101
|
Chen H, He B, Ke F. Ceramide Synthase 6 Mediates Triple-Negative Breast Cancer Response to Chemotherapy Through RhoA- and EGFR-Mediated Signaling Pathways. J Breast Cancer 2022; 25:500-512. [PMID: 36479603 PMCID: PMC9807320 DOI: 10.4048/jbc.2022.25.e47] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/08/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Limited treatment options and lack of treatment sensitivity biomarkers make the clinical management of triple-negative breast cancer (TNBC) challenging. Ceramide synthase 6 (CERS6) generates ceramides, which are key intermediates in sphingolipid biosynthesis and play important roles in cancer progression and resistance. METHODS CERS6 was analyzed to determine its potential as a treatment sensitivity biomarker. CERS6 levels were determined in patients with breast cancer, and the roles and downstream signaling of CERS6 were analyzed using cellular and biochemical assays. RESULTS Analysis of CERS6 expression in 195 patients with TNBC and their clinical response to chemotherapy revealed that individuals with CERS6 overexpression experienced significantly inferior responses to chemotherapy than those without CERS6 overexpression. Functional analysis demonstrated that although CERS6 overexpression did not affect TNBC cell growth and migration, it conferred chemoresistance. CERS6 inhibition significantly reduced growth, migration, and survival by suppressing the RhoA- and EGFR-mediated signaling pathways. Compared to control cells, CERS6-depleted cells were consistently less viable at different concentrations of chemotherapeutic agents. CONCLUSION Our study is the first to demonstrate that CERS6 may serve as a treatment sensitivity biomarker in patients with TNBC in response to chemotherapy. In addition, our findings suggested that CERS6 may be a therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- Hui Chen
- Department of Interventional Radiology and Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Bin He
- Department of Cardiothoracic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Feng Ke
- Department of Clinical Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
102
|
Hou X, Zheng Z, Wei J, Zhao L. Effects of gut microbiota on immune responses and immunotherapy in colorectal cancer. Front Immunol 2022; 13:1030745. [PMID: 36426359 PMCID: PMC9681148 DOI: 10.3389/fimmu.2022.1030745] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2023] Open
Abstract
Accumulating evidence suggests that gut microbial dysbiosis is implicated in colorectal cancer (CRC) initiation and progression through interaction with host immune system. Given the intimate relationship between the gut microbiota and the antitumor immune responses, the microbiota has proven to be effective targets in modulating immunotherapy responses of preclinical CRC models. However, the proposed putative mechanisms of how these bacteria affect immune responses and immunotherapy efficacy remains obscure. In this review, we summarize recent findings of clinical gut microbial dysbiosis in CRC patients, the reciprocal interactions between gut microbiota and the innate and/or the adaptive immune system, as well as the effect of gut microbiota on immunotherapy response in CRC. Increased understanding of the gut microbiota-immune system interactions will benefit the rational application of microbiota to the clinical promising biomarker or therapeutic strategy as a cancer immunotherapy adjuvant.
Collapse
Affiliation(s)
| | | | | | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
103
|
Quijano-Rubio C, Silginer M, Weller M. CRISPR/Cas9-mediated abrogation of CD95L/CD95 signaling-induced glioma cell growth and immunosuppression increases survival in murine glioma models. J Neurooncol 2022; 160:299-310. [PMID: 36355258 PMCID: PMC9722998 DOI: 10.1007/s11060-022-04137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/17/2022] [Indexed: 11/12/2022]
Abstract
PURPOSE Glioblastoma is the most common brain tumor in adults and is virtually incurable. Therefore, new therapeutic strategies are urgently needed. Over the last decade, multiple growth-promoting functions have been attributed to CD95, a prototypic death receptor well characterized as an apoptosis mediator upon CD95L engagement. Strategic targeting of non-apoptotic or apoptotic CD95 signaling may hold anti-glioblastoma potential. Due to its antithetic nature, understanding the constitutive role of CD95 signaling in glioblastoma is indispensable. METHODS We abrogated constitutive Cd95 and Cd95l gene expression by CRISPR/Cas9 in murine glioma models and characterized the consequences of gene deletion in vitro and in vivo. RESULTS Expression of canonical CD95 but not CD95L was identified in mouse glioma cells in vitro. Instead, a soluble isoform-encoding non-canonical Cd95l transcript variant was detected. In vivo, an upregulation of the membrane-bound canonical CD95L form was revealed. Cd95 or Cd95l gene deletion decreased cell growth in vitro. The growth-supporting role of constitutive CD95 signaling was validated by Cd95 re-transfection, which rescued growth. In vivo, Cd95 or Cd95l gene deletion prolonged survival involving tumor-intrinsic and immunological mechanisms in the SMA-497 model. In the GL-261 model, that expresses no CD95, only CD95L gene deletion prolonged survival, involving a tumor-intrinsic mechanism. CONCLUSION Non-canonical CD95L/CD95 interactions are growth-promoting in murine glioma models, and glioma growth and immunosuppression may be simultaneously counteracted by Cd95l gene silencing.
Collapse
Affiliation(s)
- Clara Quijano-Rubio
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Manuela Silginer
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, Zurich, Switzerland. .,University of Zurich, Zurich, Switzerland.
| |
Collapse
|
104
|
Krause R, Snyman J, Shi-Hsia H, Muema D, Karim F, Ganga Y, Ngoepe A, Zungu Y, Gazy I, Bernstein M, Khan K, Mazibuko M, Mthabela N, Ramjit D, Limbo O, Jardine J, Sok D, Wilson IA, Hanekom W, Sigal A, Kløverpris H, Ndung'u T, Leslie A. HIV skews the SARS-CoV-2 B cell response towards an extrafollicular maturation pathway. eLife 2022; 11:e79924. [PMID: 36300787 PMCID: PMC9643005 DOI: 10.7554/elife.79924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/23/2022] [Indexed: 11/29/2022] Open
Abstract
Background HIV infection dysregulates the B cell compartment, affecting memory B cell formation and the antibody response to infection and vaccination. Understanding the B cell response to SARS-CoV-2 in people living with HIV (PLWH) may explain the increased morbidity, reduced vaccine efficacy, reduced clearance, and intra-host evolution of SARS-CoV-2 observed in some HIV-1 coinfections. Methods We compared B cell responses to COVID-19 in PLWH and HIV negative (HIV-ve) patients in a cohort recruited in Durban, South Africa, during the first pandemic wave in July 2020 using detailed flow cytometry phenotyping of longitudinal samples with markers of B cell maturation, homing, and regulatory features. Results This revealed a coordinated B cell response to COVID-19 that differed significantly between HIV-ve and PLWH. Memory B cells in PLWH displayed evidence of reduced germinal centre (GC) activity, homing capacity, and class-switching responses, with increased PD-L1 expression, and decreased Tfh frequency. This was mirrored by increased extrafollicular (EF) activity, with dynamic changes in activated double negative (DN2) and activated naïve B cells, which correlated with anti-RBD-titres in these individuals. An elevated SARS-CoV-2-specific EF response in PLWH was confirmed using viral spike and RBD bait proteins. Conclusions Despite similar disease severity, these trends were highest in participants with uncontrolled HIV, implicating HIV in driving these changes. EF B cell responses are rapid but give rise to lower affinity antibodies, less durable long-term memory, and reduced capacity to adapt to new variants. Further work is needed to determine the long-term effects of HIV on SARS-CoV-2 immunity, particularly as new variants emerge. Funding This work was supported by a grant from the Wellcome Trust to the Africa Health Research Institute (Wellcome Trust Strategic Core Award [grant number 201433/Z/16/Z]). Additional funding was received from the South African Department of Science and Innovation through the National Research Foundation (South African Research Chairs Initiative [grant number 64809]), and the Victor Daitz Foundation.
Collapse
Affiliation(s)
- Robert Krause
- Africa Health Research InstituteDurbanSouth Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurbanSouth Africa
| | - Jumari Snyman
- Africa Health Research InstituteDurbanSouth Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurbanSouth Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu NatalDurbanSouth Africa
| | - Hwa Shi-Hsia
- Africa Health Research InstituteDurbanSouth Africa
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Daniel Muema
- Africa Health Research InstituteDurbanSouth Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurbanSouth Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu NatalDurbanSouth Africa
| | - Farina Karim
- Africa Health Research InstituteDurbanSouth Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurbanSouth Africa
| | | | | | - Yenzekile Zungu
- Africa Health Research InstituteDurbanSouth Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurbanSouth Africa
| | - Inbal Gazy
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurbanSouth Africa
- KwaZulu-Natal Research Innovation and Sequencing PlatformDurbanSouth Africa
| | | | - Khadija Khan
- Africa Health Research InstituteDurbanSouth Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurbanSouth Africa
| | | | | | | | - Oliver Limbo
- International AIDS Vaccine InitiativeNew YorkUnited States
| | - Joseph Jardine
- International AIDS Vaccine InitiativeNew YorkUnited States
| | - Devin Sok
- International AIDS Vaccine InitiativeNew YorkUnited States
| | - Ian A Wilson
- The Scripps Research InstituteLa JollaUnited States
| | - Willem Hanekom
- Africa Health Research InstituteDurbanSouth Africa
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Alex Sigal
- Africa Health Research InstituteDurbanSouth Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurbanSouth Africa
- Max Planck Institute for Infection BiologyBerlinGermany
- Centre for the AIDS Programme of Research in South AfricaDurbanSouth Africa
| | - Henrik Kløverpris
- Africa Health Research InstituteDurbanSouth Africa
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
- Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
| | - Thumbi Ndung'u
- Africa Health Research InstituteDurbanSouth Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-NatalDurbanSouth Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu NatalDurbanSouth Africa
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
- Max Planck Institute for Infection BiologyBerlinGermany
| | - Alasdair Leslie
- Africa Health Research InstituteDurbanSouth Africa
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| |
Collapse
|
105
|
Helweg LP, Storm J, Witte KE, Schulten W, Wrachtrup L, Janotte T, Kitke A, Greiner JFW, Knabbe C, Kaltschmidt B, Simon M, Kaltschmidt C. Targeting Key Signaling Pathways in Glioblastoma Stem Cells for the Development of Efficient Chemo- and Immunotherapy. Int J Mol Sci 2022; 23:12919. [PMID: 36361720 PMCID: PMC9659205 DOI: 10.3390/ijms232112919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 01/12/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and most common malignant brain tumor with poor patient survival despite therapeutic intervention. On the cellular level, GBM comprises a rare population of glioblastoma stem cells (GSCs), driving therapeutic resistance, invasion, and recurrence. GSCs have thus come into the focus of therapeutic strategies, although their targeting remains challenging. In the present study, we took advantage of three GSCs-populations recently established in our lab to investigate key signaling pathways and subsequent therapeutic strategies targeting GSCs. We observed that NF-κB, a crucial transcription factor in GBM progression, was expressed in all CD44+/CD133+/Nestin+-GSC-populations. Exposure to TNFα led to activation of NF-κB-RELA and/or NF-κB-c-REL, depending on the GBM type. GSCs further expressed the proto-oncogene MYC family, with MYChigh GSCs being predominantly located in the tumor spheres ("GROW"-state) while NF-κB-RELAhigh GSCs were migrating out of the sphere ("GO"-state). We efficiently targeted GSCs by the pharmacologic inhibition of NF-κB using PTDC/Bortezomib or inhibition of MYC by KJ-Pyr-9, which significantly reduced GSC-viability, even in comparison to the standard chemotherapeutic drug temozolomide. As an additional cell-therapeutic strategy, we showed that NK cells could kill GSCs. Our findings offer new perspectives for developing efficient patient-specific chemo- and immunotherapy against GBM.
