101
|
Yang M, Wang D, Wang X, Mei J, Gong Q. Role of Folate in Liver Diseases. Nutrients 2024; 16:1872. [PMID: 38931227 PMCID: PMC11206401 DOI: 10.3390/nu16121872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Folate is a water-soluble B vitamin involved in the synthesis of purines and pyrimidines and is one of the essential vitamins for human growth and reproduction. Folate deficiency due to low dietary intake, poor absorption of folate, and alterations in folate metabolism due to genetic defects or drug interactions significantly increases the risk of diseases such as neural tube defects, cardiovascular disease, cancer, and cognitive dysfunction. Recent studies have shown that folate deficiency can cause hyperhomocysteinemia, which increases the risk of hypertension and cardiovascular disease, and that high homocysteine levels are an independent risk factor for liver fibrosis and cirrhosis. In addition, folate deficiency results in increased secretion of pro-inflammatory factors and impaired lipid metabolism in the liver, leading to lipid accumulation in hepatocytes and fibrosis. There is substantial evidence that folate deficiency contributes to the development and progression of a variety of liver diseases, including non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), alcoholic liver disease (ALD), viral hepatitis, hepatic fibrosis, and liver cancer. Here we review key studies on the role of folate in the pathophysiology of liver diseases, summarize the current status of studies on folate in the treatment of liver diseases, and speculate that folate may be a potential therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Minlan Yang
- School of Medicine, Yangtze University, Jingzhou 434020, China
| | | | | | | | - Quan Gong
- School of Medicine, Yangtze University, Jingzhou 434020, China
| |
Collapse
|
102
|
Stefan N, Hartleb M, Popovic B, Varona R. Effect of essential phospholipids on hepatic steatosis in metabolic dysfunction-associated steatotic liver disease associated with type 2 diabetes mellitus and/or hyperlipidemia and/or obesity: study protocol of a randomized, double-blind, phase IV clinical trial. Trials 2024; 25:374. [PMID: 38858768 PMCID: PMC11165850 DOI: 10.1186/s13063-024-08208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a predominant chronic liver condition globally and is strongly associated with obesity, diabetes mellitus, and dyslipidemia. Essential phospholipids (EPL) are recommended as supportive treatment for managing liver conditions, including MASLD or metabolic dysfunction-associated steatohepatitis, cirrhosis, and viral hepatitis. While efficacy of EPL as an adjunctive therapy in MASLD treatment has been established earlier, certain aspects of its usage such as the impact of standard-of-care parameters, effect of EPL on quality of life (QoL) and change in symptoms evaluation in patients with MASLD remain unexplored. The proposed trial aims to assess the efficacy and safety of EPL and the subsequent QoL of patients with MASLD associated with type 2 diabetes mellitus (T2DM) and/or hyperlipidemia and/or obesity. METHODS This is a multicenter, multinational, double-blind, randomized, two-arm, placebo-controlled, parallel-group, phase IV clinical trial. The trial is being conducted in approximately 190 patients who are randomized on a 1:1 basis either to the EPL arm (Essentiale® 1800 mg/day orally + standard of care) or placebo arm (placebo + standard of care). The primary outcome is to assess the efficacy of EPL on hepatic steatosis, as measured by transient elastography, from baseline to 6 months. The secondary outcomes include change in QoL parameters, as measured by the Chronic Liver Disease Questionnaire-metabolic dysfunction-associated steatotic liver disease/ metabolic dysfunction-associated steatohepatitis and change in symptom evaluation (using the Global Overall Symptom scale) from baseline to 6 months for symptoms, including asthenia, feeling depressed, abdominal pain/discomfort, or fatigue. DISCUSSION The current protocol design will allow to comprehensively explore the efficacy of EPL added to the standard of care on hepatic steatosis and QoL and its safety in patients with MASLD associated with T2DM and/or hyperlipidemia and/or obesity by assessing various outcome measures. TRIAL REGISTRATION European Union Clinical Trials Register, EudraCT, 2021-006069-39. Registered on March 13, 2022.
Collapse
Affiliation(s)
- Norbert Stefan
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany.
| | - Marek Hartleb
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Medical University of Silesia, Katowice, Poland
| | | | | |
Collapse
|
103
|
Yan L, Hu X, Wu S, Cui C, Zhao S. Association between the cardiometabolic index and NAFLD and fibrosis. Sci Rep 2024; 14:13194. [PMID: 38851771 PMCID: PMC11162484 DOI: 10.1038/s41598-024-64034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/04/2024] [Indexed: 06/10/2024] Open
Abstract
Composed of obesity and lipid parameters, the cardiometabolic index (CMI) has emerged as a novel diagnostic tool. Originally developed for diabetes diagnosis, its application has expanded to identifying patients with cardiovascular diseases, such as atherosclerosis and hypertension. However, the relationship between CMI and non-alcoholic fatty liver disease (NAFLD) and liver fibrosis in the US population remains unclear. This cross-sectional study analyzed data from the National Health and Nutrition Examination Survey (NHANES) spanning 2017-2020, involving 2996 participants aged 20 years or older. Vibration controlled transient elastography using a FibroScan® system (model 502, V2 Touch) with controlled attenuation parameter measurements identified NAFLD at a threshold of ≥ 274 dB/m, while liver stiffness measurement (LSM) results (median, ≥ 8.2 kPa) indicated fibrosis. A multifactorial logistic regression model explored the relationship between CMI and NAFLD and fibrosis. The effectiveness of CMI in detecting NAFLD and liver fibrosis was assessed through receiver operating characteristic curve analysis. Controlling for potential confounders, CMI showed a significant positive association with NAFLD (adjusted OR = 1.44, 95% CI 1.44-1.45) and liver fibrosis (adjusted OR = 1.84, 95% CI 1.84-1.85). The Areas Under the Curve for predicting NAFLD and fibrosis were 0.762 (95% CI 0.745 ~ 0.779) and 0.664(95% CI 0.633 ~ 0.696), respectively, with optimal cut-off values of 0.462 and 0.527. There is a positive correlation between CMI and NAFLD and fibrosis, which is a suitable and simple predictor of NAFLD and fibrosis.
Collapse
Affiliation(s)
- Laisha Yan
- Department of Cardio Surgery Intensive Care Unit, Ningbo Medical Centre Li Huili Hospital, Ningbo, China
| | - Xiaoyan Hu
- Department of Cardio Surgery Intensive Care Unit, Ningbo Medical Centre Li Huili Hospital, Ningbo, China
| | - Shanshan Wu
- Department of Cardio Surgery Intensive Care Unit, Ningbo Medical Centre Li Huili Hospital, Ningbo, China
| | - Can Cui
- Department of Cardio Surgery Intensive Care Unit, Ningbo Medical Centre Li Huili Hospital, Ningbo, China
| | - Shunying Zhao
- Department of Cardio Surgery Intensive Care Unit, Ningbo Medical Centre Li Huili Hospital, Ningbo, China.
| |
Collapse
|
104
|
Xu C, Zhang Y, Ren M, Liu K, Wu Q, Zhang C, Kong F. Near-infrared dual-response fluorescent probe for detection of N 2H 4 and intracellular viscosity changes in biological samples and various water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124180. [PMID: 38522378 DOI: 10.1016/j.saa.2024.124180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
N2H4 is a common raw material used in the production of pesticides and has good water solubility, so it may contaminate water sources and eventually enter living organisms, causing serious health problems. Viscosity is an important indicator of the cellular microenvironment and an early warning signal for many diseases. The high reactivity of hydrazine depletes glutathione (GSH) in hepatocytes, causing oxidative stress ultimately leading to significant changes in intracellular viscosity and even death. Therefore, it is particularly important to develop an effective method to detect N2H4 and viscosity in environmental and biological systems. On this basis, we developed two fluorescent probes, BDD and BHD, based on xanthene and 2-benzothiazole acetonitrile. The experimental results show that BHD and BDD have good imaging capabilities for N2H4 in cells, zebrafish and Arabidopsis. BHD and BDD also showed sensitive detection and fluorescence enhancement in the near-infrared region when the intracellular viscosity was changed. Notably, the probe BDD has also successfully imaged N2H4 in a variety of real water samples.
Collapse
Affiliation(s)
- Chen Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Jinan 250353, PR China; Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Yukun Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Jinan 250353, PR China; Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Mingguang Ren
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Jinan 250353, PR China; Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Keyin Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Jinan 250353, PR China; Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Qin Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Jinan 250353, PR China; Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Chunling Zhang
- Department of Rheumatology, Central Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province 250013, PR China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province, Jinan 250353, PR China; Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
105
|
Duffus BLM, Haggerty DL, Doud EH, Mosley AL, Yamamoto BK, Atwood BK. The impact of abstinence from chronic alcohol consumption on the mouse striatal proteome: sex and subregion-specific differences. Front Pharmacol 2024; 15:1405446. [PMID: 38887549 PMCID: PMC11180734 DOI: 10.3389/fphar.2024.1405446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Alcohol misuse is the third leading preventable cause of death in the world. The World Health Organization currently estimates that 1 in 20 deaths are directly alcohol related. One of the ways in which consuming excessive levels of alcohol can both directly and indirectly affect human mortality and morbidity, is through chronic inflammation. Recently, studies have suggested a link between increased alcohol use and the incidence of neuroinflammatory-related diseases. However, the mechanism in which alcohol potentially influences neuroinflammatory processes is still being uncovered. We implemented an unbiased proteomics exploration of alcohol-induced changes in the striatum, with a specific emphasis on proteins related to inflammation. The striatum is a brain region that is critically involved with the progression of alcohol use disorder. Using mass spectrometry following voluntary alcohol self-administration in mice, we show that distinct protein abundances and signaling pathways in different subregions of the striatum are disrupted by chronic exposure to alcohol compared to water drinking control mice. Further, in mice that were allowed to experience abstinence from alcohol compared to mice that were non-abstinent, the overall proteome and signaling pathways showed additional differences, suggesting that the responses evoked by chronic alcohol exposure are dependent on alcohol use history. To our surprise we did not find that chronic alcohol drinking or abstinence altered protein abundance or pathways associated with inflammation, but rather affected proteins and pathways associated with neurodegeneration and metabolic, cellular organization, protein translation, and molecular transport processes. These outcomes suggest that in this drinking model, alcohol-induced neuroinflammation in the striatum is not a primary outcome controlling altered neurobehavioral function, but these changes are rather mediated by altered striatal neuronal structure and cellular health.
Collapse
Affiliation(s)
- Brittnie-lee M. Duffus
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - David L. Haggerty
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bryan K. Yamamoto
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | | |
Collapse
|
106
|
Butt DQ, Harun MH, Che Jalil NA, Shamsuddin SH, Jaafar S, Ahmad B. Protumorigenic Interferon-Stimulated Genes in Cancer: A Comprehensive Review. Cureus 2024; 16:e63216. [PMID: 39070493 PMCID: PMC11279184 DOI: 10.7759/cureus.63216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Interferon-stimulated genes (ISGs), whose production is triggered by interferons, are known to defend the host from pathogenic and cancer-specific antigens, one of which is by inducing apoptosis in infected or mutated cells. It has been reported recently that specific ISGs aid cancer cells in evading immunosurveillance and inflammatory cells by inhibiting the apoptosis process. This report reviewed four apoptosis-regulating ISG proteins: interferon-stimulated gene 15 (ISG15), interferon alpha-inducible protein 27 (IFI27), interferon alpha-inducible protein 6 (IFI6), and radical S-adenosyl methionine domain containing 2 (RSAD2), demonstrating anti-apoptosis function, and considered them protumorigenic.
Collapse
Affiliation(s)
- Danial Qasim Butt
- Oral Medicine and Oral Pathology Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | - Masitah Hayati Harun
- Oral Medicine and Oral Pathology Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | - Nur Asyilla Che Jalil
- Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | | | - Saidi Jaafar
- Basic Sciences Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| | - Basaruddin Ahmad
- Biostatistics Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, MYS
| |
Collapse
|
107
|
Tan X, Long Y, Zhang R, Zhang Y, You Z, Yang L. Punicalagin Ameliorates Diabetic Liver Injury by Inhibiting Pyroptosis and Promoting Autophagy via Modulation of the FoxO1/TXNIP Signaling Pathway. Mol Nutr Food Res 2024; 68:e2300912. [PMID: 38847553 DOI: 10.1002/mnfr.202300912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/29/2024] [Indexed: 07/04/2024]
Abstract
Diabetic liver injury (DLI) is one of the complications of diabetes mellitus, which seriously jeopardizes human health. Punicalagin (PU), a polyphenolic compound mainly found in pomegranate peel, has been shown to ameliorate metabolic diseases such as DLI, and the mechanism needs to be further explored. In this study, a HFD/STZ-induced diabetic mouse model is established to investigate the effect and mechanism of PU on DLI. The results show that PU intervention significantly improves liver histology and serum biochemical abnormalities in diabetic mice, significantly inhibits the expression of pyroptosis-related proteins such as NLRP3, Caspase1, IL-1β, and GSDMD in the liver of diabetic mice, and up-regulated the expression of autophagy-related proteins. Meanwhile, PU treatment significantly increases FoxO1 protein expression and inhibits TXNIP protein expression in the liver of diabetic mice. The above results are further verified in the HepG2 cell injury model induced by high glucose. AS1842856 is a FoxO1 specific inhibitor. The intervention of AS1842856 combined with PU reverses the regulatory effects of PU on pyroptosis and autophagy in HepG2 cells. In conclusion, this study demonstrates that PU may inhibit pyroptosis and upregulate autophagy by regulating FoxO1/TXNIP signaling, thereby alleviating DLI.
