1201
|
Kolwankar D, Vuppalanchi R, Ethell B, Jones DR, Wrighton SA, Hall SD, Chalasani N. Association between nonalcoholic hepatic steatosis and hepatic cytochrome P-450 3A activity. Clin Gastroenterol Hepatol 2007; 5:388-93. [PMID: 17368239 DOI: 10.1016/j.cgh.2006.12.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Comorbidities associated with nonalcoholic fatty liver often require therapy with medications (eg, statins) metabolized by cytochrome P-450 3A (CYP3A). There is significant interindividual variability in CYP3A expression. However, human studies that systematically examined the relationship between hepatic steatosis and hepatic CYP3A activity are lacking. METHODS The relationship of hepatic CYP3A activity with several variables including hepatic steatosis, CYP3A4 protein content, CYP3A4 mRNA expression, CYP3A5 genotype, and its mRNA expression was investigated in human liver samples (n = 49). CYP3A activity was quantified from liver microsomes by using testosterone as a probe, and hepatic steatosis was defined to be present if >5% of hepatocytes had large globules of intracellular fat displacing the nucleus. RESULTS The mean +/- standard error hepatic CYP3A activity of the study group was 3156 +/- 2794 pmol x min(-1) x mg(-1) of protein, and it was not associated with age, gender, medicinal use, CYP3A5 or pregnane xenobiotic receptor mRNA expression, or CYP3A5 genotype. Twenty-four liver samples with steatosis had significantly lower hepatic CYP3A activity than 25 liver samples without steatosis (1978 +/- 299 vs 4287 +/- 659 pmol x min(-1) x mg(-1) of protein; P = .003). This difference persisted even after controlling for relevant covariates in the multivariate analysis (P = .04). However, CYP3A4 protein content was not different between the 2 groups (6 +/- 1.3 vs 8.5 +/- 2.2 pmol/mg protein; P = .3). There was a significant negative relationship between severity of steatosis and hepatic CYP3A activity (P = .01). CONCLUSIONS Hepatic steatosis is associated with decreased hepatic CYP3A activity in humans via post-translational mechanism. Further studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Dhanashri Kolwankar
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
1202
|
Langaee TY, Gong Y, Yarandi HN, Katz DA, Cooper-DeHoff RM, Pepine CJ, Johnson JA. Association of CYP3A5 Polymorphisms with Hypertension and Antihypertensive Response to Verapamil. Clin Pharmacol Ther 2007; 81:386-91. [PMID: 17339868 DOI: 10.1038/sj.clpt.6100090] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the CYP3A5 gene, the A>G (*3) and G>A (*6) polymorphisms result in severely decreased expression of CYP3A5 enzyme relative to a normal functional allele (*1). We sought to determine if the CYP3A5 genetic polymorphisms were associated with level of blood pressure (BP), risk of hypertension (HTN), and the antihypertensive response to verapamil. A total of 676 normotensive and hypertensive participants (mean age 49+/-8.2 years) from the Hypertension Genes study and 722 patients (mean age 66+/-9 years) from the International Verapamil/Trandolapril Study Genetic Substudy (INVEST-GENES) were genotyped for CYP3A5 to test for associations with BP, HTN, and in the latter cohort, antihypertensive response to verapamil. CYP3A5 haplotypes were determined using PHASE 2, with any allele containing either (*3) or (*6) designated as non functional. In the HTN genes population, there were no significant differences based on the number of functional CYP3A5 alleles, in systolic blood pressure (SBP) or diastolic blood pressure (DBP) among the normotensive whites or blacks (all P> or =0.70) or in allele frequency between normotensives and hypertensives. In INVEST-GENES, when controlled for baseline BP, race, age, and gender, untreated BP in carriers versus non carriers of a CYP3A5 functional allele was 158.2+/-13.7 and 154.8+/-13.7 (P=0.061), respectively. CYP3A5 functional allele status was marginally associated with the SBP response to verapamil in blacks (P=0.075) and Hispanics (P=0.056), but not in whites (P=0.40), with the effect being largely driven by higher SBP in the carriers of two functional alleles. There was no association with DBP response and CYP3A5 allele status. CYP3A5 genotype does not contribute importantly to BP or risk of HTN, but may influence response to calcium channel blockers in populations in which carrier status of two functional alleles is common.
Collapse
Affiliation(s)
- T Y Langaee
- Department of Pharmacy Practice, University of Florida College of Pharmacy, Gainesville, Florida, USA
| | | | | | | | | | | | | |
Collapse
|
1203
|
O'Donnell CJ, Grime K, Courtney P, Slee D, Riley RJ. The development of a cocktail CYP2B6, CYP2C8, and CYP3A5 inhibition assay and a preliminary assessment of utility in a drug discovery setting. Drug Metab Dispos 2007; 35:381-5. [PMID: 17142561 DOI: 10.1124/dmd.106.012344] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tools for studying the roles of CYP2B6, CYP2C8, and CYP3A5 in drug metabolism have recently become available. The level of interest in these enzymes has been elevated because investigations have revealed substrate promiscuity and/or polymorphic expression. In this study, we aimed to develop a single cocktail inhibition assay for the three enzymes and assess its utility in drug discovery. Bupropion hydroxylation, amodiaquine N-deethylation, and midazolam 1'-hydroxylation were chosen as probe reactions for CYP2B6, CYP2C8, and CYP3A5 and were analyzed using liquid chromatography-tandem mass spectrometry. Kinetic analyses were performed to establish suitable conditions for inhibition assays, which were subsequently automated. CYP2B6, CYP2C8, and CYP3A5 IC(50) values were determined for marketed drugs and almost 200 AstraZeneca discovery compounds from 16 separate discovery projects. For the marketed drugs, results obtained were comparable with literature values. Data were also compared with IC(50) values determined for CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4. In this dataset, the majority of compounds were more potent inhibitors of CYP2C9, CYP2C19, CYP2D6, and CYP3A4 than of CYP2B6, CYP2C8, or CYP3A5. The potential impact of these findings on a cytochrome P450 inhibition strategy is discussed.
Collapse
Affiliation(s)
- Charles J O'Donnell
- Department of Physical and Metabolic Science, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, UK
| | | | | | | | | |
Collapse
|
1204
|
Picard N, Djebli N, Sauvage FL, Marquet P. Metabolism of sirolimus in the presence or absence of cyclosporine by genotyped human liver microsomes and recombinant cytochromes P450 3A4 and 3A5. Drug Metab Dispos 2007; 35:350-5. [PMID: 17151193 DOI: 10.1124/dmd.106.012161] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sirolimus is an immunosuppressive drug currently used alone or in combination with cyclosporine. Both drugs undergo extensive metabolism by the CYP 3A enzymes. This study aimed at comparing the activity of recombinant CYP (rCYP) 3A4 and 3A5 toward sirolimus, investigating the effect of cyclosporine on the metabolic rate of these two cytochromes P450 (P450s), as well as the impact of the CYP 3A5*3 polymorphism on that of human liver microsomes (HLMs). Two distinct approaches were used; i.e., the measurement of (1) hydroxy-sirolimus and desmethyl-sirolimus production, and (2) sirolimus depletion by the in vitro half-life method. rCYP 3A5 exhibited a lower intrinsic clearance (CL(int)) for both hydroxylation (0.11 versus 0.24 microl/pmol P450/min) and depletion of sirolimus (0.64 versus 2.36 microl/pmol P450/min) than rCYP 3A4. Similar CL(int) values for hydroxylation, demethylation, and depletion were found when comparing a pool of HLMs carrying at least one CYP 3A5*1 (active) allele with a pool of HLMs not expressing CYP 3A5. This was further confirmed for sirolimus depletion using individual microsome preparations (p = 0.42). A deeper inhibitory effect of cyclosporine on the CL(int) of sirolimus depletion was found for rCYP 3A4 than for rCYP 3A5 (i.e., -44% versus -8% at 0.62 microM, 750 microg/l cyclosporine), and sirolimus metabolism was slightly less inhibited for HLMs expressing CYP 3A5 than not (-38% versus -56%). In the absence of cyclosporine, the CYP 3A5*3 polymorphism may not influence significantly sirolimus metabolism at the hepatic level. However, strong CYP 3A4 inhibition by cyclosporine could unveil the influence of this polymorphism.
Collapse
Affiliation(s)
- Nicolas Picard
- Laboratoire de Pharmacologie Médicale, EA 3838 DEXO, Facultéde Médecine, 2 rue du Dr Marcland, 87025 Limoges, France.
| | | | | | | |
Collapse
|
1205
|
Spratlin J, Sawyer MB. Pharmacogenetics of paclitaxel metabolism. Crit Rev Oncol Hematol 2007; 61:222-9. [PMID: 17092739 DOI: 10.1016/j.critrevonc.2006.09.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 08/30/2006] [Accepted: 09/21/2006] [Indexed: 11/18/2022] Open
Abstract
Paclitaxel is one of the most widely used and effective anticancer drugs. Paclitaxel's clinical utility spans many tumor sites, including treatment of ovarian, breast, lung, head and neck, and unknown primary cancers. As is the case with most chemotherapy drugs, paclitaxel is administered empirically with little individualization of dose other than adjustment for body surface area. Metabolism of the drug is predominantly by the liver by cytochromes P450 2C8 and 3A4. Recent evidence points to the presence of polymorphisms in these enzymes. The clinical relevance of these polymorphisms is not yet fully explored, though they are expected to be key in fulfilling the ultimate goal of individualized dosing of paclitaxel. Here we review the pharmacology of paclitaxel and consider the possible effects pharmacogenetics may have on paclitaxel therapy.
Collapse
Affiliation(s)
- Jennifer Spratlin
- Cross Cancer Institute, Department of Medical Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
1206
|
Bácsi K, Kósa JP, Borgulya G, Balla B, Lazáry A, Nagy Z, Horváth C, Speer G, Lakatos P. CYP3A7*1C polymorphism, serum dehydroepiandrosterone sulfate level, and bone mineral density in postmenopausal women. Calcif Tissue Int 2007; 80:154-9. [PMID: 17334880 DOI: 10.1007/s00223-006-0227-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022]
Abstract
The CYP3A7 enzyme metabolizes some steroid hormones, including dehydroepiandrosterone sulfate (DHEAS). The age-related decline of serum DHEAS levels is believed to contribute to osteoporosis. Previously, the CYP3A7*1C polymorphism has been shown to cause a persistent high CYP3A7 enzyme activity, resulting in lower levels of DHEAS in men. We hypothesized that the CYP3A7*1C polymorphism might contribute to bone loss through decreased levels of serum DHEAS in postmenopausal women. Postmenopausal women (n = 319) were divided into two subgroups: 217 with osteoporosis and 102 healthy controls. Genotyping, serum DHEAS measurement, and osteodensitometry of the lumbar spine and femoral neck were carried out in all subjects. Homozygous CYP3A7*1C carriers had significantly lower BMD at the lumbar spine compared to wild types (T score -3.27 +/- 1.02 in CYP3A7*1C homozygous mutants vs. -1.35 +/- 1.53 in wild types, P = 0.041). This association remained significant after adjustment for menopausal age, serum DHEAS level, alcohol consumption, steroid intake, smoking habits, and previous fractures. No association was found between genotypes and serum DHEAS levels in the total study population or in the subgroups. Serum DHEAS levels correlated positively with bone mineral density at the lumbar spine (r = 0.59, P = 0.042) after correction for age. Our data suggest that the CYP3A7 polymorphism might have an influence on bone mass at the lumbar spine independently of serum DHEAS concentrations.
