1301
|
Hahn ME, Timme-Laragy AR, Karchner SI, Stegeman JJ. Nrf2 and Nrf2-related proteins in development and developmental toxicity: Insights from studies in zebrafish (Danio rerio). Free Radic Biol Med 2015; 88:275-289. [PMID: 26130508 PMCID: PMC4698826 DOI: 10.1016/j.freeradbiomed.2015.06.022] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/11/2015] [Accepted: 06/15/2015] [Indexed: 12/14/2022]
Abstract
Oxidative stress is an important mechanism of chemical toxicity, contributing to developmental toxicity and teratogenesis as well as to cardiovascular and neurodegenerative diseases and diabetic embryopathy. Developing animals are especially sensitive to effects of chemicals that disrupt the balance of processes generating reactive species and oxidative stress, and those anti-oxidant defenses that protect against oxidative stress. The expression and inducibility of anti-oxidant defenses through activation of NFE2-related factor 2 (Nrf2) and related proteins is an essential process affecting the susceptibility to oxidants, but the complex interactions of Nrf2 in determining embryonic response to oxidants and oxidative stress are only beginning to be understood. The zebrafish (Danio rerio) is an established model in developmental biology and now also in developmental toxicology and redox signaling. Here we review the regulation of genes involved in protection against oxidative stress in developing vertebrates, with a focus on Nrf2 and related cap'n'collar (CNC)-basic-leucine zipper (bZIP) transcription factors. Vertebrate animals including zebrafish share Nfe2, Nrf1, Nrf2, and Nrf3 as well as a core set of genes that respond to oxidative stress, contributing to the value of zebrafish as a model system with which to investigate the mechanisms involved in regulation of redox signaling and the response to oxidative stress during embryolarval development. Moreover, studies in zebrafish have revealed nrf and keap1 gene duplications that provide an opportunity to dissect multiple functions of vertebrate NRF genes, including multiple sensing mechanisms involved in chemical-specific effects.
Collapse
Affiliation(s)
- Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America.
| | - Alicia R Timme-Laragy
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America; Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| |
Collapse
|
1302
|
Schäfer M, Werner S. Nrf2--A regulator of keratinocyte redox signaling. Free Radic Biol Med 2015; 88:243-252. [PMID: 25912479 DOI: 10.1016/j.freeradbiomed.2015.04.018] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 01/12/2023]
Abstract
The skin is frequently exposed to environmental challenges, such as UV irradiation, toxic chemicals, and mechanical wounding. These insults cause an increase in the levels of reactive oxygen species, resulting in oxidative stress and concomitant inflammation, skin aging, and even cancer development. Therefore, an efficient antioxidant defense strategy is of major importance in this tissue. Since the Nrf2 transcription factor regulates a battery of genes involved in the defense against reactive oxygen species and in compound metabolism, it plays a key role in skin homeostasis, repair, and disease. In this review we summarize current knowledge on the expression and function of Nrf2 in normal skin and its role in the acute and chronic UV response as well as in the pathogenesis of epithelial skin cancer and of different inflammatory skin diseases. Finally, we discuss the potential of Nrf2-activating compounds for skin protection under stress conditions and for the treatment of major human skin disorders.
Collapse
Affiliation(s)
- Matthias Schäfer
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland.
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland.
| |
Collapse
|
1303
|
Comparative study of genotoxic, antigenotoxic and cytotoxic activities of monoterpenes camphor, eucalyptol and thujone in bacteria and mammalian cells. Chem Biol Interact 2015; 242:263-71. [PMID: 26482939 DOI: 10.1016/j.cbi.2015.10.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/18/2015] [Accepted: 10/13/2015] [Indexed: 12/30/2022]
Abstract
Genotoxic/antigenotoxic, mutagenic/antimutagenic and cytotoxic effects of monoterpenes camphor, eucalyptol and thujone were determined in bacteria and mammalian cells using alkaline comet assay, Escherichia coli K12 reversion test and MTT assay, respectively. When applied in low doses (up to 200 μM in bacterial assay and 50 μM in comet assay) monoterpenes protected repair proficient E. coli and Vero cells against UV-induced mutagenesis and 4NQO-induced DNA strand breaks, respectively. Antimutagenic response was not detected in nucleotide excision repair (NER) deficient bacteria. When monoterpenes were applied in higher doses, a weak mutagenic effect was found in mismatch repair (MMR) and NER deficient E. coli strains, while induction of DNA strand breaks was evident in human fetal lung fibroblasts MRC-5, colorectal carcinoma HT-29 and HCT 116 cells, as well as in Vero cells. Moreover, the involvement of NER, MMR and RecBCD pathways in repair of DNA lesions induced by monoterpenes was demonstrated in E. coli. Camphor, eucalyptol and thujone were cytotoxic to MRC-5, HT-29 and HCT 116 cells. The most susceptible cell line was HCT 116, with IC50 values of 4.5 mM for camphor, 4 mM for eucalyptol and 1 mM for thujone. Observed effects of monoterpenes are consistent with hormesis response, characterized by a low dose beneficial effect and a high dose adverse effect of a stressor agent, and provide a basis for further study of both chemopreventive and chemotherapeutic potential of camphor, eucalyptol and thujone.
Collapse
|
1304
|
Li J, Duan X, Dong D, Zhang Y, Li W, Zhao L, Nie H, Sun G, Li B. Hepatic and Nephric NRF2 Pathway Up-Regulation, an Early Antioxidant Response, in Acute Arsenic-Exposed Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:12628-42. [PMID: 26473898 PMCID: PMC4626990 DOI: 10.3390/ijerph121012628] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 01/02/2023]
Abstract
Inorganic arsenic (iAs), a proven human carcinogen, damages biological systems through multiple mechanisms, one of them being reactive oxygen species (ROS) production. NRF2 is a redox-sensitive transcription factor that positively regulates the genes of encoding antioxidant and detoxification enzymes to neutralize ROS. Although NRF2 pathway activation by iAs has been reported in various cell types, however, the experimental data in vivo are very limited and not fully elucidated in humans. The present investigation aimed to explore the hepatic and nephric NRF2 pathway upregulation in acute arsenic-exposed mice in vivo. Our results showed 10 mg/kg NaAsO2 elevated the NRF2 protein and increased the transcription of Nrf2 mRNA, as well as up-regulated NRF2 downstream targets HO-1, GST and GCLC time- and dose-dependently both in the liver and kidney. Acute NaAsO2 exposure also resulted in obvious imbalance of oxidative redox status represented by the increase of GSH and MDA, and the decrease of T-AOC. The present investigation reveals that hepatic and nephric NRF2 pathway expression is an early antioxidant defensive response upon iAs exposure. A better knowledge about the NRF2 pathway involvment in the cellular response against arsenic could help improve the strategies for reducing the cellular toxicity related to this metalloid.
Collapse
Affiliation(s)
- Jinlong Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110013, China.
| | - Xiaoxu Duan
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110013, China.
| | - Dandan Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110013, China.
- Cao County Center for Disease Control and Prevention, Heze 274400, China.
| | - Yang Zhang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110013, China.
| | - Wei Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110013, China.
| | - Lu Zhao
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110013, China.
| | - Huifang Nie
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110013, China.
| | - Guifan Sun
- Environment and Non-Communicable Diseases Research Center, School of Public Health, China Medical University, Shenyang 110013, China.
| | - Bing Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang 110013, China.
| |
Collapse
|
1305
|
Chiarella P, Carbonari D, Iavicoli S. Utility of checklist to describe experimental methods for investigating molecular biomarkers. Biomark Med 2015; 9:989-95. [DOI: 10.2217/bmm.15.82] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction: In research articles, detailed description of experimental methods and reagents is fundamental for correct reproducibility of the published data. This becomes even more important when such data contribute to identify molecular targets and toxicity biomarkers whose role is crucial in the physiology and pathology of human health. Methods & Objectives: To achieve good reproducibility of data we took advantage of others’ experiences and analyzed molecular biology and immunodetection techniques in 32 journal articles investigating the human NRF2 and Keap1 genes involved in the cell response to oxidative stress. Results & Conclusions: In conclusion of the analysis, we assessed deficiency of information in the published methods, making it difficult to select appropriate protocols. Underlining the importance of assay reproducibility, this paper proposes the utility of a minimum information checklist of methods for biomarker detection.
Collapse
Affiliation(s)
- Pieranna Chiarella
- Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, INAIL Italian Workers’ Compensation Authority, Via Fontana Candida 1, 00040 Monteporzio Catone, Rome, Italy
| | - Damiano Carbonari
- Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, INAIL Italian Workers’ Compensation Authority, Via Fontana Candida 1, 00040 Monteporzio Catone, Rome, Italy
| | - Sergio Iavicoli
- Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, INAIL Italian Workers’ Compensation Authority, Via Fontana Candida 1, 00040 Monteporzio Catone, Rome, Italy
| |
Collapse
|
1306
|
Yang X, Wang D, Ma Y, Xu X, Zhu Z, Wang X, Deng H, Li C, Chen M, Tong J, Yamanaka K, An Y. Continuous activation of Nrf2 and its target antioxidant enzymes leads to arsenite-induced malignant transformation of human bronchial epithelial cells. Toxicol Appl Pharmacol 2015; 289:231-9. [PMID: 26420645 DOI: 10.1016/j.taap.2015.09.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 09/22/2015] [Accepted: 09/25/2015] [Indexed: 12/29/2022]
Abstract
Long-term exposure to arsenite leads to human lung cancer, but the underlying mechanisms of carcinogenesis remain obscure. The transcription factor of nuclear factor-erythroid-2 p45-related factor (Nrf2)-mediated antioxidant response represents a critical cellular defense mechanism and protection against various diseases. Paradoxically, emerging data suggest that the constitutive activation of Nrf2 is associated with cancer development, progression and chemotherapy resistance. However, the role of Nrf2 in the occurrence of cancer induced by long-term arsenite exposure remains to be fully understood. By establishing transformed human bronchial epithelial (HBE) cells via chronic low-dose arsenite treatment, we showed that, in acquiring this malignant phenotype, continuous low level of ROS and sustained enhancement of Nrf2 and its target antioxidant enzyme levels were observed in the later-stage of arsenite-induced cell transformation. The downregulation of Keap1 level may be responsible for the over-activation of Nrf2 and its target enzymes. To validate these observations, Nrf2 was knocked down in arsenite-transformed HBE cells by SiRNA transfection, and the levels of Nrf2 and its target antioxidant enzymes, ROS, cell proliferation, migration, and colony formation were determined following these treatments. Results showed that blocked Nrf2 expression significantly reduced Nrf2 and its target antioxidant enzyme levels, restored ROS levels, and eventually suppressed cell proliferation, migration, and colony formation of the transformed cells. In summary, the results of the study strongly suggested that the continuous activation of Nrf2 and its target antioxidant enzymes led to the over-depletion of intracellular ROS levels, which contributed to arsenite-induced HBE cell transformation.
