101
|
Lloyd EM, Vakil JR, Yao Y, Sottos NR, Craig SL. Covalent Mechanochemistry and Contemporary Polymer Network Chemistry: A Marriage in the Making. J Am Chem Soc 2023; 145:751-768. [PMID: 36599076 DOI: 10.1021/jacs.2c09623] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Over the past 20 years, the field of polymer mechanochemistry has amassed a toolbox of mechanophores that translate mechanical energy into a variety of functional responses ranging from color change to small-molecule release. These productive chemical changes typically occur at the length scale of a few covalent bonds (Å) but require large energy inputs and strains on the micro-to-macro scale in order to achieve even low levels of mechanophore activation. The minimal activation hinders the translation of the available chemical responses into materials and device applications. The mechanophore activation challenge inspires core questions at yet another length scale of chemical control, namely: What are the molecular-scale features of a polymeric material that determine the extent of mechanophore activation? Further, how do we marry advances in the chemistry of polymer networks with the chemistry of mechanophores to create stress-responsive materials that are well suited for an intended application? In this Perspective, we speculate as to the potential match between covalent polymer mechanochemistry and recent advances in polymer network chemistry, specifically, topologically controlled networks and the hierarchical material responses enabled by multi-network architectures and mechanically interlocked polymers. Both fundamental and applied opportunities unique to the union of these two fields are discussed.
Collapse
Affiliation(s)
- Evan M Lloyd
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States
| | - Jafer R Vakil
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States.,NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States
| | - Yunxin Yao
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States.,NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States
| | - Nancy R Sottos
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States.,Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States.,NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States
| |
Collapse
|
102
|
Zhong W, Song Y, Yang S, Gong L, Shi D, Dong W, Zhang H. A monocarboxylic acid induction strategy to prepare tough and thermo-reversible poly(vinyl alcohol) physical gels with high transparency. SOFT MATTER 2023; 19:355-360. [PMID: 36598067 DOI: 10.1039/d2sm01417c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To date, poly(vinyl alcohol) (PVA) gels attract tremendous attention because of their potential applications in a wide variety of fields. Here, a novel monocarboxylic acid induction strategy was developed to fabricate tough and thermo-reversible PVA physical gels by introducing monocarboxylic acids into the PVA/dimethyl sulfoxide (DMSO) system. The obtained PVA gels exhibited appropriate crystalline architectures, leading to superior mechanical properties and high transparency. Furthermore, the role of monocarboxylic acids in the formation of PVA physical gels and the effects of alkyl chain length, concentration, and the induction time of monocarboxylic acids on the properties of PVA physical gels were also investigated.
Collapse
Affiliation(s)
- Weifeng Zhong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yufang Song
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Shuai Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Lihao Gong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Dongjian Shi
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Weifu Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Hongji Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
103
|
Xie Y, Lv X, Li Y, Lv A, Sui X, Tian S, Jiang L, Li R, Sun S. Carbon Nanotubes and Silica@polyaniline Core-Shell Particles Synergistically Enhance the Toughness and Electrical Conductivity in Hydrophobic Associated Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1299-1308. [PMID: 36630713 DOI: 10.1021/acs.langmuir.2c03128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Soft, conductive, and stretchable sensors are highly desirable in many applications, including artificial skin, biomonitoring patches, and so on. Recently, a combination of good electrical and mechanical properties was regarded as the most important evaluation criterion for judging whether hydrogel sensors are suitable for practical applications. Herein, we demonstrate a novel carboxylated carbon nanotube (MWCNT-COOH)-embedded P(AM/LMA)/SiO2@PANI hydrogel. The hydrogel benefits from a double-network structure (hydrogen bond cross-linking and hydrophobic connectivity network) due to the role of MWCNT-COOH and SiO2@PANI as cross-linkers, thus resulting in tough composite hydrogels. The obtained P(AM/LMA)/SiO2@PANI/MWCNT-COOH hydrogels exhibited high tensile strength (1939 kPa), super stretchability (3948.37%), and excellent strain sensitivity (gauge factor = 11.566 at 100-1100% strain). Obviously, MWCNT-COOH not only improved the electrical conductivity but also enhanced the mechanical properties of the hydrogel. Therefore, the integration of MWCNT-COOH and SiO2@PANI-based hydrogel strain sensors will display broad application in sophisticated intelligence, soft robotics, bionic prosthetics, personal health care, and other fields using inexpensive, green, and easily available biomass.
Collapse
Affiliation(s)
- Yuhui Xie
- School of Chemical Engineering, Changchun University of Technology, Changchun130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun130012, China
| | - Xue Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun130012, China
| | - Youqiang Li
- School of Chemical Engineering, Changchun University of Technology, Changchun130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun130012, China
| | - Aowei Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun130012, China
| | - Xinyi Sui
- School of Chemical Engineering, Changchun University of Technology, Changchun130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun130012, China
| | - Song Tian
- School of Chemical Engineering, Changchun University of Technology, Changchun130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun130012, China
| | - Li'an Jiang
- School of Chemical Engineering, Changchun University of Technology, Changchun130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun130012, China
| | - Ruifeng Li
- School of Chemical Engineering, Changchun University of Technology, Changchun130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun130012, China
| | - Shulin Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun130012, China
| |
Collapse
|
104
|
Pourmadadi M, Farokh A, Rahmani E, Eshaghi MM, Aslani A, Rahdar A, Ferreira LFR. Polyacrylic acid mediated targeted drug delivery nano-systems: A review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104169] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
105
|
Sun X, Shi K, Mo S, Mei J, Rong J, Wang S, Zheng X, Li Z. A sustainable reinforced-concrete-structured sponge for highly-recyclable oil adsorption. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
106
|
Zeng LY, Wang XC, Wen Y, Chen HM, Ni HL, Yu WH, Bai YF, Zhao KQ, Hu P. Anti-freezing dual-network hydrogels with high-strength, self-adhesive and strain-sensitive for flexible sensors. Carbohydr Polym 2023; 300:120229. [DOI: 10.1016/j.carbpol.2022.120229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/19/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
|
107
|
Construction and characterization of highly stretchable ionic conductive hydrogels for flexible sensors with good anti-freezing performance. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
108
|
Han W, Wang S. Advances in Hemostatic Hydrogels That Can Adhere to Wet Surfaces. Gels 2022; 9:2. [PMID: 36661770 PMCID: PMC9858274 DOI: 10.3390/gels9010002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Currently, uncontrolled bleeding remains a serious problem in emergency, surgical and battlefield environments. Despite the specific properties of available hemostatic agents, sealants, and adhesives, effective hemostasis under wet and dynamic conditions remains a challenge. In recent years, polymeric hydrogels with excellent hemostatic properties have received much attention because of their adjustable mechanical properties, high porosity, and biocompatibility. In this review, to investigate the role of hydrogels in hemostasis, the mechanisms of hydrogel hemostasis and adhesion are firstly elucidated, the adhesion design strategies of hemostatic hydrogels in wet environments are briefly introduced, and then, based on a comprehensive literature review, the studies and in vivo applications of wet-adhesive hemostatic hydrogels in different environments are summarized, and the improvement directions of such hydrogels in future studies are proposed.