Collapse
Affiliation(s)
- K Bácsi
- 1st Department of Medicine, Semmelweis University Budapest, 1083 Korányi S. u 2/a, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
1207
|
Giacomini KM, Brett CM, Altman RB, Benowitz NL, Dolan ME, Flockhart DA, Johnson JA, Hayes DF, Klein T, Krauss RM, Kroetz DL, McLeod HL, Nguyen AT, Ratain MJ, Relling MV, Reus V, Roden DM, Schaefer CA, Shuldiner AR, Skaar T, Tantisira K, Tyndale RF, Wang L, Weinshilboum RM, Weiss ST, Zineh I. The pharmacogenetics research network: from SNP discovery to clinical drug response. Clin Pharmacol Ther 2007; 81:328-45. [PMID: 17339863 PMCID: PMC5006950 DOI: 10.1038/sj.clpt.6100087] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The NIH Pharmacogenetics Research Network (PGRN) is a collaborative group of investigators with a wide range of research interests, but all attempting to correlate drug response with genetic variation. Several research groups concentrate on drugs used to treat specific medical disorders (asthma, depression, cardiovascular disease, addiction of nicotine, and cancer), whereas others are focused on specific groups of proteins that interact with drugs (membrane transporters and phase II drug-metabolizing enzymes). The diverse scientific information is stored and annotated in a publicly accessible knowledge base, the Pharmacogenetics and Pharmacogenomics Knowledge base (PharmGKB). This report highlights selected achievements and scientific approaches as well as hypotheses about future directions of each of the groups within the PGRN. Seven major topics are included: informatics (PharmGKB), cardiovascular, pulmonary, addiction, cancer, transport, and metabolism.
Collapse
Affiliation(s)
- K M Giacomini
- Department of Biopharmaceutical Sciences, University of California San Francisco, San Francisco, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1208
|
Plant N. The human cytochrome P450 sub-family: Transcriptional regulation, inter-individual variation and interaction networks. Biochim Biophys Acta Gen Subj 2007; 1770:478-88. [PMID: 17097810 DOI: 10.1016/j.bbagen.2006.09.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 09/28/2006] [Indexed: 11/26/2022]
Abstract
The Cytochrome P450 super-family is a fundamental requirement for the viability of most life, with Cytochrome P450 proteins having been identified in organisms ranging from bacteria to man. These enzymes may be subdivided into those that metabolise purely endogenous chemicals, and those that are involved in xenobiotic metabolism. Of the latter group it can be argued that CYP3A sub-family members rank as the most important; their high expression in the liver and wide substrate specificity mean that they are clinically important in the metabolism of many therapeutic drugs, and alteration in their activity is central to many clinically-relevant drug-drug interactions. In this review I will examine the human CYP3A enzymes, discussing their genome structure, common allelic variants and, in greatest detail, their transcriptional regulation. Through examination of these characteristics we will see both striking similarities and differences between the four human CYP3A enzymes, which may have important impacts on inter-individual response to chemical exposure. Finally, the role of nuclear receptors in regulating CYP3A gene expression, and indeed that of many other proteins involved in drug metabolism, will be examined: Such an examination will show the need to utilize a systems biology approach to understand fully how the human body responds to chemical exposure.
Collapse
Affiliation(s)
- Nick Plant
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| |
Collapse
|
1209
|
Fredericks S, Jorga A, MacPhee IAM, Reboux S, Shiferaw E, Moreton M, Carter ND, Holt DW, Johnston A. Multi-drug resistance gene-1 (MDR-1) haplotypes and the CYP3A5*1 genotype have no influence on ciclosporin dose requirements as assessed by C0 or C2 measurements. Clin Transplant 2007; 21:252-7. [PMID: 17425754 DOI: 10.1111/j.1399-0012.2006.00635.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The intestinal efflux pump P-glycoprotein (P-gp), the product of the multi-drug resistance-1 (MDR-1) gene, significantly influences the pharmacokinetics of several drugs. Ciclosporin is a substrate for P-gp and is metabolized by cytochrome P450 (CYP) 3A enzymes. P-gp activity is affected by several known single nucleotide polymorphisms (SNPs) and haplotypes. MDR-1 genotypes of SNPs C1236T, G2677T/A and C3435T, as well as haplotypes C-G-C and T-T-T and CYP3A5*1 genotype (predictive of CYP3A5 expression), were related to ciclosporin blood concentrations measured at both 0 and 2 h after drug dosing in 197 stable renal transplant patients. Significant differences (of a magnitude unlikely to be relevant clinically) in dose-normalized blood ciclosporin concentrations were found only between MDR-1 genotypes of the C1236T SNP and between haplotype groups C-G-C and T-T-T in patients that were expressers of CYP3A5. MDR-1 SNPs and haplotypes and also CYP3A5*1 genotype, do not appear to have a major influence on ciclosporin pharmacokinetics.
Collapse
Affiliation(s)
- Salim Fredericks
- Analytical Unit, Cardiac & Vascular Science, St George's University of London, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
1210
|
Josephson F, Allqvist A, Janabi M, Sayi J, Aklillu E, Jande M, Mahindi M, Burhenne J, Bottiger Y, Gustafsson LL, Haefeli WE, Bertilsson L. CYP3A5 genotype has an impact on the metabolism of the HIV protease inhibitor saquinavir. Clin Pharmacol Ther 2007; 81:708-12. [PMID: 17329995 DOI: 10.1038/sj.clpt.6100117] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
CYP3A is the main enzyme subfamily involved in the metabolism of the HIV protease-inhibitor saquinavir. We hypothesized that individuals homozygous for CYP3A5*1 might have a higher oral clearance of saquinavir, compared with subjects lacking functional CYP3A5 alleles. A single-dose pharmacokinetic trial of saquinavir soft gel capsules, 1,200 mg, was performed in 16 black Tanzanian healthy volunteers with two functional CYP3A5 alleles (*1/*1) and in 18 volunteers without functional CYP3A5 alleles (both alleles being either *3, *6, or *7). The median area under the plasma concentration-time curve (AUC)0-24 reached among subjects with two functional alleles was 1,410 ng h/ml (interquartile range (IQR) 826-1,929), whereas it was 2,138 ng h/ml (IQR 1,380-3,331) in subjects without (P=0.0533, Mann-Whitney U-test). The median ratio of saquinavir over its M2 plus M3 hydroxy metabolites in urine was 64 (IQR 52-73) in subjects with two functional alleles, whereas it was 145 (IQR 89-181) in those without (P=0.000078, Mann-Whitney U-test). In conclusion, saquinavir is metabolized by CYP3A5. The median AUC0-24 for saquinavir among individuals with two functional CYP3A5 alleles was 34% lower than among those with no functional alleles. To clarify the clinical importance of the CYP3A5 polymorphism, further studies should be conducted on saquinavir, dosed to steady state, in the presence of ritonavir boosting.
Collapse
Affiliation(s)
- F Josephson
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1211
|
Martignoni M, Groothuis GMM, de Kanter R. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2007; 2:875-94. [PMID: 17125407 DOI: 10.1517/17425255.2.6.875] [Citation(s) in RCA: 1060] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Animal models are commonly used in the preclinical development of new drugs to predict the metabolic behaviour of new compounds in humans. It is, however, important to realise that humans differ from animals with regards to isoform composition, expression and catalytic activities of drug-metabolising enzymes. In this review the authors describe similarities and differences in this respect among the different species, including man. This may be helpful for drug researchers to choose the most relevant animal species in which the metabolism of a compound can be studied for extrapolating the results to humans. The authors focus on CYPs, which are the main enzymes involved in numerous oxidative reactions and often play a critical role in the metabolism and pharmacokinetics of xenobiotics. In addition, induction and inhibition of CYPs are compared among species. The authors conclude that CYP2E1 shows no large differences between species, and extrapolation between species appears to hold quite well. In contrast, the species-specific isoforms of CYP1A, -2C, -2D and -3A show appreciable interspecies differences in terms of catalytic activity and some caution should be applied when extrapolating metabolism data from animal models to humans.
Collapse
Affiliation(s)
- Marcella Martignoni
- Nerviano Medical Sciences, Preclinical Development, Viale Pasteur 10, Nerviano (MI), Italy.
| | | | | |
Collapse
|
1212
|
Gervasini G, Vizcaino S, Carrillo JA, Caballero MJ, Benitez J. The effect of CYP2J2, CYP3A4, CYP3A5 and the MDR1 polymorphisms and gender on the urinary excretion of the metabolites of the H-receptor antihistamine ebastine: a pilot study. Br J Clin Pharmacol 2007; 62:177-86. [PMID: 16842392 PMCID: PMC1885094 DOI: 10.1111/j.1365-2125.2006.02578.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIMS To determine the effect of gender and the genetic polymorphisms of CYP2J2, CYP3A4, CYP3A5 and MDR1 on the urinary excretion of the H(1) antihistamine ebastine in healthy subjects. METHODS Eighty-nine Caucasians were studied. The presence of polymorphisms in genes known to be involved in ebastine metabolism and transport (CYP2J2*2,*3,*4,*6,*7, CYP3A4*1B, CYP3A5*3, *6 and MDR1(ABCB1)(C3435T)) was assessed by means of PCR-restriction fragment length polymorphism and sequencing methods. Genotype was correlated with the urinary excretion of the main ebastine metabolites (desalkylebastine and carebastine) under basal conditions and after administration of grapefruit juice. RESULTS Women excreted statistically greater amounts of desalkylebastine in urine (mean +/- SD (95% confidence intervals, 95% CI), 23.0 +/- 19.5 (18.1, 27.9) micromol) than men (12.4 +/- 11.0 (7.9, 16.9)), (mean difference: 10.6 (2.4, 18.7), P < 0.005). The CYP2J2, CYP3A4 and CYP3A5 analysed polymorphisms did not greatly affect ebastine metabolite excretion. The MDR1(C3435T) polymorphism was found to affect both the urinary excretion of the active metabolite carebastine (32.3 +/- 18.3 (23.1, 41.4), 22.8 +/- 14.7 (18.6, 27.0) and 21.5 +/- 15.3 (14.7, 28.3) for CC, CT and TT carriers, respectively; P < 0.05) and the grapefruit juice-induced inhibition of its transport/formation (mean fold-decrease +/- SD (95% CI), 1.5 +/- 0.8 (1.0, 2.0), 1.1 +/- 0.9 (0.7, 1.4) and 0.9 +/- 0.4 (0.6, 1.2) for CC, CT and TT carriers, respectively; P = 0.01). CONCLUSIONS Gender and the presence of the MDR1(C3435T) polymorphism both influence the excretion of ebastine metabolites in urine.
