101
|
Moeng S, Son SW, Lee JS, Lee HY, Kim TH, Choi SY, Kuh HJ, Park JK. Extracellular Vesicles (EVs) and Pancreatic Cancer: From the Role of EVs to the Interference with EV-Mediated Reciprocal Communication. Biomedicines 2020; 8:biomedicines8080267. [PMID: 32756339 PMCID: PMC7459718 DOI: 10.3390/biomedicines8080267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/25/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is malignant and the seventh leading cause of cancer-related deaths worldwide. However, chemotherapy and radiotherapy are—at most—moderately effective, indicating the need for new and different kinds of therapies to manage this disease. It has been proposed that the biologic properties of pancreatic cancer cells are finely tuned by the dynamic microenvironment, which includes extracellular matrix, cancer-associated cells, and diverse immune cells. Accumulating evidence has demonstrated that extracellular vesicles (EVs) play an essential role in communication between heterogeneous subpopulations of cells by transmitting multiplex biomolecules. EV-mediated cell–cell communication ultimately contributes to several aspects of pancreatic cancer, such as growth, angiogenesis, metastasis and therapeutic resistance. In this review, we discuss the role of extracellular vesicles and their cargo molecules in pancreatic cancer. We also present the feasibility of the inhibition of extracellular biosynthesis and their itinerary (release and uptake) for a new attractive therapeutic strategy against pancreatic cancer.
Collapse
Affiliation(s)
- Sokviseth Moeng
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Seung Wan Son
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Jong Sun Lee
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Han Yeoung Lee
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Tae Hee Kim
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (S.M.); (S.W.S.); (J.S.L.); (H.Y.L.); (T.H.K.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|
102
|
Nishiwada S, Sho M, Banwait JK, Yamamura K, Akahori T, Nakamura K, Baba H, Goel A. A MicroRNA Signature Identifies Pancreatic Ductal Adenocarcinoma Patients at Risk for Lymph Node Metastases. Gastroenterology 2020; 159:562-574. [PMID: 32376411 PMCID: PMC7483849 DOI: 10.1053/j.gastro.2020.04.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinomas (PDACs) frequently metastasize to the lymph nodes; strategies are needed to identify patients at highest risk for lymph node metastases. We performed genome-wide expression profile analyses of PDAC specimens, collected during surgery or endoscopic ultrasound-guided fine-need aspiration (EUS-FNA), to identify a microRNA (miRNA) signature associated with metastasis to lymph nodes. METHODS For biomarker discovery, we analyzed miRNA expression profiles of primary pancreatic tumors from 3 public data sets (The Cancer Genome Atlas, GSE24279, and GSE32688). We then analyzed 157 PDAC specimens (83 from patients with lymph node metastases and 74 without) from Japan, collected from 2001 through 2017, for the training cohort and 107 PDAC specimens (63 from patients with lymph node metastases and 44 without) from a different medical center in Japan, from 2002 through 2016, for the validation cohort. We also analyzed samples collected by EUS-FNA before surgery from 47 patients (22 patients with lymph node metastases and 25 without; 17 for the training cohort and 30 from the validation cohort) and 62 specimens before any treatment from patients who received neoadjuvant chemotherapy (9 patients with lymph node metastasis and 53 without) for additional validation. Multivariate logistic regression analyses were used to evaluate the statistical differences in miRNA expression between patients with vs without metastases. RESULTS We identified an miRNA expression pattern associated with diagnosis of PDAC metastasis to lymph nodes. Using logistic regression analysis, we optimized and trained a 6-miRNA risk prediction model for the training cohort; this model discriminated patients with vs without lymph node metastases with an area under the curve (AUC) of 0.84 (95% confidence interval [CI], 0.77-0.89). In the validation cohort, the model identified patients with vs without lymph node metastases with an AUC of 0.73 (95% CI, 0.64-0.81). In EUS-FNA biopsy samples, the model identified patients with vs without lymph node metastases with an AUC of 0.78 (95% CI, 0.63-0.89). The miRNA expression pattern was an independent predictor of PDAC metastasis to lymph nodes in the validation cohort (odds ratio, 17.05; 95% CI, 2.43-119.57) and in the EUS-FNA cohort (95% CI, 0.65-0.87). CONCLUSIONS Using data and tumor samples from 3 independent cohorts, we identified an miRNA signature that identifies patients at risk for PDAC metastasis to lymph nodes. The signature has similar levels of accuracy in the analysis of resected tumor specimens and EUS-FNA biopsy specimens. This model might be used to select treatment and management strategies for patients with PDAC.
Collapse
Affiliation(s)
- Satoshi Nishiwada
- Center for Gastrointestinal Research, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas; Department of Surgery, Nara Medical University, Nara, Japan; Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, California
| | - Masayuki Sho
- Department of Surgery, Nara Medical University, Nara, Japan
| | - Jasjit K Banwait
- Center for Gastrointestinal Research, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| | - Kensuke Yamamura
- Center for Gastrointestinal Research, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Kota Nakamura
- Department of Surgery, Nara Medical University, Nara, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ajay Goel
- Center for Gastrointestinal Research, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas; Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, California.
| |
Collapse
|
103
|
Accordino G, Lettieri S, Bortolotto C, Benvenuti S, Gallotti A, Gattoni E, Agustoni F, Pozzi E, Rinaldi P, Primiceri C, Morbini P, Lancia A, Stella GM. From Interconnection between Genes and Microenvironment to Novel Immunotherapeutic Approaches in Upper Gastro-Intestinal Cancers-A Multidisciplinary Perspective. Cancers (Basel) 2020; 12:cancers12082105. [PMID: 32751137 PMCID: PMC7465773 DOI: 10.3390/cancers12082105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the progress during the last decade, patients with advanced gastric and esophageal cancers still have poor prognosis. Finding optimal therapeutic strategies represents an unmet need in this field. Several prognostic and predictive factors have been evaluated and may guide clinicians in choosing a tailored treatment. Data from large studies investigating the role of immunotherapy in gastrointestinal cancers are promising but further investigations are necessary to better select those patients who can mostly benefit from these novel therapies. This review will focus on the treatment of metastatic esophageal and gastric cancer. We will review the standard of care and the role of novel therapies such as immunotherapies and CAR-T. Moreover, we will focus on the analysis of potential predictive biomarkers such as Modify as: Microsatellite Instability (MSI) and PD-L1, which may lead to treatment personalization and improved treatment outcomes. A multidisciplinary point of view is mandatory to generate an integrated approach to properly exploit these novel antiproliferative agents.
Collapse
Affiliation(s)
- Giulia Accordino
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (G.A.); (S.L.)
| | - Sara Lettieri
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (G.A.); (S.L.)
| | - Chandra Bortolotto
- Department of Intensive Medicine, Unit of Radiology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (C.B.); (A.G.)
| | - Silvia Benvenuti
- Candiolo Cancer Institute, Fondazione del Piemonte per l’Oncologia (FPO)-IRCCS-Str. Prov.le 142, km. 3,95, 10060 Candiolo (TO), Italy;
| | - Anna Gallotti
- Department of Intensive Medicine, Unit of Radiology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (C.B.); (A.G.)
| | - Elisabetta Gattoni
- Department of Oncology, Azienda Sanitaria Locale (ASL) AL, 27000 Casale Monferrato (AL), Italy;
| | - Francesco Agustoni
- Department of Medical Sciences and Infective Diseases, Unit of Oncology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (F.A.); (E.P.)
| | - Emma Pozzi
- Department of Medical Sciences and Infective Diseases, Unit of Oncology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (F.A.); (E.P.)
| | - Pietro Rinaldi
- Department of Intensive Medicine, Unit of Thoracic Surgery, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (P.R.); (C.P.)
| | - Cristiano Primiceri
- Department of Intensive Medicine, Unit of Thoracic Surgery, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (P.R.); (C.P.)
| | - Patrizia Morbini
- Department of Diagnostic Medicine, Unit of Pathology, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy;
| | - Andrea Lancia
- Department of Medical Sciences and Infective Diseases, Unit of Radiation Therapy, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy;
| | - Giulia Maria Stella
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo Foundation and University of Pavia Medical School, 27000 Pavia, Italy; (G.A.); (S.L.)
