting genes collectively contribute to cross the liability threshold for ASD. Finally, the proband's mtDNA presented five low‐level heteroplasmic mtDNA variants that were absent in the mother, and two maternally inherited variants with increased heteroplasmic load. This study underlines the importance of a comprehensive assessment of the genomic background in carriers of large‐effect variants, as penetrance modulation by additional interacting rare variants to might represent a widespread mechanism in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cinzia Cameli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marta Viggiano
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Magali J Rochat
- UOSI Disturbi dello Spettro Autistico, Ospedale Bellaria di Bologna, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italia
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italia
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italia.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Flavia Palombo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italia
| | - Pamela Magini
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, Policlinico St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Renée C Duardo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Fabiola Ceroni
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Maria C Scaduto
- UOSI Disturbi dello Spettro Autistico, Ospedale Bellaria di Bologna, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy
| | - Annio Posar
- UOSI Disturbi dello Spettro Autistico, Ospedale Bellaria di Bologna, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Marco Seri
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, Policlinico St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italia.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Paola Visconti
- UOSI Disturbi dello Spettro Autistico, Ospedale Bellaria di Bologna, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy
| | - Elena Bacchelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elena Maestrini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|