1251
|
Rahman MM, Masum MHU, Wajed S, Talukder A. A comprehensive review on COVID-19 vaccines: development, effectiveness, adverse effects, distribution and challenges. Virusdisease 2022; 33:1-22. [PMID: 35127995 PMCID: PMC8806010 DOI: 10.1007/s13337-022-00755-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/30/2021] [Indexed: 12/13/2022] Open
Abstract
The present SARS-CoV-2 induced COVID-19 pandemic is responsible for millions of deaths, illnesses, and economic loss worldwide. There are 21 COVID-19 vaccines from different platforms approved worldwide for emergency use until 13 August 2021. Later, BNT162b2 obtained full approval from the FDA. The efficacy of the leading vaccines such as BNT162b2, mRNA-1273, Gam-Covid-Vac, Ad26.COV2.S, ChAdOx1 nCoV-19, and BBIBP-CorV, against SARS-CoV-2 documented as 95%, 94.1%, 91.6%, 67%, 70.4%, and 78.1%, respectively. Moreover, against the Delta variant of SARS-CoV-2, BNT162b2, ChAdOx1 nCoV-19, and BBV152 showed 88%, 70%, and 65.2% efficacy, respectively. Apart from the common adverse effects such as fever, fatigue, headache, and pain in the injection site, Bell's palsy with BNT162b2, myocarditis and pericarditis with mRNA-1273, and thrombosis with ChAdOx1 nCoV-19 have been reported though seemed not alarming. Furthermore, global production and distribution of vaccines should be ensured in an equal and justifiable way that the immunity and protection against the virus would be optimum and persistent.
Collapse
Affiliation(s)
- Md Mijanur Rahman
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814 Bangladesh
| | - Md Habib Ullah Masum
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814 Bangladesh
| | - Shah Wajed
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814 Bangladesh
| | - Asma Talukder
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814 Bangladesh
| |
Collapse
|
1252
|
Dai X, Zhao W, Tong X, Liu W, Zeng X, Duan X, Wu H, Wang L, Huang Z, Tang X, Yang Y. Non-clinical immunogenicity, biodistribution and toxicology evaluation of a chimpanzee adenovirus-based COVID-19 vaccine in rat and rhesus macaque. Arch Toxicol 2022; 96:1437-1453. [PMID: 35226134 PMCID: PMC8883008 DOI: 10.1007/s00204-021-03221-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/23/2021] [Indexed: 01/05/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 has rapidly expanded into a serious global pandemic. Due to the high morbidity and mortality of COVID-19, there is an urgent need to develop safe and effective vaccines. AdC68-19S is an investigational chimpanzee adenovirus serotype 68 (AdC68) vector-based vaccine which encodes the full-length spike protein of SARS-CoV-2. Here, we evaluated the immunogenicity, biodistribution and safety profiles of the candidate vaccine AdC68-19S in Sprague Dawley (SD) rat and rhesus macaque under GLP conditions. To characterize the biodistribution profile of AdC68-19S, SD rats were given a single intramuscular injection of AdC68-19S 2 × 1011 VP/dose. Designated organs were collected on day 1, day 2, day 4, day 8 and day 15. Genomic DNA was extracted from all samples and was further quantified by real-time quantitative polymerase chain reaction (qPCR). To characterize the toxicology and immunogenicity profiles of AdC68-19S, the rats and rhesus macaques were injected intramuscularly with AdC68-19S up to 2 × 1011vp/dose or 4 × 1011vp/dose (2 and fourfold the proposed clinical dose of 1 × 1011vp/dose) on two or three occasions with a 14-day interval period, respectively. In addition to the conventional toxicological evaluation indexes, the antigen-specific cellular and humoral responses were evaluated. We proved that multiple intramuscular injections could elicit effective and long-lasting neutralizing antibody responses and Th1 T cell responses. AdC68-19S was mainly distributed in injection sites and no AdC68-19S related toxicological reaction was observed. In conclusion, these results have shown that AdC68-19S could induce an effective immune response with a good safety profile, and is a promising candidate vaccine against COVID-19.
Collapse
Affiliation(s)
- Xuedong Dai
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Weijun Zhao
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Xin Tong
- Yunnan Walvax Biotech, Co. LTD, Kunming, People's Republic of China
| | - Wei Liu
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Xianhuan Zeng
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Xiaohui Duan
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Hua Wu
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China
| | - Lili Wang
- Yunnan Walvax Biotech, Co. LTD, Kunming, People's Republic of China
| | - Zhen Huang
- Yunnan Walvax Biotech, Co. LTD, Kunming, People's Republic of China.
| | - Xinying Tang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China.
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, 211198, People's Republic of China.
| |
Collapse
|
1253
|
Sweet AN, André NM, Stout AE, Licitra BN, Whittaker GR. Clinical and Molecular Relationships between COVID-19 and Feline Infectious Peritonitis (FIP). Viruses 2022; 14:481. [PMID: 35336888 PMCID: PMC8954060 DOI: 10.3390/v14030481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 01/08/2023] Open
Abstract
The emergence of severe acute respiratory syndrome 2 (SARS-CoV-2) has led the medical and scientific community to address questions surrounding the pathogenesis and clinical presentation of COVID-19; however, relevant clinical models outside of humans are still lacking. In felines, a ubiquitous coronavirus, described as feline coronavirus (FCoV), can present as feline infectious peritonitis (FIP)-a leading cause of mortality in young cats that is characterized as a severe, systemic inflammation. The diverse extrapulmonary signs of FIP and rapidly progressive disease course, coupled with a closely related etiologic agent, present a degree of overlap with COVID-19. This paper will explore the molecular and clinical relationships between FIP and COVID-19. While key differences between the two syndromes exist, these similarities support further examination of feline coronaviruses as a naturally occurring clinical model for coronavirus disease in humans.
Collapse
Affiliation(s)
- Arjun N. Sweet
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, NY 14853, USA
| | - Nicole M. André
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| | - Alison E. Stout
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| | - Beth N. Licitra
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| | - Gary R. Whittaker
- Department of Microbiology & Immunology and Feline Health Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (A.N.S.); (N.M.A.); (A.E.S.)
| |
Collapse
|
1254
|
Heldman MR, Kates OS, Safa K, Kotton CN, Multani A, Georgia SJ, Steinbrink JM, Alexander BD, Blumberg EA, Haydel B, Hemmige V, Hemmersbach-Miller M, La Hoz RM, Moni L, Condor Y, Flores S, Munoz CG, Guitierrez J, Diaz EI, Diaz D, Vianna R, Guerra G, Loebe M, Yabu JM, Kramer KH, Tanna SD, Ison MG, Rakita RM, Malinis M, Azar MM, McCort ME, Singh PP, Velioglu A, Mehta SA, van Duin D, Goldman JD, Lease ED, Wald A, Limaye AP, Fisher CE. Delayed mortality among solid organ transplant recipients hospitalized for COVID-19. Clin Infect Dis 2022; 78:ciac159. [PMID: 35212363 PMCID: PMC9383518 DOI: 10.1093/cid/ciac159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Most studies of solid organ transplant (SOT) recipients with COVID-19 focus on outcomes within one month of illness onset. Delayed mortality in SOT recipients hospitalized for COVID-19 has not been fully examined. METHODS We used data from a multicenter registry to calculate mortality by 90 days following initial SARS-CoV-2 detection in SOT recipients hospitalized for COVID-19 and developed multivariable Cox proportional-hazards models to compare risk factors for death by days 28 and 90. RESULTS Vital status at day 90 was available for 936 of 1117 (84%) SOT recipients hospitalized for COVID-19: 190 of 936 (20%) died by 28 days and an additional 56 of 246 deaths (23%) occurred between days 29 and 90. Factors associated with mortality by day 90 included: age > 65 years [aHR 1.8 (1.3-2.4), p =<0.001], lung transplant (vs. non-lung transplant) [aHR 1.5 (1.0-2.3), p=0.05], heart failure [aHR 1.9 (1.2-2.9), p=0.006], chronic lung disease [aHR 2.3 (1.5-3.6), p<0.001] and body mass index ≥ 30 kg/m 2 [aHR 1.5 (1.1-2.0), p=0.02]. These associations were similar for mortality by day 28. Compared to diagnosis during early 2020 (March 1-June 19, 2020), diagnosis during late 2020 (June 20-December 31, 2020) was associated with lower mortality by day 28 [aHR 0.7 (0.5-1.0, p=0.04] but not by day 90 [aHR 0.9 (0.7-1.3), p=0.61]. CONCLUSIONS In SOT recipients hospitalized for COVID-19, >20% of deaths occurred between 28 and 90 days following SARS-CoV-2 diagnosis. Future investigations should consider extending follow-up duration to 90 days for more complete mortality assessment.
Collapse
Affiliation(s)
- Madeleine R Heldman
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Olivia S Kates
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kassem Safa
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Ashrit Multani
- Department of Medicine, David Geffen School of Medicine at the University of California–Los Angeles, Los Angeles, California, USA
| | | | - Julie M Steinbrink
- Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Barbara D Alexander
- Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Emily A Blumberg
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brandy Haydel
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vagish Hemmige
- Division of Infectious Disease, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, USA
| | | | - Ricardo M La Hoz
- Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lisset Moni
- University of Miami/Jackson Memorial Hospital, Miami, Florida, USA
| | - Yesabeli Condor
- University of Miami/Jackson Memorial Hospital, Miami, Florida, USA
| | - Sandra Flores
- University of Miami/Jackson Memorial Hospital, Miami, Florida, USA
| | - Carlos G Munoz
- University of Miami/Jackson Memorial Hospital, Miami, Florida, USA
| | - Juan Guitierrez
- University of Miami/Jackson Memorial Hospital, Miami, Florida, USA
| | - Esther I Diaz
- University of Miami/Jackson Memorial Hospital, Miami, Florida, USA
| | - Daniela Diaz
- University of Miami/Jackson Memorial Hospital, Miami, Florida, USA
| | - Rodrigo Vianna
- University of Miami/Jackson Memorial Hospital, Miami, Florida, USA
| | - Giselle Guerra
- University of Miami/Jackson Memorial Hospital, Miami, Florida, USA
| | - Matthias Loebe
- University of Miami/Jackson Memorial Hospital, Miami, Florida, USA
| | - Julie M Yabu
- Department of Medicine, David Geffen School of Medicine at the University of California–Los Angeles, Los Angeles, California, USA
| | - Kailey Hughes Kramer
- Transplant Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sajal D Tanna
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael G Ison
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert M Rakita
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Maricar Malinis
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Marwan M Azar
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Margaret E McCort
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Pooja P Singh
- Division of Nephrology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Arzu Velioglu
- Marmara University, School of Medicine, Department of Internal Medicine, Division of Nephrology, Istanbul, Turkey
| | - Sapna A Mehta
- New York University Langone Transplant Institute, New York, New York, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jason D Goldman
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Swedish Medical Center, Seattle, Washington, USA
| | - Erika D Lease
- Division of Pulmonology, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Anna Wald
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Ajit P Limaye
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Cynthia E Fisher
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
1255
|
Intracellular Reverse Transcription of Pfizer BioNTech COVID-19 mRNA Vaccine BNT162b2 In Vitro in Human Liver Cell Line. Curr Issues Mol Biol 2022; 44:1115-1126. [PMID: 35723296 PMCID: PMC8946961 DOI: 10.3390/cimb44030073] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 12/25/2022] Open
Abstract
Preclinical studies of COVID-19 mRNA vaccine BNT162b2, developed by Pfizer and BioNTech, showed reversible hepatic effects in animals that received the BNT162b2 injection. Furthermore, a recent study showed that SARS-CoV-2 RNA can be reverse-transcribed and integrated into the genome of human cells. In this study, we investigated the effect of BNT162b2 on the human liver cell line Huh7 in vitro. Huh7 cells were exposed to BNT162b2, and quantitative PCR was performed on RNA extracted from the cells. We detected high levels of BNT162b2 in Huh7 cells and changes in gene expression of long interspersed nuclear element-1 (LINE-1), which is an endogenous reverse transcriptase. Immunohistochemistry using antibody binding to LINE-1 open reading frame-1 RNA-binding protein (ORFp1) on Huh7 cells treated with BNT162b2 indicated increased nucleus distribution of LINE-1. PCR on genomic DNA of Huh7 cells exposed to BNT162b2 amplified the DNA sequence unique to BNT162b2. Our results indicate a fast up-take of BNT162b2 into human liver cell line Huh7, leading to changes in LINE-1 expression and distribution. We also show that BNT162b2 mRNA is reverse transcribed intracellularly into DNA in as fast as 6 h upon BNT162b2 exposure.
Collapse
|
1256
|
Comparative Evaluation of Rapid Isothermal Amplification and Antigen Assays for Screening Testing of SARS-CoV-2. Viruses 2022; 14:v14030468. [PMID: 35336875 PMCID: PMC8951466 DOI: 10.3390/v14030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/17/2022] Open
Abstract
Human transmission of SARS-CoV-2 and emergent variants of concern continue to occur globally, despite mass vaccination campaigns. Public health strategies to reduce virus spread should therefore rely, in part, on frequent screening with rapid, inexpensive, and sensitive tests. We evaluated two digitally integrated rapid tests and assessed their performance using stored nasal swab specimens collected from individuals with or without COVID-19. An isothermal amplification assay combined with a lateral flow test had a limit of detection of 10 RNA copies per reaction, and a positive percent agreement (PPA)/negative percent agreement (NPA) during the asymptomatic and symptomatic phases of 100%/100% and 95.83/100%, respectively. Comparatively, an antigen-based lateral flow test had a limit of detection of 30,000 copies and a PPA/NPA during the asymptomatic and symptomatic phases of 82.86%/98.68% and 91.67/100%, respectively. Both the isothermal amplification and antigen-based lateral flow tests had optimized detection of SARS-CoV-2 during the peak period of transmission; however, the antigen-based test had reduced sensitivity in clinical samples with qPCR Ct values greater than 29.8. Low-cost, high-throughput screening enabled by isothermal amplification or antigen-based techniques have value for outbreak control.