Collapse
Affiliation(s)
- Guillermo Gervasini
- Department of Pharmacology and Psychiatry, Medical School and Clinical Pharmacology Unit, Infanta Cristina University Hospital, University of Extremadura, E-06071-Badajoz, Spain.
| | | | | | | | | |
Collapse
|
1213
|
Yong WP, Desai AA, Innocenti F, Ramirez J, Shepard D, Kobayashi K, House L, Fleming GF, Vogelzang NJ, Schilsky RL, Ratain MJ. Pharmacokinetic modulation of oral etoposide by ketoconazole in patients with advanced cancer. Cancer Chemother Pharmacol 2007; 60:811-9. [PMID: 17308893 DOI: 10.1007/s00280-007-0428-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Accepted: 01/15/2007] [Indexed: 11/28/2022]
Abstract
PURPOSE Etoposide is a widely used cytotoxic drug that is commercially available in both intravenous and oral formulations. High interpatient pharmacokinetic variability has been associated with oral etoposide administration. Various strategies used in the past to reduce such variability have not been successful. Hence, this study was designed to evaluate if pharmacokinetic modulation of oral etoposide with ketoconazole could lead to a favorable alteration of etoposide pharmacokinetics, and to assess the feasibility and safety of this approach. METHODS Thirty-two patients were treated with ketoconazole 200 mg daily with an escalating dose of oral etoposide starting at a dose of 50 mg every other day. Pharmacokinetic samples were obtained during the first treatment cycle after the administration of an oral etoposide and ketoconazole dose. Additional baseline pharmacokinetic studies of etoposide alone were performed 4 days prior to the first treatment cycle. RESULTS Dose limiting toxicities were neutropenia and fatigue. Ketoconazole increased the area under the plasma concentration-time curve (AUC) of oral etoposide by a median of 20% (p < 0.005). Ketoconazole did not reduce the interpatient variability in etoposide pharmacokinetics. Pretreatment bilirubin levels correlated with etoposide clearance (Spearman's r = -0.48, p = 0.008). The maximum tolerated dose was etoposide administered at 50 mg daily and ketoconazole 200 mg qd for 3 of 5 weeks. CONCLUSIONS Ketoconazole reduces the apparent clearance of oral etoposide, does not alter its toxicity profile and does not reduce interpatient pharmacokinetic variability. Other methods to reduce the pharmacokinetic variability of oral etoposide are needed.
Collapse
Affiliation(s)
- Wei Peng Yong
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, 5841 S Maryland Ave, MC2115, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1214
|
Wu SN, Zhang Y, Gardner CO, Chen Q, Li Y, Wang GL, Gao PJ, Zhu DL. Evidence for Association of Polymorphisms in CYP2J2 and Susceptibility to Essential Hypertension. Ann Hum Genet 2007; 71:519-25. [PMID: 17286575 DOI: 10.1111/j.1469-1809.2007.00346.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Evidence from animal models and human studies suggests that CYP2J2 plays a mechanistic role in the development of hypertension. The present study aims to investigate the potential genetic contribution of the CYP2J2 gene to the etiology of essential hypertension (EH) and individual blood pressure. METHODS We selected eight polymorphisms in/or around the CYP2J2 gene and performed a case-control association study involving 841 Han Chinese subjects, including 415 unrelated hypertensives and 426 age-, gender- and area-matched normotensives. RESULTS Three functionally identified variants (CYP2J2 *2, *7 and CYP2J2 *8) and SNP rs11572182 represented rare polymorphisms in Han Chinese. However, the difference in rs1155002 genotype distribution between hypertensive and healthy subjects was close to significance (P = 0.06) in the whole sample. Interestingly, significant evidence for an association with rs1155002 was found in females when stratified by gender. In females, the TT homozygote of rs1155002 seems to be a risk factor for hypertension (p = 0.014). In addition, ANOVA analysis suggested TT carriers had significantly higher systolic blood pressure (p = 0.016). The genotype frequencies for rs10493270, rs1180273 and rs1324491 revealed no statistically significant differences. Likewise, four-marker haplotype frequencies showed no significant differences between cases and controls. CONCLUSION Our data provide strong evidence that the CYP2J2 gene is a susceptibility factor for essential hypertension, especially in females, and influences individual systolic blood pressure in the Chinese Han population.
Collapse
Affiliation(s)
- Sheng-Nan Wu
- Shanghai Key Laboratory of Vascular Biology at Ruijin Hospital and Shanghai Institute of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
1215
|
Hu YF, Qiu W, Liu ZQ, Zhu LJ, Liu ZQ, Tu JH, Wang D, Li Z, He J, Zhong GP, Zhou G, Zhou HH. Effects of genetic polymorphisms of CYP3A4, CYP3A5 and MDR1 on cyclosporine pharmacokinetics after renal transplantation. Clin Exp Pharmacol Physiol 2007; 33:1093-8. [PMID: 17042920 DOI: 10.1111/j.1440-1681.2006.04492.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. The calcineurin inhibitor cyclosporine is widely used to prevent allograft rejection after solid organ transplantation. It has a narrow therapeutic index and shows considerable interindividual differences in its pharmacokinetics. Interindividual differences in the activity and expression of the metabolising enzymes cytochrome P450 (CYP) 3A4 and 3A5 and the multidrug efflux pump P-glycoprotein (P-gp) contribute considerably to cyclosporine pharmacokinetics. Variability in the activity of CYP3A4, CYP3A5 and P-gp could be considered to result from genetic polymorphisms encoding their genes. 2. The aim of the present study was to evaluate retrospectively the effects of genetic polymorphisms of CYP3A4, CYP3A5 and MDR1 on cyclosporine dose adjusted trough blood concentration during the early period after renal transplantation in Chinese patients. 3. One hundred and six renal transplant recipients in China were genotyped by polymerase chain reaction-restriction fragment length polymorphism for CYP3A4*18A, CYP3A5*3 and MDR1 C3435T. Cyclosporine whole blood levels were measured by fluorescence polarization immunoassay. Dose-adjusted trough blood concentrations (C(0)) were determined and compared among the different genotype groups. 4. The frequency of the CYP3A4*18A, CYP3A5*3 and MDR1 C3435T variant alleles were 0.005 (95% confidence interval (CI) 0.048, 0.0049), 0.783 (95% CI 0.781, 0.785) and 0.528 (95% CI 0.526, 0.531), respectively, and these alleles exhibited incomplete linkage disequilibrium. The median cyclosporine dose-adjusted C(0) in CYP3A5*1/*1 genotype subjects (n = 6) was 14.8 ng/mL per mg per kg (range 11.1-26.8 ng/mL per mg per kg), in CYP3A5*1/*3 patients (n = 34) it was 23.7 ng/mL per mg per kg (range 9.0-61.0 ng/mL per mg per kg) and for CYP3A5*3/*3 patients (n = 66) it was 26.4 ng/mL per mg per kg (range 9.8-85.8 ng/mL per mg per kg; P = 0.012, Kruskal-Wallis test). Accordingly, cyclosporine dose-adjusted C0 was larger in CYP3A5 non-expressors than expressors in the first week after renal transplantation. In addition, wild-type homozygotes (n = 21) for MDR1 C3435T had a slight but significantly lower dose-adjusted C0 compared with heterozygotes (n = 58): 17.7 (10.3-60.8) versus 26.4 (9.0-67.3) ng/mL per mg per kg, respectively (P = 0.014, Mann-Whitney U-test). 5. In conclusion, the present study shows that genetic polymorphisms in CYP3A5 may be responsible, in part, for the large interindividual variability of cyclosporine pharmacokinetics during the early phase after renal transplantation in Chinese patients. Patients with the CYP3A5*3 variant genotype require a low dose of cyclosporine to reach target levels compared with those with the CYP3A5*1 allele.
Collapse
Affiliation(s)
- Yong-Fang Hu
- Peking University Third Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1216
|
Li D, Zhang GL, Lou YQ, Li Q, Wang X, Bu XY. Genetic polymorphisms in MDR1 and CYP3A5 and MDR1 haplotype in mainland Chinese Han, Uygur and Kazakh ethnic groups. J Clin Pharm Ther 2007; 32:89-95. [PMID: 17286792 DOI: 10.1111/j.1365-2710.2007.00791.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND OBJECTIVE The drug transporter MDR1 and the drug metabolizing enzyme CYP3A are the two major biological factors determining the pharmacokinetics of many drugs. The functional MDR1 single nucleotide polymorphisms (SNPs) and a prevalent CYP3A5 SNP show marked interethnic variation among Orientals, Caucasians and Africans. In this study, we investigated the distribution of MDR1 and CYP3A5 SNPs among mainland Chinese Han, Uygur and Kazakh ethnic groups. METHODS Genotypes of the MDR1 C1236T, G2677T/A and C3435T, and CYP3A5*3, CYP3AP1*3 SNPs were determined in 434 unrelated healthy subjects (165 Chinese Han, 161 Chinese Uygur and 108 Chinese Kazakh) using polymerase chain reaction followed by restriction fragment length polymorphism analysis. RESULTS AND DISCUSSION A significantly higher MDR1 3435T variant frequency was observed in Uygur (52.8%), than in Kazakh (39.8%) and Han (37.9%) Chinese (P < 0.01, Fisher's exact test). There was no significant difference in MDR1 1236T and 2677T/A variant frequencies between Han, Uygur and Kazakh. CYP3A5*3 (G) allele was observed at intermediate frequencies in Uygur (84.8%) and Kazakh (86.6%), relative to Han (72.7%) and values previously reported in Caucasians (91.7%). The CYP3AP1*3 (A) allele was strongly linked to CYP3A5*3 in Chinese Han, Uygur and Kazakh. CONCLUSION Significant interethnic differences in MDR1 haplotype and CYP3A5 variant frequencies exist between mainland Chinese Han and Caucasians, and the intermediate frequencies observed in Chinese Uygur and Kazakh might be due to the genetic admixture of Eurasians and Orientals.