Collapse
Affiliation(s)
| | - Shige Wang
- School of Materials and Chemistry, The University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
109
|
Ma X, Maimaitiyiming X. High Electrical Conductivity and Low Temperature Resistant Double Network Hydrogel Ionic Conductor as a Flexible Sensor and Quasi‐Solid Electrolyte. ChemistrySelect 2022. [DOI: 10.1002/slct.202203285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Xudong Ma
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 Xinjiang PR China
| | - Xieraili Maimaitiyiming
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 Xinjiang PR China
| |
Collapse
|
110
|
Deng X, Wang W, Wei N, Luo C. From grape seed extract to highly sensitive sensors with adhesive, self-healable and biocompatible properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
111
|
Elango J, Lijnev A, Zamora-Ledezma C, Alexis F, Wu W, Marín JMG, Sanchez de Val JEM. The Relationship of Rheological Properties and the Performance of Silk Fibroin Hydrogels in Tissue Engineering Application. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
112
|
A Low-modulus, Adhesive, and Highly Transparent Hydrogel for Multi-use Flexible Wearable Sensors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
113
|
Wang C, Sun J, Long Y, Wang R, Qu Y, Peng L, Ren H, Gao S. A re-crosslinkable composite gel based on curdlan for lost circulation control. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
114
|
Liu Y, Shen S, Wu Y, Wang M, Cheng Y, Xia H, Jia R, Liu C, Wang Y, Xia Y, Cheng X, Yue Y, Xie Z. Percutaneous Electroosmosis of Berberine-Loaded Ca 2+ Crosslinked Gelatin/Alginate Mixed Hydrogel. Polymers (Basel) 2022; 14:polym14235101. [PMID: 36501495 PMCID: PMC9737946 DOI: 10.3390/polym14235101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Flexible conductive hydrogel has been driven by scientific breakthroughs and offers a wide variety of applications, including sensors, electronic skins, biomedicine, energy storage, etc. Based on the mixed-ion crosslinking method, gelatin and sodium alginate (Gel-Alg) composite hydrogels were successfully prepared using Ca2+ crosslinking. The migration behavior of berberine hydrochloride (BBH) in the matrix network structure of Gel-Alg hydrogel with a certain pore size under an electric field was studied, and the transdermal effect of berberine hydrochloride under an electric field was also studied. The experimental results show that Gel-Alg has good flexibility and conductivity, and electrical stimulation can enhance the transdermal effect of drugs. Gel-Alg composite hydrogel may be a new material with potential application value in future biomedical directions.
Collapse
Affiliation(s)
- Yinyin Liu
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Si Shen
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Yifang Wu
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Mengmeng Wang
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Yongfeng Cheng
- Clinical College of Anhui Medical University, Hefei 230031, China
- School of Life Science, University of Science and Technology of China, Hefei 230027, China
- Correspondence: (Y.C.); (H.X.); Tel./Fax: +86-13965033210 (H.X.)
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China
- Correspondence: (Y.C.); (H.X.); Tel./Fax: +86-13965033210 (H.X.)
| | - Ruoyang Jia
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Chang Liu
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Yu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Ying Xia
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Xiaoman Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Yan Yue
- College of Pharmacy, Anhui University of Chinese Medicine, No. 350, Long Zi Hu Road, Hefei 230012, China
| | - Zili Xie
- Anhui Institute for Food and Drug Control, Hefei 230051, China
| |
Collapse
|
115
|
Dong C, Lu M, Fan H, Jin Z. Cooperation of Zr(IV)-N and Zr(IV)-O coordinate bonds of Zr(IV)-amide ensures the transparent and tough polyacrylamide hydrogels. J Mater Chem B 2022; 10:9258-9265. [PMID: 36326062 DOI: 10.1039/d2tb01496c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Developing advanced soft machines and tissue engineering for load-bearing cartilage or tendons requires tough hydrogels. However, the construction of double or triple crosslinked networks for these tough hydrogels, i.e., a strong network crosslinked by covalent bonds and one or two sacrificial networks built by hydrogen bonds or coordinate bonds, generally asks for multiple steps. It remains a challenge to develop hydrogels with a combination of excellent toughness and a high content of water through the time-saving one-pot process. This study demonstrates that this puzzle could be solved through engineering zirconium(IV)-amide coordinate bonds. To be specific, the combination of strong Zr(IV)-O and moderate Zr(IV)-N coordinate bonds in Zr-polyacrylamide (Zr-PAAm) hydrogels has the advantage that they are usually generated through multiple cross-linked networks. Compared to chemical crosslinked PAAm hydrogels, the highly transparent Zr-PAAm hydrogels crosslinked by Zr(NO3)4 displayed a 26-times increase in fracture stress, 4-times in fracture strain, 6-times in elastic modulus, and over 250-times in toughness. Besides, the mechanical properties of Zr-PAAm hydrogels could be altered over a wide range via changing the anion species, showing a dependence on the Hofmeister effect. The co-existence of Zr(IV)-N and Zr(IV)-O has been confirmed through XPS and FTIR characterizations. In particular, the effect of Zr(IV)-N in Zr-PAAm hydrogels has been verified by comparing the property changes of Zr-PAAm hydrogels before and after swelling in water, in which the Zr(IV)-N in the as-prepared hydrogels was replaced by Zr(IV)-O in the swollen gels. With ultra-stretchability and high transparency, the colorless Zr-PAAm hydrogels displayed rich interference colors under stretching, which brought great potential in anti-counterfeiting materials.
Collapse
Affiliation(s)
- Chenglong Dong
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| | - Mengfan Lu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| | - Hailong Fan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Zhaoxia Jin
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, People's Republic of China.
| |
Collapse
|
116
|
Lyu B, Ren J, Kang B, Lang Q, Tu J, Bu J, Yang X, Wang H, Gao D, Ma J. Excellent compression performance gelatin/polyacrylamide/vinyl modified SiO2 composite DN hydrogels with shape memory. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
117
|
Li X, Cao L, Chen LP. Multifunctional ionic conductive hydrogels based on gelatin and 2-acrylamido-2-methylpropane sulfonic acid as strain sensors. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
118
|
Zheng G, Gao W, Li X, Wu Z, Cao LA, Feng E, Yang Z. A κ-Carrageenan-Containing Organohydrogel with Adjustable Transmittance for an Antifreezing, Nondrying, and Solvent-Resistant Strain Sensor. Biomacromolecules 2022; 23:4872-4882. [DOI: 10.1021/acs.biomac.2c01044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guangchao Zheng
- College of Chemistry and Chemical Engineering, Ningxia Normal University, 161 Beiguan West Road, Guyuan 756000, China
| | - Wei Gao
- College of Chemistry and Chemical Engineering, Ningxia Normal University, 161 Beiguan West Road, Guyuan 756000, China
| | - Xue Li
- College of Chemistry and Chemical Engineering, Ningxia Normal University, 161 Beiguan West Road, Guyuan 756000, China
| | - Zhiqiang Wu
- College of Chemistry and Chemical Engineering, Ningxia Normal University, 161 Beiguan West Road, Guyuan 756000, China
| | - Lin-An Cao
- College of Chemistry and Chemical Engineering, Ningxia Normal University, 161 Beiguan West Road, Guyuan 756000, China
| | - Enke Feng
- College of Chemistry and Chemical Engineering, Ningxia Normal University, 161 Beiguan West Road, Guyuan 756000, China
| | - Zhiming Yang
- College of Chemistry and Chemical Engineering, Ningxia Normal University, 161 Beiguan West Road, Guyuan 756000, China
| |
Collapse
|
119
|
Cui J, Chen J, Ni Z, Dong W, Chen M, Shi D. High-Sensitivity Flexible Sensor Based on Biomimetic Strain-Stiffening Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47148-47156. [PMID: 36205693 DOI: 10.1021/acsami.2c15203] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recently, flexible wearable and implantable electronic devices have attracted enormous interest in biomedical applications. However, current bioelectronic systems have not solved the problem of mechanical mismatch of tissue-electrode interfaces. Therefore, the biomimetic hydrogel with tissue-like mechanical properties is highly desirable for flexible electronic devices. Herein, we propose a strategy to fabricate a biomimetic hydrogel with strain-stiffening property via regional chain entanglements. The strain-stiffening property of the biomimetic hydrogel is realized by embedding highly swollen poly(acrylate sodium) microgels to act as the microregions of dense entanglement in the soft polyacrylamide matrix. In addition, poly(acrylate sodium) microgels can release Na+ ions, endowing hydrogel with electrical signals to serve as strain sensors for detecting different human movements. The resultant sensors own a low Young's modulus (22.61-112.45 kPa), high nominal tensile strength (0.99 MPa), and high sensitivity with a gauge factor up to 6.77 at strain of 300%. Based on its simple manufacture process, well mechanical matching suitability, and high sensitivity, the as-prepared sensor might have great potential for a wide range of large-scale applications such as wearable and implantable electronic devices.