- Correspondence: ; Tel.: +39-0382503369; Fax: +39-0382502719
| |
Collapse
|
104
|
Use of Biomarkers and Imaging for Early Detection of Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12071965. [PMID: 32707720 PMCID: PMC7409286 DOI: 10.3390/cancers12071965] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer remains one of the deadliest cancers worldwide, and it is typically diagnosed late, with a poor prognosis. Early detection is the most important underlying factor for improving the prognosis of pancreatic cancer patients. One of the most effective strategies for detecting cancers at an early stage is screening of the general population. However, because of the low incidence of pancreatic cancer in the general population, the stratification of subjects who need to undergo further examinations by invasive and expensive modalities is important. Therefore, minimally invasive modalities involving biomarkers and imaging techniques that would facilitate the early detection of pancreatic cancer are highly needed. Multiple types of new blood biomarkers have recently been developed, including unique post-translational modifications of circulating proteins, circulating exosomes, microRNAs, and circulating tumor DNA. We previously reported that circulating apolipoprotein A2 undergoes unique processing in the bloodstream of patients with pancreatic cancer and its precancerous lesions. Additionally, we recently demonstrated a new method for measuring pancreatic proton density in the fat fraction using a fat–water magnetic resonance imaging technique that reflects pancreatic steatosis. In this review, we describe recent developments in potential biomarkers and imaging modalities for the early detection and risk stratification of pancreatic cancer, and we discuss current strategies for implementing screening programs for pancreatic cancer.
Collapse
|
105
|
Titov SE, Anishchenko VV, Poloz TL, Veryaskina YA, Arkhipova AA, Ustinov SN. [Differential diagnostics of gastric cancer and precancerous changes of the gastric mucosa using analysis of expression of six microRNAS.]. Klin Lab Diagn 2020; 65:131-136. [PMID: 32159312 DOI: 10.18821/0869-2084-2020-65-2-131-136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022]
Abstract
The lack of specific symptoms for the early detection of gastric cancer leads to the fact that it is often diagnosed at a late stage, when the prognosis is unfavorable. The analysis of molecular markers in addition to standard diagnostic procedures is a promising approach for improving the preoperative diagnosis of both gastric cancer and precancerous changes in the mucosa. Therefore, the aim of our study was to analyze the diagnostic significance of using miRNA expression to diagnosis gastric cancer and precancerous conditions (dysplasia) in histological material. In this work, 122 samples of archival histological material in the form of paraffin blocks were used: 34 samples of gastric adenocarcinoma, 54 samples of gastric ulcers with dysplasia and 34 samples of normal gastric mucosa obtained from patients after bariatric surgery. The expression level of miRNA-145-5p, -150-5p, -20a-5p, -21-5p, -31-5p, -34a-5p, -375 was determined using real-time RT-PCR. Samples were stratified into different groups using the C-RT decision tree algorithm. All miRNAs, except miRNA-20a, were included in the decision tree, which allows stratification of samples for normal mucosa, dysplasia, and gastric cancer. Normal mucosa can be distinguished from gastric cancer only by miRNA-34a, -21, -375. Diagnostic characteristics for the detection of dysplasia: specificity - 97%, sensitivity - 87%; for the detection of gastric cancer: specificity - 91%, sensitivity - 93%. The sufficiently high values of the diagnostic characteristics for detecting dysplasia of the gastric mucosa and gastric cancer obtained in our study indicate the possibility of using expression data of a small amount of miRNAs for the effective separation of samples with tumor and precancerous changes in the stomach tissue.
Collapse
Affiliation(s)
- S E Titov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia.,АО Vector-Best, Kol'tsovo, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - V V Anishchenko
- АО Medical Centre Avicenna, group of companies "Mother and Child", Novosibirsk, Russia
| | - T L Poloz
- Private Institution of health "Road clinical hospital of Russian Railways Medicine, Novosibirsk", Novosibirsk, Russia
| | - Y A Veryaskina
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - A A Arkhipova
- State Public Health Service of the Novosibirsk Region "City Clinical Hospital №2", Novosibirsk, Russia
| | - S N Ustinov
- АО Medical Centre Avicenna, group of companies "Mother and Child", Novosibirsk, Russia
| |
Collapse
|
106
|
Yang Z, LaRiviere MJ, Ko J, Till JE, Christensen T, Yee SS, Black TA, Tien K, Lin A, Shen H, Bhagwat N, Herman D, Adallah A, O'Hara MH, Vollmer CM, Katona BW, Stanger BZ, Issadore D, Carpenter EL. A Multianalyte Panel Consisting of Extracellular Vesicle miRNAs and mRNAs, cfDNA, and CA19-9 Shows Utility for Diagnosis and Staging of Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2020; 26:3248-3258. [PMID: 32299821 PMCID: PMC7334066 DOI: 10.1158/1078-0432.ccr-19-3313] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE To determine whether a multianalyte liquid biopsy can improve the detection and staging of pancreatic ductal adenocarcinoma (PDAC). EXPERIMENTAL DESIGN We analyzed plasma from 204 subjects (71 healthy, 44 non-PDAC pancreatic disease, and 89 PDAC) for the following biomarkers: tumor-associated extracellular vesicle miRNA and mRNA isolated on a nanomagnetic platform that we developed and measured by next-generation sequencing or qPCR, circulating cell-free DNA (ccfDNA) concentration measured by qPCR, ccfDNA KRAS G12D/V/R mutations detected by droplet digital PCR, and CA19-9 measured by electrochemiluminescence immunoassay. We applied machine learning to training sets and subsequently evaluated model performance in independent, user-blinded test sets. RESULTS To identify patients with PDAC versus those without, we generated a classification model using a training set of 47 subjects (20 PDAC and 27 noncancer). When applied to a blinded test set (N = 136), the model achieved an AUC of 0.95 and accuracy of 92%, superior to the best individual biomarker, CA19-9 (89%). We next used a cohort of 20 patients with PDAC to train our model for disease staging and applied it to a blinded test set of 25 patients clinically staged by imaging as metastasis-free, including 9 subsequently determined to have had occult metastasis. Our workflow achieved significantly higher accuracy for disease staging (84%) than imaging alone (accuracy = 64%; P < 0.05). CONCLUSIONS Algorithmically combining blood-based biomarkers may improve PDAC diagnostic accuracy and preoperative identification of nonmetastatic patients best suited for surgery, although larger validation studies are necessary.
Collapse
Affiliation(s)
- Zijian Yang
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael J LaRiviere
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jina Ko
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jacob E Till
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Theresa Christensen
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephanie S Yee
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Taylor A Black
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kyle Tien
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew Lin
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hanfei Shen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Neha Bhagwat
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel Herman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew Adallah
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark H O'Hara
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charles M Vollmer
- Division of General Surgery, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bryson W Katona
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Issadore
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erica L Carpenter
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
107
|
Andalib A, Rashed S, Dehbashi M, Hajati J, Noorbakhsh F, Ganjalikhani-Hakemi M. The Upregulation of hsa-mir-181b-1 and Downregulation of Its Target CYLD in the Late-Stage of Tumor Progression of Breast Cancer. Indian J Clin Biochem 2020; 35:312-321. [PMID: 32647409 PMCID: PMC7326880 DOI: 10.1007/s12291-019-00826-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/11/2019] [Indexed: 02/05/2023]
Abstract
Some microRNAs are usually dysregulated in the cancers and influencing tumor behavior and progression. Hsa-miR-181b-1 and its target CYLD are involved in regulating the inflammatory pathways. This study aimed to investigate the expression levels of hsa-mir-181b-1 and CYLD in a cohort of breast tumor tissues and normal adjacent tissues to assess their association with breast cancer stages. A total number of 60 breast samples including cancerous and normal adjacent tissue specimens were collected. After pathological study, the expression of hsa-mir-181b-1 and CYLD were measured by qRT-PCR method. The hsa-mir-181b-1 expression level was significantly increased in breast tumor tissues compared to the controls. This increase was associated with the disease progression. Conversely, CYLD expression level was decreased in tumor samples compared to normal samples, significantly. ROC curve data added other prestigious information of hsa-mir-181b-1 and CYLD by defining cancer and healthy tissues with high specificity and sensitivity at a proposed cutoff point. Also, bioinformatic enrichment for the possible targets of mature sequence of "hsa-mir-181b-5p" was performed. Computational analysis showed the five most significant pathways including metabolic, cancer, calcium signaling, PI3K-Akt signaling and focal adhesion pathways which may be influenced by hsa-mir-181b-1. Thus, we suggested hsa-mir-181b-1 and CYLD might be involved in the pathogenesis of breast cancer and could be considered as two biomarkers for prediction, prognosis and diagnosis of the stages of the breast cancer.