Collapse
|
1257
|
Wang MTM, Niederer RL, McGhee CNJ, Danesh-Meyer HV. COVID-19 Vaccination and The Eye. Am J Ophthalmol 2022; 240:79-98. [PMID: 35227700 PMCID: PMC8875854 DOI: 10.1016/j.ajo.2022.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 11/18/2022]
Abstract
Purpose To summarize the current evidence on COVID-19 vaccine-associated ocular adverse events. Design Narrative literature review. Methods The literature search was conducted in August 2021 using 4 electronic databases: MEDLINE, EMBASE, PubMed, and the Cochrane Database of Systematic Reviews. Population-based pharmacovigilance surveillance data were retrieved from all governmental agencies participating in the World Health Organization (WHO) Programme for International Drug Monitoring with publicly available online adverse event databases in English. Results A small number of case reports have documented uveitis flares and acute corneal graft rejection occurring within the first 3 weeks following immunization, while isolated cases of optic neuropathies, retinal conditions, scleritis, and herpetic eye disease have also been highlighted. However, data from population-based pharmacovigilance surveillance systems suggest that the prevalence of vaccination-associated ocular adverse events are very rare. Conclusions Vaccination-associated ocular adverse events are rare, and there is currently no substantive evidence to counterweigh the overwhelming benefits of COVID-19 immunization in patients with pre-existing ophthalmic conditions.
Collapse
Affiliation(s)
- Michael T M Wang
- From Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Rachael L Niederer
- From Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Charles N J McGhee
- From Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Helen V Danesh-Meyer
- From Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| |
Collapse
|
1258
|
Tomalka JA, Suthar MS, Deeks SG, Sekaly RP. Fighting the SARS-CoV-2 pandemic requires a global approach to understanding the heterogeneity of vaccine responses. Nat Immunol 2022; 23:360-370. [PMID: 35210622 DOI: 10.1038/s41590-022-01130-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/05/2022] [Indexed: 11/09/2022]
Abstract
Host genetic and environmental factors including age, biological sex, diet, geographical location, microbiome composition and metabolites converge to influence innate and adaptive immune responses to vaccines. Failure to understand and account for these factors when investigating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine efficacy may impair the development of the next generation of vaccines. Most studies aimed at identifying mechanisms of vaccine-mediated immune protection have focused on adaptive immune responses. It is well established, however, that mobilization of the innate immune response is essential to the development of effective cellular and humoral immunity. A comprehensive understanding of the innate immune response and environmental factors that contribute to the development of broad and durable cellular and humoral immune responses to SARS-CoV-2 and other vaccines requires a holistic and unbiased approach. Along with optimization of the immunogen and vectors, the development of adjuvants based on our evolving understanding of how the innate immune system shapes vaccine responses will be essential. Defining the innate immune mechanisms underlying the establishment of long-lived plasma cells and memory T cells could lead to a universal vaccine for coronaviruses, a key biomedical priority.
Collapse
Affiliation(s)
- Jeffrey A Tomalka
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehul S Suthar
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pediatrics, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven G Deeks
- Department of Medicine, University of California at San Francisco School of Medicine, San Francisco, CA, USA
| | - Rafick Pierre Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA. .,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
1259
|
Urakawa R, Isomura ET, Matsunaga K, Kubota K, Ike M. Impact of age, sex and medical history on adverse reactions to the first and second dose of BNT162b2 mRNA COVID-19 vaccine in Japan: a cross-sectional study. BMC Infect Dis 2022; 22:179. [PMID: 35197017 PMCID: PMC8864597 DOI: 10.1186/s12879-022-07175-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/17/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Vaccines for coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being promoted worldwide. In this study, we analyzed the relationship between adverse reactions and the profile of vaccinated recipients. METHODS Vaccinated subjects who received two doses of BNT162b2 between May 17 and June 11, 2021, at Osaka University Dental Hospital were included in this study. Adverse reactions and profiles were collected by questionnaires, and the relationship between the presence of adverse reactions and the profiles of the vaccinated persons was analyzed by logistic regression analysis. The correlation between the severity of adverse reactions and age was analyzed by Spearman's rank correlation. RESULTS Logistic regression analysis showed that, for many kinds of adverse reactions, the incidence was significantly higher in females than in males and in younger than in older people. There was a very weak but significant negative correlation between age and the severity of many kinds of adverse reactions. The relationship between sex and the incidence of each adverse reaction was significant for injection site reactions and fatigue in the first vaccination, whereas significant relationships were found for fatigue, chills, fever, arthralgia, myalgia and headache in the second vaccination, all of which were clearly more likely to occur in females. CONCLUSION Adverse reactions to BNT162b2 were found to be more frequent and more intense in females and younger people in Japan, especially after the second vaccination.
Collapse
Affiliation(s)
- Ryuta Urakawa
- Department of Pharmacy, Osaka University Dental Hospital, 1-8 Yamada-oka, Suita, Osaka, 565-0871, Japan. .,Department of Clinical Pharmacy Research and Education, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Emiko Tanaka Isomura
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Kazuhide Matsunaga
- Second Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Kazumi Kubota
- Department of Healthcare Information Management, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Miho Ike
- Nursing Department, Osaka University Dental Hospital, 1-8 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
1260
|
Mahrokhian SH, Tostanoski LH, Jacob-Dolan C, Zahn RC, Wegmann F, McMahan K, Yu J, Gebre MS, Bondzie EA, Wan H, Powers O, Ye T, Barrett J, Schuitemaker H, Barouch DH. Durability and expansion of neutralizing antibody breadth following Ad26.COV2.S vaccination of mice. NPJ Vaccines 2022; 7:23. [PMID: 35197477 PMCID: PMC8866515 DOI: 10.1038/s41541-022-00454-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
Emerging SARS-CoV-2 variants with the potential to escape binding and neutralizing antibody responses pose a threat to vaccine efficacy. We recently reported expansion of broadly neutralizing activity of vaccine-elicited antibodies in humans 8 months following a single immunization with Ad26.COV2.S. Here, we assessed the 15-month durability of antibody responses and their neutralizing capacity to B.1.617.2 (delta) and B.1.351 (beta) variants following a single immunization of Ad26.COV2.S in mice. We report the persistence of binding and neutralizing antibody titers following immunization with a concomitant increase in neutralizing antibody breadth to delta and beta variants over time. Evaluation of bone marrow and spleen at 15 months postimmunization revealed that Ad26.COV2.S-immunized mice tissues contained spike-specific antibody-secreting cells. We conclude that immunization with Ad26.COV2.S elicits a robust immune response against SARS-CoV-2 spike, which expands over time to neutralize delta and beta variants more robustly, and seeds bone marrow and spleen with long-lived spike-specific antibody-secreting cells. These data extend previous findings in humans and support the use of a mouse model as a potential tool to further explore the dynamics of the humoral immune response following vaccination with Ad26.COV2.S.
Collapse
Affiliation(s)
- Shant H Mahrokhian
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Lisa H Tostanoski
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Catherine Jacob-Dolan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Roland C Zahn
- Janssen Vaccines & Prevention BV, Leiden, Netherlands
| | - Frank Wegmann
- Janssen Vaccines & Prevention BV, Leiden, Netherlands
| | - Katherine McMahan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Makda S Gebre
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Esther A Bondzie
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Huahua Wan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Olivia Powers
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Tianyi Ye
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Julia Barrett
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA.
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, 02115, USA.
| |
Collapse
|
1261
|
Piccaluga PP, Di Guardo A, Lagni A, Lotti V, Diani E, Navari M, Gibellini D. COVID-19 Vaccine: Between Myth and Truth. Vaccines (Basel) 2022; 10:349. [PMID: 35334981 PMCID: PMC8950941 DOI: 10.3390/vaccines10030349] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Since December 2019, a pandemic caused by the newly identified SARS-CoV-2 spread across the entire globe, causing 364,191,494 confirmed cases of COVID-19 to date. SARS-CoV-2 is a betacoronavirus, a positive-sense, single-stranded RNA virus with four structural proteins: spike (S), envelope (E), membrane (M), and nucleocapsid (N). The S protein plays a crucial role both in cell binding and in the induction of a strong immune response during COVID-19 infection. The clinical impact of SARS-CoV-2 and its spread led to the urgent need for vaccine development to prevent viral transmission and to reduce the morbidity and mortality associated with the disease. Multiple platforms have been involved in the rapid development of vaccine candidates, with the S protein representing a major target because it can stimulate the immune system, yielding neutralizing antibodies (NAbs), blocking viral entry into host cells, and evoking T-cell immune responses. To date, 178 SARS-CoV-2 vaccine candidates have been challenged in clinical trials, of which 33 were approved by various national regulatory agencies. In this review, we discuss the FDA- and/or EMA-authorized vaccines that are mostly based on mRNA or viral vector platforms. Furthermore, we debunk false myths about the COVID-19 vaccine as well as discuss the impact of viral variants and the possible future developments.
Collapse
Affiliation(s)
- Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Specialty Medicine, Institute of Hematology and Medical Oncology “L. and A. Seràgnoli”, University of Bologna School of Medicine, 40126 Bologna, Italy;
- SBGT—Biomolecular Strategies, Genetics and Cutting-Edge Therapies, Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST), 90139 Palermo, Italy
- Department of Pathology, School of Medicine, Jomo Kenyatta University of Agriculture and Technology, Juja 01001, Kenya
- School of Medicine, Nanchang University, Nanchang 330047, China
| | - Antonio Di Guardo
- Department of Experimental, Diagnostic, and Specialty Medicine, Institute of Hematology and Medical Oncology “L. and A. Seràgnoli”, University of Bologna School of Medicine, 40126 Bologna, Italy;
| | - Anna Lagni
- Department of Diagnostic and Public Health, Verona University, 37134 Verona, Italy; (A.L.); (V.L.); (E.D.); (D.G.)
| | - Virginia Lotti
- Department of Diagnostic and Public Health, Verona University, 37134 Verona, Italy; (A.L.); (V.L.); (E.D.); (D.G.)
| | - Erica Diani
- Department of Diagnostic and Public Health, Verona University, 37134 Verona, Italy; (A.L.); (V.L.); (E.D.); (D.G.)
| | - Mohsen Navari
- Department of Medical Biotechnology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh 33787 95169, Iran;
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh 33787 95169, Iran
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad 91778 99191, Iran
| | - Davide Gibellini
- Department of Diagnostic and Public Health, Verona University, 37134 Verona, Italy; (A.L.); (V.L.); (E.D.); (D.G.)
| |
Collapse
|
1262
|
Shen C, Risk M, Schiopu E, Hayek SS, Xie T, Holevinski L, Akin C, Freed G, Zhao L. Efficacy of COVID-19 vaccines in patients taking immunosuppressants. Ann Rheum Dis 2022; 81:875-880. [PMID: 35197265 DOI: 10.1136/annrheumdis-2021-222045] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVES We intended to assess the effectiveness of all three US Food and Drug Administration approved COVID-19 vaccines at preventing SARS-CoV-2 infection and COVID-19 hospitalisation in a large cohort of individuals on immunosuppressants for a diverse range of conditions. METHODS We studied the effectiveness of BNT162b2 (Pfizer-BioNTech), mRNA-1273 (Moderna) and Ad26.COV2.S (Johnson & Johnson-Janssen) vaccines among individuals who take immunosuppressants (including disease-modifying antirheumatic drugs and glucocorticoids) by comparing vaccinated (n=97688) and unvaccinated (n=42094) individuals in the Michigan Medicine healthcare system from 1 January to 7 December 2021, using Cox proportional hazards modelling with time-varying covariates. RESULTS Among vaccinated and unvaccinated individuals, taking immunosuppressants increased the risk of SARS-CoV-2 infection (adjusted HR (aHR)=2.17, 95% CI 1.69 to 2.79 for fully vaccinated and aHR=1.40, 95% CI 1.07 to 1.83 for unvaccinated). Among individuals taking immunosuppressants, we found: (1) vaccination reduced the risk of SARS-CoV-2 infection (aHR=0.55, 95% CI 0.39 to 0.78); (2) the BNT162b2 and mRNA-1273 vaccines were highly effective at reducing the risk of SARS-CoV-2 infection (n=2046, aHR=0.59, 95% CI 0.38 to 0.91 for BNT162b2; n=2064, aHR=0.52, 95% CI 0.33 to 0.82 for mRNA-1273); (3) with a smaller sample size (n=173), Ad26.COV2.S vaccine protection did not reach statistical significance (aHR=0.34, 95% CI 0.09 to 1.30, p=0.17); and (4) receiving a booster dose reduced the risk of SARS-CoV-2 infection (aHR=0.42, 95% CI 0.24 to 0.76). CONCLUSIONS The mRNA-1273 and BNT162b2 vaccines are effective in individuals who take immunosuppressants. However, individuals who are vaccinated but on immunosuppressants are still at higher risk of SARS-CoV-2 infection and COVID-19 hospitalisation than the broader vaccinated population. Booster doses are effective and crucially important for individuals on immunosuppressants.
