1151
|
Umer M, Herceg Z. Deciphering the epigenetic code: an overview of DNA methylation analysis methods. Antioxid Redox Signal 2013; 18:1972-86. [PMID: 23121567 PMCID: PMC3624772 DOI: 10.1089/ars.2012.4923] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Methylation of cytosine in DNA is linked with gene regulation, and this has profound implications in development, normal biology, and disease conditions in many eukaryotic organisms. A wide range of methods and approaches exist for its identification, quantification, and mapping within the genome. While the earliest approaches were nonspecific and were at best useful for quantification of total methylated cytosines in the chunk of DNA, this field has seen considerable progress and development over the past decades. RECENT ADVANCES Methods for DNA methylation analysis differ in their coverage and sensitivity, and the method of choice depends on the intended application and desired level of information. Potential results include global methyl cytosine content, degree of methylation at specific loci, or genome-wide methylation maps. Introduction of more advanced approaches to DNA methylation analysis, such as microarray platforms and massively parallel sequencing, has brought us closer to unveiling the whole methylome. CRITICAL ISSUES Sensitive quantification of DNA methylation from degraded and minute quantities of DNA and high-throughput DNA methylation mapping of single cells still remain a challenge. FUTURE DIRECTIONS Developments in DNA sequencing technologies as well as the methods for identification and mapping of 5-hydroxymethylcytosine are expected to augment our current understanding of epigenomics. Here we present an overview of methodologies available for DNA methylation analysis with special focus on recent developments in genome-wide and high-throughput methods. While the application focus relates to cancer research, the methods are equally relevant to broader issues of epigenetics and redox science in this special forum.
Collapse
Affiliation(s)
- Muhammad Umer
- Epigenetics Group, International Agency for Research on Cancer IARC, Lyon 69008, France
| | | |
Collapse
|
1152
|
Qu Y, Dang S, Hou P. Gene methylation in gastric cancer. Clin Chim Acta 2013; 424:53-65. [PMID: 23669186 DOI: 10.1016/j.cca.2013.05.002] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 02/07/2023]
Abstract
Gastric cancer is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide. Over 70% of new cases and deaths occur in developing countries. In the early years of the molecular biology revolution, cancer research mainly focuses on genetic alterations, including gastric cancer. Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer, including DNA methylation, histone modifications, nucleosome positioning, noncoding RNAs, and microRNAs. Aberrant DNA methylation in the promoter regions of gene, which leads to inactivation of tumor suppressor and other cancer-related genes in cancer cells, is the most well-defined epigenetic hallmark in gastric cancer. The advantages of gene methylation as a target for detection and diagnosis of cancer in biopsy specimens and non-invasive body fluids such as serum and gastric washes have led to many studies of application in gastric cancer. This review focuses on the most common and important phenomenon of epigenetics, DNA methylation, in gastric cancer and illustrates the impact epigenetics has had on this field.
Collapse
Key Words
- 5-hmC
- 5-hydroxymethylcytosine
- 5-mC
- 5-methylcytosine
- ADAM metallopeptidase domain 23
- ADAM metallopeptidase with thrombospondin type 1 motif, 9
- ADAM23
- ADAMTS9
- AML
- APC
- ARID1A
- AT motif-binding factor 1
- AT rich interactive domain 1A (SWI-like)
- ATBF1
- Acute myelocytic leukemia
- Adenomatosis polyposis coli
- B-cell translocation gene 4
- BCL2/adenovirus E1B 19kDa interacting protein 3
- BMP-2
- BNIP3
- BS
- BTG4
- Biomarkers
- Bisulfite sequencing
- Bone morphogenetic protein 2
- C-MET
- CACNA1G
- CACNA2D3
- CD44
- CD44 molecule (Indian blood group)
- CDH1
- CDK4
- CDK6
- CDKN1C
- CDKN2A
- CDX2
- CGI
- CHD5
- CHFR
- CKLF-like MARVEL transmembrane domain containing 3
- CMTM3
- CNS
- CRBP1
- Cadherin 1 or E-cadherin
- Calcium channel, voltage-dependent, T type, alpha 1G subunit
- Calcium channel, voltage-dependent, alpha 2/delta subunit 3
- Caudal type homeobox 2
- Central nervous system
- Checkpoint with forkhead and ring finger domains, E3 ubiquitin protein ligase
- Chromodomain helicase DNA binding protein 5
- Chromosome 2 open reading frame 40
- Clinical outcomes
- CpG islands
- Cyclin-dependent kinase 4
- Cyclin-dependent kinase 6
- Cyclin-dependent kinase inhibitor 1A
- Cyclin-dependent kinase inhibitor 1B
- Cyclin-dependent kinase inhibitor 1C
- Cyclin-dependent kinase inhibitor 2A
- Cyclin-dependent kinase inhibitor 2B
- DAB2 interacting protein
- DACT1
- DAPK
- DNA
- DNA methylatransferases
- DNA mismatch repair
- DNMT
- Dapper, antagonist of beta-catenin, homolog 1 (Xenopus laevis)
- Death-associated protein kinase
- Deoxyribose Nucleic Acid
- Dickkopf 3 homolog (Xenopus laevis)
- Dkk-3
- EBV
- ECRG4
- EDNRB
- EGCG
- ERBB4
- Endothelin receptor type B
- Epigallocatechin gallate
- Epigenetics
- Epstein–Barr Virus
- FDA
- FLNc
- Filamin C
- Food and Drug Administration
- GC
- GDNF
- GI endoscopy
- GPX3
- GRIK2
- GSTP1
- Gastric cancer
- Gene methylation
- Glutamate receptor, ionotropic, kainate 2
- Glutathione S-transferase pi 1
- Glutathione peroxidase 3 (plasma)
- H. pylori
- HACE1
- HAI-2/SPINT2
- HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1
- HGFA
- HLTF
- HOXA1
- HOXA10
- HRAS-like suppressor
- HRASLS
- Helicase-like transcription factor
- Helicobacter pylori
- Homeobox A1
- Homeobox A10
- Homeobox D10
- HoxD10
- IGF-1
- IGF-1R
- IGFBP3
- IL-1β
- ITGA4
- Insulin-like growth factor 1 (somatomedin C)
- Insulin-like growth factor I receptor
- Insulin-like growth factor binding protein 3
- Integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor)
- Interleukin 1, beta
- KL
- KRAS
- Klotho
- LL3
- LMP2A
- LOX
- LRP1B
- Low density lipoprotein receptor-related protein 1B
- Lysyl oxidase
- MAPK
- MBPs
- MDS
- MGMT
- MINT25
- MLF1
- MLL
- MMR
- MSI
- MSP
- Matrix metallopeptidase 24 (membrane-inserted)
- Met proto-oncogene (hepatocyte growth factor receptor)
- Methyl-CpG binding proteins
- Methylation-specific PCR
- Microsatellite instability
- Myeloid leukemia factor 1
- Myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila)
- Myeloid/lymphoid or mixed-lineage leukemia 3
- NDRG family member 2
- NDRG2
- NPR1
- NR3C1
- Natriuretic peptide receptor A/guanylate cyclase A
- Notch 1
- Nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor)
- O-6-methylguanine-DNA methyltransferase
- PCDH10
- PCDH17
- PI3K/Akt
- PIK3CA
- PR domain containing 5
- PRDM5
- PTCH1
- Patched 1
- Phosphatidylethanolamine binding protein 1
- Protein tyrosine phosphatase, non-receptor type 6
- Protocadherin 10
- Protocadherin 17
- Q-MSP
- Quantitative methylation-specific PCR
- RAR-related orphan receptor A
- RARRES1
- RARß
- RAS/RAF/MEK/ERK
- RASSF1A
- RASSF2
- RBP1
- RKIP
- RORA
- ROS
- RUNX3
- Ras association (RalGDS/AF-6) domain family member 1
- Ras association (RalGDS/AF-6) domain family member 2
- Rb
- Retinoic acid receptor responder (tazarotene induced) 1
- Retinoic acid receptor, beta
- Retinol binding protein 1, cellular
- Runt-related transcription factor 3
- S-adenosylmethionine
- SAM
- SFRP2
- SFRP5
- SHP1
- SOCS-1
- STAT3
- SYK
- Secreted frizzled-related protein 2
- Secreted frizzled-related protein 5
- Serine peptidase inhibitor, Kunitz type, 2
- Spleen tyrosine kinase
- Suppressor of cytokine signaling 1
- TCF4
- TET
- TFPI2
- TGF-β
- TIMP metallopeptidase inhibitor 3
- TIMP3
- TNM
- TP73
- TSP1
- Thrombospondin 1
- Tissue factor pathway inhibitor 2
- Transcription factor 4
- Tumor Node Metastasis
- Tumor protein p73
- V-erb-a erythroblastic leukemia viral oncogene homolog 4
- ZFP82 zinc finger protein
- ZIC1
- ZNF545
- Zinc finger protein of the cerebellum 1
- gastrointestinal endoscopy
- glial cell derived neurotrophic factor
- hDAB2IP
- hMLH1
- hepatocyte growth factor activator
- latent membrane protein
- mutL homolog 1
- myelodysplastic syndromes
- p15
- p16
- p21
- p27
- p53
- p73
- phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha
- phosphoinositide 3-kinase (PI3K)/Akt
- reactive oxygen species
- retinoblastoma
- signal transducer and activator of transcription-3
- ten-eleven translocation
- transforming growth factor-β
- tumor protein p53
- tumor protein p73
- v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
Collapse
Affiliation(s)
- Yiping Qu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, People's Republic of China
| | | | | |
Collapse
|
1153
|
Stapleton G, Schröder-Bäck P, Townend D. Equity in Public Health: An Epigenetic Perspective. Public Health Genomics 2013; 16:135-44. [DOI: 10.1159/000350703] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 03/12/2013] [Indexed: 11/19/2022] Open
|
1154
|
Sandovici I, Hammerle CM, Ozanne SE, Constância M. Developmental and environmental epigenetic programming of the endocrine pancreas: consequences for type 2 diabetes. Cell Mol Life Sci 2013; 70:1575-95. [PMID: 23463236 PMCID: PMC11113912 DOI: 10.1007/s00018-013-1297-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/26/2022]
Abstract
The development of the endocrine pancreas is controlled by a hierarchical network of transcriptional regulators. It is increasingly evident that this requires a tightly interconnected epigenetic "programme" to drive endocrine cell differentiation and maintain islet function. Epigenetic regulators such as DNA and histone-modifying enzymes are now known to contribute to determination of pancreatic cell lineage, maintenance of cellular differentiation states, and normal functioning of adult pancreatic endocrine cells. Persistent effects of an early suboptimal environment, known to increase risk of type 2 diabetes in later life, can alter the epigenetic control of transcriptional master regulators, such as Hnf4a and Pdx1. Recent genome-wide analyses also suggest that an altered epigenetic landscape is associated with the β cell failure observed in type 2 diabetes and aging. At the cellular level, epigenetic mechanisms may provide a mechanistic link between energy metabolism and stable patterns of gene expression. Key energy metabolites influence the activity of epigenetic regulators, which in turn alter transcription to maintain cellular homeostasis. The challenge is now to understand the detailed molecular mechanisms that underlie these diverse roles of epigenetics, and the extent to which they contribute to the pathogenesis of type 2 diabetes. In-depth understanding of the developmental and environmental epigenetic programming of the endocrine pancreas has the potential to lead to novel therapeutic approaches in diabetes.