Collapse
Affiliation(s)
- Xiuying Tan
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| | - Yi Long
- Children's Medical Center, People's Hospital, Hunan Province, Changsha, 410005, China
| | - Rou Zhang
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| | - Yuhan Zhang
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| | - Ziyi You
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| | - Lina Yang
- Xiangya School of Public Health, Central South University, Changsha, 410013, China
| |
Collapse
|
108
|
Yao YX, Yu YJ, Dai S, Zhang CY, Xue XY, Zhou ML, Yao CH, Li YX. Kaempferol efficacy in metabolic diseases: Molecular mechanisms of action in diabetes mellitus, obesity, non-alcoholic fatty liver disease, steatohepatitis, and atherosclerosis. Biomed Pharmacother 2024; 175:116694. [PMID: 38713943 DOI: 10.1016/j.biopha.2024.116694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024] Open
Abstract
The incidence of metabolic diseases has progressively increased, which has a negative impact on human health and life safety globally. Due to the good efficacy and limited side effects, there is growing interest in developing effective drugs to treat metabolic diseases from natural compounds. Kaempferol (KMP), an important flavonoid, exists in many vegetables, fruits, and traditional medicinal plants. Recently, KMP has received widespread attention worldwide due to its good potential in the treatment of metabolic diseases. To promote the basic research and clinical application of KMP, this review provides a timely and comprehensive summary of the pharmacological advances of KMP in the treatment of four metabolic diseases and its potential molecular mechanisms of action, including diabetes mellitus, obesity, non-alcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH), and atherosclerosis. According to the research, KMP shows remarkable therapeutic effects on metabolic diseases by regulating multiple signaling transduction pathways such as NF-κB, Nrf2, AMPK, PI3K/AKT, TLR4, and ER stress. In addition, the most recent literature on KMP's natural source, pharmacokinetics studies, as well as toxicity and safety are also discussed in this review, thus providing a foundation and evidence for further studies to develop novel and effective drugs from natural compounds. Collectively, our manuscript strongly suggested that KMP could be a promising candidate for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yu-Xin Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Yu-Jie Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Chao-Yang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Xin-Yan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Meng-Ling Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Chen-Hao Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
| | - Yun-Xia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China.
| |
Collapse
|
109
|
Han L, Wu L, Yin Q, Li L, Zheng X, Du S, Huang X, Bai L, Wang Y, Bian Y. A promising therapy for fatty liver disease: PCSK9 inhibitors. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155505. [PMID: 38547616 DOI: 10.1016/j.phymed.2024.155505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Fatty liver disease (FLD) poses a significant global health concern worldwide, with its classification into nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) contingent upon the presence or absence of chronic and excessive alcohol consumption. The absence of specific therapeutic interventions tailored to FLD at various stages of the disease renders its treatment exceptionally arduous. Despite the fact that FLD and hyperlipidemia are intimately associated, there is still debate over how lipid-lowering medications affect FLD. Proprotein Convertase Subtilisin/ Kexin type 9 (PCSK9) is a serine protease predominantly synthesized in the liver, which has a crucial impact on cholesterol homeostasis. Research has confirmed that PCSK9 inhibitors have prominent lipid-lowering properties and substantial clinical effectiveness, thereby justifying the need for additional exploration of their potential role in FLD. PURPOSE Through a comprehensive literature search, this review is to identify the relationship and related mechanisms between PCSK9, lipid metabolism and FLD. Additionally, it will assess the pharmacological mechanism and applicability of PCSK9 inhibitors (including naturally occurring PCSK9 inhibitors, such as conventional herbal medicines) for the treatment of FLD and serve as a guide for updating the treatment protocol for such conditions. METHODS A comprehensive literature search was conducted using several electronic databases, including Pubmed, Medline, Embase, CNKI, Wanfang database and ClinicalTrials.gov, from the inception of the database to 30 Jan 2024. Key words used in the literature search were "fatty liver", "hepatic steatosis", "PCSK9", "traditional Chinese medicine", "herb medicine", "botanical medicine", "clinical trial", "vivo", "vitro", linked with AND/OR. Most of the included studies were within five years. RESULTS PCSK9 participates in the regulation of circulating lipids via both LDLR dependent and independent pathways, and there is a potential association with de novo lipogenesis. Major clinical studies have demonstrated a positive correlation between circulating PCSK9 levels and the severity of NAFLD, with elevated levels of circulating PCSK9 observed in individuals exposed to chronic alcohol. Numerous studies have demonstrated the potential of PCSK9 inhibitors to ameliorate non-alcoholic steatohepatitis (NASH), potentially completely alleviate liver steatosis, and diminish liver impairment. In animal experiments, PCSK9 inhibitors have exhibited efficacy in alleviating alcoholic induced liver lipid accumulation and hepatitis. Traditional Chinese medicine such as berberine, curcumin, resveratrol, piceatannol, sauchinone, lupin, quercetin, salidroside, ginkgolide, tanshinone, lunasin, Capsella bursa-pastoris, gypenosides, and Morus alba leaves are the main natural PCS9 inhibitors. Excitingly, by inhibiting transcription, reducing secretion, direct targeting and other pathways, traditional Chinese medicine exert inhibitory effects on PCSK9, thereby exerting potential FLD therapeutic effects. CONCLUSION PCSK9 plays an important role in the development of FLD, and PCSK9 inhibitors have demonstrated beneficial effects on lipid regulation and FLD in both preclinical and clinical studies. In addition, some traditional Chinese medicines have improved the disease progression of FLD by inhibiting PCSK9 and anti-inflammatory and antioxidant effects. Consequently, the inhibition of PCSK9 appears to be a promising therapeutic strategy for FLD.
Collapse
Affiliation(s)
- Lizhu Han
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Liuyun Wu
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Qinan Yin
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lian Li
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xingyue Zheng
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Shan Du
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xuefei Huang
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lan Bai
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu 610072, China.
| | - Yuan Bian
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
110
|
Vallianou NG, Kounatidis D, Psallida S, Panagopoulos F, Stratigou T, Geladari E, Karampela I, Tsilingiris D, Dalamaga M. The Interplay Between Dietary Choline and Cardiometabolic Disorders: A Review of Current Evidence. Curr Nutr Rep 2024; 13:152-165. [PMID: 38427291 PMCID: PMC11133147 DOI: 10.1007/s13668-024-00521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE OF REVIEW Choline is an essential nutrient for human health and cellular homeostasis as it is necessary for the synthesis of lipid cell membranes, lipoproteins, and the synthesis of the neurotransmitter acetylcholine. The aim of this review is to analyze the beneficial effects of choline and its significance in cellular metabolism and various inflammatory pathways, such as the inflammasome. We will discuss the significance of dietary choline in cardiometabolic disorders, such as non-alcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), and chronic kidney disease (CKD) as well as in cognitive function and associated neuropsychiatric disorders. RECENT FINDINGS Choline deficiency has been related to the development of NAFLD and cognitive disability in the offspring as well as in adulthood. In sharp contrast, excess dietary intake of choline mediated via the increased production of trimethylamine by the gut microbiota and increased trimethylamine-N-oxide (TMAO) levels has been related to atherosclerosis in most studies. In this context, CVD and CKD through the accumulation of TMAO, p-Cresyl-sulfate (pCS), and indoxyl-sulfate (IS) in serum may be the result of the interplay between excess dietary choline, the increased production of TMAO by the gut microbiota, and the resulting activation of inflammatory responses and fibrosis. A balanced diet, with no excess nor any deficiency in dietary choline, is of outmost importance regarding the prevention of cardiometabolic disorders as well as cognitive function. Large-scale studies with the use of next-generation probiotics, especially Akkermansia muciniphila and Faecalibacterium prausnitzii, should further examine their therapeutic potential in this context.
Collapse
Affiliation(s)
- Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece.
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, Athens, Greece.
| | - Dimitris Kounatidis
- Department of Internal Medicine, Hippokration General Hospital, 114 Vassilissis Sofias str, Athens, Greece
| | - Sotiria Psallida
- Department of Microbiology, KAT General Hospital of Attica, 2 Nikis str, Athens, Greece
| | - Fotis Panagopoulos
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Theodora Stratigou
- Department of Endocrinology and Metabolism, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini str, Athens, Greece
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100, Alexandroupoli, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, Athens, Greece.
| |
Collapse
|
111
|
Mathew B, Tripathi G, Gautam V, Bindal V, Sharma N, Yadav M, Pandey S, Sharma N, Gupta AC, Bhat SH, Saini AK, Sood V, Lal BB, Alam S, Khanna R, Maras JS. Circulating bacterial peptides and linked metabolomic signatures are indicative of early mortality in pediatric cirrhosis. Hepatol Commun 2024; 8:e0440. [PMID: 38836842 PMCID: PMC11155604 DOI: 10.1097/hc9.0000000000000440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/07/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Patients with pediatric cirrhosis-sepsis (PC-S) attain early mortality. Plasma bacterial composition, the cognate metabolites, and their contribution to the deterioration of patients with PC-S to early mortality are unknown. We aimed to delineate the plasma metaproteome-metabolome landscape and identify molecular indicators capable of segregating patients with PC-S predisposed to early mortality in plasma, and we further validated the selected metabolite panel in paired 1-drop blood samples using untargeted metaproteomics-metabolomics by UHPLC-HRMS followed by validation using machine-learning algorithms. METHODS We enrolled 160 patients with liver diseases (cirrhosis-sepsis/nonsepsis [n=110] and noncirrhosis [n=50]) and performed untargeted metaproteomics-metabolomics on a training cohort of 110 patients (Cirrhosis-Sepsis/Nonsepsis, n=70 and noncirrhosis, n=40). The candidate predictors were validated on 2 test cohorts-T1 (plasma test cohort) and T2 (1-drop blood test cohort). Both T1 and T2 had 120 patients each, of which 70 were from the training cohort. RESULTS Increased levels of tryptophan metabolites and Salmonella enterica and Escherichia coli-associated peptides segregated patients with cirrhosis. Increased levels of deoxyribose-1-phosphate, N5-citryl-d-ornithine, and Herbinix hemicellulolytic and Leifsonia xyli segregated patients with PC-S. MMCN-based integration analysis of WMCNA-WMpCNA identified key microbial-metabolic modules linked to PC-S nonsurvivors. Increased Indican, Staphylobillin, glucose-6-phosphate, 2-octenoylcarnitine, palmitic acid, and guanidoacetic acid along with L. xyli, Mycoplasma genitalium, and Hungateiclostridium thermocellum segregated PC-S nonsurvivors and superseded the liver disease severity indices with high accuracy, sensitivity, and specificity for mortality prediction using random forest machine-learning algorithm. CONCLUSIONS Our study reveals a novel metabolite signature panel capable of segregating patients with PC-S predisposed to early mortality using as low as 1-drop blood.