Collapse
Affiliation(s)
- Xu Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Dapeng Wang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China; Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Yuan Ma
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xiguo Xu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Zhen Zhu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xiaojuan Wang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Hanyi Deng
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Chunchun Li
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Min Chen
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Jian Tong
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Kenzo Yamanaka
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba, Japan
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
1307
|
Shields LBE, Rolf CM, Hunsaker JC. Sudden Death Due To Acute Cocaine Toxicity-Excited Delirium in a Body Packer. J Forensic Sci 2015; 60:1647-51. [DOI: 10.1111/1556-4029.12860] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/08/2014] [Accepted: 11/15/2014] [Indexed: 10/23/2022]
Affiliation(s)
- Lisa B. E. Shields
- Norton Neuroscience Institute; Norton Healthcare; 210 East Gray Street Suite 1102 Louisville KY 40202
| | - Cristin M. Rolf
- State Medical Examiner Office; 5455 Dr. Martin Luther King Ave. Anchorage Alaska 99507
- Office of the Associate Chief Medical Examiner; KY Justice and Public Safety Cabinet; 100 Sower Blvd Ste 202 Frankfort KY 40601-8272
| | - John C. Hunsaker
- Office of the Associate Chief Medical Examiner; KY Justice and Public Safety Cabinet; 100 Sower Blvd Ste 202 Frankfort KY 40601-8272
- Department of Pathology and Laboratory Medicine; University of Kentucky College of Medicine; 100 Sower Blvd, Ste 202, Frankfort Lexington KY 40601-8272
| |
Collapse
|
1308
|
Ponniah M, Billett EE, De Girolamo LA. Bisphenol A increases BeWo trophoblast survival in stress-induced paradigms through regulation of oxidative stress and apoptosis. Chem Res Toxicol 2015; 28:1693-703. [PMID: 26247420 DOI: 10.1021/acs.chemrestox.5b00093] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bisphenol A (BPA) is ubiquitous in the environment and is reported to be present at high concentrations in placental tissue, where its presence raises concerns over its potential to disrupt placental function. This report investigates how BPA interferes with the survival of human choriocarcinoma BeWo cells (a model of placental trophoblasts) under stress-induced paradigms reminiscent of pathways activated in placental development. These include conditions that promote oxidative stress (glutathione depletion) and apoptosis (serum withdrawal) or mimic hypoxia (HIF-1α accumulation via dimethyloxalylglycine treatment). Treatment of BeWo cells with BPA during stress-induced paradigms led to a consistent and significant increase in cell viability, with a concomitant increase in glutathione levels and a reduction in apoptosis. Assessment of the antioxidant capacity of BPA revealed its ability to quench reactive oxygen species and reduce the levels generated during glutathione and serum depletion. BPA was also able to reduce the activation of the antioxidant response element (ARE) through mediation of its activators, nuclear factor erythroid related factor family members (Nrf's). Indeed, the expression and nuclear translocation of Nrf2 (an important ARE activator) were impaired by BPA, while Nrf1 and Nrf3 expression levels were increased. Furthermore, BPA increased the levels of the anti-apoptotic proteins (Bcl-2 and Hsp70) and decreased HIF-1α levels during stress-induced conditions. Together, these results indicate that BPA inhibits trophoblast cell death under conditions of cellular stress. This could have implications on placental trophoblasts during development.
Collapse
Affiliation(s)
- Muralitharan Ponniah
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University , Nottingham NG11 8NS, U.K
| | - E Ellen Billett
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University , Nottingham NG11 8NS, U.K
| | - Luigi A De Girolamo
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University , Nottingham NG11 8NS, U.K
| |
Collapse
|
1309
|
Jiang SK, Zhang M, Tian ZL, Wang M, Zhao R, Wang LL, Li SS, Liu M, Li JY, Zhang MZ, Guan DW. The monoacylglycerol lipase inhibitor JZL184 decreases inflammatory response in skeletal muscle contusion in rats. Eur J Pharmacol 2015; 761:1-10. [PMID: 25912803 DOI: 10.1016/j.ejphar.2015.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/10/2015] [Accepted: 04/15/2015] [Indexed: 11/22/2022]
Abstract
Muscle wound healing process is a typical inflammation-evoked event. The monoacylglycerol lipase (MAGL) inhibitor (4-nitrophenyl)4-[bis(1,3-benzodioxol -5-yl)-hydroxymethyl]piperidine-1-carboxylate (JZL184) has been previously reported to reduce inflammation in colitis and acute lung injury in mice, which provide a new strategy for primary care of skeletal muscle injury. We investigated the effect of JZL184 on inflammation in rat muscle contusion model, and found decreased neutrophil and macrophage infiltration and pro-inflammatory cytokine expression. With extension of post-traumatic interval, myofiber regeneration was significantly hindered with increased collagen types I and ІІІ mRNAfibroblast infiltration as well as promoted fibrosis. Furthermore, 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-morpholin-4-ylpyrazole-3-carboxamide (AM281, a selective cannabinoid CB1 receptor antagonist) and [6-iodo-2-methyl-1-(2-morpholin-4-ylethyl)indol-3-yl]-(4-methoxyphenyl)methanone (AM630, a selective cannabinoid CB2 receptor antagonist) treatment alleviated the anti-inflammatory effect of JZL184. Our findings demonstrate that JZL184 is able to inhibit the inflammatory response and interfere with contused muscle healing, in which the anti-inflammatory action may be mediated through cannabinoid CB1 and CB2 receptors.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Benzodioxoles/pharmacology
- Cannabinoid Receptor Antagonists/pharmacology
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type I, alpha 1 Chain
- Collagen Type III/genetics
- Collagen Type III/metabolism
- Contusions/drug therapy
- Contusions/enzymology
- Contusions/genetics
- Contusions/immunology
- Contusions/pathology
- Cytokines/metabolism
- Disease Models, Animal
- Enzyme Inhibitors/pharmacology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibrosis
- Inflammation Mediators/metabolism
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Monoacylglycerol Lipases/antagonists & inhibitors
- Monoacylglycerol Lipases/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/immunology
- Muscle, Skeletal/pathology
- Myositis/enzymology
- Myositis/genetics
- Myositis/immunology
- Myositis/pathology
- Myositis/prevention & control
- Neutrophil Infiltration/drug effects
- Neutrophils/drug effects
- Neutrophils/immunology
- Neutrophils/metabolism
- Piperidines/pharmacology
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/drug effects
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction/drug effects
- Time Factors
- Wound Healing/drug effects
Collapse
Affiliation(s)
- Shu-Kun Jiang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning Province, PR China
| | - Miao Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning Province, PR China
| | - Zhi-Ling Tian
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning Province, PR China
| | - Meng Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning Province, PR China
| | - Rui Zhao
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning Province, PR China
| | - Lin-Lin Wang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning Province, PR China
| | - Shan-Shan Li
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning Province, PR China
| | - Min Liu
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning Province, PR China
| | - Jiao-Yong Li
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning Province, PR China
| | - Meng-Zhou Zhang
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning Province, PR China
| | - Da-Wei Guan
- Department of Forensic Pathology, China Medical University School of Forensic Medicine, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
1310
|
Wollank Y, Ramer R, Ivanov I, Salamon A, Peters K, Hinz B. Inhibition of FAAH confers increased stem cell migration via PPARα. J Lipid Res 2015; 56:1947-60. [PMID: 26263913 DOI: 10.1194/jlr.m061473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 02/07/2023] Open
Abstract
Regenerative activity in tissues of mesenchymal origin depends on the migratory potential of mesenchymal stem cells (MSCs). The present study focused on inhibitors of the enzyme fatty acid amide hydrolase (FAAH), which catalyzes the degradation of endocannabinoids (anandamide, 2-arachidonoylglycerol) and endocannabinoid-like substances (N-oleoylethanolamine, N-palmitoylethanolamine). Boyden chamber assays, the FAAH inhibitors, URB597 and arachidonoyl serotonin (AA-5HT), were found to increase the migration of human adipose-derived MSCs. LC-MS analyses revealed increased levels of all four aforementioned FAAH substrates in MSCs incubated with either FAAH inhibitor. Following addition to MSCs, all FAAH substrates mimicked the promigratory action of FAAH inhibitors. Promigratory effects of FAAH inhibitors and substrates were causally linked to activation of p42/44 MAPKs, as well as to cytosol-to-nucleus translocation of the transcription factor, PPARα. Whereas PPARα activation by FAAH inhibitors and substrates became reversed upon inhibition of p42/44 MAPK activation, a blockade of PPARα left p42/44 MAPK phosphorylation unaltered. Collectively, these data demonstrate FAAH inhibitors and substrates to cause p42/44 MAPK phosphorylation, which subsequently activates PPARα to confer increased migration of MSCs. This novel pathway may be involved in regenerative effects of endocannabinoids whose degradation could be a target of pharmacological intervention by FAAH inhibitors.
Collapse
Affiliation(s)
- Yvonne Wollank
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, D-18057 Rostock, Germany Department of Cell Biology, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Robert Ramer
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Igor Ivanov
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Achim Salamon
- Department of Cell Biology, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Kirsten Peters
- Department of Cell Biology, Rostock University Medical Center, D-18057 Rostock, Germany
| | - Burkhard Hinz
- Institute of Toxicology and Pharmacology, Rostock University Medical Center, D-18057 Rostock, Germany
| |
Collapse
|
1311
|
Changing gears in Nrf1 research, from mechanisms of regulation to its role in disease and prevention. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1260-76. [PMID: 26254094 DOI: 10.1016/j.bbagrm.2015.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/02/2015] [Accepted: 08/03/2015] [Indexed: 12/12/2022]
Abstract
The "cap'n'collar" bZIP transcription factor Nrf1 heterodimerizes with small Maf proteins to bind to the Antioxidant Response Element/Electrophile Response Element to transactivate antioxidant enzyme, phase 2 detoxification enzyme and proteasome subunit gene expression. Nrf1 specifically regulates pathways in lipid metabolism, amino acid metabolism, proteasomal degradation, the citric acid cycle, and the mitochondrial respiratory chain. Nrf1 is maintained in the endoplasmic reticulum (ER) in an inactive glycosylated state. Activation involves retrotranslocation from the ER lumen to the cytoplasm, deglycosylation and partial proteolytic processing to generate the active forms of Nrf1. Recent evidence has revealed how this factor is regulated and its involvement in various metabolic diseases. This review outlines Nrf1 structure, function, regulation and its links to insulin resistance, diabetes and inflammation. The glycosylation/deglycosylation of Nrf1 is controlled by glucose levels. Nrf1 glycosylation affects its control of glucose transport, glycolysis, gluconeogenesis and lipid metabolism.
Collapse
|
1312
|
Paul S, Giri AK. Epimutagenesis: A prospective mechanism to remediate arsenic-induced toxicity. ENVIRONMENT INTERNATIONAL 2015; 81:8-17. [PMID: 25898228 DOI: 10.1016/j.envint.2015.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/30/2015] [Accepted: 04/10/2015] [Indexed: 06/04/2023]
Abstract
Arsenic toxicity is a global issue, addressed by the World Health Organization as one of the major natural calamities faced by humans. More than 137 million individuals in 70 nations are affected by arsenic mainly through drinking water and also through diet. Chronic arsenic exposure leads to various types of patho-physiological end points in humans including cancers. Arsenic, a xenobiotic substance, is biotransformed in the body to its methylated species by using the physiological S-adenosyl methionine (SAM). SAM dictates methylation status of the genome and arsenic metabolism leads to depletion of SAM leading to an epigenetic disequilibrium. Since epigenetics is one of the major phenomenon at the interface between the environment and human health impact, its disequilibrium by arsenic inflicts upon the chromatin compaction, gene expression, genomic stability and a host of biomolecular interactions, the interactome within the cell. Since arsenic is not mutagenic but is carcinogenic in nature, arsenic induced epimutagenesis has come to the forefront since it determines the transcriptional and genomic integrity of the cell. Arsenic toxicity brings forth several pathophysiological manifestations like dermatological non-cancerous, pre-cancerous and cancerous lesions, peripheral neuropathy, DNA damage, respiratory disorders and cancers of several internal organs. Recently, several diseases of similar manifestations have been explained with the relevant epigenetic perspectives regarding the possible molecular mechanism for their onset. Hence, in the current review, we comprehensively try to intercalate the information on arsenic-induced epigenetic alterations of DNA, histones and microRNA so as to understand whether the arsenic-induced toxic manifestations are brought about by the epigenetic changes. We highlight the need to understand the aspect of epimutagenesis and subsequent alterations in the cellular interactome due to arsenic-induced molecular changes, which may be utilized to develop putative therapeutic strategies targeting both oxidative potential and epimutagenesis in humans.