Collapse
Affiliation(s)
- Ionel Sandovici
- Department of Obstetrics and Gynaecology, Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 0SW UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG UK
- Cambridge Biomedical Research Centre, National Institute for Health Research, Cambridge, CB2 0QQ UK
| | - Constanze M. Hammerle
- Department of Obstetrics and Gynaecology, Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 0SW UK
| | - Susan E. Ozanne
- Cambridge Biomedical Research Centre, National Institute for Health Research, Cambridge, CB2 0QQ UK
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ UK
| | - Miguel Constância
- Department of Obstetrics and Gynaecology, Metabolic Research Laboratories, University of Cambridge, Cambridge, CB2 0SW UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG UK
- Cambridge Biomedical Research Centre, National Institute for Health Research, Cambridge, CB2 0QQ UK
| |
Collapse
|
1155
|
Ng RLX, Scott NM, Strickland DH, Gorman S, Grimbaldeston MA, Norval M, Waithman J, Hart PH. Altered immunity and dendritic cell activity in the periphery of mice after long-term engraftment with bone marrow from ultraviolet-irradiated mice. THE JOURNAL OF IMMUNOLOGY 2013; 190:5471-84. [PMID: 23636055 DOI: 10.4049/jimmunol.1202786] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alterations to dendritic cell (DC) progenitors in the bone marrow (BM) may contribute to long-lasting systemic immunosuppression (>28 d) following exposure of the skin of mice to erythemal UV radiation (UVR). DCs differentiated in vitro from the BM of mice 3 d after UVR (8 kJ/m(2)) have a reduced capacity to initiate immunity (both skin and airways) when adoptively transferred into naive mice. Studies in IL-10(-/-) mice suggested that UV-induced IL-10 was not significantly involved. To investigate the immune capabilities of peripheral tissue DCs generated in vivo from the BM of UV-irradiated mice, chimeric mice were established. Sixteen weeks after reconstitution, contact hypersensitivity responses were significantly reduced in mice reconstituted with BM from UV-irradiated mice (UV-chimeric). When the dorsal skin of UV-chimeric mice was challenged with innate inflammatory agents, the hypertrophy induced in the draining lymph nodes was minimal and significantly less than that measured in control-chimeric mice challenged with the same inflammatory agent. When DCs were differentiated from the BM of UV-chimeric mice using FLT3 ligand or GM-CSF + IL-4, the cells maintained a reduced priming ability. The diminished responses in UV-chimeric mice were not due to different numerical or proportional reconstitution of BM or the hematopoietic cells in blood, lymph nodes, and skin. Erythemal UVR may imprint a long-lasting epigenetic effect on DC progenitors in the BM and alter the function of their terminally differentiated progeny.
Collapse
Affiliation(s)
- Royce L X Ng
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, Perth 6008, Western Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
1156
|
Kirchner H, Osler ME, Krook A, Zierath JR. Epigenetic flexibility in metabolic regulation: disease cause and prevention? Trends Cell Biol 2013; 23:203-9. [DOI: 10.1016/j.tcb.2012.11.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 12/21/2022]
|
1157
|
Hill SY, Terwilliger R, McDermott M. White matter microstructure, alcohol exposure, and familial risk for alcohol dependence. Psychiatry Res 2013; 212:43-53. [PMID: 23473988 PMCID: PMC3714312 DOI: 10.1016/j.pscychresns.2012.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 11/13/2012] [Accepted: 11/14/2012] [Indexed: 10/27/2022]
Abstract
Offspring from families with alcohol dependence (AD) have been shown to exhibit brain morphological alterations that appear to be related to their familial/genetic risk for AD. Greater susceptibility for developing AD may be related to structural underpinnings of behavioral traits that predispose to AD. We examined white matter (WM) integrity in 81 individuals with either a high density of AD in their families (N=44) or without a family history for either alcohol or drug dependence (N=37). Magnetic resonance images were acquired on a Siemens 3 T scanner with fractional anistropy (FA) and the apparent diffusion coefficient (ADC), along with radial diffusivity (RD) and longitudinal (axial) diffusivity calculated for major white matter tracts in both hemispheres. Extensive personal histories of alcohol and drug use were available from longitudinal collection of data allowing for reliable estimates of alcohol and drug exposure. We found that the interaction of personal exposure to alcohol and familial risk for AD predicts reduction in WM integrity for the inferior longitudinal fasciculus (ILF) and the superior longitudinal fasciculus (SLF) in the left hemisphere and the forceps major tract. Only one tract showed a significant difference for exposure alone, the anterior thalamic radiation.
Collapse
Affiliation(s)
- Shirley Y Hill
- University of Pittsburgh Medical Center, Department of Psychiatry, 3811 O'Hara St., Pittsburgh, PA 15213-2593, United States.
| | | | | |
Collapse
|
1158
|
Telese F, Gamliel A, Skowronska-Krawczyk D, Garcia-Bassets I, Rosenfeld MG. "Seq-ing" insights into the epigenetics of neuronal gene regulation. Neuron 2013; 77:606-23. [PMID: 23439116 PMCID: PMC3736682 DOI: 10.1016/j.neuron.2013.01.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2013] [Indexed: 01/08/2023]
Abstract
The epigenetic control of neuronal gene expression patterns has emerged as an underlying regulatory mechanism for neuronal function, identity, and plasticity, in which short- to long-lasting adaptation is required to dynamically respond and process external stimuli. To achieve a comprehensive understanding of the physiology and pathology of the brain, it becomes essential to understand the mechanisms that regulate the epigenome and transcriptome in neurons. Here, we review recent advances in the study of regulated neuronal gene expression, which are dramatically expanding as a result of the development of new and powerful contemporary methodologies, based on next-generation sequencing. This flood of new information has already transformed our understanding of many biological processes and is now driving discoveries elucidating the molecular mechanisms of brain function in cognition, behavior, and disease and may also inform the study of neuronal identity, diversity, and neuronal reprogramming.
Collapse
Affiliation(s)
- Francesca Telese
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
1159
|
Abstract
Understanding the potential health risks posed by environmental chemicals is a significant challenge elevated by the large number of diverse chemicals with generally uncharacterized exposures, mechanisms, and toxicities. The ToxCast computational toxicology research program was launched by EPA in 2007 and is part of the federal Tox21 consortium to develop a cost-effective approach for efficiently prioritizing the toxicity testing of thousands of chemicals and the application of this information to assessing human toxicology. ToxCast addresses this problem through an integrated workflow using high-throughput screening (HTS) of chemical libraries across more than 650 in vitro assays including biochemical assays, human cells and cell lines, and alternative models such as mouse embryonic stem cells and zebrafish embryo development. The initial phase of ToxCast profiled a library of 309 environmental chemicals, mostly pesticidal actives having rich in vivo data from guideline studies that include chronic/cancer bioassays in mice and rats, multigenerational reproductive studies in rats, and prenatal developmental toxicity endpoints in rats and rabbits. The first phase of ToxCast was used to build models that aim to determine how well in vivo animal effects can be predicted solely from the in vitro data. Phase I is now complete and both the in vitro data (ToxCast) and anchoring in vivo database (ToxRefDB) have been made available to the public (http://actor.epa.gov/). As Phase II of ToxCast is now underway, the purpose of this chapter is to review progress to date with ToxCast predictive modeling, using specific examples on developmental and reproductive effects in rats and rabbits with lessons learned during Phase I.
Collapse
|
1160
|
Suter L, Widmer A. Environmental heat and salt stress induce transgenerational phenotypic changes in Arabidopsis thaliana. PLoS One 2013; 8:e60364. [PMID: 23585834 PMCID: PMC3621951 DOI: 10.1371/journal.pone.0060364] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/25/2013] [Indexed: 01/29/2023] Open
Abstract
Plants that can adapt their phenotype may be more likely to survive changing environmental conditions. Heritable epigenetic variation could provide a way to rapidly adapt to such changes. Here we tested whether environmental stress induces heritable, potentially adaptive phenotypic changes independent of genetic variation over few generations in Arabidopsis thaliana. We grew two accessions (Col-0, Sha-0) of A. thaliana for three generations under salt, heat and control conditions and tested for induced heritable phenotypic changes in the fourth generation (G4) and in reciprocal F1 hybrids generated in generation three. Using these crosses we further tested whether phenotypic changes were maternally or paternally transmitted. In generation five (G5), we assessed whether phenotypic effects persisted over two generations in the absence of stress. We found that exposure to heat stress in previous generations accelerated flowering under G4 control conditions in Sha-0, but heritable effects disappeared in G5 after two generations without stress exposure. Previous exposure to salt stress increased salt tolerance in one of two reciprocal F1 hybrids. Transgenerational effects were maternally and paternally inherited. Lacking genetic variability, maternal and paternal inheritance and reversibility of transgenerational effects together indicate that stress can induce heritable, potentially adaptive phenotypic changes, probably through epigenetic mechanisms. These effects were strongly dependent on plant genotype and may not be a general response to stress in A. thaliana.
Collapse
Affiliation(s)
- Léonie Suter
- ETH Zurich, Institute of Integrative Biology, Zurich, Switzerland
| | - Alex Widmer
- ETH Zurich, Institute of Integrative Biology, Zurich, Switzerland
| |
Collapse
|
1161
|
Granados-Cifuentes C, Bellantuono AJ, Ridgway T, Hoegh-Guldberg O, Rodriguez-Lanetty M. High natural gene expression variation in the reef-building coral Acropora millepora: potential for acclimative and adaptive plasticity. BMC Genomics 2013; 14:228. [PMID: 23565725 PMCID: PMC3630057 DOI: 10.1186/1471-2164-14-228] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 02/27/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Ecosystems worldwide are suffering the consequences of anthropogenic impact. The diverse ecosystem of coral reefs, for example, are globally threatened by increases in sea surface temperatures due to global warming. Studies to date have focused on determining genetic diversity, the sequence variability of genes in a species, as a proxy to estimate and predict the potential adaptive response of coral populations to environmental changes linked to climate changes. However, the examination of natural gene expression variation has received less attention. This variation has been implicated as an important factor in evolutionary processes, upon which natural selection can act. RESULTS We acclimatized coral nubbins from six colonies of the reef-building coral Acropora millepora to a common garden in Heron Island (Great Barrier Reef, GBR) for a period of four weeks to remove any site-specific environmental effects on the physiology of the coral nubbins. By using a cDNA microarray platform, we detected a high level of gene expression variation, with 17% (488) of the unigenes differentially expressed across coral nubbins of the six colonies (jsFDR-corrected, p < 0.01). Among the main categories of biological processes found differentially expressed were transport, translation, response to stimulus, oxidation-reduction processes, and apoptosis. We found that the transcriptional profiles did not correspond to the genotype of the colony characterized using either an intron of the carbonic anhydrase gene or microsatellite loci markers. CONCLUSION Our results provide evidence of the high inter-colony variation in A. millepora at the transcriptomic level grown under a common garden and without a correspondence with genotypic identity. This finding brings to our attention the importance of taking into account natural variation between reef corals when assessing experimental gene expression differences. The high transcriptional variation detected in this study is interpreted and discussed within the context of adaptive potential and phenotypic plasticity of reef corals. Whether this variation will allow coral reefs to survive to current challenges remains unknown.