Collapse
Affiliation(s)
- Babu Mathew
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Gaurav Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vipul Gautam
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vasundhra Bindal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nupur Sharma
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Manisha Yadav
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sushmita Pandey
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Neha Sharma
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Abhishak C. Gupta
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sadam H. Bhat
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Akhilesh K. Saini
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vikrant Sood
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Bikrant Bihari Lal
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Seema Alam
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rajeev Khanna
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Jaswinder Singh Maras
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
112
|
Min K, Karuppannan SK, Tae G. The impact of matrix stiffness on hepatic cell function, liver fibrosis, and hepatocellular carcinoma-Based on quantitative data. BIOPHYSICS REVIEWS 2024; 5:021306. [PMID: 38846007 PMCID: PMC11151446 DOI: 10.1063/5.0197875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
Over the past few decades, extensive research has explored the development of supportive scaffold materials for in vitro hepatic cell culture, to effectively mimic in vivo microenvironments. It is crucial for hepatic disease modeling, drug screening, and therapeutic evaluations, considering the ethical concerns and practical challenges associated with in vivo experiments. This review offers a comprehensive perspective on hepatic cell culture using bioscaffolds by encompassing all stages of hepatic diseases-from a healthy liver to fibrosis and hepatocellular carcinoma (HCC)-with a specific focus on matrix stiffness. This review begins by providing physiological and functional overviews of the liver. Subsequently, it explores hepatic cellular behaviors dependent on matrix stiffness from previous reports. For hepatic cell activities, softer matrices showed significant advantages over stiffer ones in terms of cell proliferation, migration, and hepatic functions. Conversely, stiffer matrices induced myofibroblastic activation of hepatic stellate cells, contributing to the further progression of fibrosis. Elevated matrix stiffness also correlates with HCC by increasing proliferation, epithelial-mesenchymal transition, metastasis, and drug resistance of HCC cells. In addition, we provide quantitative information on available data to offer valuable perspectives for refining the preparation and development of matrices for hepatic tissue engineering. We also suggest directions for further research on this topic.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sathish Kumar Karuppannan
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
113
|
Tong D, Tang Y, Zhong P. The emerging roles of histone demethylases in cancers. Cancer Metastasis Rev 2024; 43:795-821. [PMID: 38227150 DOI: 10.1007/s10555-023-10160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Modulation of histone methylation status is regarded as an important mechanism of epigenetic regulation and has substantial clinical potential for the therapy of diseases, including cancer and other disorders. The present study aimed to provide a comprehensive introduction to the enzymology of histone demethylases, as well as their cancerous roles, molecular mechanisms, therapeutic possibilities, and challenges for targeting them, in order to advance drug design for clinical therapy and highlight new insight into the mechanisms of these enzymes in cancer. A series of clinical trials have been performed to explore potential roles of histone demethylases in several cancer types. Numerous targeted inhibitors associated with immunotherapy, chemotherapy, radiotherapy, and targeted therapy have been used to exert anticancer functions. Future studies should evaluate the dynamic transformation of histone demethylases leading to carcinogenesis and explore individual therapy.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urological Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| | - Ying Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| | - Peng Zhong
- Department of Pathology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| |
Collapse
|
114
|
Wang R, Zhou X, Li B, Ding R, Han J, Wang Y, Meng A, Zhou J. A novel dual near-infrared fluorescent probe for bioimaging and visualization of viscosity in acute alcoholic liver injury. Chem Commun (Camb) 2024; 60:5804-5807. [PMID: 38712712 DOI: 10.1039/d4cc01222d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A dual NIR fluorescent probe Cy-ND is developed for viscosity sensing with λex/em = 766/806 nm, making it apt for biological analysis, whose response is validated through DFT and TDDFT computations. Cy-ND successfully detected viscosity changes amidst acute alcohol-induced liver injury and liver ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ruonan Wang
- School of Pharmacy, School of Nursing, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Xucong Zhou
- School of Pharmacy, School of Nursing, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Bingxue Li
- School of Pharmacy, School of Nursing, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Ru Ding
- School of Pharmacy, School of Nursing, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Jingqian Han
- School of Pharmacy, School of Nursing, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Ying Wang
- Faculty of Education, Qufu Normal University, Qufu 273165, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| | - Aixia Meng
- School of Pharmacy, School of Nursing, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| | - Jin Zhou
- School of Pharmacy, School of Nursing, School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
115
|
Zhang T, Chen S, Li L, Jin Y, Liu S, Liu Z, Shi F, Xie L, Guo P, Cannon AC, Ergashev A, Yao H, Huang C, Zhang B, Wu L, Sun H, Chen S, Shan Y, Yu Z, Tolosa EJ, Liu J, Fernandez-Zapico ME, Ma F, Chen G. PFKFB3 controls acinar IP3R-mediated Ca2+ overload to regulate acute pancreatitis severity. JCI Insight 2024; 9:e169481. [PMID: 38781030 PMCID: PMC11383365 DOI: 10.1172/jci.insight.169481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/22/2024] [Indexed: 05/25/2024] Open
Abstract
Acute pancreatitis (AP) is among the most common hospital gastrointestinal diagnoses; understanding the mechanisms underlying the severity of AP is critical for development of new treatment options for this disease. Here, we evaluate the biological function of phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in AP pathogenesis in 2 independent genetically engineered mouse models of AP. PFKFB3 was elevated in AP and severe AP (SAP), and KO of Pfkfb3 abrogated the severity of alcoholic SAP (FAEE-SAP). Using a combination of genetic, pharmacological, and molecular studies, we defined the interaction of PFKFB3 with inositol 1,4,5-trisphosphate receptor (IP3R) as a key event mediating this phenomenon. Further analysis demonstrated that the interaction between PFKFB3 and IP3R promotes FAEE-SAP severity by altering intracellular calcium homeostasis in acinar cells. Together, our results support a PFKFB3-driven mechanism controlling AP pathobiology and define this enzyme as a therapeutic target to ameliorate the severity of this condition.
Collapse
Affiliation(s)
- Tan Zhang
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Shengchuan Chen
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Liang Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Yuepeng Jin
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Siying Liu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Zhu Liu
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fengyu Shi
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lifen Xie
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Panpan Guo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE key laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Andrew C Cannon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Akmal Ergashev
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haiping Yao
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Chaohao Huang
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Baofu Zhang
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijun Wu
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongwei Sun
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Siming Chen
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yunfeng Shan
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhengping Yu
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ezequiel J Tolosa
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE key laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, China
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Feng Ma
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine (ISM), Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Gang Chen
- Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
116
|
Ge X, Han H, Desert R, Das S, Song Z, Komakula SSB, Chen W, Athavale D, Lantvit D, Nieto N. A Protein Complex of Liver Origin Activates a Pro-inflammatory Program That Drives Hepatic and Intestinal Injury in Alcohol-Associated Liver Disease. Cell Mol Gastroenterol Hepatol 2024; 18:101362. [PMID: 38788899 PMCID: PMC11296289 DOI: 10.1016/j.jcmgh.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND & AIMS There is limited information on how the liver-to-gut axis contributes to alcohol-associated liver disease (AALD). We previously identified that high-mobility group box-1 (HMGB1) undergoes oxidation in hepatocytes and demonstrated elevated serum levels of oxidized HMGB1 ([O] HMGB1) in alcoholic patients. Since interleukin-1 beta (IL-1B) increases in AALD, we hypothesized hepatocyte-derived [O] HMGB1 could interact with IL-1B to activate a pro-inflammatory program that, besides being detrimental to the liver, drives intestinal barrier dysfunction. RESULTS Alcohol-fed RageΔMye mice exhibited decreased nuclear factor kappa B signaling, a pro-inflammatory signature, and reduced total intestinal permeability, resulting in protection from AALD. In addition, [O] HMGB1 bound and signaled through the receptor for advanced-glycation end-products (RAGE) in myeloid cells, driving hepatic inflammation, intestinal permeability, and increased portal blood lipopolysaccharide in AALD. We identified that [O] HMGB1 formed a complex with IL-1B, which was found in the livers of patients with acute alcoholic hepatitis and mice with AALD. This complex originated from the liver, because it was absent in the intestine when hepatocytes did not produce [O] HMGB1. Mechanistically, the complex bound RAGE in Kupffer cells and macrophages induced a pro-inflammatory program. Moreover, it bound RAGE in intestinal macrophages and epithelial cells, leading to intestinal inflammation, altered intestinal epithelial cell tight junction protein expression, increased intestinal permeability, and elevated portal blood lipopolysaccharide, enhancing AALD pathogenesis. CONCLUSIONS We identified a protein complex of liver origin that amplifies the pro-inflammatory feedback loop in AALD; therefore, targeting this complex could have significant therapeutic potential.
Collapse
Affiliation(s)
- Xiaodong Ge
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Hui Han
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Romain Desert
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Sukanta Das
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Zhuolun Song
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | | | - Wei Chen
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Dipti Athavale
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Daniel Lantvit
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois
| | - Natalia Nieto
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois; Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois Chicago, Chicago, Illinois; Research & Development Service, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.
| |
Collapse
|
117
|
Hashim AR, Bashir DW, Rashad E, Galal MK, Rashad MM, Deraz NM, Drweesh EA, El-Gharbawy SM. Alleviative effect of betaine against copper oxide nanoparticles-induced hepatotoxicity in adult male albino rats: histopathological, biochemical, and molecular studies. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 13:47. [DOI: 10.1186/s43088-024-00505-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/13/2024] [Indexed: 08/14/2024] Open
Abstract
Abstract
Background
Copper oxide nanoparticles (CuO-NPs) have gained interest due to their availability, efficiency, and their cost-effectiveness. Betaine is an essential methyl donor and takes part in various physiological activities inside the body; it is found to have protective and curative effects against various liver diseases. The present study aimed to evaluate the hepatotoxic effect of CuO-NPs on adult male albino rats and the ability of betaine to alleviate such hepatotoxicity.
Methods
Forty adult male albino Wister rats were grouped into 4 groups (10 rats/group): group I a negative control, group II (CuO-NPs) injected with CuO-NPs intra peritoneal by insulin needle (0.5 mg/kg/day), group III (betaine + CuO-NPs) administered betaine orally by gavage needle (250 mg/kg/day 1 h before CuO-NPs) and CuO-NPs (0.5 mg/kg/day) finally, group IV (betaine) administered betaine orally by gavage needle (250 mg/kg/day) for consecutive 28 days. Blood and liver samples were gathered and processed for biochemical, molecular, histopathological, and immunohistochemical investigations.
Results
Group II displayed a marked rise in alanine aminotransferase (ALT), aspartate aminotransferase (AST), and malondialdehyde (MDA) levels. Furthermore, there is an excessive upregulation of the inflammatory biomarkers interleukin1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). On the other hand, substantial reduction in glutathione (GSH) levels and significant downregulation at glutathione peroxidase (GPx) mRNA gene expression. Regarding the histopathological deviations, there were severe congestion, dilatation and hyalinization of blood vessels, steatosis, hydropic degeneration, hepatocytic necrosis, increased binucleation, degenerated bile ducts, hyperplasia of ducts epithelial lining, and inflammatory cells infiltration. Immunohistochemically, there was a pronounced immunoreactivity toward IL-1β. Luckily, the pre-administration of betaine was able to mitigate these changes. MDA was dramatically reduced, resulting in the downregulation of IL-1β and TNF-α. Additionally, there was a considerable rise in GSH levels and an upregulation of GPx. Histopathological deviations were substantially improved as diminished dilatation, hyalinization and congestion of blood vessels, hepatocytes, and bile ducts are normal to some extent. In addition, IL-1β immunohistochemical analysis revealed marked decreased intensity.
Conclusion
Betaine can effectively reduce the hepatotoxicity caused by CuO-NPs via its antioxidant properties and its ability to stimulate the cell redox system.
Collapse
|
118
|
Zhang Y, Jiang Q, Wang K, Fang Y, Zhang P, Wei L, Li D, Shu W, Xiao H. Dissecting lysosomal viscosity fluctuations in live cells and liver tissues with an ingenious NIR fluorescent probe. Talanta 2024; 272:125825. [PMID: 38417371 DOI: 10.1016/j.talanta.2024.125825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Viscosity is a pivotal component in the cell microenvironment, while lysosomal viscosity fluctuation is associated with various human diseases, such as tumors and liver diseases. Herein, a near-infrared fluorescent probe (BIMM) based on merocyanine dyes was designed and synthesized for detecting lysosomal viscosity in live cells and liver tissue. The increase in viscosity restricts the free rotation of single bonds, leading to enhanced fluorescence intensity. BIMM exhibits high sensitivity and good selectivity, and is applicable to a wide pH range. BIMM has near-infrared emission, and the fluorescent intensity shows an excellent linear relationship with viscosity. Furthermore, BIMM possessing excellent lysosomes-targeting ability, and can monitor viscosity changes in live cells stimulated by dexamethasone, lipopolysaccharide (LPS), and nigericin, and differentiate between cancer cells and normal cells. Noticeably, BIMM can accurately analyze viscosity changes in various liver disease models with HepG2 cells, and is successfully utilized to visualize variations in viscosity on APAP-induced liver injury. All the results demonstrated that BIMM is a powerful wash-free tool to monitor the viscosity fluctuations in living systems.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Qingqing Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Kai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Yuqi Fang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Peng Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Liangchen Wei
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Dongpeng Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China.
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, PR China.
| |
Collapse
|
119
|
Mudyanselage AW, Wijamunige BC, Kocoń A, Turner R, McLean D, Morentin B, Callado LF, Carter WG. Alcohol Triggers the Accumulation of Oxidatively Damaged Proteins in Neuronal Cells and Tissues. Antioxidants (Basel) 2024; 13:580. [PMID: 38790685 PMCID: PMC11117938 DOI: 10.3390/antiox13050580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Alcohol is toxic to neurons and can trigger alcohol-related brain damage, neuronal loss, and cognitive decline. Neuronal cells may be vulnerable to alcohol toxicity and damage from oxidative stress after differentiation. To consider this further, the toxicity of alcohol to undifferentiated SH-SY5Y cells was compared with that of cells that had been acutely differentiated. Cells were exposed to alcohol over a concentration range of 0-200 mM for up to 24 h and alcohol effects on cell viability were evaluated via MTT and LDH assays. Effects on mitochondrial morphology were examined via transmission electron microscopy, and mitochondrial functionality was examined using measurements of ATP and the production of reactive oxygen species (ROS). Alcohol reduced cell viability and depleted ATP levels in a concentration- and exposure duration-dependent manner, with undifferentiated cells more vulnerable to toxicity. Alcohol exposure resulted in neurite retraction, altered mitochondrial morphology, and increased the levels of ROS in proportion to alcohol concentration; these peaked after 3 and 6 h exposures and were significantly higher in differentiated cells. Protein carbonyl content (PCC) lagged behind ROS production and peaked after 12 and 24 h, increasing in proportion to alcohol concentration, with higher levels in differentiated cells. Carbonylated proteins were characterised by their denatured molecular weights and overlapped with those from adult post-mortem brain tissue, with levels of PCC higher in alcoholic subjects than matched controls. Hence, alcohol can potentially trigger cell and tissue damage from oxidative stress and the accumulation of oxidatively damaged proteins.