Collapse
Affiliation(s)
- Laureen P. Helweg
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
| | - Jonathan Storm
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
| | - Kaya E. Witte
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
| | - Wiebke Schulten
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Lennart Wrachtrup
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Till Janotte
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Angelika Kitke
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Johannes F. W. Greiner
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
| | - Cornelius Knabbe
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
- Molecular Neurobiology, Faculty of Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Matthias Simon
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
- Department of Neurosurgery and Epilepsy Surgery, Protestant Hospital of Bethel Foundation, University Medical School OWL at Bielefeld, Bielefeld University, Campus Bielefeld-Bethel, Burgsteig 13, 33617 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
| |
Collapse
|
106
|
Kenji SF, Kurma K, Collet B, Oblet C, Debure L, Di Primo C, Minder L, Vérité F, Danger Y, Jean M, Penna A, Levoin N, Legembre P. MMP7 cleavage of amino-terminal CD95 death receptor switches signaling toward non-apoptotic pathways. Cell Death Dis 2022; 13:895. [PMID: 36274061 PMCID: PMC9588774 DOI: 10.1038/s41419-022-05352-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
CD95 is a death receptor that can promote oncogenesis through molecular mechanisms that are not fully elucidated. Although the mature CD95 membrane receptor is considered to start with the arginine at position 17 after elimination of the signal peptide, this receptor can also be cleaved by MMP7 upstream of its leucine at position 37. This post-translational modification occurs in cancer cells but also in normal cells such as peripheral blood leukocytes. The non-cleaved CD95 amino-terminal region consists in a disordered domain and its in silico reconstitution suggests that it might contribute to receptor aggregation and thereby, regulate the downstream death signaling pathways. In agreement with this molecular modeling analysis, the comparison of CD95-deficient cells reconstituted with full-length or N-terminally truncated CD95 reveals that the loss of the amino-terminal region of CD95 impairs the initial steps of the apoptotic signal while favoring the induction of pro-survival signals, including the PI3K and MAPK pathways.
Collapse
Affiliation(s)
- Shoji F Kenji
- IRSET, INSERM U1085, Université de Rennes 1, 36043, Rennes, France
| | - Keerthi Kurma
- INSERM U1262, Université de Limoges, 2, Rue Marcland, 87025, Limoges, France
| | - Brigitte Collet
- Centre Eugène Marquis, rue bataille Flandres Dunkerque, 35042, Rennes, France
| | - Christelle Oblet
- INSERM U1262, Université de Limoges, 2, Rue Marcland, 87025, Limoges, France
| | - Laure Debure
- Centre Eugène Marquis, rue bataille Flandres Dunkerque, 35042, Rennes, France
- Université de Rennes-1, INSERM U1242, rue bataille Flandres Dunkerque, 35042, Rennes, France
| | - Carmelo Di Primo
- University Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33000, Bordeaux, France
| | - Laëtitia Minder
- University Bordeaux, CNRS, INSERM, UAR 3033, US001, IECB, F-33000, Bordeaux, France
| | - Franck Vérité
- EFS Rennes, Rue Pierre Jean Gineste, 35016, Rennes Cedex, France
| | - Yannic Danger
- EFS Rennes, Rue Pierre Jean Gineste, 35016, Rennes Cedex, France
| | - Mickael Jean
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes - UMR CNRS 6226 Equipe COrInt, F-35000, Rennes, France
| | - Aubin Penna
- IRSET, INSERM U1085, Université de Rennes 1, 36043, Rennes, France
- 4CS, CNRS UMR6041, Université de Poitiers, 86073, Poitiers, France
| | - Nicolas Levoin
- Bioprojet Biotech, rue du Chesnay Beauregard, 35760, Saint-Grégoire, France
| | - Patrick Legembre
- INSERM U1262, Université de Limoges, 2, Rue Marcland, 87025, Limoges, France.
| |
Collapse
|
107
|
Cevirgel A, Shetty SA, Vos M, Nanlohy NM, Beckers L, Bijvank E, Rots N, van Beek J, Buisman A, van Baarle D. Identification of aging-associated immunotypes and immune stability as indicators of post-vaccination immune activation. Aging Cell 2022; 21:e13703. [PMID: 36081314 PMCID: PMC9577949 DOI: 10.1111/acel.13703] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/20/2022] [Accepted: 08/13/2022] [Indexed: 01/25/2023] Open
Abstract
Immunosenescence describes immune dysfunction observed in older individuals. To identify individuals at-risk for immune dysfunction, it is crucial to understand the diverse immune phenotypes and their intrinsic functional capabilities. We investigated immune cell subsets and variation in the aging population. We observed that inter-individual immune variation was associated with age and cytomegalovirus seropositivity. Based on the similarities of immune subset composition among individuals, we identified nine immunotypes that displayed different aging-associated immune signatures, which explained inter-individual variation better than age. Additionally, we correlated the immune subset composition of individuals over approximately a year as a measure of stability of immune parameters. Immune stability was significantly lower in immunotypes that contained aging-associated immune subsets and correlated with a circulating CD38 + CD4+ T follicular helper cell increase 7 days after influenza vaccination. In conclusion, immune stability is a feature of immunotypes and could be a potential indicator of post-vaccination cellular kinetics.
Collapse
Affiliation(s)
- Alper Cevirgel
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands,Department of Medical Microbiology and Infection preventionVirology and Immunology Research GroupUniversity Medical Center GroningenGroningenThe Netherlands
| | - Sudarshan A. Shetty
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands,Department of Medical Microbiology and Infection preventionVirology and Immunology Research GroupUniversity Medical Center GroningenGroningenThe Netherlands
| | - Martijn Vos
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Nening M. Nanlohy
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Lisa Beckers
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Elske Bijvank
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Nynke Rots
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Josine van Beek
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Anne‐Marie Buisman
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands
| | - Debbie van Baarle
- Center for Infectious Disease ControlNational Institute for Public Health and the EnvironmentBilthovenThe Netherlands,Department of Medical Microbiology and Infection preventionVirology and Immunology Research GroupUniversity Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
108
|
Mellouk A, Hutteau-Hamel T, Legrand J, Safya H, Benbijja M, Mercier-Nomé F, Benihoud K, Kanellopoulos JM, Bobé P. P2X7 purinergic receptor plays a critical role in maintaining T-cell homeostasis and preventing lupus pathogenesis. Front Immunol 2022; 13:957008. [PMID: 36248812 PMCID: PMC9556828 DOI: 10.3389/fimmu.2022.957008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
The severe lymphoproliferative and lupus diseases developed by MRL/lpr mice depend on interactions between the Faslpr mutation and MRL genetic background. Thus, the Faslpr mutation causes limited disease in C57BL/6 mice. We previously found that accumulating B220+ CD4–CD8– double negative (DN) T cells in MRL/lpr mice show defective P2X7 receptor ( P2X7)-induced cellular functions, suggesting that P2X7 contributes to T-cell homeostasis, along with Fas. Therefore, we generated a B6/lpr mouse strain (called B6/lpr-p2x7KO) carrying homozygous P2X7 knockout alleles. B6/lpr-p2x7KO mice accumulated high numbers of FasL-expressing B220+ DN T cells of CD45RBhighCD44high effector/memory CD8+ T-cell origin and developed severe lupus, characterized by leukocyte infiltration into the tissues, high levels of IgG anti-dsDNA and rheumatoid factor autoantibodies, and marked cytokine network dysregulation. B6/lpr-p2x7KO mice also exhibited a considerably reduced lifespan. P2X7 is therefore a novel regulator of T-cell homeostasis, of which cooperation with Fas is critical to prevent lymphoaccumulation and autoimmunity.
Collapse
Affiliation(s)
- Amine Mellouk
- UMR 996, INSERM, Université Paris-Saclay, Clamart, France
| | | | - Julie Legrand
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France
| | - Hanaa Safya
- UMR 996, INSERM, Université Paris-Saclay, Clamart, France
| | - Mohcine Benbijja
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France
| | - Françoise Mercier-Nomé
- UMR 996, INSERM, Université Paris-Saclay, Clamart, France
- Plateforme d’Histologie Immunopathologie de Clamart, IPSIT, INSERM, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Karim Benihoud
- UMR 9018, Institut Gustave Roussy, CNRS, Université Paris-Saclay, Villejuif, France
| | - Jean M. Kanellopoulos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Bobé
- UMR 996, INSERM, Université Paris-Saclay, Clamart, France
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France
- *Correspondence: Pierre Bobé,
| |
Collapse
|
109
|
Ali AA, Bagheri Y, Tian Q, You M. Advanced DNA Zipper Probes for Detecting Cell Membrane Lipid Domains. NANO LETTERS 2022; 22:7579-7587. [PMID: 36084301 PMCID: PMC10368464 DOI: 10.1021/acs.nanolett.2c02605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The cell membrane is a complex mixture of lipids, proteins, and other components. By forming dynamic lipid domains, different membrane molecules can selectively interact with each other to control cell signaling. Herein, we report several new types of lipid-DNA conjugates, termed as "DNA zippers", which can be used to measure cell membrane dynamic interactions and the formation of lipid domains. Dependent on the choice of lipid moieties, cholesterol- and sphingomyelin-conjugated DNA zippers specifically locate in and detect membrane lipid-ordered domains, while in contrast, a tocopherol-DNA zipper can be applied for the selective imaging of lipid-disordered phases. These versatile and programmable probes can be further engineered into membrane competition assays to simultaneously detect multiple types of membrane dynamic interactions. These DNA zipper probes can be broadly used to study the correlation between lipid domains and various cellular processes, such as the epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Ahsan Ausaf Ali
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Yousef Bagheri
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Qian Tian
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
110
|
Rosa N, Speelman-Rooms F, Parys JB, Bultynck G. Modulation of Ca 2+ signaling by antiapoptotic Bcl-2 versus Bcl-xL: From molecular mechanisms to relevance for cancer cell survival. Biochim Biophys Acta Rev Cancer 2022; 1877:188791. [PMID: 36162541 DOI: 10.1016/j.bbcan.2022.188791] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Abstract
Members of the Bcl-2-protein family are key controllers of apoptotic cell death. The family is divided into antiapoptotic (including Bcl-2 itself, Bcl-xL, Mcl-1, etc.) and proapoptotic members (Bax, Bak, Bim, Bim, Puma, Noxa, Bad, etc.). These proteins are well known for their canonical role in the mitochondria, where they control mitochondrial outer membrane permeabilization and subsequent apoptosis. However, several proteins are recognized as modulators of intracellular Ca2+ signals that originate from the endoplasmic reticulum (ER), the major intracellular Ca2+-storage organelle. More than 25 years ago, Bcl-2, the founding member of the family, was reported to control apoptosis through Ca2+ signaling. Further work elucidated that Bcl-2 directly targets and inhibits inositol 1,4,5-trisphosphate receptors (IP3Rs), thereby suppressing proapoptotic Ca2+ signaling. In addition to Bcl-2, Bcl-xL was also shown to impact cell survival by sensitizing IP3R function, thereby promoting prosurvival oscillatory Ca2+ release. However, new work challenges this model and demonstrates that Bcl-2 and Bcl-xL can both function as inhibitors of IP3Rs. This suggests that, depending on the cell context, Bcl-xL could support very distinct Ca2+ patterns. This not only raises several questions but also opens new possibilities for the treatment of Bcl-xL-dependent cancers. In this review, we will discuss the similarities and divergences between Bcl-2 and Bcl-xL regarding Ca2+ homeostasis and IP3R modulation from both a molecular and a functional point of view, with particular emphasis on cancer cell death resistance mechanisms.