Collapse
Affiliation(s)
- Alireza Andalib
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, 81746-73461 Iran
| | - Shadi Rashed
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, 81746-73461 Iran
| | - Moein Dehbashi
- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, 81746-73441 Iran
| | - Jamshid Hajati
- Department of Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mazdak Ganjalikhani-Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, 81746-73461 Iran
| |
Collapse
|
108
|
Wu M, Tan X, Liu P, Yang Y, Huang Y, Liu X, Meng X, Yu B, Wu Y, Jin H. Role of exosomal microRNA-125b-5p in conferring the metastatic phenotype among pancreatic cancer cells with different potential of metastasis. Life Sci 2020; 255:117857. [PMID: 32470446 DOI: 10.1016/j.lfs.2020.117857] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
AIMS To explore the pro-metastatic role of exosomes derived from highly invasive pancreatic cancer cell and the associated aberrant expression of exosomal microRNAs (miRNAs). MAIN METHODS Weakly invasive PC-1 cells were treated with exosomes of highly invasive PC-1.0 cells to determine the pro-metastatic effect of PC-1.0 derived exosomes. The exosomal miRNA profile was further investigated using high-throughput sequencing. The level of miR-125b-5p in highly and weakly invasive pancreatic cancer cells was further determined. Pancreatic cancer cells transfected with miR-125b-5p mimic and inhibitor were used to explore the effect of miR-125b-5p on migration, invasion and epithelial-to-mesenchymal transition (EMT). Treatment with PC-1.0 derived exosome and Western blot assay were performed to validate STARD13 as a target of exosomal miR-125b-5p in pancreatic cancer. KEY FINDINGS PC-1.0 derived exosomes promoted the migration and invasion of weakly invasive PC-1 cells. miRNA sequencing revealed 62 miRNAs upregulated in PC-1.0 derived exosomes. miR-125b-5p most significantly promoted migration and invasion and was associated with metastasis in pancreatic cancer. Further, miR-125b-5p was upregulated in highly invasive pancreatic cancer cells and increased migration, invasion, and EMT. Moreover, its upregulation was associated with activation of MEK2/ERK2 signaling. The tumor suppressor STARD13 was directly targeted by miR-125b-5p in pancreatic cancer, which was associated with good prognosis and was suppressed by exosomes derived from highly invasive cancer cells. SIGNIFICANCE This study explored the pro-metastatic role of exosomes derived from highly invasive pancreatic cancer cells and the associated aberrant expression of exosomal miRNAs, which may help to elucidate the metastatic mechanism of pancreatic cancer.
Collapse
Affiliation(s)
- Mengwei Wu
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China; Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiaodong Tan
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Peng Liu
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yifan Yang
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yinpeng Huang
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xinlu Liu
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiangli Meng
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Boqiang Yu
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yunhao Wu
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Haoyi Jin
- Department of Pancreatic and Thyroidal Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
109
|
Zhao F, Wei C, Cui MY, Xia QQ, Wang SB, Zhang Y. Prognostic value of microRNAs in pancreatic cancer: a meta-analysis. Aging (Albany NY) 2020; 12:9380-9404. [PMID: 32420903 PMCID: PMC7288910 DOI: 10.18632/aging.103214] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The prognostic impact of microRNA (miRNA) expression levels in pancreatic cancer (PC) has been estimated for years, but the outcomes are controversial and heterogeneous. Therefore, we comprehensively reviewed the evidence collected on miRNA expression in PC to determine this effect. RESULTS PC patients with high miR-21 (HR=2.61, 95%CI=1.68-4.04), miR-451a (HR=2.23, 95%CI=1.23-4.04) or miR-1290 (HR=1.43, 95%CI=1.04-1.95) levels in blood had significantly poorer OS (P<0.05). Furthermore, PC patients with high miR-10b (HR=1.73, 95%CI=1.09-2.76), miR-17-5p (HR=1.91, 95%CI=1.30-2.80), miR-21 (HR=1.90, 95%CI=1.61-2.25), miR-23a (HR=2.18, 95%CI=1.52-3.13), miR-155 (HR=2.22, 95%CI=1.27-3.88), miR-203 (HR=1.65, 95%CI=1.14-2.40), miR-221 (HR=1.72, 95%CI=1.08-2.74), miR-222 levels (HR=1.72, 95%CI=1.02-2.91) or low miR-29c (HR=1.39, 95%CI=1.08-1.79), miR-126 (HR=1.55, 95%CI=1.23-1.95), miR-218 (HR=2.62, 95%CI=1.41-4.88) levels in tissues had significantly shorter OS (P<0.05). CONCLUSIONS In summary, blood miR-21, miR-451a, miR-1290 and tissue miR-10b, miR-17-5p, miR-21, miR-23a, miR-29c, miR-126, miR-155, miR-203, miR-218, miR-221, miR-222 had significant prognostic value. METHODS We searched PubMed, EMBASE, Web of Science and Cochrane Database of Systematic Reviews to recognize eligible studies, and 57 studies comprising 5445 PC patients and 15 miRNAs were included to evaluate the associations between miRNA expression levels and overall survival (OS) up to June 1, 2019. Summary hazard ratios (HR) with 95% confidence intervals (CI) were calculated to assess the effect.
Collapse
Affiliation(s)
- Fei Zhao
- , Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Chao Wei
- College of Integrated Traditional Chinese and Western Medicine, Jining Medical University, Jining, Shandong, China
| | - Meng-Ying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qiang-Qiang Xia
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Shuai-Bin Wang
- Department of Urology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue Zhang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
110
|
Awad S, Alkashash AM, Amin M, Baker SJ, Rose JB. Biochemical Predictors of Response to Neoadjuvant Therapy in Pancreatic Ductal Adenocarcinoma. Front Oncol 2020; 10:620. [PMID: 32477933 PMCID: PMC7235358 DOI: 10.3389/fonc.2020.00620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/03/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is becoming increasingly more common. Treatment for PDAC is dependent not only on stage at diagnosis, but complex anatomical relationships. Recently, the therapeutic approach to this disease has shifted from upfront surgery for technically resectable lesions to a neoadjuvant therapy first approach. Selecting an appropriate regimen and determining treatment response is crucial for optimal oncologic outcome, especially since radiographic imaging has proven unreliable in this setting. Tumor biomarkers have the potential to play a key role in treatment planning, treatment monitoring, and surveillance as an adjunct laboratory test. In this review, we will discuss common chemotherapeutic options, mechanisms of resistance, and potential biomarkers for PDAC. The aim of this paper is to present currently available biomarkers for PDAC and to discuss how these markers may be affected by neoadjuvant chemotherapy treatment. Understanding current chemotherapy regiments and mechanism of resistance can help us understand which markers may be most affected and why; therefore, determining to what ability we can use them as a marker for treatment progression, prognosis, or potential relapse.
Collapse
Affiliation(s)
- Seifeldin Awad
- Department of Surgical Oncology, University of Alabama in Birmingham, Birmingham, AL, United States
| | - Ahmad M Alkashash
- Department of Surgical Oncology, University of Alabama in Birmingham, Birmingham, AL, United States
| | - Magi Amin
- Department of Gastroenterology, Cairo Fatimid Hospital, Cairo, Egypt
| | - Samantha J Baker
- Department of Surgical Oncology, University of Alabama in Birmingham, Birmingham, AL, United States
| | - J Bart Rose
- Department of Surgical Oncology, University of Alabama in Birmingham, Birmingham, AL, United States
| |
Collapse
|
111
|
The role of activated leukocyte cell adhesion molecule (ALCAM) in cancer progression, invasion, metastasis and recurrence: A novel cancer stem cell marker and tumor-specific prognostic marker. Exp Mol Pathol 2020; 115:104443. [PMID: 32380056 DOI: 10.1016/j.yexmp.2020.104443] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/17/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
Activated leukocyte cell adhesion molecule (ALCAM) or CD166 is a 100 to 105 KDa transmembrane immunoglobulin which is involved in activation of T-cells, hematopoiesis, neutrophils trans-endothelial migration, angiogenesis, inflammation and tumor propagation and invasiveness through formation of homophilic and heterophilic interactions. Recently, many studies have proposed that the expression pattern of ALCAM is highly associated with the grade, stage and invasiveness of tumors. Although ALCAM is a valuable prognostic marker in different carcinomas, similar expression patterns in different tumor types may be associated with completely different prognostic states, making it to be a tumor-type-dependent prognostic marker. In addition, ALCAM isoforms provide ways for primary detection of tumor cells with metastatic potential. More importantly, this prognostic marker has shown to be considerably dependent on the cytoplasmic and membranous expression, indirect and direct regulation of post-transcriptional molecules, pro-apoptotic proteins functionalities and several other oncogenic proteins or signalling pathways. This review mainly focuses on the pathways involved in expression of ALCAM and its prognostic value of in different types of cancers and the way in which it is regulated.