Collapse
Affiliation(s)
- Somnath Paul
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Ashok K Giri
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India.
| |
Collapse
|
1313
|
Wang X, Chen H, Liu J, Ouyang Y, Wang D, Bao W, Liu L. Association between the NF-E2 Related Factor 2 Gene Polymorphism and Oxidative Stress, Anti-Oxidative Status, and Newly-Diagnosed Type 2 Diabetes Mellitus in a Chinese Population. Int J Mol Sci 2015; 16:16483-16496. [PMID: 26204833 PMCID: PMC4519961 DOI: 10.3390/ijms160716483] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/14/2015] [Accepted: 06/30/2015] [Indexed: 12/28/2022] Open
Abstract
Oxidative stress is a major risk factor in the onset and progression of type 2 diabetes mellitus (T2DM). NF-E2 related factor 2 (NRF2) is a pivotal transcription factor in oxidative stress related illnesses. This study included 2174 subjects with 879 cases of newly-diagnosed T2DM and 1295 healthy controls. Compared to individuals with the CC genotype, those with the AA genotype had lower total anti-oxidative capacity, superoxide dismutase, catalase, glutathione, glutathione peroxidase activity; and lower homeostasis model assessment of β-cell function index. Those with the AA genotype also had a higher malondialdehyde concentration and homeostasis model assessment of insulin resistance index values. The frequency of allele A was significantly higher in T2DM subjects (29.4%), compared to control subjects (26.1%; p = 0.019). Individuals with the AA genotype had a significantly higher risk of developing T2DM (OR 1.56; 95% CI 1.11, 2.20; p = 0.011), relative to those with the CC genotype, even after adjusting for known T2DM risk factors. Our results suggest that the NRF2 rs6721961 polymorphism was significantly associated with oxidative stress, anti-oxidative status, and risk of newly-diagnosed T2DM. This polymorphism may also contribute to impaired insulin secretory capacity and increased insulin resistance in a Chinese population.
Collapse
Affiliation(s)
- Xia Wang
- Department of Maternal and Child Health Care, School of Public Health, Shandong University, Jinan 250012, China.
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hongxia Chen
- Institute of Biomedicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.
| | - Jun Liu
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yingying Ouyang
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Di Wang
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Wei Bao
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Liegang Liu
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
1314
|
Cattaneo C, Maderna E, Rendinelli A, Gibelli D. Animal experimentation in forensic sciences: How far have we come? Forensic Sci Int 2015. [PMID: 26216717 DOI: 10.1016/j.forsciint.2015.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the third millennium where ethical, ethological and cultural evolution seem to be leading more and more towards an inter-species society, the issue of animal experimentation is a moral dilemma. Speaking from a self-interested human perspective, avoiding all animal testing where human disease and therapy are concerned may be very difficult or even impossible; such testing may not be so easily justifiable when suffering-or killing-of non human animals is inflicted for forensic research. In order to verify how forensic scientists are evolving in this ethical issue, we undertook a systematic review of the current literature. We investigated the frequency of animal experimentation in forensic studies in the past 15 years and trends in publication in the main forensic science journals. Types of species, lesions inflicted, manner of sedation or anesthesia and euthanasia were examined in a total of 404 articles reviewed, among which 279 (69.1%) concerned studies involving animals sacrificed exclusively for the sake of the experiment. Killing still frequently includes painful methods such as blunt trauma, electrocution, mechanical asphyxia, hypothermia, and even exsanguination; of all these animals, apparently only 60.8% were anesthetized. The most recent call for a severe reduction if not a total halt to the use of animals in forensic sciences was made by Bernard Knight in 1992. In fact the principle of reduction and replacement, frequently respected in clinical research, must be considered the basis for forensic science research needing animals.
Collapse
Affiliation(s)
- C Cattaneo
- LABANOF, Laboratorio di Antropologia e Odontologia Forense Sezione di Medicina Legale Dipartimento di Scienze Biomediche per la Salute Università degli Studi di Milano, V. Mangiagalli 37, 20133 Milan, Italy.
| | - E Maderna
- LABANOF, Laboratorio di Antropologia e Odontologia Forense Sezione di Medicina Legale Dipartimento di Scienze Biomediche per la Salute Università degli Studi di Milano, V. Mangiagalli 37, 20133 Milan, Italy
| | - A Rendinelli
- LABANOF, Laboratorio di Antropologia e Odontologia Forense Sezione di Medicina Legale Dipartimento di Scienze Biomediche per la Salute Università degli Studi di Milano, V. Mangiagalli 37, 20133 Milan, Italy
| | - D Gibelli
- LABANOF, Laboratorio di Antropologia e Odontologia Forense Sezione di Medicina Legale Dipartimento di Scienze Biomediche per la Salute Università degli Studi di Milano, V. Mangiagalli 37, 20133 Milan, Italy
| |
Collapse
|
1315
|
Forsgren S, Alfredson H, Andersson G. Further proof of the existence of a non-neuronal cholinergic system in the human Achilles tendon: Presence of the AChRα7 receptor in tendon cells and cells in the peritendinous tissue. Int Immunopharmacol 2015; 29:195-200. [PMID: 25981114 DOI: 10.1016/j.intimp.2015.04.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/14/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
Human tendon cells have the capacity for acetylcholine (ACh) production. It is not known if the tendon cells also have the potential for ACh breakdown, nor if they show expression of the nicotinic acetylcholine receptor AChRα7 (α7nAChR). Therefore, tendon tissue specimens from patients with midportion Achilles tendinopathy/tendinosis and from normal midportion Achilles tendons were examined. Reaction for the degradative enzyme acetylcholinesterase (AChE) was found in some tenocytes in only a few tendinopathy tendons, and was never found in those of control tendons. Tenocytes displayed more regularly α7nAChR immunoreactivity. However, there was a marked heterogeneity in the degree of this reaction within and between the specimens. α7nAChR immunoreactivity was especially pronounced for tenocytes showing an oval/widened appearance. There was a tendency that the magnitude of α7nAChR immunoreactivity was higher in tendinopathy tendons as compared to control tendons. A stronger α7nAChR immunoreactivity than seen for tenocytes was observed for the cells in the peritendinous tissue. It is likely that the α7nAChR may be an important part of an auto-and paracrine loop of non-neuronal ACh that is released from the tendon cells. The effects may be related to proliferative and blood vessel regulatory functions as well as features related to collagen deposition. ACh can furthermore be of importance in leading to anti-inflammatory effects in the peritendinous tissue, a tissue nowadays considered to be of great relevance for the tendinopathy process. Overall, the findings show that tendon tissue, a tissue known to be devoid of cholinergic innervation, is a tissue in which there is a marked non-neuronal cholinergic system.
Collapse
Affiliation(s)
- Sture Forsgren
- Department of Integrative Medical Biology, Anatomy Section, Umeå University, Umeå, Sweden.
| | - Håkan Alfredson
- Department of Community Medicine and Rehabilitation, Section for Sports Medicine, Umeå University, Umeå, Sweden
| | - Gustav Andersson
- Department of Integrative Medical Biology, Anatomy Section, Umeå University, Umeå, Sweden; Department of Surgical and Perioperative Science, Section for Hand and Plastic Surgery, Umeå University, Umeå, Sweden
| |
Collapse
|
1316
|
Tsujita T, Baird L, Furusawa Y, Katsuoka F, Hou Y, Gotoh S, Kawaguchi SI, Yamamoto M. Discovery of an NRF1-specific inducer from a large-scale chemical library using a direct NRF1-protein monitoring system. Genes Cells 2015; 20:563-77. [PMID: 25940588 DOI: 10.1111/gtc.12248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 03/26/2015] [Indexed: 11/26/2022]
Abstract
NRF1 (NF-E2-p45-related factor 1) plays an important role in the regulation of genes encoding proteasome subunits, a cystine transporter, and lipid-metabolizing enzymes. Global and tissue-specific disruptions of the Nrf1 gene in mice result in embryonic lethality and spontaneous development of severe tissue defects, respectively, suggesting NRF1 plays a critical role in vivo. Mechanistically, the continuous degradation of the NRF1 protein by the proteasome is regarded as a major regulatory nexus of NRF1 activity. To develop NRF1-specific inducers that act to overcome the phenotypes related to the lack of NRF1 activity, we constructed a novel NRF1ΔC-Luc fusion protein reporter and developed cell lines that stably express the reporter in Hepa1c1c7 cells for use in high-throughput screening. In screening of a chemical library with this reporter system, we identified two hit compounds that significantly induced luciferase activity. Through an examination of a series of derivatives of one of the hit compounds, we identified T1-20, which induced a 70-fold increase in luciferase activity. T1-20 significantly increased the level of NRF1 protein in the mouse liver, indicating that the compound is also functional in vivo. Thus, these results show the successful identification of the first small chemical compounds which specifically and significantly induce NRF1.
Collapse
Affiliation(s)
- Tadayuki Tsujita
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Liam Baird
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yuki Furusawa
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Pharmaceutical Research Center, Mochida Pharmaceutical Co. Ltd, 722 Uenohara, Jimba, Gotemba, Shizuoka, 412-8524, Japan
| | - Fumiki Katsuoka
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Bioscience for Drug Discovery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yoshika Hou
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Satomi Gotoh
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Shin-ichi Kawaguchi
- Department of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Bioscience for Drug Discovery, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
1317
|
Fu J, Zheng H, Wang H, Yang B, Zhao R, Lu C, Liu Z, Hou Y, Xu Y, Zhang Q, Qu W, Pi J. Protective Role of Nuclear Factor E2-Related Factor 2 against Acute Oxidative Stress-Induced Pancreatic β -Cell Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:639191. [PMID: 25949772 PMCID: PMC4407529 DOI: 10.1155/2015/639191] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 12/30/2022]
Abstract
Oxidative stress is implicated in the pathogenesis of pancreatic β-cell dysfunction that occurs in both type 1 and type 2 diabetes. Nuclear factor E2-related factor 2 (NRF2) is a master regulator in the cellular adaptive response to oxidative stress. The present study found that MIN6 β-cells with stable knockdown of Nrf2 (Nrf2-KD) and islets isolated from Nrf2-knockout mice expressed substantially reduced levels of antioxidant enzymes in response to a variety of stressors. In scramble MIN6 cells or wild-type islets, acute exposure to oxidative stressors, including hydrogen peroxide (H2O2) and S-nitroso-N-acetylpenicillamine, resulted in cell damage as determined by decrease in cell viability, reduced ATP content, morphology changes of islets, and/or alterations of apoptotic biomarkers in a concentration- and/or time-dependent manner. In contrast, silencing of Nrf2 sensitized MIN6 cells or islets to the damage. In addition, pretreatment of MIN6 β-cells with NRF2 activators, including CDDO-Im, dimethyl fumarate (DMF), and tert-butylhydroquinone (tBHQ), protected the cells from high levels of H2O2-induced cell damage. Given that reactive oxygen species (ROS) are involved in regulating glucose-stimulated insulin secretion (GSIS) and persistent activation of NRF2 blunts glucose-triggered ROS signaling and GSIS, the present study highlights the distinct roles that NRF2 may play in pancreatic β-cell dysfunction that occurs in different stages of diabetes.