Collapse
Affiliation(s)
- Anusha W. Mudyanselage
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
- Department of Export Agriculture, Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Buddhika C. Wijamunige
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
- Department of Export Agriculture, Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Artur Kocoń
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
| | - Ricky Turner
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
| | - Denise McLean
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Benito Morentin
- Section of Forensic Pathology, Basque Institute of Legal Medicine, E-48001 Bilbao, Spain;
| | - Luis F. Callado
- Department of Pharmacology, University of the Basque Country-UPV/EHU, E-48940 Leioa, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Wayne G. Carter
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (A.W.M.); (B.C.W.); (A.K.); (R.T.)
| |
Collapse
|
120
|
Chen P, Yao L, Yuan M, Wang Z, Zhang Q, Jiang Y, Li L. Mitochondrial dysfunction: A promising therapeutic target for liver diseases. Genes Dis 2024; 11:101115. [PMID: 38299199 PMCID: PMC10828599 DOI: 10.1016/j.gendis.2023.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 08/10/2023] [Indexed: 02/02/2024] Open
Abstract
The liver is an important metabolic and detoxification organ and hence demands a large amount of energy, which is mainly produced by the mitochondria. Liver tissues of patients with alcohol-related or non-alcohol-related liver diseases contain ultrastructural mitochondrial lesions, mitochondrial DNA damage, disturbed mitochondrial dynamics, and compromised ATP production. Overproduction of mitochondrial reactive oxygen species induces oxidative damage to mitochondrial proteins and mitochondrial DNA, decreases mitochondrial membrane potential, triggers hepatocyte inflammation, and promotes programmed cell death, all of which impair liver function. Mitochondrial DNA may be a potential novel non-invasive biomarker of the risk of progression to liver cirrhosis and hepatocellular carcinoma in patients infected with the hepatitis B virus. We herein present a review of the mechanisms of mitochondrial dysfunction in the development of acute liver injury and chronic liver diseases, such as hepatocellular carcinoma, viral hepatitis, drug-induced liver injury, alcoholic liver disease, and non-alcoholic fatty liver disease. This review also discusses mitochondrion-centric therapies for treating liver diseases.
Collapse
Affiliation(s)
- Ping Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zheng Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qiuling Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
121
|
Lou D, Fang Q, He Y, Ma R, Wang X, Li H, Qi M. Oxymatrine alleviates high-fat diet/streptozotocin-induced non-alcoholic fatty liver disease in C57BL/6 J mice by modulating oxidative stress, inflammation and fibrosis. Biomed Pharmacother 2024; 174:116491. [PMID: 38537582 DOI: 10.1016/j.biopha.2024.116491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a complex complication of type 2 diabetes mellitus (T2DM). Oxymatrine (OMT) is an alkaloid extracted from Sophora flavescens with broad pharmacological effects. However, there is currently a lack of research on OMT in the field of NAFLD. The present study aimed to explore the effects and underlying mechanisms of oxymatrine in treating T2DM with NAFLD. The T2DM mice model was induced by high-fat diet (HFD) combined with streptozotocin (STZ) injection in male C57BL/6 J mice. Animals were randomly divided into four groups (n = 8): Control group, DC group, OMT-L group (45 mg/kg i.g.), and OMT-H group (90 mg/kg, i.g.). The drug was administered once a day for 8 weeks. In addition, HepG2 hepatocytes were incubated with palmitic acid (PA) to establish a fatty liver cell model. Treated with OMT, the body weight and fasting blood glucose (FBG) of DC mice were reduced and the liver organ coefficient was significantly optimized. Meanwhile, OMT markedly enhanced the activities of key antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), and also reduced malondialdehyde (MDA) levels. These biochemical alterations were accompanied by noticeable improvements in liver histopathology. Furthermore, OMT down-regulated the expression of NOD-like receptor protein 3 (NLRP3), interleukin-1β (IL-1β), transforming growth factor-β1 (TGF-β1) and collagen I significantly, highlighting its potential in modulating inflammatory and fibrotic pathways. In conclusion, OMT improved liver impairment effectively in diabetic mice by suppressing oxidative stress, inflammation and fibrosis. These results suggest that OMT may represent a novel therapy for NAFLD with diabetes.
Collapse
Affiliation(s)
- Di Lou
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qing Fang
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yinghao He
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ruyu Ma
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xinyan Wang
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Hanbing Li
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Minyou Qi
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
122
|
Pierson SR, Kolling LJ, James TD, Pushpavathi SG, Marcinkiewcz CA. Serotonergic dysfunction may mediate the relationship between alcohol consumption and Alzheimer's disease. Pharmacol Res 2024; 203:107171. [PMID: 38599469 PMCID: PMC11088857 DOI: 10.1016/j.phrs.2024.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
The impact of Alzheimer's disease (AD) and its related dementias is rapidly expanding, and its mitigation remains an urgent social and technical challenge. To date there are no effective treatments or interventions for AD, but recent studies suggest that alcohol consumption is correlated with the risk of developing dementia. In this review, we synthesize data from preclinical, clinical, and epidemiological models to evaluate the combined role of alcohol consumption and serotonergic dysfunction in AD, underscoring the need for further research on this topic. We first discuss the limitations inherent to current data-collection methods, and how neuropsychiatric symptoms common among AD, alcohol use disorder, and serotonergic dysfunction may mask their co-occurrence. We additionally describe how excess alcohol consumption may accelerate the development of AD via direct effects on serotonergic function, and we explore the roles of neuroinflammation and proteostasis in mediating the relationship between serotonin, alcohol consumption, and AD. Lastly, we argue for a shift in current research to disentangle the pathogenic effects of alcohol on early-affected brainstem structures in AD.
Collapse
Affiliation(s)
- Samantha R Pierson
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Louis J Kolling
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | - Thomas D James
- Department of Neuroscience and Pharmacology, University of Iowa, United States
| | | | | |
Collapse
|
123
|
Rengifo T, Bishir M, Huang W, Snyder M, Chang SL. Network meta-analysis of the molecular mechanisms and signaling pathways underlying alcohol-induced thymic atrophy. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:795-809. [PMID: 38553251 PMCID: PMC11161038 DOI: 10.1111/acer.15292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/28/2024] [Accepted: 02/22/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Thymic atrophy is characterized by loss of thymocytes, destruction of thymic architecture, and a subsequent decrease in naïve T cells with compromised immunity. Thymic atrophy occurs during aging. Environmental factors including alcohol misuse also induce thymic atrophy. Despite the link between alcohol misuse and thymic atrophy, the underlying mechanism is understudied. We aimed to identify molecules and signaling pathways that underly alcohol-induced thymic atrophy during aging. METHODS F344 rats were given 3-day binge-ethanol (4.8 g/kg/day; 52% w/v; i.g.) and the thymus was collected and weighed. Molecular mechanisms underlying ethanol-induced thymic atrophy were investigated by network meta-analysis using the QIAGEN Ingenuity Pathway Analysis (IPA). The molecules associated with ethanol were identified from the QIAGEN Knowledge Base (QKB) and those associated with thymic atrophy were identified from QKB and Mouse Genome Informatics (MGI). Aging-mediated Differential Expression Genes (DEGs) from mouse thymocytes were obtained from the Gene Expression Omnibus (GEO) database (GSE132136). The relationship between the molecules and associated signaling pathways were studied using IPA. RESULTS Binge-ethanol decreased thymic weight in F344 rats. Our meta-analysis using IPA identified molecules commonly shared by ethanol and thymic atrophy through which simulation with ethanol increased thymic atrophy. We then obtained aging-mediated DEGs from the atrophied thymocytes. We found that ethanol contributed to thymic atrophy through modulation of the aging-mediated DEGs. Our network meta-analysis suggests that ethanol may augment thymic atrophy through increased expression of cytokines (e.g., IL-6, IL-17A and IL-33) along with their regulators (e.g., STAT1 and STAT3). CONCLUSIONS Exposure to alcohol may augment thymic atrophy by altering the activity of key inflammatory mediators, such as STAT family members and inflammatory cytokines. These findings provide insights into the signaling pathways and upstream regulators that underly alcohol-induced thymic atrophy during aging, suggesting that alcohol consumption could prepone thymic atrophy.
Collapse
Affiliation(s)
- Tatiana Rengifo
- Institute of NeuroImmune Pharmacology, Seton Hall University
- Department of Biological Sciences, Seton Hall University
| | - Muhammed Bishir
- Institute of NeuroImmune Pharmacology, Seton Hall University
- Department of Biological Sciences, Seton Hall University
| | - Wenfei Huang
- Institute of NeuroImmune Pharmacology, Seton Hall University
- Department of Biological Sciences, Seton Hall University
| | | | - Sulie L. Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University
- Department of Biological Sciences, Seton Hall University
| |
Collapse
|
124
|
Zhang BS, Zhang XM, Ito M, Yajima S, Yoshida K, Ohno M, Nishi E, Wang H, Li SY, Kubota M, Yoshida Y, Matsutani T, Mine S, Machida T, Takemoto M, Yamagata H, Hayashi A, Yokote K, Kobayashi Y, Takizawa H, Kuroda H, Shimada H, Iwadate Y, Hiwasa T. JMJD6 Autoantibodies as a Potential Biomarker for Inflammation-Related Diseases. Int J Mol Sci 2024; 25:4935. [PMID: 38732153 PMCID: PMC11084951 DOI: 10.3390/ijms25094935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Inflammation is closely associated with cerebrovascular diseases, cardiovascular diseases, diabetes, and cancers, and it is accompanied by the development of autoantibodies in the early stage of inflammation-related diseases. Hence, it is meaningful to discover novel antibody biomarkers targeting inflammation-related diseases. In this study, Jumonji C-domain-containing 6 (JMJD6) was identified by the serological identification of antigens through recombinant cDNA expression cloning. In particular, JMJD6 is an antigen recognized in serum IgG from patients with unstable angina pectoris (a cardiovascular disease). Then, the serum antibody levels were examined using an amplified luminescent proximity homogeneous assay-linked immunosorbent assay and a purified recombinant JMJD6 protein as an antigen. We observed elevated levels of serum anti-JMJD6 antibodies (s-JMJD6-Abs) in patients with inflammation-related diseases such as ischemic stroke, acute myocardial infarction (AMI), diabetes mellitus (DM), and cancers (including esophageal cancer, EC; gastric cancer; lung cancer; and mammary cancer), compared with the levels in healthy donors. The s-JMJD6-Ab levels were closely associated with some inflammation indicators, such as C-reactive protein and intima-media thickness (an atherosclerosis index). A better postoperative survival status of patients with EC was observed in the JMJD6-Ab-positive group than in the negative group. An immunohistochemical analysis showed that JMJD6 was highly expressed in the inflamed mucosa of esophageal tissues, esophageal carcinoma tissues, and atherosclerotic plaques. Hence, JMJD6 autoantibodies may reflect inflammation, thereby serving as a potential biomarker for diagnosing specific inflammation-related diseases, including stroke, AMI, DM, and cancers, and for prediction of the prognosis in patients with EC.
Collapse
Affiliation(s)
- Bo-Shi Zhang
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (B.-S.Z.)
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Xiao-Meng Zhang
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masaaki Ito
- Department of Clinical Oncology, Graduate School of Medicine, Toho University, Tokyo 143-8541, Japan (H.S.)
| | - Satoshi Yajima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Toho University, Tokyo 143-8541, Japan
| | - Kimihiko Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medicine, Toho University, Tokyo 143-8541, Japan
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Department of Pharmacology, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
- Department of Pharmacology, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Hao Wang
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Shu-Yang Li
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (B.-S.Z.)
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Masaaki Kubota
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (B.-S.Z.)
- Comprehensive Stroke Center, Chiba University Hospital, Chiba 260-8677, Japan
| | - Yoichi Yoshida
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (B.-S.Z.)
- Comprehensive Stroke Center, Chiba University Hospital, Chiba 260-8677, Japan
| | - Tomoo Matsutani
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (B.-S.Z.)
| | - Seiichiro Mine
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (B.-S.Z.)
- Department of Neurological Surgery, Chiba Prefectural Sawara Hospital, Chiba 287-0003, Japan
- Department of Neurological Surgery, Chiba Cerebral and Cardiovascular Center, Chiba 290-0512, Japan
| | - Toshio Machida
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (B.-S.Z.)
- Department of Neurological Surgery, Chiba Cerebral and Cardiovascular Center, Chiba 290-0512, Japan
- Department of Neurosurgery, Eastern Chiba Medical Center, Chiba 283-8686, Japan
| | - Minoru Takemoto
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Diabetes, Metabolism and Endocrinology, School of Medicine, International University of Health and Welfare, Chiba 286-8686, Japan
| | - Hiroki Yamagata
- Department of Diabetes, Metabolism and Endocrinology, School of Medicine, International University of Health and Welfare, Chiba 286-8686, Japan
| | - Aiko Hayashi
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hirotaka Takizawa
- Port Square Kashiwado Clinic, Kashiwado Memorial Foundation, Chiba 260-0025, Japan
| | - Hideyuki Kuroda
- Medical Project Division, Research Development Center, Fujikura Kasei Co., Saitama 340-0203, Japan
| | - Hideaki Shimada
- Department of Clinical Oncology, Graduate School of Medicine, Toho University, Tokyo 143-8541, Japan (H.S.)
- Department of Gastroenterological Surgery, Graduate School of Medicine, Toho University, Tokyo 143-8541, Japan
| | - Yasuo Iwadate
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (B.-S.Z.)
| | - Takaki Hiwasa
- Department of Neurological Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (B.-S.Z.)
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Department of Clinical Oncology, Graduate School of Medicine, Toho University, Tokyo 143-8541, Japan (H.S.)