Collapse
|
112
|
Yang Y, Wang J. Inhibition of MiR-10b Restrains the Migration and Epithelial-Mesenchymal Transition of Lung Cells by Targeting LATS2 via TAZ Pathway. Med Sci Monit 2020; 26:e920275. [PMID: 32361707 PMCID: PMC7216563 DOI: 10.12659/msm.920275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND MiR-10b can promote the growth of lung cancer cells. LATS2 is reported to regulate lung cancer cell proliferation. We aimed to study the relationship between miR-10b and LATS2 in lung cancer. MATERIAL AND METHODS MiR-10b and LATS2 in lung cancer tissues and cells were measured via real-time polymerase chain reaction (RT-PCR) and western blotting. Luciferase reporter assay and mimic transfection were performed to study relation between miR-10b and LATS2. MiR-10b inhibitor was transfected to downregulate miR-10b expression and LATS2 was further downregulated. Then, the proliferation, apoptosis, migration, and invasion capacity of lung cancer cells were measured, respectively. Lung cancer cells stably transfected with LATS2 and TAZ plasmids were constructed as usual, and the effect of LATS2 overexpression on epithelial-mesenchymal transition (EMT) was determined. RESULTS MiR-10b was upregulated and LATS2 was significantly downregulated in lung cancer. Inhibition of miR-10b restrained the growth of lung cancer cells and accelerated the apoptosis of lung cancer cells. LATS2 is directly bound by miR-10b and silence of LATS2 reversed its inhibitory and promotive effects. Overexpression of LATS2 inhibited the EMT of lung cancer cells by inhibiting the TAZ pathway. CONCLUSIONS MiR-10b was upregulated in lung cancer. Inhibition of miR-10b could restrain the development of lung cancer by increasing LATS2 expression via TAZ.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Beihua University, Jilin City, Jilin, China (mainland)
| | - Jianzhong Wang
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Beihua University, Jilin City, Jilin, China (mainland)
| |
Collapse
|
113
|
Evaluation of LDL receptor and Scavenger Receptor, Class B, Type 1 in the malignant and benign breast tumors: The correlation with the expression of miR-199a-5p, miR-199b-5p and miR-455-5p. Gene 2020; 749:144720. [PMID: 32360840 DOI: 10.1016/j.gene.2020.144720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/11/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022]
Abstract
AIMS The purpose of present study was to examine the correlations of LDL (LDLR) and HDL (SR-B1) receptors with lipoproteins, miR-199a-5p, miR-199b-5p, miR-455-5p in the malignant and benign breast tumors. METHODS Total cholesterol-rich-lipoproteins and the receptors were determined using enzymatic-homogeneous and ELISA methods. The expression levels of miRNAs were detected by qRT-PCR. RESULTS Receptor expressions and lipoproteins concentration were significantly higher in the malignant tumors (p < 0.05). Positive correlation was found for LDLR with Ki67% and Her2+. HDL-C content of TNBC tumors was higher than those of Non-TNBC (p < 0.05). The expression level of miR-199a-5p was found to be downregulated significantly in the malignant tumors of <2 cm, TNBC, HER2- or stage3. The expression of miR-199b-5p was downregulated in the malignant tumors and was negatively associated with TNBC, stage and Her2+. The expression of miR-455-5p was significantly correlated with Her2- (p < 0.05). A positive correlation was observed for SR-B1 or LDLR with HDL-C or LDL-C and also for SR-B1 with LDLR, although a reverse association was detected for the expression of miR-199b-5p with LDLR in the malignant tumors (p < 0.05). No significant correlations were found for miR-199a-5p or miR-455-5p with LDLR or SR-B1 expressions and also for LDL-C and SR-B1 with clinicopathological features (p ≥ 0.05). CONCLUSIONS Mechanisms potentially involved in the present findings may be due to the lipid internalization and lipoprotein consumption through LDLR and SR-B1 over expression. It is noteworthy that the expression of miR-199b-5p is negatively correlated with LDLR which may suggest it as a suppressor for LDLR expression in the breast cancer.
Collapse
|
114
|
Terrinoni A, Calabrese C, Basso D, Aita A, Caporali S, Plebani M, Bernardini S. The circulating miRNAs as diagnostic and prognostic markers. Clin Chem Lab Med 2020; 57:932-953. [PMID: 30838832 DOI: 10.1515/cclm-2018-0838] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
A large portion of the human genome transcribes RNA sequences that do not code for any proteins. The first of these sequences was identified in 1993, and the best known noncoding RNAs are microRNA (miRNAs). It is now fully established that miRNAs regulate approximately 30% of the known genes that codify proteins. miRNAs are involved in several biological processes, like cell proliferation, differentiation, apoptosis and metastatization. These RNA products regulate gene expression at the post-transcriptional level, modulating or inhibiting protein expression by interacting with specific sequences of mRNAs. Mature miRNAs can be detected in blood plasma, serum and also in a wide variety of biological fluids. They can be found associated with proteins, lipids as well as enclosed in exosome vesicles. We know that circulating miRNAs (C-miRNAs) can regulate several key cellular processes in tissues different from the production site. C-miRNAs behave as endogenous mediators of RNA translation, and an extraordinary knowledge on their function has been obtained in the last years. They can be secreted in different tissue cells and associated with specific pathological conditions. Significant evidence indicates that the initiation and progression of several pathologies are "highlighted" by the presence of specific C-miRNAs, underlining their potential diagnostic relevance as clinical biomarkers. Here we review the current literature on the possible use of this new class of molecules as clinical biomarkers of diseases.