Collapse
Affiliation(s)
- Chen Shen
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Malcolm Risk
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Elena Schiopu
- Department of Rheumatology, University of Michigan Michigan Medicine, Ann Arbor, Michigan, USA
| | - Salim S Hayek
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Tiankai Xie
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Lynn Holevinski
- Data Office for Clinical and Translational Research, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Cem Akin
- Division of Allergy, University of Michigan, Ann Arbor, Michigan, USA
| | - Gary Freed
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
1263
|
Efficacy and Effectiveness of SARS-CoV-2 Vaccines: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2022; 10:vaccines10030350. [PMID: 35334982 PMCID: PMC8948677 DOI: 10.3390/vaccines10030350] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/21/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has threatened global health and prompted the need for mass vaccination. We aimed to assess the efficacy and effectiveness of COVID-19 vaccines to prevent mortality and reduce the risk of developing severe disease after the 1st and 2nd doses. From conception to 28 June 2021, we searched PubMed, Cochrane, EBSCO, Scopus, ProQuest, Web of Science, WHO-ICTRP, and Google Scholar. We included both observational and randomized controlled trials. The pooled vaccine efficacy and effectiveness following vaccination, as well as their 95 percent confidence intervals (CI), were estimated using the random-effects model. In total, 22 of the 21,567 screened articles were eligible for quantitative analysis. Mortality 7 and 14 days after full vaccination decreased significantly among the vaccinated group compared to the unvaccinated group (OR = 0.10, ([95% CI, 0.04–0.27], I2 = 54%) and (OR = 0.46, [95% CI, 0.35–0.61], I2 = 0%), respectively. The probability of having severe disease one or two weeks after 2nd dose decreased significantly (OR = 0.29 [95% CI, 0.19–0.46], I2 = 25%) and (OR = 0.08 [95% CI, 0.03–0.25], I2 = 74%), respectively. The incidence of infection any time after the 1st and 2nd doses diminished significantly (OR = 0.14 [95% CI, 0.07–0.4], I2 = 100%) and (OR = 0.179 [95% CI, 0.15–0.19], I2 = 98%), respectively. Also, incidence of infection one week after 2nd dose decreased significantly, (OR = 0.04, [95% CI (0.01–0.2], I2 = 100%). After meta-regression, the type of vaccine and country were the main predictors of outcome [non-mRNA type, ß = 2.99, p = 0.0001; country UK, ß = −0.75, p = 0.038; country USA, ß = 0.8, p = 0.02]. This study showed that most vaccines have comparable effectiveness, and it is purported that mass vaccination may help to end this pandemic.
Collapse
|
1264
|
Lyski ZL, Kim MS, Xthona Lee D, Raué HP, Raghunathan V, Griffin J, Ryan D, Brunton AE, Curlin ME, Slifka MK, Messer WB, Spurgeon SE. Cellular and humoral immune response to mRNA COVID-19 vaccination in subjects with chronic lymphocytic leukemia. Blood Adv 2022; 6:1207-1211. [PMID: 34872103 PMCID: PMC8651482 DOI: 10.1182/bloodadvances.2021006633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
- Zoe L. Lyski
- Department of Molecular Microbiology and Immunology and
| | - Myung S. Kim
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | | | - Hans-Peter Raué
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR
| | - Vikram Raghunathan
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Janet Griffin
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Debbie Ryan
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Amanda E. Brunton
- Oregon Health & Science University-Portland State University School of Public Health, Portland, OR; and
| | - Marcel E. Curlin
- Division of Infectious Diseases, Department of Medicine, Oregon Health & Science University, Portland, OR
| | - Mark K. Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR
| | - William B. Messer
- Department of Molecular Microbiology and Immunology and
- Oregon Health & Science University-Portland State University School of Public Health, Portland, OR; and
- Division of Infectious Diseases, Department of Medicine, Oregon Health & Science University, Portland, OR
| | | |
Collapse
|
1265
|
Seroconversion Rates After the Second COVID-19 Vaccination in Patients With Systemic Light Chain (AL) amyloidosis. Hemasphere 2022; 6:e688. [PMID: 35187406 PMCID: PMC8849404 DOI: 10.1097/hs9.0000000000000688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/12/2022] [Indexed: 11/27/2022] Open
|
1266
|
Abstract
There is a common preconception that reaching an estimated herd immunity threshold through vaccination will end the COVID-19 pandemic. However, the mathematical models underpinning this estimate make numerous assumptions that may not be met in the real world. The protection afforded by vaccines is imperfect, particularly against asymptomatic infection, which can still result in transmission and propagate pandemic viral spread. Immune responses wane and SARS-COV-2 has the capacity to mutate over time to become more infectious and resistant to vaccine elicited immunity. Human behavior and public health restrictions also vary over time and among different populations, impacting the transmissibility of infection. These ever-changing factors modify the number of secondary cases produced by an infected individual, thereby necessitating constant revision of the herd immunity threshold. Even so, vaccination remains a powerful strategy to slow down the pandemic, save lives, and alleviate the burden on limited health care resources.
Collapse
|
1267
|
Karbiener M, Farcet MR, Zollner A, Masuda T, Mori M, Moschen AR, Kreil TR. Calibrated comparison of SARS-CoV-2 neutralizing antibody levels in response to protein-, mRNA-, and vector-based COVID-19 vaccines. NPJ Vaccines 2022; 7:22. [PMID: 35181655 PMCID: PMC8857217 DOI: 10.1038/s41541-022-00455-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/31/2022] [Indexed: 11/11/2022] Open
Abstract
SARS-CoV-2 neutralizing antibodies have been suggested to reflect the efficacy of COVID-19 vaccines. This study reports the direct comparison of the SARS-CoV-2 neutralizing antibody response elicited by a protein- (NVX-CoV2373), an mRNA- (Comirnaty), and a vector-based (Vaxzevria) COVID-19 vaccine, calibrated against the WHO international SARS-CoV-2 antibody standard, and further supports the use of neutralizing antibody levels as a correlate of protection.
Collapse
Affiliation(s)
- Michael Karbiener
- Global Pathogen Safety, Takeda Manufacturing Austria AG, Vienna, Austria
| | - Maria R Farcet
- Global Pathogen Safety, Takeda Manufacturing Austria AG, Vienna, Austria
| | - Andreas Zollner
- Christian Doppler Laboratory for Mucosal Immunology, Johannes Kepler University Linz, Linz, Austria
- Department of Medicine, Division of Internal Medicine 1 (Gastroenterology and Hepatology, Endocrinology and Metabolism), Medical University of Innsbruck, Innsbruck, Austria
| | - Taisei Masuda
- Japan Development, Global Vaccine Business Unit, Takeda Pharmaceutical Company Limited, Osaka, Japan
| | - Mitsuhiro Mori
- Japan Development, Global Vaccine Business Unit, Takeda Pharmaceutical Company Limited, Osaka, Japan
| | - Alexander R Moschen
- Christian Doppler Laboratory for Mucosal Immunology, Johannes Kepler University Linz, Linz, Austria
- Department of Internal Medicine 2 (Gastroenterology and Hepatology, Endocrinology and Metabolism, Nephrology, Rheumatology), Johannes Kepler University Linz, Linz, Austria
| | - Thomas R Kreil
- Global Pathogen Safety, Takeda Manufacturing Austria AG, Vienna, Austria.
| |
Collapse
|
1268
|
Yuniar CT, Pratiwi B, Ihsan AF, Laksono BT, Risfayanti I, Fathadina A, Jeong Y, Kim E. Adverse Events Reporting Quality of Randomized Controlled Trials of COVID-19 Vaccine Using the CONSORT Criteria for Reporting Harms: A Systematic Review. Vaccines (Basel) 2022; 10:vaccines10020313. [PMID: 35214773 PMCID: PMC8875800 DOI: 10.3390/vaccines10020313] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Assessing the quality of evidence from vaccine clinical trials is essential to ensure the safety and efficacy of the vaccine and further enhance public acceptance. This study aims to summarize and critically evaluate the quality of harm reporting on randomized controlled trials for the COVID-19 vaccine and determine the factors associated with reporting quality. Methods: We systematically searched the literature using PRISMA guidelines for randomized controlled trials (RCT) on COVID-19 Vaccine until 30 December 2021. Published articles were searched from electronic databases such as PubMed, Science Direct, Google Scholar, and Bibliovid. Bias analysis was performed using RoB-2 tools. The quality of reporting was assessed by the Consolidated Standards of Reporting Trials (CONSORT) harm extension modified into 21 items. Results: A total of 61 RCT studies (402,014 patients) were analyzed. Over half the studies demonstrated adequate reporting (59.02%), and 21 studies (34.4%) reported a low risk of bias. All studies reported death and serious adverse events (AEs), but only six studies mentioned how to handle the recurrent AEs. Reporting of AEs in subgroup analysis was also poor (25%). Conclusion: The RCTs on the COVID-19 vaccine were less biased with good quality on reporting harm based on the modified CONSORT harm extension. However, study quality must be considered, especially for a balance of information between effectivity and safety.
Collapse
Affiliation(s)
- Cindra Tri Yuniar
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia; (C.T.Y.); (B.P.); (A.F.I.); (B.T.L.); (I.R.); (A.F.)
| | - Bhekti Pratiwi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia; (C.T.Y.); (B.P.); (A.F.I.); (B.T.L.); (I.R.); (A.F.)
| | - Ardika Fajrul Ihsan
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia; (C.T.Y.); (B.P.); (A.F.I.); (B.T.L.); (I.R.); (A.F.)
| | - Bambang Tri Laksono
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia; (C.T.Y.); (B.P.); (A.F.I.); (B.T.L.); (I.R.); (A.F.)
| | - Iffa Risfayanti
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia; (C.T.Y.); (B.P.); (A.F.I.); (B.T.L.); (I.R.); (A.F.)
| | - Annisa Fathadina
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia; (C.T.Y.); (B.P.); (A.F.I.); (B.T.L.); (I.R.); (A.F.)
| | - Yeonseon Jeong
- Clinical Data Analysis, Evidence-Based Clinical Research Laboratory, Department of Health Science & Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea;
| | - Eunyoung Kim
- Clinical Data Analysis, Evidence-Based Clinical Research Laboratory, Department of Health Science & Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea;
- Correspondence: ; Tel.: +82-2-820-5791
| |
Collapse
|
1269
|
Mudd PA, Minervina AA, Pogorelyy MV, Turner JS, Kim W, Kalaidina E, Petersen J, Schmitz AJ, Lei T, Haile A, Kirk AM, Mettelman RC, Crawford JC, Nguyen THO, Rowntree LC, Rosati E, Richards KA, Sant AJ, Klebert MK, Suessen T, Middleton WD, Wolf J, Teefey SA, O'Halloran JA, Presti RM, Kedzierska K, Rossjohn J, Thomas PG, Ellebedy AH. SARS-CoV-2 mRNA vaccination elicits a robust and persistent T follicular helper cell response in humans. Cell 2022; 185:603-613.e15. [PMID: 35026152 PMCID: PMC8695127 DOI: 10.1016/j.cell.2021.12.026] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/12/2021] [Accepted: 12/17/2021] [Indexed: 01/06/2023]
Abstract
SARS-CoV-2 mRNA vaccines induce robust anti-spike (S) antibody and CD4+ T cell responses. It is not yet clear whether vaccine-induced follicular helper CD4+ T (TFH) cell responses contribute to this outstanding immunogenicity. Using fine-needle aspiration of draining axillary lymph nodes from individuals who received the BNT162b2 mRNA vaccine, we evaluated the T cell receptor sequences and phenotype of lymph node TFH. Mining of the responding TFH T cell receptor repertoire revealed a strikingly immunodominant HLA-DPB1∗04-restricted response to S167-180 in individuals with this allele, which is among the most common HLA alleles in humans. Paired blood and lymph node specimens show that while circulating S-specific TFH cells peak one week after the second immunization, S-specific TFH persist at nearly constant frequencies for at least six months. Collectively, our results underscore the key role that robust TFH cell responses play in establishing long-term immunity by this efficacious human vaccine.
Collapse
Affiliation(s)
- Philip A Mudd
- Department of Emergency Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Anastasia A Minervina
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mikhail V Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Wooseob Kim
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Elizaveta Kalaidina
- Division of Allergy and Immunology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jan Petersen
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Tingting Lei
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Alem Haile
- Clinical Trials Unit, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Allison M Kirk
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3052, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3052, Australia
| | - Elisa Rosati
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel, Kiel 24105, Germany
| | - Katherine A Richards
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Andrea J Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael K Klebert
- Clinical Trials Unit, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Teresa Suessen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - William D Middleton
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joshua Wolf
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sharlene A Teefey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jane A O'Halloran
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Rachel M Presti
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110, USA; Clinical Trials Unit, Washington University School of Medicine, Saint Louis, MO 63110, USA; Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3052, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Ali H Ellebedy
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
1270
|
Ibrahim H, Alkhatib A, Meysami A. Eosinophilic Granulomatosis With Polyangiitis Diagnosed in an Elderly Female After the Second Dose of mRNA Vaccine Against COVID-19. Cureus 2022; 14:e21176. [PMID: 35165624 PMCID: PMC8831231 DOI: 10.7759/cureus.21176] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
Eosinophilic granulomatosis with polyangiitis is a type of medium and small-vessel vasculitis that is characterized by asthma, polyneuropathy, peripheral eosinophilia, rhinosinusitis, and other organ involvement, such as the lung and skin. Here, we present an interesting case of eosinophilic granulomatosis with polyangiitis after the mRNA-1273 (Moderna) vaccine against coronavirus disease 2019 (COVID-19). The patient presented with progressive weakness and paresthesia in the upper and lower extremities. She was found to have peripheral eosinophilia and elevated anti-myeloperoxidase antibodies. Nerve and muscle biopsies showed focal vasculitis with infiltration by eosinophils. The patient was started on steroids and a steroid-sparing agent shortly after that and had marked improvement of her symptoms.