Collapse
Affiliation(s)
- Camila Granados-Cifuentes
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Anthony J Bellantuono
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Tyrone Ridgway
- Oceanica Consulting Pty Ltd, PO Box 462, Wembley, WA, 6913, Australia
- The Oceans Institute, University of Western Australia, Crawley, WA, 6009, Australia
| | - Ove Hoegh-Guldberg
- ARC Centre of Excellence for Coral Reef Studies and Coral Genomics Group, School of Pharmacy and Molecular Sciences, James Cook University, Townsville, QLD, Australia
- Global Change Institute, The University of Queensland, St Lucia, QLD, Australia
| | | |
Collapse
|
1162
|
El Hajj N, Pliushch G, Schneider E, Dittrich M, Müller T, Korenkov M, Aretz M, Zechner U, Lehnen H, Haaf T. Metabolic programming of MEST DNA methylation by intrauterine exposure to gestational diabetes mellitus. Diabetes 2013; 62:1320-8. [PMID: 23209187 PMCID: PMC3609586 DOI: 10.2337/db12-0289] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epigenetic processes are primary candidates when searching for mechanisms that can stably modulate gene expression and metabolic pathways according to early life conditions. To test the effects of gestational diabetes mellitus (GDM) on the epigenome of the next generation, cord blood and placenta tissue were obtained from 88 newborns of mothers with dietetically treated GDM, 98 with insulin-dependent GDM, and 65 without GDM. Bisulfite pyrosequencing was used to compare the methylation levels of seven imprinted genes involved in prenatal and postnatal growth, four genes involved in energy metabolism, one anti-inflammatory gene, one tumor suppressor gene, one pluripotency gene, and two repetitive DNA families. The maternally imprinted MEST gene, the nonimprinted glucocorticoid receptor NR3C1 gene, and interspersed ALU repeats showed significantly decreased methylation levels (4-7 percentage points for MEST, 1-2 for NR3C1, and one for ALUs) in both GDM groups, compared with controls, in both analyzed tissues. Significantly decreased blood MEST methylation (3 percentage points) also was observed in adults with morbid obesity compared with normal-weight controls. Our results support the idea that intrauterine exposure to GDM has long-lasting effects on the epigenome of the offspring. Specifically, epigenetic malprogramming of MEST may contribute to obesity predisposition throughout life.
Collapse
Affiliation(s)
- Nady El Hajj
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Galyna Pliushch
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Eberhard Schneider
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, Julius Maximilians University, Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, Julius Maximilians University, Würzburg, Germany
| | | | - Melanie Aretz
- Department of Gynecology and Obstetrics, Municipal Clinics, Moenchengladbach, Germany
| | - Ulrich Zechner
- Institute of Human Genetics, University Medical Center, Mainz, Germany
| | - Harald Lehnen
- Department of Gynecology and Obstetrics, Municipal Clinics, Moenchengladbach, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
- Corresponding author: Thomas Haaf,
| |
Collapse
|
1163
|
Richardson DB, Volkow ND, Kwan MP, Kaplan RM, Goodchild MF, Croyle RT. Medicine. Spatial turn in health research. Science 2013; 339:1390-2. [PMID: 23520099 DOI: 10.1126/science.1232257] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Douglas B Richardson
- Association of American Geographers, 1710 16th Street, NW, Washington, DC 20009, USA.
| | | | | | | | | | | |
Collapse
|
1164
|
Yeo M, Berglund K, Hanna M, Guo JU, Kittur J, Torres MD, Abramowitz J, Busciglio J, Gao Y, Birnbaumer L, Liedtke WB. Bisphenol A delays the perinatal chloride shift in cortical neurons by epigenetic effects on the Kcc2 promoter. Proc Natl Acad Sci U S A 2013; 110:4315-20. [PMID: 23440186 PMCID: PMC3600491 DOI: 10.1073/pnas.1300959110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bisphenol A (BPA) is a ubiquitous compound that is emerging as a possible toxicant during embryonic development. BPA has been shown to epigenetically affect the developing nervous system, but the molecular mechanisms are not clear. Here we demonstrate that BPA exposure in culture led to delay in the perinatal chloride shift caused by significant decrease in potassium chloride cotransporter 2 (Kcc2) mRNA expression in developing rat, mouse, and human cortical neurons. Neuronal chloride increased correspondingly. Treatment with epigenetic compounds decitabine and trichostatin A rescued the BPA effects as did knockdown of histone deacetylase 1 and combined knockdown histone deacetylase 1 and 2. Furthermore, BPA evoked increase in tangential interneuron migration and increased chloride in migrating neurons. Interestingly, BPA exerted its effect in a sexually dimorphic manner, with a more accentuated effect in females than males. By chromatin immunoprecipitation, we found a significant increase in binding of methyl-CpG binding protein 2 to the "cytosine-phosphate-guanine shores" of the Kcc2 promoter, and decrease in binding of acetylated histone H3K9 surrounding the transcriptional start site. Methyl-CpG binding protein 2-expressing neurons were more abundant resulting from BPA exposure. The sexually dimorphic effect of BPA on Kcc2 expression was also demonstrated in cortical neurons cultured from the offspring of BPA-fed mouse dams. In these neurons and in cortical slices, decitabine was found to rescue the effect of BPA on Kcc2 expression. Overall, our results indicate that BPA can disrupt Kcc2 gene expression through epigenetic mechanisms. Beyond increase in basic understanding, our findings have relevance for identifying unique neurodevelopmental toxicity mechanisms of BPA, which could possibly play a role in pathogenesis of human neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | - Michael Hanna
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92617
| | - Junjie U. Guo
- Lieber Institute for Brain Development and Neuroregeneration and Stem Cell Program Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205
| | - Jaya Kittur
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709; and
| | - Maria D. Torres
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92617
| | - Joel Abramowitz
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709; and
| | - Jorge Busciglio
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92617
| | - Yuan Gao
- Lieber Institute for Brain Development and Neuroregeneration and Stem Cell Program Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709; and
| | - Wolfgang B. Liedtke
- Departments of Medicine/Neurology and
- Neurobiology, Duke University, Durham, NC 27710
- Duke University Clinics for Pain and Palliative Care, Durham, NC 27705
| |
Collapse
|
1165
|
Veazey KJ, Carnahan MN, Muller D, Miranda RC, Golding MC. Alcohol-induced epigenetic alterations to developmentally crucial genes regulating neural stemness and differentiation. Alcohol Clin Exp Res 2013; 37:1111-22. [PMID: 23488822 DOI: 10.1111/acer.12080] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/03/2012] [Indexed: 01/05/2023]
Abstract
BACKGROUND From studies using a diverse range of model organisms, we now acknowledge that epigenetic changes to chromatin structure provide a plausible link between environmental teratogens and alterations in gene expression leading to disease. Observations from a number of independent laboratories indicate that ethanol (EtOH) has the capacity to act as a powerful epigenetic disruptor and potentially derail the coordinated processes of cellular differentiation. In this study, we sought to examine whether primary neurospheres cultured under conditions maintaining stemness were susceptible to alcohol-induced alterations in the histone code. We focused our studies on trimethylated histone 3 lysine 4 and trimethylated histone 3 lysine 27, as these are 2 of the most prominent posttranslational histone modifications regulating stem cell maintenance and neural differentiation. METHODS Primary neurosphere cultures were maintained under conditions promoting the stem cell state and treated with EtOH for 5 days. Control and EtOH-treated cellular extracts were examined using a combination of quantitative RT-PCR and chromatin immunoprecipitation techniques. RESULTS We find that the regulatory regions of genes controlling both neural precursor cell identity and processes of differentiation exhibited significant declines in the enrichment of the chromatin marks examined. Despite these widespread changes in chromatin structure, only a small subset of genes including Dlx2, Fabp7, Nestin, Olig2, and Pax6 displayed EtOH-induced alterations in transcription. Unexpectedly, the majority of chromatin-modifying enzymes examined including members of the Polycomb Repressive Complex displayed minimal changes in expression and localization. Only transcripts encoding Dnmt1, Uhrf1, Ehmt1, Ash2 l, Wdr5, and Kdm1b exhibited significant differences. CONCLUSIONS Our results indicate that primary neurospheres maintained as stem cells in vitro are susceptible to alcohol-induced perturbation of the histone code and errors in the epigenetic program. These observations indicate that alterations to chromatin structure may represent a crucial component of alcohol teratogenesis and progress toward a better understanding of the developmental origins of fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Kylee J Veazey
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466, USA
| | | | | | | | | |
Collapse
|
1166
|
Keating ST, El-Osta A. Epigenetic changes in diabetes. Clin Genet 2013; 84:1-10. [PMID: 23398084 DOI: 10.1111/cge.12121] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/14/2022]
Abstract
Diabetes is a multifactorial disease with numerous pathways influencing its progression and recent observations suggest that the complexity of the disease cannot be entirely accounted for by genetic predisposition. A compelling argument for an epigenetic component is rapidly emerging. Epigenetic processes at the chromatin template significantly sensitize transcriptional and phenotypic outcomes to environmental signaling information including metabolic state, nutritional requirements and history. Epigenetic mechanisms impact gene expression that could predispose individuals to the diabetic phenotype during intrauterine and early postnatal development, as well as throughout adult life. Furthermore, epigenetic changes could account for the accelerated rates of chronic and persistent microvascular and macrovascular complications associated with diabetes. Epidemiological and experimental animal studies identified poor glycemic control as a major contributor to the development of diabetic complications and highlight the requirement for early intervention. Early exposure to hyperglycemia can drive the development of complications that manifest late in the progression of the disease and persist despite improved glycemic control, indicating a memory of the metabolic insult. Understanding the molecular events that underlie these transcriptional changes will significantly contribute to novel therapeutic interventions to prevent, reverse or retard the deleterious effects of the diabetic milieu.