Collapse
Affiliation(s)
- Nicolas Rosa
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Femke Speelman-Rooms
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium.
| |
Collapse
|
111
|
Dalcin LDL, Fagundes-Triches DLG, de Queiroz AA, Torres AHF, França DCH, Soares TA, Ramos LCDS, Antônio CRSS, Fujimori M, França EL, Honorio-França AC. Resistin Modulates the Functional Activity of Colostral Macrophages from Mothers with Obesity and Diabetes. Biomedicines 2022; 10:2332. [PMID: 36289594 PMCID: PMC9598095 DOI: 10.3390/biomedicines10102332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Obesity and diabetes are major public health problems. Resistin is an adipokine that links the two diseases. There are few reports regarding colostrum cells and resistin from mothers with obesity and diabetes. Thus, this study aimed to determine the functional activity of macrophages present in the breast milk and colostrum of diabetic mothers with obesity and the effects of resistin on these cells. METHODS The women were divided according to BMI and glycemic status into normal weight non-diabetic, obese non-diabetic, normal weight type 2 diabetic, or obese type 2 diabetic groups. ELISA determined the resistin in colostrum. The cell subsets and apoptosis were determined by flow cytometry and the functional activity of cells by fluorescence microscopy. RESULTS The resistin levels were higher in the colostrum from diabetic mothers with obesity. The frequencies of CD14+ cells and cells expressing CD95+, independent of resistin treatment, were higher in the colostrum from diabetic mothers with obesity. The frequency of cells expressing CD14+CD95+ was higher in cells not treated with resistin in the colostrum from diabetic mothers with obesity. Apoptosis, irrespective of the presence of resistin, increased, whereas microbicidal activity decreased in cells from diabetic mothers with obesity. CONCLUSION The data suggest that hyperglycemia associated with low-grade inflammation caused by obesity affects the percentage of cells expressing CD14+CD95+, death by apoptosis, and microbicidal indices; meanwhile, resistin restored the microbicidal activity of colostrum cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Eduardo Luzia França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Av. Valdon Varjão, 6390, Barra do Garças 78698-091, Mato Grosso, Brazil
| | - Adenilda Cristina Honorio-França
- Institute of Biological and Health Science, Federal University of Mato Grosso, Av. Valdon Varjão, 6390, Barra do Garças 78698-091, Mato Grosso, Brazil
| |
Collapse
|
112
|
Yao C, Ren J, Huang R, Tang C, Cheng Y, Lv Z, Kong L, Fang S, Tao J, Fu Y, Zhu Q, Fang M. Transcriptome profiling of microRNAs reveals potential mechanisms of manual therapy alleviating neuropathic pain through microRNA-547-3p-mediated Map4k4/NF-κb signaling pathway. J Neuroinflammation 2022; 19:211. [PMID: 36045396 PMCID: PMC9434879 DOI: 10.1186/s12974-022-02568-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Local neuroinflammation secondary to spinal nerve compression in lumbar disk herniation (LDH) is a key driver contributing to neuropathic pain. Manual therapy (MT), a widely used nonsurgical therapy, can relieve LDH-mediated pain by reducing inflammation. MT has attracted extensive attention; however, its mechanism remains poorly understood. MicroRNAs (miRNAs) are important regulators of pain signaling transduction, but are rarely reported in the chronic compression of dorsal root ganglia (CCD) model, and further investigation is needed to decipher whether they mediate anti-inflammatory and analgesic effects of MT. METHODS We used a combination of in vivo behavioral and molecular techniques to study MT intervention mechanisms. Neuropathic pain was induced in a CCD rat model and MT intervention was performed according to standard procedures. Enzyme-linked immunosorbent assay (ELISA) was used to detect inflammatory cytokine levels in dorsal root ganglia (DRG). Small RNA sequencing, immunofluorescence, Western blot, and qRT-PCR were performed to screen miRNAs and their target genes and determine core factors in the pathway possibly regulated by miRNA-mediated target gene in DRG of MT-treated CCD rats. RESULTS Compared with naive rats, small RNA sequencing detected 22 differentially expressed miRNAs in DRG of CCD rats, and compared with CCD rats, MT-treated rats presented 19 differentially expressed miRNAs, which were functionally associated with nerve injury and inflammation. Among these, miR-547-3p was screened as a key miRNA mediating neuroinflammation and participating in neuropathic pain. We confirmed in vitro that its function is achieved by directly regulating its target gene Map4k4. Intrathecal injection of miR-547-3p agomir or MT intervention significantly reduced Map4k4 expression and the expression and phosphorylation of IκBα and p65 in the NF-κB pathway, thus reducing the inflammatory cytokine levels and exerting an analgesic effect, whereas intrathecal injection of miR-547-3p antagomir led to opposite effects. CONCLUSIONS In rats, CCD-induced neuropathic pain leads to variation in miRNA expression in DRG, and MT can intervene the transcription and translation of inflammation-related genes through miRNAs to improve neuroinflammation and alleviate neuropathic pain. MiR-547-3p may be a key target of MT for anti-inflammatory and analgesia effects, which is achieved by mediating the Map4k4/NF-κB pathway to regulate downstream inflammatory cytokines.
Collapse
Affiliation(s)
- Chongjie Yao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People’s Republic of China
| | - Jun Ren
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Ruixin Huang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Cheng Tang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Yanbin Cheng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Zhizhen Lv
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053 People’s Republic of China
| | - Lingjun Kong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Sitong Fang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Jiming Tao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Yangyang Fu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Qingguang Zhu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
| | - Min Fang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437 People’s Republic of China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 People’s Republic of China
| |
Collapse
|
113
|
Wong CW, Han HW, Hsu SH. Changes of cell membrane fluidity for mesenchymal stem cell spheroids on biomaterial surfaces. World J Stem Cells 2022; 14:616-632. [PMID: 36157913 PMCID: PMC9453270 DOI: 10.4252/wjsc.v14.i8.616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/02/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The therapeutic potential of mesenchymal stem cells (MSCs) in the form of three-dimensional spheroids has been extensively demonstrated. The underlying mechanisms for the altered cellular behavior of spheroids have also been investigated. Cell membrane fluidity is a critically important physical property for the regulation of cell behavior, but it has not been studied for the spheroid-forming cells to date.
AIM To explore the association between cell membrane fluidity and the morphological changes of MSC spheroids on the surface of biomaterials to elucidate the role of membrane fluidity during the spheroid-forming process of MSCs.
METHODS We generated three-dimensional (3D) MSC spheroids on the surface of various culture substrates including chitosan (CS), CS-hyaluronan (CS-HA), and polyvinyl alcohol (PVA) substrates. The cell membrane fluidity and cell morphological change were examined by a time-lapse recording system as well as a high-resolution 3D cellular image explorer. MSCs and normal/cancer cells were pre-stained with fluorescent dyes and co-cultured on the biomaterials to investigate the exchange of cell membrane during the formation of heterogeneous cellular spheroids.
RESULTS We discovered that vesicle-like bubbles randomly appeared on the outer layer of MSC spheroids cultured on different biomaterial surfaces. The average diameter of the vesicle-like bubbles of MSC spheroids on CS-HA at 37 °C was approximately 10 μm, smaller than that on PVA substrates (approximately 27 μm). Based on time-lapse images, these unique bubbles originated from the dynamic movement of the cell membrane during spheroid formation, which indicated an increment of membrane fluidity for MSCs cultured on these substrates. Moreover, the membrane interaction in two different types of cells with similar membrane fluidity may further induce a higher level of membrane translocation during the formation of heterogeneous spheroids.
CONCLUSION Changes in cell membrane fluidity may be a novel path to elucidate the complicated physiological alterations in 3D spheroid-forming cells.
Collapse
Affiliation(s)
- Chui-Wei Wong
- National Taiwan University, Institute of Polymer Science and Engineering, Taipei 10617, Taiwan
| | - Hao-Wei Han
- National Taiwan University, Institute of Polymer Science and Engineering, Taipei 10617, Taiwan
| | - Shan-hui Hsu
- National Taiwan University, Institute of Polymer Science and Engineering, Taipei 10617, Taiwan
- National Health Research Institutes, Institute of Cellular and System Medicine, Miaoli 350, Taiwan
- National Taiwan University, Research and Development Center for Medical Devices, Taipei 10617, Taiwan
| |
Collapse
|
114
|
miR-216b-5p Inhibited the Progression of Experimental Optic Neuritis via Downregulating FAS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2772566. [PMID: 35990825 PMCID: PMC9388232 DOI: 10.1155/2022/2772566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
Abstract
Objective Present study mainly explored the effect of miR-216b-5p on experimental optic neuritis and mechanism. Methods Female C57BL/6 mice were utilized to establish the EAE model. miR-216b-5p expression was measured by RT-qPCR. Protein expression was evaluated via western blot. Inflammatory infiltration score was analyzed by HE staining. Visual function was assessed by measuring the OKR. Flow cytometry assay was conducted to measure the percentage of IL-17 cells. ELISA was utilized to evaluate the immune factor. Results The EAE mouse model was successfully established. The EAE score of mice began to increase in EAE group after 11 days of MOG35-55 and CFA immunization. The degree of inflammatory cell infiltration in EAE mice was higher than that in normal mice. Compared with normal mice, the number of microglia and astrocytes was raised in EAE mice. miR-216b-5p expression was obviously declined and FAS expression was obviously raised in EAE. Compared with NC group, demyelination scores and axonal loss were markedly declined in miR-216b-5p mimic group. IL-17A concentration and the percentage of IL-17 cells were obviously declined in miR-216b-5p mimic group. FAS was predicted to be regulated by miR-216b-5p by TargetScan, and luciferase reporter assay confirmed this prediction. In addition, overexpression of FAS exacerbated experimental optic neuritis by promoting the inflammatory response and Th17 cell differentiation, and miR-216b-5p reversed this effect. Conclusions miR-216b-5p downregulated FAS and inhibited the progression of experimental optic neuritis via promoting the inflammatory response and Th17 cell differentiation.
Collapse
|
115
|
Gerasimova EV, Tabakov DV, Gerasimova DA, Popkova TV. Activation Markers on B and T Cells and Immune Checkpoints in Autoimmune Rheumatic Diseases. Int J Mol Sci 2022; 23:ijms23158656. [PMID: 35955790 PMCID: PMC9368764 DOI: 10.3390/ijms23158656] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
In addition to identifying the major B- and T-cell subpopulations involved in autoimmune rheumatic diseases (ARDs), in recent years special attention has been paid to studying the expression of their activation markers and immune checkpoints (ICPs). The activation markers on B and T cells are a consequence of the immune response, and these molecules are considered as sensitive specific markers of ARD activity and as promising targets for immunotherapy. ICPs regulate the activation of the immune response by preventing the initiation of autoimmune processes, and they modulate it by reducing immune cell-induced organ and tissue damage. The article considers the possible correlation of ICPs with the activity of ARDs, the efficacy of specific ARD treatments, and the prospects for the use of activation molecules and activation/blocking ICPs for the treatment of ARDs.
Collapse
Affiliation(s)
- Elena V. Gerasimova
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Kashirskoe Shosse, 115522 Moscow, Russia
- Correspondence: ; Tel.: +7-905-538-0399
| | - Dmitry V. Tabakov
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Kashirskoe Shosse, 115522 Moscow, Russia
| | - Daria A. Gerasimova
- Department of Organization and Economy of Pharmacy, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2, Trubetskaya St., 119526 Moscow, Russia
| | - Tatiana V. Popkova
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Kashirskoe Shosse, 115522 Moscow, Russia
| |
Collapse
|
116
|
CD95 gene deletion may reduce clonogenic growth and invasiveness of human glioblastoma cells in a CD95 ligand-independent manner. Cell Death Dis 2022; 8:341. [PMID: 35906203 PMCID: PMC9338300 DOI: 10.1038/s41420-022-01133-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
CD95 (Fas/APO-1) is a multifunctional cell surface receptor with antithetic roles. First described to mediate cell death, interactions of CD95 with its natural ligand, CD95L, have also been described to induce tumor-promoting signaling leading to proliferation, invasion and stem cell maintenance, mainly in cancer cells that are resistant to CD95-mediated apoptosis. While activation of CD95-mediated apoptosis in cancer cells may not be clinically practicable due to toxicity, inhibition of tumor-promoting CD95 signaling holds therapeutic potential. In the present study, we characterized CD95 and CD95L expression in human glioma-initiating cells (GIC), a glioblastoma cell population with stem cell features, and investigated the consequences of CRISPR-Cas9-mediated CD95 or CD95L gene deletion. In vitro, GIC expressed CD95 but not CD95L and were sensitive to CD95-mediated apoptosis. Upon genetic deletion of CD95, GIC acquired resistance to CD95L-induced apoptosis but exhibited inferior clonogenic growth, sphere-forming capacity, and invasiveness compared with control cells, suggesting the existence of CD95L-independent constitutive CD95 signaling with tumor-promoting properties in GIC. In vivo, GIC expressed CD95 and a non-canonical form of CD95L lacking the CD95-binding region. CD95 genetic deletion did not prolong survival in immunocompromised GIC-bearing mice. Altogether, these data indicate that canonical CD95L may not be expressed in human GIC and suggest the existence of a CD95L-independent CD95-signaling pathway that maintains some malignancy traits of GIC. The lack of altered survival of tumor-bearing mice after genetic deletion of CD95 suggests that CD95 signaling is not essential to maintain the growth of human GIC xenografted into the brains of nude mice. The ligand-independent tumor-promoting role of constitutive CD95 in our GIC models in vitro highlights the complexity and challenges associated with targeting CD95 with therapeutic intent.
Collapse
|
117
|
Saikia Q, Reeve H, Alzahrani A, Critchley WR, Zeqiraj E, Divan A, Harrison MA, Ponnambalam S. VEGFR endocytosis: Implications for angiogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 194:109-139. [PMID: 36631189 DOI: 10.1016/bs.pmbts.2022.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The binding of vascular endothelial growth factor (VEGF) superfamily to VEGF receptor tyrosine kinases (VEGFRs) and co-receptors regulates vasculogenesis, angiogenesis and lymphangiogenesis. A recurring theme is that dysfunction in VEGF signaling promotes pathological angiogenesis, an important feature of cancer and pro-inflammatory disease states. Endocytosis of basal (resting) or activated VEGFRs facilitates signal attenuation and endothelial quiescence. However, increasing evidence suggest that activated VEGFRs can continue to signal from intracellular compartments such as endosomes. In this chapter, we focus on the evolving link between VEGFR endocytosis, signaling and turnover and the implications for angiogenesis. There is much interest in how such understanding of VEGFR dynamics can be harnessed therapeutically for a wide range of human disease states.