Collapse
Affiliation(s)
- Alessandro Terrinoni
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy
| | - Cosimo Calabrese
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Daniela Basso
- Department of Medicine - DIMED; Department of Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - Ada Aita
- Department of Medicine - DIMED; Department of Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - Sabrina Caporali
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mario Plebani
- Department of Medicine - DIMED; Department of Laboratory Medicine, University-Hospital of Padova, Padova, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
115
|
Zhang Z, Xu L, He L, Wang J, Shi X, Li Z, Shi S, Hou K, Teng Y, Qu X. MiR-891a-5p as a prognostic marker and therapeutic target for hormone receptor-positive breast cancer. J Cancer 2020; 11:3771-3782. [PMID: 32328182 PMCID: PMC7171503 DOI: 10.7150/jca.40750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Breast cancer is one of the most frequent malignant tumors worldwide, with 1.67 million newly-diagnosed cases and 522,000 deaths each year. Therefore, seeking the novel biomarkers and therapeutic targets that contribute to postoperative recurrence and metastasis in patients with breast cancer is emerging and facilitates the development of innovative therapeutics. Methods: Retrieving the dataset of patients with hormone receptor (HR)-positive breast cancers from Gene Expression Omnibus (GEO) and collecting the data from the patients with HR-positive breast cancers enrolled in the First Affiliated Hospital of China Medical University are so as to identify the miRNAs associated with metastasis and distant metastasis-free survival (DMFS). Then MTT and Transwell migration assays were used to validate the effect of miRNAs on cell proliferation and migration of estrogen receptor-positive breast cancer T47D and MCF7 cells in vitro, respectively. Results: From GSE59829 dataset, the miRNA expression levels of miR-891a-5p, miR-383-5p and miR-1295a were significantly downregulated while the levels of miR-128-3p, miR-661 and miR-296-3p were significantly upregulated in breast cancers from patients with metastasis as compared to the matched non-metastatic group. Moreover, low expression levels of miR-891a-5p, miR-383-5p and miR-1295a or high expression levels of miR-128-3p, miR-661 and miR-296-3p were respectively associated with low DMFS in patients with breast cancer. Our clinical cohort study supported that the levels of miR-891a-5p, miR-383-5p and miR-1295a were significantly lower in breast cancers from the metastasis group when compared with non-metastatic group. However, there is no significant difference with regard to the levels of miR-128-3p, miR-661 and miR-296-3p in breast cancer between these two groups. Moreover, low expression levels of miR-891a-5p and miR-383-5p but not miR-1295a in breast cancer were significantly associated with low DMFS in patients, implying that the expression of miR-891a-5p and miR-383-5p were the potential prognosis markers for metastatic human breast cancers. Further investigation disclosed that miR-891a-5p but not miR-383-5p restrained both proliferation and migration of T47D and MCF7 cells. In silico analysis of miRNAs target gene through online computational algorithms revealed that A Disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is the downstream target for miR-891a-5p. Further study confirmed that miR-891a-5p impeded ADAM10 expression by directly binding to its 3'UTR, leading to the inhibition of breast cancer cells proliferation and migration. Moreover, silencing ADAM10 inhibited T47D and MCF7 cells growth and migration. Conclusion: miR-891a-5p is the vital prognostic marker for HR-positive breast cancer. In addition, miR-891a-5p and miR-383-5p are the potential targets for HR-positive breast cancer therapeutics.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China.,Department of Medical Oncology, Liaoning Provincial People's Hospital, The People's Hospital of China Medical University, Shenyang 110016, China
| | - Lu Xu
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Lijie He
- Department of Medical Oncology, Liaoning Provincial People's Hospital, The People's Hospital of China Medical University, Shenyang 110016, China
| | - Jin Wang
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaonan Shi
- Department of Medical Oncology, the First Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhi Li
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Sha Shi
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Kezuo Hou
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yuee Teng
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiujuan Qu
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
116
|
Nakamaru K, Tomiyama T, Kobayashi S, Ikemune M, Tsukuda S, Ito T, Tanaka T, Yamaguchi T, Ando Y, Ikeura T, Fukui T, Nishio A, Takaoka M, Uchida K, Leung PSC, Gershwin ME, Okazaki K. Extracellular vesicles microRNA analysis in type 1 autoimmune pancreatitis: Increased expression of microRNA-21. Pancreatology 2020; 20:318-324. [PMID: 32147308 DOI: 10.1016/j.pan.2020.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The molecular basis of type 1 autoimmune pancreatitis (AIP) remains unclear. Recent attention on the role of extracellular vesicles microRNA (EV miRNA) in immune homeostasis has prompted us to perform an extensive miRNA screening of serum-derived EV in AIP. METHODS EV miRNA expression was analyzed using microarrays in AIP, chronic pancreatitis (CP), and healthy adult (HC) samples (n = 10 from each group). Differences in signals, > 3 or <1/3 times, represented significant differences in expression. Another cohort of AIP (n = 14), CP (n = 10), and HC (n = 10) samples of EV miRNA was analyzed using reverse-transcription polymerase chain reaction (RT-PCR). miRNA expression in pancreatic tissues was evaluated using in situ hybridization (ISH) in three additional subjects from each group. RESULTS Signals of eight miRNAs (miR-659-3p, -27a-3p, -99a-5p, -21-5p, -205-5p, -100-5p, -29c-3p, and -125b-1-3p) were significantly higher, while those of two miRNAs (miR-4252 and -5004-5p) were significantly lower in AIP than in HC. EV miR-21-5p was significantly up-regulated in AIP than in HC (P = 0.035) and CP (P = 0.048). The number of miR-21-5p positive inflammatory cells was significantly elevated in AIP than in CP (P = 0.014). CONCLUSIONS Circulating EVs exhibited altered miRNA expression patterns with elevated miR-21-5p in AIP when compared with those in HC and CP. miR-21-5p was highly expressed in pancreatic inflammatory cells in AIP. Our data suggests that miR-21-5p may be involved in the regulation of effector pathways in the pathophysiology of AIP, thus differentiating AIP from CP.
Collapse
Affiliation(s)
- Koh Nakamaru
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Takashi Tomiyama
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan.
| | - Sanshiro Kobayashi
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Manami Ikemune
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Satoshi Tsukuda
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Takashi Ito
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Toshihiro Tanaka
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Takashi Yamaguchi
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Yugo Ando
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Tsukasa Ikeura
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Toshiro Fukui
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Akiyoshi Nishio
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Makoto Takaoka
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - Kazushige Uchida
- Division of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Kohasu Oko-cho, Nankoku, Kochi, 783-8505, Japan
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive Suite 6510, Davis, CA, 95616, USA
| | - M E Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive Suite 6510, Davis, CA, 95616, USA
| | - Kazuichi Okazaki
- Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| |
Collapse
|
117
|
Valencia K, Erice O, Kostyrko K, Hausmann S, Guruceaga E, Tathireddy A, Flores NM, Sayles LC, Lee AG, Fragoso R, Sun TQ, Vallejo A, Roman M, Entrialgo-Cadierno R, Migueliz I, Razquin N, Fortes P, Lecanda F, Lu J, Ponz-Sarvise M, Chen CZ, Mazur PK, Sweet-Cordero EA, Vicent S. The Mir181ab1 cluster promotes KRAS-driven oncogenesis and progression in lung and pancreas. J Clin Invest 2020; 130:1879-1895. [PMID: 31874105 PMCID: PMC7108928 DOI: 10.1172/jci129012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 12/19/2019] [Indexed: 02/03/2023] Open
Abstract
Few therapies are currently available for patients with KRAS-driven cancers, highlighting the need to identify new molecular targets that modulate central downstream effector pathways. Here we found that the microRNA (miRNA) cluster including miR181ab1 is a key modulator of KRAS-driven oncogenesis. Ablation of Mir181ab1 in genetically engineered mouse models of Kras-driven lung and pancreatic cancer was deleterious to tumor initiation and progression. Expression of both resident miRNAs in the Mir181ab1 cluster, miR181a1 and miR181b1, was necessary to rescue the Mir181ab1-loss phenotype, underscoring their nonredundant role. In human cancer cells, depletion of miR181ab1 impaired proliferation and 3D growth, whereas overexpression provided a proliferative advantage. Lastly, we unveiled miR181ab1-regulated genes responsible for this phenotype. These studies identified what we believe to be a previously unknown role for miR181ab1 as a potential therapeutic target in 2 highly aggressive and difficult to treat KRAS-mutated cancers.
Collapse
Affiliation(s)
- Karmele Valencia
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- University of Navarra, Department of Biochemistry and Genetics, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Oihane Erice
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
| | - Kaja Kostyrko
- Division of Hematology and Oncology, UCSF, San Francisco, California, USA
| | - Simone Hausmann
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth Guruceaga
- Bioinformatics Platform, Center for Applied Medical Research, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | | | - Natasha M. Flores
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Leanne C. Sayles
- Division of Hematology and Oncology, UCSF, San Francisco, California, USA
| | - Alex G. Lee
- Division of Hematology and Oncology, UCSF, San Francisco, California, USA
| | - Rita Fragoso
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Adrian Vallejo
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- University of Navarra, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| | - Marta Roman
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- University of Navarra, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| | - Rodrigo Entrialgo-Cadierno
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- University of Navarra, Department of Biochemistry and Genetics, Pamplona, Spain
| | - Itziar Migueliz
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
| | - Nerea Razquin
- University of Navarra, Center for Applied Medical Research, Program in Gene Therapy and Regulation of Gene Expression, Pamplona, Spain
| | - Puri Fortes
- University of Navarra, Center for Applied Medical Research, Program in Gene Therapy and Regulation of Gene Expression, Pamplona, Spain
| | - Fernando Lecanda
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- University of Navarra, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| | - Jun Lu
- Genetics Department, Yale University, New Haven, Connecticut, USA
| | - Mariano Ponz-Sarvise
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- Clínica Universidad de Navarra, Department of Medical Oncology, Pamplona, Spain
| | - Chang-Zheng Chen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Achelois Oncology, Redwood City, California, USA
| | - Pawel K. Mazur
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Silvestre Vicent
- University of Navarra, Center for Applied Medical Research, Program in Solid Tumors, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- University of Navarra, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| |
Collapse
|
118
|
Wolfe AR, Wald P, Webb A, Sebastian N, Walston S, Robb R, Chen W, Vedaie M, Dillhoff M, Frankel WL, Kwon W, Jang JY, Williams TM. A microRNA-based signature predicts local-regional failure and overall survival after pancreatic cancer resection. Oncotarget 2020; 11:913-923. [PMID: 32206188 PMCID: PMC7075466 DOI: 10.18632/oncotarget.27496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/29/2020] [Indexed: 01/01/2023] Open
Abstract
Resectable pancreatic adenocarcinoma (PC) is generally managed with surgery followed by chemotherapy, but the role of postoperative chemoradiation (pCRT) is controversial. We sought to identify a microRNA (miRNA) expression profile associated with higher risk for local-regional recurrence (LRR), which might help identify patients that may benefit from pCRT. Total RNA was isolated from viable tumor from 88 patients who underwent PC resection with or without chemotherapy, but did not receive radiation. Digital miRNA expression profiling was performed and risk scores were calculated based on the expression levels of the four most significantly correlated miRNAs, and dichotomized about the median to detect correlations between risk group, LRR and overall survival (OS). Two cohorts from The Cancer Genome Atlas (TCGA) and Seoul National University (SNU) were used for validation. Patients with high-risk scores had significantly worse LRR (p = 0.001) and worse OS (p = 0.034). Two-year OS rates for the high- and low-risk groups were 27.7% and 52.2%, respectively. On multivariable analysis, the risk score remained significantly associated with LRR (p = 0.018). When validated on TCGA data, a high-risk score was associated with worse OS on univariate (p = 0.03) and multivariable analysis (p = 0.017). When validated on the SNU cohort, a high-risk score was likewise associated with worse OS (p = 0.042). We have developed a 4-miRNA molecular signature that is associated with risk of LRR and OS after PC resection and validated on two separate cohorts. This signature has the potential to select patients most likely to benefit from pCRT, and should be tested further.