- Comprehensive Stroke Center, Chiba University Hospital, Chiba 260-8677, Japan
| |
Collapse
|
125
|
Su Y, Li X, Zhao J, Ji B, Zhao X, Feng J, Zhao J. Guanidinoacetic acid ameliorates hepatic steatosis and inflammation and promotes white adipose tissue browning in middle-aged mice with high-fat-diet-induced obesity. Food Funct 2024; 15:4515-4526. [PMID: 38567805 DOI: 10.1039/d3fo05201j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Guanidinoacetic acid (GAA) is a naturally occurring amino acid derivative that plays a critical role in energy metabolism. In recent years, a growing body of evidence has emerged supporting the importance of GAA in metabolic dysfunction. Hence, we aimed to investigate the effects of GAA on hepatic and adipose tissue metabolism, as well as systemic inflammatory responses in obese middle-aged mice models and attempted to explore the underlying mechanism. We found that dietary supplementation of GAA inhibited inguinal white adipose tissue (iWAT) hypertrophy in high-fat diet (HFD)-fed mice. In addition, GAA supplementation observably decreased the levels of some systemic inflammatory factors, including IL-4, TNF-α, IL-1β, and IL-6. Intriguingly, GAA supplementation ameliorated hepatic steatosis and lipid deposition in HFD-fed mice, which was revealed by decreased levels of TG, TC, LDL-C, PPARγ, SREBP-1c, FASN, ACC, FABP1, and APOB and increased levels of HDL-C in the liver. Moreover, GAA supplementation increased the expression of browning markers and mitochondrial-related genes in the iWAT. Further investigation showed that dietary GAA promoted the browning of the iWAT via activating the AMPK/Sirt1 signaling pathway and might be associated with futile creatine cycling in obese mice. These results indicate that GAA has the potential to be used as an effective ingredient in dietary interventions and thus may play an important role in ameliorating and preventing HFD-induced obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Yuan Su
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Shanxi Agricultural University, Taigu 030801, PR China
| | - Xinrui Li
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Jiamin Zhao
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Bingzhen Ji
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Xiaoyi Zhao
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Jinxin Feng
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Junxing Zhao
- College of Animal Sciences, Shanxi Agricultural University, Taigu 030801, PR China.
- Shanxi Key Laboratory of Animal Genetics Resource Utilization and Breeding, Shanxi Agricultural University, Taigu 030801, PR China
| |
Collapse
|
126
|
Cienkowski K, Cienkowska A, Kupczynska K, Bielecka-Dabrowa A. The Role of Gut Microbiota and Its Metabolites in Patients with Heart Failure. Biomedicines 2024; 12:894. [PMID: 38672248 PMCID: PMC11048107 DOI: 10.3390/biomedicines12040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Heart failure (HF) is a significant health concern; early detection and prevention are crucial. Recent studies suggest that the gut microbiota and its metabolites may influence HF development and risk factors. We explored this relationship by examining changes in gut microbiota composition and metabolite levels in HF patients. HF patients often exhibit decreased alpha and beta diversity compared to controls, suggesting lower bacterial richness and community variation. Changes in specific bacterial phyla were observed, with decreases in Firmicutes (e.g., Ruminococcus) and Bacteroidetes (e.g., Prevotella) and increases in Proteobacteria (e.g., Escherichia, Shigella, and Klebsiella) and Actinobacteria. Gut-microbiota-related metabolites have been identified, potentially affecting various body systems, including the cardiovascular system. Among these are short-chain fatty acids (SCFAs), betaine, trimethylamine N-oxide (TMAO), phenylalanine, tryptophan-kynurenine, and phenylacetylgutamine (PAGIn). Although SCFAs positively affect our organisms, patients with HF have been observed to experience a decline in bacteria responsible for producing these chemical compounds. There have been indications of possible links between betaine, TMAO, phenylalanine, tryptophan-kynurenine, PAGIn, and heart failure. TMAO and phenylalanine, in particular, show promise as potential prognostic factors. However, their clinical significance has not yet been thoroughly evaluated and requires further investigation.
Collapse
Affiliation(s)
- Krzysztof Cienkowski
- Faculty of Medicine, Medical University of Lodz (MUL), al. Tadeusza Kosciuszki 4, 90419 Lodz, Poland
| | - Alicja Cienkowska
- Faculty of Biology and Environmental Protection, University of Lodz, ul. Gabriela Narutowicza 68, 90136 Lodz, Poland
| | - Karolina Kupczynska
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Rzgowska 281/289, 93338 Lodz, Poland; (K.K.)
| | - Agata Bielecka-Dabrowa
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Rzgowska 281/289, 93338 Lodz, Poland; (K.K.)
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Rzgowska 281/289, 93338 Lodz, Poland
| |
Collapse
|
127
|
Hashim AR, Bashir DW, Rashad E, Galal MK, Rashad MM, Khalil HMA, Deraz NM, S M EG. Neuroprotective Assessment of Betaine against Copper Oxide Nanoparticle-Induced Neurotoxicity in the Brains of Albino Rats: A Histopathological, Neurochemical, and Molecular Investigation. ACS Chem Neurosci 2024; 15:1684-1701. [PMID: 38564598 DOI: 10.1021/acschemneuro.3c00810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Copper oxide nanoparticles (CuO-NPs) are commonly used metal oxides. Betaine possesses antioxidant and neuroprotective activities. The current study aimed to investigate the neurotoxic effect of CuO-NPs on rats and the capability of betaine to mitigate neurotoxicity. Forty rats; 4 groups: group I a control, group II intraperitoneally CuO-NPs (0.5 mg/kg/day), group III orally betaine (250 mg/kg/day) and CuO-NPs, group IV orally betaine for 28 days. Rats were subjected to neurobehavioral assessments. Brain samples were processed for biochemical, molecular, histopathological, and immunohistochemical analyses. Behavioral performance of betaine demonstrated increasing locomotion and cognitive abilities. Group II exhibited significantly elevated malondialdehyde (MDA), overexpression of interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α). Significant decrease in glutathione (GSH), and downregulation of acetylcholine esterase (AChE), nuclear factor erythroid 2-like protein 2 (Nrf-2), and superoxide dismutase (SOD). Histopathological alterations; neuronal degeneration, pericellular spaces, and neuropillar vacuolation. Immunohistochemically, an intense immunoreactivity is observed against IL-1β and glial fibrillary acidic protein (GFAP). Betaine partially neuroprotected against CuO-NPs associated alterations. A significant decrease at MDA, downregulation of IL-1β, and TNF-α, a significant increase at GSH, and upregulation of AChE, Nrf-2, and SOD. Histopathological alterations partially ameliorated. Immunohistochemical intensity of IL-1β and GFAP reduced. It is concluded that betaine neuroprotected against most of CuO-NP neurotoxic effects through antioxidant and cell redox system stimulating efficacy.
Collapse
Affiliation(s)
- Asmaa R Hashim
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Dina W Bashir
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mona K Galal
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Maha M Rashad
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Heba M A Khalil
- Veterinary Hygiene and Management Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Nasrallah M Deraz
- Physical Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - El-Gharbawy S M
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
128
|
Fu Y, Wang Z, Qin H. Examining the Pathogenesis of MAFLD and the Medicinal Properties of Natural Products from a Metabolic Perspective. Metabolites 2024; 14:218. [PMID: 38668346 PMCID: PMC11052500 DOI: 10.3390/metabo14040218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), characterized primarily by hepatic steatosis, has become the most prevalent liver disease worldwide, affecting approximately two-fifths of the global population. The pathogenesis of MAFLD is extremely complex, and to date, there are no approved therapeutic drugs for clinical use. Considerable evidence indicates that various metabolic disorders play a pivotal role in the progression of MAFLD, including lipids, carbohydrates, amino acids, and micronutrients. In recent years, the medicinal properties of natural products have attracted widespread attention, and numerous studies have reported their efficacy in ameliorating metabolic disorders and subsequently alleviating MAFLD. This review aims to summarize the metabolic-associated pathological mechanisms of MAFLD, as well as the natural products that regulate metabolic pathways to alleviate MAFLD.
Collapse
Affiliation(s)
| | | | - Hong Qin
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410006, China; (Y.F.); (Z.W.)
| |
Collapse
|
129
|
Ramos-Lopez O, Santuario-Loera A. Low Dietary Betaine Intake Is Associated with Increased Blood Cholesterol in Mexican Subjects. Healthcare (Basel) 2024; 12:819. [PMID: 38667581 PMCID: PMC11050001 DOI: 10.3390/healthcare12080819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Betaine, an osmolyte derivative of the metabolite choline and the amino acid glycine, acts as a methyl donor in the conversion of homocysteine to methionine and is involved in the maintenance of adequate lipid metabolism. There is growing evidence for the role of betaine in the development of various lipid-related diseases, including dyslipidemia and cardiovascular risk. This study aimed to analyze associations between betaine intake and blood lipid profiles in Mexican subjects. METHODS A total of 212 adults were randomly recruited in the city of Tijuana, Baja California, Mexico. Betaine intake was estimated using Nutritionist Pro software. Body composition and metabolic measurements were obtained by conventional methods. In the total sample, the average intake of betaine was 14.32 mg/d. Individuals were categorized into three groups according to tertiles of betaine consumption: tertile/group 1 (<4.16 mg/d), tertile/group 2 (4.16-12.02 mg/d), and tertile/group 3 (>12.02 mg/d). RESULTS Compared to group 3, subjects within group 1 had higher serum levels of total cholesterol (p = 0.001), LDL-c (p = 0.026), and non-HDL-c (p = 0.021). In addition, significant negative Pearson correlations were found between betaine intake and the serum levels of total cholesterol (r = -0.432, 95% CI, -0.684, -0.185, p = 0.001), LDL-c (r = -0.370, 95% CI, -0.606, -0.134, p = 0.002), and non-HDL-c (r = -0.351, 95%CI, -0.604, -0.098, p = 0.007). CONCLUSIONS Our results show that a low intake of betaine is associated with elevated blood cholesterol levels in Mexican subjects. On this basis, betaine consumption could be used as an additional dietary measure for cardiovascular care. However, additional studies are required to confirm our results in other Mexican regions as well as in other populations worldwide.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22390, Baja California, Mexico;
| | | |
Collapse
|
130
|
Ciupe SM, Dahari H, Ploss A. Mathematical Models of Early Hepatitis B Virus Dynamics in Humanized Mice. Bull Math Biol 2024; 86:53. [PMID: 38594319 PMCID: PMC11003933 DOI: 10.1007/s11538-024-01284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Analyzing the impact of the adaptive immune response during acute hepatitis B virus (HBV) infection is essential for understanding disease progression and control. Here we developed mathematical models of HBV infection which either lack terms for adaptive immune responses, or assume adaptive immune responses in the form of cytolytic immune killing, non-cytolytic immune cure, or non-cytolytic-mediated block of viral production. We validated the model that does not include immune responses against temporal serum hepatitis B DNA (sHBV) and temporal serum hepatitis B surface-antigen (HBsAg) experimental data from mice engrafted with human hepatocytes (HEP). Moreover, we validated the immune models against sHBV and HBsAg experimental data from mice engrafted with HEP and human immune system (HEP/HIS). As expected, the model that does not include adaptive immune responses matches the observed high sHBV and HBsAg concentrations in all HEP mice. By contrast, while all immune response models predict reduction in sHBV and HBsAg concentrations in HEP/HIS mice, the Akaike Information Criterion cannot discriminate between non-cytolytic cure (resulting in a class of cells refractory to reinfection) and antiviral block functions (of up to 99 % viral production 1-3 weeks following peak viral load). We can, however, reject cytolytic killing, as it can only match the sHBV and HBsAg data when we predict unrealistic levels of hepatocyte loss.
Collapse
Affiliation(s)
- Stanca M Ciupe
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Harel Dahari
- Division of Hepatology, Department of Medicine, Loyola University, Chicago, IL, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
131
|
Bekdash RA. Epigenetics, Nutrition, and the Brain: Improving Mental Health through Diet. Int J Mol Sci 2024; 25:4036. [PMID: 38612845 PMCID: PMC11012292 DOI: 10.3390/ijms25074036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The relationship between nutrition and brain health is intricate. Studies suggest that nutrients during early life impact not only human physiology but also mental health. Although the exact molecular mechanisms that depict this relationship remain unclear, there are indications that environmental factors such as eating, lifestyle habits, stress, and physical activity, influence our genes and modulate their function by epigenetic mechanisms to shape mental health outcomes. Epigenetic mechanisms act as crucial link between genes and environmental influences, proving that non-genetic factors could have enduring effects on the epigenome and influence health trajectories. We review studies that demonstrated an epigenetic mechanism of action of nutrition on mental health, focusing on the role of specific micronutrients during critical stages of brain development. The methyl-donor micronutrients of the one-carbon metabolism, such as choline, betaine, methionine, folic acid, VitB6 and VitB12 play critical roles in various physiological processes, including DNA and histone methylation. These micronutrients have been shown to alter gene function and susceptibility to diseases including mental health and metabolic disorders. Understanding how micronutrients influence metabolic genes in humans can lead to the implementation of early nutritional interventions to reduce the risk of developing metabolic and mental health disorders later in life.
Collapse
Affiliation(s)
- Rola A Bekdash
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
132
|
Inoue N, Tsuge K, Yanagita T, Oikawa A, Nagao K. Time-Course Metabolomic Analysis: Production of Betaine Structural Analogs by Fungal Fermentation of Seaweed. Metabolites 2024; 14:201. [PMID: 38668329 PMCID: PMC11051755 DOI: 10.3390/metabo14040201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Betaine structural analogs are compounds characterized by the presence of positive and negative charges in a single molecule and have been reported to have physiological properties, such as anti-inflammatory activities. In this study, we performed a metabolomic analysis of metabolite composition changes during the fermentation of Neopyropia yezoensis, an edible red alga, with Aspergillus oryzae for 72 h. The results indicated that three specific betaine structural analogs (betaine, stachydrine, and carnitine) exhibited significant changes in production by the end of the 72 h fermentation period. Time-course analysis suggested that betaine was generated from the precursor choline at 12-24 h during the late stage of fungal growth, while stachydrine was generated from the precursor-related compound glutamic acid at 48-72 h during the sporulation stage. However, the contribution of the precursor lysine to the increased production of carnitine during the 12-72 h period was unclear. This study provides useful information on the efficient production of betaine structural analogs by the fungal fermentation of seaweed as well as various other food materials.