Collapse
Affiliation(s)
- Jianbing Cui
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| | - Jiwei Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| | - Zhongbin Ni
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| | - Weifu Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| | - Mingqing Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| | - Dongjian Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| |
Collapse
|
120
|
Ye W, Guo M, Li Q, Wang L, Zhao C, Xiang D, Lai J, Li H, Li Z, Wu Y. High strength, anti‐freezing, and conductive poly(vinyl alcohol)/urea ionic hydrogels as soft sensor. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wenhao Ye
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
| | - Meiling Guo
- The Collaborative Innovation Center of Functional Materials and Devices, School of Materials and Environmental Engineering Chengdu Technological University Chengdu China
| | - Qing Li
- School of New Energy and Materials Southwest Petroleum University Chengdu China
| | - Li Wang
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Chuanxia Zhao
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Dong Xiang
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Jingjuan Lai
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Hui Li
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Zhenyu Li
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| | - Yuanpeng Wu
- School of New Energy and Materials Southwest Petroleum University Chengdu China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest Petroleum University Chengdu China
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application Southwest Petroleum University Chengdu China
| |
Collapse
|
121
|
Wei J, Wang J, Shao Z. Bioinspired cellulose nanofibrils and
NaCl
composited polyacrylamide hydrogels with improved toughness, resilience, and strain‐sensitive conductivity. J Appl Polym Sci 2022. [DOI: 10.1002/app.53188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jie Wei
- Beijing Engineering Research Center of Cellulose and Its Derivatives, School of Materials Science and Engineering Beijing Institute of Technology Beijing People's Republic of China
- Advanced Materials Research Center Petrochemical Research Institute, PetroChina Company Limited Beijing People's Republic of China
| | - Jianquan Wang
- Beijing Engineering Research Center of Cellulose and Its Derivatives, School of Materials Science and Engineering Beijing Institute of Technology Beijing People's Republic of China
| | - Ziqiang Shao
- Beijing Engineering Research Center of Cellulose and Its Derivatives, School of Materials Science and Engineering Beijing Institute of Technology Beijing People's Republic of China
| |
Collapse
|
122
|
Liang Y, Ding Q, Wang H, Wu Z, Li J, Li Z, Tao K, Gui X, Wu J. Humidity Sensing of Stretchable and Transparent Hydrogel Films for Wireless Respiration Monitoring. NANO-MICRO LETTERS 2022; 14:183. [PMID: 36094761 PMCID: PMC9468213 DOI: 10.1007/s40820-022-00934-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/02/2022] [Indexed: 05/31/2023]
Abstract
Respiratory monitoring plays a pivotal role in health assessment and provides an important application prospect for flexible humidity sensors. However, traditional humidity sensors suffer from a trade-off between deformability, sensitivity, and transparency, and thus the development of high-performance, stretchable, and low-cost humidity sensors is urgently needed as wearable electronics. Here, ultrasensitive, highly deformable, and transparent humidity sensors are fabricated based on cost-effective polyacrylamide-based double network hydrogels. Concomitantly, a general method for preparing hydrogel films with controllable thickness is proposed to boost the sensitivity of hydrogel-based sensors due to the extensively increased specific surface area, which can be applied to different polymer networks and facilitate the development of flexible integrated electronics. In addition, sustainable tapioca rich in hydrophilic polar groups is introduced for the first time as a second cross-linked network, exhibiting excellent water adsorption capacity. Through the synergistic optimization of structure and composition, the obtained hydrogel film exhibits an ultrahigh sensitivity of 13,462.1%/%RH, which is unprecedented. Moreover, the hydrogel film-based sensor exhibits excellent repeatability and the ability to work normally under stretching with even enhanced sensitivity. As a proof of concept, we integrate the stretchable sensor with a specially designed wireless circuit and mask to fabricate a wireless respiratory interruption detection system with Bluetooth transmission, enabling real-time monitoring of human health status. This work provides a general strategy to construct high-performance, stretchable, and miniaturized hydrogel-based sensors as next-generation wearable devices for real-time monitoring of various physiological signals.
Collapse
Affiliation(s)
- Yuning Liang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jianye Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zhenyi Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
123
|
|
124
|
Zhang HJ, Wang X, Yang Y, Sun TL, Zhang A, You X. Effect of Hydrophobic Side Group on Structural Heterogeneities and Mechanical Performance of Gelatin-Based Hydrogen-Bonded Hydrogel. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hui Jie Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi’an, Shaanxi 710021, China
| | - Xinyi Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi’an, Shaanxi 710021, China
| | - Yuxi Yang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi’an, Shaanxi 710021, China
| | - Tao Lin Sun
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Aokai Zhang
- Changzhou Institute of Industry Technology, Changzhou, Jiangsu 213164, China
| | - Xiangyu You
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi’an, Shaanxi 710021, China
| |
Collapse
|
125
|
Peng K, Zhang J, Yang J, Lin L, Gan Q, Yang Z, Chen Y, Feng C. Green Conductive Hydrogel Electrolyte with Self-Healing Ability and Temperature Adaptability for Flexible Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39404-39419. [PMID: 35981091 DOI: 10.1021/acsami.2c11973] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conductive hydrogels (CHs) are ideal electrolyte materials for the preparation of flexible supercapacitors (FSCs) due to their excellent electrochemical properties, mechanical properties, and deformation restorability. However, most of the reported CHs are prepared by the chemical crosslinking of synthetic polymers and thus usually display the disadvantages of poor self-healing abilities and nonadaptability at environmental temperatures, which greatly limits their application. To overcome these problems, in the present work, we constructed a sodium alginate-borax/gelatin double-network conductive hydrogel (CH) by a dynamic crosslinking between sodium alginate (SA) and borax via borate bonds and hydrogen bonding between amino acids in gelatin and SA chains. The CH displays an excellent elongation of 305.7% and fast self-healing behavior in 60 s. Furthermore, a phase-change material (PCM), Na2SO4·10H2O, was introduced into the CH, which, combined with the nucleation effect of borax, improved the ionic conductivity and temperature adaptability of the CH. The flexible supercapacitor (FSC) assembled with the obtained CH as the electrolyte exhibits a high specific capacitance of 185.3 F·g-1 at a current density of 0.25 A·g-1 and good stability with 84% capacitance retention after 10 000 cycles and excellent temperature tolerance with a resistance variation of 2.11 Ω in the temperature range of -20-60 °C. This green CH shows great application potential as an electrolyte for FSCs, and the preparation method can be potentially expanded to the fabrication of self-repairing FSCs with good temperature adaptabilities.