Collapse
Affiliation(s)
- D Li
- Department of Pharmacology, Basic Medical School, Health Science Center, Beijing (Peking) University, Beijing, China
| | | | | | | | | | | |
Collapse
|
1217
|
The chimpanzee cytochrome P450 3A subfamily: Is our closest related species really that similar? COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2007; 2:91-100. [PMID: 20483282 DOI: 10.1016/j.cbd.2006.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 12/19/2006] [Accepted: 12/24/2006] [Indexed: 10/23/2022]
Abstract
With the release of the chimpanzee genomic database, much work has been accomplished to understand more fully the closest related species to humans. This study investigates the cytochrome P450 3A (CYP3A) subfamily and examines differences which may be expected between chimpanzees and humans in regards to CYP3A metabolism. A previous publication had reported the presence of five putative chimpanzee CYP3A isoforms, as compared to the four in humans (Williams ET et al., Mol Phylogenet Evol 33, 300-8). Based on the previous report, the chimpanzee CYP3A5 should have had a different C-terminus than its human counterpart; therefore, CYP3A5 and CYP3A67 were cloned. The CYP3A5 clone obtained disputes the previous prediction and confirms that the nucleotide similarity between the two species is 99.7%. While CYP3A67 is most closely related to CYP3A7, with significant differences in the amino acid sequences. Also, the mRNA expression of CYP3A67 can rival the expression of CYP3A4 in the tissues analyzed. CYP3A7 was not found to be expressed in any chimpanzee tissue examined. Total CYP3A protein expression was not significantly different between chimpanzees and humans. Metabolism assays using benzphetamine and erythromycin with chimpanzee liver microsomes did not reveal major differences between chimpanzees and humans. In conclusion, adult CYP3A metabolism may not be significantly different between chimpanzees and humans.
Collapse
|
1218
|
Engels FK, Loos WJ, Mathot RAA, van Schaik RHN, Verweij J. Influence of ketoconazole on the fecal and urinary disposition of docetaxel. Cancer Chemother Pharmacol 2007; 60:569-79. [PMID: 17256132 DOI: 10.1007/s00280-006-0412-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Accepted: 12/21/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The anticancer drug docetaxel is extensively metabolized by cytochrome P450 (CYP) 3A isozymes. Furthermore, docetaxel is also a substrate for the transmembrane ATP-binding cassette efflux transporter protein ABCB1. CYP3A-inhibition significantly reduces docetaxel total systemic clearance, on average by 50%. However, data on the effect of CYP3A-inhibition on the fecal and urinary excretion of docetaxel are lacking. To further elucidate the role of CYP3A- and ABCB1-mediated elimination pathways for docetaxel we investigated the effect of the potent CYP3A-inhibitor, and also ABCB1-inhibitor, ketoconazole on the fecal and urinary disposition of docetaxel in cancer patients. METHODS Fifteen patients were treated with docetaxel (100 mg/m2), followed 3 weeks later by a reduced dose in combination with orally administered ketoconazole, or vice versa. Six patients were also administered [3H]-radiolabeled docetaxel. Fecal and urinary specimens, collected up to 72-h post-infusion, were analyzed for cumulative parent drug and radioactivity excretion. RESULTS Ketoconazole coadministration increased fecal parent drug excretion twofold from 2.6 +/- 2.8 to 5.2 +/- 5.4% (mean +/- SD, P = 0.03) but did not affect urinary parent drug excretion (P = 0.69). The sum of fecal and urinary parent drug excretion was 5.3 +/- 3.0% for docetaxel alone and 7.8 +/- 5.6% in the presence of ketoconazole, respectively (P = 0.04). Total recovered radioactivity values were 45.8 +/- 19.1 and 32.4 +/- 19.7%, respectively (P = 0.23). CONCLUSION CYP3A-inhibition by ketoconazole increases fecal parent drug excretion twofold in cancer patients. A more pronounced increase was not achieved, most likely due to concomitant intestinal ABCB1-inhibition.
Collapse
Affiliation(s)
- Frederike K Engels
- Department of Medical Oncology, Erasmus MC - Daniel den Hoed Cancer Center, Groene Hilledijk 301, 3075 EA, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
1219
|
Kim YM, Yoo SH, Kang RY, Kim MJ, Bae YY, Lee YK, Jeon SJ, Chon KJ, Shin SM, Kim SG, Park KH, Son IJ. Identifying drugs needing pharmacogenetic monitoring in a Korean hospital. Am J Health Syst Pharm 2007; 64:166-75. [PMID: 17215467 DOI: 10.2146/ajhp050490] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE A decision matrix for identifying drugs for which pharmacogenetic drug monitoring (PDM) provides the greatest benefit in a Korean setting is described. SUMMARY We developed a decision matrix including the ethnic frequency of clinically relevant polymorphic cytochrome P-450 (CYP) enzymes, and the metabolic profiles and adverse drug reactions of drugs. Using the developed decision matrix based on the population allele frequencies of CYP enzymes, we identified potential candidates for PDM among the most commonly used drugs at Seoul National University Hospital (SNUH). Collectively, 17 of these drugs were largely metabolized by at least one polymorphic CYP enzyme. Pharmacogenetic information was used to identify CYP2C9, CYP2C19, and CYP2D6 as the major CYP enzymes of clinical importance for pharmacologic effect and safety in Koreans. The frequencies of poor and intermediate metabolizers among Koreans were 0% and 2.3-12% for CYP2C9, 12% and 42% for CYP2C19, and 0.44% and 28% for CYP2D6, respectively. The frequency of ultrarapid metabolizers of CYP2D6 was 2.28%. The decision matrix and pharmacogenetic information were used to identify seven drugs for PDM: warfarin, glimepiride, diazepam, amitriptyline, nortriptyline, codeine, and oxycodone. This approach can be applied to other institutional hospitals or other ethnic populations and would be helpful for advancing pharmacy practice. Further work is required to assess the practical and potential clinical relevance of pharmacogenetic variations on drugs of interest before the implementation of PDM. CONCLUSION A decision matrix helped identify drugs for which PDM provides the greatest potential benefit at one Korean hospital.
Collapse
Affiliation(s)
- Young Mi Kim
- Department of Pharmacy, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1220
|
Sunder‐Plassmann R. Cytochrome P450: Another Player in the Myocardial Infarction Game? Adv Clin Chem 2007. [DOI: 10.1016/s0065-2423(06)43008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
1221
|
Astobieta Odriozola A, Ibarluzea González G, Pereira Arias J, Gallego Sánchez J, Gamarra Quintanilla M, Camargo Ibargaray I. La farmacocinética/farmacodinámica de los iPDE5. ¿Clínicamente significativos? La farmacocinética clínica de los inhibidores de la fosfodiesterasa tipo 5 en disfunción eréctil. Rev Int Androl 2007. [DOI: 10.1016/s1698-031x(07)74034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
1222
|
Miura M, Inoue K, Satoh S, Itoh Y, Kagaya H, Tada H, Tanaka Y, Habuchi T, Suzuki T. Influence of Cytochrome P450 (CYP)??3A5 Polymorphisms on the Pharmacokinetics of Lansoprazole Enantiomers in CYP2C19 Extensive Metaboliser Renal Transplant Recipients. Clin Drug Investig 2007; 27:251-8. [PMID: 17358097 DOI: 10.2165/00044011-200727040-00004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND AND OBJECTIVE Lansoprazole is extensively metabolised by cytochrome P450 (CYP) 2C19 and CYP3A4. The purpose of this study was to evaluate the effects of CYP3A5 polymorphism (A6986G) on the pharmacokinetics of lansoprazole enantiomers in renal transplant recipients who are CYP2C19 extensive metabolisers (EMs). METHODS Among 40 Japanese CYP2C19 EMs, 20 had the CYP3A5*1 allele (*1/*1 in two subjects and *1/*3 in 18 subjects) and 20 had the CYP3A5*3/*3 genotype. After repeated oral doses of racemic lansoprazole 30mg once daily for 28 days, plasma concentrations of lansoprazole enantiomers were determined using high performance liquid chromatography. RESULTS The mean area under the plasma concentration-time curves from 0 to infinity (AUC(infinity)) of (R)- and (S)-lansoprazole in recipients with the CYP3A5*1 allele were 3145 and 384 ng * h/mL, respectively, compared with 4218 and 587 ng * h/mL in recipients with the CYP3A5*3/*3 genotype. The AUC(infinity) and the maximum plasma concentration of (R)- and (S)-lansoprazole in subjects with the CYP3A5*3/*3 genotype were greater than subjects with CYP3A5*1/*1 + *1/*3 alleles. The mean R/S ratio for AUC of lansoprazole in each CYP3A5 genotype group was the same (12.6). CONCLUSION Our findings show that CYP3A5 genotype is not an important determinant of enantioselective disposition of lansoprazole. Based on our results and those of previous studies, the enantioselective disposition of lansoprazole appears to be primarily influenced by enantioselective metabolism by CYP2C19 rather than by CYP3A.
Collapse
Affiliation(s)
- Masatomo Miura
- Department of Pharmacy, Akita University Hospital, Akita, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
1223
|
New bearings in pharmacotherapeutic strategies: Pharmacogenetics and gene therapy. VOJNOSANIT PREGL 2007; 64:707-13. [DOI: 10.2298/vsp0710707g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
<zakljucak> Slicno drugim, novim terapijskim konceptima i genska terapija je puno obecavala, ali za sada je jos u razvoju. Glavni izazov ostaje unosenje pravog gena na pravo mesto, u pravu celiju i obezbedjenje adekvatne ekspresije, uz minimalna nezeljena dejstva. Iako se najvise radi na virusnim vektorima, smatra se da buducnost genske terapije cine znatno bezbedniji nevirusni sistemi. Bilo je izvesnih promasaja u genskoj terapiji, sto je dovelo do sumnje i zabrinutosti u siroj populaciji. Medjutim, razvoj genske terapije je realnost, kao i cinjenica da ona ima svoje mesto u medicini. Vazno je istaci da genskoj terapiji treba pristupati sa izuzetno visokim stepenom naucne, strucne i eticke odgovornosti, jer se ne moze iskljuciti mogucnost genetskih manipulacija opasnih za ljudsko zdravlje.
Collapse
|
1224
|
Lee SJ, van der Heiden IP, Goldstein JA, van Schaik RHN. A new CYP3A5 variant, CYP3A5*11, is shown to be defective in nifedipine metabolism in a recombinant cDNA expression system. Drug Metab Dispos 2007; 35:67-71. [PMID: 17035598 PMCID: PMC3302370 DOI: 10.1124/dmd.106.012310] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A new CYP3A5 variant, CYP3A5*11, was found in a white European subject by DNA sequencing. The CYP3A5*11 allele contains a single nucleotide polymorphism (SNP) (g.3775A>G) in exon 2, which results in a Tyr53Cys substitution, and a g.6986A>G splice change, the latter SNP previously reported in the defective CYP3A5*3 allele. However, the CYP3A5*3 is not a null allele because this variant is associated with leaky splicing, resulting in small amounts of functional protein still being produced. Therefore, we constructed a cDNA coding for the newly identified CYP3A5.11 protein by site-directed mutagenesis, expressed it in Escherichia coli, and partially purified it. Whereas bacteria transformed with wild-type CYP3A5*1 cDNA expressed predominantly cytochrome P450 (P450), those transfected with CYP3A5*11 expressed a significant amount of denatured cytochrome P420 in addition to P450, suggesting the protein to be unstable. CYP3A5.11 exhibited a 38% decrease in the V(max) for nifedipine metabolism, a 2.7-fold increase in the K(m), and a 4.4-fold decrease in the CL(int) of nifedipine compared with CYP3A5.1. A polymerase chain reaction-restriction fragment length polymorphism genotyping procedure was developed and used to genotype DNA of 500 white individuals for CYP3A5*11. No additional examples of this allele were identified. In summary, individuals carrying the rare CYP3A5*11 allele are predicted to have lower metabolism of CYP3A5 substrates than individuals expressing CYP3A5*3.