Collapse
Affiliation(s)
- S T Keating
- Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart & Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia
| | | |
Collapse
|
1167
|
Westgate GE, Botchkareva NV, Tobin DJ. The biology of hair diversity. Int J Cosmet Sci 2013; 35:329-36. [PMID: 23363384 DOI: 10.1111/ics.12041] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/23/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Gillian E Westgate
- Centre for Skin Sciences; School of Life Sciences; University of Bradford; Richmond Road Bradford West Yorkshire BD7 1DP UK
- Westgate Consultancy Ltd; Court Lane Stevington Bedfordshire MK43 7QT UK
| | - Natalia V Botchkareva
- Centre for Skin Sciences; School of Life Sciences; University of Bradford; Richmond Road Bradford West Yorkshire BD7 1DP UK
| | - Desmond J Tobin
- Centre for Skin Sciences; School of Life Sciences; University of Bradford; Richmond Road Bradford West Yorkshire BD7 1DP UK
| |
Collapse
|
1168
|
Jacobs DI, Hansen J, Fu A, Stevens RG, Tjonneland A, Vogel UB, Zheng T, Zhu Y. Methylation alterations at imprinted genes detected among long-term shiftworkers. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:141-146. [PMID: 23193016 PMCID: PMC4993623 DOI: 10.1002/em.21752] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/19/2012] [Indexed: 06/02/2023]
Abstract
Exposure to light at night through shiftwork has been linked to alterations in DNA methylation and increased risk of cancer development. Using an Illumina Infinium Methylation Assay, we analyzed methylation levels of 397 CpG sites in the promoter regions of 56 normally imprinted genes to investigate whether shiftwork is associated with alteration of methylation patterns. Methylation was significantly higher at 20 CpG sites and significantly lower at 30 CpG sites (P < 0.05) in 10 female long-term shiftworkers as compared to 10 female age- and folate intake-matched day workers. The strongest evidence for altered methylation patterns in shiftworkers was observed for DLX5, IGF2AS, and TP73 based on the magnitude of methylation change and consistency in the direction of change across multiple CpG sites, and consistent results were observed using quantitative DNA methylation analysis. We conclude that long-term shiftwork may alter methylation patterns at imprinted genes, which may be an important mechanism by which shiftwork has carcinogenic potential and warrants further investigation.
Collapse
Affiliation(s)
- Daniel I. Jacobs
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Johnni Hansen
- Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark
| | - Alan Fu
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | | | - Anne Tjonneland
- Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark
| | - Ulla B. Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Tongzhang Zheng
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Yong Zhu
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
1169
|
The eye as a model of ageing in translational research--molecular, epigenetic and clinical aspects. Ageing Res Rev 2013; 12:490-508. [PMID: 23274270 DOI: 10.1016/j.arr.2012.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 11/16/2012] [Accepted: 11/19/2012] [Indexed: 12/13/2022]
Abstract
The eye and visual system are valuable in many areas of translational research such as stem cell therapy, transplantation research and gene therapy. Changes in many ocular tissues can be measured directly, easily and objectively in vivo (e.g. lens transparency; retinal blood vessel calibre; corneal endothelial cell counts) and so the eye may also be a uniquely useful site as a model of ageing. This review details cellular, molecular and epigenetic mechanisms related to ageing within the eye, and describes ocular parameters that can be directly measured clinically and which might be of value in ageing research as the translational "window to the rest of the body". The eye is likely to provide a valuable model for validating biomarkers of ageing at molecular, epigenetic, cellular and clinical levels. A research agenda to definitively establish the relationship between biomarkers of ageing and ocular parameters is proposed.
Collapse
|
1170
|
Burwell RG, Dangerfield PH, Moulton A, Grivas TB, Cheng JC. Whither the etiopathogenesis (and scoliogeny) of adolescent idiopathic scoliosis? Incorporating presentations on scoliogeny at the 2012 IRSSD and SRS meetings. SCOLIOSIS 2013; 8:4. [PMID: 23448588 PMCID: PMC3608974 DOI: 10.1186/1748-7161-8-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/09/2013] [Indexed: 01/01/2023]
Abstract
This paper aims to integrate into current understanding of AIS causation, etiopathogenetic information presented at two Meetings during 2012 namely, the International Research Society of Spinal Deformities (IRSSD) and the Scoliosis Research Society (SRS). The ultimate hope is to prevent the occurrence or progression of the spinal deformity of AIS with non-invasive treatment, possibly medical. This might be attained by personalised polymechanistic preventive therapy targeting the appropriate etiology and/or etiopathogenetic pathways, to avoid fusion and maintain spinal mobility. Although considerable progress had been made in the past two decades in understanding the etiopathogenesis of adolescent idiopathic scoliosis (AIS), it still lacks an agreed theory of etiopathogenesis. One problem may be that AIS results not from one cause, but several that interact with various genetic predisposing factors. There is a view there are two other pathogenic processes for idiopathic scoliosis namely, initiating (or inducing), and those that cause curve progression. Twin studies and observations of family aggregation have revealed significant genetic contributions to idiopathic scoliosis, that place AIS among other common disease or complex traits with a high heritability interpreted by the genetic variant hypothesis of disease. We summarize etiopathogenetic knowledge of AIS as theories of pathogenesis including recent multiple concepts, and blood tests for AIS based on predictive biomarkers and genetic variants that signify disease risk. There is increasing evidence for the possibility of an underlying neurological disorder for AIS, research which holds promise. Like brain research, most AIS workers focus on their own corner and there is a need for greater integration of research effort. Epigenetics, a relatively recent field, evaluates factors concerned with gene expression in relation to environment, disease, normal development and aging, with a complex regulation across the genome during the first decade of life. Research on the role of environmental factors, epigenetics and chronic non-communicable diseases (NCDs) including adiposity, after a slow start, has exploded in the last decade. Not so for AIS research and the environment where, except for monozygotic twin studies, there are only sporadic reports to suggest that environmental factors are at work in etiology. Here, we examine epigenetic concepts as they may relate to human development, normal life history phases and AIS pathogenesis. Although AIS is not regarded as an NCD, like them, it is associated with whole organism metabolic phenomena, including lower body mass index, lower circulating leptin levels and other systemic disorders. Some epigenetic research applied to Silver-Russell syndrome and adiposity is examined, from which suggestions are made for consideration of AIS epigenetic research, cross-sectional and longitudinal. The word scoliogeny is suggested to include etiology, pathogenesis and pathomechanism.
Collapse
Affiliation(s)
- R Geoffrey Burwell
- Centre for Spinal Studies and Surgery, Nottingham University Hospitals Trust, Queen's Medical Centre Campus, Derby Road, Nottingham, NG7 2UH, UK.
| | | | | | | | | |
Collapse
|
1171
|
McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernegreen JJ. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A 2013; 110:3229-36. [PMID: 23391737 PMCID: PMC3587249 DOI: 10.1073/pnas.1218525110] [Citation(s) in RCA: 1659] [Impact Index Per Article: 138.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the last two decades, the widespread application of genetic and genomic approaches has revealed a bacterial world astonishing in its ubiquity and diversity. This review examines how a growing knowledge of the vast range of animal-bacterial interactions, whether in shared ecosystems or intimate symbioses, is fundamentally altering our understanding of animal biology. Specifically, we highlight recent technological and intellectual advances that have changed our thinking about five questions: how have bacteria facilitated the origin and evolution of animals; how do animals and bacteria affect each other's genomes; how does normal animal development depend on bacterial partners; how is homeostasis maintained between animals and their symbionts; and how can ecological approaches deepen our understanding of the multiple levels of animal-bacterial interaction. As answers to these fundamental questions emerge, all biologists will be challenged to broaden their appreciation of these interactions and to include investigations of the relationships between and among bacteria and their animal partners as we seek a better understanding of the natural world.
Collapse
Affiliation(s)
- Margaret McFall-Ngai
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706
| | | | - Thomas C. G. Bosch
- Zoological Institute, Christian-Albrechts-University, D-24098 Kiel, Germany
| | - Hannah V. Carey
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706
| | | | - Angela E. Douglas
- Department of Entomology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Symbiosis Group, D-28359 Bremen, Germany
| | - Gerard Eberl
- Lymphoid Tissue Development Unit, Institut Pasteur, 75724 Paris, France
| | - Tadashi Fukami
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Scott F. Gilbert
- Biotechnology Institute, University of Helsinki, Helsinki 00014, Finland
| | - Ute Hentschel
- Julius-von-Sachs Institute, University of Wuerzburg, D-97082 Wuezburg, Germany
| | - Nicole King
- Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Staffan Kjelleberg
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, and Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia
| | | | - Natacha Kremer
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706
| | | | | | - Kenneth Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - John F. Rawls
- Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599
| | - Ann Reid
- American Academy of Microbiology, Washington, DC 20036
| | - Edward G. Ruby
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706
| | - Mary Rumpho
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - Jon G. Sanders
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Diethard Tautz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, D-24306 Plön, Germany; and
| | - Jennifer J. Wernegreen
- Nicholas School and Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708
| |
Collapse
|
1172
|
Rodriguez RM, Suarez-Alvarez B, Salvanés R, Muro M, Martínez-Camblor P, Colado E, Sánchez MA, Díaz MG, Fernandez AF, Fraga MF, Lopez-Larrea C. DNA methylation dynamics in blood after hematopoietic cell transplant. PLoS One 2013; 8:e56931. [PMID: 23451113 PMCID: PMC3579934 DOI: 10.1371/journal.pone.0056931] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/16/2013] [Indexed: 12/20/2022] Open
Abstract
Epigenetic deregulation is considered a common hallmark of cancer. Nevertheless, recent publications have demonstrated its association with a large array of human diseases. Here, we explore the DNA methylation dynamics in blood samples during hematopoietic cell transplant and how they are affected by pathophysiological events during transplant evolution. We analyzed global DNA methylation in a cohort of 47 patients with allogenic transplant up to 12 months post-transplant. Recipients stably maintained the donor’s global methylation levels after transplant. Nonetheless, global methylation is affected by chimerism status. Methylation analysis of promoters revealed that methylation in more than 200 genes is altered 1 month post-transplant when compared with non-pathological methylation levels in the donor. This number decreased by 6 months post-transplant. Finally, we analyzed methylation in IFN-γ, FASL, IL-10, and PRF1 and found association with the severity of the acute graft-versus-host disease. Our results provide strong evidence that methylation changes in blood are linked to underlying physiological events and demonstrate that DNA methylation analysis is a viable strategy for the study of transplantation and for development of biomarkers.