Collapse
Affiliation(s)
- Queen Saikia
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Hannah Reeve
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Areej Alzahrani
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - William R Critchley
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Elton Zeqiraj
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Aysha Divan
- School of Molecular & Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Michael A Harrison
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
118
|
Keeping Cell Death Alive: An Introduction into the French Cell Death Research Network. Biomolecules 2022; 12:biom12070901. [PMID: 35883457 PMCID: PMC9313292 DOI: 10.3390/biom12070901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Since the Nobel Prize award more than twenty years ago for discovering the core apoptotic pathway in C. elegans, apoptosis and various other forms of regulated cell death have been thoroughly characterized by researchers around the world. Although many aspects of regulated cell death still remain to be elucidated in specific cell subtypes and disease conditions, many predicted that research into cell death was inexorably reaching a plateau. However, this was not the case since the last decade saw a multitude of cell death modalities being described, while harnessing their therapeutic potential reached clinical use in certain cases. In line with keeping research into cell death alive, francophone researchers from several institutions in France and Belgium established the French Cell Death Research Network (FCDRN). The research conducted by FCDRN is at the leading edge of emerging topics such as non-apoptotic functions of apoptotic effectors, paracrine effects of cell death, novel canonical and non-canonical mechanisms to induce apoptosis in cell death-resistant cancer cells or regulated forms of necrosis and the associated immunogenic response. Collectively, these various lines of research all emerged from the study of apoptosis and in the next few years will increase the mechanistic knowledge into regulated cell death and how to harness it for therapy.
Collapse
|
119
|
Mitochondrial reactive oxygen is critical for IL-12/IL-18-induced IFN-γ production by CD4 + T cells and is regulated by Fas/FasL signaling. Cell Death Dis 2022; 13:531. [PMID: 35668079 PMCID: PMC9170726 DOI: 10.1038/s41419-022-04907-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/06/2022] [Accepted: 05/03/2022] [Indexed: 01/21/2023]
Abstract
Mitochondrial activation and the production of mitochondrial reactive oxygen species (mROS) are crucial for CD4+ T cell responses and have a role in naïve cell signaling after TCR activation. However, little is known about mROS role in TCR-independent signaling and in recall responses. Here, we found that mROS are required for IL-12 plus IL-18-driven production of IFN-γ, an essential cytokine for inflammatory and autoimmune disease development. Compared to TCR stimulation, which induced similar levels of mROS in naïve and memory-like cells, IL-12/IL-18 showed faster and augmented mROS production in memory-like cells. mROS inhibition significantly downregulated IFN-γ and CD44 expression, suggesting a direct mROS effect on memory-like T cell function. The mechanism that promotes IFN-γ production after IL-12/IL-18 challenge depended on the effect of mROS on optimal activation of downstream signaling pathways, leading to STAT4 and NF-κB activation. To relate our findings to IFN-γ-driven lupus-like disease, we used Fas-deficient memory-like CD4+ T cells from lpr mice. Importantly, we found significantly increased IFN-γ and mROS production in lpr compared with parental cells. Treatment of WT cells with FasL significantly reduced mROS production and the activation of signaling events leading to IFN-γ. Moreover, Fas deficiency was associated with increased mitochondrial levels of cytochrome C and caspase-3 compared with WT memory-like cells. mROS inhibition significantly reduced the population of disease-associated lpr CD44hiCD62LloCD4+ T cells and their IFN-γ production. Overall, these findings uncovered a previously unidentified role of Fas/FasL interaction in regulating mROS production by memory-like T cells. This apoptosis-independent Fas activity might contribute to the accumulation of CD44hiCD62LloCD4+ T cells that produce increased IFN-γ levels in lpr mice. Overall, our findings pinpoint mROS as central regulators of TCR-independent signaling, and support mROS pharmacological targeting to control aberrant immune responses in autoimmune-like disease.
Collapse
|
120
|
Bousoik E, Mahdipoor P, Alhazza A, Aliabadi HM. Combinational Silencing of Components Involved in JAK/STAT Signaling Pathway. Eur J Pharm Sci 2022; 175:106233. [DOI: 10.1016/j.ejps.2022.106233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/23/2022] [Accepted: 06/05/2022] [Indexed: 01/08/2023]
|
121
|
Wang W, Tang W, Shan E, Zhang L, Chen S, Yu C, Gao Y. MiR-130a-5p contributed to the progression of endothelial cell injury by regulating FAS. Eur J Histochem 2022; 66. [PMID: 35638591 PMCID: PMC9201574 DOI: 10.4081/ejh.2022.3342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
MicroRNAs (miRNAs) play critical roles in the development of vascular diseases. However, the effects of miR-130a-5p and its functional targets on atherosclerosis (AS) are still largely unknown. In this regard, our aim is to explore the potentially important role of miR-130a-5p and its target gene during the progression of endothelial cell injury. We first found oxidized low-density lipoprotein (ox-LDL) induced FAS and cell apoptosis in HUVECs. Subsequently, miR-130a-5p expression was verified to be downregulated after ox-LDL treatment and negatively correlated with FAS, and FAS was identified as substantially upregulated in the ox-LDL-treated HUVEC cells. After that, the knockdown of FAS and overexpression of miR-130a-5p together were observed to aggregate ox-LDL-induced reduction of cell viability and apoptosis, cell cycle progression, cell proliferation, cell migration and invasion. In conclusion, we detected that miR-130a-5p contributed to the progression of endothelial cell injury by regulating of FAS, which may provide a new and promising therapeutic target for AS.
Collapse
|
122
|
Clusters of apoptotic signaling molecule-enriched rafts, CASMERs: membrane platforms for protein assembly in Fas/CD95 signaling and targets in cancer therapy. Biochem Soc Trans 2022; 50:1105-1118. [PMID: 35587168 PMCID: PMC9246327 DOI: 10.1042/bst20211115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
Mammalian cells show the ability to commit suicide through the activation of death receptors at the cell surface. Death receptors, among which Fas/CD95 is one of their most representative members, lack enzymatic activity, and depend on protein-protein interactions to signal apoptosis. Fas/CD95 death receptor-mediated apoptosis requires the formation of the so-called death-inducing signaling complex (DISC), bringing together Fas/CD95, Fas-associated death domain-containing protein and procaspase-8. In the last two decades, cholesterol-rich lipid raft platforms have emerged as scaffolds where Fas/CD95 can be recruited and clustered. The co-clustering of Fas/CD95 and rafts facilitates DISC formation, bringing procaspase-8 molecules to be bunched together in a limited membrane region, and leading to their autoproteolytic activation by oligomerization. Lipid raft platforms serve as a specific region for the clustering of Fas/CD95 and DISC, as well as for the recruitment of additional downstream signaling molecules, thus forming the so-called cluster of apoptotic signaling molecule-enriched rafts, or CASMER. These raft/CASMER structures float in the membrane like icebergs, in which the larger portion lies inside the cell and communicates with other subcellular structures to facilitate apoptotic signal transmission. This allows an efficient spatiotemporal compartmentalization of apoptosis signaling machinery during the triggering of cell death. This concept of proapoptotic raft platforms as a basic chemical-biological structure in the regulation of cell death has wide-ranging implications in human biology and disease, as well as in cancer therapy. Here, we discuss how these raft-centered proapoptotic hubs operate as a major linchpin for apoptosis signaling and as a promising target in cancer therapy.
Collapse
|
123
|
Delivering siRNA Compounds During HOPE to Modulate Organ Function: A Proof-of-Concept Study in a Rat Liver Transplant Model. Transplantation 2022; 106:1565-1576. [PMID: 35581683 DOI: 10.1097/tp.0000000000004175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Apoptosis contributes to the severity of ischemia-reperfusion injury (IRI), limiting the use of extended criteria donors in liver transplantation (LT). Machine perfusion has been proposed as a platform to administer specific therapies to improve graft function. Alternatively, the inhibition of genes associated with apoptosis during machine perfusion could alleviate IRI post-LT. The aim of the study was to investigate whether inhibition of an apoptosis-associated gene (FAS) using a small interfering RNA (siRNA) approach could alleviate IRI in a rat LT model. METHODS In 2 different experimental protocols, FASsiRNA (500 µg) was administered to rat donors 2 h before organ procurement, followed by 22 h of static cold storage, (SCS) or was added to the perfusate during 1 h of ex situ hypothermic oxygenated perfusion (HOPE) to livers previously preserved for 4 h in SCS. RESULTS Transaminase levels were significantly lower in the SCS-FASsiRNA group at 24 h post-LT. Proinflammatory cytokines (interleukin-2, C-X-C motif chemokine 10, tumor necrosis factor alpha, and interferon gamma) were significantly decreased in the SCS-FASsiRNA group, whereas the interleukin-10 anti-inflammatory cytokine was significantly increased in the HOPE-FASsiRNA group. Liver absorption of FASsiRNA after HOPE session was demonstrated by confocal microscopy; however, no statistically significant differences on the apoptotic index, necrosis levels, and FAS protein transcription between treated and untreated groups were observed. CONCLUSIONS FAS inhibition through siRNA therapy decreases the severity of IRI after LT in a SCS protocol; however the association of siRNA therapy with a HOPE perfusion model is very challenging. Future studies using better designed siRNA compounds and appropriate doses are required to prove the siRNA therapy effectiveness during liver HOPE liver perfusion.
Collapse
|
124
|
A Mechanistic Insight into the Pathogenic Role of Interleukin 17A in Systemic Autoimmune Diseases. Mediators Inflamm 2022; 2022:6600264. [PMID: 35620115 PMCID: PMC9129985 DOI: 10.1155/2022/6600264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/04/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
Interleukin 17A (IL-17A) has been put forward as a strong ally in our fight against invading pathogens across exposed epithelial surfaces by serving an antimicrobial immunosurveillance role in these tissues to protect the barrier integrity. Amongst other mechanisms that prevent tissue injury mediated by potential microbial threats and promote restoration of epithelial homeostasis, IL-17A attracts effector cells to the site of inflammation and support the host response by driving the development of ectopic lymphoid structures. Accumulating evidence now underscores an integral role of IL-17A in driving the pathophysiology and clinical manifestations in three potentially life-threatening autoimmune diseases, namely, systemic lupus erythematosus, Sjögren’s syndrome, and systemic sclerosis. Available studies provide convincing evidence that the abundance of IL-17A in target tissues and its prime source, which is T helper 17 cells (Th17) and double negative T cells (DNT), is not an innocent bystander but in fact seems to be prerequisite for organ pathology. In this regard, IL-17A has been directly implicated in critical steps of autoimmunity. This review reports on the synergistic interactions of IL-17A with other critical determinants such as B cells, neutrophils, stromal cells, and the vasculature that promote the characteristic immunopathology of these autoimmune diseases. The summary of observations provided by this review may have empowering implications for IL-17A-based strategies to prevent clinical manifestations in a broad spectrum of autoimmune conditions.
Collapse
|
125
|
Mizuno M, Matsuzaki T, Ozeki N, Katano H, Koga H, Takebe T, Yoshikawa HY, Sekiya I. Cell membrane fluidity and ROS resistance define DMSO tolerance of cryopreserved synovial MSCs and HUVECs. Stem Cell Res Ther 2022; 13:177. [PMID: 35505370 PMCID: PMC9066911 DOI: 10.1186/s13287-022-02850-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/21/2022] [Indexed: 01/12/2023] Open
Abstract
Objectives Synovial mesenchymal stem cells (MSCs) have high freeze–thaw tolerance, whereas human umbilical vein endothelial cells (HUVECs) have low freezing tolerance. The differences in cell type-specific freeze–thaw tolerance and the mechanisms involved are unclear. This study thus aimed to identify the biological and physical factors involved in the differences in freeze–thaw tolerance between MSCs and HUVECs. Materials and methods For biological analysis, MSC and HUVEC viability after freeze-thawing and alteration of gene expression in response to dimethyl sulfoxide (DMSO, a cryoprotectant) were quantitatively evaluated. For physical analysis, the cell membrane fluidity of MSCs and HUVECs before and after DMSO addition was assessed using a histogram for generalized polarization frequency. Results HUVECs showed lower live cell rates and higher gene expression alteration related to extracellular vesicles in response to DMSO than MSCs. Fluidity measurements revealed that the HUVEC membrane was highly fluidic and sensitive to DMSO compared to that of MSCs. Addition of CAY10566, an inhibitor of stearoyl-coA desaturase (SCD1) that produces highly fluidic desaturated fatty acids, decreased the fluidity of HUVECs and increased their tolerance to DMSO. The combination of CAY10566 and antioxidant glutathione (GSH) treatment improved HUVEC viability from 57 to 69%. Membrane fluidity alteration may thus contribute to pore-induced DMSO influx into the cytoplasm and reactive oxygen species production, leading to greater cytotoxicity in HUVECs, which have low antioxidant capacity. Conclusions Differences in freeze–thaw tolerance originate from differences in the cell membranes with respect to fluidity and antioxidant capacity. These findings provide a basis for analyzing cell biology and membrane-physics to establish appropriate long-term preservation methods aimed at promoting transplantation therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02850-y.