Collapse
Affiliation(s)
- Su-Jun Lee
- Department of Clinical Chemistry, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
1225
|
Ariyoshi N, Shimizu Y, Kobayashi Y, Nakamura H, Nakasa H, Nakazawa K, Ishii I, Kitada M. Identification and Partial Characterization of a Novel CYP2C9 Splicing Variant Encoding a Protein Lacking Eight Amino Acid Residues. Drug Metab Pharmacokinet 2007; 22:187-94. [PMID: 17603219 DOI: 10.2133/dmpk.22.187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CYP2C9 is known as an enzyme responsible for the metabolism of various clinically important drugs. Recently, we cloned a cDNA corresponding to a CYP2C9 splicing variant (SV), which seemed to have an open reading frame of a protein with 482 amino acid residues. To investigate whether or not the SV can be translated as a functionally active protein, we expressed the CYP2C9SV in insect cells, and spectrophotometric and enzymatic properties were characterized. The CYP2C9SV protein showed a typical reduced CO-difference spectrum, indicating that the translated protein binds a heme moiety. However, CYP2C9SV did not metabolize tolbutamide or diclofenac at all, suggesting that the SV protein appeared to lack the ability to catalyze reactions mediated by CYP2C9. Although the CYP2C9SV mRNA was detected in all human liver samples examined in this study by real-time PCR, the level was generally low, ranging between 0.7 and 9.6% of the normal CYP2C9 mRNA. These results suggest that the CYP2C9SV protein is unlikely to contribute to CYP2C9 activities, although it appears to be expressed in most individuals.
Collapse
Affiliation(s)
- Noritaka Ariyoshi
- Division of Pharmacy, University Hospital, Chiba University School of Medicine, Chiba, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
1226
|
Renders L, Frisman M, Ufer M, Mosyagin I, Haenisch S, Ott U, Caliebe A, Dechant M, Braun F, Kunzendorf U, Cascorbi I. CYP3A5 genotype markedly influences the pharmacokinetics of tacrolimus and sirolimus in kidney transplant recipients. Clin Pharmacol Ther 2006; 81:228-34. [PMID: 17192769 DOI: 10.1038/sj.clpt.6100039] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is currently not clear whether the concentration-time curves of the immunosuppressants differ with respect to the CYP3A5, MDR1, or MRP2 genotype in dose-adapted stable kidney transplant patients. Dose/trough concentration ratios were obtained in 134 tacrolimus and 20 sirolimus-treated patients, and plasma concentration-time profiles were obtained from 16 (tacrolimus) and 10 (sirolimus) patients. Genotyping was carried out for CYP3A5 6986A>G; ABCB1 2677G>T/A, 3435C>T and ABCC2 -24C>T; 1249G>A; 3972C>T. Dose/trough concentration ratios were 0.67+/-0.3 and 1.36+/-0.73 x 10(3) l (P<0.00001) for tacrolimus and 0.42+/-0.17 and 0.84+/-0.46 x 10(3) l (P=0.18) for sirolimus in CYP3A5 non-expressors and expressors. The unadjusted tacrolimus area under curve (AUC)(0-12) was 106.8+/-17.5 ng/ml x h compared with 133.3+/-42.2 ng/ml x h (P=0.37) without affecting serum creatinine. Mean unadjusted AUC(0-24) of sirolimus did not differ significantly either. Therefore, CYP3A5 expressor status and not transporter variants is a main determinant of oral clearance, particularly for tacrolimus. Dose adaptation according to trough levels, however, appears to be sufficient to maintain similar concentration-time profiles.
Collapse
Affiliation(s)
- L Renders
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1227
|
Girnita DM, Webber SA, Ferrell R, Burckart GJ, Brooks MM, McDade KK, Chinnock R, Canter C, Addonizio L, Bernstein D, Kirklin JK, Girnita AL, Zeevi A. Disparate Distribution of 16 Candidate Single Nucleotide Polymorphisms Among Racial and Ethnic Groups of Pediatric Heart Transplant Patients. Transplantation 2006; 82:1774-80. [PMID: 17198275 DOI: 10.1097/01.tp.0000250656.33731.08] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Allograft failure in African-Americans remains higher than in Caucasians. Single nucleotide polymorphisms (SNPs) have been associated with altered allograft outcomes. METHODS In this multi-center study we compared SNP frequencies in 364 pediatric heart recipients from three ethnic/racial groups: Caucasian (n = 243), African-American (n = 39), and Hispanic (n = 82). The target genes were: tumor necrosis factor-alpha, interleukin (IL)-10, IL-6, interferon (IFN)-gamma, vascular endothelial growth factor (VEGF), transforming growth factor-beta1, Fas, FasL, granzyme B, ABCB1, CYP3A5. RESULTS Compared to Caucasians, African-Americans exhibited a higher prevalence of genotypes associated with low expression of IFN-gamma (24% vs. 45.7%, P < 0.001) and IL-10 (33% vs. 57.1%, P = 0.052). African-Americans also exhibited an increased prevalence of high IL-6 (82.9% vs. 38.1%; P < 0.001). VEGF -2578 C/C and -460 C/C genotypes were found more frequently in African-Americans and Hispanics as compared to Caucasians (P < 0.001). G/G genotype of Fas and T/T genotype of FasL were expressed more often by African-American recipients. The prevalence of Granzyme B (-295A/G) genotype was differentially distributed in the three groups. Compared with Caucasians, African-Americans were twice as likely to carry the ABCB1 2677 G/G genotype (78.6% vs. 33.7%, P < 0.0025), and they were more frequent carriers of the CYP3A5 *1/*1 genotype (35.7% vs. 0.6% in Caucasians and 7.2% in Hispanics; P < 0.001). CONCLUSION African-Americans have a genetic background that may predispose to proinflammatory/lower regulatory environment, reduced drug exposure and immunosuppressive efficacy. In this ongoing multicenter study, these gene polymorphisms differences among ethnic/racial groups are being documented so that therapeutic strategies can be devised to optimize outcomes for pediatric transplant recipients.
Collapse
Affiliation(s)
- Diana M Girnita
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1228
|
Lee SJ, Jusko WJ, Salaita CG, Calis KA, Jann MW, Spratlin VE, Goldstein JA, Hon YY. Reduced methylprednisolone clearance causing prolonged pharmacodynamics in a healthy subject was not associated with CYP3A5*3 allele or a change in diet composition. J Clin Pharmacol 2006; 46:515-26. [PMID: 16638735 PMCID: PMC4182867 DOI: 10.1177/0091270006287588] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The influence of diet and genetics was investigated in a healthy white person who had distinctly low methylprednisolone clearance. Pharmacokinetic and pharmacodynamic parameter values were similar on 2 occasions during the consumption of a low-carbohydrate diet and a Weight Watchers diet, indicating that the decreased clearance was unlikely attributable to a change in diet composition. Although the subject was found to be homozygous for CYP3A5*3, genetic findings were not significant for a number of other CYP3A4 and CYP3A5 allelic variants. Because of the high prevalence of CYP3A5*3/*3 in whites and because 5 of 7 white control subjects are also homozygous for CYP3A5*3, this genotype cannot fully explain the reduced metabolism of the drug. Other genetic or contributing factors might have been involved. New polymerase chain reaction-based genotyping methods for functionally defective CYP3A5*6, *8, *9, and *10 alleles were developed in this study. These assays will be useful for CYP3A5 genotype analysis in future clinical studies.
Collapse
Affiliation(s)
- Su-Jun Lee
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
1229
|
Meletiadis J, Chanock S, Walsh TJ. Human pharmacogenomic variations and their implications for antifungal efficacy. Clin Microbiol Rev 2006; 19:763-87. [PMID: 17041143 PMCID: PMC1592689 DOI: 10.1128/cmr.00059-05] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pharmacogenomics is defined as the study of the impacts of heritable traits on pharmacology and toxicology. Candidate genes with potential pharmacogenomic importance include drug transporters involved in absorption and excretion, phase I enzymes (e.g., cytochrome P450-dependent mixed-function oxidases) and phase II enzymes (e.g., glucuronosyltransferases) contributing to metabolism, and those molecules (e.g., albumin, A1-acid glycoprotein, and lipoproteins) involved in the distribution of antifungal compounds. By using the tools of population genetics to define interindividual differences in drug absorption, distribution, metabolism, and excretion, pharmacogenomic models for genetic variations in antifungal pharmacokinetics can be derived. Pharmacogenomic factors may become especially important in the treatment of immunocompromised patients or those with persistent or refractory mycoses that cannot be explained by elevated MICs and where rational dosage optimization of the antifungal agent may be particularly critical. Pharmacogenomics has the potential to shift the paradigm of therapy and to improve the selection of antifungal compounds and adjustment of dosage based upon individual variations in drug absorption, metabolism, and excretion.
Collapse
Affiliation(s)
- Joseph Meletiadis
- Pediatric Oncology Branch, National Cancer Institute, CRC, 1-5750 10 Center Drive, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
1230
|
Buratti FM, Leoni C, Testai E. Foetal and adult human CYP3A isoforms in the bioactivation of organophosphorothionate insecticides. Toxicol Lett 2006; 167:245-55. [PMID: 17110060 DOI: 10.1016/j.toxlet.2006.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 10/09/2006] [Accepted: 10/13/2006] [Indexed: 11/30/2022]
Abstract
In humans organophosphorothionate pesticides (OPT) prenatal exposure has been demonstrated. Since OPT-induced neurodevelopmental effects may be due to in situ bioactivation by foetal enzymes, the catalytic activity of the foetal CYP3A7 toward chlorpyrifos (CPF), parathion (PAR), malathion (MAL) and fenthion (FEN) has been assessed by using recombinant enzymes. A comparison with the adult isoforms CYP3A4 and CYP3A5 has been also carried out. CYP3A7 was able to produce significant levels of oxon or sulfoxide from the four OPTs in the range of tested concentrations (0.05-200 microM). When the efficiencies of CYP3A isoforms were compared, the ranking, expressed as CLi values, were: CPF=3A4>3A5>3A7; PAR=3A4>>3A7>>3A5; MAL=3A4>3A7>3A5; FEN (sulfoxide formation)=3A4>3A5>>3A7. The CYP3A5 efficiency appeared to be more dependent on the single insecticide than its related isozyme CYP3A4. Our results indicate that the levels of toxic metabolite formed in situ by CYP3A7 from CPF, MAL and PAR but not from FEN have the chance to inhibit acetylcholinesterase, following prenatal exposure to OPTs. However, due to the smaller weight of foetal liver, the contribution to total OPT biotransformation is relatively low. On the other hand, our results clearly indicate that at low CPF concentrations, the formation of the non-toxic metabolites is highly favoured in the foetus.