Collapse
Affiliation(s)
- Ramon M. Rodriguez
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | | | - Rubén Salvanés
- Department of Immunology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Manuel Muro
- Department of Immunology, Hospital Virgen de la Arrixaca, Murcia, Spain
| | | | - Enrique Colado
- Department of Hematology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Miguel Alcoceba Sánchez
- Servicio de Hematología y Hemoterapia, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Marcos González Díaz
- Servicio de Hematología y Hemoterapia, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Agustin F. Fernandez
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Mario F. Fraga
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnologıa/CNB-CSIC, Cantoblanco, Madrid, Spain
- * E-mail: (MFF); (CLL)
| | - Carlos Lopez-Larrea
- Department of Immunology, Hospital Universitario Central de Asturias, Oviedo, Spain
- Fundación Renal “Iñigo Álvarez de Toledo”, Madrid, Spain
- * E-mail: (MFF); (CLL)
| |
Collapse
|
1173
|
Kobow K, Blümcke I. The emerging role of DNA methylation in epileptogenesis. Epilepsia 2013; 53 Suppl 9:11-20. [PMID: 23216575 DOI: 10.1111/epi.12031] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA methylation is a covalent chromatin modification, characterized by the biochemical addition of a methyl group (-CH3) to cytosine nucleotides via a DNA methyltransferase enzyme. 5'-Methylcytosine (5-mC), frequently called the fifth base, has been implicated in genome stability, silencing of transposable elements, and repression of gene expression. Through the latter, DNA methylation dynamics broadly influence brain development, function, and aging. Aberrant DNA methylation patterns, either localized to specific gene regions or scattered throughout the genome, are associated with many neurologic disorders. Herein, we discuss the emerging role of DNA methylation in epileptogenesis and the perspectives arising from epigenetic medicine as new therapeutic strategy in difficult-to-treat epilepsies.
Collapse
Affiliation(s)
- Katja Kobow
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | | |
Collapse
|
1174
|
Martin FL. Epigenetic influences in the aetiology of cancers arising from breast and prostate: a hypothesised transgenerational evolution in chromatin accessibility. ISRN ONCOLOGY 2013; 2013:624794. [PMID: 23431470 PMCID: PMC3574745 DOI: 10.1155/2013/624794] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 12/26/2012] [Indexed: 01/12/2023]
Abstract
Epidemiological studies have consistently supported the notion that environmental and/or dietary factors play a central role in the aetiology of cancers of the breast and prostate. However, for more than five decades investigators have failed to identify a single cause-and-effect factor, which could be implicated; identification of a causative entity would allow the implementation of an intervention strategy in at-risk populations. This suggests a more complex pathoaetiology for these cancer sites, compared to others. When one examines the increases or decreases in incidence of specific cancers amongst migrant populations, it is notable that disease arising in colon or stomach requires one or at most two generations to exhibit a change in incidence to match that of high-incidence regions, whereas for breast or prostate cancer, at least three generations are required. This generational threshold could suggest a requirement for nonmutation-driven epigenetic alterations in the F0/F1 generations (parental/offspring adopting a more westernized lifestyle), which then predisposes the inherited genome of subsequent generations to mutagenic/genotoxic alterations leading to the development of sporadic cancer in these target sites. As such, individual susceptibility to carcinogen insult would not be based per se on polymorphisms in activating/detoxifying/repair enzymes, but on elevated accessibility of crucial target genes (e.g., oncogenes, tumour suppressor genes) or hotspots therein to mutation events. This could be termed a genomic susceptibility organizational structure (SOS). Several exposures including alcohol and heavy metals are epigens (i.e., modifiers of the epigenome), whereas others are mutagenic/genotoxic, for example, heterocyclic aromatic amines; humans are continuously and variously exposed to mixtures of these agents. Within such a transgenerational multistage model of cancer development, determining the interaction between epigenetic modification to generate a genomic SOS and genotoxic insult will facilitate a new level of understanding in the aetiology of cancer.
Collapse
Affiliation(s)
- Francis L. Martin
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| |
Collapse
|
1175
|
Bräutigam K, Vining KJ, Lafon-Placette C, Fossdal CG, Mirouze M, Marcos JG, Fluch S, Fraga MF, Guevara MÁ, Abarca D, Johnsen Ø, Maury S, Strauss SH, Campbell MM, Rohde A, Díaz-Sala C, Cervera MT. Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecol Evol 2013; 3:399-415. [PMID: 23467802 PMCID: PMC3586649 DOI: 10.1002/ece3.461] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/19/2012] [Accepted: 11/27/2012] [Indexed: 12/25/2022] Open
Abstract
Epigenetic variation is likely to contribute to the phenotypic plasticity and adaptative capacity of plant species, and may be especially important for long-lived organisms with complex life cycles, including forest trees. Diverse environmental stresses and hybridization/polyploidization events can create reversible heritable epigenetic marks that can be transmitted to subsequent generations as a form of molecular "memory". Epigenetic changes might also contribute to the ability of plants to colonize or persist in variable environments. In this review, we provide an overview of recent data on epigenetic mechanisms involved in developmental processes and responses to environmental cues in plant, with a focus on forest tree species. We consider the possible role of forest tree epigenetics as a new source of adaptive traits in plant breeding, biotechnology, and ecosystem conservation under rapid climate change.
Collapse
Affiliation(s)
- Katharina Bräutigam
- Centre for the Analysis of Genome Evolution and Function, Department of Cell & Systems Biology, University of TorontoToronto, ON, M5S 3B2, Canada
| | - Kelly J Vining
- Department of Forest Ecosystems and Society, Oregon State UniversityCorvallis, OR, 97331-5752, USA
| | - Clément Lafon-Placette
- UFR-Faculté des Sciences, UPRES EA 1207 ‘Laboratoire de Biologie des Ligneux et des Grandes Cultures’ (LBLGC), INRA, USC1328 ‘Arbres et Réponses aux Contraintes Hydrique et Environnementales’ (ARCHE), University of OrléansRue de Chartres, BP 6759, F-45067, Orléans, France
| | - Carl G Fossdal
- Department of Biology and Environment, Norwegian Forest and Landscape InstitutePO Box 115, N-1431, Aas, Norway
| | - Marie Mirouze
- Epigenetic Regulations and Seed Development, Institut de Recherche pour le Développement, UMR232 ERL5300 CNRS-IRD911 Av. Agropolis, 34394, Montpellier, France
| | - José Gutiérrez Marcos
- School of Life Sciences, University of WarwickWellesbourne, Warkwick, CV35 9EF, United Kingdom
| | - Silvia Fluch
- Platform for Integrated Clone Management (PICME), Health & Environment Department, AIT Austrian Institute of Technology GmbHKonrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Mario Fernández Fraga
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA–HUCA), University of OviedoSpain
| | - M Ángeles Guevara
- Dpt. of Forest Ecology and Genetics, Forest Genomics and Ecophysiology group, Forest Research Centre (CIFOR). INIACrta. La Coruña km 7,5, 28040, Madrid, Spain
- Mixed Unit of Forest Genomics and Ecophysiology, INIA/UPMMadrid, Spain
| | - Dolores Abarca
- Department of Life Sciences, University of AlcaláCtra. Madrid-Barcelona Km. 33,600, 28871, Alcalá de Henares, Madrid, Spain
| | - Øystein Johnsen
- Department of Plant and Environmental Sciences, Norwegian University of Life SciencesPO Box 5003, N-1432, Ås, Norway
| | - Stéphane Maury
- UFR-Faculté des Sciences, UPRES EA 1207 ‘Laboratoire de Biologie des Ligneux et des Grandes Cultures’ (LBLGC), INRA, USC1328 ‘Arbres et Réponses aux Contraintes Hydrique et Environnementales’ (ARCHE), University of OrléansRue de Chartres, BP 6759, F-45067, Orléans, France
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State UniversityCorvallis, OR, 97331-5752, USA
| | - Malcolm M Campbell
- Centre for the Analysis of Genome Evolution and Function, Department of Cell & Systems Biology, University of TorontoToronto, ON, M5S 3B2, Canada
- Department of Biological Sciences, University of Toronto Scarborough, University of Toronto1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Antje Rohde
- Department Plant Growth & Development, Institute of Agriculture and Fisheries ResearchCaritasstraat 21, 9090, Melle, Belgium
| | - Carmen Díaz-Sala
- Department of Life Sciences, University of AlcaláCtra. Madrid-Barcelona Km. 33,600, 28871, Alcalá de Henares, Madrid, Spain
| | - María-Teresa Cervera
- Dpt. of Forest Ecology and Genetics, Forest Genomics and Ecophysiology group, Forest Research Centre (CIFOR). INIACrta. La Coruña km 7,5, 28040, Madrid, Spain
- Mixed Unit of Forest Genomics and Ecophysiology, INIA/UPMMadrid, Spain
| |
Collapse
|
1176
|
Dickman MJ, Kucharski R, Maleszka R, Hurd PJ. Extensive histone post-translational modification in honey bees. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:125-137. [PMID: 23174121 DOI: 10.1016/j.ibmb.2012.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 06/01/2023]
Abstract
Histone post-translational modifications (PTMs) play a key role in regulating a variety of cellular processes including the establishment, maintenance and reversal of transcriptional programmes in eukaryotes. However, little is known about such modifications in the economically and ecologically important insect pollinator, the honey bee (Apis mellifera). Using mass spectrometry approaches, we show that histone H3.1, H3.3 and H4 of the honey bee are extensively modified by lysine acetylation and lysine methylation. We analysed histones isolated from queen ovaries and 96 hr-old larvae, in toto we quantified 23 specific modification states on 23 distinct peptides. In addition, we have identified and characterised patterns of histone PTMs that reside on the same peptide, generating detailed combinatorial information. Overall, we observed similar profiles of histone PTMs in both samples, with combinatorial patterns of lysine methylations on H3K27 and H3K36 more frequently identified in histones extracted from queen ovaries than from larvae. To our knowledge, this comprehensive dataset represents the first identification and quantitation of histone PTMs in this eusocial insect and emerging epigenetic model.
Collapse
Affiliation(s)
- Mark J Dickman
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom.
| | | | | | | |
Collapse
|
1177
|
El Hajj N, Haaf T. Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction. Fertil Steril 2013; 99:632-41. [PMID: 23357453 DOI: 10.1016/j.fertnstert.2012.12.044] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/21/2012] [Accepted: 12/26/2012] [Indexed: 01/01/2023]
Abstract
Although assisted reproductive technology (ART) has become a routine practice for human infertility treatment, the etiology of the increased risks for perinatal problems in ART-conceived children is still poorly understood. Data from mouse experiments and the in vitro production of livestock provide strong evidence that imprint establishment in late oocyte stages and reprogramming of the two germline genomes for somatic development after fertilization are vulnerable to environmental cues. In vitro culture and maturation of oocytes, superovulation, and embryo culture all represent artificial intrusions upon the natural development, which can be expected to influence the epigenome of the resultant offspring. However, in this context it is difficult to define the normal range of epigenetic variation in humans from conception throughout life. With the notable exception of a few highly penetrant imprinting mutations, the phenotypic consequences of any observed epigenetic differences between ART and non-ART groups remain largely unclear. The periconceptional period is not only critical for embryonal, placental, and fetal development, as well as the outcome at birth, but suboptimal in vitro culture conditions may also lead to persistent changes in the epigenome influencing disease susceptibilities later in life. The epigenome appears to be most plastic in the late stages of oocyte and the early stages of embryo development; this plasticity steadily decreases during prenatal and postnatal life. Therefore, when considering the safety of human ART from an epigenetic point of view, our main concern should not be whether or not a few rare imprinting disorders are increased, but rather we must be aware of a functional link between interference with epigenetic reprogramming in very early development and adult disease.
