101
|
de Souza JB, de Lacerda Coriolano D, dos Santos Silva RC, da Costa Júnior SD, de Almeida Campos LA, Cavalcanti IDL, Lira Nogueira MCDB, Pereira VRA, Brelaz-de-Castro MCA, Cavalcanti IMF. Ceftazidime and Usnic Acid Encapsulated in Chitosan-Coated Liposomes for Oral Administration against Colorectal Cancer-Inducing Escherichia coli. Pharmaceuticals (Basel) 2024; 17:802. [PMID: 38931469 PMCID: PMC11206294 DOI: 10.3390/ph17060802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Escherichia coli has been associated with the induction of colorectal cancer (CRC). Thus, combined therapy incorporating usnic acid (UA) and antibiotics such as ceftazidime (CAZ), co-encapsulated in liposomes, could be an alternative. Coating the liposomes with chitosan (Chi) could facilitate the oral administration of this nanocarrier. Liposomes were prepared using the lipid film hydration method, followed by sonication and chitosan coating via the drip technique. Characterization included particle size, polydispersity index, zeta potential, pH, encapsulation efficiency, and physicochemical analyses. The minimum inhibitory concentration and minimum bactericidal concentration were determined against E. coli ATCC 25922, NCTC 13846, and H10407 using the microdilution method. Antibiofilm assays were conducted using the crystal violet method. The liposomes exhibited sizes ranging from 116.5 ± 5.3 to 240.3 ± 3.5 nm and zeta potentials between +16.4 ± 0.6 and +28 ± 0.8 mV. The encapsulation efficiencies were 51.5 ± 0.2% for CAZ and 99.94 ± 0.1% for UA. Lipo-CAZ-Chi and Lipo-UA-Chi exhibited antibacterial activity, inhibited biofilm formation, and preformed biofilms of E. coli. The Lipo-CAZ-UA-Chi and Lipo-CAZ-Chi + Lipo-UA-Chi formulations showed enhanced activities, potentially due to co-encapsulation or combination effects. These findings suggest potential for in vivo oral administration in future antibacterial and antibiofilm therapies against CRC-inducing bacteria.
Collapse
Affiliation(s)
- Jaqueline Barbosa de Souza
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Davi de Lacerda Coriolano
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Rayza Camila dos Santos Silva
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Sérgio Dias da Costa Júnior
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Luís André de Almeida Campos
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Iago Dillion Lima Cavalcanti
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
- Laboratory of Nanotechnology, Biotechnology and Cell Culture (NanoBioCel), Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| | - Mariane Cajubá de Britto Lira Nogueira
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
- Laboratory of Nanotechnology, Biotechnology and Cell Culture (NanoBioCel), Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| | - Valéria Rêgo Alves Pereira
- Department of Immunology, Aggeu Magalhães Institute (IAM/FIOCRUZ), Federal University of Pernambuco (UFPE), Recife 50670-420, PE, Brazil;
| | - Maria Carolina Accioly Brelaz-de-Castro
- Department of Immunology, Aggeu Magalhães Institute (IAM/FIOCRUZ), Federal University of Pernambuco (UFPE), Recife 50670-420, PE, Brazil;
- Laboratory of Parasitology, Academic Center of Vitoria (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| |
Collapse
|
102
|
Yadegar A, Bar-Yoseph H, Monaghan TM, Pakpour S, Severino A, Kuijper EJ, Smits WK, Terveer EM, Neupane S, Nabavi-Rad A, Sadeghi J, Cammarota G, Ianiro G, Nap-Hill E, Leung D, Wong K, Kao D. Fecal microbiota transplantation: current challenges and future landscapes. Clin Microbiol Rev 2024; 37:e0006022. [PMID: 38717124 PMCID: PMC11325845 DOI: 10.1128/cmr.00060-22] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYGiven the importance of gut microbial homeostasis in maintaining health, there has been considerable interest in developing innovative therapeutic strategies for restoring gut microbiota. One such approach, fecal microbiota transplantation (FMT), is the main "whole gut microbiome replacement" strategy and has been integrated into clinical practice guidelines for treating recurrent Clostridioides difficile infection (rCDI). Furthermore, the potential application of FMT in other indications such as inflammatory bowel disease (IBD), metabolic syndrome, and solid tumor malignancies is an area of intense interest and active research. However, the complex and variable nature of FMT makes it challenging to address its precise functionality and to assess clinical efficacy and safety in different disease contexts. In this review, we outline clinical applications, efficacy, durability, and safety of FMT and provide a comprehensive assessment of its procedural and administration aspects. The clinical applications of FMT in children and cancer immunotherapy are also described. We focus on data from human studies in IBD in contrast with rCDI to delineate the putative mechanisms of this treatment in IBD as a model, including colonization resistance and functional restoration through bacterial engraftment, modulating effects of virome/phageome, gut metabolome and host interactions, and immunoregulatory actions of FMT. Furthermore, we comprehensively review omics technologies, metagenomic approaches, and bioinformatics pipelines to characterize complex microbial communities and discuss their limitations. FMT regulatory challenges, ethical considerations, and pharmacomicrobiomics are also highlighted to shed light on future development of tailored microbiome-based therapeutics.
Collapse
Affiliation(s)
- Abbas Yadegar
- Foodborne and
Waterborne Diseases Research Center, Research Institute for
Gastroenterology and Liver Diseases, Shahid Beheshti University of
Medical Sciences, Tehran,
Iran
| | - Haggai Bar-Yoseph
- Department of
Gastroenterology, Rambam Health Care
Campus, Haifa,
Israel
- Rappaport Faculty of
Medicine, Technion-Israel Institute of
Technology, Haifa,
Israel
| | - Tanya Marie Monaghan
- National Institute for
Health Research Nottingham Biomedical Research Centre, University of
Nottingham, Nottingham,
United Kingdom
- Nottingham Digestive
Diseases Centre, School of Medicine, University of
Nottingham, Nottingham,
United Kingdom
| | - Sepideh Pakpour
- School of Engineering,
Faculty of Applied Sciences, UBC, Okanagan
Campus, Kelowna,
British Columbia, Canada
| | - Andrea Severino
- Department of
Translational Medicine and Surgery, Università Cattolica del
Sacro Cuore, Rome,
Italy
- Department of Medical
and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato
Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico
Universitario Gemelli IRCCS,
Rome, Italy
- Department of Medical
and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico
Universitario Agostino Gemelli IRCCS,
Rome, Italy
| | - Ed J. Kuijper
- Center for
Microbiota Analysis and Therapeutics (CMAT), Leiden University Center
for Infectious Diseases, Leiden University Medical
Center, Leiden, The
Netherlands
| | - Wiep Klaas Smits
- Center for
Microbiota Analysis and Therapeutics (CMAT), Leiden University Center
for Infectious Diseases, Leiden University Medical
Center, Leiden, The
Netherlands
| | - Elisabeth M. Terveer
- Center for
Microbiota Analysis and Therapeutics (CMAT), Leiden University Center
for Infectious Diseases, Leiden University Medical
Center, Leiden, The
Netherlands
| | - Sukanya Neupane
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| | - Ali Nabavi-Rad
- Foodborne and
Waterborne Diseases Research Center, Research Institute for
Gastroenterology and Liver Diseases, Shahid Beheshti University of
Medical Sciences, Tehran,
Iran
| | - Javad Sadeghi
- School of Engineering,
Faculty of Applied Sciences, UBC, Okanagan
Campus, Kelowna,
British Columbia, Canada
| | - Giovanni Cammarota
- Department of
Translational Medicine and Surgery, Università Cattolica del
Sacro Cuore, Rome,
Italy
- Department of Medical
and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato
Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico
Universitario Gemelli IRCCS,
Rome, Italy
- Department of Medical
and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico
Universitario Agostino Gemelli IRCCS,
Rome, Italy
| | - Gianluca Ianiro
- Department of
Translational Medicine and Surgery, Università Cattolica del
Sacro Cuore, Rome,
Italy
- Department of Medical
and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato
Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico
Universitario Gemelli IRCCS,
Rome, Italy
- Department of Medical
and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico
Universitario Agostino Gemelli IRCCS,
Rome, Italy
| | - Estello Nap-Hill
- Department of
Medicine, Division of Gastroenterology, St Paul’s Hospital,
University of British Columbia,
Vancouver, British Columbia, Canada
| | - Dickson Leung
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| | - Karen Wong
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| | - Dina Kao
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| |
Collapse
|
103
|
Mullish BH, Merrick B, Quraishi MN, Bak A, Green CA, Moore DJ, Porter RJ, Elumogo NT, Segal JP, Sharma N, Marsh B, Kontkowski G, Manzoor SE, Hart AL, Settle C, Keller JJ, Hawkey P, Iqbal TH, Goldenberg SD, Williams HRT. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridioides difficile infection and other potential indications: second edition of joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. Gut 2024; 73:1052-1075. [PMID: 38609165 DOI: 10.1136/gutjnl-2023-331550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/03/2024] [Indexed: 04/14/2024]
Abstract
The first British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS)-endorsed faecal microbiota transplant (FMT) guidelines were published in 2018. Over the past 5 years, there has been considerable growth in the evidence base (including publication of outcomes from large national FMT registries), necessitating an updated critical review of the literature and a second edition of the BSG/HIS FMT guidelines. These have been produced in accordance with National Institute for Health and Care Excellence-accredited methodology, thus have particular relevance for UK-based clinicians, but are intended to be of pertinence internationally. This second edition of the guidelines have been divided into recommendations, good practice points and recommendations against certain practices. With respect to FMT for Clostridioides difficile infection (CDI), key focus areas centred around timing of administration, increasing clinical experience of encapsulated FMT preparations and optimising donor screening. The latter topic is of particular relevance given the COVID-19 pandemic, and cases of patient morbidity and mortality resulting from FMT-related pathogen transmission. The guidelines also considered emergent literature on the use of FMT in non-CDI settings (including both gastrointestinal and non-gastrointestinal indications), reviewing relevant randomised controlled trials. Recommendations are provided regarding special areas (including compassionate FMT use), and considerations regarding the evolving landscape of FMT and microbiome therapeutics.
Collapse
Affiliation(s)
- Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Mohammed Nabil Quraishi
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - Aggie Bak
- Healthcare Infection Society, London, UK
| | - Christopher A Green
- Department of Infectious Diseases & Tropical Medicine, University Hospitals NHS Foundation Trust, Birmingham Heartlands Hospital, Birmingham, UK
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - David J Moore
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Robert J Porter
- Department of Microbiology, Royal Devon and Exeter Hospitals, Barrack Road, UK
| | - Ngozi T Elumogo
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norfolk and Norwich University Hospital, Norwich, UK
| | - Jonathan P Segal
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Naveen Sharma
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - Belinda Marsh
- Lay representative for FMT Working Party, Healthcare Infection Society, London, UK
| | - Graziella Kontkowski
- Lay representative for FMT Working Party, Healthcare Infection Society, London, UK
- C.diff support, London, UK
| | - Susan E Manzoor
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
| | - Ailsa L Hart
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Department of Gastroenterology and Inflammatory Bowel Disease Unit, St Mark's Hospital and Academic Institute, Middlesex, UK
| | | | - Josbert J Keller
- Department of Gastroenterology, Haaglanden Medisch Centrum, The Hague, The Netherlands
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Hawkey
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Public Health Laboratory, Faculty of Medicine, University of Birmingham, Birmingham, UK
| | - Tariq H Iqbal
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - Simon D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Horace R T Williams
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
104
|
Pacuta I, Gancarcikova S, Lauko S, Hajduckova V, Janicko M, Demeckova V, Rynikova M, Adamkova P, Mudronova D, Ambro L, Fialkovicova M, Nemetova D, Bertkova I. Evaluation of the Suitability of Selecting a Faecal Microbiota Transplant: Bacterial Composition and Subsequent Long-Term Monitoring of the Viability of Its Frozen and Lyophilised Forms. APPLIED SCIENCES 2024; 14:4856. [DOI: 10.3390/app14114856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Objectives: The aim of this study was to confirm the effectiveness of FMT on the basis of optimum composition of the faecal microbiota of the donor for support therapy in patients with ulcerative colitis, and to observe the viability of the microbiota in frozen and lyophilised administration forms of FMT under various storage conditions. Methods: The bacterial microbiota composition of the FMT samples was assessed using amplicon sequencing via next-generation sequencing (NGS) technology, conducted on the Illumina MiSeq platform. The BD FACS Canto flow cytometer was used to analyse the metabolic activity of FMT samples. Results: FMT analysis confirmed the presence of key butyrate-producing organisms, specifically highlighting species such as Bifidobacterium adolescentis, Faecalibacterium prausnitzi, Coprococcus catus, Eubacterium rectale, alongside contributions from genera Roseburia and Blautia. These organisms play a crucial role in maintaining intestinal health in humans. The viable microorganism counts were significantly higher (p < 0.001) in the frozen form of FMT (−70 °C) in comparison to lyophilised forms (−70 °C, 4 °C and 20 °C) throughout the storage period. Conclusion: The conducted NGS analyses allowed us to confirm the suitability of our FMT donor as a potential candidate for the target group of patients diagnosed with ulcerative colitis. From the point of view of optimum utilisation of FMT at its highest metabolic activity for the purpose of transplantation, its storage for a maximum of 2 months under specified conditions was confirmed as the most suitable for the frozen and all lyophilised FMT forms.