Collapse
Affiliation(s)
- Nao Inoue
- Department of Biological Resource Science, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; (N.I.); (T.Y.)
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Keisuke Tsuge
- Saga Regional Industry Support Center, Saga 849-0932, Japan;
| | - Teruyoshi Yanagita
- Department of Biological Resource Science, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; (N.I.); (T.Y.)
| | - Akira Oikawa
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan;
| | - Koji Nagao
- Department of Biological Resource Science, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; (N.I.); (T.Y.)
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
133
|
Ezhilarasan D, Shree Harini K, Karthick M, Lavanya P. Boldine protects against carbon tetrachloride-induced chronic liver injury by regulating NF-κB signaling pathway. J Biochem Mol Toxicol 2024; 38:e23691. [PMID: 38500399 DOI: 10.1002/jbt.23691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/05/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Sustained liver injuries predominantly promote oxidative stress and inflammation that lead to the progression of chronic liver disease (CLD), including fibrosis, cirrhosis, and hepatocellular carcinoma. Boldine, an alkaloid isolated from Peumus boldus, has been shown to have antioxidant and anti-inflammatory effects. Currently, there is no definitive treatment option available for CLD. Therefore, we investigated the hepatoprotective effect of boldine against carbon tetrachloride (CCl4 )-induced chronic liver injury in rats. CCl4 (2 mL/kg., b.w., i.p.) was administered twice weekly for 5 weeks to induce chronic liver injury in rats. Separate groups of rats were given boldine (20 mg/kg b.w., and 40 mg/kg b.w.) and silymarin (100 mg/kg b.w.) orally, daily. Serum transaminases, lipid peroxidation, and antioxidant levels were measured, and nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (cox-2), interleukin-1 β (IL-1β), and α-smooth muscle actin (α-SMA) gene and protein expressions were evaluated. CCl4 administration increased liver marker enzymes of hepatotoxicity in serum and oxidative stress markers, inflammatory genes and α-smooth muscle actin expression in liver tissue. Boldine concurrent treatment suppressed CCl4 -induced elevation of transaminase levels in serum, restored enzymic and non-enzymic antioxidants, and downregulated NF-κB, TNF-α, Cox-2 and IL-1β expressions, thereby suppressing hepatic inflammation. Boldine administration also repressed α-SMA expression. The results of this study demonstrate the antioxidant, anti-inflammatory, and antifibrotic properties of boldine, and it can be a potential therapeutic candidate in the treatment of CLD.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Karthik Shree Harini
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Munusamy Karthick
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Prathap Lavanya
- Department of Anatomy, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
134
|
Wang J, Li J, Fu Y, Zhu Y, Lin L, Li Y. Research progress, challenges and perspectives of phospholipids metabolism in the LXR‑LPCAT3 signaling pathway and its relation to NAFLD (Review). Int J Mol Med 2024; 53:32. [PMID: 38362962 PMCID: PMC10903931 DOI: 10.3892/ijmm.2024.5356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Phospholipids (PLs) are principle constituents of biofilms, with their fatty acyl chain composition significantly impacting the biophysical properties of membranes, thereby influencing biological processes. Recent studies have elucidated that fatty acyl chains, under the enzymatic action of lyso‑phosphatidyl‑choline acyltransferases (LPCATs), expedite incorporation into the sn‑2 site of phosphatidyl‑choline (PC), profoundly affecting pathophysiology. Accumulating evidence suggests that alterations in LPCAT activity are implicated in various diseases, including non‑alcoholic fatty liver disease (NAFLD), hepatitis C, atherosclerosis and cancer. Specifically, LPCAT3 is instrumental in maintaining systemic lipid homeostasis through its roles in hepatic lipogenesis, intestinal lipid absorption and lipoprotein secretion. The liver X receptor (LXR), pivotal in lipid homeostasis, modulates cholesterol, fatty acid (FA) and PL metabolism. LXR's capacity to modify PL composition in response to cellular sterol fluctuations is a vital mechanism for protecting biofilms against lipid stress. Concurrently, LXR activation enhances LPCAT3 expression on cell membranes and elevates polyunsaturated PL levels. This activation can ameliorate saturated free FA effects in vitro or endoplasmic reticulum stress in vivo due to lipid accumulation in hepatic cells. Pharmacological interventions targeting LXR, LPCAT and membrane PL components could offer novel therapeutic directions for NAFLD management. The present review primarily focused on recent advancements in understanding the LPCAT3 signaling pathway's role in lipid metabolism related to NAFLD, aiming to identify new treatment targets for the disease.
Collapse
Affiliation(s)
- Junmin Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Jiacheng Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yugang Fu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yingying Zhu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Liubing Lin
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yong Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
135
|
Liu J, Xu L, Wang L, Wang Q, Yu L, Zhang S. Naringin Alleviates Intestinal Fibrosis by Inhibiting ER Stress-Induced PAR2 Activation. Inflamm Bowel Dis 2024:izae071. [PMID: 38557865 DOI: 10.1093/ibd/izae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 04/04/2024]
Abstract
Fibrosis characterized by intestinal strictures is a common complication of Crohn's disease (CD), without specific antifibrotic drugs, which usually relies on surgical intervention. The transcription factor XBP1, a key component of endoplasmic reticulum (ER) stress, is required for degranulation of mast cells and linked to PAR2 activation and fibrosis. Many studies have confirmed that naringin (NAR) can inhibit ER stress and reduce organ fibrosis. We hypothesized that ER stress activated the PAR2-induced epithelial-mesenchymal transition process by stimulating mast cell degranulation to release tryptase and led to intestinal fibrosis in CD patients; NAR might play an antifibrotic role by inhibiting ER stress-induced PAR2 activation. We report that the expression levels of XBP1, mast cell tryptase, and PAR2 are upregulated in fibrotic strictures of CD patients. Molecular docking simulates the interaction of NAR and spliced XBP1. ER stress stimulates degranulation of mast cells to secrete tryptase, activates PAR2-induced epithelial-mesenchymal transition process, and promotes intestinal fibrosis in vitro and vivo experiments, which is inhibited by NAR. Moreover, F2rl1 (the coding gene of PAR2) deletion in intestinal epithelial cells decreases the antifibrotic effect of NAR. Hence, the ER stress-mast cell tryptase-PAR2 axis can promote intestinal fibrosis, and NAR administration can alleviate intestinal fibrosis by inhibiting ER stress-induced PAR2 activation.
Collapse
Affiliation(s)
- Jinguo Liu
- Department of Endoscopy Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Lei Xu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Wang
- Department of Surgery, Huangshi Traditional Chinese Medicine Hospital, Hubei Chinese Medical University, Huangshi, China
| | - Qianqian Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liangliang Yu
- Department of Endoscopy Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Shuo Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
136
|
HAN M, YI X, YOU S, WU X, WANG S, HE D. Gehua Jiejiu Dizhi decoction ameliorates alcoholic fatty liver in mice by regulating lipid and bile acid metabolism and with exertion of antioxidant stress based on 4DLabel-free quantitative proteomic study. J TRADIT CHIN MED 2024; 44:277-288. [PMID: 38504534 PMCID: PMC10927405 DOI: 10.19852/j.cnki.jtcm.20231018.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/27/2023] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To analyze the effect and molecular mechanism of Gehua Jiejiu Dizhi decoction (, GJDD) on alcoholic fatty live disease (AFLD) by using proteomic methods. METHODS The male C57BL/6J mouse were randomly divided into four groups: control group, model group, GJDD group and resveratrol group. After the AFLD model was successfully prepared by intragastric administration of alcohol once on the basis of the Lieber-DeCarli classical method, the GJDD group and resveratrol group were intragastrically administered with GJDD (4900 mg/kg) and resveratrol (400 mg/kg) respectively, once a day for 9 d. The fat deposition of liver tissue was observed and evaluated by oil red O (ORO) staining. 4DLabel-free quantitative proteome method was used to determine and quantify the protein expression in liver tissue of each experimental group. The differentially expressed proteins were screened according to protein expression differential multiples, and then analyzed by Gene ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. Finally, expression validation of the differentially co-expressed proteins from control group, model group and GJDD group were verified by targeted proteomics quantification techniques. RESULTS In semiquantitative analyses of ORO, all kinds of steatosis (ToS, MaS, and MiS) were evaluated higher in AFLD mice compared to those in GJDD or resveratrol-treated mice. 4DLabel-free proteomics analysis results showed that a total of 4513 proteins were identified, of which 3763 proteins were quantified and 946 differentially expressed proteins were screened. Compared with the control group, 145 proteins were up-regulated and 148 proteins were down-regulated in the liver tissue of model group. In addition, compared with the model group, 92 proteins were up-regulated and 135 proteins were down-regulated in the liver tissue of the GJDD group. 15 differentially co-expressed proteins were found between every two groups (model group vs control group, GJDD group vs model group and GJDD group vs control group), which were involved in many biological processes. Among them, 11 differentially co-expressed key proteins (Aox3, H1-5, Fabp5, Ces3a, Nudt7, Serpinb1a, Fkbp11, Rpl22l1, Keg1, Acss2 and Slco1a1) were further identified by targeted proteomic quantitative technology and their expression patterns were consistent with the results of 4D label-free proteomic analysis. CONCLUSIONS Our study provided proteomics-based evidence that GJDD alleviated AFLD by modulating liver protein expression, likely through the modulation of lipid metabolism, bile acid metabolism and with exertion of antioxidant stress.
Collapse
Affiliation(s)
- Min HAN
- 1 Guizhou University of Traditional Chinese Medicine, Graduate School, Guiyang 550025, China
| | - Xu YI
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Shaowei YOU
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Xueli WU
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Shuoshi WANG
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| | - Diancheng HE
- 2 Department of Clinical medical laboratory, Department of Gastroenterology, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550003, China
| |
Collapse
|
137
|
Xie L, Wang H, Hu J, Liu Z, Hu F. The role of novel adipokines and adipose-derived extracellular vesicles (ADEVs): Connections and interactions in liver diseases. Biochem Pharmacol 2024; 222:116104. [PMID: 38428826 DOI: 10.1016/j.bcp.2024.116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Adipose tissues (AT) are an important endocrine organ that secretes various functional adipokines, peptides, non-coding RNAs, and acts on AT themselves or other distant tissues or organs through autocrine, paracrine, or endocrine manners. An accumulating body of evidence has suggested that many adipokines play an important role in liver metabolism. Besides the traditional adipokines such as adiponectin and leptin, many novel adipokines have recently been identified to have regulatory effects on the liver. Additionally, AT can produce extracellular vesicles (EVs) that act on peripheral tissues. However, under pathological conditions, such as obesity and diabetes, dysregulation of adipokines is associated with functional changes in AT, which may cause liver diseases. In this review, we focus on the newly discovered adipokines and EVs secreted by AT and highlight their actions on the liver under the context of obesity, nonalcoholic fatty liver diseases (NAFLD), and some other liver diseases. Clarifying the action of adipokines and adipose tissue-derived EVs on the liver would help to identify novel therapeutic targets or biomarkers for metabolic diseases.
Collapse
Affiliation(s)
- Lijun Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Huiying Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jinying Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhuoying Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Health Law Research Center, School of Law, Central South University, Changsha, China.
| | - Fang Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
138
|
Zhu S, Wu Z, Wang W, Wei L, Zhou H. A revisit of drugs and potential therapeutic targets against non-alcoholic fatty liver disease: learning from clinical trials. J Endocrinol Invest 2024; 47:761-776. [PMID: 37839037 DOI: 10.1007/s40618-023-02216-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease, with a worldwide prevalence of 25%. Although numerous clinical trials have been conducted over the last few decades, an effective treatment has not been approved yet. Extensive research has accumulated a large amount of data and experience; however, the vast number of clinical trials and new therapeutic targets for NAFLD make it impossible to keep abreast of the relevant information. Therefore, a systematic analysis of the existing trials is necessary. METHODS Here, we reviewed clinical trials on NAFLD registered in the mandated federal database, ClinicalTrials.gov, to generate a detailed overview of the trials related to drugs and therapeutic targets for NAFLD treatment. Following screening for pertinence to therapy, a total of 440 entries were identified that included active trials as well as those that have already been completed, suspended, terminated, or withdrawn. RESULTS We summarize and systematically analyze the state, drug development pipeline, and discovery of treatment targets for NAFLD. We consider possible factors that may affect clinical outcomes. Furthermore, we discussed these results to explore the mechanisms responsible for clinical outcomes. CONCLUSION We summarised the landscape of current clinical trials and suggested the directions for future NAFLD therapy to assist internal medicine specialists in treating the whole clinical spectrum of this highly prevalent liver disease.