Collapse
Affiliation(s)
- Adam R Wolfe
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA.,Co-first authors
| | - Patrick Wald
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA.,Co-first authors
| | - Amy Webb
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Nikhil Sebastian
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Steve Walston
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Ryan Robb
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Wei Chen
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Marall Vedaie
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Mary Dillhoff
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Wendy L Frankel
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Wooil Kwon
- Department of Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jin-Young Jang
- Department of Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Terence M Williams
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| |
Collapse
|
119
|
Javandoost E, Firoozi-Majd E, Rostamian H, Khakpoor-Koosheh M, Mirzaei HR. Role of microRNAs in Chronic Lymphocytic Leukemia Pathogenesis. Curr Med Chem 2020; 27:282-297. [PMID: 31544709 DOI: 10.2174/0929867326666190911114842] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a group of small endogenous non-coding RNAs involved in many cancers and various cellular processes such as cellular growth, DNA methylation, apoptosis, and differentiation. 13q14.3 chromosomal region contains miR-15 and miR-16 and deletion of this region is a commonly reported aberration in Chronic Lymphoblastic Leukemia (CLL), suggesting miRNAs involvement in CLL pathogenesis. MicroRNAs are known as oncogenes and tumor suppressors in CLL which may also serve as markers of onset and progression of the disease. The most prevalent form of leukemia diagnosed in adults in the western world, chronic lymphocytic leukemia, accounts for one-third of all leukemias. CLL is characterized by the presence of B Cell Malignant Clones in secondary lymphoid tissues, peripheral blood and bone marrow. The precise etiology of CLL is remained to be known, however, a number of Chromosomal Abnormalities such as deletions of 13q14.3, 11q and 17p and trisomy 12 have been detected. In this review, we offer our prospect on how miRNAs are involved in the CLL pathogenesis and disease progression. Further understanding of the underlying mechanisms and regulation of CLL pathogenesis has underscored the need for further research regarding their role in this disease.
Collapse
Affiliation(s)
- Ehsan Javandoost
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Firoozi-Majd
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hosein Rostamian
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Khakpoor-Koosheh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
120
|
Pu X, Ding G, Wu M, Zhou S, Jia S, Cao L. Elevated expression of exosomal microRNA-21 as a potential biomarker for the early diagnosis of pancreatic cancer using a tethered cationic lipoplex nanoparticle biochip. Oncol Lett 2020; 19:2062-2070. [PMID: 32194703 PMCID: PMC7039151 DOI: 10.3892/ol.2020.11302] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) has a poor prognosis due to the lack of effective molecular biomarkers for early diagnosis. Recent studies have investigated the use of exosomal microRNAs (exmiRs) as diagnostic biomarkers in cancer. The present study examined exmiR-21, exmiR-10b and exmiR-212-3p expression in patients with PC and healthy individuals. The expression levels of exmiR-21, exmiR-10b and exmiR-212-3p were examined in the peripheral blood plasma of 36 patients with PC and 65 healthy controls, using tethered cationic lipoplex nanoparticle biochip. The levels of exmiR-21 in the plasma of 34 mice were also evaluated. The expression levels of exmiR-21 and exmiR-10b were significantly greater in patients with PC compared with the control group. The receiver operating characteristic (ROC) analysis indicated that exmiR-21 had better diagnostic performance (P=0.0003; AUC, 0.7171) compared with the other two exmiRs. The diagnostic value of exmiR-21 improved when combined with exmiR-10b (P<0.0001; AUC, 0.791). Furthermore, exmiR-21 was capable of distinguishing patients with early-stage PC from controls and advanced-stage PC (P<0.05, early stage vs. healthy; P<0.001, early stage vs. advanced stage). The results of the present study revealed that the plasma levels of exmiR-21 and exmiR-10b were upregulated in patients with PC. The ROC analyses indicated that exmiR-21 had the best diagnostic performance among the three exmiRs. Furthermore, exmiR-21 was capable of discriminating patients with early-stage PC from healthy controls. These findings indicate the potential of determining the expression of exmiR-21 from serum using a tethered cationic lipoplex nanoparticle biochip as a novel non-invasive strategy for the early diagnosis of PC.
Collapse
Affiliation(s)
- Xiaofan Pu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Guoping Ding
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Mingjie Wu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Senhao Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
121
|
Si Y, Xu L, Wang N, Zheng J, Yang R, Li J. Target MicroRNA-Responsive DNA Hydrogel-Based Surface-Enhanced Raman Scattering Sensor Arrays for MicroRNA-Marked Cancer Screening. Anal Chem 2020; 92:2649-2655. [DOI: 10.1021/acs.analchem.9b04606] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yanmei Si
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lan Xu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ningning Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jing Zheng
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Jishan Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
122
|
Jia QN, Zeng YP. Rapamycin blocks the IL-13-induced deficiency of Epidermal Barrier Related Proteins via upregulation of miR-143 in HaCaT Keratinocytes. Int J Med Sci 2020; 17:2087-2094. [PMID: 32922169 PMCID: PMC7484670 DOI: 10.7150/ijms.45765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022] Open
Abstract
Interleukin (IL)-13 plays a key role in the pathogenesis of atopic dermatitis (AD). Our preliminary study demonstrated that forced expression of miR-143 could block IL-13-induced down-regulation of epidermal barrier related proteins in epidermal keratinocytes. As previous studies suggested that miR-143 expression was regulated by mammalian target of rapamycin (mTOR) signaling pathway, we investigated the mechanism of mTOR signaling pathway in the epidermal barrier dysfunction of AD. The HaCaT cells were stimulated by IL-13 and subsequently treated with rapamycin. The expression levels of miR-143, IL-13 receptor α1 (IL-13Rα1), p-mTOR, p-S6K1, p-Akt, and epidermal barrier related proteins were analyzed through RT-qPCR and/or western blotting. The current study showed that IL-13 increased the expression levels of p-mTOR, p-S6K1, and p-Akt, and that rapamycin blocked IL-13-induced down-regulation of miR-143, suppressed the IL-13Rα1 expression and up-regulated the expressions of filaggrin, loricrin, and involucrin in HaCaT cells. This study proposed that IL-13 could activate the mTOR signaling pathway, and confirmed the vital role of mTOR-miR-143 signaling axis in the pathogenesis of AD. It provided solid evidences regarding rapamycin as a potential effective therapeutic option in the management of AD.