Collapse
Affiliation(s)
- Nady El Hajj
- Institute of Human Genetics, Julius Maximilians University, Wuerzburg, Germany
| | | |
Collapse
|
1178
|
Brent LJN, Heilbronner SR, Horvath JE, Gonzalez-Martinez J, Ruiz-Lambides A, Robinson AG, Skene JHP, Platt ML. Genetic origins of social networks in rhesus macaques. Sci Rep 2013; 3:1042. [PMID: 23304433 PMCID: PMC3540398 DOI: 10.1038/srep01042] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/06/2012] [Indexed: 01/19/2023] Open
Abstract
Sociality is believed to have evolved as a strategy for animals to cope with their environments. Yet the genetic basis of sociality remains unclear. Here we provide evidence that social network tendencies are heritable in a gregarious primate. The tendency for rhesus macaques, Macaca mulatta, to be tied affiliatively to others via connections mediated by their social partners - analogous to friends of friends in people - demonstrated additive genetic variance. Affiliative tendencies were predicted by genetic variation at two loci involved in serotonergic signalling, although this result did not withstand correction for multiple tests. Aggressive tendencies were also heritable and were related to reproductive output, a fitness proxy. Our findings suggest that, like humans, the skills and temperaments that shape the formation of multi-agent relationships have a genetic basis in nonhuman primates, and, as such, begin to fill the gaps in our understanding of the genetic basis of sociality.
Collapse
Affiliation(s)
- Lauren J N Brent
- Duke Institute for Brain Sciences and Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1179
|
Youngson NA, Morris MJ. What obesity research tells us about epigenetic mechanisms. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110337. [PMID: 23166398 PMCID: PMC3539363 DOI: 10.1098/rstb.2011.0337] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathophysiology of obesity is extremely complex and is associated with extensive gene expression changes in tissues throughout the body. This situation, combined with the fact that all gene expression changes are thought to have associated epigenetic changes, means that the links between obesity and epigenetics will undoubtedly be vast. Much progress in identifying epigenetic changes induced by (or inducing) obesity has already been made, with candidate and genome-wide approaches. These discoveries will aid the clinician through increasing our understanding of the inheritance, development and treatment of obesity. However, they are also of great value for epigenetic researchers, as they have revealed mechanisms of environmental interactions with epigenetics that can produce or perpetuate a disease state. Here, we will review the evidence for four mechanisms through which epigenetics contributes to obesity: as downstream effectors of environmental signals; through abnormal global epigenetic state driving obesogenic expression patterns; through facilitating developmental programming and through transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, High Street, Kensington, New South Wales 2052, Australia
| |
Collapse
|
1180
|
Epigenetics makes its mark on women-specific cancers—an opportunity to redefine oncological approaches? Gynecol Oncol 2013; 128:134-143. [DOI: 10.1016/j.ygyno.2012.09.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/21/2012] [Accepted: 09/22/2012] [Indexed: 01/21/2023]
|
1181
|
Schiffman SS, Rother KI. Sucralose, a synthetic organochlorine sweetener: overview of biological issues. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2013; 16:399-451. [PMID: 24219506 PMCID: PMC3856475 DOI: 10.1080/10937404.2013.842523] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sucralose is a synthetic organochlorine sweetener (OC) that is a common ingredient in the world's food supply. Sucralose interacts with chemosensors in the alimentary tract that play a role in sweet taste sensation and hormone secretion. In rats, sucralose ingestion was shown to increase the expression of the efflux transporter P-glycoprotein (P-gp) and two cytochrome P-450 (CYP) isozymes in the intestine. P-gp and CYP are key components of the presystemic detoxification system involved in first-pass drug metabolism. The effect of sucralose on first-pass drug metabolism in humans, however, has not yet been determined. In rats, sucralose alters the microbial composition in the gastrointestinal tract (GIT), with relatively greater reduction in beneficial bacteria. Although early studies asserted that sucralose passes through the GIT unchanged, subsequent analysis suggested that some of the ingested sweetener is metabolized in the GIT, as indicated by multiple peaks found in thin-layer radiochromatographic profiles of methanolic fecal extracts after oral sucralose administration. The identity and safety profile of these putative sucralose metabolites are not known at this time. Sucralose and one of its hydrolysis products were found to be mutagenic at elevated concentrations in several testing methods. Cooking with sucralose at high temperatures was reported to generate chloropropanols, a potentially toxic class of compounds. Both human and rodent studies demonstrated that sucralose may alter glucose, insulin, and glucagon-like peptide 1 (GLP-1) levels. Taken together, these findings indicate that sucralose is not a biologically inert compound.
Collapse
Affiliation(s)
- Susan S. Schiffman
- Department of Electrical and Computer Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Address correspondence to Susan S. Schiffman, PhD, Department of Electrical and Computer Engineering, College of Engineering, North Carolina State University, Raleigh, NC 27695-7911, USA. E-mail:
| | - Kristina I. Rother
- Section on Pediatric Diabetes & Metabolism, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
1182
|
Wahi G, Anand SS. Race/Ethnicity, Obesity, and Related Cardio-Metabolic Risk Factors: A Life-Course Perspective. CURRENT CARDIOVASCULAR RISK REPORTS 2013; 7:326-335. [PMID: 24672590 PMCID: PMC3962848 DOI: 10.1007/s12170-013-0329-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The adoption of health behaviors characterized by minimal energy expenditure and overconsumption of energy has led to cardiometabolic risk factors in pregnancy, childhood, and youth, all of which increase the prevalence of cardiovascular disease in adulthood. The propensity to develop abdominal obesity and cardiometabolic risk factors appears to disproportionally affect non-white ethnic groups. While the majority of observational research has been conducted in populations of European origin, studies in non-white ethnic groups across the life-course are underway and there is evidence that unique ethnic-specific differences exist. This review will focus on the life-course determinants of obesity and its related cardio-metabolic risk factors among diverse ethnic groups including people of Afro-Caribbean origin, South Asian, East Asian, and indigenous ancestry.
Collapse
Affiliation(s)
- Gita Wahi
- />Department of Pediatrics, McMaster University, Hamilton, ON Canada
- />Population Genomics Program, Chanchlani Research Centre, McMaster University, Hamilton, ON Canada
| | - Sonia S. Anand
- />Departments of Medicine and Clinical Epidemiology and Biostatistics, McMaster University, 1280 Main Street West, MDCL 3204, Hamilton, ON L8S4K1 Canada
- />Population Health Research Institute, Hamilton Health Sciences, Hamilton, ON Canada
- />Population Genomics Program, Chanchlani Research Centre, McMaster University, Hamilton, ON Canada
| |
Collapse
|
1183
|
Enaw JOE, Smith AK. Biomarker Development for Brain-Based Disorders: Recent Progress in Psychiatry. ACTA ACUST UNITED AC 2013; 1:7. [PMID: 25110721 DOI: 10.13188/2332-3469.1000006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Biomarkers are biological measures that are indicative of a specific disorder, its severity or response to treatment. They are widely used in many areas of medicine, but biomarker development for brain-based disorders lags behind. Using examples from the field of psychiatry, this article reviews the concepts of biomarkers, challenges to their development and the recent progress along those lines. In addition to discussing historical biomarker candidates such as cortisol or catecholamine levels, we include progress from recent genetic, epigenetic, proteomic, neuroimaging and EEG studies. Successful identification of biomarkers will advance the field of psychiatry towards the goal of biological tests for diagnosis, symptom management and treatment response.
Collapse
Affiliation(s)
- James O Ebot Enaw
- Department of Psychiatry & Behavioral Sciences, Emory University, School of Medicine, Atlanta, GA, USA
| | - Alicia K Smith
- Department of Psychiatry & Behavioral Sciences, Emory University, School of Medicine, Atlanta, GA, USA
| |
Collapse
|
1184
|
Gomes MVM, Toffoli LV, Arruda DW, Soldera LM, Pelosi GG, Neves-Souza RD, Freitas ER, Castro DT, Marquez AS. Age-related changes in the global DNA methylation profile of leukocytes are linked to nutrition but are not associated with the MTHFR C677T genotype or to functional capacities. PLoS One 2012; 7:e52570. [PMID: 23285094 PMCID: PMC3527598 DOI: 10.1371/journal.pone.0052570] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/19/2012] [Indexed: 01/01/2023] Open
Abstract
Global DNA methylation of peripheral blood leukocytes has been recently proposed as a potential biomarker for disease risk. However, the amplitude of the changes in DNA methylation associated with normal aging and the impacts of environmental changes on this variation are still unclear. In this context, we evaluated the association of global DNA methylation with nutritional habits, tobacco smoking, body mass index (BMI), clinical laboratory parameters, polymorphism C677T MTHFR, functional cognition and the daily practice of physical activity in a cancer-free older population. Leukocyte global DNA methylation from 126 older individuals was quantified using a high-throughput ELISA-based method. Global DNA hypomethylation was observed in older individuals when compared to a younger population (p = 0.0469), confirming changes in DNA methylation in the aging process. Furthermore, the methylation profile of elders was correlated with the daily ingestion of carbohydrates (p = 0.0494), lipids (p = 0.0494), vitamin B6 (p = 0.0421), magnesium (p = 0.0302), and also to the serum levels of total protein (p = 0.0004), alpha 2 globulin (p = 0.0013) and albumin (p = 0.0015). No statistically significant difference was observed when global DNA methylation were stratified according to C677T MTHFR genotypes (p = 0.7200), BMI (p = 0.1170), smoking habit (p = 0.4382), physical activity in daily life (p = 0.8492), scored cognitive function (p = 0.7229) or depression state (p = 0.8301). Our data indicate that age-related variations in the global DNA methylation profile of leukocytes might be modulated by the daily intake of carbohydrates, lipids, vitamin B6, and magnesium and be associated with serum protein levels, however it is independent of C677T MTHFR genotype and not correlated with BMI, smoking habit, cognitive function or the routine physical activities.