Collapse
Affiliation(s)
- Franca M Buratti
- Environment and Primary Prevention Department, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy
| | | | | |
Collapse
|
1231
|
Niwa T, Shiraga T, Omura M, Kondo T, Kuroda M, Takagi A. [Effect of genetic polymorphism of cytochrome P450 3A and transporter gene on pharmacokinetics of tacrolimus, a calcineurin inhibitor]. Nihon Yakurigaku Zasshi 2006; 128:395-404. [PMID: 17167213 DOI: 10.1254/fpj.128.395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
1232
|
Roy JN, Barama A, Poirier C, Vinet B, Roger M. Cyp3A4, Cyp3A5, and MDR-1 genetic influences on tacrolimus pharmacokinetics in renal transplant recipients. Pharmacogenet Genomics 2006; 16:659-65. [PMID: 16906020 DOI: 10.1097/01.fpc.0000220571.20961.dd] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The immunosuppressive drug tacrolimus requires strict therapeutic monitoring due to its narrow therapeutic index and great inter-individual variability. Cytochrome P450 3A4 (Cyp3A4) and Cyp3A5 are the most important contributors to tacrolimus metabolism while the P-glycoprotein pump (MDR-1) modulates its bioavailability. The objective was to investigate the association between Cyp3A4, Cyp3A5, and MDR-1 polymorphisms and tacrolimus pharmacokinetics in the early period after renal transplantation. METHODS Forty-four renal transplant recipients were genotyped for 8 Cyp3A4, 7 Cyp3A5, and 5 MDR-1 genetic variants affecting the proteins' expression and/or function. Dose-adjusted tacrolimus though levels were determined during the first week after transplantation and correlated with corresponding genotype. RESULTS We found no correlation between Cyp3A4 polymorphism and tacrolimus pharmacokinetics. Patients who do not carry both Cyp3A5*3 alleles achieved lower mean dose-adjusted tacrolimus blood concentrations (p<0.001) and needed a longer time to reach the target concentration (10-12 ng/ml; p<0.001) compared to Cyp3A5*3 homozygotes. Patients with less than three copies of MDR-1 (T-129C, C3435T and G2677T) polymorphisms, associated with reduced expression of P-glycoprotein, had also lower dose-adjusted tacrolimus blood concentrations compared to patients having equal to or greater than three copies of MDR-1 genetic variants (P=0.003). There was no difference in the rate of biopsy-confirmed acute rejection among groups during the first 3 months after transplantation. CONCLUSION The complete absence of Cyp3A5*3 allele and the accumulation of less than three copies of MDR-1 (T-129C, C3435T and G2677T) polymorphisms are associated with lower tacrolimus blood levels identifying these genotypes as markers for patients requiring higher tacrolimus doses.
Collapse
Affiliation(s)
- Jean Nicholas Roy
- Laboratoire d'immunogénétique, Centre hospitalier de l'Université de Montréal (CHUM)-Hôpital Notre-Dame, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
1233
|
Hahn NM, Marsh S, Fisher W, Langdon R, Zon R, Browning M, Johnson CS, Scott-Horton TJ, Li L, McLeod HL, Sweeney CJ. Hoosier Oncology Group randomized phase II study of docetaxel, vinorelbine, and estramustine in combination in hormone-refractory prostate cancer with pharmacogenetic survival analysis. Clin Cancer Res 2006; 12:6094-9. [PMID: 17062685 DOI: 10.1158/1078-0432.ccr-06-1188] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine the safety and efficacy of two docetaxel doublets in hormone-refractory prostate cancer (HRPC) patients and to examine the prognostic role of polymorphisms in host genes important to docetaxel metabolism and transport. EXPERIMENTAL DESIGN Sixty-four chemotherapy-naive patients with HRPC were randomized to docetaxel and vinorelbine (D, 20 mg/m2 i.v. days 1 and 8; V, 25 mg/m2 i.v. days 1 and 8) or docetaxel and estramustine phosphate (D, 60-70 mg/m2 i.v. day 1; E, 280 mg oral thrice daily days 1-5) administered q21d. Primary end point was clinically significant toxicity. A pharmacogenetic analysis of host genes was done in patients who received at least one cycle of docetaxel therapy. RESULTS Grade 3/4 toxicity occurred in 15.6% of DV patients and in 28.6% DE patients. Neither arm exceeded the threshold of clinically significant toxicity. In the DV arm, objective response rate was 33%, prostate-specific antigen response rate was 20%, and median survival was 16.2 months. In the DE arm, objective response rate was 67%, prostate-specific antigen response rate was 43%, and median survival was 19.7 months. Pharmacogenetic analyses showed a significant association between survival beyond 15 months and the ABCG2 421 C > A (Q141K) polymorphism compared with the wild-type (C/C) genotype (66% versus 27%; P = 0.05). CONCLUSIONS DV and DE doublets are active with a tolerable toxicity profile in patients with HRPC; however, efficacy does not seem superior to standard single-agent docetaxel. The ABCG2 421 C > A (Q141K) polymorphism may be an important predictor of response and survival in HRPC patients treated with docetaxel-based chemotherapy.
Collapse
Affiliation(s)
- Noah M Hahn
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1234
|
Moy B, Tu D, Pater JL, Ingle JN, Shepherd LE, Whelan TJ, Goss PE. Clinical outcomes of ethnic minority women in MA.17: a trial of letrozole after 5 years of tamoxifen in postmenopausal women with early stage breast cancer. Ann Oncol 2006; 17:1637-43. [PMID: 16936184 DOI: 10.1093/annonc/mdl177] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Aromatase inhibitors are widely employed in the adjuvant treatment of early stage breast cancer. The impact of aromatase inhibitors has not been established in ethnic minority women. PATIENTS AND METHODS The purpose of this study was to evaluate the impact of letrozole on minority women in MA.17, a placebo-controlled trial of letrozole following 5 years of tamoxifen in postmenopausal women with early stage breast cancer. Retrospective comparison of disease-free survival (DFS), side effects, and mean changes in quality of life (QOL) scores from baseline between Caucasian and minority women was performed. RESULTS Minority (n = 352) and Caucasian (n = 4708) women were analyzed. There was no difference between these groups in DFS (91.6% versus 92.4% respectively for 4 year DFS). Letrozole, compared with placebo, significantly improved DFS for Caucasians (HR = 0.55; P < 0.0001) but not for minorities (HR = 1.39; P = 0.53). Among women who received letrozole, minorities had a significantly lower incidence of hot flashes (49% versus 58%; P = 0.02), fatigue (29% versus 39%; P = 0.005), and arthritis (2% versus 7%; P = 0.006) compared with Caucasians. Mean change in QOL scores for minority women who received letrozole demonstrated improved mental health at the 6-month assessment (P = 0.02) and less bodily pain at the 12-month assessment (P = 0.046). CONCLUSION Letrozole improved DFS in Caucasians but a definite benefit in minority women has not yet been demonstrated. Minority women tolerated letrozole better than Caucasians in terms of toxicity. These results need confirmation in other trials of aromatase inhibitors.
Collapse
Affiliation(s)
- B Moy
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | | | | | |
Collapse
|
1235
|
Wilke RA. Translational pharmacogenetics and risk management in the cardiovascular arena: CYP3A5*3 model for gene-based drug selection. Per Med 2006; 3:385-390. [PMID: 29788593 DOI: 10.2217/17410541.3.4.385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The clinical community is moving rapidly toward the prospective application of gene-based drug dosing. Specifically within the cardiovascular arena, the cytochrome P450 (CYP)3A5*3 allele may represent an optimal starting point. All CYP3A5*3 alleles contain an A6986G transition in intron 3, which reduces enzyme expression through the introduction of a premature stop codon. The current review explores four potential reasons why the clinical and scientific communities should consider including CYP3A5*3 in any panel of gene polymorphisms developed for the purpose of guiding cardiovascular pharmacotherapy: the CYP3A enzyme family metabolizes nearly half of all prescription drugs; the CYP3A enzyme family metabolizes several drugs utilized for primary and secondary risk reduction in the context of coronary artery disease; the CYP3A5*3 allele has been associated with differential outcomes related to lipid lowering therapy; and the CYP3A5*3 allele is highly prevalent in all populations studied to date.
Collapse
Affiliation(s)
- Russell A Wilke
- Marshfield Clinic Research Foundation, Center for Human Genetics, 1000 North Oak Avenue, Marshfield, Wisconsin 54449, USA.
| |
Collapse
|
1236
|
Chu XM, Hao HP, Wang GJ, Guo LQ, Min PQ. Influence of CYP3A5 genetic polymorphism on cyclosporine A metabolism and elimination in Chinese renal transplant recipients. Acta Pharmacol Sin 2006; 27:1504-8. [PMID: 17049128 DOI: 10.1111/j.1745-7254.2006.00428.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM To investigate whether the CYP3A5*3 polymorphism would affect cyclosporine A (CsA) metabolism in Chinese renal transplant patients. METHODS The CYP3A5*3 genotype was determined in Chinese renal transplant recipients using polymerase chain reaction and amplification of specific alleles (PCR-ASA). The concentrations of CsA and metabolites were separately measured by fluorescence polarization immunoassay and dose-adjusted trough concentrations and metabolic ratio (MR) values were calculated. RESULTS The trough concentrations adjusted with the dose was significantly higher in the wild allele carriers compared to both the homozygous (*3*3) and heterozygous variants (*1*3). However, no significant difference was found for the dose-adjusted metabolite concentrations. The MR values for the 3 genotype groups were as follows: 0.92+/-0.62 for CYP3A5*3/ *3 (n=14), 0.99+/-0.51 for CYP3A5*1/*3 (n=15), and 1.45+/-0.62 for CYP3A5*1/*1 (n=9), respectively. Post hoc comparisons showed that only the MR values between the CYP3A5*3/*3 group and the CYP3A5*1/*1 group were significantly different. CONCLUSION The CYP3A5*3 polymorphism exerted little effect on cyclosporine metabolism. The MR may be a more accurate indicator for therapeutic drug monitoring, considering its integrated information on body exposure of both parent drugs and metabolites.