Collapse
Affiliation(s)
- Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Hongzhi Zheng
- The First Affiliated Hospital, China Medical University, 155 Nanjingbei Street, Heping District, Shenyang, Liaoning 110001, China
| | - Huihui Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Bei Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Rui Zhao
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Chunwei Lu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Zhiyuan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Yongyong Hou
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| | - Qiang Zhang
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709, USA
| | - Weidong Qu
- Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, P.O. Box 249, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, China
| |
Collapse
|
1318
|
Zheng H, Fu J, Xue P, Zhao R, Dong J, Liu D, Yamamoto M, Tong Q, Teng W, Qu W, Zhang Q, Andersen ME, Pi J. CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion. Antioxid Redox Signal 2015; 22:819-831. [PMID: 25556857 PMCID: PMC4367236 DOI: 10.1089/ars.2014.6017] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 01/01/2015] [Indexed: 12/12/2022]
Abstract
AIMS The inability of pancreatic β-cells to secrete sufficient insulin in response to glucose stimulation is a major contributing factor to the development of type 2 diabetes (T2D). We investigated both the in vitro and in vivo effects of deficiency of nuclear factor-erythroid 2-related factor 1 (Nrf1) in β-cells on β-cell function and glucose homeostasis. RESULTS Silencing of Nrf1 in β-cells leads to a pre-T2D phenotype with disrupted glucose metabolism and impaired insulin secretion. Specifically, MIN6 β-cells with stable knockdown of Nrf1 (Nrf1-KD) and isolated islets from β-cell-specific Nrf1-knockout [Nrf1(b)-KO] mice displayed impaired glucose responsiveness, including elevated basal insulin release and decreased glucose-stimulated insulin secretion (GSIS). Nrf1(b)-KO mice exhibited severe fasting hyperinsulinemia, reduced GSIS, and glucose intolerance. Silencing of Nrf1 in MIN6 cells resulted in oxidative stress and altered glucose metabolism, with increases in both glucose uptake and aerobic glycolysis, which is associated with the elevated basal insulin release and reduced glucose responsiveness. The elevated glycolysis and reduced glucose responsiveness due to Nrf1 silencing likely result from altered expression of glucose metabolic enzymes, with induction of high-affinity hexokinase 1 and suppression of low-affinity glucokinase. INNOVATION Our study demonstrated a novel role of Nrf1 in regulating glucose metabolism and insulin secretion in β-cells and characterized Nrf1 as a key transcription factor that regulates the coupling of glycolysis and mitochondrial metabolism and GSIS. CONCLUSION Nrf1 plays critical roles in regulating glucose metabolism, mitochondrial function, and insulin secretion, suggesting that Nrf1 may be a novel target to improve the function of insulin-secreting β-cells.
Collapse
Affiliation(s)
- Hongzhi Zheng
- The First Affiliated Hospital, China Medical University, Shenyang, China
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Jingqi Fu
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
- School of Public Health, China Medical University, Shenyang, China
| | - Peng Xue
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
- School of Public Health, Fudan University, Shanghai, China
| | - Rui Zhao
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jian Dong
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
- Institute of Medicine and Biology, Wuhan University of Science and Technology, Wuhan, China
| | - Dianxin Liu
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, Florida
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Qingchun Tong
- Center for Metabolic and Degenerative Disease, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Weiping Teng
- The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Weidong Qu
- School of Public Health, Fudan University, Shanghai, China
| | - Qiang Zhang
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Melvin E. Andersen
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Jingbo Pi
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
- School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
1319
|
Riedmann C, Ma Y, Melikishvili M, Godfrey SG, Zhang Z, Chen KC, Rouchka EC, Fondufe-Mittendorf YN. Inorganic Arsenic-induced cellular transformation is coupled with genome wide changes in chromatin structure, transcriptome and splicing patterns. BMC Genomics 2015; 16:212. [PMID: 25879800 PMCID: PMC4371809 DOI: 10.1186/s12864-015-1295-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/29/2015] [Indexed: 12/29/2022] Open
Abstract
Background Arsenic (As) exposure is a significant worldwide environmental health concern. Low dose, chronic arsenic exposure has been associated with a higher than normal risk of skin, lung, and bladder cancer, as well as cardiovascular disease and diabetes. While arsenic-induced biological changes play a role in disease pathology, little is known about the dynamic cellular changes resulting from arsenic exposure and withdrawal. Results In these studies, we sought to understand the molecular mechanisms behind the biological changes induced by arsenic exposure. A comprehensive global approach was employed to determine genome-wide changes to chromatin structure, transcriptome patterns and splicing patterns in response to chronic low dose arsenic and its subsequent withdrawal. Our results show that cells exposed to chronic low doses of sodium arsenite have distinct temporal and coordinated chromatin, gene expression, and miRNA changes consistent with differentiation and activation of multiple biochemical pathways. Most of these temporal patterns in gene expression are reversed when arsenic is withdrawn. However, some gene expression patterns remained altered, plausibly as a result of an adaptive response by cells. Additionally, the correlation of changes to gene expression and chromatin structure solidify the role of chromatin structure in gene regulatory changes due to arsenite exposure. Lastly, we show that arsenite exposure influences gene regulation both at the initiation of transcription as well as at the level of splicing. Conclusions Our results show that adaptation of cells to iAs-mediated EMT is coupled to changes in chromatin structure effecting differential transcriptional and splicing patterns of genes. These studies provide new insights into the mechanism of iAs-mediated pathology, which includes epigenetic chromatin changes coupled with changes to the transcriptome and splicing patterns of key genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1295-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caitlyn Riedmann
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| | - Ye Ma
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| | - Manana Melikishvili
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| | - Steven Grason Godfrey
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| | - Zhou Zhang
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY, 40536, USA.
| | - Kuey Chu Chen
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA.
| | - Eric C Rouchka
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40292, USA.
| | | |
Collapse
|
1320
|
Liu ZM, Tseng HY, Cheng YL, Yeh BW, Wu WJ, Huang HS. TG-interacting factor transcriptionally induced by AKT/FOXO3A is a negative regulator that antagonizes arsenic trioxide-induced cancer cell apoptosis. Toxicol Appl Pharmacol 2015; 285:41-50. [PMID: 25791921 DOI: 10.1016/j.taap.2015.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/13/2022]
Abstract
Arsenic trioxide (ATO) is a multi-target drug approved by the Food and Drug Administration as the first-line chemotherapeutic agent for the treatment of acute promyelocytic leukemia. In addition, several clinical trials are being conducted with arsenic-based drugs for the treatment of other hematological malignancies and solid tumors. However, ATO's modest clinical efficacy on some cancers, and potential toxic effects on humans have been reported. Determining how best to reduce these adverse effects while increasing its therapeutic efficacy is obviously a critical issue. Previously, we demonstrated that the JNK-induced complex formation of phosphorylated c-Jun and TG-interacting factor (TGIF) antagonizes ERK-induced cyclin-dependent kinase inhibitor CDKN1A (p21(WAF1/CIP1)) expression and resultant apoptosis in response to ATO in A431 cells. Surprisingly, at low-concentrations (0.1-0.2 μM), ATO increased cellular proliferation, migration and invasion, involving TGIF expression, however, at high-concentrations (5-20 μM), ATO induced cell apoptosis. Using a promoter analysis, TGIF was transcriptionally regulated by ATO at the FOXO3A binding site (-1486 to -1479bp) via the c-Src/EGFR/AKT pathway. Stable overexpression of TGIF promoted advancing the cell cycle into the S phase, and attenuated 20 μM ATO-induced apoptosis. Furthermore, blockage of the AKT pathway enhanced ATO-induced CDKN1A expression and resultant apoptosis in cancer cells, but overexpression of AKT1 inhibited CDKN1A expression. Therefore, we suggest that TGIF is transcriptionally regulated by the c-Src/EGFR/AKT pathway, which plays a role as a negative regulator in antagonizing ATO-induced CDKN1A expression and resultant apoptosis. Suppression of these antagonistic effects might be a promising therapeutic strategy toward improving clinical efficacy of ATO.
Collapse
Affiliation(s)
- Zi-Miao Liu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Yu Tseng
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ya-Ling Cheng
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Bi-Wen Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huei-Sheng Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
1321
|
Ishida Y, Kuninaka Y, Nosaka M, Kimura A, Kawaguchi T, Hama M, Sakamoto S, Shinozaki K, Eisenmenger W, Kondo T. Immunohistochemical analysis on MMP-2 and MMP-9 for wound age determination. Int J Legal Med 2015; 129:1043-8. [PMID: 25753382 DOI: 10.1007/s00414-015-1167-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 02/27/2015] [Indexed: 12/21/2022]
Abstract
We performed immunohistochemical study combined with morphometrical analyses in order to examine the expression of matrix metalloproteinase-2 (MMP-2) and MMP-9 using 55 human skin wounds of different ages: group I, 0-3 days (n = 16); II, 4-7 days (n = 11); III, 9-14 days (n = 16); and IV, 17-21 days (n = 12). Immunopositive reactions for MMP-2 were observed in all human skin specimens including uninjured skin as control. The number of MMP-2(+) macrophages was significantly increased in accordance with wound ages. In contrast to MMP-2, no MMP-9(+) signals were detected in uninjured and wound specimens aged less than 1 day. However, the number of MMP-9(+) macrophages profoundly appeared in groups II and III. Morphometrically, in all of wound samples aged 9-12 days, MMP-2(+) cell number was more than 20. On the contrary, most of the remaining samples had <20 positive cells. However, only one sample (a 7-day-old wound) showed 21 positive cells. Thus, with regard to practical applicability with forensic safety, MMP-2(+) macrophages of >20 would indicate a wound age of 7-12 days. Additionally, 10 out of 12 wound specimens aged 9-12 days showed the MMP-2(+) cell number of >25, implying that MMP-2(+) cell number of >25 would indicate the wound age of 9-12 days. On the contrary, all wound samples aged 3-14 days except for only one sample had MMP-9(+) cell number of >30, indicating that MMP-9(+) cell number of >30 would indicate the wound age of 3-14 days. Collectively, MMP-2 seemed to be more distinct marker, compared with MMP-9.
Collapse
Affiliation(s)
- Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, 641-8509, Wakayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1322
|
Kaufman BA, Li C, Soleimanpour SA. Mitochondrial regulation of β-cell function: maintaining the momentum for insulin release. Mol Aspects Med 2015; 42:91-104. [PMID: 25659350 PMCID: PMC4404204 DOI: 10.1016/j.mam.2015.01.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 01/15/2023]
Abstract
All forms of diabetes share the common etiology of insufficient pancreatic β-cell function to meet peripheral insulin demand. In pancreatic β-cells, mitochondria serve to integrate the metabolism of exogenous nutrients into energy output, which ultimately leads to insulin release. As such, mitochondrial dysfunction underlies β-cell failure and the development of diabetes. Mitochondrial regulation of β-cell function occurs through many diverse pathways, including metabolic coupling, generation of reactive oxygen species, maintenance of mitochondrial mass, and through interaction with other cellular organelles. In this chapter, we will focus on the importance of enzymatic regulators of mitochondrial fuel metabolism and control of mitochondrial mass to pancreatic β-cell function, describing how defects in these pathways ultimately lead to diabetes. Furthermore, we will examine the factors responsible for mitochondrial biogenesis and degradation and their roles in the balance of mitochondrial mass in β-cells. Clarifying the causes of β-cell mitochondrial dysfunction may inform new approaches to treat the underlying etiologies of diabetes.
Collapse
Affiliation(s)
- Brett A Kaufman
- Division of Cardiology, Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Changhong Li
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Scott A Soleimanpour
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
1323
|
Grabowska W, Kucharewicz K, Wnuk M, Lewinska A, Suszek M, Przybylska D, Mosieniak G, Sikora E, Bielak-Zmijewska A. Curcumin induces senescence of primary human cells building the vasculature in a DNA damage and ATM-independent manner. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9744. [PMID: 25649709 PMCID: PMC4315775 DOI: 10.1007/s11357-014-9744-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/30/2014] [Indexed: 05/05/2023]
Abstract
Curcumin is considered not only as a supplement of the diet but also as a drug in many types of diseases and even as a potential anti-aging compound. It can reduce inflammation that increases with age and accompanies almost all age-related diseases. It has been suggested that curcumin can play a beneficial role in the cardiovascular system. However, there are also data showing that curcumin can induce senescence in cancer cells, which is a beneficial effect in cancer therapy but an undesirable one in the case of normal cells. It is believed that cellular senescence accompanies age-related changes in the cardiovascular system. The aim of this study was to check if curcumin, in a certain range of concentrations, can induce senescence in cells building the vasculature. We have found that human vascular smooth muscle and endothelial cells derived from aorta are very sensitive to curcumin treatment and can senesce upon treatment with cytostatic doses. We observed characteristic senescence markers but the number of DNA damage foci decreased. Surprisingly, in vascular smooth muscle cell (VSMC) activation of DNA damage response pathway downstream of ataxia-telangiectasia mutated (ATM) was observed. ATM silencing and the supplementation of antioxidants, N-acetyl-L-cysteine (NAC) or trolox, did not reduce the number of senescent cells. Thus, we have shown that curcumin can induce senescence of cells building the vasculature, which is DNA damage and ATM independent and is not induced by increased reactive oxygen species (ROS) level. We postulate that an increase in the bioavailability of curcumin should be introduced very carefully considering senescence induction as a side effect.