Collapse
Affiliation(s)
- Ivan Pacuta
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Sona Gancarcikova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Stanislav Lauko
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Vanda Hajduckova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Martin Janicko
- 2nd Department of Internal Medicine, Faculty of Medicine, Pavol Jozef Safarik University and Louis Pasteur University Hospital in Kosice, 040 11 Kosice, Slovakia
| | - Vlasta Demeckova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia
| | - Maria Rynikova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia
| | - Petra Adamkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia
| | - Dagmar Mudronova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Lubos Ambro
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia
| | - Maria Fialkovicova
- Small Animal Clinic, University Veterinary Hospital, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Daniela Nemetova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Izabela Bertkova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia
| |
Collapse
|
105
|
He Q, Zhang T, Zhang W, Feng C, Kwok LY, Zhang H, Sun Z. Administering Lactiplantibacillus fermentum F6 decreases intestinal Akkermansia muciniphila in a dextran sulfate sodium-induced rat colitis model. Food Funct 2024; 15:5882-5894. [PMID: 38727176 DOI: 10.1039/d4fo00462k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Probiotics are increasingly used to manage gut dysbiosis-related conditions due to their robust ability to manipulate the gut microbial community. However, few studies have reported that probiotics can specifically modulate individual gut microbes. This study demonstrated that administering the probiotic, Lactiplantibacillus fermentum F6, could ameliorate dextran sulfate sodium-induced colitis in a rat model, evidenced by the decreases in the disease activity index score, histopathology grading, and serum pro-inflammatory cytokine levels, as well as the increase in the serum anti-inflammatory cytokine levels. Shotgun metagenomics revealed that the fecal metagenomic of colitis rats receiving the probiotic intervention contained substantially fewer Akkermansia muciniphila than the dextran sulfate sodium group. Thus, the probiotic mechanism might be exerted by reducing specific gut microbial species associated with disease pathogenesis. A new paradigm for designing probiotics that manage diseases through direct and precise manipulation of gut microbes has been provided through this study.
Collapse
Affiliation(s)
- Qiuwen He
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tao Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Weiqin Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Cuijiao Feng
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
106
|
Wang S, Yang Y, Jiang X, Zheng X, Wei Q, Dai W, Zhang X. Nurturing gut health: role of m6A RNA methylation in upholding the intestinal barrier. Cell Death Discov 2024; 10:271. [PMID: 38830900 PMCID: PMC11148167 DOI: 10.1038/s41420-024-02043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
The intestinal lumen acts as a critical interface connecting the external environment with the body's internal state. It's essential to prevent the passage of harmful antigens and bacteria while facilitating nutrient and water absorption. The intestinal barriers encompass microbial, mechanical, immunological, and chemical elements, working together to maintain intestinal balance. Numerous studies have associated m6A modification with intestinal homeostasis. This review comprehensively outlines potential mechanisms through which m6A modification could initiate, exacerbate, or sustain barrier damage from an intestinal perspective. The pivotal role of m6A modification in preserving intestinal equilibrium provides new insights, guiding the exploration of m6A modification as a target for optimizing preventive and therapeutic strategies for intestinal homeostasis.
Collapse
Affiliation(s)
| | - Yuzhong Yang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiaohan Jiang
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Xiang Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Qiufang Wei
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Wenbin Dai
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China.
| | - Xuemei Zhang
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China.
| |
Collapse
|
107
|
Hou L, Wang H, Yan M, Cai Y, Zheng R, Ma Y, Tang W, Jiang W. Obeticholic acid attenuates the intestinal barrier disruption in a rat model of short bowel syndrome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167221. [PMID: 38718845 DOI: 10.1016/j.bbadis.2024.167221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Short bowel syndrome (SBS) features nutrients malabsorption and impaired intestinal barrier. Patients with SBS are prone to sepsis, intestinal flora dysbiosis and intestinal failure associated liver disease. Protecting intestinal barrier and preventing complications are potential strategies for SBS treatment. This study aims to investigate the effects of farnesoid X receptor (FXR) agonist, obeticholic acid (OCA), have on intestinal barrier and ecological environment in SBS. METHODS AND RESULTS Through testing the small intestine and serum samples of patients with SBS, impaired intestinal barrier was verified, as evidenced by reduced expressions of intestinal tight junction proteins (TJPs), increased levels of apoptosis and epithelial cell damage. The intestinal expressions of FXR and related downstream molecules were decreased in SBS patients. Then, global FXR activator OCA was used to further dissect the potential role of the FXR in a rat model of SBS. Low expressions of FXR-related molecules were observed on the small intestine of SBS rats, along with increased proinflammatory factors and damaged barrier function. Furthermore, SBS rats possessed significantly decreased body weight and elevated death rate. Supplementation with OCA mitigated the damaged intestinal barrier and increased proinflammatory factors in SBS rats, accompanied by activated FXR-related molecules. Using 16S rDNA sequencing, the regulatory role of OCA on gut microbiota in SBS rats was witnessed. LPS stimulation to Caco-2 cells induced apoptosis and overexpression of proinflammatory factors in vitro. OCA incubation of LPS-pretreated Caco-2 cells activated FXR-related molecules, increased the expressions of TJPs, ameliorated apoptosis and inhibited overexpression of proinflammatory factors. CONCLUSIONS OCA supplementation could effectively ameliorate the intestinal barrier disruption and inhibit overexpression of proinflammatory factors in a rat model of SBS and LPS-pretreated Caco-2 cells. As a selective activator of FXR, OCA might realize its protective function through FXR activation.
Collapse
Affiliation(s)
- Li Hou
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Surgical Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanfei Wang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Meng Yan
- Department of Pediatrics, Huai'an Maternal and Child Health Care Center, Huai'an, China
| | - Yaoyao Cai
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ruifei Zheng
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yujun Ma
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Weiwei Jiang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
108
|
Mullish BH, Merrick B, Quraishi MN, Bak A, Green CA, Moore DJ, Porter RJ, Elumogo NT, Segal JP, Sharma N, Marsh B, Kontkowski G, Manzoor SE, Hart AL, Settle C, Keller JJ, Hawkey P, Iqbal TH, Goldenberg SD, Williams HRT. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridioides difficile infection and other potential indications: second edition of joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. J Hosp Infect 2024; 148:189-219. [PMID: 38609760 DOI: 10.1016/j.jhin.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
The first British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS)-endorsed faecal microbiota transplant (FMT) guidelines were published in 2018. Over the past 5 years, there has been considerable growth in the evidence base (including publication of outcomes from large national FMT registries), necessitating an updated critical review of the literature and a second edition of the BSG/HIS FMT guidelines. These have been produced in accordance with National Institute for Health and Care Excellence-accredited methodology, thus have particular relevance for UK-based clinicians, but are intended to be of pertinence internationally. This second edition of the guidelines have been divided into recommendations, good practice points and recommendations against certain practices. With respect to FMT for Clostridioides difficile infection (CDI), key focus areas centred around timing of administration, increasing clinical experience of encapsulated FMT preparations and optimising donor screening. The latter topic is of particular relevance given the COVID-19 pandemic, and cases of patient morbidity and mortality resulting from FMT-related pathogen transmission. The guidelines also considered emergent literature on the use of FMT in non-CDI settings (including both gastrointestinal and non-gastrointestinal indications), reviewing relevant randomised controlled trials. Recommendations are provided regarding special areas (including compassionate FMT use), and considerations regarding the evolving landscape of FMT and microbiome therapeutics.
Collapse
Affiliation(s)
- B H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK; Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - B Merrick
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - M N Quraishi
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - A Bak
- Healthcare Infection Society, London, UK
| | - C A Green
- Department of Infectious Diseases & Tropical Medicine, University Hospitals NHS Foundation Trust, Birmingham Heartlands Hospital, Birmingham, UK; School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - D J Moore
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - R J Porter
- Department of Microbiology, Royal Devon and Exeter Hospitals, Barrack Road, UK
| | - N T Elumogo
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Norfolk and Norwich University Hospital, Norwich, UK
| | - J P Segal
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - N Sharma
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - B Marsh
- Lay Representative for FMT Working Party, Healthcare Infection Society, London, UK
| | - G Kontkowski
- Lay Representative for FMT Working Party, Healthcare Infection Society, London, UK; C.diff support, London, UK
| | - S E Manzoor
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
| | - A L Hart
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK; Department of Gastroenterology and Inflammatory Bowel Disease Unit, St Mark's Hospital and Academic Institute, Middlesex, UK
| | - C Settle
- South Tyneside and Sunderland NHS Foundation Trust, South Shields, UK
| | - J J Keller
- Department of Gastroenterology, Haaglanden Medisch Centrum, The Hague, The Netherlands; Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - P Hawkey
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK; Public Health Laboratory, Faculty of Medicine, University of Birmingham, Birmingham, UK
| | - T H Iqbal
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - S D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK.
| | - H R T Williams
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK; Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
109
|
Sahle Z, Engidaye G, Shenkute Gebreyes D, Adenew B, Abebe TA. Fecal microbiota transplantation and next-generation therapies: A review on targeting dysbiosis in metabolic disorders and beyond. SAGE Open Med 2024; 12:20503121241257486. [PMID: 38826830 PMCID: PMC11143861 DOI: 10.1177/20503121241257486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
The human microbiome, particularly the gut microbiome, has emerged as a central determinant of health and disease. Dysbiosis, an imbalance in the microbial composition of the gut, is associated with a variety of metabolic and other diseases, highlighting the potential for microbiota-targeted treatments. Fecal microbiota transplantation has received considerable attention as a promising therapy to modulate the gut microbiome and restore microbial homeostasis. However, challenges remain, including standardization, safety, and long-term efficacy. This review summarizes current knowledge on fecal microbiota transplantation and describes the next generation therapies targeting microbiome. This review looked at the mechanistic understanding of fecal microbiota transplantation and alternative strategies, elucidating their potential role in improving dysbiosis-associated metabolic disorders, such as obesity, and type 2 diabetes and others. Additionally, this review discussed the growing application of therapies targeting the gut microbiome. Insights from clinical trials, preclinical studies, and emerging technologies provide a comprehensive overview of the evolving landscape of microbiome-based interventions. Through a critical assessment of current advances and prospects, this review aims to highlight the therapeutic potential of targeting gut microbiome and pave the way for innovative approaches in precision medicine and personalized treatments.
Collapse
Affiliation(s)
- Zenawork Sahle
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Getabalew Engidaye
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Demissew Shenkute Gebreyes
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| | - Behailu Adenew
- Department of Medical Laboratory Science, Debre Berhan Compressive Specialized Hospital, Debre Berhan, Ethiopia
| | - Tsegahun Asfaw Abebe
- Department of Medical Laboratory Science, Asrat Weldeyes Health Science Campus, Debre Berhan University, Debre Berhan, Ethiopia
| |
Collapse
|
110
|
Guo H, Xie W, Ji Z, Wang B, Ren W, Gao W, Yuan B. Oyster Peptides Ameliorate Dextran Sulfate Sodium-Induced Ulcerative Colitis via Modulating the Gut Microbiota and Inhibiting the TLR4/NF-κB Pathway. Nutrients 2024; 16:1591. [PMID: 38892524 PMCID: PMC11175164 DOI: 10.3390/nu16111591] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease with an increasing prevalence year over year, and the medications used to treat patients with UC clinically have severe side effects. Oyster peptides (OPs) have anti-inflammatory and antioxidant properties as functional foods that can alleviate a wide range of inflammatory conditions. However, the application of oyster peptides in ulcerative colitis is not well studied. In this work, an animal model of acute colitis was established using 3% dextran sulfate sodium (DSS), and the impact of OP therapy on colitis in mice was examined. Supplementing with OPs prevented DSS-induced colitis from worsening, reduced the expression of oxidative stress and inflammatory markers, and restored the intestinal barrier damage caused by DSS-induced colitis in mice. The 16S rDNA results showed that the OP treatment improved the gut microbiota structure of the UC mice, including increasing microbial diversity, increasing beneficial bacteria, and decreasing harmful bacteria. In the UC mice, the OP therapy decreased the relative abundance of Family_XIII_AD3011_group and Prevotella_9 and increased the relative abundance of Alistipes. In conclusion, OP treatment can inhibit the TLR4/NF-κB pathway and improve the intestinal microbiota in UC mice, which in turn alleviates DSS-induced colitis, providing a reference for the treatment of clinical UC patients.