Collapse
Affiliation(s)
- Marcus V M Gomes
- Research Centre on Health Sciences, University of Northern Parana (UNOPAR), Londrina, Paraná, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
1185
|
González-Recio O, Ugarte E, Bach A. Trans-generational effect of maternal lactation during pregnancy: a Holstein cow model. PLoS One 2012; 7:e51816. [PMID: 23284777 PMCID: PMC3527476 DOI: 10.1371/journal.pone.0051816] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/06/2012] [Indexed: 11/19/2022] Open
Abstract
Epigenetic regulation in mammals begins in the first stages of embryogenesis. This prenatal programming determines, in part, phenotype expression in adult life. Some species, particularly dairy cattle, are conceived during the maternal lactation, which is a period of large energy and nutrient needs. Under these circumstances, embryo and fetal development compete for nutrients with the mammary gland, which may affect prenatal programming and predetermine phenotype at adulthood. Data from a specialized dairy breed were used to determine the transgenerational effect when embryo development coincides with maternal lactation. Longitudinal phenotypic data for milk yield (kg), ratio of fat-protein content in milk during first lactation, and lifespan (d) from 40,065 cows were adjusted for environmental and genetic effects using a Bayesian framework. Then, the effect of different maternal circumstances was determined on the residuals. The maternal-related circumstances were 1) presence of lactation, 2) maternal milk yield level, and 3) occurrence of mastitis during embryogenesis. Females born to mothers that were lactating while pregnant produced 52 kg (MonteCarlo standard error; MCs.e. = 0.009) less milk, lived 16 d (MCs.e. = 0.002) shorter and were metabolically less efficient (+0.42% milk fat/protein ratio; MCs.e.<0.001) than females whose fetal life developed in the absence of maternal lactation. The greater the maternal milk yield during embryogenesis, the larger the negative effects of prenatal programming, precluding the offspring born to the most productive cows to fully express their potential additive genetic merit during their adult life. Our data provide substantial evidence of transgenerational effect when pregnancy and lactation coincide. Although this effect is relatively low, it should not be ignored when formulating rations for lactating and pregnant cows. Furthermore, breeding, replacement, and management strategies should also take into account whether the individuals were conceived during maternal lactation because, otherwise, their performance may deviate from what it could be expected.
Collapse
|
1186
|
Sharma A. Transgenerational epigenetic inheritance: focus on soma to germline information transfer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 113:439-46. [PMID: 23257323 DOI: 10.1016/j.pbiomolbio.2012.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/30/2012] [Accepted: 12/06/2012] [Indexed: 01/29/2023]
Abstract
In trangenerational epigenetic inheritance, phenotypic information not encoded in DNA sequence is transmitted across generations. In germline-dependent mode, memory of environmental exposure in parental generation is transmitted through gametes, leading to appearance of phenotypes in the unexposed future generations. The memory is considered to be encoded in epigenetic factors like DNA methylation, histone modifications and regulatory RNAs. Environmental exposure may cause epigenetic modifications in the germline either directly or indirectly through primarily affecting the soma. The latter possibility is most intriguing because it contradicts the established dogma that hereditary information flows only from germline to soma, not in reverse. As such, identification of the factor(s) mediating soma to germline information transfer in transgenerational epigenetic inheritance would be pathbreaking. Regulatory RNAs and hormone have previously been implicated or proposed to play a role in soma to germline communication in epigenetic inheritance. This review examines the recent examples of gametogenic transgenerational inheritance in plants and animals in order to assess if evidence of regulatory RNAs and hormones as mediators of information transfer is supported. Overall, direct evidence for both mobile regulatory RNAs and hormones is found to exist in plants. In animals, although involvement of mobile RNAs seems imminent, direct evidence of RNA-mediated soma to germline information transfer in transgenerational epigenetic inheritance is yet to be obtained. Direct evidence is also lacking for hormones in animals. However, detailed examination of recently reported examples of transgenerational inheritance reveals circumstantial evidence supporting a role of hormones in information transmission.
Collapse
Affiliation(s)
- Abhay Sharma
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Delhi University Campus, Mall Road, Delhi 110007, India.
| |
Collapse
|
1187
|
Cortés A, Crowley VM, Vaquero A, Voss TS. A view on the role of epigenetics in the biology of malaria parasites. PLoS Pathog 2012; 8:e1002943. [PMID: 23271963 PMCID: PMC3521673 DOI: 10.1371/journal.ppat.1002943] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Alfred Cortés
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Catalonia, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
- * E-mail:
| | - Valerie M. Crowley
- Institute for Research in Biomedicine (IRB), Barcelona, Catalonia, Spain
| | - Alejandro Vaquero
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
1188
|
Abstract
Both genetic and environmental factors play critical roles in the development of diabetes. Epidemiological evidence and data from clinical studies suggest the persistence of a "metabolic memory" of past exposures to environmental factors or glycemic control. Epigenetic mechanisms are regarded as one of the likeliest candidates underlying these phenomena. On the other hand, owing to the recent elucidation of mechanisms that erase epigenetic marks, it has gradually become recognized that epigenetic regulation is a more dynamic process than previously thought. A technological breakthrough in epigenome research in the past decade was the development of high-throughput sequencing. This new technology lets us investigate the epigenome in a global and comprehensive manner, and provides previously unrecognized findings and insights. This review presents an overview of the recent progress in our understanding of epigenetic regulation in type 1 and type 2 diabetes research.
Collapse
Affiliation(s)
- Hironori Waki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo, Tokyo, 113-8655, Japan
| | | | | |
Collapse
|
1189
|
Pleil JD, Williams MA, Sobus JR. Chemical Safety for Sustainability (CSS): Human in vivo biomonitoring data for complementing results from in vitro toxicology—A commentary. Toxicol Lett 2012; 215:201-7. [DOI: 10.1016/j.toxlet.2012.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 10/14/2012] [Accepted: 10/15/2012] [Indexed: 01/12/2023]
|
1190
|
van Meurs JBJ, Uitterlinden AG. Osteoarthritis year 2012 in review: genetics and genomics. Osteoarthritis Cartilage 2012; 20:1470-6. [PMID: 22917744 DOI: 10.1016/j.joca.2012.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/06/2012] [Accepted: 08/08/2012] [Indexed: 02/02/2023]
Abstract
The field of genetics and genomics is a highly technological driven field that is advancing fast. The purpose of this year in review of genetics and genomics was to highlight the publications that apply these new technologies tools to improve understanding of the pathophysiology of osteoarthritis (OA). In addition, most recent developments in genetics and genomics research and their relevance to OA are discussed in this review.
Collapse
Affiliation(s)
- J B J van Meurs
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands; The Netherlands Genomics Initiative-sponsored Netherlands Consortium for Healthy Aging (NGI-NCHA), Leiden/Rotterdam, The Netherlands.
| | | |
Collapse
|
1191
|
Yang IV, Schwartz DA. Epigenetic mechanisms and the development of asthma. J Allergy Clin Immunol 2012; 130:1243-55. [PMID: 23026498 PMCID: PMC3518374 DOI: 10.1016/j.jaci.2012.07.052] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 12/19/2022]
Abstract
Asthma is heritable, influenced by the environment, and modified by in utero exposures and aging; all of these features are also common to epigenetic regulation. Furthermore, the transcription factors that are involved in the development of mature T cells that are critical to the T(H)2 immune phenotype in asthmatic patients are regulated by epigenetic mechanisms. Epigenetic marks (DNA methylation, modifications of histone tails, and noncoding RNAs) work in concert with other components of the cellular regulatory machinery to control the spatial and temporal levels of expressed genes. Technology to measure epigenetic marks on a genomic scale and comprehensive approaches to data analysis have recently emerged and continue to improve. Alterations in epigenetic marks have been associated with exposures relevant to asthma, particularly air pollution and tobacco smoke, as well as asthma phenotypes, in a few population-based studies. On the other hand, animal studies have begun to decipher the role of epigenetic regulation of gene expression associated with the development of allergic airway disease. Epigenetic mechanisms represent a promising line of inquiry that might, in part, explain the inheritance and immunobiology of asthma.
Collapse
Affiliation(s)
- Ivana V Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | |
Collapse
|
1192
|
Nogueira da Costa A, Herceg Z. Detection of cancer-specific epigenomic changes in biofluids: powerful tools in biomarker discovery and application. Mol Oncol 2012; 6:704-15. [PMID: 22925902 PMCID: PMC5528342 DOI: 10.1016/j.molonc.2012.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 07/30/2012] [Indexed: 01/30/2023] Open
Abstract
The genetic and epigenetic material originating from tumour that can be found in body fluids of individuals with cancer harbours tumour-specific alterations and represents an attractive target for biomarker discovery. Epigenetic changes (DNA methylation, histone modifications and non-coding RNAs) are present ubiquitously in virtually all types of human malignancies and may appear in early cancer development, and thus they provide particularly attractive markers with broad applications in diagnostics. In addition, because changes in the epigenome may constitute a signature of specific exposure to certain risk factors, they have the potential to serve as highly specific biomarkers for risk assessment. While reliable detection of cancer-specific epigenetic changes has proven to be technically challenging, a substantial progress has been made in developing the methodologies that allow an efficient and sensitive detection of epigenomic changes using the material originating from body fluids. In this review we discuss the application of epigenomics as a tool for biomarker research, with the focus on the analysis of DNA methylation in biofluids.
Collapse
Affiliation(s)
- André Nogueira da Costa
- Epigenetics Group, International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon, Cedex 08, France
| | | |
Collapse
|
1193
|
Gómez-Díaz E, Jordà M, Peinado MA, Rivero A. Epigenetics of host-pathogen interactions: the road ahead and the road behind. PLoS Pathog 2012; 8:e1003007. [PMID: 23209403 PMCID: PMC3510240 DOI: 10.1371/journal.ppat.1003007] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A growing body of evidence points towards epigenetic mechanisms being responsible for a wide range of biological phenomena, from the plasticity of plant growth and development to the nutritional control of caste determination in honeybees and the etiology of human disease (e.g., cancer). With the (partial) elucidation of the molecular basis of epigenetic variation and the heritability of certain of these changes, the field of evolutionary epigenetics is flourishing. Despite this, the role of epigenetics in shaping host-pathogen interactions has received comparatively little attention. Yet there is plenty of evidence supporting the implication of epigenetic mechanisms in the modulation of the biological interaction between hosts and pathogens. The phenotypic plasticity of many key parasite life-history traits appears to be under epigenetic control. Moreover, pathogen-induced effects in host phenotype may have transgenerational consequences, and the bases of these changes and their heritability probably have an epigenetic component. The significance of epigenetic modifications may, however, go beyond providing a mechanistic basis for host and pathogen plasticity. Epigenetic epidemiology has recently emerged as a promising area for future research on infectious diseases. In addition, the incorporation of epigenetic inheritance and epigenetic plasticity mechanisms to evolutionary models and empirical studies of host-pathogen interactions will provide new insights into the evolution and coevolution of these associations. Here, we review the evidence available for the role epigenetics on host-pathogen interactions, and the utility and versatility of the epigenetic technologies available that can be cross-applied to host-pathogen studies. We conclude with recommendations and directions for future research on the burgeoning field of epigenetics as applied to host-pathogen interactions.