Collapse
Affiliation(s)
- Wioleta Grabowska
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland
| | - Karolina Kucharewicz
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland
| | - Maciej Wnuk
- Department of Genetics, University of Rzeszow, Kolbuszowa, Poland
| | - Anna Lewinska
- Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Kolbuszowa, Poland
- Department of Biochemistry and Cell Biology, University of Rzeszow, Kolbuszowa, Poland
| | - Małgorzata Suszek
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland
| | - Dorota Przybylska
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland
| | - Grazyna Mosieniak
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland
| | - Ewa Sikora
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland
| | - Anna Bielak-Zmijewska
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur Str. 3, 02-093 Warsaw, Poland
| |
Collapse
|
1324
|
Immunohistochemical detection of intrathrombotic IL-6 and its application to thrombus age estimation. Int J Legal Med 2015; 129:1021-5. [DOI: 10.1007/s00414-015-1147-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
|
1325
|
Zhou S, Zhou J, Liu S, Wang R, Wang Z. Arsenical keratosis caused by medication: a case report and literature. Int J Clin Exp Med 2015; 8:1487-1490. [PMID: 25785160 PMCID: PMC4358615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 08/16/2014] [Indexed: 06/04/2023]
Abstract
Medication-induced arsenical keratosis is a rare type of arsenical keratosis. We describe here a case of 70-year-old man to explore the clinical characters, diagnosis and treatment of medication-induced arsenical keratosis in order to improve the understanding of this disease and reduce the misdiagnosis rate. The clinical characters, signs, lab findings as well as progression, diagnosis and treatment in the case of arsenical keratosis were analyzed. The patient of medication-induced arsenical keratosis suffered from chronic eczema. He has taken realgar during the treatment. His medication caused arsenical keratosis. Medication-induced arsenical keratosis is rare. Making the medication history clear and using urine arsenic detection if necessary are of significance to understand the patients' condition. It is quite effective that using Sodium Dimercaptosulphonate during the treatment without delay.
Collapse
Affiliation(s)
- Sijing Zhou
- Hefei Prevention and Treatment Center for Occupational DiseasesHefei 230022, P. R. China
- Department of Respiratory Medicine, The First Affiliated Hospital of Anhui Medical UniversityHefei 230022, P. R. China
| | - Junsheng Zhou
- Hefei Prevention and Treatment Center for Occupational DiseasesHefei 230022, P. R. China
| | - Shengping Liu
- Hefei Prevention and Treatment Center for Occupational DiseasesHefei 230022, P. R. China
| | - Ran Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Anhui Medical UniversityHefei 230022, P. R. China
| | - Zaixing Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical UniversityHefei 230022, P. R. China
| |
Collapse
|
1326
|
Shah P, He YY. Molecular regulation of UV-induced DNA repair. Photochem Photobiol 2015; 91:254-64. [PMID: 25534312 DOI: 10.1111/php.12406] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022]
Abstract
Ultraviolet (UV) radiation from sunlight is a major etiologic factor for skin cancer, the most prevalent cancer in the United States, as well as premature skin aging. In particular, UVB radiation causes formation of specific DNA damage photoproducts between pyrimidine bases. These DNA damage photoproducts are repaired by a process called nucleotide excision repair, also known as UV-induced DNA repair. When left unrepaired, UVB-induced DNA damage leads to accumulation of mutations, predisposing people to carcinogenesis as well as to premature aging. Genetic loss of nucleotide excision repair leads to severe disorders, namely, xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS), which are associated with predisposition to skin carcinogenesis at a young age as well as developmental and neurological conditions. Regulation of nucleotide excision repair is an attractive avenue to preventing or reversing these detrimental consequences of impaired nucleotide excision repair. Here, we review recent studies on molecular mechanisms regulating nucleotide excision repair by extracellular cues and intracellular signaling pathways, with a special focus on the molecular regulation of individual repair factors.
Collapse
Affiliation(s)
- Palak Shah
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
| | | |
Collapse
|
1327
|
Schmidt A, Dietrich S, Steuer A, Weltmann KD, von Woedtke T, Masur K, Wende K. Non-thermal plasma activates human keratinocytes by stimulation of antioxidant and phase II pathways. J Biol Chem 2015; 290:6731-50. [PMID: 25589789 DOI: 10.1074/jbc.m114.603555] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-thermal atmospheric pressure plasma provides a novel therapeutic opportunity to control redox-based processes, e.g. wound healing, cancer, and inflammatory diseases. By spatial and time-resolved delivery of reactive oxygen and nitrogen species, it allows stimulation or inhibition of cellular processes in biological systems. Our data show that both gene and protein expression is highly affected by non-thermal plasma. Nuclear factor erythroid-related factor 2 (NRF2) and phase II enzyme pathway components were found to act as key controllers orchestrating the cellular response in keratinocytes. Additionally, glutathione metabolism, which is a marker for NRF2-related signaling events, was affected. Among the most robustly increased genes and proteins, heme oxygenase 1, NADPH-quinone oxidoreductase 1, and growth factors were found. The roles of NRF2 targets, investigated by siRNA silencing, revealed that NRF2 acts as an important switch for sensing oxidative stress events. Moreover, the influence of non-thermal plasma on the NRF2 pathway prepares cells against exogenic noxae and increases their resilience against oxidative species. Via paracrine mechanisms, distant cells benefit from cell-cell communication. The finding that non-thermal plasma triggers hormesis-like processes in keratinocytes facilitates the understanding of plasma-tissue interaction and its clinical application.
Collapse
Affiliation(s)
- Anke Schmidt
- From the Centre for Innovation Competence (ZIK) plasmatis and Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany
| | | | - Anna Steuer
- Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany
| | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany
| | - Kai Masur
- From the Centre for Innovation Competence (ZIK) plasmatis and
| | - Kristian Wende
- From the Centre for Innovation Competence (ZIK) plasmatis and
| |
Collapse
|
1328
|
Soeur J, Eilstein J, Léreaux G, Jones C, Marrot L. Skin resistance to oxidative stress induced by resveratrol: from Nrf2 activation to GSH biosynthesis. Free Radic Biol Med 2015; 78:213-23. [PMID: 25451641 DOI: 10.1016/j.freeradbiomed.2014.10.510] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/12/2014] [Accepted: 10/13/2014] [Indexed: 01/04/2023]
Abstract
Skin is particularly exposed to oxidative stress, either from environmental insults such as sunlight or pollution or as a consequence of specific impairments in antioxidant status resulting from pathologies or aging. Traditionally, antioxidant products are exogenously provided to neutralize pro-oxidant species. However, another approach based on stimulation of endogenous antioxidant defense pathways is more original. Resveratrol (RSV) was reported to display such a behavior in various tissues, but data about the mechanisms of action in skin are scarce. We show here that, in primary culture of normal human keratinocytes (NHKs) or in full-thickness reconstructed human skin, RSV activated the Nrf2 pathway at nontoxic doses, from 20 µM up to 100µM. Among the Nrf2 downstream genes, glutamylcysteinyl ligase and glutathione peroxidase-2 were induced at the mRNA and protein levels. In parallel, a significant increase in glutathione content, assessed by LC/MS analysis, was observed in both models. Nrf2 gene silencing experiments performed in NHKs confirmed that Nrf2 was involved in RSV-induced modulation of cellular antioxidant status, in part by increasing cellular glutathione content. Finally, improvement of endogenous defenses induced in RSV-pretreated reconstructed skin ensured protection against the toxic oxidative effects of cumene hydroperoxide (CHP). In fact after RSV pretreatment, in response to CHP stress, glutathione content did not decrease as in unprotected samples. Cellular alterations at the dermal-epidermal junction were clearly prevented. Together, these complementary experiments demonstrated the beneficial effects of RSV on skin, beyond its direct antioxidant properties, by upregulation of a cutaneous endogenous antioxidant pathway.
Collapse
Affiliation(s)
- J Soeur
- L'Oréal Research and Innovation, 93600 Aulnay-sous-Bois, France.
| | - J Eilstein
- L'Oréal Research and Innovation, 93600 Aulnay-sous-Bois, France
| | - G Léreaux
- L'Oréal Research and Innovation, 93600 Aulnay-sous-Bois, France
| | - C Jones
- L'Oréal Research and Innovation, 93600 Aulnay-sous-Bois, France
| | - L Marrot
- L'Oréal Research and Innovation, 93600 Aulnay-sous-Bois, France
| |
Collapse
|
1329
|
Woodard GE, Ji Y, Christopherson GT, Wolcott KM, Hall DJ, Jackson WM, Nesti LJ. Characterization of discrete subpopulations of progenitor cells in traumatic human extremity wounds. PLoS One 2014; 9:e114318. [PMID: 25490403 PMCID: PMC4260839 DOI: 10.1371/journal.pone.0114318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/05/2014] [Indexed: 12/22/2022] Open
Abstract
Here we show that distinct subpopulations of cells exist within traumatic human extremity wounds, each having the ability to differentiate into multiple cells types in vitro. A crude cell suspension derived from traumatized muscle was positively sorted for CD29, CD31, CD34, CD56 or CD91. The cell suspension was also simultaneously negatively sorted for either CD45 or CD117 to exclude hematopoietic stem cells. These subpopulations varied in terms their total numbers and their abilities to grow, migrate, differentiate and secrete cytokines. While all five subpopulations demonstrated equal abilities to undergo osteogenesis, they were distinct in their ability to undergo adipogenesis and vascular endotheliogenesis. The most abundant subpopulations were CD29+ and CD34+, which overlapped significantly. The CD29+ and CD34+ cells had the greatest proliferative and migratory capacity while the CD56+ subpopulation produced the highest amounts of TGFß1 and TGFß2. When cultured under endothelial differentiation conditions the CD29+ and CD34+ cells expressed VE-cadherin, Tie2 and CD31, all markers of endothelial cells. These data indicate that while there are multiple cell types within traumatized muscle that have osteogenic differentiation capacity and may contribute to bone formation in post-traumatic heterotopic ossification (HO), the major contributory cell types are CD29+ and CD34+, which demonstrate endothelial progenitor cell characteristics.