Collapse
Affiliation(s)
- Haixiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Wenyin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Zhonghao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, China
| | - Bingbing Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Wenzhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (H.G.); (W.X.); (Z.J.); (B.W.); (W.R.)
| |
Collapse
|
111
|
Olteanu G, Ciucă-Pană MA, Busnatu ȘS, Lupuliasa D, Neacșu SM, Mititelu M, Musuc AM, Ioniță-Mîndrican CB, Boroghină SC. Unraveling the Microbiome-Human Body Axis: A Comprehensive Examination of Therapeutic Strategies, Interactions and Implications. Int J Mol Sci 2024; 25:5561. [PMID: 38791599 PMCID: PMC11122276 DOI: 10.3390/ijms25105561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
This review scrutinizes the intricate interplay between the microbiome and the human body, exploring its multifaceted dimensions and far-reaching implications. The human microbiome, comprising diverse microbial communities inhabiting various anatomical niches, is increasingly recognized as a critical determinant of human health and disease. Through an extensive examination of current research, this review elucidates the dynamic interactions between the microbiome and host physiology across multiple organ systems. Key topics include the establishment and maintenance of microbiota diversity, the influence of host factors on microbial composition, and the bidirectional communication pathways between microbiota and host cells. Furthermore, we delve into the functional implications of microbiome dysbiosis in disease states, emphasizing its role in shaping immune responses, metabolic processes, and neurological functions. Additionally, this review discusses emerging therapeutic strategies aimed at modulating the microbiome to restore host-microbe homeostasis and promote health. Microbiota fecal transplantation represents a groundbreaking therapeutic approach in the management of dysbiosis-related diseases, offering a promising avenue for restoring microbial balance within the gut ecosystem. This innovative therapy involves the transfer of fecal microbiota from a healthy donor to an individual suffering from dysbiosis, aiming to replenish beneficial microbial populations and mitigate pathological imbalances. By synthesizing findings from diverse fields, this review offers valuable insights into the complex relationship between the microbiome and the human body, highlighting avenues for future research and clinical interventions.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| | - Maria-Alexandra Ciucă-Pană
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Bagdasar-Arseni Emergency Hospital, 050474 Bucharest, Romania;
| | - Ștefan Sebastian Busnatu
- Department of Cardio-Thoracic Pathology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (D.L.); (S.M.N.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (D.L.); (S.M.N.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, 020956 Bucharest, Romania;
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry—Ilie Murgulescu, Romanian Academy, 060021 Bucharest, Romania
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Steluța Constanța Boroghină
- Department of Complementary Sciences, History of Medicine and Medical Culture, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
112
|
Gyriki D, Nikolaidis C, Stavropoulou E, Bezirtzoglou I, Tsigalou C, Vradelis S, Bezirtzoglou E. Exploring the Gut Microbiome's Role in Inflammatory Bowel Disease: Insights and Interventions. J Pers Med 2024; 14:507. [PMID: 38793089 PMCID: PMC11122163 DOI: 10.3390/jpm14050507] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Inflammatory Bowel Disease (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), is a chronic and relapsing inflammatory condition of the intestine that significantly impairs quality of life and imposes a heavy burden on healthcare systems globally. While the exact etiology of IBD is unclear, it is influenced by genetic, environmental, immunological, and microbial factors. Recent advances highlight the gut microbiome's pivotal role in IBD pathogenesis. The microbial dysbiosis characteristic of IBD, marked by a decline in beneficial bacteria and an increase in pathogenic microbes, suggests a profound connection between microbial imbalance and disease mechanisms. This review explores diagnostic approaches to IBD that integrate clinical assessment with advanced microbiological analyses, highlighting the potential of microbiome profiling as a non-invasive diagnostic tool. In addition, it evaluates conventional and emerging treatments and discusses microbiome-targeted intervention prospects, such as probiotics, symbiotics, and faecal microbiota transplantation. The necessity for future research to establish their efficacy and safety is emphasised.
Collapse
Affiliation(s)
- Despoina Gyriki
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.); (E.B.)
- Internal Medicine Department, Vostaneio-General Hospital of Mytilene, 81100 Mytilene, Greece;
| | - Christos Nikolaidis
- Internal Medicine Department, Vostaneio-General Hospital of Mytilene, 81100 Mytilene, Greece;
| | - Elisavet Stavropoulou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.); (E.B.)
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | | | - Christina Tsigalou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.); (E.B.)
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Stergios Vradelis
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.); (E.B.)
- Department of Gastroenterology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.); (E.B.)
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
113
|
Li Y, Li XM, Duan HY, Yang KD, Ye JF. Advances and optimization strategies in bacteriophage therapy for treating inflammatory bowel disease. Front Immunol 2024; 15:1398652. [PMID: 38779682 PMCID: PMC11109441 DOI: 10.3389/fimmu.2024.1398652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
In the advancement of Inflammatory Bowel Disease (IBD) treatment, existing therapeutic methods exhibit limitations; they do not offer a complete cure for IBD and can trigger adverse side effects. Consequently, the exploration of novel therapies and multifaceted treatment strategies provides patients with a broader range of options. Within the framework of IBD, gut microbiota plays a pivotal role in disease onset through diverse mechanisms. Bacteriophages, as natural microbial regulators, demonstrate remarkable specificity by accurately identifying and eliminating specific pathogens, thus holding therapeutic promise. Although clinical trials have affirmed the safety of phage therapy, its efficacy is prone to external influences during storage and transport, which may affect its infectivity and regulatory roles within the microbiota. Improving the stability and precise dosage control of bacteriophages-ensuring robustness in storage and transport, consistent dosing, and targeted delivery to infection sites-is crucial. This review thoroughly explores the latest developments in IBD treatment and its inherent challenges, focusing on the interaction between the microbiota and bacteriophages. It highlights bacteriophages' potential as microbiome modulators in IBD treatment, offering detailed insights into research on bacteriophage encapsulation and targeted delivery mechanisms. Particular attention is paid to the functionality of various carrier systems, especially regarding their protective properties and ability for colon-specific delivery. This review aims to provide a theoretical foundation for using bacteriophages as microbiome modulators in IBD treatment, paving the way for enhanced regulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xiao-meng Li
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Hao-yu Duan
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Kai-di Yang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
114
|
Gao F, Zhu F, Shuai B, Wu M, Wei C, Yuan Y, Gui Y, Tian Y, Fan H, Wu H. Quercetin ameliorates ulcerative colitis by restoring the balance of M2/M1 and repairing the intestinal barrier via downregulating cGAS‒STING pathway. Front Pharmacol 2024; 15:1351538. [PMID: 38774206 PMCID: PMC11106451 DOI: 10.3389/fphar.2024.1351538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
Macrophage polarization is closely associated with the pathogenesis of ulcerative colitis (UC). Quercetin, a flavonoid, has shown promise as a treatment for inflammatory diseases, but its specific mechanism of action remains unclear. This study investigates whether quercetin can regulate intestinal macrophage polarization and promote intestinal tissue repair via the cGAS-STING pathway for the treatment of UC. In vivo, mice with 3% DSS-induced UC were intraperitoneally injected with quercetin and RU.521 for 7 days, following which their general conditions and corresponding therapeutic effects were assessed. The impact of interferon-stimulated DNA (ISD) and quercetin on macrophage polarization and the cGAS-STING pathway was investigated using RAW264.7 cells and bone marrow-derived macrophages (BMDMs) in vitro. The results demonstrated that ISD induced M1 macrophage polarization and activated the cGAS-STING pathway in vitro, while quercetin reversed ISD's inflammatory effects. In vivo, quercetin suppressed the cGAS-STING pathway in the intestinal macrophages of DSS-induced UC mice, which reduced M1 macrophage polarization, increased M2 polarization, and facilitated intestinal barrier repair in UC. Taken together, these findings provide new insights into the mechanisms via which quercetin could be used to treat UC.
Collapse
Affiliation(s)
- Fei Gao
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Shuai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunzhu Wei
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuyi Yuan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gui
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yushi Tian
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
115
|
Bethlehem L, Estevinho MM, Grinspan A, Magro F, Faith JJ, Colombel JF. Microbiota therapeutics for inflammatory bowel disease: the way forward. Lancet Gastroenterol Hepatol 2024; 9:476-486. [PMID: 38604201 DOI: 10.1016/s2468-1253(23)00441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 04/13/2024]
Abstract
Microbiota therapeutics that transplant faecal material from healthy donors to people with mild-to-moderate ulcerative colitis have shown the potential to induce remission in about 30% of participants in small, phase 2 clinical trials. Despite this substantial achievement, the field needs to leverage the insights gained from these trials and progress towards phase 3 clinical trials and drug approval, while identifying the distinct clinical niche for this new therapeutic modality within inflammatory bowel disease (IBD) therapeutics. We describe the lessons that can be learned from past studies of microbiota therapeutics, from full spectrum donor stool to defined products manufactured in vitro. We explore the actionable insights these lessons provide on the design of near-term studies and future trajectories for the integration of microbiota therapeutics in the treatment of IBD. If successful, microbiota therapeutics will provide a powerful orthogonal approach (complementing or in combination with existing immunomodulatory drugs) to raise the therapeutic ceiling for the many non-responders and partial responders within the IBD patient population.
Collapse
Affiliation(s)
- Lukas Bethlehem
- Department of Genomics and Genetic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Manuela Estevinho
- Department of Gastroenterology, Vila Nova de Gaia Espinho Hospital Center, Vila Nova de Gaia, Portugal; Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ari Grinspan
- Dr Henry D Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fernando Magro
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; CINTESIS@RISE, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal; Department of Gastroenterology, São João Hospital Center, Porto, Portugal
| | - Jeremiah J Faith
- Department of Genomics and Genetic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- Dr Henry D Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
116
|
Xu B, Fu Y, Yin N, Qin W, Huang Z, Xiao W, Huang H, Mei Q, Fan J, Zeng Y, Huang C. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii served as key components of fecal microbiota transplantation to alleviate colitis. Am J Physiol Gastrointest Liver Physiol 2024; 326:G607-G621. [PMID: 38502145 PMCID: PMC11376976 DOI: 10.1152/ajpgi.00303.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Fecal microbiota transplantation (FMT) is a promising therapy for inflammatory bowel disease (IBD) via rectifying gut microbiota. The aim of this study was to identify a mechanism of how specific bacteria-associated immune response contributes to alleviated colitis. Forty donors were divided into high (donor H) and low (donor L) groups according to the diversity and the abundance of Bacteroides and Faecalibacterium by 16S rRNA sequencing. FMT was performed on dextran sulfate sodium (DSS)-induced colitis in mice. Mice with colitis showed significant improvement in intestinal injury and immune imbalance after FMT with group donor H (P < 0.05). Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii were identified as targeted strains in donor feces by real-time PCR and droplet digital PCR. Mice with colitis were treated with mono- or dual-bacterial gavage therapy. Dual-bacterial therapy significantly ameliorated intestinal injury compared with mono-bacterial therapy (P < 0.05). Dual-bacterial therapy increased the M2/M1 macrophage polarization and improved the Th17/Treg imbalance and elevated IL-10 production by Tregs compared with the DSS group (P < 0.05). Metabolomics showed increased abundance of lecithin in the glycerophospholipid metabolism pathway. In conclusion, B. thetaiotaomicron and F. prausnitzii, as the key bacteria in donor feces, alleviate colitis in mice. The mechanism may involve increasing lecithin and regulating IL-10 production of intestinal Tregs.NEW & NOTEWORTHY We demonstrate that donors with high abundance of Bacteroides and Faecalibacterium ameliorate dextran sulfate sodium (DSS)-induced colitis in mice by fecal microbiota transplantation (FMT). The combination therapy of Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii is superior to mono-bacterial therapy in ameliorating colitis in mice, of which mechanism may involve promoting lecithin and inducing IL-10 production of intestinal Tregs.
Collapse
Affiliation(s)
- Binqiang Xu
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Yang Fu
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Nuoming Yin
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Wenfei Qin
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Zehua Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Wei Xiao
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Huizhen Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Shanghai General Hospital of Nanjing Medical University, Shanghai, People's Republic of China
| | - Qixiang Mei
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Junjie Fan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Yue Zeng
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Chunlan Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
117
|
Kasapoglu M, Yadavalli R, Nawaz S, Althwanay A, AlEdani EM, Kaur H, Butt S. The Impact of Microbiome Interventions on the Progression and Severity of Inflammatory Bowel Disease: A Systematic Review. Cureus 2024; 16:e60786. [PMID: 38779440 PMCID: PMC11110475 DOI: 10.7759/cureus.60786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is characterized by chronic intestinal inflammation. The dysbiotic gut microbiome likely contributes to IBD pathogenesis. Microbiome-directed therapies such as fecal microbiota transplantation (FMT), probiotics, and synbiotics may help induce and maintain remission. This systematic review aimed to determine the efficacy of microbiome interventions compared to standard therapy or placebo for IBD treatment. PubMed, EMBASE, Cochrane CENTRAL, and Web of Science were searched for randomized controlled trials on microbiome interventions in IBD from inception to October 2023. The risk of bias was assessed using Cochrane tools. Outcomes included disease activity, endoscopy, histology, quality of life, and adverse events. A total of 18 randomized controlled trials were included. Three trials found intensive (i.e., high frequency of administration and/or large volumes of fecal material) multi-donor FMT superior to autologous FMT or glucocorticoids for UC remission induction. Seven placebo-controlled trials demonstrated higher remission rates with FMT, especially intensive protocols, versus control for mild-to-moderate UC. However, a single FMT did not prevent relapses. Seven probiotic trials showed the potential to improve UC activity and maintain remission. One synbiotic trial reported reduced inflammation and symptoms versus placebo. Serious adverse events were rare. Small sample sizes and protocol heterogeneity limited the conclusions. Current evidence indicates the potential benefits of microbiome interventions, particularly intensive multi-donor FMT, for inducing and maintaining remission in UC. Probiotics may also improve outcomes. Adequately powered trials using standardized protocols are still needed to firmly establish efficacy and safety. Microbiome-directed therapies represent a promising approach for improving IBD outcomes.