Collapse
Affiliation(s)
- Kelin Peng
- Beijing Institute of Technology, Beijing 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, P. R. China
| | - Jinghua Zhang
- Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jueying Yang
- Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Lizhi Lin
- Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Qiang Gan
- Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Ziming Yang
- Beijing Institute of Technology, Beijing 100081, P. R. China
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524091, P. R. China
| | - Yu Chen
- Beijing Institute of Technology, Beijing 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, P. R. China
| | - Changgen Feng
- Beijing Institute of Technology, Beijing 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, P. R. China
| |
Collapse
|
126
|
Miao L, Wang X, Li S, Tu Y, Hu J, Huang Z, Lin S, Gui X. An Ultra-Stretchable Polyvinyl Alcohol Hydrogel Based on Tannic Acid Modified Aramid Nanofibers for Use as a Strain Sensor. Polymers (Basel) 2022; 14:polym14173532. [PMID: 36080607 PMCID: PMC9460429 DOI: 10.3390/polym14173532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The mechanical performance is critical for hydrogels that are used as strain sensors. p-Aramid nanofiber (ANF) is preferable as an additive to the reinforce the mechanical performance of a poly(vinyl alcohol) (PVA). However, due to the limited hydrogen bond sites, the preparation of ultra-stretchable, ANF-based hydrogel strain sensor is still a challenge. Herein, we reported an ultra-stretchable PVA hydrogel sensor based on tea stain-inspired ANFs. Due to the presence of numerous phenol groups in the tannic acid (TA) layer, the interaction between PVA and the ANFs was significantly enhanced even though the mass ratio of TA@ANF in the hydrogel was 2.8 wt‰. The tensile breaking modulus of the PVA/TA@ANF/Ag hydrogel sensor was increased from 86 kPa to 326 kPa, and the tensile breaking elongation was increased from 356% to 602%. Meanwhile, the hydrogel became much softer, and no obvious deterioration of the flexibility was observed after repeated use. Moreover, Ag NPs were formed in situ on the surfaces of the ANFs, which imparted the sensor with electrical conductivity. The hydrogel-based strain sensor could be used to detect the joint movements of a finger, an elbow, a wrist, and a knee, respectively. This ultra-stretchable hydrogel described herein was a promising candidate for detecting large-scale motions.
Collapse
Affiliation(s)
- Lei Miao
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan 528000, China
| | - Xiao Wang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi Li
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Tu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou 510650, China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou 510650, China
- Incubator of Nanxiong CAS Co., Ltd., Nanxiong 512400, China
| | - Jiwen Hu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou 510650, China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou 510650, China
- Incubator of Nanxiong CAS Co., Ltd., Nanxiong 512400, China
- Correspondence: ; Tel.: +86-020-85232307
| | - Zhenzhu Huang
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou 510650, China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou 510650, China
- Incubator of Nanxiong CAS Co., Ltd., Nanxiong 512400, China
| | - Shudong Lin
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou 510650, China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou 510650, China
- Incubator of Nanxiong CAS Co., Ltd., Nanxiong 512400, China
| | - Xuefeng Gui
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou 510650, China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou 510650, China
- Incubator of Nanxiong CAS Co., Ltd., Nanxiong 512400, China
| |
Collapse
|
127
|
Zhao Y, Jin L, Liu X, Liu X, Dong S, Chen Y, Li X, Lv X, He M. Novel high strength PVA/soy protein isolate composite hydrogels and their properties. Front Chem 2022; 10:984652. [PMID: 36072706 PMCID: PMC9441482 DOI: 10.3389/fchem.2022.984652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/26/2022] [Indexed: 11/14/2022] Open
Abstract
High strength polyvinyl alcohol (PVA)/soy protein isolate (SPI) composite hydrogels (EPSG) were constructed by the introduction of PVA into SPI through the crosslinking with epichlorohydrin (ECH) and a freezing-thawing process. The EPSG hydrogels were characterized by scanning electron microscopy, FTIR, X-ray diffraction and compressive test. The results revealed that chemical crosslinking interactions occurred for SPI and PVA during the fabrication process. The composite hydrogels exhibited a homogenous porous structure, indicating certain miscibility between PVA and SPI. The introduction of PVA increased the compressive strength of SPI hydrogels greatly, which could reach as high as 5.38 MPa with the water content ratio of 89.5%. Moreover, the water uptake ratio of completely dried SPI hydrogel (namely xerogel) decreased gradually from 327.4% to 148.1% with the incorporation of PVA, showing a better potential as implants. The cytocompatibility and hemocompatibility of the EPSG hydrogels were evaluated by a series of in vitro experiments. The results showed that the EPSG hydrogels had no cytotoxicity (cell viability values were above 86.7%), good biocompatibility and hemocompatibility, showing potential applications as a direct blood contact material in the field of tissue engineering.
Collapse
Affiliation(s)
- Yanteng Zhao
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Lu Jin
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Xin Liu
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xue Liu
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuling Dong
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yun Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xianyu Li
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- *Correspondence: Xianyu Li, ; Xianping Lv, ; Meng He,
| | - Xianping Lv
- Department of Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xianyu Li, ; Xianping Lv, ; Meng He,
| | - Meng He
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, China
- *Correspondence: Xianyu Li, ; Xianping Lv, ; Meng He,
| |
Collapse
|
128
|
Zhao Y, Cui J, Qiu X, Yan Y, Zhang Z, Fang K, Yang Y, Zhang X, Huang J. Manufacturing and post-engineering strategies of hydrogel actuators and sensors: From materials to interfaces. Adv Colloid Interface Sci 2022; 308:102749. [PMID: 36007285 DOI: 10.1016/j.cis.2022.102749] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
Living bodies are made of numerous bio-sensors and actuators for perceiving external stimuli and making movement. Hydrogels have been considered as ideal candidates for manufacturing bio-sensors and actuators because of their excellent biocompatibility, similar mechanical and electrical properties to that of living organs. The key point of manufacturing hydrogel sensors/actuators is that the materials should not only possess excellent mechanical and electrical properties but also form effective interfacial connections with various substrates. Traditional hydrogel normally shows high electrical resistance (~ MΩ•cm) with limited mechanical strength (<1 MPa), and it is prone to fatigue fracture during continuous loading-unloading cycles. Just like iron should be toughened and hardened into steel, manufacturing and post-treatment processes are necessary for modifying hydrogels. Besides, advanced design and manufacturing strategies can build effective interfaces between sensors/actuators and other substrates, thus enhancing the desired mechanical and electrical performances. Although various literatures have reviewed the manufacture or modification of hydrogels, the summary regarding the post-treatment strategies and the creation of effective electrical and mechanically sustainable interfaces are still lacking. This paper aims at providing an overview of the following topics: (i) the manufacturing and post-engineering treatment of hydrogel sensors and actuators; (ii) the processes of creating sensor(actuator)-substrate interfaces; (iii) the development and innovation of hydrogel manufacturing and interface creation. In the first section, the manufacturing processes and the principles for post-engineering treatments are discussed, and some typical examples are also presented. In the second section, the studies of interfaces between hydrogels and various substrates are reviewed. Lastly, we summarize the current manufacturing processes of hydrogels, and provide potential perspectives for hydrogel manufacturing and post-treatment methods.