Collapse
Affiliation(s)
- Geoffrey E. Woodard
- Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD, United States of America
- * E-mail: (GEW); (LJN)
| | - Youngmi Ji
- Clinical and Experimental Orthopaedics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Gregory T. Christopherson
- Clinical and Experimental Orthopaedics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Karen M. Wolcott
- Laboratory of Genome Integrity, Nation Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - David J. Hall
- Clinical and Experimental Orthopaedics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Wesley M. Jackson
- Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD, United States of America
| | - Leon J. Nesti
- Department of Surgery, Uniformed Services University of Health Sciences, Bethesda, MD, United States of America
- Clinical and Experimental Orthopaedics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States of America
- Department of Orthopaedic Surgery, Walter Reed National Military Medical Center, Bethesda, MD, United States of America
- * E-mail: (GEW); (LJN)
| |
Collapse
|
1330
|
Sirota R, Gibson D, Kohen R. The role of the catecholic and the electrophilic moieties of caffeic acid in Nrf2/Keap1 pathway activation in ovarian carcinoma cell lines. Redox Biol 2014; 4:48-59. [PMID: 25498967 PMCID: PMC4309848 DOI: 10.1016/j.redox.2014.11.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 11/29/2014] [Indexed: 01/19/2023] Open
Abstract
In recent years, numerous studies have demonstrated the health benefits of polyphenols. A major portion of polyphenols in western diet are derived from coffee, which is one of the most consumed beverages in the world. It has been shown that many polyphenols gain their beneficial properties (e.g. cancer prevention) through the activation of the Nrf2/Keap1 pathway as well as their direct antioxidant activity. However, activation of Nrf2 in cancer cells might lead to resistance towards therapy through induction of phase II enzymes. In the present work we hypothesize that caffeic acid (CA), a coffee polyphenol, might act as an electrophile in addition to its nucleophilic properties and is capable of inducing the Nrf2/EpRE pathway in cancer cells. The results indicate that CA induces Nrf2 translocation into the nucleus and consequently its transcription. It has been demonstrated that generated hydrogen peroxide is involved in the induction process. It has also been found that this process is induced predominantly via the double bond in CA (Michael acceptor). However, surprisingly the presence of both nucleophilic and electrophilic moieties in CA resulted in a synergetic activation of Nrf2 and phase II enzymes. We also found that CA possesses a dual activity, although inducing GSTP1 and GSR, it inhibiting their enzymatic activity. In conclusion, the mechanism of induction of Nrf2 pathway and phase II enzymes by CA has been elucidated. The electrophilic moiety in CA is essential for the oxidation of the Keap1 protein. It should be noted that while the nucleophilic moiety (the catechol/quinone moiety) can provide scavenging ability, it cannot contribute directly to Nrf2 induction. It was found that this process may be induced by H2O2 produced by the catechol group. On the whole, it appears that CA might play a major role in the cancer cells by enhancing their resistance to treatment. The electrophilic moiety in CA is essential for the oxidation of the Keap1 protein. The nucleophilic moiety contribute to Nrf2/Keap1 activation via production of H2O2. CA possesses a dual activity, as inducer and as inhibitor of GSTP1 and GSR1. The effect of coffee on healthy subjects and cancer patients may be different.
Collapse
Affiliation(s)
- R Sirota
- Faculty of Medicine, Institute for Drug Research, Hebrew University of Jerusalem, Israel
| | - D Gibson
- Faculty of Medicine, Institute for Drug Research, Hebrew University of Jerusalem, Israel
| | - R Kohen
- Faculty of Medicine, Institute for Drug Research, Hebrew University of Jerusalem, Israel.
| |
Collapse
|
1331
|
Kim I, He YY. Ultraviolet radiation-induced non-melanoma skin cancer: Regulation of DNA damage repair and inflammation. Genes Dis 2014; 1:188-198. [PMID: 25642450 PMCID: PMC4307792 DOI: 10.1016/j.gendis.2014.08.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 01/01/2023] Open
Abstract
Exposure to ultraviolet (UV) radiation is associated with approximately 65% of melanoma cases, and 90% of non-melanoma skin cancers (NMSC), including basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). While the incidence of most other malignancies has either stabilized or declined, that of NMSC has increased and is developing even in younger age groups. NMSCs account for nearly 15,000 deaths, 3.5 million new cases, and more than 3 billion dollars a year in medical costs in the United States alone, representing a major public health concern. As sun protection efforts have not been proven effective, targeted chemoprevention strategies are much needed. Skin carcinogenesis by DNA damage is considered a predominant paradigm for UV toxicity. Exposure to UV radiation can activate various oncogenes while inactivating tumor suppressor genes, resulting in inappropriate survival and proliferation of keratinocytes that harbor these damages. Moreover, increasing evidence demonstrate that inflammatory responses by the immune cells within the tumor microenvironment also contribute significantly to skin tumorigenesis. Initiation and progression of skin carcinogenesis mediated by UV radiation involve complex pathways, including those of apoptosis, proliferation, autophagy, DNA repair, checkpoint signaling, metabolism, and inflammation. In this review, we highlight the recent advances in two of these key molecular processes that result in UV-mediated skin carcinogenesis. In particular, we discuss 1) pathways that regulate DNA damage repair and 2) the regulation of the inflammatory process its crosstalk with DNA repair potentially leading to non-melanoma skin carcinogenesis.
Collapse
Affiliation(s)
- InYoung Kim
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Yu-Ying He
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
1332
|
Marchesi M, Marchesi A, Calori GM, Cireni LV, Sileo G, Merzagora I, Zoia R, Vaienti L, Morini O. A sneaky surgical emergency: Acute compartment syndrome. Retrospective analysis of 66 closed claims, medico-legal pitfalls and damages evaluation. Injury 2014; 45 Suppl 6:S16-20. [PMID: 25457313 DOI: 10.1016/j.injury.2014.10.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Acute compartment syndrome (ACS) is a clinical condition with potentially dramatic consequences, therefore, it is important to recognise and treat it early. Good management of ACS minimises or avoids the sequelae associated with a late diagnosis, and may also reduce the risk of malpractice claims. The aim of this article was to evaluate different errors ascribed to the surgeon and to identify how the damage was evaluated. MATERIALS AND METHODS A total of 66 completed and closed ACS cases were selected. The following were analysed for each case: clinical management before and after diagnosis of ACS, imputed errors, professional fault, damage evaluation and quantification. Particular attention was paid to distinguishing between impairment because of primary injury and iatrogenic impairment. Statistical analyses were performed using Fisher's exact test and Pearson's correlation. RESULTS The most common presenting symptom was pain. Delay in the diagnosis, and hence delay in decompression, was common in the study. A total of 48 out of 66 cases resolved with the verdict of iatrogenic damage, which varied from 12% to 75% of global capability of the person. A total of $394,780 out of $574,680 (average payment) derived from a medical error. CONCLUSIONS ACS is a clinical emergency that requires continuous clinical surveillance from both medical and nursing staff. The related damage should be evaluated in two parts: damage deriving from the trauma, so that it is considered inevitable and independent from the surgeon's conduct, and damage deriving from a surgeon's error, which is eligible for an indemnity payment.
Collapse
Affiliation(s)
- M Marchesi
- Università degli Studi di Milano, Dipartimento di Scienze Biomediche per la Salute - Sezione di Medicina Legale e delle Assicurazioni, Italy.
| | - A Marchesi
- Department of Plastic and Reconstructive Surgery, I.R.C.C.S. Policlinico San Donato, Università degli Studi di Milano, Italy.
| | - G M Calori
- Orthopaedic Reparative Surgery Department, Orthopaedic Institute Gaetano Pini, University of Milan, Italy.
| | - L V Cireni
- Vascular Surgery Service, Istituto Auxologico Italiano, Italy.
| | - G Sileo
- Dipartimento di Medicina Sperimentale, Università degli Studi di Milano-Bicocca, Italy.
| | - I Merzagora
- Dipartimento di Scienze Biomediche per la Salute - Sezione di Medicina Legale e delle Assicurazioni, Italy.
| | - R Zoia
- Dipartimento di Scienze Biomediche per la Salute - Sezione di Medicina Legale e delle Assicurazioni, Italy.
| | - L Vaienti
- Department of Plastic and Reconstructive Surgery, I.R.C.C.S. Policlinico San Donato, Università degli Studi di Milano, Italy.
| | - O Morini
- Dipartimento di Medicina Sperimentale - Cattedra di Medicina Legale e delle Assicurazioni, Università degli Studi di Milano-Bicocca, Italy.
| |
Collapse
|
1333
|
Wang S, Zheng W, Liu X, Xue P, Jiang S, Lu D, Zhang Q, He G, Pi J, Andersen ME, Tan H, Qu W. Iodoacetic acid activates Nrf2-mediated antioxidant response in vitro and in vivo. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13478-88. [PMID: 25332096 DOI: 10.1021/es502855x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Iodoacetic acid (IAA) is an unregulated drinking-water disinfection byproduct with potent cytotoxicity, genotoxicity, and tumorigenicity in animals. Oxidative stress is thought to be essential for IAA toxicity, but the exact mechanism remains unknown. Here we evaluated the toxicity of IAA by examining nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant response, luciferase antioxidant response element (ARE) activity, and intracellular glutathione (GSH) in HepG2 cells. IAA showed significant activation of ARE-luciferase reporter, mRNA, and protein expression of Nrf2 and its downstream genes (GCLC, NQO1, and HO-1). IAA also increased the intracellular GSH level in HepG2 cells in a time- and concentration-dependent manner. Moreover, we verified IAA induced Nrf2-mediated antioxidant response in rats. Subsequently, we confirmed the specific role of Nrf2 in IAA induced toxicity using NRF2-knockdown cells. Deficiency of NRF2 significantly enhanced sensitivity to IAA toxicity and led to an increase of IAA induced micronulei. We also examined the effects of antioxidant on Nrf2-mediated response in IAA treated cells. Pretreatment with curcumin markedly reduced cytotoxicity and genotoxicity (micronuclei formation) IAA in HepG2 cells. Our work here provides direct evidence that IAA activates Nrf2-mediated antioxidant response in vitro and in vivo and that oxidative stress plays a role in IAA toxicity.
Collapse
Affiliation(s)
- Shu Wang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University , Yi Xue Yuan Road 138, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1334
|
Zhao B, Shah P, Budanov AV, Qiang L, Ming M, Aplin A, Sims DM, He YY. Sestrin2 protein positively regulates AKT enzyme signaling and survival in human squamous cell carcinoma and melanoma cells. J Biol Chem 2014; 289:35806-14. [PMID: 25378405 DOI: 10.1074/jbc.m114.595397] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skin cancer is the most common cancer in the United States and is mainly caused by environmental UV radiation. Reducing skin cancer incidence is becoming an urgent issue. The stress-inducible protein Sestrin2 (Sesn2) plays an important role in maintaining redox and metabolic homeostasis and their related pathologies. However, the role of Sesn2 in cancer remains unclear. Here we show that UVB radiation induces Sesn2 expression in normal human keratinocytes, mouse skin, normal human melanocytes, and melanoma cells. In addition, Sesn2 promotes AKT activation through a PTEN-dependent mechanism. Sesn2 deletion or knockdown sensitizes squamous cell carcinoma (SCC) cells to 5-fluorouracil-induced apoptosis and melanoma cells to UVB- and vemurafenib-induced apoptosis. In mice Sesn2 knockdown suppresses tumor growth from injected human SCC and melanoma cells. Last, as compared with normal skin, Sesn2 is up-regulated in both human skin SCC and melanoma. Our findings demonstrate that Sesn2 promotes AKT activation and survival in response to UVB stress and chemotherapeutics and suggest that Sesn2 is oncogenic in skin SCC and melanoma.