Collapse
Affiliation(s)
- Malik Kasapoglu
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Rajesh Yadavalli
- Internal Medicine, Rajiv Gandhi Institute of Medical Sciences, Adilabad, IND
| | - Sarosh Nawaz
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Abdulaziz Althwanay
- Dermatology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Medicine, Imam Abdulrahman Bin Faisal University, Dammam, SAU
| | - Esraa M AlEdani
- Dermatology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Harleen Kaur
- Medicine and Surgery, Maharishi Markandeshwar Institute of Medical Sciences and Research, Mullana, IND
| | - Samia Butt
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
118
|
Zhu X, Zhao L, Lei L, Zhu Y, Xu J, Liu L. Fecal microbiota transplantation ameliorates abdominal obesity through inhibiting microbiota-mediated intestinal barrier damage and inflammation in mice. Microbiol Res 2024; 282:127654. [PMID: 38417203 DOI: 10.1016/j.micres.2024.127654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/01/2024]
Abstract
Abdominal obesity (AO), characterized by the excessive abdominal fat accumulation, has emerged as a significant public health concern due to its metabolic complications and escalating prevalence worldwide, posing a more pronounced threat to human health than general obesity. While certain studies have indicated that intestinal flora contributed to diet-induced general obesity, the precise involvement of gut microbiota in the development of AO, specifically the accumulation of abdominal fat, remains inadequately explored. In this study, the 16 S rDNA sequencing was employed to analyze gut flora alterations, and the intestinal microbiota dysbiosis characterized by a vanishing decline of Akkermansia was found in the AO group. Along with notable gut microbiota changes, the intestinal mucosal barrier damage and metabolic inflammation were detected, which collectively promoted metabolic dysregulation in AO. Furthermore, the metabolic inflammation and AO were ameliorated after the intestinal microbiota depletion with antibiotics (ABX) drinking, underscoring a significant involvement of gut microbiota dysbiosis in the progression of AO. More importantly, our findings demonstrated that the transplantation of healthy intestinal flora successfully reversed the gut microbiota dysbiosis, particularly the decline of Akkermansia in the AO group. The gut flora reshaping has led to the repair of gut barrier damage and mitigation of metabolic inflammation, which ultimately ameliorated abdominal fat deposition. Our study established the role of interactions between gut flora, mucus barrier, and metabolic inflammation in the development of AO, thereby offering a theoretical foundation for the clinical application of fecal microbiota transplantation (FMT) as a treatment for AO.
Collapse
Affiliation(s)
- Xiaoqiang Zhu
- Central Laboratory, Wuhan Fourth Hospital, Wuhan, China; Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, China; National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Lijun Zhao
- Hubei Jiangxia Laboratory, Wuhan, China; National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Lei
- Central Laboratory, Wuhan Fourth Hospital, Wuhan, China; Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, China
| | - Yanhong Zhu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xu
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, China
| | - Li Liu
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, China.
| |
Collapse
|
119
|
Zhao H, Zhou Y, Xu J, Zhang Y, Wang H, Zhao C, Huang H, Yang J, Huang C, Li Y, Wang L, Nie Y. Short-chain fatty acid-producing bacterial strains attenuate experimental ulcerative colitis by promoting M2 macrophage polarization via JAK/STAT3/FOXO3 axis inactivation. J Transl Med 2024; 22:369. [PMID: 38637862 PMCID: PMC11025230 DOI: 10.1186/s12967-024-05122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD), dysbiosis, and immunosuppression who receive fecal microbiota transplantation (FMT) from healthy donors are at an increased risk of developing bacteremia. This study investigates the efficacy of a mixture of seven short-chain fatty acid (SCFA)-producing bacterial strains (7-mix), the resulting culture supernatant mixture (mix-sup), and FMT for treating experimental ulcerative colitis (UC) and evaluates underlying mechanisms. METHODS Utilizing culturomics, we isolated and cultured SCFA-producing bacteria from the stool of healthy donors. We used a mouse model of acute UC induced by dextran sulfate sodium (DSS) to assess the effects of 7-mix, mix-sup, and FMT on intestinal inflammation and barrier function, microbial abundance and diversity, and gut macrophage polarization by flow cytometry, immunohistochemistry, 16S rRNA gene sequencing, and transwell assays. RESULTS The abundance of several SCFA-producing bacterial taxa decreased in patients with UC. Seven-mix and mix-sup suppressed the inflammatory response and enhanced intestinal mucosal barrier function in the mouse model of UC to an extent similar to or superior to that of FMT. Moreover, 7-mix and mix-sup increased the abundance of SCFA-producing bacteria and SCFA concentrations in colitic mice. The effects of these interventions on the inflammatory response and gut barrier function were mediated by JAK/STAT3/FOXO3 axis inactivation in macrophages by inducing M2 macrophage polarization in vivo and in vitro. CONCLUSIONS Our approach provides new opportunities to rationally harness live gut probiotic strains and metabolites to reduce intestinal inflammation, restore gut microbial composition, and expedite the development of safe and effective treatments for IBD.
Collapse
Affiliation(s)
- Hailan Zhao
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Youlian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yong Zhang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Hong Wang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Chong Zhao
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Hongli Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jing Yang
- Department of Pathology, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yingfei Li
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Lisheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
| | - Yuqiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
120
|
Luu LDW, Pandey A, Paramsothy S, Ngo C, Castaño-Rodríguez N, Liu C, Kamm MA, Borody TJ, Man SM, Kaakoush NO. Profiling the colonic mucosal response to fecal microbiota transplantation identifies a role for GBP5 in colitis in humans and mice. Nat Commun 2024; 15:2645. [PMID: 38531874 DOI: 10.1038/s41467-024-46983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Host molecular responses to fecal microbiota transplantation (FMT) in ulcerative colitis are not well understood. Here, we profile the human colonic mucosal transcriptome prior to and following FMT or placebo to identify molecules regulated during disease remission. FMT alters the transcriptome above the effect of placebo (n = 75 vs 3 genes, q < 0.05), including modulation of structural, metabolic and inflammatory pathways. This response is attributed to responders with no consistency observed in non-responders. Regulated pathways in responders include tight junctions, calcium signalling and xenobiotic metabolism. Genes significantly regulated longitudinally in responders post-FMT could discriminate them from responders and non-responders at baseline and non-responders post-FMT, with GBP5 and IRF4 downregulation being associated with remission. Female mice with a deletion of GBP5 are more resistant to developing colitis than their wild-type littermates, showing higher colonic IRF4 phosphorylation. The colonic mucosal response discriminates UC remission following FMT, with GBP5 playing a detrimental role in colitis.
Collapse
Affiliation(s)
- Laurence D W Luu
- School of Biomedical Sciences, UNSW, Sydney, NSW, 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - Abhimanu Pandey
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Sudarshan Paramsothy
- Concord Clinical School, The University of Sydney, Sydney, NSW, 2139, Australia
- Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, NSW, 2139, Australia
| | - Chinh Ngo
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | | | - Cheng Liu
- Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, QLD, Australia
- School of Medicine, University of Queensland, Herston, QLD, 4006, Australia
- Mater Pathology, Mater Hospital Brisbane, South Brisbane, QLD, 4101, Australia
| | - Michael A Kamm
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, VIC, 3065, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, 3010, Australia
| | | | - Si Ming Man
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | | |
Collapse
|
121
|
Dai J, Jiang M, Wang X, Lang T, Wan L, Wang J. Human-derived bacterial strains mitigate colitis via modulating gut microbiota and repairing intestinal barrier function in mice. BMC Microbiol 2024; 24:96. [PMID: 38521930 PMCID: PMC10960398 DOI: 10.1186/s12866-024-03216-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/07/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Unbalanced gut microbiota is considered as a pivotal etiological factor in colitis. Nevertheless, the precise influence of the endogenous gut microbiota composition on the therapeutic efficacy of probiotics in colitis remains largely unexplored. RESULTS In this study, we isolated bacteria from fecal samples of a healthy donor and a patient with ulcerative colitis in remission. Subsequently, we identified three bacterial strains that exhibited a notable ability to ameliorate dextran sulfate sodium (DSS)-induced colitis, as evidenced by increased colon length, reduced disease activity index, and improved histological score. Further analysis revealed that each of Pediococcus acidilactici CGMCC NO.17,943, Enterococcus faecium CGMCC NO.17,944 and Escherichia coli CGMCC NO.17,945 significantly attenuated inflammatory responses and restored gut barrier dysfunction in mice. Mechanistically, bacterial 16S rRNA gene sequencing indicated that these three strains partially restored the overall structure of the gut microbiota disrupted by DSS. Specially, they promoted the growth of Faecalibaculum and Lactobacillus murinus, which were positively correlated with gut barrier function, while suppressing Odoribacter, Rikenella, Oscillibacter and Parasutterella, which were related to inflammation. Additionally, these strains modulated the composition of short chain fatty acids (SCFAs) in the cecal content, leading to an increase in acetate and a decrease in butyrate. Furthermore, the expression of metabolites related receptors, such as receptor G Protein-coupled receptor (GPR) 43, were also affected. Notably, the depletion of endogenous gut microbiota using broad-spectrum antibiotics completely abrogated these protective effects. CONCLUSIONS Our findings suggest that selected human-derived bacterial strains alleviate experimental colitis and intestinal barrier dysfunction through mediating resident gut microbiota and their metabolites in mice. This study provides valuable insights into the potential therapeutic application of probiotics in the treatment of colitis.
Collapse
Affiliation(s)
- Juanjuan Dai
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Mingjie Jiang
- Department of Head and Neck Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Xiaoxin Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Lang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Leilei Wan
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jingjing Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
122
|
Wang S, Zhou S, Han Z, Yu B, Xu Y, Lin Y, Chen Y, Jin Z, Li Y, Cao Q, Xu Y, Zhang Q, Wang YC. From gut to brain: understanding the role of microbiota in inflammatory bowel disease. Front Immunol 2024; 15:1384270. [PMID: 38576620 PMCID: PMC10991805 DOI: 10.3389/fimmu.2024.1384270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
With the proposal of the "biological-psychological-social" model, clinical decision-makers and researchers have paid more attention to the bidirectional interactive effects between psychological factors and diseases. The brain-gut-microbiota axis, as an important pathway for communication between the brain and the gut, plays an important role in the occurrence and development of inflammatory bowel disease. This article reviews the mechanism by which psychological disorders mediate inflammatory bowel disease by affecting the brain-gut-microbiota axis. Research progress on inflammatory bowel disease causing "comorbidities of mind and body" through the microbiota-gut-brain axis is also described. In addition, to meet the needs of individualized treatment, this article describes some nontraditional and easily overlooked treatment strategies that have led to new ideas for "psychosomatic treatment".
Collapse
Affiliation(s)
- Siyu Wang
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shuwei Zhou
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bin Yu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yutong Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zi Jin
- Department of Anesthesiology and Pain Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yalong Li
- Anorectal Department, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Qinhan Cao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine (TCM), Chengdu, China
| | - Yunying Xu
- Clinical Medical School, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Qiang Zhang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yuan-Cheng Wang
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
123
|
Zhang R, Chen J, Liu L, Li X, Qiu C. Gut microbiota-based discriminative model for patients with ulcerative colitis: A meta-analysis and real-world study. Medicine (Baltimore) 2024; 103:e37091. [PMID: 38457570 PMCID: PMC10919464 DOI: 10.1097/md.0000000000037091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 03/10/2024] Open
Abstract
Gut microbiota directly interacts with intestinal epithelium and is a significant factor in the pathogenesis of ulcerative colitis (UC). A meta-analysis was performed to investigate gut microbiota composition of patients with UC in the United States. We also collected fecal samples from Chinese patients with UC and healthy individuals. Gut microbiota was tested using 16S ribosomal RNA gene sequencing. Meta-analysis and 16S ribosomal RNA sequencing revealed significant differences in gut bacterial composition between UC patients and healthy subjects. The Chinese UC group had the highest scores for Firmicutes, Clostridia, Clostridiales, Streptococcaceae, and Blautia, while healthy cohort had the highest scores for P-Bacteroidetes, Bacteroidia, Bacteroidales, Prevotellaceae, and Prevotella_9. A gut microbiota-based discriminative model trained on an American cohort achieved a discrimination efficiency of 0.928 when applied to identify the Chinese UC cohort, resulting in a discrimination efficiency of 0.759. Additionally, a differentiation model was created based on gut microbiota of a Chinese cohort, resulting in an area under the receiver operating characteristic curve of 0.998. Next, we applied the model established for the Chinese UC cohort to analyze the American cohort. Our findings suggest that the diagnostic efficiency ranged from 0.8794 to 0.9497. Furthermore, a combined analysis using data from both the Chinese and US cohorts resulted in a model with a diagnostic efficacy of 0.896. In summary, we found significant differences in gut bacteria between UC individuals and healthy subjects. Notably, the model from the Chinese cohort performed better at diagnosing UC patients compared to healthy subjects. These results highlight the promise of personalized and region-specific approaches using gut microbiota data for UC diagnosis.