Collapse
Affiliation(s)
- S Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Z Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - W Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - L Wei
- School of Life Science, Anhui Medical University, Hefei, 230032, China.
| | - H Zhou
- School of Life Science, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
139
|
Hacioglu C, Kar F, Ozbayer C, Gundogdu AC. Ex vivo investigation of betaine and boric acid function as preprotective agents on rat synaptosomes to be treated with Aβ (1-42). ENVIRONMENTAL TOXICOLOGY 2024; 39:2138-2149. [PMID: 38108610 DOI: 10.1002/tox.24098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/31/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Recent evidence suggests that ferroptosis, an iron-dependent cell death process, may be involved in Alzheimer's disease (AD) pathology. The study evaluated the therapeutic potential of betaine and boric acid (BA) pretreatment administered to rats for 21 days in AD. Then, the rats were sacrificed, and morphological and biochemical analyses were performed in brain tissues. Next, an ex vivo AD model was created by applying amyloid-β (Aβ1-42) to synaptosomes isolated from the brain tissues. Synaptosomes were analyzed with micrograph images, and protein and mRNA levels of ferroptotic markers were determined. Betaine and BA pretreatments did not cause any morphological and biochemical differences in the brain tissue. However, Aβ (1-42) administration in synaptosomes increased the levels of acyl-CoA synthetase long chain family member-4 (ACSL4), transferrin receptor-1 protein (TfR1), malondialdehyde (MDA), and 8-hydroxydeoxyguanosine (8-OHdG) and decreased the levels glutathione peroxidase-4 (GPx4) and glutathione (GSH). Moreover, ACSL4, GPx4, and TfR1 mRNA and protein levels were similar to the ELISA results. In contrast, betaine and BA pretreatments decreased the levels of ACSL4, TfR1, MDA, and 8-OHdG in synaptosomes incubated with Aβ1-42, while promoting increased levels of GPx4 and GSH. In addition, betaine and BA pretreatments completely reversed ACSL4, GPx4, and TfR1 mRNA and protein levels. Therefore, betaine and BA pretreatments may contribute to the prevention of neurodegenerative damage by supporting antiferroptotic activities.
Collapse
Affiliation(s)
- Ceyhan Hacioglu
- Faculty of Pharmacy, Department of Biochemistry, Düzce University, Düzce, Turkey
- Faculty of Medicine, Department of Medical Biochemistry, Düzce University, Düzce, Turkey
| | - Fatih Kar
- Faculty of Medicine, Department of Medical Biochemistry, Kütahya Health Sciences University, Kütahya, Turkey
| | - Cansu Ozbayer
- Faculty of Medicine, Department of Medical Biology, Kütahya Health Sciences University, Kütahya, Turkey
| | - Ayse Cakir Gundogdu
- Faculty of Medicine Department of Histology and Embryology, Kütahya Health Sciences University, Kütahya, Turkey
| |
Collapse
|
140
|
Ding WX, Ma X, Kim S, Wang S, Ni HM. Recent insights about autophagy in pancreatitis. EGASTROENTEROLOGY 2024; 2:e100057. [PMID: 38770349 PMCID: PMC11104508 DOI: 10.1136/egastro-2023-100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Acute pancreatitis is a common inflammatory gastrointestinal disease without any successful treatment. Pancreatic exocrine acinar cells have high rates of protein synthesis to produce and secrete large amounts of digestive enzymes. When the regulation of organelle and protein homeostasis is disrupted, it can lead to endoplasmic reticulum (ER) stress, damage to the mitochondria and improper intracellular trypsinogen activation, ultimately resulting in acinar cell damage and the onset of pancreatitis. To balance the homeostasis of organelles and adapt to protect themselves from organelle stress, cells use protective mechanisms such as autophagy. In the mouse pancreas, defective basal autophagy disrupts ER homoeostasis, leading to ER stress and trypsinogen activation, resulting in spontaneous pancreatitis. In this review, we discuss the regulation of autophagy and its physiological role in maintaining acinar cell homeostasis and function. We also summarise the current understanding of the mechanisms and the role of defective autophagy at multiple stages in experimental pancreatitis induced by cerulein or alcohol.
Collapse
Affiliation(s)
- Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sydney Kim
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
141
|
Chrysavgis LG, Kazanas S, Bafa K, Rozani S, Koloutsou ME, Cholongitas E. Glucagon-like Peptide 1, Glucose-Dependent Insulinotropic Polypeptide, and Glucagon Receptor Agonists in Metabolic Dysfunction-Associated Steatotic Liver Disease: Novel Medication in New Liver Disease Nomenclature. Int J Mol Sci 2024; 25:3832. [PMID: 38612640 PMCID: PMC11012092 DOI: 10.3390/ijms25073832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins that regulate postprandial glucose regulation, stimulating insulin secretion from pancreatic β-cells in response to food ingestion. Modified GLP-1 receptor agonists (GLP-1RAs) are being administered for the treatment of obesity and type 2 diabetes mellitus (T2DM). Strongly related to those disorders, metabolic dysfunction-associated steatotic liver disease (MASLD), especially its aggressive form, defined as metabolic dysfunction-associated steatohepatitis (MASH), is a major healthcare burden associated with high morbidity and extrahepatic complications. GLP-1RAs have been explored in MASH patients with evident improvement in liver dysfunction enzymes, glycemic control, and weight loss. Importantly, the combination of GLP-1RAs with GIP and/or glucagon RAs may be even more effective via synergistic mechanisms in amelioration of metabolic, biochemical, and histological parameters of MASLD but also has a beneficial impact on MASLD-related complications. In this current review, we aim to provide an overview of incretins' physiology, action, and signaling. Furthermore, we provide insight into the key pathophysiological mechanisms through which they impact MASLD aspects, as well as we analyze clinical data from human interventional studies. Finally, we discuss the current challenges and future perspectives pertinent to this growing area of research and clinical medicine.
Collapse
Affiliation(s)
- Lampros G. Chrysavgis
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece; (L.G.C.); (S.K.); (K.B.); (S.R.)
| | - Spyridon Kazanas
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece; (L.G.C.); (S.K.); (K.B.); (S.R.)
| | - Konstantina Bafa
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece; (L.G.C.); (S.K.); (K.B.); (S.R.)
| | - Sophia Rozani
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece; (L.G.C.); (S.K.); (K.B.); (S.R.)
| | - Maria-Evangelia Koloutsou
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece;
| | - Evangelos Cholongitas
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, General Hospital Laiko, 115 27 Athens, Greece; (L.G.C.); (S.K.); (K.B.); (S.R.)
| |
Collapse
|
142
|
Osna NA, Tikhanovich I, Ortega-Ribera M, Mueller S, Zheng C, Mueller J, Li S, Sakane S, Weber RCG, Kim HY, Lee W, Ganguly S, Kimura Y, Liu X, Dhar D, Diggle K, Brenner DA, Kisseleva T, Attal N, McKillop IH, Chokshi S, Mahato R, Rasineni K, Szabo G, Kharbanda KK. Alcohol-Associated Liver Disease Outcomes: Critical Mechanisms of Liver Injury Progression. Biomolecules 2024; 14:404. [PMID: 38672422 PMCID: PMC11048648 DOI: 10.3390/biom14040404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Alcohol-associated liver disease (ALD) is a substantial cause of morbidity and mortality worldwide and represents a spectrum of liver injury beginning with hepatic steatosis (fatty liver) progressing to inflammation and culminating in cirrhosis. Multiple factors contribute to ALD progression and disease severity. Here, we overview several crucial mechanisms related to ALD end-stage outcome development, such as epigenetic changes, cell death, hemolysis, hepatic stellate cells activation, and hepatic fatty acid binding protein 4. Additionally, in this review, we also present two clinically relevant models using human precision-cut liver slices and hepatic organoids to examine ALD pathogenesis and progression.
Collapse
Affiliation(s)
- Natalia A. Osna
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Irina Tikhanovich
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Martí Ortega-Ribera
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (M.O.-R.); (G.S.)
| | - Sebastian Mueller
- Center for Alcohol Research, University of Heidelberg, 69120 Heidelberg, Germany; (S.M.); (C.Z.); (J.M.); (S.L.)
- Viscera AG Bauchmedizin, 83011 Bern, Switzerland
| | - Chaowen Zheng
- Center for Alcohol Research, University of Heidelberg, 69120 Heidelberg, Germany; (S.M.); (C.Z.); (J.M.); (S.L.)
| | - Johannes Mueller
- Center for Alcohol Research, University of Heidelberg, 69120 Heidelberg, Germany; (S.M.); (C.Z.); (J.M.); (S.L.)
| | - Siyuan Li
- Center for Alcohol Research, University of Heidelberg, 69120 Heidelberg, Germany; (S.M.); (C.Z.); (J.M.); (S.L.)
| | - Sadatsugu Sakane
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Raquel Carvalho Gontijo Weber
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Hyun Young Kim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Wonseok Lee
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Souradipta Ganguly
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Yusuke Kimura
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Xiao Liu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Debanjan Dhar
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
| | - Karin Diggle
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - David A. Brenner
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (S.S.); (R.C.G.W.); (H.Y.K.); (W.L.); (S.G.); (Y.K.); (X.L.); (D.D.); (K.D.); (D.A.B.)
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA;
| | - Neha Attal
- Department of Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC 28203, USA; (N.A.); (I.H.M.)
| | - Iain H. McKillop
- Department of Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC 28203, USA; (N.A.); (I.H.M.)
| | - Shilpa Chokshi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE59NT, UK;
- School of Microbial Sciences, King’s College, London SE59NT, UK
| | - Ram Mahato
- Department of Pharmaceutical Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA;
| | - Karuna Rasineni
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68106, USA;
| | - Gyongyi Szabo
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (M.O.-R.); (G.S.)
| | - Kusum K. Kharbanda
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68106, USA;
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
143
|
Zhang F, Ju J, Diao H, Song J, Bian Y, Yang B. Innovative pharmacotherapy for hepatic metabolic and chronic inflammatory diseases in China. Br J Pharmacol 2024. [PMID: 38514420 DOI: 10.1111/bph.16342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/04/2024] [Accepted: 01/27/2024] [Indexed: 03/23/2024] Open
Abstract
Liver disease constitutes a significant global health concern, particularly in China where it has distinctive characteristics. China grapples with a staggering 300 million cases, predominantly due to hepatitis B and metabolic non-alcoholic fatty liver disease. Additionally, hepatocellular carcinoma has become a prevalent which is a lethal type of cancer. Despite the scarcity of innovative treatment options, Chinese hepatologists and researchers have achieved notable breakthroughs in the prevention, diagnosis, management and treatment of liver diseases. Traditional Chinese medicines have found widespread application in the treatment of various liver ailments owing to their commendable pharmacological efficacy and minimal side effects. Furthermore, there is a growing body of research in extracellular vesicles, cell therapy and gene therapy, offering new hope in the fight against liver diseases. This paper provides a comprehensive overview of the epidemiological characteristics of liver diseases and the diverse array of treatments that Chinese scholars and scientists have pursued in critical field.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaming Ju
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongtao Diao
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jinglun Song
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yu Bian
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
144
|
Hosseinzadeh M, Postigo C, Porte C. Toxicity and underlying lipidomic alterations generated by a mixture of water disinfection byproducts in human lung cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170331. [PMID: 38278255 DOI: 10.1016/j.scitotenv.2024.170331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Complex mixtures of disinfection by-products (DBPs) are present in disinfected waters, but their mixture toxicity has been rarely described. Apart from ingestion, DBP exposure can occur through inhalation, which may lead to respiratory effects in highly exposed individuals. However, the underlying biological mechanisms have yet to be elucidated. This study aimed to investigate the toxicity of a mixture of 10 DBPs, including haloacetic acids and haloaromatics, on human alveolar A549 cells by assessing their cytotoxicity, genotoxicity, and impact on the cell lipidome. A DBP mixture up to 50 μM slightly reduced cell viability, induced the generation of reactive oxygen species (ROS) up to 3.5-fold, and increased the frequency of micronuclei formation. Exposure to 50 μM DBP mixture led to a significant accumulation of triacylglycerides and a decrease of diacylglycerides and phosphatidylcholines in A549 cells. Lipidomic profiling of extracellular vesicles (EVs) released in the culture medium revealed a marked increase in cholesterol esters, sphingomyelins, and other membrane lipids. Overall, these alterations in the lipidome of cells and EVs may indicate a disruption of lipid homeostasis, and thus, potentially contribute to the respiratory effects associated with DBP exposure.
Collapse
Affiliation(s)
- Mahboubeh Hosseinzadeh
- Environmental Chemistry Department, Institute of Environmental Research and Water Assessment, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain.
| | - Cristina Postigo
- Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, University of Granada, Avda. Severo Ochoa s/n, Granada 18071, Spain; Institute for Water Research (IdA), University of Granada, Ramón y Cajal 4, 18071 Granada, Spain
| | - Cinta Porte
- Environmental Chemistry Department, Institute of Environmental Research and Water Assessment, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034 Barcelona, Spain
| |
Collapse
|
145
|
New-Aaron M, Kang M, Yeligar SM. Pulmonary symptoms associated with heavy alcohol consumption among people living with HIV: an analysis of the NHANES 1999-2010. Alcohol Alcohol 2024; 59:agae021. [PMID: 38581190 PMCID: PMC10997964 DOI: 10.1093/alcalc/agae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024] Open
Abstract
AIM This matched case-control study aimed to provide epidemiologic evidence of increased burden of respiratory symptoms and pulmonary function decline among people living with human immunodeficiency virus (HIV) and a history of heavy alcohol consumption. METHODS Cases were participants with HIV (PWH; n = 75, 33%), and controls were participants without HIV (PWoH; n = 150, 67%). PWH were matched to PWoH by age and sex in the ratio of 1:2. Eligible participants responded to the respiratory health National Health and Nutrition Examination Survey questionnaire [prolonged coughs (≥3 months), bringing up of phlegm (≥3 months), and a history of wheezing or whistling in the chest (past year)]. The effects of both alcohol and HIV on participants' pulmonary function were determined using linear regression analysis. RESULTS History of heavy alcohol consumption was more prevalent among PWH (40%) compared to PWoH (27%). PWH who had a history of heavy alcohol consumption had a higher prevalence of coughing most days (45% vs. 4%, P = .0010), bringing up phlegm most days (31% vs. 0%, P = .0012), and wheezing or whistling in the chest (40% vs. 20%, P = .058) compared to participants who did not heavily consume alcohol. Furthermore, a history of heavy alcohol consumption was associated with decreased forced expiratory volume (ml) in 1 s/forced vital capacity among PWH (β = - 0.098 95% C.I. -0.16, -0.04, P = .03) after adjusting for having smoked at least 100 cigarettes in life. CONCLUSION A history of heavy alcohol use increased respiratory symptoms and suppressed pulmonary function among people living with HIV. This study provides epidemiological evidence of the respiratory symptom burden of people living with HIV who have a history of heavy alcohol consumption.