Collapse
Affiliation(s)
- Yiming Zhao
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Jiuyu Cui
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yonggan Yan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Zekai Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Kezhong Fang
- Lunan Pharmaceutical Group Co., LTD, Linyi 276005, China
| | - Yu Yang
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Linyi 276005, China
| | - Xiaolai Zhang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jun Huang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China.
| |
Collapse
|
129
|
Zhang Q, Li C, Du X, Zhong H, He Z, Hong P, Li Y, Jing Z. High strength, tough and self-healing chitosan-based nanocomposite hydrogels based on the synergistic effects of hydrogen bond and coordination bond. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
130
|
Liu W, Gao R, Yang C, Feng Z, Ou-Yang W, Pan X, Huang P, Zhang C, Kong D, Wang W. ECM-mimetic immunomodulatory hydrogel for methicillin-resistant Staphylococcus aureus-infected chronic skin wound healing. SCIENCE ADVANCES 2022; 8:eabn7006. [PMID: 35857459 PMCID: PMC9269894 DOI: 10.1126/sciadv.abn7006] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The treatment of difficult-to-heal wounds remains a substantial clinical challenge due to deteriorative tissue microenvironment including the loss of extracellular matrix (ECM), excessive inflammation, impaired angiogenesis, and bacterial infection. Inspired by the chemical components, fibrous structure, and biological function of natural ECM, antibacterial and tissue environment-responsive glycopeptide hybrid hydrogel was developed for chronic wound healing. The hydrogel can facilitate the cell proliferation and macrophage polarization to M2 phenotype, and show potent antibacterial efficacy against both Gram-negative and Gram-positive bacteria. Significantly, the glycopeptide hydrogel accelerated the reconstruction of methicillin-resistant Staphylococcus aureus (MRSA)-infected full-thickness diabetic and scalding skin by orchestrating a pro-regenerative response indicated by abundant M2-type macrophages, attenuated inflammation, and promoted angiogenesis. Collectively, ECM-mimetic and immunomodulatory glycopeptide hydrogel is a promising multifunctional dressing to reshape the damaged tissue environment without additional drugs, exogenous cytokines, or cells, providing an effective strategy for the repair and regeneration of chronic cutaneous wounds.
Collapse
Affiliation(s)
- Wenshuai Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, China
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Rui Gao
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Chunfang Yang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Wenbin Ou-Yang
- Structural Heart Disease Center, National Center for Cardiovascular Disease, China and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xiangbin Pan
- Structural Heart Disease Center, National Center for Cardiovascular Disease, China and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Deling Kong
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
- Key Laboratory of Innovative Cardiovascular Devices, Chinese Academy of Medical Sciences, Beijing 100037, China
- Corresponding author. ,
| |
Collapse
|
131
|
Zhang X, Zhang G, Huang X, He J, Bai Y, Zhang L. Antifreezing and Nondrying Sensors of Ionic Hydrogels with a Double-Layer Structure for Highly Sensitive Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30256-30267. [PMID: 35749282 DOI: 10.1021/acsami.2c08589] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Freezing and dehydration together with interfacial failure are capable of causing the functional reduction of hydrogels for sensing applications. Herein, we develop a multifunctional bilayer that consists of a mussel-inspired adhesive layer and a functionally ionic layer that is composed of sodium p-styrene sulfonate (SSS) and an ionic liquid of [BMIM]Cl. The adhesive layer enables the strong adhesion of the bilayer to the surface of the skin. The introduction of ionic elements of SSS-[BMIM]Cl not only provides the bilayer with sensing adaptability in a wide temperature range of -25 to 75 °C, but also endows it with elastic, stretchable, self-healing, and conductive features. These mechanical properties are utilized to assemble a wearable sensor that has unprecedented sensitivity and reusability in monitoring human motions, including stretching, pulsing, frowning, and speaking. It is thus expected that the concept in this work would provide a promising route to design soft sensing devices that can work in a wide temperature range.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- School of Materials Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Gui Zhang
- School of Materials Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Xinhua Huang
- School of Materials Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Jinmei He
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150000, P. R. China
| | - Yongping Bai
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150000, P. R. China
| | - Lidong Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
132
|
Cheng C, Ding K, Du W, Wang D, Zhang X. Ultra-sensitive and electrical-mechanical dual self-healing ionic hydrogel-based wearable sensor for human motion detection. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
133
|
Huang H, Zhang X, Dong Z, Zhao X, Guo B. Nanocomposite conductive tough hydrogel based on metal coordination reinforced covalent Pluronic F-127 micelle network for human motion sensing. J Colloid Interface Sci 2022; 625:817-830. [PMID: 35772209 DOI: 10.1016/j.jcis.2022.06.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 01/06/2023]
Abstract
The design of conductive hydrogels integrating anti-fatigue, high sensitivity, strong mechanical property and good sterilization performance remains a challenge. We innovatively introduced metal coordination in covalently crosslinked Pluronic F-127 micelle network and synthesized nanocomposite conductive tough hydrogel through the combination of covalent crosslinking, metal coordination and silver nanowire reinforcement. Compared with pure diacylated PF127 hydrogel (PF127), the tensile strength of PF-AA-AM-Al3+/Ag0.25 hydrogel reaching 1.4 MPa was about 10 times than that of PF127. The toughness of PF-AA-AM-Al3+/Ag0.25 reaches 1.88 MJ/m3. Compared with PF-AA-AM-Al3+, the introduction of silver nanowires increased the fatigue life of PF-AA-AM-Al3+/Ag0.25 by 200% (31837 cycles), 170% (12804 cycles) and 1022% (511 cycles) under 100%, 120% and 150% ultimate tensile strains, respectively. Besides, the PF-AA-AM-Al3+/Ag0.25 showed strain sensitivity to small deformation (Gauge factor = 2.42) in wearable tests on hands and knees. In addition, the PF-AA-AM-Al3+/Ag0.25 had good cytocompatibility and antibacterial performance that bacteria killing ratio of 98% to S. aureus and 99% to E. coli. Finally, a viscoelastic numerical constitutive model was established based on finite element method to study the damage failure history of the material. Comparative analysis showed that local stress concentration was the main factor leading to the failure of hydrogel.
Collapse
Affiliation(s)
- Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Aircraft Strength Research Institute, Aviation Industries of China, Xi'an, 710072, China
| | - Xuanjia Zhang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Zhicheng Dong
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
134
|
High-Strength, Conductive, Antifouling, and Antibacterial Hydrogels for Wearable Strain Sensors. ACS Biomater Sci Eng 2022; 8:2624-2635. [PMID: 35512312 DOI: 10.1021/acsbiomaterials.1c01630] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Conductive hydrogels have shown great potential in the field of flexible strain sensors. However, their application is greatly limited due to the poor antifouling and low mechanical strength. Unfortunately, it is still a challenge to improve these two distinct properties simultaneously. Herein, a hydrogel with high strength, good conductivity, and excellent antifouling and antibacterial properties was prepared through the synergistic effect of physical and chemical cross-linking. First, acrylic acid (AA), acrylamide (AM), and 2-methacryloyloxyethyl phosphorylcholine (MPC) monomers were polymerized in the presence of chitosan chains to form the hydrogel. Then, the prepared hydrogel was immersed in a ferric ion solution to further strengthen the hydrogel through ion coordination. The obtained CS-P(AM-MPC-AA0.2)-Fe0.13+ hydrogel showed outstanding tensile strength (1.03 MPa), excellent stretchability (1075%), good toughness (7.03 MJ/m3), and fatigue resistance. The CS-P(AM-MPC-AA0.2)-Fe0.13+ hydrogel also demonstrated good ion conductivity (0.42 S/m) and excellent antifouling and antibacterial properties. In addition, the strain sensor constructed by the CS-P(AM-MPC-AA0.2)-Fe0.13+ hydrogel showed high sensitivity and good stability. This work presented a facile method to construct a zwitterionic hydrogel with high-strength, conductive, antifouling, and antibacterial properties, which suggested a promising gel platform for flexible wearable sensors.