Collapse
Affiliation(s)
- Rong Zhang
- Department of General Surgery, The Third People’s Hospital of Chengdu, Chengdu 610014, Sichuan Province, China
| | - Jing Chen
- Department of Gastroenterology, The People’s Hospital of Dujiangyan, Dujiangyan 611830, Sichuan Province, China
| | - Li Liu
- Department of Gastroenterology, The Third People’s Hospital of Chengdu, Chengdu 610014, Sichuan Province, China
| | - Xiankun Li
- Department of Pharmacy, The People’s Hospital of Dujiangyan, Dujiangyan 611830, Sichuan Province, China
| | - Changwei Qiu
- Department of Gastroenterology, The People’s Hospital of Dujiangyan, Dujiangyan 611830, Sichuan Province, China
| |
Collapse
|
124
|
Peery AF, Kelly CR, Kao D, Vaughn BP, Lebwohl B, Singh S, Imdad A, Altayar O. AGA Clinical Practice Guideline on Fecal Microbiota-Based Therapies for Select Gastrointestinal Diseases. Gastroenterology 2024; 166:409-434. [PMID: 38395525 DOI: 10.1053/j.gastro.2024.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
BACKGROUND & AIMS Fecal microbiota-based therapies include conventional fecal microbiota transplant and US Food and Drug Administration-approved therapies, fecal microbiota live-jslm and fecal microbiota spores live-brpk. The American Gastroenterological Association (AGA) developed this guideline to provide recommendations on the use of fecal microbiota-based therapies in adults with recurrent Clostridioides difficile infection; severe to fulminant C difficile infection; inflammatory bowel diseases, including pouchitis; and irritable bowel syndrome. METHODS The guideline was developed using the GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) framework to prioritize clinical questions, identify patient-centered outcomes, and conduct an evidence synthesis. The guideline panel used the Evidence-to-Decision framework to develop recommendations for the use of fecal microbiota-based therapies in the specified gastrointestinal conditions and provided implementation considerations for clinical practice. RESULTS The guideline panel made 7 recommendations. In immunocompetent adults with recurrent C difficile infection, the AGA suggests select use of fecal microbiota-based therapies on completion of standard of care antibiotics to prevent recurrence. In mildly or moderately immunocompromised adults with recurrent C difficile infection, the AGA suggests select use of conventional fecal microbiota transplant. In severely immunocompromised adults, the AGA suggests against the use of any fecal microbiota-based therapies to prevent recurrent C difficile. In adults hospitalized with severe or fulminant C difficile not responding to standard of care antibiotics, the AGA suggests select use of conventional fecal microbiota transplant. The AGA suggests against the use of conventional fecal microbiota transplant as treatment for inflammatory bowel diseases or irritable bowel syndrome, except in the context of clinical trials. CONCLUSIONS Fecal microbiota-based therapies are effective therapy to prevent recurrent C difficile in select patients. Conventional fecal microbiota transplant is an adjuvant treatment for select adults hospitalized with severe or fulminant C difficile infection not responding to standard of care antibiotics. Fecal microbiota transplant cannot yet be recommended in other gastrointestinal conditions.
Collapse
Affiliation(s)
- Anne F Peery
- University of North Carolina, Chapel Hill, North Carolina
| | - Colleen R Kelly
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dina Kao
- University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | - Osama Altayar
- Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
125
|
Jia L, Jiang Y, Wu L, Fu J, Du J, Luo Z, Guo L, Xu J, Liu Y. Porphyromonas gingivalis aggravates colitis via a gut microbiota-linoleic acid metabolism-Th17/Treg cell balance axis. Nat Commun 2024; 15:1617. [PMID: 38388542 PMCID: PMC10883948 DOI: 10.1038/s41467-024-45473-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Periodontitis is closely related to inflammatory bowel disease (IBD). An excessive and non-self-limiting immune response to the dysbiotic microbiome characterizes the two. However, the underlying mechanisms that overlap still need to be clarified. We demonstrate that the critical periodontal pathogen Porphyromonas gingivalis (Pg) aggravates intestinal inflammation and Th17/Treg cell imbalance in a gut microbiota-dependent manner. Specifically, metagenomic and metabolomic analyses shows that oral administration of Pg increases levels of the Bacteroides phylum but decreases levels of the Firmicutes, Verrucomicrobia, and Actinobacteria phyla. Nevertheless, it suppresses the linoleic acid (LA) pathway in the gut microbiota, which was the target metabolite that determines the degree of inflammation and functions as an aryl hydrocarbon receptor (AHR) ligand to suppress Th17 differentiation while promoting Treg cell differentiation via the phosphorylation of Stat1 at Ser727. Therapeutically restoring LA levels in colitis mice challenged with Pg exerts anti-colitis effects by decreasing the Th17/Treg cell ratio in an AHR-dependent manner. Our study suggests that Pg aggravates colitis via a gut microbiota-LA metabolism-Th17/Treg cell balance axis, providing a potential therapeutically modifiable target for IBD patients with periodontitis.
Collapse
Affiliation(s)
- Lu Jia
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Lili Wu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Jingfei Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Zhenhua Luo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, P. R. China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, P. R. China.
| |
Collapse
|
126
|
Hediyal TA, Vichitra C, Anand N, Bhaskaran M, Essa SM, Kumar P, Qoronfleh MW, Akbar M, Kaul-Ghanekar R, Mahalakshmi AM, Yang J, Song BJ, Monaghan TM, Sakharkar MK, Chidambaram SB. Protective effects of fecal microbiota transplantation against ischemic stroke and other neurological disorders: an update. Front Immunol 2024; 15:1324018. [PMID: 38449863 PMCID: PMC10915229 DOI: 10.3389/fimmu.2024.1324018] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
The bidirectional communication between the gut and brain or gut-brain axis is regulated by several gut microbes and microbial derived metabolites, such as short-chain fatty acids, trimethylamine N-oxide, and lipopolysaccharides. The Gut microbiota (GM) produce neuroactives, specifically neurotransmitters that modulates local and central neuronal brain functions. An imbalance between intestinal commensals and pathobionts leads to a disruption in the gut microbiota or dysbiosis, which affects intestinal barrier integrity and gut-immune and neuroimmune systems. Currently, fecal microbiota transplantation (FMT) is recommended for the treatment of recurrent Clostridioides difficile infection. FMT elicits its action by ameliorating inflammatory responses through the restoration of microbial composition and functionality. Thus, FMT may be a potential therapeutic option in suppressing neuroinflammation in post-stroke conditions and other neurological disorders involving the neuroimmune axis. Specifically, FMT protects against ischemic injury by decreasing IL-17, IFN-γ, Bax, and increasing Bcl-2 expression. Interestingly, FMT improves cognitive function by lowering amyloid-β accumulation and upregulating synaptic marker (PSD-95, synapsin-1) expression in Alzheimer's disease. In Parkinson's disease, FMT was shown to inhibit the expression of TLR4 and NF-κB. In this review article, we have summarized the potential sources and methods of administration of FMT and its impact on neuroimmune and cognitive functions. We also provide a comprehensive update on the beneficial effects of FMT in various neurological disorders by undertaking a detailed interrogation of the preclinical and clinical published literature.
Collapse
Affiliation(s)
- Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - C. Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - Nikhilesh Anand
- Department of Pharmacology, American University of Antigua, College of Medicine, Saint John’s, Antigua and Barbuda
| | - Mahendran Bhaskaran
- College of Pharmacy and Pharmaceutical Sciences, Frederic and Mary Wolf Centre University of Toledo, Health Science, Toledo, OH, United States
| | - Saeefh M. Essa
- Department of Computer Science, Northwest High School, Bethesda, MD, United States
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research and Policy Division, Ypsilanti, MI, United States
| | - Mohammed Akbar
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Ruchika Kaul-Ghanekar
- Symbiosis Centre for Research and Innovation (SCRI), Cancer Research Lab, Symbiosis School of Biological Sciences (SSBS), Symbiosis International University (SIU), Pune, Maharashtra, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Bio-physics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Tanya M. Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, KA, India
- Centre for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru, KA, India
| |
Collapse
|
127
|
Sun Y, Wang X, Li L, Zhong C, Zhang Y, Yang X, Li M, Yang C. The role of gut microbiota in intestinal disease: from an oxidative stress perspective. Front Microbiol 2024; 15:1328324. [PMID: 38419631 PMCID: PMC10899708 DOI: 10.3389/fmicb.2024.1328324] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Recent studies have indicated that gut microbiota-mediated oxidative stress is significantly associated with intestinal diseases such as colorectal cancer, ulcerative colitis, and Crohn's disease. The level of reactive oxygen species (ROS) has been reported to increase when the gut microbiota is dysregulated, especially when several gut bacterial metabolites are present. Although healthy gut microbiota plays a vital role in defending against excessive oxidative stress, intestinal disease is significantly influenced by excessive ROS, and this process is controlled by gut microbiota-mediated immunological responses, DNA damage, and intestinal inflammation. In this review, we discuss the relationship between gut microbiota and intestinal disease from an oxidative stress perspective. In addition, we also provide a summary of the most recent therapeutic approaches for preventing or treating intestinal diseases by modifying gut microbiota.
Collapse
Affiliation(s)
- Yiqi Sun
- Surgery of Traditional Chinese Medicine Department, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xurui Wang
- Surgery of Traditional Chinese Medicine Department, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Li
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Zhong
- Traditional Chinese Medicine Department of Orthopaedic and Traumatic, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Zhang
- Colorectal and Anal Surgery, Chengdu Anorectal Hospital, Chengdu, China
| | - Xiangdong Yang
- Colorectal and Anal Surgery, Chengdu Anorectal Hospital, Chengdu, China
| | - Mingyue Li
- Special Needs Outpatient Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Yang
- Surgery of Traditional Chinese Medicine Department, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
128
|
Wang J, Mao T, Zhou H, Jiang X, Zhao Z, Zhang X. Global trends and hotspots of ulcerative colitis based on bibliometric and visual analysis from 1993 to 2022. Medicine (Baltimore) 2024; 103:e37095. [PMID: 38306541 PMCID: PMC10843375 DOI: 10.1097/md.0000000000037095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024] Open
Abstract
Ulcerative colitis (UC) has seen a significant increase over the past 3 decades. However, our understanding of its etiology, pathogenesis, and pharmacological treatment remains limited. This comprehensive review aims to address these gaps by analyzing trends, evaluating previous research, and providing insights for future investigations. We conducted a bibliometric analysis of UC-related papers indexed in the Web of Science from 1993 to 2022. The author, organization, country, and keyword networks in the field of UC were visualized. A total of 36,483 papers were included, showing a continuous upward trend. Most research on UC was conducted in universities, with hospitals leading in high-quality studies. The United States emerged as the primary contributor, followed by China and the United Kingdom. The overall quality of UC-related publications improved, indicating sustained interest in the field. The keywords related to UC was classified into 9 clusters. Keywords detection revealed that UC research focused mainly on the discovery of its etiology and exploration of treatment methods, with research directions evolving from initial treatment of UC and related diseases to clinical trials of UC and subsequently incorporating genomics and bioinformatics techniques to study UC and explore new therapeutic methods and drugs, including recent advances in gut microbiota. Our study identified gaps in understanding the etiology, pathogenesis, and treatment of UC. Future research in UC should focus on genomics, personalized treatment, microbial therapy and leveraging machine learning and artificial intelligence. These areas hold the potential for improving UC diagnosis, treatment, and management.
Collapse
Affiliation(s)
- Jing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Tangyou Mao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Hengyu Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Xinqi Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Zhihui Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Xiaoqing Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| |
Collapse
|
129
|
Singh A, Midha V, Chauhan NS, Sood A. Current perspectives on fecal microbiota transplantation in inflammatory bowel disease. Indian J Gastroenterol 2024; 43:129-144. [PMID: 38334893 DOI: 10.1007/s12664-023-01516-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/26/2023] [Indexed: 02/10/2024]
Abstract
Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic modality within the domain of inflammatory bowel disease (IBD). While FMT has secured approval and demonstrated efficacy in addressing recurrent and refractory Clostridioides difficile infection, its application in IBD remains an area of active exploration and research. The current status of FMT in IBD reflects a nuanced landscape, with ongoing investigations delving into its effectiveness, safety and optimal implementation. Early-stage clinical trials and observational studies have provided insights into the potential of FMT to modulate the dysbiotic gut microbiota associated with IBD, aiming to mitigate inflammation and promote mucosal healing. However, considerable complexities persist, including variations in donor selection, treatment protocols and outcome assessments. Challenges in standardizing FMT protocols for IBD treatment are compounded by the dynamic nature of the gut microbiome and the heterogeneity of IBD itself. Despite these challenges, enthusiasm for FMT in IBD emanates from its capacity to address gut microbial dysbiosis, signifying a paradigm shift towards more comprehensive approaches in IBD management. As ongoing research progresses, an enhanced understanding of FMT's role in IBD therapy is anticipated. This article synthesizes the current status of FMT in IBD, elucidating the attendant challenges and aspiring towards the refinement of its application for improved patient outcomes.