Collapse
Affiliation(s)
- Mitsuru Mizuno
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45, Bunkyo-ku, Yushima, Tokyo, 113-8510, Japan.
| | - Takahisa Matsuzaki
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama University, 255, Shimo-okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.,Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Nobutake Ozeki
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45, Bunkyo-ku, Yushima, Tokyo, 113-8510, Japan
| | - Hisako Katano
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45, Bunkyo-ku, Yushima, Tokyo, 113-8510, Japan
| | - Hideyuki Koga
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University (TMDU), 1-5-45, Bunkyo-ku, Yushima, Tokyo, 113-8519, Japan
| | - Takanori Takebe
- Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Organoid Medicine Project, T-CiRA Joint Program, Fujisawa, Kanagawa, Japan.,Division of Gastroenterology, Hepatology and Nutrition and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA.,The Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hiroshi Y Yoshikawa
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Saitama University, 255, Shimo-okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.,Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita City, Osaka, 565-0871, Japan.,Department of Chemistry, Saitama University, 255, Shimo-okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45, Bunkyo-ku, Yushima, Tokyo, 113-8510, Japan
| |
Collapse
|
126
|
T cell dysregulation in SLE. Clin Immunol 2022; 239:109031. [DOI: 10.1016/j.clim.2022.109031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 01/05/2023]
|
127
|
McGrath JJC, Li L, Wilson PC. Memory B cell diversity: insights for optimized vaccine design. Trends Immunol 2022; 43:343-354. [PMID: 35393268 PMCID: PMC8977948 DOI: 10.1016/j.it.2022.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/02/2023]
Abstract
The overarching logos of mammalian memory B cells (MBCs) is to cache the potential for enhanced antibody production upon secondary exposure to cognate antigenic determinants. However, substantial phenotypic diversity has been identified across MBCs, hinting at the existence of unique origins or subfunctions within this compartment. Herein, we discuss recent advancements in human circulatory MBC subphenotyping as driven by high-throughput cell surface marker analysis and other approaches, as well as speculated and substantiated subfunctions. With this in mind, we hypothesize that the relative induction of specific circulatory MBC subsets might be used as a biomarker for optimally durable vaccines and inform vaccination strategies to subvert antigenic imprinting in the context of highly mutable pathogens such as influenza virus or SARS-CoV-2.
Collapse
Affiliation(s)
- Joshua J C McGrath
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Lei Li
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Patrick C Wilson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA; Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
128
|
Galli G, Vacher P, Ryffel B, Blanco P, Legembre P. Fas/CD95 Signaling Pathway in Damage-Associated Molecular Pattern (DAMP)-Sensing Receptors. Cells 2022; 11:1438. [PMID: 35563744 PMCID: PMC9105874 DOI: 10.3390/cells11091438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/16/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Study of the initial steps of the CD95-mediated signaling pathways is a field of intense research and a long list of actors has been described in the literature. Nonetheless, the dynamism of protein-protein interactions (PPIs) occurring in the presence or absence of its natural ligand, CD95L, and the cellular distribution where these PPIs take place render it difficult to predict what will be the cellular outcome associated with the receptor engagement. Accordingly, CD95 stimulation can trigger apoptosis, necroptosis, pyroptosis, or pro-inflammatory signaling pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and phosphatidylinositol-3-kinase (PI3K). Recent data suggest that CD95 can also activate pattern recognition receptors (PRRs) known to sense damage-associated molecular patterns (DAMPs) such as DNA debris and dead cells. This activation might contribute to the pro-inflammatory role of CD95 and favor cancer development or severity of chronic inflammatory and auto-immune disorders. Herein, we discuss some of the molecular links that might connect the CD95 signaling to DAMP sensors.
Collapse
Affiliation(s)
- Gael Galli
- CNRS, ImmunoConcEpT, UMR 5164, University Bordeaux, 33000 Bordeaux, France; (G.G.); (P.B.)
- Centre National de Référence Maladie Auto-Immune et Systémique Rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France
- Department of Internal Medicine, Haut-Leveque, Bordeaux University Hospital, 33604 Pessac, France
| | - Pierre Vacher
- INSERM, CRCTB, U1045, University Bordeaux, 33000 Bordeaux, France;
| | - Bernhard Ryffel
- CNRS, INEM, UMR7355, University of Orleans, 45071 Orleans, France;
| | - Patrick Blanco
- CNRS, ImmunoConcEpT, UMR 5164, University Bordeaux, 33000 Bordeaux, France; (G.G.); (P.B.)
- Centre National de Référence Maladie Auto-Immune et Systémique Rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France
- Department of Internal Medicine, Haut-Leveque, Bordeaux University Hospital, 33604 Pessac, France
| | - Patrick Legembre
- UMR CNRS 7276, INSERM U1262, CRIBL, Université Limoges, 87025 Limoges, France
| |
Collapse
|
129
|
Niu Z, Wang X, Xu Y, Li Y, Gong X, Zeng Q, Zhang B, Xi J, Pei X, Yue W, Han Y. Development and Validation of a Novel Survival Model for Cutaneous Melanoma Based on Necroptosis-Related Genes. Front Oncol 2022; 12:852803. [PMID: 35387121 PMCID: PMC8979066 DOI: 10.3389/fonc.2022.852803] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/25/2022] [Indexed: 12/16/2022] Open
Abstract
Background Necroptosis is crucial for organismal development and pathogenesis. To date, the role of necroptosis in skin cutaneous melanoma (SKCM) is yet unveiled. In addition, the part of melanin pigmentation was largely neglected in the bioinformatic analysis. In this study, we aimed to construct a novel prognostic model based on necroptosis-related genes and analysis the pigmentation phenotype of patients to provide clinically actionable information for SKCM patients. Methods We downloaded the SKCM data from the TCGA and GEO databases in this study and identified the differently expressed and prognostic necroptosis-related genes. Patients’ pigmentation phenotype was evaluated by the GSVA method. Then, using Lasso and Cox regression analysis, a novel prognostic model was constructed based on the intersected genes. The risk score was calculated and the patients were divided into two groups. The survival differences between the two groups were compared using Kaplan-Meier analysis. The ROC analysis was performed and the area under curves was calculated to evaluate the prediction performances of the model. Then, the GO, KEGG and GSEA analyses were performed to elucidate the underlying mechanisms. Differences in the tumor microenvironment, patients’ response to immune checkpoint inhibitors (ICIs) and pigmentation phenotype were analyzed. In order to validate the mRNA expression levels of the selected genes, quantitative real-time PCR (qRT-PCR) was performed. Results Altogether, a novel prognostic model based on four genes (BOK, CD14, CYLD and FASLG) was constructed, and patients were classified into high and low-risk groups based on the median risk score. Low-risk group patients showed better survival status. The model showed high accuracy in the training and the validation cohort. Pathway and functional enrichment analysis indicated that immune-related pathways were differently activated in the two groups. In addition, immune cells infiltration patterns and sensitivity of ICIs showed a significant difference between patients from two risk groups. The pigmentation score was positively related to the risk score in pigmentation phenotype analysis. Conclusion In conclusion, this study established a novel prognostic model based on necroptosis-related genes and revealed the possible connections between necroptosis and melanin pigmentation. It is expected to provide a reference for clinical treatment.
Collapse
Affiliation(s)
- Zehao Niu
- Medical School of Chinese PLA, Beijing, China.,Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xin Wang
- Department of Ophthalmology, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Yujian Xu
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Li
- Medical School of Chinese PLA, Beijing, China.,Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaojing Gong
- Medical School of Chinese PLA, Beijing, China.,Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, AMMS, Beijing, China.,South China Research Center for Stem Cell and Regenerative Medicine, SCIB, Guangzhou, China
| | - Biao Zhang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, AMMS, Beijing, China.,South China Research Center for Stem Cell and Regenerative Medicine, SCIB, Guangzhou, China
| | - Jiafei Xi
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, AMMS, Beijing, China.,South China Research Center for Stem Cell and Regenerative Medicine, SCIB, Guangzhou, China.,Academy of Military Medical Sciences (AMMS), Academy of Military Sciences, Beijing, China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, AMMS, Beijing, China.,South China Research Center for Stem Cell and Regenerative Medicine, SCIB, Guangzhou, China.,Academy of Military Medical Sciences (AMMS), Academy of Military Sciences, Beijing, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, AMMS, Beijing, China.,South China Research Center for Stem Cell and Regenerative Medicine, SCIB, Guangzhou, China.,Academy of Military Medical Sciences (AMMS), Academy of Military Sciences, Beijing, China
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
130
|
Hsieh CH, Huang YW, Tsai TF. Oral Conventional Synthetic Disease-Modifying Antirheumatic Drugs with Antineoplastic Potential: a Review. Dermatol Ther (Heidelb) 2022; 12:835-860. [PMID: 35381976 PMCID: PMC9021342 DOI: 10.1007/s13555-022-00713-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 01/17/2023] Open
Abstract
There is an increasing trend of malignancy worldwide. Disease-modifying antirheumatic drugs (DMARDs) are the cornerstones for the treatment of immune-mediated inflammatory diseases (IMIDs), but risk of malignancy is a major concern for patients receiving DMARDs. In addition, many IMIDs already carry higher background risks of neoplasms. Recently, the black box warning of malignancies has been added for Janus kinase inhibitors. Also, the use of biologic DMARDs in patients with established malignancies is usually discouraged owing to exclusion of such patients in pivotal studies and, hence, lack of evidence. In contrast, some conventional synthetic DMARDs (csDMARDs) have been reported to show antineoplastic properties and can be beneficial for patients with cancer. Among the csDMARDs, chloroquine and hydroxychloroquine have been the most extensively studied, and methotrexate is an established chemotherapeutic agent. Even cyclosporine A, a well-known drug associated with cancer risk, can potentiate the effect of some chemotherapeutic agents. We review the possible mechanisms behind and clinical evidence of the antineoplastic activities of csDMARDs, including chloroquine and hydroxychloroquine, cyclosporine, leflunomide, mycophenolate mofetil, mycophenolic acid, methotrexate, sulfasalazine, and thiopurines. This knowledge may guide physicians in the choice of csDMARDs for patients with concurrent IMIDs and malignancies.
Collapse
Affiliation(s)
- Cho-Hsun Hsieh
- Department of Medical Education, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Wei Huang
- Department of Dermatology, National Taiwan University Hospital, 7 Chung Shan S Rd, Taipei, 10048, Taiwan
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital, 7 Chung Shan S Rd, Taipei, 10048, Taiwan. .,Department of Dermatology, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
131
|
Different methods of detaching adherent cells and their effects on the cell surface expression of Fas receptor and Fas ligand. Sci Rep 2022; 12:5713. [PMID: 35383242 PMCID: PMC8983651 DOI: 10.1038/s41598-022-09605-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/01/2022] [Indexed: 11/08/2022] Open
Abstract
In cell culture environment, some cells adhere firmly to the culture plates and may be vulnerable to cell detachment during passage. Therefore, it is important to harvest cells with a proper detaching method to maintain the viability of cells after detachment. Trypsinization is frequently used for cellular dissociation and detachment. However, most surface proteins and the extracellular matrix are degraded by enzymatic digestion. A mild cell detachment buffer, accutase, is recommended for the replacement of trypsin to dissociate adherent cells and thereby avoid cellular damage. In this study, we demonstrated that use of accutase for cellular detachment may compromise some surface proteins. Compared with ethylenediaminetetraacetic acid (EDTA)-based nonenzymatic cell dissociation buffers, accutase was associated with significant decreases in the surface Fas ligands and Fas receptors. Moreover, we found that accutase may be able to cleave surface Fas ligands into pieces. Our results also illustrated that surface proteins required 20 h to recover after accutase treatment. We demonstrated that using accutase to dissociate adherent cells compromised the expression of Fas ligands and Fas receptors on the cell surface. These findings indicate that it is important to choose suitable cell detachment buffers and allow cells to recover after detachment before experiments.