Collapse
Affiliation(s)
- Xiao-man Chu
- Department of Clinical Pharmacology, General Hospital of Nanjing Military Area, Nanjing 210002, China
| | | | | | | | | |
Collapse
|
1237
|
Haufroid V, Wallemacq P, VanKerckhove V, Elens L, De Meyer M, Eddour DC, Malaise J, Lison D, Mourad M. CYP3A5 and ABCB1 polymorphisms and tacrolimus pharmacokinetics in renal transplant candidates: guidelines from an experimental study. Am J Transplant 2006; 6:2706-13. [PMID: 17049058 DOI: 10.1111/j.1600-6143.2006.01518.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Genetic polymorphisms in biotransformation enzyme CYP3A5 (6986G > A, CYP3A5*3; 14690A > G, CYP3A5*6) and drug transporter ABCB1 (1236C > T; 2677G > T/A; 3435C > T) are known to influence tacrolimus (Tac) dose requirements and trough blood levels in stable transplant patients. In a group of 19 volunteers selected with relevant genotypes among a list of 221 adult renal transplant candidates, we evaluated whether consideration of CYP3A5 and ABCB1 genetic polymorphisms could explain the interindividual variability in Tac pharmacokinetics after the first administration of a standard dose (0.1 mg/kg body weight twice a day). Lower area under the time versus blood concentration curves (AUC) or lower trough concentrations were observed among CYP3A5 expressors (n = 9) than among nonexpressors (n = 10) using two different analytical methods for Tac determination (liquid chromatography with tandem mass spectrometry (LC-MS/MS) and immunoassay). The median AUC(0-infinity) was 2.6- and 2.1-fold higher in nonexpressors for LC-MS/MS and immunologic methods, respectively. No difference was observed in Tac pharmacokinetic parameters in relation to ABCB1 polymorphisms. In conclusion, our study confirms the very significant effect of CYP3A5 polymorphism early after the first administration of Tac. It also provides a strong argument for a doubling of the loading dose in patients early identified a priori on the transplantation list as possessing at least one CYP3A5*1 allele.
Collapse
Affiliation(s)
- V Haufroid
- Industrial and Environmental Toxicology Unit, Université catholique de Louvain, St. Luc Hospital, Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
1238
|
Higgins RSD, Fishman JA. Disparities in solid organ transplantation for ethnic minorities: facts and solutions. Am J Transplant 2006; 6:2556-62. [PMID: 16952299 DOI: 10.1111/j.1600-6143.2006.01514.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Diversity and Minority Affairs Committee of the American Society of Transplantation (AST) convened a symposium to examine organ transplantation in underserved and minority populations. The goals of the meeting included 'benchmarking' of solid organ transplantation among minority populations, review of the epidemiology of end-organ damage, exploration of barriers to transplantation services and development of approaches to eliminate disparities. Participants noted that minority populations were more likely to be adversely affected by limited preventive medical care, lack of counseling regarding transplant options, and delays in transplant referrals for organ transplantation. These features largely reflect economic disadvantage as well as the reduced presence of minority professionals with training in transplant-related specialties. Participants in the conference noted that recent changes in organ allocation policies had improved access to minority individuals once listed for renal transplantation. Similar advances will be needed for other organs to address inequities in pretransplant care and underrepresentation of minorities among transplant professionals. The biologic basis of differences in transplant outcomes for minority recipients has not been adequately studied. Research funds must be targeted to address biologic mechanisms underlying disparate transplant outcomes including the impacts of environment, education, poverty and lifestyle choices.
Collapse
Affiliation(s)
- R S D Higgins
- Rush University Medical Center, Department of Cardiovascular and Thoracic Surgery, Chicago, Illinois, USA
| | | |
Collapse
|
1239
|
Stearns V, Schneider B, Henry NL, Hayes DF, Flockhart DA. Breast cancer treatment and ovarian failure: risk factors and emerging genetic determinants. Nat Rev Cancer 2006; 6:886-93. [PMID: 17036039 DOI: 10.1038/nrc1992] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Most premenopausal women diagnosed with primary breast cancer receive adjuvant chemotherapy, and many experience chemotherapy-induced ovarian failure (CIOF). CIOF is associated with menopausal symptoms, fertility concerns and long-term implications including bone loss. Ironically, CIOF might confer a disease-specific benefit to women whose breast cancers express hormone receptors. Risk factors of CIOF include the woman's age at the time of therapy, and the type, dose and schedule of chemotherapy. Because inherited genetic factors have an important role in determining who will experience CIOF, genetic testing has the potential to provide optimal counselling about risks and possible interventions.
Collapse
Affiliation(s)
- Vered Stearns
- Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | |
Collapse
|
1240
|
Gaedigk A, Baker DW, Totah RA, Gaedigk R, Pearce RE, Vyhlidal CA, Zeldin DC, Leeder JS. Variability of CYP2J2 expression in human fetal tissues. J Pharmacol Exp Ther 2006; 319:523-32. [PMID: 16868033 PMCID: PMC1876721 DOI: 10.1124/jpet.106.109215] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP2J2 metabolizes arachidonic acid to 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids (EETs), which play a critical role in the regulation of renal, pulmonary, cardiac, and vascular function. However, the contribution of CYP2J2 to EET formation in the liver remains poorly characterized. Likewise, information is sparse regarding the extent and variability of CYP2J2 expression during human development. This investigation was undertaken to characterize the variability of CYP2J2 expression in fetal liver, heart, kidney, lung, intestine, and brain and in postnatal liver samples. CYP2J2 mRNA expression was measured using quantitative polymerase chain reaction, and immunoreactive CYP2J2 was examined using two anti-CYP2J2 antibodies. CYP2J2 mRNA was ubiquitously expressed in pre- and postnatal samples. Fetal hepatic mRNA expression varied 127-fold (1351 +/- 717 transcripts/ng total RNA), but this variation was reduced to 8-fold after exclusion of four samples with extremely low levels of mRNA. Amounts of immunoreactive protein also varied substantially among samples without an apparent relationship with transcript number or genotype. Western blot analysis revealed a different protein pattern between prenatal and postnatal liver samples. DNA resequencing of selected subjects identified a single novel single-nucleotide polymorphism (CYP2J2*10), which was found in only one subject and therefore did not explain the large variability in CYP2J2 protein content. In vitro expression suggests that the protein product of CYP2J2*10 confers reduced enzymatic activity. Aberrant splicing produces three minor transcripts, which were present in all samples tested. Due to premature termination codons, none encodes functional protein. The mechanisms leading to variable amounts of immunoreactive protein and distinct pre- and postnatal CYP2J2 protein patterns warrant further investigation.
Collapse
Affiliation(s)
- Andrea Gaedigk
- Children's Mercy Hospital, Division of Clinical Pharmacology, 2401 Gillham Rd., Kansas City, MO 64108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1241
|
Abraham J, Earl HM, Pharoah PD, Caldas C. Pharmacogenetics of cancer chemotherapy. Biochim Biophys Acta Rev Cancer 2006; 1766:168-83. [PMID: 17141416 DOI: 10.1016/j.bbcan.2006.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 10/10/2006] [Accepted: 10/18/2006] [Indexed: 10/24/2022]
Abstract
Significant heterogeneity in the efficacy and toxicity of chemotherapeutic agents is observed within cancer populations. Pharmacogenetics (PGx) is the study of inheritance in interindividual variation in drug disposition. The allure of pharmacogenetics, in the treatment of cancer patients, comes from the potential for individualisation of cancer therapy, minimizing toxicity, while maximizing efficacy. In this review we will focus on the current and potential clinical applications of pharmacogenetics in cancer therapy by citing relevant examples and discussing the possible approaches which may be used to establish a reliable, reproducible and cost-effective test for clinically relevant genetic polymorphisms, using easily accessible biological samples (e.g., blood and tumour samples). Ideally, routine management of patients would include analysis of their single nucleotide polymorphism linkage disequilibrium (SNP-LD) profile prior to treatment, allowing stratification of patients into treatment groups, thus individualising their therapy. In order to achieve this ambition, a combination of different approaches (candidate gene, genome-wide and pathway driven) will be required from scientists and clinician scientists, as well as an increased understanding and incorporation of pharmacogenetic aims and endpoints into current and future clinical trials.
Collapse
Affiliation(s)
- Jean Abraham
- Cancer Genomics Program, Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Hills Road, Cambridge CB2 2XZ, UK.
| | | | | | | |
Collapse
|
1242
|
Fredericks S, Moreton M, Reboux S, Carter ND, Goldberg L, Holt DW, MacPhee IAM. Multidrug resistance gene-1 (MDR-1) haplotypes have a minor influence on tacrolimus dose requirements. Transplantation 2006; 82:705-8. [PMID: 16969296 DOI: 10.1097/01.tp.0000234942.78716.c0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
P-glycoprotein (P-gp) and the drug metabolizing enzymes have major pharmacokinetic effects. Variability in tacrolimus absorption is influenced by P-gp activity which, in turn, is affected by single nucleotide polymorphisms (SNPs) within the multidrug resistance-1 gene (MDR-1). Tacrolimus dose requirements of 206 stable renal transplant patients were related to MDR-1 genotypes of SNPs C1236T, G2677T/A and C3435T, as well as haplotypes: C-G-C and T-T-T. Lower dose-normalized blood tacrolimus concentrations were achieved for: 2677-GG genotype patients, as compared to 2677-TT, and for 3435-CC patients as compared to 3435-TT patients. There was a small, but significant, difference in dose requirements between haplotypes C-G-C and T-T-T patients, which was not significant when patients were subclassified as producers and non-producers of cytochrome P450 3A5 (CYP3A5). The activities of CYP3A5 and P-gp have been shown to influence bioavailability of several drugs. Our data suggest that MDR-1 haplotypes have a relatively minor association with tacrolimus pharmacokinetics.
Collapse
Affiliation(s)
- Salim Fredericks
- Analytical Unit, Cardiac and Vascular Sciences, St. George's-University of London, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
1243
|
Abstract
Blood pressure response to changes in dietary salt intake is highly variable among individuals. This heterogeneity results from the combined effects of genetic and environmental determinants. In recent years, considerable progress has been made in our understanding of the pathogenic mechanisms leading to the development of salt-sensitive hypertension. Much information has come from the investigation of rare monogenic forms of salt-sensitive hypertension, which has focused attention on alterations of renal sodium handling occurring essentially in the distal nephron. In this paper, we review the experimental, clinical, genetic, and epidemiologic evidence suggesting that proximal tubular function is also an important determinant of the blood pressure response to salt, which deserves greater attention.
Collapse
Affiliation(s)
- Michel Burnier
- Service de Néphrologie, CHUV, Rue du Bugnon 17, 1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
1244
|
Haas S, Pierl C, Harth V, Pesch B, Rabstein S, Brüning T, Ko Y, Hamann U, Justenhoven C, Brauch H, Fischer HP. Expression of xenobiotic and steroid hormone metabolizing enzymes in human breast carcinomas. Int J Cancer 2006; 119:1785-91. [PMID: 16721811 DOI: 10.1002/ijc.21915] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The potential to metabolize endogenous and exogenous substances may influence breast cancer development and tumor growth. Therefore, the authors investigated the protein expression of Glutathione S-transferase (GST) isoforms and cytochrome P450 (CYP) known to be involved in the metabolism of steroid hormones and endogenous as well as exogenous carcinogens in breast cancer tissue to obtain new information on their possible role in tumor progression. Expression of GST pi, mu, alpha and CYP1A1/2, 1A2, 3A4/5, 1B1, 2E1 was assessed by immunohistochemistry for primary breast carcinomas of 393 patients from the German GENICA breast cancer collection. The percentages of positive tumors were 50.1 and 44.5% for GST mu and CYP2E1, and ranged from 13 to 24.7% for CYP1A2, GST pi, CYP1A1/2, CYP3A4/5, CYP1B1. GST alpha was expressed in 1.8% of tumors. The authors observed the following associations between strong protein expression and histopathological characteristics: GST expression was associated with a better tumor differentiation (GST mu, p = 0.018) and with reduced lymph node metastasis (GST pi, p = 0.02). In addition, GST mu expression was associated with a positive estrogen receptor and progesterone receptor status (p < 0.001). CYP3A4/5 expression was associated with a positive nodal status (p = 0.018). Expression of CYP1B1 was associated with poor tumor differentiation (p = 0.049). Our results demonstrate that the majority of breast carcinomas expressed xenobiotic and drug metabolizing enzymes. They particularly suggest that GST mu and pi expression may indicate a better prognosis and that strong CYP3A4/5 and CYP1B1 expression may be key features of nonfavourable prognosis.