Collapse
Affiliation(s)
- Arshdeep Singh
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, 141 001, India
| | - Vandana Midha
- Department of Internal Medicine, Dayanand Medical College and Hospital, Ludhiana, 141 001, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124 001, India
| | - Ajit Sood
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, 141 001, India.
| |
Collapse
|
130
|
Yadav A, Yadav R, Sharma V, Dutta U. A comprehensive guide to assess gut mycobiome and its role in pathogenesis and treatment of inflammatory bowel disease. Indian J Gastroenterol 2024; 43:112-128. [PMID: 38409485 DOI: 10.1007/s12664-023-01510-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/20/2023] [Indexed: 02/28/2024]
Abstract
Inflammatory bowel disease (IBD) is an immune mediated chronic inflammatory disorder of gastrointestinal tract, which has underlying multifactorial pathogenic determinants such as environmental factors, susceptibility genes, gut microbial dysbiosis and a dysregulated immune response. Human gut is a frequent inhabitant of complex microbial ecosystem encompassing bacteria, viruses, parasites, fungi and other microorganisms that have an undisputable role in maintaining balanced homeostasis. All of these microbes interact with immune system and affect human gut physiology either directly or indirectly with interaction of each other. Intestinal fungi represent a smaller but crucial component of the human gut microbiome. Besides interaction with bacteriome and virome, it helps in balancing homoeostasis between pathophysiological and physiological processes, which is often dysregulated in patients with IBD. Understanding of gut mycobiome and its clinical implications are still in in its infancy as opposed to bacterial component of gut microbiome, which is more often focused. Modulation of gut mycobiome represents a novel and promising strategy in the management of patients with IBD. Emerging mycobiome-based therapies such as diet interventions, fecal microbiota transplantation (FMT), probiotics (both fungal and bacterial strains) and antifungals exhibit substantial effects in calibrating the gut mycobiome and restoring dysbalanced immune homeostasis by restoring the core gut mycobiome. In this review, we summarized compositional and functional diversity of the gut mycobiome in healthy individuals and patients with IBD, gut mycobiome dysbiosis in patients with IBD, host immune-fungal interactions and therapeutic role of modulation of intestinal fungi in patients with IBD.
Collapse
Affiliation(s)
- Amit Yadav
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Renu Yadav
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, 110 029, India
| | - Vishal Sharma
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Usha Dutta
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India.
| |
Collapse
|
131
|
Lin J, Xiong J, Jin Y, Wang H, Wu L, Chen L, Zhang F, Ji G, Cui B. Fecal microbiota transplantation through transendoscopic enteral tubing for inflammatory bowel disease: High acceptance and high satisfaction. J Gastroenterol Hepatol 2024; 39:328-336. [PMID: 38016701 DOI: 10.1111/jgh.16435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND AND AIM Fecal microbiota transplantation (FMT) has been shown to positively affect the treatment of inflammatory bowel disease (IBD). However, the safety and efficacy of FMT may depend on the route of microbiota delivery. This study investigates the acceptance, satisfaction, and selection preference of a new delivery route, transendoscopic enteral tubing (TET), for treating IBD. METHODS A survey was conducted among patients with IBD from five medical centers across China. The objective was to assess their acceptance, subjective feelings, and major concerns regarding two types of TET: colonic TET and mid-gut TET. In addition, the survey also analyzed the factors affecting the selection of TET and TET types among these patients. RESULTS The final analysis included 351 questionnaires. Up to 76.6% of patients were willing to accept TET and preferred to choose colonic TET when they first learned about TET. Patients with longer disease duration, history of enema therapy, or enteral nutrition were more open to considering TET among IBD patients. After treatment, 95.6% of patients were satisfied with TET, including colonic TET (95.9%) and mid-gut TET (95.1%). Patients with a history of enema therapy and ulcerative colitis preferred colonic TET. In contrast, those with a history of enteral nutrition and Crohn's disease were willing to choose mid-gut TET. However, some patients hesitated to accept TET due to concerns about efficacy, safety, and cost. CONCLUSIONS TET was highly accepted and satisfied patients with IBD. Disease type and combination therapy influenced the choice of colonic or mid-gut TET.
Collapse
Affiliation(s)
- Jue Lin
- Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinlei Xiong
- Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Jin
- Department of Gastroenterology, Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Honggang Wang
- Medical Center for Digestive Diseases, Huaian First People's Hospital, Huaian, China
| | - Lihao Wu
- Department of Gastroenterology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Linlin Chen
- Fourth Department of the Digestive Disease Center, Suining Central Hospital, Suining, China
| | - Faming Zhang
- Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guozhong Ji
- Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bota Cui
- Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
132
|
Peng K, Xia S, Xiao S, Zhang M, Liao J, Yu Q. Kuijie decoction ameliorates ulcerative colitis by affecting intestinal barrier functions, gut microbiota, metabolic pathways and Treg/Th17 balance in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117316. [PMID: 37852335 DOI: 10.1016/j.jep.2023.117316] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Currently, the clinical treatment is limited and difficult to achieve satisfactory results for ulcerative colitis (UC). The role of traditional Chinese medicine (TCM) in the treatment of UC is very complex. Kuijie decoction (KJD) as a classic TCM, is widely used in the clinical treatment of UC, but the mechanism of its action is still unclear. AIM OF THE STUDY This study is to investigate the protective effects of KJD on UC and the underlying mechanisms. MATERIALS AND METHODS The experimental model of UC was induced by DSS, and KJD was introduced into the model at the same time. Clinical symptoms, including the body weight, colon length and colon histopathological, were used to measure the severity of colitis. The expression of inflammatory cytokines and tight junction proteins was quantified. The effect of KJD on intestinal flora and intestinal metabolism was determined by 16S rRNA and untargeted metabolomics analysis, respectively. The proportion of Th17 cells and Tregs in the spleen was examined by flow cytometry. RESULTS Mice treated with KJD showed significantly alleviated clinical symptoms and histological damage, such as more body weight gain, lower disease activity index (DAI) score, and longer colon length. The administration of KJD also led to the down-regulation of inflammatory mediators, upregulation of the expression of ZO-1, occludin and decreased claudin-2, as well as altered microbiota composition against DSS challenges (especially an increase of Lachnospiraceae). KJD enhanced the percentage of Treg cells but decreased the proportion of Th17 cells to maintain intestinal homeostasis by improving gut microbiota metabolism. CONCLUSIONS In summary, KJD maintained intestinal epithelial homeostasis by regulating epithelial barrier function, intestinal flora, and restoring Th17/Treg balance. KJD has the potential to be a Chinese medicine treatment for UC.
Collapse
Affiliation(s)
- Kaixin Peng
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China
| | - Suhong Xia
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China
| | - Siqi Xiao
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China
| | - Mingyu Zhang
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China
| | - Jiazhi Liao
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China.
| | - Qin Yu
- Department of Gastroenterology & Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Jiefang Avenue 1095#, Wuhan City, Hubei Province, 430030, China.
| |
Collapse
|
133
|
Wang C, Jiang S, Zheng H, An Y, Zheng W, Zhang J, Liu J, Lin H, Wang G, Wang F. Integration of gut microbiome and serum metabolome revealed the effect of Qing-Wei-Zhi-Tong Micro-pills on gastric ulcer in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117294. [PMID: 37839771 DOI: 10.1016/j.jep.2023.117294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qing-Wei-Zhi-Tong Micro-pills (QWZT) is herbal compound used in the treatment of GU, whose functions include clearing the stomach and fire, softening the liver and relieving pain. However, its mechanistic profile on host intestinal microbiota and metabolism has not been determined. AIM OF THE STUDY The present study aimed to observe the healing effect of QWZT on acetic acid-induced gastric ulcer in a rat model and to preliminarily elucidate its possible therapeutic mechanism from the perspective of host intestinal microbiota and metabolism. MATERIALS AND METHODS The Wistar male rats (7 weeks old; weight 180-200 g) were randomly divided into normal control group (NC), acetic acid-induced gastric ulcer group (GU), and QWZT treatment group (High dose: 1250 mg/kg/day, Middle dose: 625 mg/kg/day, Low dose: 312.5 mg/kg/day) of 6 rats each. An acetic acid-induced gastric ulcer rat model was constructed based on anatomical surgery. QWZT (High dose, Middle dose, and Low dose) was used to treat gastric ulcer rats for 7 days by gavage. At the end of treatment, the body weight, macroscopic condition of gastric tissue ulcers, pathological changes (HE staining), inflammatory factors, oxidative stress factors, and endocrine factors were assessed in each group of rats. Fresh feces and serum from each group of rats were collected for microbiome and metabolome analysis on the machine, respectively. Drug-disease common targets and functional pathways were captured based on network pharmacology. The complex network of Herbs-Targets-Pathways-Metabolites-Microbiota interactions was constructed. Ultimately, Fecal Microbiota Transplantation (FMT) evaluated the contribution of gut microbiota in disease. RESULTS QWZT increased the abundance of beneficial bacteria (Bacteroides, Alloprevotella, Rikenellaceae_RC9_gut_group, Lactobacillus, Lachnospiraceae_NK4A136_group, Parabacteroides, etc.), reduced the abundance of harmful bacteria (Micromonospora, Geobacter, Nocardioides, and Arenimonas, etc.), reduced the levels of inflammatory mediators (12,13-EpOME, 9,10-Epoxyoctadecenoic acid, SM(d18:1/16:0) and Leukotriene A4, etc.), restored host metabolic disorders (Linoleic acid metabolism, Glycerophospholipid metabolism, and Arachidonic acid metabolism), and regulated the level of cytokines (IL-6, TNF-a, SOD, MDA, PEG-2 and NO), ultimately exerting an anti-ulcer effect. Apart from that, FMT improved acetic acid-induced gastric ulcers in rats. CONCLUSION QWZT improved acetic acid-induced gastric ulcers in rats by remodeling intestinal microbiota and regulating host metabolism. This work may promote the process of developing and utilizing clinical applications of QWZT.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Shengyu Jiang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Department of Laboratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Haoyu Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Yiming An
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Wenxue Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Jiaqi Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Jianming Liu
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Hongqiang Lin
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Science and Technology Innovation Centre for Secondary Development of Proprietary Chinese Medicines, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| |
Collapse
|
134
|
Meng Y, Sun J, Zhang G. Pick fecal microbiota transplantation to enhance therapy for major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110860. [PMID: 37678703 DOI: 10.1016/j.pnpbp.2023.110860] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
In recent years, fecal microbiota transplantation (FMT) has emerged as a promising therapy for major depressive disorder (MDD). The goal of the operation is to restore a healthy gut microbiota by introducing feces from a healthy donor into the recipient's digestive system. The brain-gut axis is thought to have a significant role in regulating mood, behavior, and cognition, which supports the use of FMT in the treatment of MDD. Numerous studies have shown a correlation between abnormalities of the gut microbiota and MDD, whereas FMT has demonstrated the potential to restore microbial equilibrium. While FMT has shown encouraging results, it is crucial to highlight the potential hazards and limits inherent to this therapeutic approach. Stool donor-to-recipient disease transfer is a concern of FMT. Furthermore, it still needs to be determined what effect FMT has on the gut microbiota and the brain in the long run. This literature review provides an overview of the possible efficacy of FMT as a therapeutic modality for MDD. There is hope for patients who have not reacted well to typical antidepressant therapy since FMT may become an invaluable tool in the treatment of MDD as researchers continue to examine the relationship between gut microbiota and MDD.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang 110042, China
| |
Collapse
|
135
|
Arora U, Kedia S, Ahuja V. The practice of fecal microbiota transplantation in inflammatory bowel disease. Intest Res 2024; 22:44-64. [PMID: 37981746 PMCID: PMC10850701 DOI: 10.5217/ir.2023.00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 11/21/2023] Open
Abstract
Current evidence posits a central role for gut microbiota and the metabolome in the pathogenesis and progression of inflammatory bowel disease (IBD). Fecal microbiota transplantation (FMT) has been established as a means to manipulate this microbiome safely and sustainably. Several aspects of the technical improvement including pretreatment with antibiotics, use of frozen stool samples as well as short donor-to-recipient time are proposed to improve its response rates. Its efficacy in ulcerative colitis has been proven in clinical trials while data is emerging for Crohn's disease. This review describes briefly the biology behind FMT, the available evidence for its use in IBD, and the host, recipient and procedural factors which determine the clinical outcomes.
Collapse
Affiliation(s)
- Umang Arora
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Saurabh Kedia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
136
|
Newman KL, Allegretti JR. Emerging Noninfectious Indications for Live Biotherapeutic Products in Gastroenterology. Am J Gastroenterol 2024; 119:S30-S35. [PMID: 38153224 DOI: 10.14309/ajg.0000000000002584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/22/2023] [Indexed: 12/29/2023]
Affiliation(s)
- Kira L Newman
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jessica R Allegretti
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
137
|
Pandey H, Jain D, Tang DWT, Wong SH, Lal D. Gut microbiota in pathophysiology, diagnosis, and therapeutics of inflammatory bowel disease. Intest Res 2024; 22:15-43. [PMID: 37935653 PMCID: PMC10850697 DOI: 10.5217/ir.2023.00080] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 11/09/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial disease, which is thought to be an interplay between genetic, environment, microbiota, and immune-mediated factors. Dysbiosis in the gut microbial composition, caused by antibiotics and diet, is closely related to the initiation and progression of IBD. Differences in gut microbiota composition between IBD patients and healthy individuals have been found, with reduced biodiversity of commensal microbes and colonization of opportunistic microbes in IBD patients. Gut microbiota can, therefore, potentially be used for diagnosing and prognosticating IBD, and predicting its treatment response. Currently, there are no curative therapies for IBD. Microbiota-based interventions, including probiotics, prebiotics, synbiotics, and fecal microbiota transplantation, have been recognized as promising therapeutic strategies. Clinical studies and studies done in animal models have provided sufficient evidence that microbiota-based interventions may improve inflammation, the remission rate, and microscopic aspects of IBD. Further studies are required to better understand the mechanisms of action of such interventions. This will help in enhancing their effectiveness and developing personalized therapies. The present review summarizes the relationship between gut microbiota and IBD immunopathogenesis. It also discusses the use of gut microbiota as a noninvasive biomarker and potential therapeutic option.