Collapse
Affiliation(s)
- Qian-Nan Jia
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College.,National Clinical Research Center for Dermatologic and Immunologic diseases, Beijing, China
| | - Yue-Ping Zeng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College.,National Clinical Research Center for Dermatologic and Immunologic diseases, Beijing, China
| |
Collapse
|
123
|
Ni J, Zhou S, Yuan W, Cen F, Yan Q. Mechanism of miR-210 involved in epithelial-mesenchymal transition of pancreatic cancer cells under hypoxia. J Recept Signal Transduct Res 2019; 39:399-406. [PMID: 31875764 DOI: 10.1080/10799893.2019.1683863] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: To investigate the possible mechanism of miR-210 involved in epithelial-mesenchymal transition (EMT) of pancreatic cancer cells under hypoxia. Methods: In this study, we used the following approaches. Hypoxic microenvironment was stimulated in vitro, and the CCK-8 assay was used to analyze cell viability. The MiRNA expression level was measured by qRT-PCR. HOXA9, EMT-related proteins, and NF-κB activities were examined by immunoblotting assay. Dual luciferase reporter assay was used to assess whether HOXA9 was a target of miR-210.Results: Under hypoxia condition, miR-210, HIF-1α and NF-κB were increased, and the HOXA9 was reduced in PANC-1 cells. When miR-210 was overexpressed in normoxic PANC-1 cells, EMT epithelial markers of E-cadherin and β-catenin were down-regulated, and mesenchymal markers of vimentin and N-cadherin were up-regulated to promote cell migration/invasive ability, and the HOXA9 level was decreased. After HOXA9 level decreased, the sensitivity to chemotherapeutic drug of gemcitabine was reduced, NF-κB expression level and cell migration/invasive ability was enhanced. Whereas, miR-210 antagonist into hypoxic PANC-1 cells, which up-regulated E-cadherin, β-catenin level, and down-regulated vimentin and N-cadherin levels to decrease cell migration/invasive ability, and increase the HOXA9. Furthermore, increasing HOXA9 level decreased NF-κB expression level and cell migration/invasive ability, enhanced the sensitivity to gemcitabine. At last, miRDB and TargetScan predicted that HOXA9 was a target of miR-210, and dual luciferase reporter assay verified this hypothesis.Conclusion: MiR-210 inhibited the expression of HOXA9 to activate the NF-κB signaling pathway and mediated the occurrence of EMT of pancreatic cancer cells induced by HIF-1α under hypoxia.
Collapse
Affiliation(s)
- Jun Ni
- Department of Hepatological Surgery, Fuyang hospital of traditional Chinese medicine, Hangzhou, China
| | - Shiyu Zhou
- Department of Hepatological Surgery, Huzhou Central Hospital, Huzhou, China
| | - Wenbin Yuan
- Department of Hepatological Surgery, Huzhou Central Hospital, Huzhou, China
| | - Feng Cen
- Department of Hepatological Surgery, Huzhou Central Hospital, Huzhou, China
| | - Qiang Yan
- Department of Hepatological Surgery, Huzhou Central Hospital, Huzhou, China
| |
Collapse
|
124
|
Gzil A, Zarębska I, Bursiewicz W, Antosik P, Grzanka D, Szylberg Ł. Markers of pancreatic cancer stem cells and their clinical and therapeutic implications. Mol Biol Rep 2019; 46:6629-6645. [PMID: 31486978 DOI: 10.1007/s11033-019-05058-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/31/2019] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer (PC) is the fourth most common cause of death among all cancers. Poor prognosis of PC may be caused by a prevalence of cancer stem cells (CSCs). CSCs are a population of cancer cells showing stem cell-like characteristics. CSCs have the ability to self-renew and may initiate tumorigenesis. PC CSCs express markers such as CD133, CD24, CD44, DCLK1, CXCR4, ESA, Oct4 and ABCB1. There is a wide complexity of interaction and relationships between CSC markers in PC. These markers are negative prognostic factors and are connected with tumor recurrence and clinical progression. Additionally, PC CSCs are resistant to treatment with gemcitabine. Thus, most current therapies for PC are ineffective. Numerous studies have shown, that targeting of these proteins may increase both disease-free and overall survival in PC.
Collapse
Affiliation(s)
- Arkadiusz Gzil
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland.
| | - Izabela Zarębska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland
| | - Wiktor Bursiewicz
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland
- Department of Pathomorphology, Military Clinical Hospital, Bydgoszcz, Poland
| |
Collapse
|
125
|
Capula M, Mantini G, Funel N, Giovannetti E. New avenues in pancreatic cancer: exploiting microRNAs as predictive biomarkers and new approaches to target aberrant metabolism. Expert Rev Clin Pharmacol 2019; 12:1081-1090. [PMID: 31721608 DOI: 10.1080/17512433.2019.1693256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022]
Abstract
Introduction: Most pancreatic cancer patients are diagnosed at advanced-stages and first-line regimens (FOLFIRINOX and gemcitabine/nab-paclitaxel) provide limited survival advantage and are associated with considerable toxicities. In this grim scenario, novel treatments and biomarkers are warranted.Areas covered: MicroRNAs (miRNAs) emerged as biomarkers for cancer prognosis and chemoresistance and blood-based miRNAs are being evaluated as indicators of therapeutic activity. Moreover, aberrant metabolism, such as aerobic glycolysis, has been correlated to tumor aggressiveness and poor prognosis. Against this background, innovative approaches to tackle metabolic aberrations are being implemented and glycolytic inhibitors targeting lactate dehydrogenase-A (LDH-A) showed promising effects in preclinical models. A PubMed search was used to compile relevant publications until February 2019.Expert opinion: Analysis of tissue/circulating miRNA might improve selection for optimal treatment regimens. For instance, miR-181a modulation seems to predict response to FOLFIRINOX. However, we need further studies to validate predictive miRNA profiles, as well as to exploit miRNAs for treatment-tailoring. Several miRNAs have also a key role in regulating metabolic aberrations. Since preliminary evidence supports the development of new agents targeting these aberrations, such as LDH-A inhibitors, the identification of biomarkers for these treatments, including the above-mentioned miRNAs, should shorten the gap between preclinical studies and personalized therapies.
Collapse
Affiliation(s)
- Mjriam Capula
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisa per la Scienza Pisa, Pisa, Italy
| | - Giulia Mantini
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisa per la Scienza Pisa, Pisa, Italy
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Niccola Funel
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisa per la Scienza Pisa, Pisa, Italy
| | - Elisa Giovannetti
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisa per la Scienza Pisa, Pisa, Italy
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
126
|
Daoud AZ, Mulholland EJ, Cole G, McCarthy HO. MicroRNAs in Pancreatic Cancer: biomarkers, prognostic, and therapeutic modulators. BMC Cancer 2019; 19:1130. [PMID: 31752758 PMCID: PMC6868851 DOI: 10.1186/s12885-019-6284-y] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023] Open
Abstract
A severe lack of early diagnosis coupled with resistance to most available therapeutic options renders pancreatic cancer as a major clinical concern. The limited efficacy of current treatments necessitates the development of novel therapeutic strategies that are based on an understanding of the molecular mechanisms involved in pancreatic cancer progression. MicroRNAs (miRNAs) are non-coding small RNAs that regulate the expression of multiple proteins in the post-translation process and thus have promise as biomarkers, prognostic agents, and as advanced pancreatic therapies. Profiling of deregulated miRNAs in pancreatic cancer can correlate to diagnosis, indicate optimal treatment and predict response to therapy. Furthermore, understanding the main effector genes in pancreatic cancer along with downstream pathways can identify possible miRNAs as therapeutic candidates. Additionally, obstacles to the translation of miRNAs into the clinic are also considered. Distinct miRNA expression profiles can correlate to stages of malignant pancreatic disease, and hold potential as biomarkers, prognostic markers and clinical targets. However, a limited understanding and validation of the specific role of such miRNAs stunts clinical application. Target prediction using algorithms provides a wide range of possible targets, but these miRNAs still require validation through pre-clinical studies to determine the knock-on genetic effects.