Collapse
Affiliation(s)
- Hanan Ibrahim
- Department of Rheumatology, Henry Ford Health System, Detroit, USA
| | - Ayad Alkhatib
- Department of Rheumatology, Henry Ford Health System, Detroit, USA
| | - Alireza Meysami
- Department of Rheumatology, Henry Ford Health System, Detroit, USA
| |
Collapse
|
1271
|
Dulovic A, Kessel B, Harries M, Becker M, Ortmann J, Griesbaum J, Jüngling J, Junker D, Hernandez P, Gornyk D, Glöckner S, Melhorn V, Castell S, Heise JK, Kemmling Y, Tonn T, Frank K, Illig T, Klopp N, Warikoo N, Rath A, Suckel C, Marzian AU, Grupe N, Kaiser PD, Traenkle B, Rothbauer U, Kerrinnes T, Krause G, Lange B, Schneiderhan-Marra N, Strengert M. Comparative Magnitude and Persistence of Humoral SARS-CoV-2 Vaccination Responses in the Adult Population in Germany. Front Immunol 2022; 13:828053. [PMID: 35251012 PMCID: PMC8888837 DOI: 10.3389/fimmu.2022.828053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/17/2022] [Indexed: 12/01/2022] Open
Abstract
Recent increases in SARS-CoV-2 infections have led to questions about duration and quality of vaccine-induced immune protection. While numerous studies have been published on immune responses triggered by vaccination, these often focus on studying the impact of one or two immunisation schemes within subpopulations such as immunocompromised individuals or healthcare workers. To provide information on the duration and quality of vaccine-induced immune responses against SARS-CoV-2, we analyzed antibody titres against various SARS-CoV-2 antigens and ACE2 binding inhibition against SARS-CoV-2 wild-type and variants of concern in samples from a large German population-based seroprevalence study (MuSPAD) who had received all currently available immunisation schemes. We found that homologous mRNA-based or heterologous prime-boost vaccination produced significantly higher antibody responses than vector-based homologous vaccination. Ad26.CoV2S.2 performance was particularly concerning with reduced titres and 91.7% of samples classified as non-responsive for ACE2 binding inhibition, suggesting that recipients require a booster mRNA vaccination. While mRNA vaccination induced a higher ratio of RBD- and S1-targeting antibodies, vector-based vaccines resulted in an increased proportion of S2-targeting antibodies. Given the role of RBD- and S1-specific antibodies in neutralizing SARS-CoV-2, their relative over-representation after mRNA vaccination may explain why these vaccines have increased efficacy compared to vector-based formulations. Previously infected individuals had a robust immune response once vaccinated, regardless of which vaccine they received, which could aid future dose allocation should shortages arise for certain manufacturers. Overall, both titres and ACE2 binding inhibition peaked approximately 28 days post-second vaccination and then decreased.
Collapse
Affiliation(s)
- Alex Dulovic
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Barbora Kessel
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Manuela Harries
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthias Becker
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Julia Ortmann
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Johanna Griesbaum
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Jennifer Jüngling
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Daniel Junker
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Pilar Hernandez
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Daniela Gornyk
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephan Glöckner
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Vanessa Melhorn
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefanie Castell
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jana-Kristin Heise
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Yvonne Kemmling
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Torsten Tonn
- German Red Cross Blood Donation Service North East, Dresden, Germany
| | - Kerstin Frank
- German Red Cross Blood Donation Service North East, Dresden, Germany
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Norman Klopp
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Neha Warikoo
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Angelika Rath
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christina Suckel
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anne Ulrike Marzian
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Nicole Grupe
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Philipp D. Kaiser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Bjoern Traenkle
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Ulrich Rothbauer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Pharmaceutical Biotechnology, Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Tobias Kerrinnes
- Department of RNA-Biology of Bacterial Infections, Helmholtz Institute for RNA-Based Infection Research, Würzburg, Germany
| | - Gérard Krause
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Berit Lange
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | | | - Monika Strengert
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| |
Collapse
|
1272
|
Li LL, Zheng C, La J, Do NV, Monach PA, Strymish JM, Fillmore NR, Branch-Elliman W. Impact of prior SARS-CoV-2 infection on incidence of hospitalization and adverse events following mRNA SARS-CoV-2 vaccination: A nationwide, retrospective cohort study. Vaccine 2022; 40:1082-1089. [PMID: 35078665 PMCID: PMC8768509 DOI: 10.1016/j.vaccine.2022.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Previous studies evaluated the SARS-CoV-2 vaccine safety or compared adverse events following vaccination to those from infection. Limited data about the impact of prior infection on post-vaccine adverse events are available. The objective of this study was to evaluate the impact of prior SARS-CoV-2 infection on outcomes shortly after vaccination using a longitudinal design. METHODS Nationwide, multicenter, retrospective cohort study of hospitalization, death, and pre-specified adverse event rates among Veterans who received mRNA vaccines within the Veterans Health Administration between 12/11/2020 and 8/31/2021. Daily incidence rates were compared before and after vaccine doses, stratified by history of microbiologically-confirmed SARS-CoV-2. RESULTS 3,118,802 patients received a first dose and 2,979,326 a second, including 102,829 with a history of SARS-CoV-2 infection. Daily incident hospitalization rates were unchanged before and after the second dose among patients without previous infection (28.8/100,000 post-dose versus 28.6/100,000 pre-dose, p = 0.92). In previously-infected patients, the hospitalization rate increased above baseline one day following vaccination (158.2/100,000 after dose 2 versus 57.3/100,000 pre-dose, p < 0.001), then returned to baseline. Chart review indicated vaccine side effects, such as fever, constitutional symptoms, weakness, or falls, as the definite (39%) or possible (18%) cause of hospitalization. Affected patients had mean age 75, and 90% had at least one serious comorbidity. Hospitalizations were brief (median 2 days), with rapid return to baseline health. Worse baseline health among previously-infected patients prevented conclusions about mortality risk. CONCLUSIONS Two-dose mRNA vaccine regimens are safe in a population with many comorbidities. Transient increased risks of hospitalization were identified among patients with prior SARS-CoV-2, absolute risk ∼1:1000. Findings support additional study regarding the optimal dosing schedule in this population. FUNDING None.
Collapse
Affiliation(s)
- Lucy L Li
- Beth Israel Deaconess Medical Center, Department of Medicine, Boston, MA, United States
| | - Chunlei Zheng
- VA Boston MAVERIC, United States; Boston University School of Medicine, Boston, MA, United States
| | | | - Nhan V Do
- VA Boston MAVERIC, United States; VA Boston Healthcare System, Department of Medicine, Boston, MA, United States; Boston University School of Medicine, Boston, MA, United States
| | - Paul A Monach
- VA Boston MAVERIC, United States; VA Boston Healthcare System, Department of Medicine, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Judith M Strymish
- VA Boston Healthcare System, Department of Medicine, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Nathanael R Fillmore
- VA Boston MAVERIC, United States; Harvard Medical School, Boston, MA, United States; Dana Farber Cancer Institute, Boston, MA, United States
| | - Westyn Branch-Elliman
- VA Boston Healthcare System, Department of Medicine, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; VA Boston Center for Healthcare Organization and Implementation Research. Boston, MA, United States.
| |
Collapse
|
1273
|
Ishii H, Nomura T, Yamamoto H, Nishizawa M, Thu Hau TT, Harada S, Seki S, Nakamura-Hoshi M, Okazaki M, Daigen S, Kawana-Tachikawa A, Nagata N, Iwata-Yoshikawa N, Shiwa N, Suzuki T, Park ES, Ken M, Onodera T, Takahashi Y, Kusano K, Shimazaki R, Suzaki Y, Ami Y, Matano T. Neutralizing-antibody-independent SARS-CoV-2 control correlated with intranasal-vaccine-induced CD8 + T cell responses. Cell Rep Med 2022; 3:100520. [PMID: 35233545 PMCID: PMC8768424 DOI: 10.1016/j.xcrm.2022.100520] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/27/2021] [Accepted: 01/13/2022] [Indexed: 12/21/2022]
Abstract
Effective vaccines are essential for the control of the coronavirus disease 2019 (COVID-19) pandemic. Currently developed vaccines inducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-antigen-specific neutralizing antibodies (NAbs) are effective, but the appearance of NAb-resistant S variant viruses is of great concern. A vaccine inducing S-independent or NAb-independent SARS-CoV-2 control may contribute to containment of these variants. Here, we investigate the efficacy of an intranasal vaccine expressing viral non-S antigens against intranasal SARS-CoV-2 challenge in cynomolgus macaques. Seven vaccinated macaques exhibit significantly reduced viral load in nasopharyngeal swabs on day 2 post-challenge compared with nine unvaccinated controls. The viral control in the absence of SARS-CoV-2-specific NAbs is significantly correlated with vaccine-induced, viral-antigen-specific CD8+ T cell responses. Our results indicate that CD8+ T cell induction by intranasal vaccination can result in NAb-independent control of SARS-CoV-2 infection, highlighting a potential of vaccine-induced CD8+ T cell responses to contribute to COVID-19 containment. Anti-SARS-CoV-2 efficacy of an intranasal S-free vaccine is shown in macaques The SARS-CoV-2 control is associated with vaccine-induced CD8+ T cell responses Vaccine induction of CD8+ T cells can result in neutralization-free viral control Vaccine-induced CD8+ T cells may contribute to SARS-CoV-2 variant control
Collapse
Affiliation(s)
- Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Masako Nishizawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Trang Thi Thu Hau
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Sayuri Seki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Midori Nakamura-Hoshi
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Midori Okazaki
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Sachie Daigen
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.,Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Naoko Iwata-Yoshikawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Nozomi Shiwa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Eun-Sil Park
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Maeda Ken
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | | | | | - Yuriko Suzaki
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Yasushi Ami
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.,Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
1274
|
van Doremalen N, Schulz JE, Adney DR, Saturday TA, Fischer RJ, Yinda CK, Thakur N, Newman J, Ulaszewska M, Belij-Rammerstorfer S, Saturday G, Spencer AJ, Bailey D, Gilbert SC, Lambe T, Munster VJ. Efficacy of ChAdOx1 vaccines against SARS-CoV-2 Variants of Concern Beta, Delta and Omicron in the Syrian hamster model. RESEARCH SQUARE 2022:rs.3.rs-1343927. [PMID: 35194602 PMCID: PMC8863164 DOI: 10.21203/rs.3.rs-1343927/v1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ChAdOx1 nCoV-19 (AZD1222) is a replication-deficient simian adenovirusâ€"vectored vaccine encoding the spike (S) protein of SARS-CoV-2, based on the first published full-length sequence (Wuhan-1). AZD1222 was shown to have 74% vaccine efficacy (VE) against symptomatic disease in clinical trials and over 2.5 billion doses of vaccine have been released for worldwide use. However, SARS-CoV-2 continues to circulate and consequently, variants of concern (VoCs) have been detected, with substitutions in the S protein that are associated with a reduction in virus neutralizing antibody titer. Updating vaccines to include S proteins of VoCs may be beneficial over boosting with vaccines encoding the ancestral S protein, even though current real-world data is suggesting good efficacy against hospitalization and death following boosting with vaccines encoding the ancestral S protein. Using the Syrian hamster model, we evaluated the effect of a single dose of AZD2816, encoding the S protein of the Beta VoC, and efficacy of AZD1222/AZD2816 as a heterologous primary series against challenge with the Beta or Delta variant. We then investigated the efficacy of a single dose of AZD2816 or AZD1222 against the Omicron VoC. As seen previously, minimal to no viral sgRNA could be detected in lungs of vaccinated animals obtained at 5 days post inoculation, in contrast to lungs of control animals. Thus, these vaccination regimens are protective against the Beta, Delta, and Omicron VoCs in the hamster model.
Collapse
Affiliation(s)
- Neeltje van Doremalen
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan E. Schulz
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Danielle R. Adney
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Taylor A. Saturday
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Robert J. Fischer
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Claude Kwe Yinda
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Nazia Thakur
- Viral Glycoproteins Group, The Pirbright Institute, Pirbright, Woking, UK
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joseph Newman
- Viral Glycoproteins Group, The Pirbright Institute, Pirbright, Woking, UK
| | - Marta Ulaszewska
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Greg Saturday
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Alexandra J. Spencer
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dalan Bailey
- Viral Glycoproteins Group, The Pirbright Institute, Pirbright, Woking, UK
| | - Sarah C. Gilbert
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK and Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Vincent J. Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
1275
|
SARS-CoV-2 Beta and Delta variants trigger Fc effector function with increased cross-reactivity. Cell Rep Med 2022; 3:100510. [PMID: 35233544 PMCID: PMC8761540 DOI: 10.1016/j.xcrm.2022.100510] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VOCs) exhibit escape from neutralizing antibodies, causing concern about vaccine effectiveness. However, while non-neutralizing cytotoxic functions of antibodies are associated with improved disease outcome and vaccine protection, Fc effector function escape from VOCs is poorly defined. Furthermore, whether VOCs trigger Fc functions with altered specificity, as has been reported for neutralization, is unknown. Here, we demonstrate that the Beta VOC partially evades Fc effector activity in individuals infected with the original (D614G) variant. However, not all functions are equivalently affected, suggesting differential targeting by antibodies mediating distinct Fc functions. Furthermore, Beta and Delta infection trigger responses with significantly improved Fc cross-reactivity against global VOCs compared with D614G-infected or Ad26.COV2.S-vaccinated individuals. This suggests that, as for neutralization, the infecting spike sequence affects Fc effector function. These data have important implications for vaccine strategies that incorporate VOCs, suggesting these may induce broader Fc effector responses.