Collapse
|
132
|
Nosbisch JL, Bear JE, Haugh JM. A kinetic model of phospholipase C-γ1 linking structure-based insights to dynamics of enzyme autoinhibition and activation. J Biol Chem 2022; 298:101886. [PMID: 35367415 PMCID: PMC9097458 DOI: 10.1016/j.jbc.2022.101886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 01/31/2023] Open
Abstract
Phospholipase C-γ1 (PLC-γ1) is a receptor-proximal enzyme that promotes signal transduction through PKC in mammalian cells. Because of the complexity of PLC-γ1 regulation, a two-state (inactive/active) model does not account for the intricacy of activation and inactivation steps at the plasma membrane. Here, we introduce a structure-based kinetic model of PLC-γ1, considering interactions of its regulatory Src homology 2 (SH2) domains and perturbation of those dynamics upon phosphorylation of Tyr783, a hallmark of activation. For PLC-γ1 phosphorylation to dramatically enhance enzyme activation as observed, we found that high intramolecular affinity of the C-terminal SH2 (cSH2) domain-pTyr783 interaction is critical, but this affinity need not outcompete the autoinhibitory interaction of the cSH2 domain. Under conditions for which steady-state PLC-γ1 activity is sensitive to the rate of Tyr783 phosphorylation, maintenance of the active state is surprisingly insensitive to the phosphorylation rate, since pTyr783 is well protected by the cSH2 domain while the enzyme is active. In contrast, maintenance of enzyme activity is sensitive to the rate of PLC-γ1 membrane (re)binding. Accordingly, we found that hypothetical PLC-γ1 mutations that either weaken autoinhibition or strengthen membrane binding influence the activation kinetics differently, which could inform the characterization of oncogenic variants. Finally, we used this newly informed kinetic scheme to refine a spatial model of PLC/PKC polarization during chemotaxis. The refined model showed improved stability of the polarized pattern while corroborating previous qualitative predictions. As demonstrated here for PLC-γ1, this approach may be adapted to model the dynamics of other receptor- and membrane-proximal enzymes.
Collapse
Affiliation(s)
- Jamie L Nosbisch
- Biomathematics Graduate Program, North Carolina State University, Raleigh, North Carolina, USA
| | - James E Bear
- Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
133
|
Stefanowicz-Hajduk J, Hering A, Gucwa M, Sztormowska-Achranowicz K, Kowalczyk M, Soluch A, Ochocka JR. An In Vitro Anticancer, Antioxidant, and Phytochemical Study on Water Extract of Kalanchoe daigremontiana Raym.-Hamet and H. Perrier. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072280. [PMID: 35408681 PMCID: PMC9000682 DOI: 10.3390/molecules27072280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/24/2022]
Abstract
Kalanchoe species are succulents with anti-inflammatory, antioxidant, and analgesic properties, as well as cytotoxic activity. One of the most popular species cultivated in Europe is Kalanchoe daigremontiana Raym.-Hamet and H. Perrier. In our study, we analyzed the phytochemical composition of K. daigremontiana water extract using UHPLC-QTOF-MS and estimated the cytotoxic activity of the extract on human ovarian cancer SKOV-3 cells by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, flow cytometry, luminometric, and fluorescent microscopy techniques. The expression levels of 92 genes associated with cell death were estimated via real-time PCR. The antioxidant activity was assessed via flow cytometry on human keratinocyte HaCaT cell line. The DPPH (2,2-diphenyl-1-picrylhydrazyl) radical and FRAP (ferric-reducing antioxidant power) assays were also applied. We identified twenty bufadienolide compounds in the water extract and quantified eleven. Bersaldegenin-1,3,5-orthoacetate and bryophyllin A were present in the highest amounts (757.4 ± 18.7 and 573.5 ± 27.2 ng/mg dry weight, respectively). The extract showed significant antiproliferative and cytotoxic activity, induced depolarization of the mitochondrial membrane, and significantly arrested cell cycle in the S and G2/M phases of SKOV-3 cells. Caspases-3, 7, 8, and 9 were not activated during the treatment, which indicated non-apoptotic cell death triggered by the extract. Additionally, the extract increased the level of oxidative stress in the cancer cell line. In keratinocytes treated with menadione, the extract moderately reduced the level of oxidative stress. This antioxidant activity was confirmed by the DPPH and FRAP assays, where the obtained IC50 values were 1750 ± 140 and 1271.82 ± 53.25 μg/mL, respectively. The real-time PCR analysis revealed that the extract may induce cell death via TNF receptor (tumor necrosis factor receptor) superfamily members 6 and 10.
Collapse
Affiliation(s)
- Justyna Stefanowicz-Hajduk
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (A.H.); (M.G.); (J.R.O.)
- Department of Pharmacology, Medical University of Gdańsk, 80-204 Gdańsk, Poland;
- Correspondence:
| | - Anna Hering
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (A.H.); (M.G.); (J.R.O.)
| | - Magdalena Gucwa
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (A.H.); (M.G.); (J.R.O.)
| | | | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (M.K.); (A.S.)
| | - Agata Soluch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland; (M.K.); (A.S.)
| | - J. Renata Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (A.H.); (M.G.); (J.R.O.)
| |
Collapse
|
134
|
Sun W, Li P, Cai J, Ma J, Zhang X, Song Y, Liu Y. Lipid Metabolism: Immune Regulation and Therapeutic Prospectives in Systemic Lupus Erythematosus. Front Immunol 2022; 13:860586. [PMID: 35371016 PMCID: PMC8971568 DOI: 10.3389/fimmu.2022.860586] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/28/2022] [Indexed: 12/31/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous disease characterized by the production of abnormal autoantibodies and immune complexes that can affect the organ and organ systems, particularly the kidneys and the cardiovascular system. Emerging evidence suggests that dysregulated lipid metabolism, especially in key effector cells, such as T cells, B cells, and innate immune cells, exerts complex effects on the pathogenesis and progression of SLE. Beyond their important roles as membrane components and energy storage, different lipids can also modulate different cellular processes, such as proliferation, differentiation, and survival. In this review, we summarize altered lipid metabolism and the associated mechanisms involved in the pathogenesis and progression of SLE. Furthermore, we discuss the recent progress in the role of lipid metabolism as a potential therapeutic target in SLE.
Collapse
Affiliation(s)
- Wei Sun
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Southeast University, Nanjing, China
| | - Pengchong Li
- Department of Rheumatology and Clinical Immunology, The Ministry of Education Key Laboratory, Peking Union Medical College Hospital, Beijing, China
- Department of Gastroenterology, Beijing Friendship Hospital, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Capital Medical University, Beijing, China
| | - Jianping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontolog, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Southeast University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, China
- *Correspondence: Yudong Liu, ; Yong Song,
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Center of Biotherapy, Beijing Hospital, National Center of Gerontolog, Beijing, China
- *Correspondence: Yudong Liu, ; Yong Song,
| |
Collapse
|
135
|
Zhuang Y, Che J, Wu M, Guo Y, Xu Y, Dong X, Yang H. Altered pathways and targeted therapy in double hit lymphoma. J Hematol Oncol 2022; 15:26. [PMID: 35303910 PMCID: PMC8932183 DOI: 10.1186/s13045-022-01249-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
High-grade B-cell lymphoma with translocations involving MYC and BCL2 or BCL6, usually referred to as double hit lymphoma (DHL), is an aggressive hematological malignance with distinct genetic features and poor clinical prognosis. Current standard chemoimmunotherapy fails to confer satisfying outcomes and few targeted therapeutics are available for the treatment against DHL. Recently, the delineating of the genetic landscape in tumors has provided insight into both biology and targeted therapies. Therefore, it is essential to understand the altered signaling pathways of DHL to develop treatment strategies with better clinical benefits. Herein, we summarized the genetic alterations in the two DHL subtypes (DHL-BCL2 and DHL-BCL6). We further elucidate their implications on cellular processes, including anti-apoptosis, epigenetic regulations, B-cell receptor signaling, and immune escape. Ongoing and potential therapeutic strategies and targeted drugs steered by these alterations were reviewed accordingly. Based on these findings, we also discuss the therapeutic vulnerabilities that coincide with these genetic changes. We believe that the understanding of the DHL studies will provide insight into this disease and capacitate the finding of more effective treatment strategies.
Collapse
Affiliation(s)
- Yuxin Zhuang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Meijuan Wu
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Yu Guo
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
| | - Yongjin Xu
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, People’s Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People’s Republic of China
| | - Haiyan Yang
- Department of Lymphoma, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| |
Collapse
|
136
|
Risso V, Lafont E, Le Gallo M. Therapeutic approaches targeting CD95L/CD95 signaling in cancer and autoimmune diseases. Cell Death Dis 2022; 13:248. [PMID: 35301281 PMCID: PMC8931059 DOI: 10.1038/s41419-022-04688-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
Cell death plays a pivotal role in the maintenance of tissue homeostasis. Key players in the controlled induction of cell death are the Death Receptors (DR). CD95 is a prototypic DR activated by its cognate ligand CD95L triggering programmed cell death. As a consequence, alterations in the CD95/CD95L pathway have been involved in several disease conditions ranging from autoimmune diseases to inflammation and cancer. CD95L-induced cell death has multiple roles in the immune response since it constitutes one of the mechanisms by which cytotoxic lymphocytes kill their targets, but it is also involved in the process of turning off the immune response. Furthermore, beyond the canonical pro-death signals, CD95L, which can be membrane-bound or soluble, also induces non-apoptotic signaling that contributes to its tumor-promoting and pro-inflammatory roles. The intent of this review is to describe the role of CD95/CD95L in the pathophysiology of cancers, autoimmune diseases and chronic inflammation and to discuss recently patented and emerging therapeutic strategies that exploit/block the CD95/CD95L system in these diseases.
Collapse
Affiliation(s)
- Vesna Risso
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Elodie Lafont
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Matthieu Le Gallo
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France.
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
137
|
San Martín A, Arce-Molina R, Aburto C, Baeza-Lehnert F, Barros LF, Contreras-Baeza Y, Pinilla A, Ruminot I, Rauseo D, Sandoval PY. Visualizing physiological parameters in cells and tissues using genetically encoded indicators for metabolites. Free Radic Biol Med 2022; 182:34-58. [PMID: 35183660 DOI: 10.1016/j.freeradbiomed.2022.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023]
Abstract
The study of metabolism is undergoing a renaissance. Since the year 2002, over 50 genetically-encoded fluorescent indicators (GEFIs) have been introduced, capable of monitoring metabolites with high spatial/temporal resolution using fluorescence microscopy. Indicators are fusion proteins that change their fluorescence upon binding a specific metabolite. There are indicators for sugars, monocarboxylates, Krebs cycle intermediates, amino acids, cofactors, and energy nucleotides. They permit monitoring relative levels, concentrations, and fluxes in living systems. At a minimum they report relative levels and, in some cases, absolute concentrations may be obtained by performing ad hoc calibration protocols. Proper data collection, processing, and interpretation are critical to take full advantage of these new tools. This review offers a survey of the metabolic indicators that have been validated in mammalian systems. Minimally invasive, these indicators have been instrumental for the purposes of confirmation, rebuttal and discovery. We envision that this powerful technology will foster metabolic physiology.
Collapse
Affiliation(s)
- A San Martín
- Centro de Estudios Científicos (CECs), Valdivia, Chile.
| | - R Arce-Molina
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - C Aburto
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | | | - L F Barros
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - Y Contreras-Baeza
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - A Pinilla
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - I Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - D Rauseo
- Centro de Estudios Científicos (CECs), Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | - P Y Sandoval
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| |
Collapse
|
138
|
Tiffney EA, Coombes JL, Legembre P, Flynn RJ. Cleaved CD95L perturbs in vitro macrophages responses to Toxoplasma gondii. Microbes Infect 2022; 24:104952. [PMID: 35240289 DOI: 10.1016/j.micinf.2022.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/13/2022] [Accepted: 02/12/2022] [Indexed: 11/25/2022]
Abstract
Toxoplasma gondii infects approximately 1-2 billion people, and manipulation of the macrophage response is critical to host and parasite survival. A cleaved (cl)-CD95L form can promote cellular migration and we have previously shown that cl-CD95L aggravates inflammation and pathology in systemic lupus erythematosus (SLE). Findings have shown that CD95L is upregulated during human infection, therefore we examined the effect of cl-CD95L on the macrophage response to T. gondii. . We find that cl-CD95L promotes parasite replication in macrophages, associated with increased arginase-1 levels, mediated by signal transducer and activator of transcription (STAT)6. Inhibition of both arginase-1 and STAT6 reversed the effects of cl-CD95L. Phospho-kinase array showed that cl-CD95L alters Janus Kinases (JAK)/STAT, mammalian target of rapamycin (mTOR), and Src kinase signals. By triggering changes in JAK/STAT cl-CD95L may limit anti-parasite effectors.