Collapse
Affiliation(s)
- Moses New-Aaron
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 615 Michael St. (Suite 205), Atlanta, GA 30322, United States of America
- Atlanta Veterans Affairs Health Care System, 1670 Clairmont Rd. (12C-191), Decatur, GA 30033, United States of America
| | - Mohleen Kang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 615 Michael St. (Suite 205), Atlanta, GA 30322, United States of America
- Atlanta Veterans Affairs Health Care System, 1670 Clairmont Rd. (12C-191), Decatur, GA 30033, United States of America
| | - Samantha M Yeligar
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University, 615 Michael St. (Suite 205), Atlanta, GA 30322, United States of America
- Atlanta Veterans Affairs Health Care System, 1670 Clairmont Rd. (12C-191), Decatur, GA 30033, United States of America
| |
Collapse
|
146
|
Jablonowski CM, Quarni W, Singh S, Tan H, Bostanthirige DH, Jin H, Fang J, Chang TC, Finkelstein D, Cho JH, Hu D, Pagala V, Sakurada SM, Pruett-Miller SM, Wang R, Murphy A, Freeman K, Peng J, Davidoff AM, Wu G, Yang J. Metabolic reprogramming of cancer cells by JMJD6-mediated pre-mRNA splicing associated with therapeutic response to splicing inhibitor. eLife 2024; 12:RP90993. [PMID: 38488852 PMCID: PMC10942784 DOI: 10.7554/elife.90993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Dysregulated pre-mRNA splicing and metabolism are two hallmarks of MYC-driven cancers. Pharmacological inhibition of both processes has been extensively investigated as potential therapeutic avenues in preclinical and clinical studies. However, how pre-mRNA splicing and metabolism are orchestrated in response to oncogenic stress and therapies is poorly understood. Here, we demonstrate that jumonji domain containing 6, arginine demethylase, and lysine hydroxylase, JMJD6, acts as a hub connecting splicing and metabolism in MYC-driven human neuroblastoma. JMJD6 cooperates with MYC in cellular transformation of murine neural crest cells by physically interacting with RNA binding proteins involved in pre-mRNA splicing and protein homeostasis. Notably, JMJD6 controls the alternative splicing of two isoforms of glutaminase (GLS), namely kidney-type glutaminase (KGA) and glutaminase C (GAC), which are rate-limiting enzymes of glutaminolysis in the central carbon metabolism in neuroblastoma. Further, we show that JMJD6 is correlated with the anti-cancer activity of indisulam, a 'molecular glue' that degrades splicing factor RBM39, which complexes with JMJD6. The indisulam-mediated cancer cell killing is at least partly dependent on the glutamine-related metabolic pathway mediated by JMJD6. Our findings reveal a cancer-promoting metabolic program is associated with alternative pre-mRNA splicing through JMJD6, providing a rationale to target JMJD6 as a therapeutic avenue for treating MYC-driven cancers.
Collapse
Affiliation(s)
| | - Waise Quarni
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Shivendra Singh
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St Jude Children's Research HospitalMemphisUnited States
| | | | - Hongjian Jin
- Center for Applied Bioinformatics, St Jude Children’s Research HospitalMemphisUnited States
| | - Jie Fang
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St Jude Children’s Research HospitalMemphisUnited States
| | - David Finkelstein
- Center for Applied Bioinformatics, St Jude Children’s Research HospitalMemphisUnited States
| | - Ji-Hoon Cho
- Center for Proteomics and Metabolomics, St Jude Children's Research HospitalMemphisUnited States
| | - Dongli Hu
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St Jude Children's Research HospitalMemphisUnited States
| | - Sadie Miki Sakurada
- Department of Cell and Molecular Biology, St Jude Children's Research HospitalMemphisUnited States
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St Jude Children's Research HospitalMemphisUnited States
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Abigail Wexner Research Institute, Nationwide Children’s HospitalColumbusUnited States
| | - Andrew Murphy
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
| | - Kevin Freeman
- Genetics, Genomics & Informatics, The University of Tennessee Health Science Center (UTHSC)MemphisUnited States
| | - Junmin Peng
- Department of Structural Biology, St Jude Children’s Research HospitalMemphisUnited States
| | - Andrew M Davidoff
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
- St Jude Graduate School of Biomedical Sciences, St Jude Children’s Research HospitalMemphisUnited States
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science CenterMemphisUnited States
| | - Gang Wu
- Center for Applied Bioinformatics, St Jude Children’s Research HospitalMemphisUnited States
| | - Jun Yang
- Department of Surgery, St Jude Children’s Research HospitalMemphisUnited States
- St Jude Graduate School of Biomedical Sciences, St Jude Children’s Research HospitalMemphisUnited States
- Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science CenterMemphisUnited States
- College of Graduate Health Sciences, University of Tennessee Health Science CenterMemphisUnited States
| |
Collapse
|
147
|
Sun Z, Zhao L, Peng X, Yan M, Ding S, Sun J, Kang B. Tissue damage, antioxidant capacity, transcriptional and metabolic regulation of red drum Sciaenops ocellatus in response to nanoplastics exposure and subsequent recovery. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116175. [PMID: 38458070 DOI: 10.1016/j.ecoenv.2024.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Nanoplastics are recognized as emerging contaminants that can cause severe toxicity to marine fishes. However, limited researches were focusing on the toxic effects of nanoplastics on marine fish, especially the post-exposure resilience. In this study, red drum (Sciaenops ocellatus) were exposed to 5 mg/L polystyrene nanoplastics (100 nm, PS-NPs) for a 7-day exposure experiment, and a 14-day recovery experiment that followed. The aim was to evaluate the dynamic alterations in hepatic and branchial tissue damage, hepatic antioxidant capacity, as well as hepatic transcriptional and metabolic regulation in the red drum during exposure and post-exposure to PS-NPs. Histopathological observation found that PS-NPs primarily triggered hepatic lipid droplets and branchial epithelial liftings, a phenomenon persistently discernible up to the 14 days of recovery. Although antioxidant capacity partially recovered during recovery periods, PS-NPs resulted in a sustained reduction in hepatic antioxidant activity, causing oxidative damage throughout the entire exposure and recovery phases, as evidenced by decreased total superoxide dismutase activities and increased malondialdehyde content. At the transcriptional and metabolic level, PS-NPs primarily induced lipid metabolism disorders, DNA damage, biofilm disruption, and mitochondrial dysfunction. In the gene-metabolite correlation interaction network, numerous CcO (cytochrome c oxidase) family genes and lipid metabolites were identified as key regulatory genes and metabolites in detoxification processes. Among them, the red drum possesses one additional CcO6B in comparison to human and zebrafish, which potentially contributes to its enhanced capacity for maintaining a stable and positive regulatory function in detoxification. This study revealed that nanoplastics cause severe biotoxicity to red drum, which may be detrimental to the survival of wild populations and affect the economics of farmed populations.
Collapse
Affiliation(s)
- Zhicheng Sun
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China; Fisheries College, Ocean University of China, Qingdao, China
| | - Linlin Zhao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Xin Peng
- Marine Academy of Zhejiang Province, Hangzhou, China; Key Laboratory of Ocean Space Resource Management Technology, Hangzhou, China
| | - Meng Yan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Shaoxiong Ding
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jiachen Sun
- College of Marine Life Science, Ocean University of China, Qingdao, China.
| | - Bin Kang
- Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China; Fisheries College, Ocean University of China, Qingdao, China.
| |
Collapse
|
148
|
Ma H, Yan QZ, Ma JR, Li DF, Yang JL. Overview of the immunological mechanisms in hepatitis B virus reactivation: Implications for disease progression and management strategies. World J Gastroenterol 2024; 30:1295-1312. [PMID: 38596493 PMCID: PMC11000084 DOI: 10.3748/wjg.v30.i10.1295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatitis B virus (HBV) reactivation is a clinically significant challenge in disease management. This review explores the immunological mechanisms underlying HBV reactivation, emphasizing disease progression and management. It delves into host immune responses and reactivation's delicate balance, spanning innate and adaptive immunity. Viral factors' disruption of this balance, as are interactions between viral antigens, immune cells, cytokine networks, and immune checkpoint pathways, are examined. Notably, the roles of T cells, natural killer cells, and antigen-presenting cells are discussed, highlighting their influence on disease progression. HBV reactivation's impact on disease severity, hepatic flares, liver fibrosis progression, and hepatocellular carcinoma is detailed. Management strategies, including anti-viral and immunomodulatory approaches, are critically analyzed. The role of prophylactic anti-viral therapy during immunosuppressive treatments is explored alongside novel immunotherapeutic interventions to restore immune control and prevent reactivation. In conclusion, this comprehensive review furnishes a holistic view of the immunological mechanisms that propel HBV reactivation. With a dedicated focus on understanding its implications for disease progression and the prospects of efficient management strategies, this article contributes significantly to the knowledge base. The more profound insights into the intricate interactions between viral elements and the immune system will inform evidence-based approaches, ultimately enhancing disease management and elevating patient outcomes. The dynamic landscape of management strategies is critically scrutinized, spanning anti-viral and immunomodulatory approaches. The role of prophylactic anti-viral therapy in preventing reactivation during immunosuppressive treatments and the potential of innovative immunotherapeutic interventions to restore immune control and proactively deter reactivation.
Collapse
Affiliation(s)
- Hui Ma
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Qing-Zhu Yan
- Department of Ultrasound Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Jing-Ru Ma
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Dong-Fu Li
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Jun-Ling Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
149
|
Xu T, Pan Y, Ding Q, Cao F, Chang K, Qiu J, Zhuge H, Hao L, Wei H, Si C, Dou X, Li S. The micro-743a-3p-GSTM1 pathway is an endogenous protective mechanism against alcohol-related liver disease in mice. Cell Mol Biol Lett 2024; 29:35. [PMID: 38475733 DOI: 10.1186/s11658-024-00557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND AND AIMS Epidemiological evidence suggests that the phenotype of glutathione S-transferase mu 1 (GSTM1), a hepatic high-expressed phase II detoxification enzyme, is closely associated with the incidence of alcohol-related liver disease (ALD). However, whether and how hepatic GSTM1 determines the development of ALD is largely unclear. This study was designed to elucidate the role and potential mechanism(s) of hepatic GSTM1 in the pathological process of ALD. METHODS GSTM1 was detected in the liver of various ALD mice models and cultured hepatocytes. Liver-specific GSTM1 or/and micro (miR)-743a-3p deficiency mice were generated by adenoassociated virus-8 delivered shRNA, respectively. The potential signal pathways involving in alcohol-regulated GSTM1 and GSTM1-associated ALD were explored via both genetic manipulation and pharmacological approaches. RESULTS GSTM1 was significantly upregulated in both chronic alcohol-induced mice liver and ethanol-exposed murine primary hepatocytes. Alcohol-reduced miR-743a-3p directly contributed to the upregulation of GSTM1, since liver specific silencing miR-743a-3p enhanced GSTM1 and miR-743a-3p loss protected alcohol-induced liver dysfunctions, which was significantly blocked by GSTM1 knockdown. GSTM1 loss robustly aggravated alcohol-induced hepatic steatosis, oxidative stress, inflammation, and early fibrotic-like changes, which was associated with the activation of apoptosis signal-regulating kinase 1 (ASK1), c-Jun N-terminal kinase (JNK), and p38. GSTM1 antagonized ASK1 phosphorylation and its downstream JNK/p38 signaling pathway upon chronic alcohol consumption via binding with ASK1. ASK1 blockage significantly rescued hepatic GSTM1 loss-enhanced disorders in alcohol-fed mice liver. CONCLUSIONS Chronic alcohol consumption-induced upregulation of GSTM1 in the liver provides a feedback protection against hepatic steatosis and liver injury by counteracting ASK1 activation. Down-regulation of miR-743a-3p improves alcohol intake-induced hepatic steatosis and liver injury via direct targeting on GSTM1. The miR-743a-3p-GSTM1 axis functions as an innate protective pathway to defend the early stage of ALD.
Collapse
Affiliation(s)
- Tiantian Xu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Yan Pan
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Feiwei Cao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Kaixin Chang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Jiannan Qiu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Hui Zhuge
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Liuyi Hao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Haibin Wei
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Caijuan Si
- Department of Clinical Nutrition, School of Medicine, Affiliated Zhejiang Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China.
- Department of Clinical Nutrition, School of Medicine, Affiliated Zhejiang Hospital, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
150
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|