Collapse
|
1276
|
Marra AR, Kobayashi T, Suzuki H, Alsuhaibani M, Schweizer ML, Diekema DJ, Tofaneto BM, Bariani LM, Auler MDA, Salinas JL, Edmond MB, Pinho JRR, Rizzo LV. The long-term effectiveness of coronavirus disease 2019 (COVID-19) vaccines: A systematic literature review and meta-analysis. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2022; 2:e22. [PMID: 36310810 PMCID: PMC9614898 DOI: 10.1017/ash.2021.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022]
Abstract
Background Although multiple studies revealed high vaccine effectiveness of coronavirus disease 2019 (COVID-19) vaccines within 3 months after the completion of vaccines, long-term vaccine effectiveness has not been well established, especially after the δ (delta) variant became prominent. We performed a systematic literature review and meta-analysis of long-term vaccine effectiveness. Methods We searched PubMed, CINAHL, EMBASE, Cochrane Central Register of Controlled Trials, Scopus, and Web of Science from December 2019 to November 15, 2021, for studies evaluating the long-term vaccine effectiveness against laboratory-confirmed COVID-19 or COVID-19 hospitalization among individuals who received 2 doses of Pfizer/BioNTech, Moderna, or AstraZeneca vaccines, or 1 dose of the Janssen vaccine. Long-term was defined as >5 months after the last dose. We calculated the pooled diagnostic odds ratio (DOR) with 95% confidence interval for COVID-19 between vaccinated and unvaccinated individuals. Vaccine effectiveness was estimated as 100% × (1 - DOR). Results In total, 16 studies including 17,939,172 individuals evaluated long-term vaccine effectiveness and were included in the meta-analysis. The pooled DOR for COVID-19 was 0.158 (95% CI: 0.157-0.160) with an estimated vaccine effectiveness of 84.2% (95% CI, 84.0- 84.3%). Estimated vaccine effectiveness against COVID-19 hospitalization was 88.7% (95% CI, 55.8%-97.1%). Vaccine effectiveness against COVID-19 during the δ variant period was 61.2% (95% CI, 59.0%-63.3%). Conclusions COVID-19 vaccines are effective in preventing COVID-19 and COVID-19 hospitalization across a long-term period for the circulating variants during the study period. More observational studies are needed to evaluate the vaccine effectiveness of third dose of a COVID-19 vaccine, the vaccine effectiveness of mixing COVID-19 vaccines, COVID-19 breakthrough infection, and vaccine effectiveness against newly emerging variants.
Collapse
Affiliation(s)
- Alexandre R. Marra
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Instituto Israelita de Ensino e Pesquisa Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
- Center for Access & Delivery Research & Evaluation (CADRE), Iowa City Veterans’ Affairs Health Care System, Iowa City, Iowa, United States
| | - Takaaki Kobayashi
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | - Hiroyuki Suzuki
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Center for Access & Delivery Research & Evaluation (CADRE), Iowa City Veterans’ Affairs Health Care System, Iowa City, Iowa, United States
| | - Mohammed Alsuhaibani
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Department of Pediatrics, College of Medicine, Qassim University, Qassim, Saudi Arabia
| | - Marin L. Schweizer
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Center for Access & Delivery Research & Evaluation (CADRE), Iowa City Veterans’ Affairs Health Care System, Iowa City, Iowa, United States
| | - Daniel J. Diekema
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | | | | | | | | | - Michael B. Edmond
- West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - João Renato Rebello Pinho
- Research and Development Sector, Clinical Laboratory, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Luiz Vicente Rizzo
- Instituto Israelita de Ensino e Pesquisa Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
1277
|
Nappi F, Iervolino A, Avtaar Singh SS. Molecular Insights of SARS-CoV-2 Antivirals Administration: A Balance between Safety Profiles and Impact on Cardiovascular Phenotypes. Biomedicines 2022; 10:437. [PMID: 35203646 PMCID: PMC8962379 DOI: 10.3390/biomedicines10020437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic has resulted in a complex clinical challenge, caused by a novel coronavirus, partially similar to previously known coronaviruses but with a different pattern of contagiousness, complications, and mortality. Since its global spread, several therapeutic agents have been developed to address the heterogeneous disease treatment, in terms of severity, hospital or outpatient management, and pre-existing clinical conditions. To better understand the rationale of new or old repurposed medications, the structure and host-virus interaction molecular bases are presented. The recommended agents by EDSA guidelines comprise of corticosteroids, JAK-targeting monoclonal antibodies, IL-6 inhibitors, and antivirals, some of them showing narrow indications due to the lack of large population trials and statistical power. The aim of this review is to present FDA-approved or authorized for emergency use antivirals, namely remdesivir, molnupinavir, and the combination nirmatrelvir-ritonavir and their impact on the cardiovascular system. We reviewed the literature for metanalyses, randomized clinical trials, and case reports and found positive associations between remdesivir and ritonavir administration at therapeutic doses and changes in cardiac conduction, relatable to their previously known pro-arrhythmogenic effects and important ritonavir interactions with cardioactive medications including antiplatelets, anti-arrhythmic agents, and lipid-lowering drugs, possibly interfering with pre-existing therapeutic regimens. Nonetheless, safety profiles of antivirals are largely questioned and addressed by health agencies, in consideration of COVID-19 cardiac and pro-thrombotic complications generally experienced by predisposed subjects. Our advice is to continuously adhere to the strict indications of FDA documents, monitor the possible side effects of antivirals, and increase physicians' awareness on the co-administration of antivirals and cardiovascular-relevant medications. This review dissects the global and local tendency to structure patient-based treatment plans, for a glance towards practical application of precision medicine.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord de Saint-Denis, 93200 Saint-Denis, France
| | - Adelaide Iervolino
- Department of Internal Medicine, University Policlinic Federico II, 80131 Naples, Italy;
| | | |
Collapse
|
1278
|
Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022; 7:48. [PMID: 35165272 PMCID: PMC8844085 DOI: 10.1038/s41392-022-00904-4] [Citation(s) in RCA: 810] [Impact Index Per Article: 270.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Peptide drug development has made great progress in the last decade thanks to new production, modification, and analytic technologies. Peptides have been produced and modified using both chemical and biological methods, together with novel design and delivery strategies, which have helped to overcome the inherent drawbacks of peptides and have allowed the continued advancement of this field. A wide variety of natural and modified peptides have been obtained and studied, covering multiple therapeutic areas. This review summarizes the efforts and achievements in peptide drug discovery, production, and modification, and their current applications. We also discuss the value and challenges associated with future developments in therapeutic peptides.
Collapse
|
1279
|
Kudlay D, Svistunov A. COVID-19 Vaccines: An Overview of Different Platforms. Bioengineering (Basel) 2022; 9:bioengineering9020072. [PMID: 35200425 PMCID: PMC8869214 DOI: 10.3390/bioengineering9020072] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
Vaccination is one of the key strategies to stop the COVID-19 pandemic. This review aims to evaluate the current state of vaccine development and to determine the issues that merit additional research. We conducted a literature review of the development of COVID-19 vaccines, their effectiveness, and their use in special patient groups. To date, 140 vaccines are in clinical development. Vector, RNA, subunit, and inactivated vaccines, as well as DNA vaccines, have been approved for human use. Vector vaccines have been well studied prior to the COVID-19 pandemic; however, their long-term efficacy and approaches to scaling up their production remain questionable. The main challenge for RNA vaccines is to improve their stability during production, storage, and transportation. For inactivated vaccines, the key issue is to improve their immunogenicity and effectiveness. To date, it has been shown that the immunogenicity of COVID-19 vaccines directly correlates with their clinical efficacy. In view of the constant mutation, the emerging new SARS-CoV-2 variants have been shown to be able to partially escape post-vaccination immune response; however, most vaccines remain sufficiently effective regardless of the variant of the virus. One of the promising strategies to improve the effectiveness of vaccination, which is being studied, is the use of different platforms within a single vaccination course. Despite significant progress in the development and study of COVID-19 vaccines, there are many issues that require further research.
Collapse
Affiliation(s)
- Dmitry Kudlay
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, Building 2, 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-(499)-248-05-53
| | - Andrey Svistunov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, Building 2, 119991 Moscow, Russia;
| |
Collapse
|
1280
|
Bezeljak U. Cancer gene therapy goes viral: viral vector platforms come of age. Radiol Oncol 2022; 56:1-13. [PMID: 35148469 PMCID: PMC8884858 DOI: 10.2478/raon-2022-0002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Since the advent of viral vector gene therapy in 1990s, cancer treatment with viral vectors promised to revolutionize the field of oncology. Notably, viral vectors offer a unique combination of efficient gene delivery and engagement of the immune system for anti-tumour response. Despite the early potential, viral vector-based cancer treatments are only recently making a big impact, most prominently as gene delivery devices in approved CAR-T cell therapies, cancer vaccines and targeted oncolytic therapeutics. To reach this broad spectrum of applications, a number of challenges have been overcome - from our understanding of cancer biology to vector design, manufacture and engineering. Here, we take an overview of viral vector usage in cancer therapy and discuss the latest advancements. We also consider production platforms that enable mainstream adoption of viral vectors for cancer gene therapy. CONCLUSIONS Viral vectors offer numerous opportunities in cancer therapy. Recent advances in vector production platforms open new avenues in safe and efficient viral therapeutic strategies, streamlining the transition from lab bench to bedside. As viral vectors come of age, they could become a standard tool in the cancer treatment arsenal.
Collapse
|
1281
|
Sonmezer MC, Sahin TK, Erul E, Ceylan FS, Hamurcu MY, Morova N, Rudvan Al I, Unal S. Knowledge, Attitudes, and Perception towards COVID-19 Vaccination among the Adult Population: A Cross-Sectional Study in Turkey. Vaccines (Basel) 2022; 10:278. [PMID: 35214736 PMCID: PMC8877322 DOI: 10.3390/vaccines10020278] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic continues to wreak havoc on lives and ravage the world. Several vaccines have been approved for use against COVID-19; however, there may be hesitancy and negative perceptions towards vaccination, which may reduce the willingness to be vaccinated. Further, studies assessing the current perception toward COVID-19 vaccination are scarce. This study aimed to assess community knowledge, attitudes, and perceptions regarding COVID-19 vaccines among the general population of Turkey. METHODS A cross-sectional survey was carried out among 1009 adult participants from the 13-20 April 2021. Demographic data were collected, and attitudes and perceptions toward COVID-19 vaccines were evaluated. A multivariable regression analysis was performed to identify the factors predicting perception towards COVID-19 vaccinations. RESULTS Just over half of participants were male (52.6%) and the majority of respondents were aged between 30 and 39 years (33.8%). Our study revealed that 62.7% of participants had positive perceptions of COVID-19 vaccines. Logistic regression analysis results showed that older people (≥30 vs. <30) were less likely to have a positive perception towards COVID-19 vaccines (OR = 0.70, 95% CI = 0.51-0.94). We also found participants who had a previous history of influenza vaccines (OR = 2.01, 95% CI = 1.43-2.84), bachelor's degrees or above (OR = 1.47, 95% CI = 1.12-1.91), and a personal history of COVID-19 (OR = 1.58, 95% CI = 1.10-2.26) were more likely to have a positive perception regarding COVID-19 vaccines. CONCLUSION The proportion of the general population in Turkey who believe in COVID-19 vaccine effectiveness is not inferior to that of other countries. However, the low positive perception even among the population applying for vaccination indicates that understanding the perception of the general population and its influencing factors may contribute to developing a strategy for improving vaccination rates by addressing these factors.
Collapse
Affiliation(s)
- Meliha Cagla Sonmezer
- Infectious Diseases and Clinical Microbiology Department, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey; (F.S.C.); (M.Y.H.); (N.M.); (I.R.A.); (S.U.)
| | - Taha Koray Sahin
- Internal Medicine Department, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey; (T.K.S.); (E.E.)
| | - Enes Erul
- Internal Medicine Department, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey; (T.K.S.); (E.E.)
| | - Furkan Sacit Ceylan
- Infectious Diseases and Clinical Microbiology Department, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey; (F.S.C.); (M.Y.H.); (N.M.); (I.R.A.); (S.U.)
| | - Muhammed Yusuf Hamurcu
- Infectious Diseases and Clinical Microbiology Department, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey; (F.S.C.); (M.Y.H.); (N.M.); (I.R.A.); (S.U.)
| | - Nihal Morova
- Infectious Diseases and Clinical Microbiology Department, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey; (F.S.C.); (M.Y.H.); (N.M.); (I.R.A.); (S.U.)
| | - Ipek Rudvan Al
- Infectious Diseases and Clinical Microbiology Department, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey; (F.S.C.); (M.Y.H.); (N.M.); (I.R.A.); (S.U.)
| | - Serhat Unal
- Infectious Diseases and Clinical Microbiology Department, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey; (F.S.C.); (M.Y.H.); (N.M.); (I.R.A.); (S.U.)
| |
Collapse
|
1282
|
Abrignani MG, Murrone A, De Luca L, Roncon L, Di Lenarda A, Valente S, Caldarola P, Riccio C, Oliva F, Gulizia MM, Gabrielli D, Colivicchi F, on behalf of the Working Group on Anti-COVID-19 Vaccination of the Associazione Nazionale Medici Cardiologi Ospedalieri (ANMCO). COVID-19, Vaccines, and Thrombotic Events: A Narrative Review. J Clin Med 2022; 11:948. [PMID: 35207220 PMCID: PMC8880092 DOI: 10.3390/jcm11040948] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), a deadly pandemic that has affected millions of people worldwide, is associated with cardiovascular complications, including venous and arterial thromboembolic events. Viral spike proteins, in fact, may promote the release of prothrombotic and inflammatory mediators. Vaccines, coding for the spike protein, are the primary means for preventing COVID-19. However, some unexpected thrombotic events at unusual sites, most frequently located in the cerebral venous sinus but also splanchnic, with associated thrombocytopenia, have emerged in subjects who received adenovirus-based vaccines, especially in fertile women. This clinical entity was soon recognized as a new syndrome, named vaccine-induced immune thrombotic thrombocytopenia, probably caused by cross-reacting anti-platelet factor-4 antibodies activating platelets. For this reason, the regulatory agencies of various countries restricted the use of adenovirus-based vaccines to some age groups. The prevailing opinion of most experts, however, is that the risk of developing COVID-19, including thrombotic complications, clearly outweighs this potential risk. This point-of-view aims at providing a narrative review of epidemiological issues, clinical data, and pathogenetic hypotheses of thrombosis linked to both COVID-19 and its vaccines, helping medical practitioners to offer up-to-date and evidence-based counseling to their often-alarmed patients with acute or chronic cardiovascular thrombotic events.