Collapse
Affiliation(s)
- Baozhong Zhao
- From the Department of Medicine, Section of Dermatology, University of Chicago, Chicago, Illinois 60637
| | - Palak Shah
- From the Department of Medicine, Section of Dermatology, University of Chicago, Chicago, Illinois 60637
| | - Andrei V Budanov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Lei Qiang
- From the Department of Medicine, Section of Dermatology, University of Chicago, Chicago, Illinois 60637
| | - Mei Ming
- From the Department of Medicine, Section of Dermatology, University of Chicago, Chicago, Illinois 60637
| | - Andrew Aplin
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Diane M Sims
- From the Department of Medicine, Section of Dermatology, University of Chicago, Chicago, Illinois 60637
| | - Yu-Ying He
- From the Department of Medicine, Section of Dermatology, University of Chicago, Chicago, Illinois 60637,
| |
Collapse
|
1335
|
Al-Sawaf O, Fragoulis A, Rosen C, Keimes N, Liehn EA, Hölzle F, Kan YW, Pufe T, Sönmez TT, Wruck CJ. Nrf2 augments skeletal muscle regeneration after ischaemia-reperfusion injury. J Pathol 2014; 234:538-47. [DOI: 10.1002/path.4418] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/24/2014] [Accepted: 08/06/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Othman Al-Sawaf
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| | - Christian Rosen
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| | - Nora Keimes
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| | - Elisa Anamaria Liehn
- Institute for Molecular Cardiovascular Research; University Hospital, RWTH Aachen University; Germany
| | - Frank Hölzle
- Department of Oral and Maxillofacial Surgery; University Hospital, RWTH Aachen University; Germany
| | - Yuet Wai Kan
- Department of Laboratory Medicine; University of California; San Francisco CA USA
| | - Thomas Pufe
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| | - Tolga Taha Sönmez
- Department of Oral and Maxillofacial Surgery; University Hospital, RWTH Aachen University; Germany
| | - Christoph Jan Wruck
- Department of Anatomy and Cell Biology; University Hospital, RWTH Aachen University; Germany
| |
Collapse
|
1336
|
Ming M, Zhao B, Qiang L, He YY. Effect of immunosuppressants tacrolimus and mycophenolate mofetil on the keratinocyte UVB response. Photochem Photobiol 2014; 91:242-7. [PMID: 25039758 DOI: 10.1111/php.12318] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/11/2014] [Indexed: 01/10/2023]
Abstract
Nonmelanoma skin cancer, derived from epidermal keratinocytes, is the most common malignancy in organ transplant recipients, causes serious morbidity and mortality, and is strongly associated with solar ultraviolet (UV) exposure. Preventing and treating skin cancer in these individuals has been extraordinarily challenging. Following organ transplantation, the immunosuppressants are used to prevent graft rejection. Until now, immunosuppression has been assumed to be the major factor leading to skin cancer in this setting. However, the mechanism of skin carcinogenesis in organ transplant recipients has not been understood to date; specifically, it remains unknown whether these cancers are immunosuppression-dependent or -independent. In particular, it remains poorly understood what is the mechanistic carcinogenic action of the newer generation of immunosuppressants including tacrolimus and mycophenolate mofetil (MMF). Here, we show that tacrolimus and MMF impairs UVB-induced DNA damage repair and apoptosis in human epidermal keratinocytes. In addition, tacrolimus inhibits UVB-induced checkpoint signaling. However, MMF had no effect. Our findings have demonstrated that tacrolimus and MMF compromises proper UVB response in keratinocytes, suggesting an immunosuppression-independent mechanism in the tumor-promoting action of these immunosuppressants.
Collapse
Affiliation(s)
- Mei Ming
- Section of Dermatology, Department of Medicine, University of Chicago, Chicago, IL
| | | | | | | |
Collapse
|
1337
|
Chatterjee A, Ronghe A, Singh B, Bhat NK, Chen J, Bhat HK. Natural antioxidants exhibit chemopreventive characteristics through the regulation of CNC b-Zip transcription factors in estrogen-induced breast carcinogenesis. J Biochem Mol Toxicol 2014; 28:529-38. [PMID: 25130429 DOI: 10.1002/jbt.21594] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/01/2014] [Indexed: 12/17/2022]
Abstract
UNLABELLED The objective of the present study was to characterize the role of resveratrol (Res) and vitamin C (VC) in prevention of estrogen-induced breast cancer through regulation of cap "n"collar (CNC) b-zip transcription factors. Human breast epithelial cell line MCF-10A was treated with 17β-estradiol (E2) and VC or Res with or without E2. mRNA and protein expression levels of CNC b-zip transcription factors nuclear factor erythroid 2-related factor 1 (Nrf1), nuclear factor erythroid 2 related factor 2 (Nrf2), nuclear factor erythroid 2 related factor 3 (Nrf3), and Nrf2-regulated antioxidant enzymes superoxide dismutase 3 (SOD3) and NAD(P)H quinone oxidoreductase 1 (NQO1) were quantified. The treatment with E2 suppressed, whereas VC and Res prevented E2-mediated decrease in the expression levels of SOD3, NQO1, Nrf2 mRNA, and protein in MCF-10A cells. The treatment with E2, Res, or VC significantly increased mRNA and protein expression levels of Nrf1. 17β-Estradiol treatment significantly increased but VC or Res decreased Nrf3 mRNA and protein expression levels. Our studies demonstrate that estrogen-induced breast cancer might be prevented through upregulation of antioxidant enzymes via Nrf-dependent pathways.
Collapse
Affiliation(s)
- Anwesha Chatterjee
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA.
| | | | | | | | | | | |
Collapse
|
1338
|
Transcription factor Nrf1 negatively regulates the cystine/glutamate transporter and lipid-metabolizing enzymes. Mol Cell Biol 2014; 34:3800-16. [PMID: 25092871 DOI: 10.1128/mcb.00110-14] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Liver-specific Nrf1 (NF-E2-p45-related factor 1) knockout mice develop nonalcoholic steatohepatitis. To identify postnatal mechanisms responsible for this phenotype, we generated an inducible liver-specific Nrf1 knockout mouse line using animals harboring an Nrf1(flox) allele and a rat CYP1A1-Cre transgene (Nrf1(flox/flox)::CYP1A1-Cre mice). Administration of 3-methylcholanthrene (3-MC) to these mice (Nrf1(flox/flox)::CYP1A1-Cre+3MC mice) resulted in loss of hepatic Nrf1 expression. The livers of mice lacking Nrf1 accumulated lipid, and the hepatic fatty acid (FA) composition in such animals differed significantly from that in the Nrf1(flox/flox)::CYP1A1-Cre control. This change was provoked by upregulation of several FA metabolism genes. Unexpectedly, we also found that the level of glutathione was increased dramatically in livers of Nrf1(flox/flox)::CYP1A1-Cre+3MC mice. While expression of glutathione biosynthetic enzymes was unchanged, xCT, a component of the cystine/glutamate antiporter system x(c)(-), was significantly upregulated in livers of Nrf1(flox/flox)::CYP1A1-Cre+3MC mice, suggesting that Nrf1 normally suppresses xCT. Thus, stress-inducible expression of xCT is a two-step process: under homeostatic conditions, Nrf1 effectively suppresses nonspecific transactivation of xCT, but when cells encounter severe oxidative/electrophilic stress, Nrf1 is displaced from an antioxidant response element (ARE) in the gene promoter while Nrf2 is recruited to the ARE. Thus, Nrf1 controls both the FA and the cystine/cysteine content of hepatocytes by participating in an elaborate regulatory network.
Collapse
|
1339
|
Targeting Nrf2-Keap1 signaling for chemoprevention of skin carcinogenesis with bioactive phytochemicals. Toxicol Lett 2014; 229:73-84. [DOI: 10.1016/j.toxlet.2014.05.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/18/2014] [Accepted: 05/20/2014] [Indexed: 01/09/2023]
|
1340
|
Abdel Aziz MT, Rezq AM, Atta HM, Fouad H, Zaahkouk AM, Ahmed HH, Sabry D, Yehia HM. Molecular signalling of a novel curcumin derivative versus Tadalafil in erectile dysfunction. Andrologia 2014; 47:616-25. [PMID: 25059462 DOI: 10.1111/and.12309] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2013] [Indexed: 12/21/2022] Open
Abstract
The efficacy of a novel curcumin derivative (NCD) versus tadalafil in erectile signalling was assessed. Ten control male rats and 50 diabetic male rats were used and divided into the following: diabetic (DM), curcumin (CURC), NCD, tadalafil and NCD combined with tadalafil rat groups. Cavernous tissue gene expression of heme oxygenase-1 (HO-1), Nrf2, NF-B and p38, enzyme activities of heme oxygenase (HO) and nitric oxide synthase (NOS), cGMP and intracavernosal pressure (ICP)/mean arterial pressure (MAP) were assessed. Results showed that 12 weeks after induction of diabetes, erectile dysfunction (ED) was confirmed by the significant decrease in ICP/MAP, a significant decrease in cGMP, NOS, HO enzyme activities, a significant decrease in HO-1 gene and a significant increase in NF-Ҡβ, p38 genes. Administration of all therapeutic interventions led to a significant increase in ICP/MAP, cGMP levels, a significant increase in HO-1 and NOS enzymes, a significant increase in HO-1, and Nrf2 gene expression, and a significant decrease in NF-Ҡβ, p38 gene expression. NCD or its combination with tadalafil showed significant superiority and more prolonged duration of action. In conclusion, a tendency was observed that CURC and NCD have high efficacy and more prolonged duration of action in enhancing erectile function.
Collapse
Affiliation(s)
- M T Abdel Aziz
- Medical Biochemistry Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - A M Rezq
- Medical Biochemistry Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - H M Atta
- Medical Biochemistry Department, Faculty of Medicine, Cairo University, Cairo, Egypt.,Clinical Biochemistry Department, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - H Fouad
- Medical Biochemistry Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - A M Zaahkouk
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - H H Ahmed
- Medical Biochemistry Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - D Sabry
- Medical Biochemistry Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - H M Yehia
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
1341
|
Malpass GE, Arimilli S, Prasad GL, Howlett AC. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts. Toxicol Appl Pharmacol 2014; 279:211-9. [PMID: 24927667 DOI: 10.1016/j.taap.2014.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/06/2014] [Accepted: 06/03/2014] [Indexed: 12/23/2022]
Abstract
Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1h or 5h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5h), which was increased by nicotine but suppressed by other components of STE. Within 2h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research.
Collapse
Affiliation(s)
- Gloria E Malpass
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - Subhashini Arimilli
- Department of Microbiology and Immunology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - G L Prasad
- R&D Department, R.J. Reynolds Tobacco Company, Winston-Salem, NC 27102, USA.
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| |
Collapse
|
1342
|
Direct interaction between the WD40 repeat protein WDR-23 and SKN-1/Nrf inhibits binding to target DNA. Mol Cell Biol 2014; 34:3156-67. [PMID: 24912676 DOI: 10.1128/mcb.00114-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
SKN-1/Nrf transcription factors activate cytoprotective genes in response to reactive small molecules and strongly influence stress resistance, longevity, and development. The molecular mechanisms of SKN-1/Nrf regulation are poorly defined. We previously identified the WD40 repeat protein WDR-23 as a repressor of Caenorhabditis elegans SKN-1 that functions with a ubiquitin ligase to presumably target the factor for degradation. However, SKN-1 activity and nuclear accumulation are not always correlated, suggesting that there could be additional regulatory mechanisms. Here, we integrate forward genetics and biochemistry to gain insights into how WDR-23 interacts with and regulates SKN-1. We provide evidence that WDR-23 preferentially regulates one of three SKN-1 variants through a direct interaction that is required for normal stress resistance and development. Homology modeling predicts that WDR-23 folds into a β-propeller, and we identify the top of this structure and four motifs at the termini of SKN-1c as essential for the interaction. Two of these SKN-1 motifs are highly conserved in human Nrf1 and Nrf2 and two directly interact with target DNA. Lastly, we demonstrate that WDR-23 can block the ability of SKN-1c to interact with DNA sequences of target promoters identifying a new mechanism of regulation that is independent of the ubiquitin proteasome system, which can become occupied with damaged proteins during stress.
Collapse
|
1343
|
Fan YY, Zhang ST, Yu LS, Ye GH, Lin KZ, Wu SZ, Dong MW, Han JG, Feng XP, Li XB. The time-dependent expression of α7nAChR during skeletal muscle wound healing in rats. Int J Legal Med 2014; 128:779-86. [PMID: 24781786 DOI: 10.1007/s00414-014-1001-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/16/2014] [Indexed: 11/30/2022]
Abstract
The study on time-dependent expression of α7 nicotine acetylcholine receptor (α7nAChR) was performed by immunohistochemistry, Western blotting, and real-time PCR during skeletal muscle wound healing in rats. Furthermore, co-localization of α7nAChR with macrophage or myofibroblast marker was detected by double immunofluorescence. A total of 50 Sprague-Dawley male rats were divided into control and contusion groups (3 h, 6 h, 12 h, 1 day, 3 days, 5 days, 7 days, 10 days, and 14 days post-injury). In the uninjured controls, α7nAChR positive staining was observed in the sarcolemma and sarcoplasm of normal myofibers. In wounded specimens, a small number of polymorphonuclear cells, a number of macrophages and myofibroblasts showed positive reaction for α7nAChR in contused zones. Morphometrically, the average ratios of α7nAChR-positive cells were over 50 % from 3 to 10 days after contusion, and exceeded 60 % at 5 and 7 days post-injury. Besides, the positive ratios of α7nAChR were <50 % at the other posttraumatic intervals. By Western blotting analysis, the average ratio of α7nAChR protein expression maximized at 7 days after injury, which was >2.13. Similarly, the relative quantity of α7nAChR mRNA expression peaked at 7 days post-wounding as compared with control by real-time PCR detection, showing a relative quantity of >2.65. In conclusion, the expression of α7nAChR is upregulated and temporally distributed in macrophages and myofibroblasts during skeletal muscle wound healing, which might be closely involved in inflammatory response and fibrotic repair after injury. Moreover, α7nAChR is promising as a useful marker for wound age determination of skeletal muscle.