Collapse
Affiliation(s)
- Ellen A Tiffney
- Dept. Infection Biology, Institute of Infection and Global Health, University of Liverpool, L3 5RF
| | - Janine L Coombes
- Dept. Infection Biology, Institute of Infection and Global Health, University of Liverpool, L3 5RF
| | - Patrick Legembre
- Centre Eugène Marquis, Université Rennes-1, INSERM U1242, Rennes, France
| | - Robin J Flynn
- Dept. Infection Biology, Institute of Infection and Global Health, University of Liverpool, L3 5RF; Graduate Studies Office, Department of Research, Innovation and Graduate Studies, Waterford Institute of Technology, Ireland, X91 K0EK.
| |
Collapse
|
139
|
Liu L, Lai Y, Zhan Z, Fu Q, Jiang Y. Downregulation of Three Immune-Specific Core Genes and the Regulatory Pathways in Children and Adult Friedreich's Ataxia: A Comprehensive Analysis Based on Microarray. Front Neurol 2022; 12:816393. [PMID: 35237223 PMCID: PMC8884172 DOI: 10.3389/fneur.2021.816393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022] Open
Abstract
Background Friedreich's ataxia (FRDA) is a familial hereditary disorder that lacks available therapy. Therefore, the identification of novel biomarkers and key mechanisms related to FRDA progression is urgently required. Methods We identified the up-regulated and down-regulated differentially expressed genes (DEGs) in children and adult FRDA from the GSE11204 dataset and intersected them to determine the co-expressed DEGs (co-DEGs). Enrichment analysis was conducted and a protein-protein interaction (PPI) network was constructed to identify key pathways and hub genes. The potential diagnostic biomarkers were validated using the GSE30933 dataset. Cytoscape was applied to construct interaction and competitive endogenous RNA (ceRNA) networks. Results Gene Set Enrichment Analysis (GSEA) indicated that the genes in both the child and adult samples were primarily enriched in their immune-related functions. We identified 88 co-DEGs between child and adult FRDA samples. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome enrichment analysis suggested that these co-DEGs were primarily enriched in immune response, inflammatory reaction, and necroptosis. Immune infiltration analysis showed remarkable differences in the proportions of immune cell subtype between FRDA and healthy samples. In addition, ten core genes and one gene cluster module were screened out based on the PPI network. We verified eight immune-specific core genes using a validation dataset and found CD28, FAS, and ITIF5 have high diagnostic significance in FRDA. Finally, NEAT1-hsa-miR-24-3p-CD28 was identified as a key regulatory pathway of child and adult FRDA. Conclusions Downregulation of three immune-specific hub genes, CD28, FAS, and IFIT5, may be associated with the progression of child and adult FRDA. Furthermore, NEAT1-hsa-miR-24-3p-CD28 may be the potential RNA regulatory pathway related to the pathogenesis of child and adult FRDA.
Collapse
Affiliation(s)
- Lichun Liu
- Department of Pharmacy, Fujian Children's Hospital, Fuzhou, China
| | - Yongxing Lai
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Zhidong Zhan
- Department of Pediatric Intensive Care Unit, Fujian Children's Hospital, Fuzhou, China
| | - Qingxian Fu
- Department of Pediatric Endocrinology, Fujian Children's Hospital, Fuzhou, China
| | - Yuelian Jiang
- Department of Pharmacy, Fujian Children's Hospital, Fuzhou, China
| |
Collapse
|
140
|
Haider M, Elsherbeny A, Pittalà V, Consoli V, Alghamdi MA, Hussain Z, Khoder G, Greish K. Nanomedicine Strategies for Management of Drug Resistance in Lung Cancer. Int J Mol Sci 2022; 23:1853. [PMID: 35163777 PMCID: PMC8836587 DOI: 10.3390/ijms23031853] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer (LC) is one of the leading causes of cancer occurrence and mortality worldwide. Treatment of patients with advanced and metastatic LC presents a significant challenge, as malignant cells use different mechanisms to resist chemotherapy. Drug resistance (DR) is a complex process that occurs due to a variety of genetic and acquired factors. Identifying the mechanisms underlying DR in LC patients and possible therapeutic alternatives for more efficient therapy is a central goal of LC research. Advances in nanotechnology resulted in the development of targeted and multifunctional nanoscale drug constructs. The possible modulation of the components of nanomedicine, their surface functionalization, and the encapsulation of various active therapeutics provide promising tools to bypass crucial biological barriers. These attributes enhance the delivery of multiple therapeutic agents directly to the tumor microenvironment (TME), resulting in reversal of LC resistance to anticancer treatment. This review provides a broad framework for understanding the different molecular mechanisms of DR in lung cancer, presents novel nanomedicine therapeutics aimed at improving the efficacy of treatment of various forms of resistant LC; outlines current challenges in using nanotechnology for reversing DR; and discusses the future directions for the clinical application of nanomedicine in the management of LC resistance.
Collapse
Affiliation(s)
- Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Amr Elsherbeny
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Valeria Pittalà
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.P.); (V.C.)
| | - Valeria Consoli
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.P.); (V.C.)
| | - Maha Ali Alghamdi
- Department of Biotechnology, College of Science, Taif University, Taif 21974, Saudi Arabia;
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain;
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Khaled Greish
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain;
| |
Collapse
|
141
|
Fourier Transform Infrared (FTIR) Spectroscopy to Analyse Human Blood over the Last 20 Years: A Review towards Lab-on-a-Chip Devices. MICROMACHINES 2022; 13:mi13020187. [PMID: 35208311 PMCID: PMC8879834 DOI: 10.3390/mi13020187] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023]
Abstract
Since microorganisms are evolving rapidly, there is a growing need for a new, fast, and precise technique to analyse blood samples and distinguish healthy from pathological samples. Fourier Transform Infrared (FTIR) spectroscopy can provide information related to the biochemical composition and how it changes when a pathological state arises. FTIR spectroscopy has undergone rapid development over the last decades with a promise of easier, faster, and more impartial diagnoses within the biomedical field. However, thus far only a limited number of studies have addressed the use of FTIR spectroscopy in this field. This paper describes the main concepts related to FTIR and presents the latest research focusing on FTIR spectroscopy technology and its integration in lab-on-a-chip devices and their applications in the biological field. This review presents the potential use of FTIR to distinguish between healthy and pathological samples, with examples of early cancer detection, human immunodeficiency virus (HIV) detection, and routine blood analysis, among others. Finally, the study also reflects on the features of FTIR technology that can be applied in a lab-on-a-chip format and further developed for small healthcare devices that can be used for point-of-care monitoring purposes. To the best of the authors’ knowledge, no other published study has reviewed these topics. Therefore, this analysis and its results will fill this research gap.
Collapse
|
142
|
Huang X, Zhang Q, Zhang H, Lu Q. A Contemporary Update on the Diagnosis of Systemic Lupus Erythematosus. Clin Rev Allergy Immunol 2022; 63:311-329. [DOI: 10.1007/s12016-021-08917-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
|
143
|
Nelson VK, Pullaiah CP, Saleem Ts M, Roychoudhury S, Chinnappan S, Vishnusai B, Ram Mani R, Birudala G, Bottu KS. Natural Products as the Modulators of Oxidative Stress: An Herbal Approach in the Management of Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:161-179. [PMID: 36472822 DOI: 10.1007/978-3-031-12966-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate cancer is the most commonly diagnosed and frequently occurred cancer in the males globally. The current treatment strategies available to treat prostate cancer are not much effective and express various adverse effects. Hence, there is an urgent need to identify novel treatment that can improve patient outcome. From times immemorial, natural products are highly recognized for novel drug development for various diseases including cancer. Cancer cells generally maintain higher basal levels of reactive oxygen species (ROS) when compared to normal cells due to its high metabolic rate. However, initiation of excess intracellular ROS production can not be tolerated by the cancer cells and induce several cell death signals which are in contrast to normal cells. Therefore, small molecules of natural origin that induce ROS can potentially kill cancer cells in specific and provide a better opportunity to develop a novel drug therapy. In this review, we elaborated various classes of medicinal compounds and their mechanism of killing prostate cancer cells through direct or indirect ROS generation. This can generate a novel thought to develop promising drug candidate to treat prostate cancer patients.
Collapse
Affiliation(s)
- Vinod K Nelson
- Department of Pharmaceutical Chemistry, Raghavendra Institute of Pharmaceutical Education and Research (Autonomous), Anantapuramu, Andhra Pradesh, India.
| | - Chitikela P Pullaiah
- Department of Pharmacology, Siddha Central Research Institute, Central Council for Research in Siddha, Ministry of AYUSH, Chennai, Tamil Nadu, India
| | - Mohammed Saleem Ts
- College of Pharmacy, Riyadh ELM University, Riyadh, Kingdom of Saudi Arabia, Riyadh
| | | | - Sasikala Chinnappan
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Beere Vishnusai
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| | - Ravishankar Ram Mani
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Geetha Birudala
- Faculty of Pharmacy, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Kavya Sree Bottu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
144
|
Miao Z, Miao Z, Wang S, Wu H, Xu S. Exposure to imidacloprid induce oxidative stress, mitochondrial dysfunction, inflammation, apoptosis and mitophagy via NF-kappaB/JNK pathway in grass carp hepatocytes. FISH & SHELLFISH IMMUNOLOGY 2022; 120:674-685. [PMID: 34954370 DOI: 10.1016/j.fsi.2021.12.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Imidacloprid (IMI) is a neonicotinoid compound widely used in agriculture production, causing surface water pollution and threatening non-target organisms. The aim of this study was to analyze the effects of IMI on grass carp (Ctenopharyngodon idellus) liver cell (L8824) injury. The L8824 cells were exposed to different doses of IMI (65 mg/L, 130 mg/L and 260 mg/L) for 24 h. Our results demonstrated that exposure IMI significantly suppressed the activity of anti-oxidant enzymes (SOD, CAT and T-AOC) and accumulated oxidase (MDA) levels, and promoting reactive oxygen species (ROS) generation in L8824 cells. Additionally, mitochondrial membrane potential (ΔΨ m), mitochondria-derived ROS and ATP content and the MitoTracker Green indicated that IMI aggravated mitochondrial dysfunction, thereby inducing inflammation and enhancing pro-inflammatory genes (NF-kappaB, TNFα, IL-1β and IL-6) expressions. However, the addition of 2 mM N-acetyl-l-cysteine (NAC) can reverse these adverse effects of high-dose IMI- induced. Hence, ROS is the main factor of IMI-induced mitochondrial dysfunction and inflammation. We further found that exposure to IMI induced apoptosis, which is characterized by promoting release of cytochrome c (Cyt-C), and increasing the expression of Bcl-2-Associated X (BAX), cysteinyl aspartate specific proteinases (Caspase 9 and 3), decreasing Bcl-2 level. Immunofluorescent staining, qRT-PCR and Western Blot results indicated that IMI exposure also activated mitophagy, which was demonstrated by the expression of mitophagy-related genes (BNIP3, LC3B and P62). Conversely, scavenging JNK by SP600125(10 μM) alleviated the expression of mitochondrial apoptosis and mitophagy-related gene induced by high-dose IMI. Therefore, these results of study demonstrated that IMI-induced oxidative stress to regulate mitochondrial dysfunction, thus causing inflammation, mitochondrial apoptosis and mitophagy in grass carp hepatocytes through NF-kappaB/JNK pathway.