Collapse
Affiliation(s)
| | - Adriano Murrone
- Cardiology-UTIC, Hospitals of Città di Castello and Gubbio-Gualdo Tadino, AUSL Umbria 1, 06100 Perugia, Italy;
| | - Leonardo De Luca
- Cardiology, Cardio-Thoraco-Vascular Department, San Camillo Forlanini Hospital, 00100 Rome, Italy; (L.D.L.); (D.G.)
| | - Loris Roncon
- Cardiology Department, Santa Maria della Misericordia Hospital, 45100 Rovigo, Italy;
| | - Andrea Di Lenarda
- Cardiovascular and Sports Medicine Department, Azienda Sanitaria Universitaria Giuliano Isontina-ASUGI, 34100 Trieste, Italy;
| | - Serafina Valente
- Clinical Surgical Cardiology (UTIC), A.O.U. Senese, Santa Maria alle Scotte Hospital, 53100 Siena, Italy;
| | | | - Carmine Riccio
- Follow-Up of the Post-Acute Patient Unit, Cardio-Vascular Department, A.O.R.N. Sant’Anna and San Sebastiano, 81000 Caserta, Italy;
| | - Fabrizio Oliva
- Cardiology 1-Hemodynamics, Cardiological Intensive Care Unit, Cardiothoracovascular Department “A. De Gasperis”, ASST Grande Ospedale Metropolitano Niguarda, 20100 Milan, Italy;
| | - Michele M. Gulizia
- Cardiology Department, Garibaldi-Nesima Hospital, Company of National Importance and High Specialization “Garibaldi”, 95100 Catania, Italy;
- Heart Care Foundation, 50121 Florence, Italy
| | - Domenico Gabrielli
- Cardiology, Cardio-Thoraco-Vascular Department, San Camillo Forlanini Hospital, 00100 Rome, Italy; (L.D.L.); (D.G.)
| | - Furio Colivicchi
- Clinical and Rehabilitation Cardiology Department, Presidio Ospedaliero San Filippo Neri—ASL Roma 1, 00100 Rome, Italy;
| | | |
Collapse
|
1283
|
Shapiro JR, Morgan R, Leng SX, Klein SL. Roadmap for Sex-Responsive Influenza and COVID-19 Vaccine Research in Older Adults. FRONTIERS IN AGING 2022; 3:836642. [PMID: 35821800 PMCID: PMC9261334 DOI: 10.3389/fragi.2022.836642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 01/06/2023]
Abstract
Sex differences in the immune system are dynamic throughout the lifespan and contribute to heterogeneity in the risk of infectious diseases and the response to vaccination in older adults. The importance of the intersection between sex and age in immunity to viral respiratory diseases is clearly demonstrated by the increased prevalence and severity of influenza and COVID-19 in older males compared to older females. Despite sex and age biases in the epidemiology and clinical manifestations of disease, these host factors are often ignored in vaccine research. Here, we review sex differences in the immunogenicity, effectiveness, and safety of the influenza and COVID-19 vaccines in older adults and the impact of sex-specific effects of age-related factors, including chronological age, frailty, and the presence of comorbidities. While a female bias in immunity to influenza vaccines has been consistently reported, understanding of sex differences in the response to COVID-19 vaccines in older adults is incomplete due to small sample sizes and failure to disaggregate clinical trial data by both sex and age. For both vaccines, a major gap in the literature is apparent, whereby very few studies investigate sex-specific effects of aging, frailty, or multimorbidity. By providing a roadmap for sex-responsive vaccine research, beyond influenza and COVID-19, we can leverage the heterogeneity in immunity among older adults to provide better protection against vaccine-preventable diseases.
Collapse
Affiliation(s)
- Janna R. Shapiro
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Rosemary Morgan
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Sean X. Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Sabra L. Klein
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
1284
|
Khoo NKH, Lim JME, Gill US, de Alwis R, Tan N, Toh JZN, Abbott JE, Usai C, Ooi EE, Low JGH, Le Bert N, Kennedy PTF, Bertoletti A. Differential immunogenicity of homologous versus heterologous boost in Ad26.COV2.S vaccine recipients. MED 2022; 3:104-118.e4. [PMID: 35072129 PMCID: PMC8767655 DOI: 10.1016/j.medj.2021.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Protection offered by coronavirus disease 2019 (COVID-19) vaccines wanes over time, requiring an evaluation of different boosting strategies to revert such a trend and enhance the quantity and quality of Spike-specific humoral and cellular immune responses. These immunological parameters in homologous or heterologous vaccination boosts have thus far been studied for mRNA and ChAdOx1 nCoV-19 vaccines, but knowledge on individuals who received a single dose of Ad26.COV2.S is lacking. METHODS We studied Spike-specific humoral and cellular immunity in Ad26.COV2.S-vaccinated individuals (n = 55) who were either primed with Ad26.COV2.S only (n = 13) or were boosted with a homologous (Ad26.COV2.S, n = 28) or heterologous (BNT162b2, n = 14) second dose. We compared our findings with the results found in individuals vaccinated with a single (n = 16) or double (n = 44) dose of BNT162b2. FINDINGS We observed that a strategy of heterologous vaccination enhanced the quantity and breadth of both Spike-specific humoral and cellular immunity in Ad26.COV2.S-vaccinated individuals. In contrast, the impact of the homologous boost was quantitatively minimal in Ad26.COV2.S-vaccinated individuals, and Spike-specific antibodies and T cells were narrowly focused to the S1 region. CONCLUSIONS Despite the small sample size of the study and the lack of well-defined correlates of protection against COVID-19, the immunological features detected support the utilization of a heterologous vaccine boost in individuals who received Ad26.COV2.S vaccination. FUNDING This study is partially supported by the Singapore Ministry of Health's National Medical Research Council under its COVID-19 Research Fund (COVID19RF3-0060, COVID19RF-001, and COVID19RF-008), The Medical College St. Bartholomew's Hospital Trustees - Pump Priming Fund for SMD COVID-19 Research.
Collapse
Affiliation(s)
- Nicholas Kim Huat Khoo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Joey Ming Er Lim
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Upkar S Gill
- Barts Liver Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Mile End Road, London E1, UK
| | - Ruklanthi de Alwis
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
| | - Nicole Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Justin Zhen Nan Toh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
| | - Jane E Abbott
- Barts Liver Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Mile End Road, London E1, UK
| | - Carla Usai
- Barts Liver Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Mile End Road, London E1, UK
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
| | - Jenny Guek Hong Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore 169856, Singapore
| | - Nina Le Bert
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Patrick T F Kennedy
- Barts Liver Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Mile End Road, London E1, UK
| | - Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
- Singapore Immunology Network, A∗STAR, Singapore 138648, Singapore
| |
Collapse
|
1285
|
Kitchin D, Richardson SI, van der Mescht MA, Motlou T, Mzindle N, Moyo-Gwete T, Makhado Z, Ayres F, Manamela NP, Spencer H, Lambson B, Oosthuysen B, Kaldine H, du Pisanie M, Mennen M, Skelem S, Williams N, Ntusi NA, Burgers WA, Gray GG, Bekker LG, Boswell MT, Rossouw TM, Ueckermann V, Moore PL. Ad26.COV2.S breakthrough infections induce high titers of neutralizing antibodies against Omicron and other SARS-CoV-2 variants of concern. Cell Rep Med 2022; 3:100535. [PMID: 35474744 PMCID: PMC8828412 DOI: 10.1016/j.xcrm.2022.100535] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 01/20/2023]
Abstract
The Janssen (Johnson & Johnson) Ad26.COV2.S non-replicating viral vector vaccine has been widely deployed for COVID-19 vaccination programs in resource-limited settings. Here we confirm that neutralizing and binding antibody responses to Ad26.COV2.S vaccination are stable for 6 months post-vaccination, when tested against multiple SARS-CoV-2 variants. Secondly, using longitudinal samples from individuals who experienced clinically mild breakthrough infections 4 to 5 months after vaccination, we show dramatically boosted binding antibodies, Fc effector function, and neutralization. These high titer responses are of similar magnitude to humoral immune responses measured in convalescent donors who had been hospitalized with severe illness, and are cross-reactive against diverse SARS-CoV-2 variants, including the neutralization-resistant Omicron (B.1.1.529) variant that currently dominates global infections, as well as SARS-CoV-1. These data have implications for population immunity in areas where the Ad26.COV2.S vaccine has been widely deployed, but where ongoing infections continue to occur at high levels.
Collapse
Affiliation(s)
- Dale Kitchin
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Simone I. Richardson
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mieke A. van der Mescht
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Thopisang Motlou
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nonkululeko Mzindle
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Thandeka Moyo-Gwete
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zanele Makhado
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Frances Ayres
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nelia P. Manamela
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Holly Spencer
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Bronwen Lambson
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Brent Oosthuysen
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Haajira Kaldine
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Marizane du Pisanie
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Mathilda Mennen
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sango Skelem
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Noleen Williams
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ntobeko A.B. Ntusi
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa,Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Glenda G. Gray
- The South African Medical Research Council, Tygerberg, South Africa
| | - Linda-Gail Bekker
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,The Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Michael T. Boswell
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Theresa M. Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Veronica Ueckermann
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Penny L. Moore
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa,SAMRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Centre for the AIDS Programme of Research in South Africa, Durban, South Africa,Corresponding author
| |
Collapse
|
1286
|
Basheeruddin Asdaq SM, Jomah S, Rabbani SI, Alamri AM, Salem Alshammari SK, Duwaidi BS, Alshammari MS, Alamri AS, Alsanie WF, Alhomrani M, Sreeharsha N, Imran M. Insight into the Advances in Clinical Trials of SARS-CoV-2 Vaccines. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:6913772. [PMID: 35186175 PMCID: PMC8850041 DOI: 10.1155/2022/6913772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has thrown a challenge to the scientific community. Several interventions to stop or limit the spread of infection have failed, and every time the virus emerges, it becomes more contagious and more deadly. Vaccinating a significant proportion of the population is one of the established methods to achieve herd immunity. More than 100 COVID-19 vaccines have been designed and tested against the virus. The development of a new vaccine takes years of testing, but due to the pandemic, healthcare authorities have given emergency use authorization for a few vaccines. Among them are BioNTech and Moderna vaccines (mRNA based); ChAdOx1, Gam-COVID-Vac, Janssen vaccines (vector-based); CoronaVac, COVAXIN (virus inactivated); and EpiVacCorona vaccine (viral peptide). Mixtures of vaccines are also being tested to evaluate their efficacy against mutant strains of SARS-CoV-2. All these vaccines in clinical trials have shown robust production of neutralizing antibodies sufficient to prevent infection. Some of the vaccinated people reported serious complications. However, no definitive relationship could be established between vaccination administration and the occurrence of these complications. None of the COVID-19 vaccines approved to date have been found to be effective against all of the SARS-CoV-2 variants.
Collapse
Affiliation(s)
| | - Shahamah Jomah
- Pharmacy Department, Dr. Sulaiman Al-Habib Medical Group, Riyadh, Saudi Arabia
| | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | | | | | - Badr Sami Duwaidi
- King Abdulaziz Medical City, Ministry of National Guard, Riyadh, Saudi Arabia
| | | | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Al Hofuf 31982, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bengaluru 560035, Karnataka, India
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, P.O. Box 840, Rafha 91911, Saudi Arabia
| |
Collapse
|
1287
|
Kaplonek P, Fischinger S, Cizmeci D, Bartsch YC, Kang J, Burke JS, Shin SA, Dayal D, Martin P, Mann C, Amanat F, Julg B, Nilles EJ, Musk ER, Menon AS, Krammer F, Saphire EO, Andrea Carfi, Alter G. mRNA-1273 vaccine-induced antibodies maintain Fc effector functions across SARS-CoV-2 variants of concern. Immunity 2022; 55:355-365.e4. [PMID: 35090580 PMCID: PMC8733218 DOI: 10.1016/j.immuni.2022.01.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/16/2021] [Accepted: 01/04/2022] [Indexed: 01/16/2023]
Abstract
SARS-CoV-2 mRNA vaccines confer robust protection against COVID-19, but the emergence of variants has generated concerns regarding the protective efficacy of the currently approved vaccines, which lose neutralizing potency against some variants. Emerging data suggest that antibody functions beyond neutralization may contribute to protection from the disease, but little is known about SARS-CoV-2 antibody effector functions. Here, we profiled the binding and functional capacity of convalescent antibodies and Moderna mRNA-1273 COVID-19 vaccine-induced antibodies across SARS-CoV-2 variants of concern (VOCs). Although the neutralizing responses to VOCs decreased in both groups, the Fc-mediated responses were distinct. In convalescent individuals, although antibodies exhibited robust binding to VOCs, they showed compromised interactions with Fc-receptors. Conversely, vaccine-induced antibodies also bound robustly to VOCs but continued to interact with Fc-receptors and mediate antibody effector functions. These data point to a resilience in the mRNA-vaccine-induced humoral immune response that may continue to offer protection from SARS-CoV-2 VOCs independent of neutralization.
Collapse
Affiliation(s)
| | | | - Deniz Cizmeci
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Jaewon Kang
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - John S Burke
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Sally A Shin
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Diana Dayal
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | | | - Colin Mann
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Boris Julg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Elon R Musk
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | - Anil S Menon
- Space Exploration Technologies Corp, Hawthorne, CA, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erica Ollman Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
1288
|
Brunelli SM, Sibbel S, Karpinski S, Marlowe G, Walker AG, Giullian J, Van Wyck D, Kelley T, Lazar R, Zywno ML, Connaire JJ, Young A, Tentori F. Comparative Effectiveness of mRNA-Based BNT162b2 Vaccine versus Adenovirus Vector-Based Ad26.COV2.S Vaccine for Prevention of COVID-19 among Dialysis Patients. J Am Soc Nephrol 2022; 33:688-697. [PMID: 35135894 PMCID: PMC8970445 DOI: 10.1681/asn.2021101395] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/19/2022] [Indexed: 11/03/2022] Open
Abstract
Background Studies have demonstrated that mRNA-based SARS-CoV-2 vaccines are highly effective among dialysis patients. Because individual vaccines may be differentially available or acceptable to patients, it is important to understand comparative effectiveness relative to other vaccines, such those based on adenovirus technologies.