Collapse
|
135
|
Kang B, Yan X, Zhao Z, Song S. Dual-Sensing, Stretchable, Fatigue-Resistant, Adhesive, and Conductive Hydrogels Used as Flexible Sensors for Human Motion Monitoring. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7013-7023. [PMID: 35613322 DOI: 10.1021/acs.langmuir.2c00647] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogel-based sensors serve as an ideal platform for developing personalized wearable electronics due to their high flexibility and conformability. However, the weak stretchability and inferior conductivity of hydrogels have severely restricted their large-scale application. Herein, a natural polymer-based conductive hydrogel integrated with favorable mechanical properties, good adhesive performance, and excellent fatigue resistance was fabricated via interpenetrating tannic acid (TA) into a chitosan (CS) cross-linked network in an acidic aqueous solution. The hydrogel was composed of a regular hierarchical porous structure, which was built by the hydrogen bonding between TA and CS. In addition, the hydrogels exhibited adjustable mechanical properties (maximum yield stress of 7000 Pa) and good stretchability (strain up to 320%). Benefiting from the abundant catechol groups of TA, the proposed hydrogels could repeatedly adhere to various material surfaces and could be easily peeled off without residue. Moreover, the hydrogel exhibited stable conductivity, high stretching sensitivity (gauge factor of 2.956), rapid response time (930 ms), and excellent durability (>300 cycles), which can be assembled as a strain sensor to attach to the human body for precise monitoring of human exercise behavior, distinguishing physiological signals, and recognizing speech. Furthermore, the prepared hydrogels also exhibited stable sensing performance to temperature. As a result, the hydrogels exhibited dual sensory performance for both temperature and strain deformation. It is anticipated that the incorporation of strain sensors and thermal sensors will provide theoretical guidance for developing multifunctional conductive hydrogels and pave a way for the versatile application of hydrogel-based flexible sensors in wearable devices and soft actuators.
Collapse
Affiliation(s)
- Beibei Kang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Xiangrui Yan
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Zengdian Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Shasha Song
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| |
Collapse
|
136
|
Jiang G, Wang G, Zhu Y, Cheng W, Cao K, Xu G, Zhao D, Yu H. A Scalable Bacterial Cellulose Ionogel for Multisensory Electronic Skin. RESEARCH 2022; 2022:9814767. [PMID: 35711672 PMCID: PMC9188022 DOI: 10.34133/2022/9814767] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022]
Abstract
Electronic skin (e-skin), a new generation of flexible electronics, has drawn interest in soft robotics, artificial intelligence, and biomedical devices. However, most existing e-skins involve complex preparation procedures and are characterized by single-sensing capability and insufficient scalability. Here, we report on a one-step strategy in which a thermionic source is used for the in situ molecularization of bacterial cellulose polymeric fibers into molecular chains, controllably constructing an ionogel with a scalable mode for e-skin. The synergistic effect of a molecular-scale hydrogen bond interweaving network and a nanoscale fiber skeleton confers a robust tensile strength (up to 7.8 MPa) and high ionic conductivity (up to 62.58 mS/cm) on the as-developed ionogel. Inspired by the tongue to engineer the perceptual patterns in this ionogel, we present a smart e-skin with the perfect combination of excellent ion transport and discriminability, showing six stimulating responses to pressure, touch, temperature, humidity, magnetic force, and even astringency. This study proposes a simple, efficient, controllable, and sustainable approach toward a low-carbon, versatile, and scalable e-skin design and structure–performance development.
Collapse
Affiliation(s)
- Geyuan Jiang
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Gang Wang
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Ying Zhu
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Wanke Cheng
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Kaiyue Cao
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Guangwen Xu
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Dawei Zhao
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang 110142, China
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haipeng Yu
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
137
|
Li J, Yang Z, Jiang Z, Ni M, Xu M. A self-healing and self-adhesive chitosan based ion-conducting hydrogel sensor by ultrafast polymerization. Int J Biol Macromol 2022; 209:1975-1984. [PMID: 35500766 DOI: 10.1016/j.ijbiomac.2022.04.176] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 11/15/2022]
Abstract
Recently, owing to the wide applications in electronic skin and human activity monitoring, flexible hydrogel strain sensors have attracted great attention. And the better preparation with more efficient is always common aspiration. In this work, acrylamide (AM) was in situ polymerized in chitosan (CS) matrix to prepare hydrogels (PAM@CS). Inspired by the adhesion of natural mussels, plant polyphenol tannic acid (TA) was introduced into the system, Fe3+ was also introduced as redox agent to perform an ultrafast polymerization, and the composite hydrogel PAM@CS/TA-Fe can be prepared at 60 °C within 1 min. The hydrogels are ion conductive and show good sensing performance in detecting major and subtle body motions. Benefiting from the multiple dynamic noncovalent bonds, the PAM@CS/TA-Fe hydrogels also show excellent adhesion performance and good self-healing property, which would expand their application range in wearable and flexible electronic equipment.
Collapse
Affiliation(s)
- Jingwen Li
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Zhongli Yang
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Zhicheng Jiang
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Mengying Ni
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China
| | - Min Xu
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
138
|
Zaidi SFA, Kim YA, Saeed A, Sarwar N, Lee NE, Yoon DH, Lim B, Lee JH. Tannic acid modified antifreezing gelatin organohydrogel for low modulus, high toughness, and sensitive flexible strain sensor. Int J Biol Macromol 2022; 209:1665-1675. [PMID: 35487373 DOI: 10.1016/j.ijbiomac.2022.04.099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/26/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022]
Abstract
Current hydrogel strain sensors have met assorted essential requirements of wearing comfort, mechanical toughness, and strain sensitivity. However, an increment in the toughness of a hydrogel usually leads to an increase in elastic moduli that could be unfavorable for wearing comfort. In addition, traits of biofriendly and sustainability require synthesis of the hydrogels from natural polymer-based networks. We propose a novel strategy to fabricate an ionic conductive organohydrogel from natural biological macromolecule "gelatin" and polyacid "tannic acid" to resolve these challenges. Tannic acid modified the structure of the gelatin network in the ionic conductive organohydrogels, that not only led to an increase in toughness accompanying a decrease in elastic moduli but also headed to higher strain sensitivity and tunability. The proposed methodology exhibited tunable tensile modulus from 27 to 13 kPa, tensile strength from 287 to 325 kPa, elongation at fracture from 510 to 620%, toughness from 500 to 550 kJ/m3, conductivity from 0.29 to 0.8 S/m, and strain sensitivity (GF = 1.4-6.5). Moreover, the proposed organohydrogel exhibited excellent freezing tolerance. This study provides a facile yet powerful strategy to tune the mechanical and electrical properties of organohydrogels which can be adapted to various wearable sensors.