Collapse
Affiliation(s)
- Yan-Yan Fan
- Department of Forensic Medicine, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, People's Republic of China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1344
|
García-Niño WR, Pedraza-Chaverrí J. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol 2014; 69:182-201. [PMID: 24751969 DOI: 10.1016/j.fct.2014.04.016] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/05/2014] [Accepted: 04/08/2014] [Indexed: 02/06/2023]
Abstract
Occupational or environmental exposures to heavy metals produce several adverse health effects. The common mechanism determining their toxicity and carcinogenicity is the generation of oxidative stress that leads to hepatic damage. In addition, oxidative stress induced by metal exposure leads to the activation of the nuclear factor (erythroid-derived 2)-like 2/Kelch-like ECH-associated protein 1/antioxidant response elements (Nrf2/Keap1/ARE) pathway. Since antioxidant and chelating agents are generally used for the treatment of heavy metals poisoning, this review is focused on the protective role of curcumin against liver injury induced by heavy metals. Curcumin has shown, in clinical and preclinical studies, numerous biological activities including therapeutic efficacy against various human diseases and anti-hepatotoxic effects against environmental or occupational toxins. Curcumin reduces the hepatotoxicity induced by arsenic, cadmium, chromium, copper, lead and mercury, prevents histological injury, lipid peroxidation and glutathione (GSH) depletion, maintains the liver antioxidant enzyme status and protects against mitochondrial dysfunction. The preventive effect of curcumin on the noxious effects induced by heavy metals has been attributed to its scavenging and chelating properties, and/or to the ability to induce the Nrf2/Keap1/ARE pathway. However, additional research is needed in order to propose curcumin as a potential protective agent against liver damage induced by heavy metals.
Collapse
Affiliation(s)
- Wylly Ramsés García-Niño
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico
| | - José Pedraza-Chaverrí
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), University City, 04510 D.F., Mexico.
| |
Collapse
|
1345
|
Zhu W, Cromie MM, Cai Q, Lv T, Singh K, Gao W. Curcumin and vitamin E protect against adverse effects of benzo[a]pyrene in lung epithelial cells. PLoS One 2014; 9:e92992. [PMID: 24664296 PMCID: PMC3963982 DOI: 10.1371/journal.pone.0092992] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/27/2014] [Indexed: 11/18/2022] Open
Abstract
Benzo[a]pyrene (BaP), a well-known environmental carcinogen, promotes oxidative stress and DNA damage. Curcumin and vitamin E (VE) have potent antioxidative activity that protects cells from oxidative stress and cellular damage. The objectives of the present study were to investigate the adverse effects of BaP on normal human lung epithelial cells (BEAS-2B), the potential protective effects of curcumin and VE against BaP-induced cellular damage, and the molecular mechanisms of action. MTT assay, flow cytometry, fluorescence microplate assay, HPLC, qRT-PCR, and western blot were performed to analyze cytotoxicity, cell cycle, reactive oxygen species (ROS), BaP diol-epoxidation (BPDE)-DNA adducts, gene expression, and protein expression, respectively. Curcumin or VE prevented cells from BaP-induced cell cycle arrest and growth inhibition, significantly suppressed BaP-induced ROS levels, and decreased BPDE-DNA adducts. While CYP1A1 and 1B1 were induced by BaP, these inductions were not significantly reduced by curcumin or VE. Moreover, the level of activated p53 and PARP-1 were significantly induced by BaP, whereas this induction was markedly reduced after curcumin and VE co-treatment. Survivin was significantly down-regulated by BaP, and curcumin significantly restored survivin expression in BaP-exposed cells. The ratio of Bax/Bcl-2 was also significantly increased in cells exposed to BaP and this increase was reversed by VE co-treatment. Taken together, BaP-induced cytotoxicity occurs through DNA damage, cell cycle arrest, ROS production, modulation of metabolizing enzymes, and the expression/activation of p53, PARP-1, survivin, and Bax/Bcl-2. Curcumin and VE could reverse some of these BaP-mediated alterations and therefore be effective natural compounds against the adverse effects of BaP in lung cells.
Collapse
Affiliation(s)
- Wenbin Zhu
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, United States of America
| | - Meghan M. Cromie
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, United States of America
| | - Qingsong Cai
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, United States of America
| | - Tangfeng Lv
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, United States of America
| | - Kamaleshwar Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, United States of America
| | - Weimin Gao
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
1346
|
Schmuhl E, Ramer R, Salamon A, Peters K, Hinz B. Increase of mesenchymal stem cell migration by cannabidiol via activation of p42/44 MAPK. Biochem Pharmacol 2014; 87:489-501. [DOI: 10.1016/j.bcp.2013.11.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/22/2013] [Accepted: 11/22/2013] [Indexed: 12/27/2022]
|
1347
|
Nrf1 and Nrf2 transcription factors regulate androgen receptor transactivation in prostate cancer cells. PLoS One 2014; 9:e87204. [PMID: 24466341 PMCID: PMC3899380 DOI: 10.1371/journal.pone.0087204] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 12/26/2013] [Indexed: 01/29/2023] Open
Abstract
Despite androgen deprivation therapy (ADT), persistent androgen receptor (AR) signaling enables outgrowth of castration resistant prostate cancer (CRPC). In prostate cancer (PCa) cells, ADT may enhance AR activity through induction of oxidative stress. Herein, we investigated the roles of Nrf1 and Nrf2, transcription factors that regulate antioxidant gene expression, on hormone-mediated AR transactivation using a syngeneic in vitro model of androgen dependent (LNCaP) and castration resistant (C4-2B) PCa cells. Dihydrotestosterone (DHT) stimulated transactivation of the androgen response element (ARE) was significantly greater in C4-2B cells than in LNCaP cells. DHT-induced AR transactivation was coupled with higher nuclear translocation of p65-Nrf1 in C4-2B cells, as compared to LNCaP cells. Conversely, DHT stimulation suppressed total Nrf2 levels in C4-2B cells but elevated total Nrf2 levels in LNCaP cells. Interestingly, siRNA mediated silencing of Nrf1 attenuated AR transactivation while p65-Nrf1 overexpression enhanced AR transactivation. Subsequent studies showed that Nrf1 physically interacts with AR and enhances AR’s DNA-binding activity, suggesting that the p65-Nrf1 isoform is a potential AR coactivator. In contrast, Nrf2 suppressed AR-mediated transactivation by stimulating the nuclear accumulation of the p120-Nrf1 which suppressed AR transactivation. Quantitative RT-PCR studies further validated the inductive effects of p65-Nrf1 isoform on the androgen regulated genes, PSA and TMPRSS2. Therefore, our findings implicate differential roles of Nrf1 and Nrf2 in regulating AR transactivation in PCa cells. Our findings also indicate that the DHT-stimulated increase in p65-Nrf1 and the simultaneous suppression of both Nrf2 and p120-Nrf1 ultimately facilitates AR transactivation in CRPC cells.
Collapse
|
1348
|
Xie H, Huang S, Martin S, Wise JP. Arsenic is cytotoxic and genotoxic to primary human lung cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 760:33-41. [PMID: 24291234 PMCID: PMC3928068 DOI: 10.1016/j.mrgentox.2013.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/10/2013] [Accepted: 11/19/2013] [Indexed: 01/25/2023]
Abstract
Arsenic originates from both geochemical and numerous anthropogenic activities. Exposure of the general public to significant levels of arsenic is widespread. Arsenic is a well-documented human carcinogen. Long-term exposure to high levels of arsenic in drinking water has been linked to bladder, lung, kidney, liver, prostate, and skin cancers. Among them, lung cancer is of great public concern. However, little is known about how arsenic causes lung cancer and few studies have considered effects in normal human lung cells. The purpose of this study was to determine the cytotoxicity and genotoxicity of arsenic in human primary bronchial fibroblast and epithelial cells. Our data show that arsenic induces a concentration-dependent decrease in cell survival after short (24h) or long (120h) exposures. Arsenic induces concentration-dependent but not time-dependent increases in chromosome damage in fibroblasts. No chromosome damage is induced after either 24h or 120h arsenic exposure in epithelial cells. Using neutral comet assay and gamma-H2A.X foci forming assay, we found that 24h or 120h exposure to arsenic induces increases in DNA double strand breaks in both cell lines. These data indicate that arsenic is cytotoxic and genotoxic to human lung primary cells but lung fibroblasts are more sensitive to arsenic than epithelial cells. Further research is needed to understand the specific mechanisms involved in arsenic-induced genotoxicity in human lung cells.
Collapse
Affiliation(s)
- Hong Xie
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Portland, ME, United States; Maine Center for Toxicology and Environmental Health, University of Southern Maine, Portland, ME, United States.
| | - Shouping Huang
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Portland, ME, United States; Maine Center for Toxicology and Environmental Health, University of Southern Maine, Portland, ME, United States
| | - Sarah Martin
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Portland, ME, United States
| | - John P Wise
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Portland, ME, United States; Maine Center for Toxicology and Environmental Health, University of Southern Maine, Portland, ME, United States
| |
Collapse
|
1349
|
Acute compartment syndrome of the arm after minor trauma in a patient with optimal range of oral anticoagulant therapy: a case report. Case Rep Orthop 2014; 2014:980940. [PMID: 24516765 PMCID: PMC3912892 DOI: 10.1155/2014/980940] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/19/2013] [Indexed: 11/17/2022] Open
Abstract
Compartment syndrome of the arm is a rare event that can be subsequent to trauma or other pathological and physical conditions. At the arm the thin and elastic fascia may allow accumulation of blood more than in other districts, especially in patients undergoing anticoagulant therapy. We describe a rare case of an acute compartment syndrome of the arm after minor trauma with partial biceps brachii rupture in a patient with warfarin therapy and optimal value of INR. Prompt diagnosis and surgical decompression helped to avoid the occurrence of complications with a satisfying recovery of arm function.
Collapse
|
1350
|
Zhang YS, Cai X, Yao J, Xing W, Wang LV, Xia Y. Non-invasive and in situ characterization of the degradation of biomaterial scaffolds by volumetric photoacoustic microscopy. Angew Chem Int Ed Engl 2014; 53:184-8. [PMID: 24130155 PMCID: PMC3894115 DOI: 10.1002/anie.201306282] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/12/2013] [Indexed: 11/11/2022]
Abstract
Degradation is among the most important properties of biomaterial scaffolds, which are indispensable for regenerative medicine. The currently used method relies on the measurement of mass loss across different samples and cannot track the degradation of an individual scaffold in situ. Here we report, for the first time, the use of multiscale photoacoustic microscopy to non-invasively monitor the degradation of an individual scaffold. We could observe alterations to the morphology and structure of a scaffold at high spatial resolution and deep penetration, and more significantly, quantify the degradation of an individual scaffold as a function of time, both in vitro and in vivo. In addition, the remodeling of vasculature inside a scaffold can be visualized simultaneously using a dual-wavelength scanning mode in a label-free manner. This optoacoustic method can be used to monitor the degradation of individual scaffolds, offering a new approach to non-invasively analyze and quantify biomaterial-tissue interactions in conjunction with the assessment of in vivo vascular parameters.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | - Xin Cai
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130 (USA)
| | - Junjie Yao
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130 (USA)
| | - Wenxin Xing
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130 (USA)
| | - Lihong V. Wang
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130 (USA)
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| |
Collapse
|