Methods In this retrospective study, we compared the clinical effectiveness of adenovirus vector-based Ad26.COV2.S (Janssen/Johnson & Johnson) to mRNA-based BNT162b2 (Pfizer/BioNTech) in a contemporary cohort of dialysis patients. Patients who received a first BNT162b2 dose were matched 1:1 to Ad26.COV2.S recipients based on date of first vaccine receipt, US state of residence, site of dialysis care (in-center versus home), prior history of COVID-19, and propensity score. The primary outcome was the comparative rate of COVID-19 diagnoses starting in the seventh week postvaccination. In a subset of consented Ad26.COV2.S patients, blood samples were collected ≥28 days after vaccination and anti-SARS-Cov-2 immunoglobulin G antibodies were measured
Results A total of 2572 matched pairs of patients qualified for analysis. Cumulative incidence rates of COVID-19 did not differ for BNT162b2 versus Ad26.COV2.S. No differences were observed in peri-COVID-19 hospitalizations and deaths among patients receiving BNT162b2 versus Ad26.COV2.S who were diagnosed with COVID-19 during follow-up. Results were similar when excluding patients with prior history of COVID-19, in subgroup analyses restricted to patients who completed the two-dose BNT162b2 regimen, and in patients receiving in-center hemodialysis. SARS-CoV-2 antibodies were detected in 59.4% of 244 patients who received Ad26.COV2.S.
Conclusions In a large real-world cohort of dialysis patients, no difference was detected in clinical effectiveness of BNT162b2 and Ad26.COV2.S over the first 6 months postvaccination, despite an inconsistent antibody response to the latter.
Collapse
Affiliation(s)
| | - Scott Sibbel
- DaVita Clinical Research, Minneapolis, Minnesota
| | | | | | | | | | | | - Tara Kelley
- DaVita Clinical Research, Minneapolis, Minnesota
| | | | | | | | - Amy Young
- DaVita Clinical Research, Minneapolis, Minnesota
| | | |
Collapse
|
1289
|
Sznajder KK, Kjerulff KH, Wang M, Hwang W, Ramirez SI, Gandhi CK. Covid-19 vaccine acceptance and associated factors among pregnant women in Pennsylvania 2020. Prev Med Rep 2022; 26:101713. [PMID: 35127367 PMCID: PMC8800167 DOI: 10.1016/j.pmedr.2022.101713] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/06/2022] [Accepted: 01/23/2022] [Indexed: 01/10/2023] Open
Abstract
Data on factors associated with vaccine acceptance among pregnant women are critical to the rapid scale up of interventions to improve vaccine uptake. When COVID-19 vaccines were still in the testing phases of research, we surveyed pregnant women accessing prenatal care at an academic medical institution in Central Pennsylvania, United States to examine factors associated with vaccine acceptance. Willingness to receive a COVID-19 vaccine once a vaccine became available was asked as part of an ongoing study on the COVID-19 pandemic and pregnancy (n = 196). Overall, 65% of women reported they would be willing or somewhat willing to receive the COVID-19 vaccine. Women who had received an influenza vaccine within the past year were more likely to be willing to receive the COVID-19 vaccine than women who had never received an influenza vaccine or those who received it over one year ago (aOR 4.82; 95% CI 2.17, 10.72). Similarly, women who were employed full-time were more willing to receive the COVID-19 vaccine than women who were not employed full time (aOR 2.22; 95% CI 1.02, 4.81), and women who reported feeling overloaded were more willing to receive the COVID-19 vaccine than women who did not feel overloaded (aOR 2.18; 95% CI 1.02, 4.68). Our findings support the need to increase vaccination education among pregnant women before vaccines are rolled out, especially those who have not received an influenza vaccine within the past year. Improved understanding of willingness to vaccinate among pregnant women will improve future pandemic responses and current vaccination efforts.
Collapse
Affiliation(s)
- Kristin K. Sznajder
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Corresponding author at: Department of Public Health Sciences, Pennsylvania State University College of Medicine, 90 Hope Drive, Hershey, PA 17033, USA.
| | - Kristen H. Kjerulff
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Ming Wang
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Wenke Hwang
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Sarah I. Ramirez
- Department of Family and Community Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Chintan K. Gandhi
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
1290
|
Chandrashekar A, Yu J, McMahan K, Jacob-Dolan C, Liu J, He X, Hope D, Anioke T, Barrett J, Chung B, Hachmann NP, Lifton M, Miller J, Powers O, Sciacca M, Sellers D, Siamatu M, Surve N, VanWyk H, Wan H, Wu C, Pessaint L, Valentin D, Van Ry A, Muench J, Boursiquot M, Cook A, Velasco J, Teow E, Boon AC, Suthar MS, Jain N, Martinot AJ, Lewis MG, Andersen H, Barouch DH. Vaccine Protection Against the SARS-CoV-2 Omicron Variant in Macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.06.479285. [PMID: 35169798 PMCID: PMC8845420 DOI: 10.1101/2022.02.06.479285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The rapid spread of the SARS-CoV-2 Omicron (B.1.1.529) variant, including in highly vaccinated populations, has raised important questions about the efficacy of current vaccines. Immune correlates of vaccine protection against Omicron are not known. METHODS 30 cynomolgus macaques were immunized with homologous and heterologous prime-boost regimens with the mRNA-based BNT162b2 vaccine and the adenovirus vector-based Ad26.COV2.S vaccine. Following vaccination, animals were challenged with the SARS-CoV-2 Omicron variant by the intranasal and intratracheal routes. RESULTS Omicron neutralizing antibodies were observed following the boost immunization and were higher in animals that received BNT162b2, whereas Omicron CD8+ T cell responses were higher in animals that received Ad26.COV2.S. Following Omicron challenge, sham controls showed more prolonged virus in nasal swabs than in bronchoalveolar lavage. Vaccinated macaques demonstrated rapid control of virus in bronchoalveolar lavage, and most vaccinated animals also controlled virus in nasal swabs, showing that current vaccines provide substantial protection against Omicron in this model. However, vaccinated animals that had moderate levels of Omicron neutralizing antibodies but negligible Omicron CD8+ T cell responses failed to control virus in the upper respiratory tract. Virologic control correlated with both antibody and T cell responses. CONCLUSIONS BNT162b2 and Ad26.COV2.S provided robust protection against high-dose challenge with the SARS-CoV-2 Omicron variant in macaques. Protection against this highly mutated SARS-CoV-2 variant correlated with both humoral and cellular immune responses.
Collapse
Affiliation(s)
- Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Katherine McMahan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Catherine Jacob-Dolan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Jinyan Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Xuan He
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - David Hope
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tochi Anioke
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Julia Barrett
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Benjamin Chung
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nicole P. Hachmann
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michelle Lifton
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jessica Miller
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Olivia Powers
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michaela Sciacca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Daniel Sellers
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mazuba Siamatu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nehalee Surve
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Haley VanWyk
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Huahua Wan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Cindy Wu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | - Neharika Jain
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - Amanda J. Martinot
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | | | | | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
1291
|
COVID-19 Vaccination Coverage in Patients with Rheumatic Diseases in a German Outpatient Clinic: An Observational Study. Vaccines (Basel) 2022; 10:vaccines10020253. [PMID: 35214709 PMCID: PMC8880778 DOI: 10.3390/vaccines10020253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 01/27/2023] Open
Abstract
Background: In the second year of the COVID-19 pandemic, highly effective and safe vaccines became available. Since patients with rheumatic diseases show increased susceptibility to infections and typical medications raise the risk of severe COVID-19, high vaccination coverage is of significant importance to these patients. Methods: Consecutive patients with different rheumatic diseases were asked for their vaccination status regarding COVID-19, influenza and Streptococcus pneumoniae during their routine consultations. Any reported vaccination was validated with their personal vaccination card and/or by reviewing the CovPass smartphone app. Reasons for not having a COVID-19 vaccination were documented. Results: A total of 201 patients (mean age 62.3 ± 14.1 years) were included, the majority of them (44.3%) with rheumatoid arthritis, followed by spondyloarthritis (27.4%) and connective tissue diseases (21.4%). Vaccination coverage for SARS-CoV-2 was 80.1%; 85.6% got at least the first vaccination shot. Both valid influenza and pneumococcus coverage were associated with a higher probability of SARS-CoV-2 vaccination (odds ratio (OR) 6.243, 95% confidence interval (CI) 2.637–14.783, p < 0.0001 and OR 6.372, 95% CI 2.105–19.282, p = 0.0003, respectively). The main reason for a missing SARS-CoV-2 vaccination (70%) was being sceptical about the vaccine itself (i.e., the subjective impression that the vaccine was not properly tested and fear of unwanted side effects). Conclusions: Vaccination coverage against SARS-CoV-2 is high in patients with rheumatic diseases. Nevertheless, there are unmet needs regarding vaccination education to further increase vaccination rates.
Collapse
|
1292
|
Bouwmans P, Messchendorp AL, Sanders JS, Hilbrands L, Reinders MEJ, Vart P, Bemelman FJ, Abrahams AC, van den Dorpel MA, Ten Dam MA, de Vries APJ, Rispens T, Steenhuis M, Gansevoort RT, Hemmelder MH, Kho ML, van Baarle D, van der Molen RG, Baan CC, Diavatopoulos DA, Remmerswaal EBM, Imhof C, Malahe RSRK, Frölke SC, Rots N, van der Klis F, ten Hoope E, Konijn WS, de Ronde T, Vervoort JPM, Braks MHJ. Long-term efficacy and safety of SARS-CoV-2 vaccination in patients with chronic kidney disease, on dialysis or after kidney transplantation: a national prospective observational cohort study. BMC Nephrol 2022; 23:55. [PMID: 35123437 PMCID: PMC8817171 DOI: 10.1186/s12882-022-02680-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/20/2022] [Indexed: 01/23/2023] Open
Abstract
Background COVID-19 is associated with increased morbidity and mortality in patients with chronic kidney disease (CKD) stages G4-G5, on dialysis or after kidney transplantation (kidney replacement therapy, KRT). SARS-CoV-2 vaccine trials do not elucidate if SARS-CoV-2 vaccination is effective in these patients. Vaccination against other viruses is known to be less effective in kidney patients. Our objective is to assess the efficacy and safety of various types of SARS-CoV-2 vaccinations in patients with CKD stages G4-G5 or on KRT. Methods In this national prospective observational cohort study we will follow patients with CKD stages G4-G5 or on KRT (n = 12,000) after SARS-CoV-2 vaccination according to the Dutch vaccination program. Blood will be drawn for antibody response measurements at day 28 and month 6 after completion of vaccination. Patient characteristics and outcomes will be extracted from registration data and questionnaires during 2 years of follow-up. Results will be compared with a control group of non-vaccinated patients. The level of antibody response to vaccination will be assessed in subgroups to predict protection against COVID-19 breakthrough infection. Results The primary endpoint is efficacy of SARS-CoV-2 vaccination determined as the incidence of COVID-19 after vaccination. Secondary endpoints are the antibody based immune response at 28 days after vaccination, the durability of this response at 6 months after vaccination, mortality and (serious) adverse events. Conclusion This study will fulfil the lack of knowledge on efficacy and safety of SARS-CoV-2 vaccination in patients with CKD stages G4-G5 or on KRT. Trial registration The study protocol has been registered in clinicaltrials.gov(NCT04841785). Current knowledge about this subjectCOVID-19 has devastating impact on patients with CKD stages G4-G5, on dialysis or after kidney transplantation. Effective SARS-CoV-2 vaccination is very important in these vulnerable patient groups. Recent studies on vaccination in these patient groups are small short-term studies with surrogate endpoints.
Contribution of this studyAssessment of incidence and course of COVID-19 after various types of SARS-CoV-2 vaccination during a two-year follow-up period in not only patients on dialysis or kidney transplant recipients, but also in patients with CKD stages G4-G5. Quantitative analysis of antibody response after SARS-CoV-2 vaccination and its relationship with incidence and course of COVID-19 in patients with CKD stages G4-G5, on dialysis or after kidney transplantation compared with a control group. Monitoring of (serious) adverse events and development of anti-HLA antibodies.
Impact on practice or policyPublication of the study design contributes to harmonization of SARS-CoV-2 vaccine study methodology in kidney patients at high-risk for severe COVID-19.Data on efficacy of SARS-CoV-2 vaccination in patients with CKD will provide guidance for future vaccination policy.
Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02680-3.
Collapse
|
1293
|
Myllylahti L, Pitkänen H, Magnani H, Lassila R. Experience of danaparoid to treat vaccine-induced immune thrombocytopenia and thrombosis, VITT. Thromb J 2022; 20:4. [PMID: 35120527 PMCID: PMC8814786 DOI: 10.1186/s12959-021-00362-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Vaccine-induced immune thrombocytopenia and thrombosis (VITT) is triggered by nCOV-19 adenovirus-vectored vaccines against SARS-CoV2. Pathogenesis has been mainly related to platelet activation via PF4-reactive antibodies that activate platelets and may cross-react with heparin. Data concerning optimal anticoagulation are anecdotal, and so far, there are scattered reports of danaparoid use in VITT management. Danaparoid has good efficacy and safety in treatment of heparin-induced thrombocytopenia. We report here our experience of the administration and monitoring danaparoid in VITT. METHODS We diagnosed a series of six hospitalized cases of VITT, based on the international diagnostic guidance. All VITT-related data were from the local electronic medical and laboratory record system and were analyzed with IBM SPSS Statistics. RESULTS Predominately women in their late 40's developed VITT on average 24 days (range 9-59) after the first ChAdOx1 dose. Clinical presentation included single or multiple venous and/or arterial thrombosis, moderate thrombocytopenia and high D-dimer levels. After detecting PF4 antibodies subcutaneous danaparoid was our first-line antithrombotic treatment with an average duration of three weeks. The median plasma anti-FXa activity was in the lower part of the therapeutic range and during the first week of danaparoid administration clinical symptoms, platelet counts, and fibrin turnover resolved or significantly improved. The average duration of hospital admission was 10 days [2-18]. One patient died but the other five patients recovered completely. CONCLUSIONS The clinical outcomes of our small cohort align with the earlier published reports, and support danaparoid as a rational option for the initial anticoagulation of VITT patients.