Collapse
Affiliation(s)
- Syed Farrukh Alam Zaidi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of Metallurgical and Materials Engineering, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Yun Ah Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Aiman Saeed
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Nasir Sarwar
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of Textile Engineering, University of Engineering and Technology, Lahore (Faisalabad Campus) 38000, Pakistan
| | - Nae-Eung Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Dae Ho Yoon
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Byungkwon Lim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| |
Collapse
|
139
|
Chitosan-enhanced nonswelling hydrogel with stable mechanical properties for long-lasting underwater sensing. Int J Biol Macromol 2022; 212:123-133. [PMID: 35597374 DOI: 10.1016/j.ijbiomac.2022.05.102] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/20/2022]
Abstract
Existing anti-swelling hydrogels with poor mechanical strength restrict their underwater human monitoring as wearable electronic sensing equipment. Herein, a nonswelling double network (DN) hydrogel with strong self-recoverability (97.22%) was developed by adding chitosan (CS) to poly(acrylic acid-2-methoxyethyl acrylate)-Fe3+ [P(AA-MEA)-Fe] network. Owing to the introduction of CS, the hydrogel displayed excellent nonswelling properties under aqueous solutions (pH = 1, 4 and 7), physiological saline, seawater, dodecane, n-hexane and chloroform. Besides, CS improved mechanical properties of hydrogel through non-covalent network (large stretchability of 1199%, tensile strength of 0.462 MPa and toughness of 2.01 MJ/m3). Surprisingly, the hydrogel still reached the extensibility (1072%) and tensile stress (0.467 MPa) even after immersing in water for 7 days. Fabricating hydrogel as flexible strain sensor, periodic real-time signals of human movements (e.g., joint actions and electronic skin touching) were accurately monitored under the water and seawater. The nonswelling P(AA-MEA)-CS-Fe hydrogel shows huge potential in underwater sensing.
Collapse
|
140
|
Chen W, Dai S, Zheng B. A Dynamic Thermal-Mechanical Coupling Numerical Model to Solve the Deformation and Thermal Diffusion of Plates. MICROMACHINES 2022; 13:mi13050753. [PMID: 35630219 PMCID: PMC9143247 DOI: 10.3390/mi13050753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 01/27/2023]
Abstract
Elastic materials include metal plates, rubber, foam, airbags and so on, which have a good buffer effect, toughness and strong recovery ability. In this paper, the deformation and thermal diffusion of 2D and 3D thin plates are studied. Two models are established for the deformation of 2D thin plates. The bending deformation equation of rectangular and circular plates is derived, and the semi-analytical solution of the deflection function w(x,y) is found through the Fourier series approximation in the polar coordinate. The consistencies of the numerical solution and the theoretical solution are verified by numerical method. Then, we find that the factors affecting the deformation are related to the Young’s modulus, load, plate length and deformation factor α of the material. In a separate temperature physics field, we establish a heat conduction model of 2D graphene film. Three numerical schemes of the transient heat conduction equation of FDM-FEM are given. In contrast, this paper uses the implicit Euler method to discrete the time term. Furthermore, we compared the difference between the adiabatic condition and the convection condition by the graphical method and the curve trend. The results show that the temperature near the adiabatic boundary is higher. Finally, we proposed a 3D dynamic thermal–mechanical coupling model (3D-DTMCM) that has been established. A laser heating monocrystalline silicon sheet with periodic motion formula is given. The temperature radiation of the laser heat source has Gaussian distribution characteristics. Our proposed model can dynamically determine Young’s modulus with a variable temperature. The numerical results show that the higher the temperature is, the higher the strain energy density of the plate is. In addition, the deformation amplitude of the plates in the coupling field is larger than that in the single mechanical field. Finally, we also discussed the stress field distribution of mixed cracks under high temperature and high load. Our research provides theoretical support for the deformation of different plates, and also reflects the value of the coupled model in practical applications.
Collapse
Affiliation(s)
- Wenxing Chen
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China;
| | - Shuyang Dai
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China;
- Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan 430072, China
- Correspondence:
| | - Baojuan Zheng
- Commerical Vehicle Technology Center, SAIC Motor Group Co., Ltd., Shanghai 200041, China;
| |
Collapse
|
141
|
|
142
|
Wang X, Chen G, Tian J, Wan X. Chitin/Ca solvent-based conductive and stretchable organohydrogel with anti-freezing and anti-drying. Int J Biol Macromol 2022; 207:484-492. [DOI: 10.1016/j.ijbiomac.2022.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 01/17/2023]
|
143
|
An environmentally tolerant, highly stable, cellulose nanofiber-reinforced, conductive hydrogel multifunctional sensor. Carbohydr Polym 2022; 284:119199. [DOI: 10.1016/j.carbpol.2022.119199] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
|
144
|
Wu Y, Liu T, Shi Y, Wang H. Dramatically enhancing mechanical properties of hydrogels by drying reactive polymers at elevated temperatures to introduce strong physical and chemical crosslinks. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
145
|
Hong Y, Lin Z, Yang Y, Jiang T, Shang J, Luo Z. Biocompatible Conductive Hydrogels: Applications in the Field of Biomedicine. Int J Mol Sci 2022; 23:4578. [PMID: 35562969 PMCID: PMC9104506 DOI: 10.3390/ijms23094578] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
The impact of COVID-19 has rendered medical technology an important factor to maintain social stability and economic increase, where biomedicine has experienced rapid development and played a crucial part in fighting off the pandemic. Conductive hydrogels (CHs) are three-dimensional (3D) structured gels with excellent electrical conductivity and biocompatibility, which are very suitable for biomedical applications. CHs can mimic innate tissue's physical, chemical, and biological properties, which allows them to provide environmental conditions and structural stability for cell growth and serve as efficient delivery substrates for bioactive molecules. The customizability of CHs also allows additional functionality to be designed for different requirements in biomedical applications. This review introduces the basic functional characteristics and materials for preparing CHs and elaborates on their synthetic techniques. The development and applications of CHs in the field of biomedicine are highlighted, including regenerative medicine, artificial organs, biosensors, drug delivery systems, and some other application scenarios. Finally, this review discusses the future applications of CHs in the field of biomedicine. In summary, the current design and development of CHs extend their prospects for functioning as an intelligent and complex system in diverse biomedical applications.