Collapse
Affiliation(s)
| | | | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
138
|
Porcari S, Maida M, Bibbò S, McIlroy J, Ianiro G, Cammarota G. Fecal Microbiota Transplantation as Emerging Treatment in European Countries 2.0. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:85-99. [PMID: 38175472 DOI: 10.1007/978-3-031-42108-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile infection (CDI) is one of the most common healthcare-associated infections and one of the leading causes of morbidity and mortality in hospitalized patients in the world. Although several antibiotics effectively treat CDI, some individuals may not respond to these drugs and may be cured by transplanting stool from healthy donors. FMT has demonstrated extraordinary cure rates for the cure of CDI recurrences.Moreover, FMT has also been investigated in other disorders associated with the alteration of gut microbiota, such as inflammatory bowel disease (IBD), where the alterations of the gut microbiota ecology have been theorized to play a causative role. Although FMT is currently not recommended to cure IBD patients in clinical practice, several studies have been recently carried out with the ultimate goal to search new therapeutic options to patients.This review summarizes data on the use of FMT for the treatment of both CDI and IBD, with a special attention to highlight studies conducted in European countries.
Collapse
Affiliation(s)
- Serena Porcari
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marcello Maida
- Gastroenterology and Endoscopy Unit, S. Elia-Raimondi Hospital, Caltanissetta, Italy
| | - Stefano Bibbò
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - James McIlroy
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Gianluca Ianiro
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Cammarota
- Department of Medical and Surgical Sciences, Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
139
|
Evrensel A. Probiotics and Fecal Microbiota Transplantation in Major Depression: Doxa or Episteme? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:67-83. [PMID: 39261424 DOI: 10.1007/978-981-97-4402-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In the human body, eukaryotic somatic cells and prokaryotic microorganisms live together. In this state, the body can be viewed as a "superorganism." Symbiotic life with commensal microorganisms can be observed in almost every part of the body. Intestinal microbiota plays an important role in health and disease, and in shaping and regulating neuronal functions from the intrauterine period to the end of life. Microbiota-based treatment opportunities are becoming more evident in both understanding the etiopathogenesis and treatment of neuropsychiatric disorders, especially depression. Antidepressant drugs, which are the first choice in the treatment of depression, also have antimicrobial and immunomodulatory mechanisms of action. From these perspectives, direct probiotics and fecal microbiota transplantation are treatment options to modulate microbiota composition. There are few preclinical and clinical studies on the effectiveness and safety of these applications in depression. The information obtained from these studies may still be at a doxa level. However, the probability that this information will become episteme in the future seems to be increasing.
Collapse
Affiliation(s)
- Alper Evrensel
- Department of Psychiatry, Uskudar University, Istanbul, Turkey.
- NP Brain Hospital, Istanbul, Turkey.
| |
Collapse
|
140
|
Pu D, Yao Y, Zhou C, Liu R, Wang Z, Liu Y, Wang D, Wang B, Wang Y, Liu Z, Zhang Z, Feng B. FMT rescues mice from DSS-induced colitis in a STING-dependent manner. Gut Microbes 2024; 16:2397879. [PMID: 39324491 PMCID: PMC11441074 DOI: 10.1080/19490976.2024.2397879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Fecal microbiota transplantation (FMT) is currently a promising therapy for inflammatory bowel disease (IBD). However, clinical studies have shown that there is an obvious individual difference in the efficacy of FMT. Therefore, it is a pressing issue to identify the factors that influence the efficacy of FMT and find ways to screen the most suitable patients for this therapy. In this work, we targeted the stimulator of interferon genes (STING), a DNA-sensing protein that regulates host-defense. By comparing the differential efficacy of FMT in mice with different expression level of STING, it is revealed that FMT therapy provides treatment for DSS-induced colitis in a STING-dependent manner. Mechanistically, FMT exerts a regulatory effect on the differentiation of intestinal Th17 cells and macrophages, splenic Th1 and Th2 cells, as well as Th1 cells of the mesenteric lymph nodes via STING, down-regulating the colonic M1/M2 and splenic Th1/Th2 cell ratios, thereby improving the imbalanced immune homeostasis in the inflamed intestine. Meanwhile, based on the 16SrDNA sequencing of mice fecal samples, STING was found to facilitate the donor strain colonization in recipients' gut, mainly Lactobacillales, thereby reshaping the gut microbiota disturbed by colitis. Consequently, we proposed that STING, as a key target of FMT therapy, is potentially a biomarker for screening the most suitable individuals for FMT to optimize treatment regimens and enhance clinical benefit.
Collapse
Affiliation(s)
- Dan Pu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao Yao
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chuan Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixian Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihong Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Binbin Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Zhanju Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, the Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Zhe Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baisui Feng
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
141
|
Kim DY, Lee SY, Lee JY, Whon TW, Lee JY, Jeon CO, Bae JW. Gut microbiome therapy: fecal microbiota transplantation vs live biotherapeutic products. Gut Microbes 2024; 16:2412376. [PMID: 39377231 PMCID: PMC11469438 DOI: 10.1080/19490976.2024.2412376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
The human intestine hosts a complex ecosystem of various microorganisms, collectively known as the gut microbiome, which significantly impacts human health. Disruptions in the gut microbiome are linked to various disorders, including gastrointestinal diseases, such as Clostridioides difficile infection and inflammatory bowel disease, as well as metabolic, neurological, oncologic conditions. Fecal microbiota transplantation (FMT) and live biotherapeutic products (LBPs) have emerged as prospective therapeutic procedures to restore microbial and metabolic balance in the gut. This review assesses the latest advancements, challenges, and therapeutic efficacy of FMT and LBPs, highlighting the need for standardization, safety, and long-term evaluation to optimize their clinical application.
Collapse
Affiliation(s)
- Do-Yeon Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - So-Yeon Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - Jae-Yun Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - Tae Woong Whon
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, Korea
| | - June-Young Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Jin-Woo Bae
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| |
Collapse
|
142
|
Wang Y, Shen R, Liu M, Zhou Q, Zhai YH, Fan LH, Lan YZ, Zhu XD. Metagenomic analysis of Tongxie Yaofang therapy for rat models of ulcerative colitis with liver depression and spleen deficiency syndrome. ALL LIFE 2023. [DOI: 10.1080/26895293.2022.2147221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Yan Wang
- Teaching Experiment Training Center, Ningxia Medical University, Yinchuan City, Ningxia, People’s Republic of China
| | - Rui Shen
- Department of Integrated Traditional Chinese and Western Medicine, Zhangye People's Hospital Affiliated to Hexi University, Zhangye City, Gansu, People’s Republic of China
| | - Miao Liu
- College of Basic Medicine, Ningxia Medical University, Yinchuan City, Ningxia, People’s Republic of China
| | - Qi Zhou
- College of Basic Medicine, Ningxia Medical University, Yinchuan City, Ningxia, People’s Republic of China
| | - Yan-hui Zhai
- College of Basic Medicine, Ningxia Medical University, Yinchuan City, Ningxia, People’s Republic of China
| | - Li-hui Fan
- College of Basic Medicine, Ningxia Medical University, Yinchuan City, Ningxia, People’s Republic of China
| | - Yu-ze Lan
- College of Basic Medicine, Ningxia Medical University, Yinchuan City, Ningxia, People’s Republic of China
| | - Xiang-dong Zhu
- College of Basic Medicine, Ningxia Medical University, Yinchuan City, Ningxia, People’s Republic of China
| |
Collapse
|
143
|
Nakai D, Miyake M. Intestinal Membrane Function in Inflammatory Bowel Disease. Pharmaceutics 2023; 16:29. [PMID: 38258040 PMCID: PMC10820082 DOI: 10.3390/pharmaceutics16010029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Inflammatory bowel disease is a set of chronic inflammatory diseases that mainly develop in the gastrointestinal mucosa, including ulcerative colitis and Crohn's disease. Gastrointestinal membrane permeability is an important factor influencing the pharmacological effects of pharmaceuticals administered orally for treating inflammatory bowel disease and other diseases. Understanding the presence or absence of changes in pharmacokinetic properties under a disease state facilitates effective pharmacotherapy. In this paper, we reviewed the gastrointestinal membrane function in ulcerative colitis and Crohn's disease from the perspective of in vitro membrane permeability and electrophysiological parameters. Information on in vivo permeability in humans is summarized. We also overviewed the inflammatory bowel disease research using gut-on-a-chip, in which some advances have recently been achieved. It is expected that these findings will be exploited for the development of therapeutic drugs for inflammatory bowel disease and the optimization of treatment options and regimens.
Collapse
Affiliation(s)
- Daisuke Nakai
- Drug Metabolism & Pharmacokinetics Research Laboratory, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Masateru Miyake
- Pharmapack Co., Ltd., 1-27 Nakaokubo, Toyama 939-2243, Japan;
| |
Collapse
|
144
|
Lauko S, Gancarcikova S, Hrckova G, Hajduckova V, Andrejcakova Z, Fecskeova LK, Bertkova I, Hijova E, Kamlarova A, Janicko M, Ambro L, Kvakova M, Gulasova Z, Strojny L, Strkolcova G, Mudronova D, Madar M, Demeckova V, Nemetova D, Pacuta I, Sopkova D. Beneficial Effect of Faecal Microbiota Transplantation on Mild, Moderate and Severe Dextran Sodium Sulphate-Induced Ulcerative Colitis in a Pseudo Germ-Free Animal Model. Biomedicines 2023; 12:43. [PMID: 38255150 PMCID: PMC10813722 DOI: 10.3390/biomedicines12010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Transplantation of faecal microbiota (FMT) is generally considered a safe therapeutic procedure with few adverse effects. The main factors that limit the spread of the use of FMT therapy for idiopathic inflammatory bowel disease (IBD) are the necessity of minimising the risk of infection and transfer of another disease. Obtaining the animal model of UC (ulcerative colitis) by exposure to DSS (dextran sodium sulphate) depends on many factors that significantly affect the result. Per os intake of DSS with water is individual for each animal and results in the development of a range of various forms of induced UC. For this reason, the aim of our study was to evaluate the modulation and regenerative effects of FMT on the clinical and histopathological responses and the changes in the bowel microenvironment in pseudo germ-free (PGF) mice of the BALB/c line subjected to chemical induction of mild, moderate and serious forms of UC. The goal was to obtain new data related to the safety and effectiveness of FMT that can contribute to its improved and optimised use. The animals with mild and moderate forms of UC subjected to FMT treatment exhibited lower severity of the disease and markedly lower damage to the colon, including reduced clinical and histological disease index and decreased inflammatory response of colon mucosa. However, FMT treatment failed to achieve the expected therapeutic effect in animals with the serious form of UC activity. The results of our study indicated a potential safety risk involving development of bacteraemia and also translocation of non-pathogenic representatives of bowel microbiota associated with FMT treatment of animals with a diagnosed serious form of UC.
Collapse
Affiliation(s)
- Stanislav Lauko
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Sona Gancarcikova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Gabriela Hrckova
- Institute of Parasitology, Slovak Academy of Sciences, 041 81 Kosice, Slovakia;
| | - Vanda Hajduckova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Zuzana Andrejcakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (Z.A.); (D.S.)
| | - Livia Kolesar Fecskeova
- Associated Tissue Bank, Faculty of Medicine, Pavol Jozef Safarik University and Louis Pasteur University Hospital (UHLP) in Kosice, 040 11 Kosice, Slovakia;
| | - Izabela Bertkova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Emilia Hijova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Anna Kamlarova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Martin Janicko
- 2nd Department of Internal Medicine, Faculty of Medicine, Pavol Jozef Safarik University and Louis Pasteur University Hospital in Kosice, 040 11 Kosice, Slovakia;
| | - Lubos Ambro
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia;
| | - Monika Kvakova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Zuzana Gulasova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Ladislav Strojny
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Gabriela Strkolcova
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia;
| | - Dagmar Mudronova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Marian Madar
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Vlasta Demeckova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia;
| | - Daniela Nemetova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Ivan Pacuta
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Drahomira Sopkova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (Z.A.); (D.S.)
| |
Collapse
|
145
|
Özdirik B, Schnabl B. Microbial Players in Primary Sclerosing Cholangitis: Current Evidence and Concepts. Cell Mol Gastroenterol Hepatol 2023; 17:423-438. [PMID: 38109970 PMCID: PMC10837305 DOI: 10.1016/j.jcmgh.2023.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Primary sclerosing cholangitis (PSC) is a rare cholestatic liver disease with progressive biliary inflammation, destruction of the biliary tract, and fibrosis, resulting in liver cirrhosis and end-stage liver disease. To date, liver transplantation is the only definitive treatment option for PSC. The precise etiology of PSC remains elusive, but it is widely accepted to involve a complex interplay between genetic predisposition, immunologic dysfunction, and environmental influence. In recent years, the gut-liver axis has emerged as a crucial pathway contributing to the pathogenesis of PSC, with particular focus on the role of gut microbiota. However, the role of the fungal microbiome or mycobiome has been overlooked for years, resulting in a lack of comprehensive studies on its involvement in PSC. In this review, we clarify the present clinical and mechanistic data and concepts concerning the gut bacterial and fungal microbiota in the context of PSC. This review sheds light on the role of specific microbes and elucidates the dynamics of bacterial and fungal populations. Moreover, we discuss the latest insights into microbe-altering therapeutic approaches involving the gut-liver axis and bile acid metabolism.