Collapse
Affiliation(s)
- Lasse Myllylahti
- Division of Internal Medicine and Rehabilitation, Department of Internal Medicine, Helsinki University Hospital, Helsinki, Finland
| | - Hanna Pitkänen
- Helsinki University, Division of Anesthesiology, Department of Anesthesiology , Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Clinical Research Institute HUCH, Helsinki, Finland
| | - Harry Magnani
- Independent Clinical Consultant, Schoutstraat, 54, Oss, The Netherlands
| | - Riitta Lassila
- Unit of Coagulation Disorders, Department of Hematology, Comprehensive Cancer Center, Helsinki University Hospital, and Research Program Unit in Systems Oncology, University of Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland.
- Finnish Institute of Health and Welfare, Helsinki, Finland.
| |
Collapse
|
1294
|
Yang WT, Huang WH, Liao TL, Hsiao TH, Chuang HN, Liu PY. SARS-CoV-2 E484K Mutation Narrative Review: Epidemiology, Immune Escape, Clinical Implications, and Future Considerations. Infect Drug Resist 2022; 15:373-385. [PMID: 35140483 PMCID: PMC8820839 DOI: 10.2147/idr.s344099] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread rapidly over the world and claimed million lives. The virus evolves constantly, and a swarm of mutants is a now major concern globally. Distinct variants could have independently converged on same mutation, despite being detected in different geographic regions, which suggested it could confer an evolutionary advantage. E484K has rapidly emerged and has frequently been detected in several SARS-CoV-2 variants of concern. In this study, we review the epidemiology and impact of E484K, its effects on neutralizing effect of several monoclonal antibodies, convalescent plasma, and post-vaccine sera.
Collapse
Affiliation(s)
- Wan-Ting Yang
- Division of Infection, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wei-Hsuan Huang
- Division of Infection, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Han-Ni Chuang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Po-Yu Liu
- Division of Infection, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
1295
|
Huang Z, Su Y, Zhang T, Xia N. A review of the safety and efficacy of current COVID-19 vaccines. Front Med 2022; 16:39-55. [PMID: 35122210 PMCID: PMC8815389 DOI: 10.1007/s11684-021-0893-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/24/2021] [Indexed: 01/06/2023]
Abstract
Vaccination is the most effective and feasible way to contain the Coronavirus disease 2019 (COVID-19) pandemic. The rapid development of effective COVID-19 vaccines is an extraordinary achievement. This study reviewed the efficacy/effectiveness, immunogenicity, and safety profile of the 12 most progressed COVID-19 vaccines and discussed the challenges and prospects of the vaccine-based approaches in a global crisis. Overall, most of the current vaccines have shown safety and efficacy/effectiveness during actual clinical trials or in the real-world studies, indicating a development of pandemic control. However, many challenges are faced by pandemic control in terms of maximizing the effect of vaccines, such as rapid vaccine coverage, strategies to address variants with immune escape capability, and surveillance of vaccine safety in the medium- and long-terms.
Collapse
Affiliation(s)
- Zehong Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yingying Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Tianying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Strait Collaborative Innovation Center of Biomedicine and Pharmaceutics, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
1296
|
Garcia-Beltran WF, St Denis KJ, Hoelzemer A, Lam EC, Nitido AD, Sheehan ML, Berrios C, Ofoman O, Chang CC, Hauser BM, Feldman J, Roederer AL, Gregory DJ, Poznansky MC, Schmidt AG, Iafrate AJ, Naranbhai V, Balazs AB. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell 2022; 185:457-466.e4. [PMID: 34995482 PMCID: PMC8733787 DOI: 10.1016/j.cell.2021.12.033] [Citation(s) in RCA: 760] [Impact Index Per Article: 253.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 02/09/2023]
Abstract
Recent surveillance has revealed the emergence of the SARS-CoV-2 Omicron variant (BA.1/B.1.1.529) harboring up to 36 mutations in spike protein, the target of neutralizing antibodies. Given its potential to escape vaccine-induced humoral immunity, we measured the neutralization potency of sera from 88 mRNA-1273, 111 BNT162b, and 40 Ad26.COV2.S vaccine recipients against wild-type, Delta, and Omicron SARS-CoV-2 pseudoviruses. We included individuals that received their primary series recently (<3 months), distantly (6-12 months), or an additional "booster" dose, while accounting for prior SARS-CoV-2 infection. Remarkably, neutralization of Omicron was undetectable in most vaccinees. However, individuals boosted with mRNA vaccines exhibited potent neutralization of Omicron, only 4-6-fold lower than wild type, suggesting enhanced cross-reactivity of neutralizing antibody responses. In addition, we find that Omicron pseudovirus infects more efficiently than other variants tested. Overall, this study highlights the importance of additional mRNA doses to broaden neutralizing antibody responses against highly divergent SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Wilfredo F Garcia-Beltran
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| | - Kerri J St Denis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Angelique Hoelzemer
- First Department of Internal Medicine, Division of Infectious Diseases, University Medical Centre Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Germany; Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Evan C Lam
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Adam D Nitido
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Ph.D. Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Maegan L Sheehan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Cristhian Berrios
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Onosereme Ofoman
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christina C Chang
- Alfred Hospital, Central Clinical School, Monash University, Victoria 3181, Australia; Center for the AIDS Programme of Research in South Africa, Durban 4001, South Africa
| | - Blake M Hauser
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Ph.D. Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Alex L Roederer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Ph.D. Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - David J Gregory
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA 02129, USA; Pediatric Infectious Disease, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA 02129, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vivek Naranbhai
- Center for the AIDS Programme of Research in South Africa, Durban 4001, South Africa; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | |
Collapse
|
1297
|
Sritipsukho P, Khawcharoenporn T, Siribumrungwong B, Damronglerd P, Suwantarat N, Satdhabudha A, Chaiyakulsil C, Sinlapamongkolkul P, Tangsathapornpong A, Bunjoungmanee P, Nanthapisal S, Tanprasertkul C, Sritipsukho N, Mingmalairak C, Apisarnthanarak A, Tantiyavarong P. Comparing real-life effectiveness of various COVID-19 vaccine regimens during the delta variant-dominant pandemic: A test-negative case-control study. Emerg Microbes Infect 2022; 11:585-592. [PMID: 35114893 PMCID: PMC8856087 DOI: 10.1080/22221751.2022.2037398] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Data on real-life vaccine effectiveness (VE), against the delta variant (B.1.617.2) of the severe acute respiratory syndrome coronavirus 2 among various coronavirus disease 2019 (COVID-19) vaccine regimens are urgently needed to impede the COVID-19 pandemic. We conducted a test-negative case-control study to assess the VE of various vaccine regimens for preventing COVID-19 during the period when the delta variant was the dominant causative virus (≥ 95%) in Thailand (25 July 2021–23 Oct 2021). All individuals (age ≥18 years) at-risk for COVID-19, presented for nasopharyngeal real-time polymerase chain reaction (RT-PCR) testing, were prospectively enrolled and followed up for disease development. Vaccine effectiveness was estimated with adjustment for individual demographic and clinical characteristics. Of 3353 included individuals, there were 1118 cases and 2235 controls. The adjusted VE among persons receiving two-dose CoronaVac plus one BNT162b2 booster was highest (98%; 95% confidence interval [CI] 87–100), followed by those receiving two-dose CoronaVac plus one ChAdOx1 nCoV-19 booster (86%; 95% CI 74–93), two-dose ChAdOx1 nCoV-19 (83%; 95% CI 70–90), one CoronaVac dose and one ChAdOx1 nCoV-19 dose (74%; 95% CI 43–88) and two-dose CoronaVac (60%; 95% CI 49–69). One dose of CoronaVac or ChAdOx1 nCoV-19 had a VE of less than 50%. Our study demonstrated the incremental VE with the increase in the number of vaccine doses received. The two-dose CoronaVac plus one BNT162b2 or ChAdOx1 nCoV-19 booster regimens was highly effective in preventing COVID-19 during the rise of delta variant.
Collapse
Affiliation(s)
- Paskorn Sritipsukho
- Center of Excellence in Applied Epidemiology, Thammasat University.,Department of Pediatrics, Faculty of Medicine, Thammasat University
| | - Thana Khawcharoenporn
- Center of Excellence in Applied Epidemiology, Thammasat University.,Department of Internal Medicine, Faculty of Medicine, Thammasat University
| | - Boonying Siribumrungwong
- Center of Excellence in Applied Epidemiology, Thammasat University.,Department of Surgery, Faculty of Medicine, Thammasat University
| | | | - Nuntra Suwantarat
- Department of Internal Medicine, Chulabhorn International College of Medicine, Thammasat University
| | | | | | | | | | | | - Sira Nanthapisal
- Center of Excellence in Applied Epidemiology, Thammasat University.,Department of Pediatrics, Faculty of Medicine, Thammasat University
| | - Chamnan Tanprasertkul
- Center of Excellence in Applied Epidemiology, Thammasat University.,Department of Obstetrics & Gynecology, Faculty of Medicine, Thammasat University
| | | | | | - Anucha Apisarnthanarak
- Center of Excellence in Applied Epidemiology, Thammasat University.,Department of Internal Medicine, Faculty of Medicine, Thammasat University
| | - Pichaya Tantiyavarong
- Department of Clinical Epidemiology, Faculty of Medicine, Thammasat University Pathumthani, Thailand, 12120
| |
Collapse
|
1298
|
Pack SM, Peters PJ. SARS-CoV-2-Specific Vaccine Candidates; the Contribution of Structural Vaccinology. Vaccines (Basel) 2022; 10:236. [PMID: 35214693 PMCID: PMC8877865 DOI: 10.3390/vaccines10020236] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
SARS-CoV-2 vaccine production has taken us by storm. We aim to fill in the history of concepts and the work of pioneers and provide a framework of strategies employing structural vaccinology. Cryo-electron microscopy became crucial in providing three-dimensional (3D) structures and creating candidates eliciting T and B cell-mediated immunity. It also determined structural changes in the emerging mutants in order to design new constructs that can be easily, quickly and safely added to the vaccines. The full-length spike (S) protein, the S1 subunit and its receptor binding domain (RBD) of the virus are the best candidates. The vaccine development to cease this COVID-19 pandemic sets a milestone for the pan-coronavirus vaccine's designing and manufacturing. By employing structural vaccinology, we propose that the mRNA and the protein sequences of the currently approved vaccines should be modified rapidly to keep up with the more infectious new variants.
Collapse
Affiliation(s)
| | - Peter J. Peters
- The Maastricht Multimodal Molecular Imaging Institute (M4i), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
1299
|
Moving Forward from the COVID-19 Pandemic: Needed Changes in Movement Disorders Care and Research. Curr Neurol Neurosci Rep 2022; 22:113-122. [PMID: 35107786 PMCID: PMC8809223 DOI: 10.1007/s11910-022-01178-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/23/2022]
Abstract
Purpose of Review The COVID-19 pandemic has dramatically affected the health and well-being of individuals with movement disorders. This manuscript reviews these effects, discusses pandemic-related changes in clinical care and research, and suggests improvements to care and research models. Recent Findings During the on-going COVID-19 pandemic, individuals with movement disorders have experienced worsening of symptoms, likely due to decreased access to care, loss of social connection, and decreased physical activity. Through telemedicine, care has moved out of the clinic and into the home. Clinical research has also been significantly disrupted, and there has been a shift to decentralized approaches. The pandemic has highlighted disparities in access to care and representation in research. Summary We must now translate these experiences into better care and research models with a focus on equitable integration of telemedicine, better support of patients and caregivers, the development of meaningful digital endpoints, and optimization of decentralized research designs.
Collapse
|
1300
|
Ying B, Whitener B, VanBlargan LA, Hassan AO, Shrihari S, Liang CY, Karl CE, Mackin S, Chen RE, Kafai NM, Wilks SH, Smith DJ, Carreño JM, Singh G, Krammer F, Carfi A, Elbashir SM, Edwards DK, Thackray LB, Diamond MS. Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains. Sci Transl Med 2022; 14:eabm3302. [PMID: 34846168 PMCID: PMC8817234 DOI: 10.1126/scitranslmed.abm3302] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022]
Abstract
Although mRNA vaccines encoding the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prevent COVID-19, the emergence of new viral variants jeopardizes their efficacy. Here, we assessed the immunogenicity and protective activity of historical (mRNA-1273, designed for Wuhan-1 spike protein) or modified (mRNA-1273.351, designed for B.1.351 spike protein) Moderna mRNA vaccines in 129S2 and K18-hACE2 mice. Mice were immunized with either high-dose or low-dose formulations of the mRNA vaccines, where low-dose vaccination modeled suboptimal immune responses. Immunization with formulations at either dose induced neutralizing antibodies in serum against ancestral SARS-CoV-2 WA1/2020 and several virus variants, although serum titers were lower against the B.1.617.2 (Delta) virus. Protection against weight loss and lung pathology was observed with all high-dose vaccines against all viruses. However, low-dose formulations of the vaccines, which produced lower magnitude antibody and T cell responses, showed breakthrough lung infections with B.1.617.2 and development of pneumonia in K18-hACE2 mice. Thus, in individuals with reduced immunity after mRNA vaccination, breakthrough infection and disease may occur with some SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bradley Whitener
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura A. VanBlargan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ahmed O. Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Swathi Shrihari
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Courtney E. Karl
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samantha Mackin
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rita E. Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Natasha M. Kafai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel H. Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge UK CB2 3EJ
| | - Derek J. Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge UK CB2 3EJ
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | | | - Larissa B. Thackray
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine. St. Louis, MO 63110, USA
| |
Collapse
|