Collapse
Affiliation(s)
- Zhiruo Miao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhiying Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
145
|
Tang H, Wang J, Luo X, Wang Q, Chen J, Zhang X, Li Q, Gao C, Li Y, Han S. An Apoptosis-Related Gene Prognostic Index for Colon Cancer. Front Cell Dev Biol 2021; 9:790878. [PMID: 34957118 PMCID: PMC8692577 DOI: 10.3389/fcell.2021.790878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/11/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose: To construct an apoptosis-related gene prognostic index (ARGPI) for colon cancer, and clarify the molecular and immune characteristics of the risk subgroup as defined by the prognostic index and the benefits of adjuvant chemotherapy. Integrating the prognostic index and clinicopathological risk factors to better evaluate the prognosis of patients with colon cancer. Methods: Based on the colon adenocarcinoma data in the TCGA database, 20 apoptosis-related hub genes were screened by weighted gene co-expression network analysis (WGCNA). Five genes constituting the prognosis model were determined by Cox regression and verified by the Gene Expression Omnibus (GEO) dataset. Then the molecular and immune characteristics of risk subgroups defined by the prognostic index and the benefits of adjuvant chemotherapy were analyzed. Finally, nomograms integrating ARGPI and four clinicopathological risk factors were used to evaluate the prognosis of patients with colon cancer. Results: The ARGPI was constructed based on the FAS, VWA5A, SPTBN2, PCK1, and TIMP1 genes. In the TCGA cohort, patients in the low-risk subgroup had a longer progression-free interval (PFI) than patients in the high-risk subgroup, which coincided with the results of the GEO cohort. The comprehensive results showed that the high-risk score was related to the enrichment of the cell cycle pathway, high mutation rate of TP53 and KRAS, high infiltration of T regulatory cells (Tregs), immunosuppressive state, and less chemotherapeutic benefit. However, low-risk scores are related to drug metabolism-related pathways, low TP53 and KRAS mutation rates, high infiltration of plasma cells, more resting CD4 memory cells and eosinophils, active immune function, and better chemotherapeutic benefits. Receiver operating characteristic curve of two-year progress prediction evaluation showed that the ARGPI had higher prognostic accuracy than TNM staging. Nomograms integrating ARGPI and clinicopathological risk factors can better evaluate the prognosis of patients with colon cancer. Conclusions: The ARGPI is a promising biomarker for determining risk of colon cancer progression, molecular and immune characteristics, and chemotherapeutic benefit. This is a reliable method to predict the prognosis of colon cancer patients. It also can assist doctors in formulating more effective treatment strategies.
Collapse
Affiliation(s)
- Hanmin Tang
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Wang
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuehui Luo
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qi Wang
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Chen
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyue Zhang
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiuting Li
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chengyi Gao
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuesen Li
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Suxia Han
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
146
|
Zhao J, Jiang P, Guo S, Schrodi SJ, He D. Apoptosis, Autophagy, NETosis, Necroptosis, and Pyroptosis Mediated Programmed Cell Death as Targets for Innovative Therapy in Rheumatoid Arthritis. Front Immunol 2021; 12:809806. [PMID: 35003139 PMCID: PMC8739882 DOI: 10.3389/fimmu.2021.809806] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 01/13/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease that can lead to clinical manifestations of systemic diseases. Its leading features include chronic synovial inflammation and degeneration of the bones and joints. In the past decades, multiple susceptibilities for rheumatoid arthritis have been identified along with the development of a remarkable variety of drugs for its treatment; which include analgesics, glucocorticoids, nonsteroidal anti-inflammatory medications (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), and biologic response modifiers (bDMARDs). Despite the existence of many clinical treatment options, the prognosis of some patients remains poor due to complex mechanism of the disease. Programmed cell death (PCD) has been extensively studied and ascertained to be one of the essential pathological mechanisms of RA. Its dysregulation in various associated cell types contributes to the development of RA. In this review, we summarize the role of apoptosis, cell death-associated neutrophil extracellular trap formation, necroptosis, pyroptosis, and autophagy in the pathophysiology of RA to provide a theoretical reference and insightful direction to the discovery and development of novel therapeutic targets for RA.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
147
|
Guégan JP, Pollet J, Ginestier C, Charafe-Jauffret E, Peter ME, Legembre P. CD95/Fas suppresses NF-κB activation through recruitment of KPC2 in a CD95L/FasL-independent mechanism. iScience 2021; 24:103538. [PMID: 34917906 PMCID: PMC8666665 DOI: 10.1016/j.isci.2021.103538] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/18/2021] [Accepted: 11/25/2021] [Indexed: 12/28/2022] Open
Abstract
CD95 expression is preserved in triple-negative breast cancers (TNBCs), and CD95 loss in these cells triggers the induction of a pro-inflammatory program, promoting the recruitment of cytotoxic NK cells impairing tumor growth. Herein, we identify a novel interaction partner of CD95, Kip1 ubiquitination-promoting complex protein 2 (KPC2), using an unbiased proteomic approach. Independently of CD95L, CD95/KPC2 interaction contributes to the partial degradation of p105 (NF-κB1) and the subsequent generation of p50 homodimers, which transcriptionally represses NF-κB-driven gene expression. Mechanistically, KPC2 interacts with the C-terminal region of CD95 and serves as an adaptor to recruit RelA (p65) and KPC1, which acts as E3 ubiquitin-protein ligase promoting the degradation of p105 into p50. Loss of CD95 in TNBC cells releases KPC2, limiting the formation of the NF-κB inhibitory homodimer complex (p50/p50), promoting NF-κB activation and the production of pro-inflammatory cytokines, which might contribute to remodeling the immune landscape in TNBC cells.
Collapse
Affiliation(s)
| | - Justine Pollet
- Technological core facility BISCEm, Université de Limoges, US042 Inserm, UMS 2015 CNRS, Centre hospitalo-universitaire de Limoges, Limoges, France
| | - Christophe Ginestier
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Molecular Oncology "Equipe labellisée Ligue Contre le Cancer", Marseille, France
| | - Emmanuelle Charafe-Jauffret
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Molecular Oncology "Equipe labellisée Ligue Contre le Cancer", Marseille, France
| | - Marcus E. Peter
- Division Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Patrick Legembre
- Contrôle de la Réponse Immune B et lymphoproliférations, CRIBL, Université Limoges, UMR CNRS 7276, INSERM 1262, Limoges, France
| |
Collapse
|
148
|
Biondo M, Panuzzo C, Ali SM, Bozzaro S, Osella M, Bracco E, Pergolizzi B. The Dynamics of Aerotaxis in a Simple Eukaryotic Model. Front Cell Dev Biol 2021; 9:720623. [PMID: 34888305 PMCID: PMC8650612 DOI: 10.3389/fcell.2021.720623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/13/2021] [Indexed: 01/09/2023] Open
Abstract
In aerobic organisms, oxygen is essential for efficient energy production, and it acts as the last acceptor of the mitochondrial electron transport chain and as regulator of gene expression. However, excessive oxygen can lead to production of deleterious reactive oxygen species. Therefore, the directed migration of single cells or cell clumps from hypoxic areas toward a region of optimal oxygen concentration, named aerotaxis, can be considered an adaptive mechanism that plays a major role in biological and pathological processes. One relevant example is the development of O2 gradients when tumors grow beyond their vascular supply, leading frequently to metastasis. In higher eukaryotic organisms, aerotaxis has only recently begun to be explored, but genetically amenable model organisms suitable to dissect this process remain an unmet need. In this regard, we sought to assess whether Dictyostelium cells, which are an established model for chemotaxis and other motility processes, could sense oxygen gradients and move directionally in their response. By assessing different physical parameters, our findings indicate that both growing and starving Dictyostelium cells under hypoxic conditions migrate directionally toward regions of higher O2 concentration. This migration is characterized by a specific pattern of cell arrangement. A thickened circular front of high cell density (corona) forms in the cell cluster and persistently moves following the oxygen gradient. Cells in the colony center, where hypoxia is more severe, are less motile and display a rounded shape. Aggregation-competent cells forming streams by chemotaxis, when confined under hypoxic conditions, undergo stream or aggregate fragmentation, giving rise to multiple small loose aggregates that coordinately move toward regions of higher O2 concentration. By testing a panel of mutants defective in chemotactic signaling, and a catalase-deficient strain, we found that the latter and the pkbR1null exhibited altered migration patterns. Our results suggest that in Dictyostelium, like in mammalian cells, an intracellular accumulation of hydrogen peroxide favors the migration toward optimal oxygen concentration. Furthermore, differently from chemotaxis, this oxygen-driven migration is a G protein-independent process.
Collapse
Affiliation(s)
- Marta Biondo
- Department of Physics, INFN, University of Turin, Turin, Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
| | - Shahzad M Ali
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
| | - Salvatore Bozzaro
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
| | - Matteo Osella
- Department of Physics, INFN, University of Turin, Turin, Italy
| | - Enrico Bracco
- Department of Oncology, University of Turin, Turin, Italy
| | - Barbara Pergolizzi
- Department of Clinical and Biological Science, University of Turin, Turin, Italy
| |
Collapse
|
149
|
Mun H, Townley HE. Mechanism of Action of the Sesquiterpene Compound Helenalin in Rhabdomyosarcoma Cells. Pharmaceuticals (Basel) 2021; 14:ph14121258. [PMID: 34959659 PMCID: PMC8703838 DOI: 10.3390/ph14121258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most frequent soft tissue sarcoma in paediatric patients. Relapsed or refractory RMS shows very low 5-year survival rates, which urgently necessitates new chemotherapy agents. Herein, the sesquiterpene lactone, helenalin, was investigated as a new potential therapeutic agent against the embryonal RMS (eRMS) and alveolar RMS (aRMS) cells. We have evaluated in vitro antiproliferative efficacy of helenalin on RMS cells by the MTT and wound healing assay, and estimated several cell death pathways by flow cytometry, confocal microscopy and immunoblotting. It was shown that helenalin was able to increase reactive oxygen species levels, decrease mitochondrial membrane potential, trigger endoplasmic reticulum stress and deactivate the NF-κB pathway. Confirmation was obtained through the use of antagonistic compounds which alleviated the effects of helenalin in the corresponding pathways. Our findings demonstrate that oxidative stress is the pivotal mechanism of action of helenalin in promoting RMS cell death in vitro.
Collapse
Affiliation(s)
- Hakmin Mun
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK;
| | - Helen Elizabeth Townley
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK;
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Correspondence: ; Tel.: +44-01865283792
| |
Collapse
|
150
|
Qadir AS, Guégan JP, Ginestier C, Chaibi A, Bessede A, Charafe-Jauffret E, Macario M, Lavoué V, Rouge TDLM, Law C, Vilker J, Wang H, Stroup E, Schipma MJ, Bridgeman B, Murmann AE, Ji Z, Legembre P, Peter ME. CD95/Fas protects triple negative breast cancer from anti-tumor activity of NK cells. iScience 2021; 24:103348. [PMID: 34816102 PMCID: PMC8593563 DOI: 10.1016/j.isci.2021.103348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 11/04/2022] Open
Abstract
The apoptosis inducing receptor CD95/Fas has multiple tumorigenic activities. In different genetically engineered mouse models tumor-expressed CD95 was shown to be critical for cell growth. Using a combination of immune-deficient and immune-competent mouse models, we now establish that loss of CD95 in metastatic triple negative breast cancer (TNBC) cells prevents tumor growth by modulating the immune landscape. CD95-deficient, but not wild-type, tumors barely grow in an immune-competent environment and show an increase in immune infiltrates into the tumor. This growth reduction is caused by infiltrating NK cells and does not involve T cells or macrophages. In contrast, in immune compromised mice CD95 k.o. cells are not growth inhibited, but they fail to form metastases. In summary, we demonstrate that in addition to its tumor and metastasis promoting activities, CD95 expression by tumor cells can exert immune suppressive activities on NK cells, providing a new target for immune therapy.
Collapse
Affiliation(s)
- Abdul S. Qadir
- Division Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Christophe Ginestier
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univ, Epithelial Stem Cells and Cancer Lab, Equipe labellisée LIGUE contre le cancer, Marseille, France
| | - Assia Chaibi
- Explicyte, Cours de l’Argonne, 33000 Bordeaux, France
| | - Alban Bessede
- Explicyte, Cours de l’Argonne, 33000 Bordeaux, France
| | - Emmanuelle Charafe-Jauffret
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univ, Epithelial Stem Cells and Cancer Lab, Equipe labellisée LIGUE contre le cancer, Marseille, France
| | - Manon Macario
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univ, Epithelial Stem Cells and Cancer Lab, Equipe labellisée LIGUE contre le cancer, Marseille, France
| | - Vincent Lavoué
- Department of Gynecology, University Hospital of Rennes, Rennes, France
| | | | - Calvin Law
- Division Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jacob Vilker
- Division Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hongbin Wang
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Emily Stroup
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Matthew J. Schipma
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Bryan Bridgeman
- Division Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrea E. Murmann
- Division Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zhe Ji
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | | | - Marcus E. Peter
- Division Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|