Collapse
Affiliation(s)
- Burcin Özdirik
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California; Department of Medicine, VA San Diego Healthcare System, San Diego, California.
| |
Collapse
|
146
|
Tikunov AY, Fedorets VA, Shrainer EV, Morozov VV, Bystrova VI, Tikunova NV. Intestinal Microbiome Changes and Clinical Outcomes of Patients with Ulcerative Colitis after Fecal Microbiota Transplantation. J Clin Med 2023; 12:7702. [PMID: 38137770 PMCID: PMC10743744 DOI: 10.3390/jcm12247702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND AND AIMS Ulcerative colitis (UC) is a chronic inflammatory disease that affects many people. One of the possible ways to treat UC is fecal microbiota transplantation (FMT). In this study, changes in the intestinal microbiome and clinical outcomes of 20 patients with UC after FMT were estimated. METHODS FMT enemas were administrated ten times, once a day, and fecal microbiota from three donors was used for each enema. The clinical outcomes were assessed after eight weeks and then via a patient survey. The 16S rRNA profiles of the gut microbiota were compared between three samplings: samples from 20 patients with UC before and after FMT and samples from 18 healthy volunteers. RESULTS Clinical remission was achieved in 19 (95%) patients at week 8. Adverse events occurred in five patients, including one non-responder. A significant increase in average biodiversity was shown in samples after FMT compared to samples before FMT, as well as a decrease in the proportion of some potentially pathogenic bacteria. CONCLUSION The efficacy of FMT for UC treatment was confirmed; however, the duration of remission varied substantially, possibly due to different characteristics of the initial microbiota of patients. Targeted analysis of a patient's microbiome before FMT could increase the treatment efficacy.
Collapse
Affiliation(s)
- Artem Y. Tikunov
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| | - Valeria A. Fedorets
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| | - Evgenia V. Shrainer
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
- Department of Obstetrics and Gynecology, V. Zelman Institute for Medicine and Psychology, Novosibirsk National Research State University, 630090 Novosibirsk, Russia
| | - Vitaliy V. Morozov
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| | - Valeria I. Bystrova
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
- Department of Obstetrics and Gynecology, V. Zelman Institute for Medicine and Psychology, Novosibirsk National Research State University, 630090 Novosibirsk, Russia
| | - Nina V. Tikunova
- Federal State Public Scientific Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.Y.T.); (V.A.F.); (E.V.S.); (V.V.M.); (V.I.B.)
| |
Collapse
|
147
|
Zhang X, Tang B, Guo J. Parkinson's disease and gut microbiota: from clinical to mechanistic and therapeutic studies. Transl Neurodegener 2023; 12:59. [PMID: 38098067 PMCID: PMC10722742 DOI: 10.1186/s40035-023-00392-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases. The typical symptomatology of PD includes motor symptoms; however, a range of nonmotor symptoms, such as intestinal issues, usually occur before the motor symptoms. Various microorganisms inhabiting the gastrointestinal tract can profoundly influence the physiopathology of the central nervous system through neurological, endocrine, and immune system pathways involved in the microbiota-gut-brain axis. In addition, extensive evidence suggests that the gut microbiota is strongly associated with PD. This review summarizes the latest findings on microbial changes in PD and their clinical relevance, describes the underlying mechanisms through which intestinal bacteria may mediate PD, and discusses the correlations between gut microbes and anti-PD drugs. In addition, this review outlines the status of research on microbial therapies for PD and the future directions of PD-gut microbiota research.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
148
|
Lagoumintzis G, Patrinos GP. Triangulating nutrigenomics, metabolomics and microbiomics toward personalized nutrition and healthy living. Hum Genomics 2023; 17:109. [PMID: 38062537 PMCID: PMC10704648 DOI: 10.1186/s40246-023-00561-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The unique physiological and genetic characteristics of individuals influence their reactions to different dietary constituents and nutrients. This notion is the foundation of personalized nutrition. The field of nutrigenetics has witnessed significant progress in understanding the impact of genetic variants on macronutrient and micronutrient levels and the individual's responsiveness to dietary intake. These variants hold significant value in facilitating the development of personalized nutritional interventions, thereby enabling the effective translation from conventional dietary guidelines to genome-guided nutrition. Nevertheless, certain obstacles could impede the extensive implementation of individualized nutrition, which is still in its infancy, such as the polygenic nature of nutrition-related pathologies. Consequently, many disorders are susceptible to the collective influence of multiple genes and environmental interplay, wherein each gene exerts a moderate to modest effect. Furthermore, it is widely accepted that diseases emerge because of the intricate interplay between genetic predisposition and external environmental influences. In the context of this specific paradigm, the utilization of advanced "omic" technologies, including epigenomics, transcriptomics, proteomics, metabolomics, and microbiome analysis, in conjunction with comprehensive phenotyping, has the potential to unveil hitherto undisclosed hereditary elements and interactions between genes and the environment. This review aims to provide up-to-date information regarding the fundamentals of personalized nutrition, specifically emphasizing the complex triangulation interplay among microbiota, dietary metabolites, and genes. Furthermore, it highlights the intestinal microbiota's unique makeup, its influence on nutrigenomics, and the tailoring of dietary suggestions. Finally, this article provides an overview of genotyping versus microbiomics, focusing on investigating the potential applications of this knowledge in the context of tailored dietary plans that aim to improve human well-being and overall health.
Collapse
Affiliation(s)
- George Lagoumintzis
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
| | - George P Patrinos
- Division of Pharmacology and Biosciences, Department of Pharmacy, School of Health Sciences, University of Patras, 26504, Patras, Greece.
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.
| |
Collapse
|
149
|
Kamer O, Rinott E, Tsaban G, Kaplan A, Yaskolka Meir A, Zelicha H, Knights D, Tuohy K, Fava F, Uwe Scholz M, Ziv O, Rubin E, Blüher M, Stumvoll M, Ceglarek U, Clément K, Koren O, Hu FB, Stampfer MJ, Wang DD, Youngster I, Shai I. Successful weight regain attenuation by autologous fecal microbiota transplantation is associated with non-core gut microbiota changes during weight loss; randomized controlled trial. Gut Microbes 2023; 15:2264457. [PMID: 37796016 PMCID: PMC10557561 DOI: 10.1080/19490976.2023.2264457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
We previously reported that autologous-fecal-microbiota-transplantation (aFMT), following 6 m of lifestyle intervention, attenuated subsequent weight regain and insulin rebound for participants consuming a high-polyphenol green-Mediterranean diet. Here, we explored whether specific changes in the core (abundant) vs. non-core (low-abundance) gut microbiome taxa fractions during the weight-loss phase (0-6 m) were differentially associated with weight maintenance following aFMT. Eighty-two abdominally obese/dyslipidemic participants (age = 52 years; 6 m weightloss = -8.3 kg) who provided fecal samples (0 m, 6 m) were included. Frozen 6 m's fecal samples were processed into 1 g, opaque and odorless aFMT capsules. Participants were randomly assigned to receive 100 capsules containing their own fecal microbiota or placebo over 8 m-14 m in ten administrations (adherence rate > 90%). Gut microbiome composition was evaluated using shotgun metagenomic sequencing. Non-core taxa were defined as ≤ 66% prevalence across participants. Overall, 450 species were analyzed. At baseline, 13.3% were classified as core, and Firmicutes presented the highest core proportion by phylum. During 6 m weight-loss phase, abundance of non-core species changed more than core species (P < .0001). Subject-specific changes in core and non-core taxa fractions were strongly correlated (Jaccard Index; r = 0.54; P < .001). Following aFMT treatment, only participants with a low 6 m change in core taxa, and a high change in non-core taxa, avoided 8-14 m weight regain (aFMT = -0.58 ± 2.4 kg, corresponding placebo group = 3.18 ± 3.5 kg; P = .02). In a linear regression model, low core/high non-core 6 m change was the only combination that was significantly associated with attenuated 8-14 m weight regain (P = .038; P = .002 for taxa patterns/treatment intervention interaction). High change in non-core, low-abundance taxa during weight-loss might mediate aFMT treatment success for weight loss maintenance.ClinicalTrials.gov: NCT03020186.
Collapse
Affiliation(s)
- Omer Kamer
- Faculty of Health Sciences, Ben-Gurion University of the Negev, The International Center of Health, Innovation & Nutrition On the memory of Manya Igel, Beer-Sheva, Israel
| | - Ehud Rinott
- Department of Medicine, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Gal Tsaban
- Faculty of Health Sciences, Ben-Gurion University of the Negev, The International Center of Health, Innovation & Nutrition On the memory of Manya Igel, Beer-Sheva, Israel
| | - Alon Kaplan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, The International Center of Health, Innovation & Nutrition On the memory of Manya Igel, Beer-Sheva, Israel
| | - Anat Yaskolka Meir
- Faculty of Health Sciences, Ben-Gurion University of the Negev, The International Center of Health, Innovation & Nutrition On the memory of Manya Igel, Beer-Sheva, Israel
| | - Hila Zelicha
- Faculty of Health Sciences, Ben-Gurion University of the Negev, The International Center of Health, Innovation & Nutrition On the memory of Manya Igel, Beer-Sheva, Israel
| | - Dan Knights
- BioTechnology Institute, University of Minnesota, St Paul, USA
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, USA
| | - Kieran Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- School of Food Science & Nutrition, University of Leeds, Leeds, UK
| | - Francesca Fava
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Matthias Uwe Scholz
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Oren Ziv
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Elad Rubin
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Department of Medicine, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Uta Ceglarek
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Karine Clément
- Inserm, Nutrition and obesities: systemic approaches, nutriOmicsn Research Unit, Nutrition Department, Pitié-Salpêtrière Hospital, Assistance-Publique Hopitaux de Paris, Sorbonne University, Paris, France
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Frank B. Hu
- Harvard T.H. Chan School of Public Health, Boston, USA
- Department of Medicine, Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women’s Hospital, Boston, USA
| | - Meir J. Stampfer
- Harvard T.H. Chan School of Public Health, Boston, USA
- Department of Medicine, Channing Division of Network Medicine, Department of Medicine, Harvard Medical School and Brigham and Women’s Hospital, Boston, USA
| | - Dong D. Wang
- Harvard T.H. Chan School of Public Health, Boston, USA
| | - Ilan Youngster
- Pediatric Division and Center for Microbiome Research, Shamir Medical Center, Be’er Ya’akov, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Iris Shai
- Faculty of Health Sciences, Ben-Gurion University of the Negev, The International Center of Health, Innovation & Nutrition On the memory of Manya Igel, Beer-Sheva, Israel
- Harvard T.H. Chan School of Public Health, Boston, USA
| |
Collapse
|
150
|
Liu X, Liu M, Zhao M, Li P, Gao C, Fan X, Cai G, Lu Q, Chen X. Fecal microbiota transplantation for the management of autoimmune diseases: Potential mechanisms and challenges. J Autoimmun 2023; 141:103109. [PMID: 37690971 DOI: 10.1016/j.jaut.2023.103109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Autoimmune diseases (AIDs) are a series of immune-mediated lethal diseases featured by over-activated immune cells attacking healthy self-tissues and organs due to the loss of immune tolerance, which always causes severe irreversible systematical organ damage and threatens human health heavily. To date, there are still no definitive cures for the treatment of AIDs due to their pathogenesis has not been clearly understood. Besides, the current clinical treatments of AIDs majorly rely on glucocorticoids and immune suppressors, which can lead to serious side effects. In the past years, there are increasing studies demonstrating that an imbalance of gut microbiota is intimately related to the pathogenesis of various AIDs, shedding light on the development of therapeutics by targeting the gut microbiota for the management of AIDs. Among all the approaches targeting the gut microbiota, fecal microbiota transplantation (FMT) has attracted increasing interest, and it has been proposed as a possible strategy to intervene in the homeostasis of gut microbiota for the treatment of various diseases. However, despite the reported good curative effects and clinical studies conducted on FMT, the detailed mechanisms of FMT for the effective treatment of those diseases have not been figured out. To fully understand the mechanisms of the therapeutic effects of FMT on AIDs and improve the therapeutic efficacy of FMT treatment, a systematic review of this topic is necessary. Hence, in this review paper, the potential mechanisms of FMT for the treatment of various AIDs were summarized, including promotion, shaping, activation, or inhibition of the host immune system via the interactions between the microorganisms and the gut immune system, gut-brain, gut-liver, gut-kidney axis, and so on. Then, applications of FMT for the treatment of various AIDs were detailed presented. Finally, the current challenges and potential solutions for the development of FMT formulations and FMT therapeutics were comprehensively discussed.
Collapse
Affiliation(s)
- Xiaomin Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China
| | - Mei Liu
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China
| | - Ming Zhao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, 421142, PR China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China
| | - Changxing Gao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China
| | - Xinyu Fan
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China.
| | - Qianjin Lu
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, PR China; Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, 421142, PR China.
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, PR China.
| |
Collapse
|