Collapse
Affiliation(s)
- Elena Gómez-Díaz
- Institut de Biologia Evolutiva (IBE, CSIC-UPF), Barcelona, Spain
| | - Mireia Jordà
- Institut de Medicina Predictiva i Personalitzada del Càncer (IMPPC), Badalona, Spain
| | - Miguel Angel Peinado
- Institut de Medicina Predictiva i Personalitzada del Càncer (IMPPC), Badalona, Spain
| | - Ana Rivero
- Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle (MIVEGEC, UMR CNRS-UM2-UM1 5290, IRD 224), Centre IRD, Montpellier, France
| |
Collapse
|
1194
|
Clark C, Palta P, Joyce CJ, Scott C, Grundberg E, Deloukas P, Palotie A, Coffey AJ. A comparison of the whole genome approach of MeDIP-seq to the targeted approach of the Infinium HumanMethylation450 BeadChip(®) for methylome profiling. PLoS One 2012; 7:e50233. [PMID: 23209683 PMCID: PMC3510246 DOI: 10.1371/journal.pone.0050233] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 10/17/2012] [Indexed: 02/04/2023] Open
Abstract
DNA methylation is one of the most studied epigenetic marks in the human genome, with the result that the desire to map the human methylome has driven the development of several methods to map DNA methylation on a genomic scale. Our study presents the first comparison of two of these techniques - the targeted approach of the Infinium HumanMethylation450 BeadChip® with the immunoprecipitation and sequencing-based method, MeDIP-seq. Both methods were initially validated with respect to bisulfite sequencing as the gold standard and then assessed in terms of coverage, resolution and accuracy. The regions of the methylome that can be assayed by both methods and those that can only be assayed by one method were determined and the discovery of differentially methylated regions (DMRs) by both techniques was examined. Our results show that the Infinium HumanMethylation450 BeadChip® and MeDIP-seq show a good positive correlation (Spearman correlation of 0.68) on a genome-wide scale and can both be used successfully to determine differentially methylated loci in RefSeq genes, CpG islands, shores and shelves. MeDIP-seq however, allows a wider interrogation of methylated regions of the human genome, including thousands of non-RefSeq genes and repetitive elements, all of which may be of importance in disease. In our study MeDIP-seq allowed the detection of 15,709 differentially methylated regions, nearly twice as many as the array-based method (8070), which may result in a more comprehensive study of the methylome.
Collapse
Affiliation(s)
- Christine Clark
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Priit Palta
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Christopher J. Joyce
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Carol Scott
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Elin Grundberg
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Panos Deloukas
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Aarno Palotie
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics and Genetic Analysis Platform, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Medical Genetics, University of Helsinki and University Central Hospital, Helsinki, Finland
| | - Alison J. Coffey
- Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
1195
|
Bonduriansky R, Day T. Nongenetic inheritance and the evolution of costly female preference. J Evol Biol 2012; 26:76-87. [DOI: 10.1111/jeb.12028] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 09/23/2012] [Accepted: 09/24/2012] [Indexed: 01/08/2023]
Affiliation(s)
- R. Bonduriansky
- Evolution & Ecology Research Centre; School of Biological, Earth and Environmental Sciences; University of New South Wales; Sydney NSW Australia
| | - T. Day
- Departments of Mathematics and Biology; Queen's University; Kingston ON Canada
| |
Collapse
|
1196
|
Wang T, Garcia JG, Zhang W. Epigenetic Regulation in Particulate Matter-Mediated Cardiopulmonary Toxicities: A Systems Biology Perspective. ACTA ACUST UNITED AC 2012. [PMID: 23185213 DOI: 10.2174/187569212803901792] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Particulate matter (PM) air pollution exerts significant adverse health effects in global populations, particularly in developing countries with extensive air pollution. Understanding of the mechanisms of PM-induced health effects including the risk for cardiovascular diseases remains limited. In addition to the direct cellular physiological responses such as mitochondrial dysfunction and oxidative stress, PM mediates remarkable dysregulation of gene expression, especially in cardiovascular tissues. The PM-mediated gene dysregulation is likely to be a complex mechanism affected by various genetic and non-genetic factors. Notably, PM is known to alter epigenetic markers (e.g., DNA methylation and histone modifications), which may contribute to air pollution-mediated health consequences including the risk for cardiovascular diseases. Notably, epigenetic changes induced by ambient PM exposure have emerged to play a critical role in gene regulation. Though the underlying mechanism(s) are not completely clear, the available evidence suggests that the modulated activities of DNA methyltransferase (DNMT), histone acetylase (HAT) and histone deacetylase (HDAC) may contribute to the epigenetic changes induced by PM or PM-related chemicals. By employing genome-wide epigenomic and systems biology approaches, PM toxicogenomics could conceivably progress greatly with the potential identification of individual epigenetic loci associated with dysregulated gene expression after PM exposure, as well the interactions between epigenetic pathways and PM. Furthermore, novel therapeutic targets based on epigenetic markers could be identified through future epigenomic studies on PM-mediated cardiopulmonary toxicities. These considerations collectively inform the future population health applications of genomics in developing countries while benefiting global personalized medicine at the same time.
Collapse
Affiliation(s)
- Ting Wang
- Section of Pulmonary, Critical Care, Allergy & Sleep Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA ; Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
1197
|
Liu WB, Han F, Jiang X, Yang LJ, Li YH, Liu Y, Chen HQ, Ao L, Cui ZH, Cao J, Liu JY. ANKRD18A as a novel epigenetic regulation gene in lung cancer. Biochem Biophys Res Commun 2012; 429:180-5. [PMID: 23131552 DOI: 10.1016/j.bbrc.2012.10.116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 10/27/2012] [Indexed: 01/10/2023]
Abstract
Lung cancer is one of the most common causes of cancer-related mortality worldwide. Effective early diagnosis and targeted therapies for lung cancer to reduce incidence and mortality would benefit from a better understanding of the key molecular changes that occur from normal to malignant tumor cells during lung cancer initiation and development, but these are largely unknown. Previous studies have shown that DNA methylation, an important mechanism for the regulation of gene expression, plays a key role in lung carcinogenesis. In this study, we screened a novel methylation gene, ANKRD18A, encoding ankyrin repeat domain 18A, to determine whether it is regulated by DNA methylation in lung cancer. Methylation-specific PCR and bisulfite sequencing PCR were used to analyze gene methylation status, and real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) examined mRNA levels. Promoter hypermethylation of ANKRD18A was detected in 68.4% (26/38) of lung cancer tissues but not (0/20) in normal lung tissues (P<0.01), whereas ANKRD18A mRNA expression was significantly decreased in lung cancer tissues compared with adjacent normal tissues. In addition, we found that ANKRD18A expression was significantly decreased in 9 of 10 lung cancer cell lines. This was associated with hypermethylation of the ANKRD18A promoter region. Moreover, weak expression of ANKRD18A in methylated lung cancer cell lines increased markedly after treatment with the DNA methylation inhibitor 5-aza-2'-deoxycytidine. These results suggest that ANKRD18A hypermethylation and consequent mRNA alterations might be a vital molecular mechanism in lung cancer.
Collapse
Affiliation(s)
- Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Chongqing 400038, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1198
|
Springer NM. Epigenetics and crop improvement. Trends Genet 2012; 29:241-7. [PMID: 23128009 DOI: 10.1016/j.tig.2012.10.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/08/2012] [Accepted: 10/08/2012] [Indexed: 11/28/2022]
Abstract
There is considerable excitement about the potential for epigenetic information to contribute to heritable variation in many species. Our understanding of the molecular mechanisms of epigenetic inheritance is rapidly growing, and it is now possible to profile the epigenome at high resolution. Epigenetic information plays a role in developmental gene regulation, response to the environment, and in natural variation of gene expression levels. Because of these central roles, there is the potential for epigenetics to play a role in crop improvement strategies including the selection for favorable epigenetic states, creation of novel epialleles, and regulation of transgene expression. In this review we consider the potential, and the limitations, of epigenetic variation in crop improvement.
Collapse
Affiliation(s)
- Nathan M Springer
- Microbial and Plant Genomics Institute, Department of Plant Biology, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|
1199
|
Abstract
PURPOSE OF REVIEW To briefly summarize some of the principles of epigenetics and assess their potential relevance for the disease pathogenesis of inflammatory bowel diseases (IBDs). To review the results of recent IBD-related epigenetic studies, discuss main challenges as well as highlight the opportunities for future research in this field. RECENT FINDINGS Evidence is accumulating for a major role of epigenetic mechanisms in the disease pathogenesis of several immune-mediated diseases. Recent findings indicate that epigenetics may mediate some of the effects of environment, genetic predisposition and intestinal microbiota on IBD pathogenesis. SUMMARY Epigenetics is a rapidly expanding and hugely promising area of research. At best, it may provide a unifying molecular mechanism to explain complex immune-mediated diseases such as IBD. Future research studies must be carefully designed, performed and analysed taking into account the basic principles of epigenetics in order to ensure the true potential of this field is realized in the understanding of IBD.
Collapse
|
1200
|
Bernal AJ, Dolinoy DC, Huang D, Skaar DA, Weinhouse C, Jirtle RL. Adaptive radiation-induced epigenetic alterations mitigated by antioxidants. FASEB J 2012; 27:665-71. [PMID: 23118028 DOI: 10.1096/fj.12-220350] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Humans are exposed to low-dose ionizing radiation (LDIR) from a number of environmental and medical sources. In addition to inducing genetic mutations, there is concern that LDIR may also alter the epigenome. Such heritable effects early in life can either be positively adaptive or result in the enhanced formation of diseases, including cancer, diabetes, and obesity. Herein, we show that LDIR significantly increased DNA methylation at the viable yellow agouti (A(vy)) locus in a sex-specific manner (P=0.004). Average DNA methylation was significantly increased in male offspring exposed to doses between 0.7 and 7.6 cGy, with maximum effects at 1.4 and 3.0 cGy (P<0.01). Offspring coat color was concomitantly shifted toward pseudoagouti (P<0.01). Maternal dietary antioxidant supplementation mitigated both the DNA methylation changes and coat color shift in the irradiated offspring. Thus, LDIR exposure during gestation elicits epigenetic alterations that lead to positive adaptive phenotypic changes that are negated with antioxidants, indicating they are mediated in part by oxidative stress. These findings provide evidence that in the isogenic A(vy) mouse model, epigenetic alterations resulting from LDIR play a role in radiation hormesis, bringing into question the assumption that every dose of radiation is harmful.
Collapse
Affiliation(s)
- Autumn J Bernal
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina,, USA
| | | | | | | | | | | |
Collapse
|