Collapse
Affiliation(s)
| | | | | | - Tao Jiang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; (Y.H.); (Z.L.); (Y.Y.); (J.S.)
| | | | - Zirong Luo
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; (Y.H.); (Z.L.); (Y.Y.); (J.S.)
| |
Collapse
|
146
|
Roy A, Manna K, Ray PG, Dhara S, Pal S. β-Cyclodextrin-Based Ultrahigh Stretchable, Flexible, Electro- and Pressure-Responsive, Adhesive, Transparent Hydrogel as Motion Sensor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17065-17080. [PMID: 35394754 DOI: 10.1021/acsami.2c00101] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the present work, a multiple-stimuli-responsive hydrogel has been synthesized via polymerization of acrylamide (AAm) and N-hydroxy methyl acrylamide (HMAm) on β-cyclodextrin (β-CD). The synthesized hydrogel β-CD-g-(pAAm/pHMAm) exhibited various striking features like ultrahigh stretchability (>6000%), flexibility, stab resistivity, self-recoverability, electroresponsiveness, pressure-responsiveness, adhesiveness, and high transparency (>90%). Besides, the hydrogel has demonstrated enhanced biocompatibility, UV resistance, and thermoresponsive shape memory behaviors. On the basis of these attractive characteristics of the hydrogel, a flexible pressure sensor for the real-time monitoring of human motion with superior biocompatibility and transparency was fabricated. Moreover, due to the nanofibrillar surface morphology of the β-CD-g-(pAAm/pHMAm) hydrogel, the sensor based on the gel exhibited high sensitivity (0.053 kPa-1 for 0-3.3 kPa). The flexible sensor demonstrates very fast response time (130 ms-210 ms) with adequate stability (5000 cycles). Interestingly, the sensor can rapidly sense both robust (index finger and wrist) motions as well as tiny (swallowing and phonation) physiological actions. In addition, this adhesive hydrogel patch also acts as a potential carrier for the sustained topical release of (∼80.8% in 48 h) the antibiotic drug gentamicin sulfate.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad 826004, India
| | - Kalipada Manna
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad 826004, India
| | - Preetam Guha Ray
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Sagar Pal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad 826004, India
| |
Collapse
|
147
|
Lv Q, Sun X, Ye L, Liang H. Stiff and strong hydrogel tube with great mechanical properties and high stability in various solutions. J Mater Chem B 2022; 10:3126-3137. [PMID: 35348565 DOI: 10.1039/d2tb00124a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogel tubes are widely used in fields such as artificial blood vessels, drug delivery, biomedical scaffolds and cell adhesion, yet their application is often limited by unsatisfactory mechanical properties and poor stability in various solutions. Herein, a novel hydrogel tube exhibiting a remarkable mechanical performance and stability in various solutions is prepared by introducing a dual physically cross-linked double network (DN) hydrogel matrix. The obtained hydrogel tube can withstand ∼60 N load without fracture and be stretched to over twice its original length before and after immersing in various solutions. The great mechanical properties and stability in various solutions of hydrogel tubes are due to the introduction of a dual physically cross-linked poly(acrylamide-co-acrylic acid)/carboxymethylcellulose sodium/Fe3+ DN hydrogel, which possesses high elastic modulus (3.71 MPa), fracture energy (15.4 kJ m-2), and great stability in various solutions. In addition, the hydrogel tubes with different thickness, diameters, shapes and the multiple branched hydrogel tubes can also be fabricated to enable further functionalization for application requirements. Therefore, this new type of hydrogel tube presents tremendous potential for applications in biomedical and engineering fields.
Collapse
Affiliation(s)
- Qiong Lv
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xingyue Sun
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Lina Ye
- School of Material Science and Engineering, Anhui University, Hefei, Anhui 230601, China.
| | - Haiyi Liang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China. .,IAT-Chungu Joint Laboratory for Additive Manufacturing, Anhui Chungu 3D Printing Institute of Intelligent Equipment and Industrial Technology, Wuhu, Anhui 241200, China
| |
Collapse
|
148
|
Zhang X, Xiang J, Hong Y, Shen L. Recent Advances in Design Strategies of Tough Hydrogels. Macromol Rapid Commun 2022; 43:e2200075. [PMID: 35436378 DOI: 10.1002/marc.202200075] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/05/2022] [Indexed: 11/10/2022]
Abstract
Hydrogels are a fascinating class of materials popular in numerous fields, including tissue engineering, drug delivery, soft robotics, and sensors, attributed to their 3D network porous structure containing a significant amount of water. However, traditional hydrogels exhibit poor mechanical strength, limiting their practical applications. Thus, many researchers have focused on the development of mechanically enhanced hydrogels. This review describes the design considerations for constructing tough hydrogels and some of the latest strategies in recent years. These tough hydrogels have an up-and-coming prospect and bring great hope to the fields of biomedicine and others. Nonetheless, it is still no small challenge to realize hydrogel materials that are tough, multifunctional, intelligent, and zero-defect. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaojia Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200, Road Cailun, Pudong District, Shanghai, 201203, China
| | - Jinxi Xiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200, Road Cailun, Pudong District, Shanghai, 201203, China
| | - Yanlong Hong
- Shanghai Collaborative Innovation Center for Chinese Medicine Health Services, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lan Shen
- School of Pharmacy, 1200, Road Cailun, Pudong District, Shanghai, 201203, China
| |
Collapse
|
149
|
Double-Network Tough Hydrogels: A Brief Review on Achievements and Challenges. Gels 2022; 8:gels8040247. [PMID: 35448148 PMCID: PMC9030633 DOI: 10.3390/gels8040247] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 01/03/2023] Open
Abstract
This brief review attempts to summarize research advances in the mechanical toughness and structures of double-network (DN) hydrogels. The focus is to provide a critical and concise discussion on the toughening mechanisms, damage recoverability, stress relaxation, and biomedical applications of tough DN hydrogel systems. Both conventional DN hydrogel with two covalently cross-linked networks and novel DN systems consisting of physical and reversible cross-links are discussed and compared. Covalently cross-linked hydrogels are tough but damage-irreversible. Physically cross-linked hydrogels are damage-recoverable but exhibit mechanical instability, as reflected by stress relaxation tests. This remains one significant challenge to be addressed by future research studies to realize the load-sustaining applications proposed for tough hydrogels. With their special structure and superior mechanical properties, DN hydrogels have great potential for biomedical applications, and many DN systems are now fabricated with 3D printing techniques.
Collapse
|
150
|
Li X, Liu Z, Liang Y, Wang LM, Liu YD. Chitosan-based double cross-linked ionic hydrogels as a strain and pressure sensor with broad strain-range and high sensitivity. J Mater Chem B 2022; 10:3434-3443. [PMID: 35403658 DOI: 10.1039/d2tb00329e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A conductive hydrogel P(AAm-co-AA)/CS-Fe3+ with double cross-linked networks was fabricated using a one-step polymerization by UV irradiation and a soaking process in Fe(NO3)3 solution. In this hydrogel, the rigid chain of chitosan (CS) and the soft chain of copolymer P(AAm-co-AA) with acrylic acid (AA) and acrylamide (AAm) act as the backbone, among which large amounts of hydrogen bonds are formed by the amino, hydroxyl, and carboxyl groups on the two polymers. Ferric irons (Fe3+) are introduced and form coordination interactions with carboxyl and amino groups of the polymers. The double cross-linked interactions in the system can enhance the tensile strength and toughness of the hydrogel. Thus, the prepared P(AAm-co-AA)/CS-Fe3+ hybrid network hydrogel shows excellent mechanical properties in many aspects: a strength of up to 550 kPa, a broad strain-range up to 800%, fast self-recovery ability (30 min), and low hysteresis strain (<100%). The conductive hydrogel demonstrates high strain sensitivity (gauge factor (GF) = 6.6 at a strain of 700%) as a flexible sensor. Human movements (for example, finger bending, vocal cord vibration, and other human activities) can be sensitively detected using the P(AAm-co-AA)/CS-Fe3+ hydrogel sensor.
Collapse
Affiliation(s)
- Xuemei Li
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Zhiwei Liu
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Yongri Liang
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Li-Min Wang
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, P. R. China.
| | - Ying Dan Liu
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, P. R. China.
| |
Collapse
|