Collapse
Affiliation(s)
- Susanne Haas
- Institute of Pathology, Medical Faculty of the University of Bonn, Sigmund Freud Street 25, D-53127 Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1245
|
Saito YA, Camilleri M. Clinical application of pharmacogenetics in gastrointestinal diseases. Expert Opin Pharmacother 2006; 7:1857-69. [PMID: 17020413 DOI: 10.1517/14656566.7.14.1857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As knowledge of the human genome grows, there will be a direct impact on the management of specific diseases. Within gastroenterology and hepatology, there has been a change in the understanding of how variations or mutations in genes involved in drug metabolism or disease pathophysiology affect response to therapy. This review discusses the application of clinical pharmacogenetics to the following diseases and disorders: inflammatory bowel disease, Helicobacter pylori infections, gastroesophageal reflux disease, irritable bowel syndrome, functional dyspepsia, liver transplantation and colon cancer. Although only a few genotyping tests are regularly used in clinical practice, it is anticipated that studies will propel the routine use of many of the tests described in this review, in the future.
Collapse
Affiliation(s)
- Yuri A Saito
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Clinical Enteric Neuroscience Translational and Epidemiological Research, Charlton 8-110, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
1246
|
Bolufer P, Barragan E, Collado M, Cervera J, López JA, Sanz MA. Influence of genetic polymorphisms on the risk of developing leukemia and on disease progression. Leuk Res 2006; 30:1471-91. [PMID: 17023046 DOI: 10.1016/j.leukres.2006.01.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 01/09/2006] [Accepted: 01/30/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND Recent studies have provided evidence that common genetic variations with low penetrance could account for a proportion of leukemia and could also influence disease outcome, although the results obtained are still controversial. MATERIAL AND METHODS We reviewed 54 recent reports focused on the contribution of genetic polymorphisms to the risk of developing leukemia and to disease progression. The polymorphisms of genes encoding drug-metabolising enzymes (CYP family, NQO1, GSTT1, GSTM1, GSTP1), enzymes involved in folate metabolism (MTHFR, TYMS, SHMT1, MTRR), and DNA repair enzymes (XPD, XPG, RAD51, XRCC1, XRCC3, CHEK2, ATM) were considered in the review. RESULTS There was a good agreement on the influence of NQO1*2 polymorphism and those of the enzymes involved in DNA repair with the increased risk of therapy-related leukemia/myelodysplastic syndrome. Most studies found a strong association between the polymorphisms MTHFR, C677T or A1298C, and NQO1*2 or *3 and the risk of acute lymphoblastic leukemia (ALL). In addition, most of the studies reported an association between GSTT1 deletions and an increased risk of de novo acute myeloid leukemia. In ALL, polymorphisms in the genes of folate metabolism are associated with poor prognosis, and the 3R3R TYMS polymorphism in particular is associated with methotrexate resistance. CONCLUSION The reports reviewed support the hypothesis that several low-penetrance genes with multiplicative effects together with dietary effects, ambient exposition, and individual immune system responses, may account for the risk of leukaemia.
Collapse
Affiliation(s)
- Pascual Bolufer
- Laboratory of Molecular Biology, Department of Medical Biopathology, Hospital Universitario La Fe, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
1247
|
Bosch TM, Huitema ADR, Doodeman VD, Jansen R, Witteveen E, Smit WM, Jansen RL, van Herpen CM, Soesan M, Beijnen JH, Schellens JHM. Pharmacogenetic Screening of CYP3A and ABCB1 in Relation to Population Pharmacokinetics of Docetaxel. Clin Cancer Res 2006; 12:5786-93. [PMID: 17020985 DOI: 10.1158/1078-0432.ccr-05-2649] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Despite the extensive clinical experience with docetaxel, unpredictable interindividual variability in efficacy and toxicity remain important limitations associated with the use of this anticancer drug. Large interindividual pharmacokinetic variability has been associated with variation in toxicity profiles. Genetic polymorphisms in drug-metabolizing enzymes and drug transporters could possibly explain the observed pharmacokinetic variability. The aim of this study was therefore to investigate the influence of polymorphisms in the CYP3A and ABCB1 genes on the population pharmacokinetics of docetaxel. EXPERIMENTAL DESIGN Whole blood samples were obtained from patients with solid tumors and treated with docetaxel to quantify the exposure to docetaxel. DNA was collected to determine polymorphisms in the CYP3A and ABCB1 genes with DNA sequencing. A population pharmacokinetic analysis of docetaxel was done using nonlinear mixed-effect modeling. RESULTS In total, 92 patients were assessable for pharmacokinetic analysis of docetaxel. A three-compartmental model adequately described the pharmacokinetics of docetaxel. Several polymorphisms in the CYP3A and ABCB1 genes were found, with allele frequencies of 0.54% to 48.4%. The homozygous C1236T polymorphism in the ABCB1 gene (ABCB1*8) was significantly correlated with a decreased docetaxel clearance (-25%; P = 0.0039). No other relationships between polymorphisms and pharmacokinetic variables reached statistical significance. Furthermore, no relationship between haplotypes of CYP3A and ABCB1 and the pharmacokinetics could be identified. CONCLUSIONS The polymorphism C1236T in the ABCB1 gene was significantly related to docetaxel clearance. Our current finding may provide a meaningful tool to explain interindividual differences in docetaxel treatment in daily practice.
Collapse
Affiliation(s)
- Tessa M Bosch
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute/Slotervaart Hospital, Louwesweg 6, 1066 EC Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1248
|
Vyas PM, Roychowdhury S, Khan FD, Prisinzano TE, Lamba J, Schuetz EG, Blaisdell J, Goldstein JA, Munson KL, Hines RN, Svensson CK. Enzyme-mediated protein haptenation of dapsone and sulfamethoxazole in human keratinocytes: I. Expression and role of cytochromes P450. J Pharmacol Exp Ther 2006; 319:488-96. [PMID: 16857728 DOI: 10.1124/jpet.106.105858] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cutaneous drug reactions (CDRs) are among the most common adverse drug reactions and are responsible for numerous minor to life-threatening complications. Several arylamine drugs, such as sulfamethoxazole (SMX) and dapsone (DDS), undergo bioactivation, resulting in adduction to cellular proteins. These adducted proteins may initiate the immune response that ultimately results in a CDR. Recent studies have demonstrated that normal human epidermal keratinocytes (NHEKs) can bioactivate these drugs, resulting in protein haptenation. We sought to identify the enzyme(s) responsible for this bioactivation in NHEKs. Using immunofluorescence confocal microscopy and an adduct-specific enzyme-linked immunosorbent assay (ELISA), we found that N-acetylation of the primary amine of SMX and DDS markedly reduced the level of protein haptenation in NHEKs. Detection of mRNA and/or protein confirmed the presence of CYP3A4, CYP3A5, and CYP2E1 in NHEKs. In contrast, although a faint band suggestive of CYP2C9 protein was detected in one NHEK sample, a CYP2C9 message was not detectable. We also examined the ability of chemical inhibitors of cytochromes P450 (aminobenzotriazole and 1-dichloroethylene) and cyclooxygenase (indomethacin) to reduce protein haptenation when NHEKs were incubated with SMX or DDS by either confocal microscopy or ELISA. These inhibitors did not significantly attenuate protein adduction with either SMX or DDS, indicating that cytochromes P450 and cyclooxygenase do not play important roles in the bioactivation of these xenobiotics in NHEKs and thus suggesting the importance of other enzymes in these cells.
Collapse
Affiliation(s)
- Piyush M Vyas
- Division of Pharmaceutics, College of Pharmacy, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1249
|
Wadelius M, Pirmohamed M. Pharmacogenetics of warfarin: current status and future challenges. THE PHARMACOGENOMICS JOURNAL 2006; 7:99-111. [PMID: 16983400 DOI: 10.1038/sj.tpj.6500417] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Warfarin is an anticoagulant that is difficult to use because of the wide variation in dose required to achieve a therapeutic effect, and the risk of serious bleeding. Warfarin acts by interfering with the recycling of vitamin K in the liver, which leads to reduced activation of several clotting factors. Thirty genes that may be involved in the biotransformation and mode of action of warfarin are discussed in this review. The most important genes affecting the pharmacokinetic and pharmacodynamic parameters of warfarin are CYP2C9 (cytochrome P(450) 2C9) and VKORC1 (vitamin K epoxide reductase complex subunit 1). These two genes, together with environmental factors, partly explain the interindividual variation in warfarin dose requirements. Large ongoing studies of genes involved in the actions of warfarin, together with prospective assessment of environmental factors, will undoubtedly increase the capacity to accurately predict warfarin dose. Implementation of pre-prescription genotyping and individualized warfarin therapy represents an opportunity to minimize the risk of haemorrhage without compromising effectiveness.
Collapse
Affiliation(s)
- M Wadelius
- Department of Medical Sciences, Clinical Pharmacology, Uppsala University Hospital, Uppsala, Sweden.
| | | |
Collapse
|
1250
|
Stanley LA, Horsburgh BC, Ross J, Scheer N, Wolf CR. PXR and CAR: nuclear receptors which play a pivotal role in drug disposition and chemical toxicity. Drug Metab Rev 2006; 38:515-97. [PMID: 16877263 DOI: 10.1080/03602530600786232] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Xenobiotic metabolism and detoxification is regulated by receptors (e.g., PXR, CAR) whose characterization has contributed significantly to our understanding of drug responses in humans. Technologies facilitating the screening of compounds for receptor interactions provide valuable tools applicable in drug development. Most use in vitro systems or mice humanized for receptors in vivo. In vitro assays are limited by the reporter systems and cell lines chosen and are uninformative about effects in vivo. Humanized mouse models provide novel, exciting ways of understanding the functions of these genes. This article evaluates these technologies and current knowledge on PXR/CAR-mediated regulation of gene expression.
Collapse
Affiliation(s)
- Lesley A Stanley
- Consultant in Investigative Toxicology, St. Andrews, Fife, United Kingdom
| | | | | | | | | |
Collapse
|