Collapse
Affiliation(s)
- Afra Z Daoud
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Northern Ireland, BT9 7BL, UK
| | - Eoghan J Mulholland
- Gastrointestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Grace Cole
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, V6T 2B5, Canada
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Northern Ireland, BT9 7BL, UK.
| |
Collapse
|
127
|
Chae DK, Park J, Cho M, Ban E, Jang M, Yoo YS, Kim EE, Baik JH, Song EJ. MiR-195 and miR-497 suppress tumorigenesis in lung cancer by inhibiting SMURF2-induced TGF-β receptor I ubiquitination. Mol Oncol 2019; 13:2663-2678. [PMID: 31581360 PMCID: PMC6887584 DOI: 10.1002/1878-0261.12581] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
SMURF2 is a member of the HECT family of E3 ubiquitin ligases that have important roles as a negative regulator of transforming growth factor‐β (TGF‐β) signaling through ubiquitin‐mediated degradation of TGF‐β receptor I. However, the regulatory mechanism of SMURF2 is largely unknown. In this study, we identified that micro(mi)R‐195 and miR‐497 putatively target SMURF2 using several target prediction databases. Both miR‐195 and miR‐497 bind to the 3′‐UTR of the SMURF2 mRNA and inhibit SMURF2 expression. Furthermore, miR‐195 and miR‐497 regulate SMURF2‐dependent TβRI ubiquitination and cause the activation of the TGF‐β signaling pathway in lung cancer cells. Upregulation of miR‐195 and miR‐497 significantly reduced cell viability and colony formation through the activation of TGF‐β signaling. Interestingly, miR‐195 and miR‐497 also reduced the invasion ability of lung cancer cells when cells were treated with TGF‐β1. Subsequent in vivo studies in xenograft nude mice model revealed that miR‐195 and miR‐497 repress tumor growth. These findings demonstrate that miR‐195 and miR‐497 act as a tumor suppressor by suppressing ubiquitination‐mediated degradation of TGF‐β receptors through SMURF2, and suggest that miR‐195 and miR‐497 are potential therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Dong-Kyu Chae
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea.,School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Jinyoung Park
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Moonsoo Cho
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Korea
| | - Eunmi Ban
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Mihue Jang
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Young Sook Yoo
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Ja-Hyun Baik
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Korea
| |
Collapse
|
128
|
Han Z, Zhan R, Chen S, Deng J, Shi J, Wang W. miR-181b/Oncostatin m axis inhibits prostate cancer bone metastasis via modulating osteoclast differentiation. J Cell Biochem 2019; 121:1664-1674. [PMID: 31680294 DOI: 10.1002/jcb.29401] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
The activation of osteoblasts is significantly correlated to prostate tumor bone metastasis and bone loss. Oncostatin M (OSM) could promote breast cancer metastasis to bone. However, its role and mechanism in prostate cancer bone metastasis remain unclear. MicroRNAs (miRNAs) could play important roles in cancers via post-transcriptionally regulating target genes via binding to specific sequences in the 3' UTR of downstream target genes. In the present study, we performed microarray profiling analyses to identify differentially-expressed miRNAs in preosteoclast before and after osteoclast differentiation that could target OSM. miR-181b-5p was downregulated during Raw264.7 cells differentiation into osteoclast. By direct targeting OSM 3' UTR, miR-181b-5p inhibited OSM messenger RNA expression and protein levels, subsequently decreasing IL-6 and AREG and increasing OPG, while OSM overexpression exerted an opposing effect. More importantly, co-culture with miR-181b-5p-overexpressing differentiated Raw264.7 cells suppressed proliferation, migration, and invasion of mouse prostate cancer RM-1 cells, while co-culture with OSM-overexpressing Raw264.7 cells led to opposing cellular effects. More importantly, the effects of miR-181b-5p on osteoclastogenic factors and RM-1 cells could be significantly reversed by OSM overexpression. In summary, miR-181b-5p/OSM axis could be a viable therapeutic target for patients with surgically removed primary tumors to reduce bone metastasis and prevent bone loss.
Collapse
Affiliation(s)
- Ziwei Han
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruisen Zhan
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shijie Chen
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia Deng
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Shi
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiguo Wang
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
129
|
Xie Y, Lin T, Yang M, Zhang Z, Deng N, Tang M, Xiao Y, Guo H, Deng Q. Co-exposure to polycyclic aromatic hydrocarbons and metals, four common polymorphisms in microRNA genes, and their gene-environment interactions: Influences on oxidative damage levels in Chinese coke oven workers. ENVIRONMENT INTERNATIONAL 2019; 132:105055. [PMID: 31382182 DOI: 10.1016/j.envint.2019.105055] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 07/02/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Human are often simultaneously exposed to polycyclic aromatic hydrocarbons (PAHs) and metals, yet relatively little is known regarding their co-exposure effects on oxidative damage. Genetic factors and the gene-environment interactions can also determine the severity of oxidative damage. Four polymorphisms in microRNA (miRNA) genes (rs11614913, rs2292832, rs2910164, and rs3746444) have been well-studied to be associated with oxidative damage-related diseases. OBJECTIVE To investigate the influences of PAH-metal co-exposure, four polymorphisms, and their interactions on oxidative damage levels. METHODS We conducted a cross-sectional study in 1385 coke oven workers. We quantified exposure levels of PAHs and metals by urinary monohydroxy-PAHs, plasma benzo[a]pyrene-7,8-diol-9,10-epoxide-albumin adducts, and urinary metals, respectively, and measured oxidative damage levels by 8-iso-prostaglandin-F2α and 8-hydroxydeoxyguanosine. We also genotyped four polymorphisms. RESULTS In multiple-pollutant models, 8-iso-prostaglandin-F2α and 8-hydroxydeoxyguanosine were associated with multiple PAH exposure biomarkers, as well as with multiple metals (ptrend < 0.05). Metabolites of phenanthrene and pyrene interacted synergistically with lead and zinc to influence 8-iso-prostaglandin-F2α (βinteraction > 7.75%, false discovery rate-adjusted pinteraction ≤ 2.25 × 10-5). Significantly higher 8-hydroxydeoxyguanosine was observed in carriers of rs11614913 CC variant homozygote than TC carriers (p = 0.037). Associations of the number of rs11614913 C allele with increased 8-iso-prostaglandin-F2α and 8-hydroxydeoxyguanosine were significant (βstd > 0, ptrend < 0.05) and more pronounced in workers with lower metals [p for modifying effect (pME) < 0.040]. Positive associations of some PAHs and metals with 8-iso-prostaglandin-F2α and 8-hydroxydeoxyguanosine were weaker in carriers of rs11614913 CC genotype or C allele (pME < 0.05). CONCLUSION PAH-metal co-exposure, rs11614913, and their interactions may affect oxidative damage levels in Chinese population in a complex manner that are worthy of further investigation.
Collapse
Affiliation(s)
- Yunling Xie
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tao Lin
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhaorui Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Na Deng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengqi Tang
- School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Yongmei Xiao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huan Guo
- State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qifei Deng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Faculty of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
130
|
Are ENT1/ENT1, NOTCH3, and miR-21 Reliable Prognostic Biomarkers in Patients with Resected Pancreatic Adenocarcinoma Treated with Adjuvant Gemcitabine Monotherapy? Cancers (Basel) 2019; 11:cancers11111621. [PMID: 31652721 PMCID: PMC6893654 DOI: 10.3390/cancers11111621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
Evidence on equilibrative nucleoside transporter 1 (ENT1) and microRNA-21 (miR‑21) is not yet sufficiently convincing to consider them as prognostic biomarkers for patients with pancreatic ductal adenocarcinoma (PDAC). Here, we investigated the prognostic value of ENT1/ENT1, miR-21, and neurogenic locus homolog protein 3 gene (NOTCH3) in a well-defined cohort of resected patients treated with adjuvant gemcitabine chemotherapy (n = 69). Using a combination of gene expression quantification in microdissected tissue, immunohistochemistry, and univariate/multivariate statistical analyses we did not confirm association of ENT1/ENT1 and NOTCH3 with improved disease-specific survival (DSS). Low miR-21 was associated with longer DSS in patients with negative regional lymph nodes or primary tumor at stage 1 and 2. In addition, downregulation of ENT1 was observed in PDAC of patients with high ENT1 expression in normal pancreas, whereas NOTCH3 was upregulated in PDAC of patients with low NOTCH3 levels in normal pancreas. Tumor miR‑21 was upregulated irrespective of its expression in normal pancreas. Our data confirmed that patient stratification based on expression of ENT1/ENT1 or miR‑21 is not ready to be implemented into clinical decision-making processes. We also conclude that occurrence of ENT1 and NOTCH3 deregulation in PDAC is dependent on their expression in normal pancreas.
Collapse
|
131
|
Rawat M, Kadian K, Gupta Y, Kumar A, Chain PSG, Kovbasnjuk O, Kumar S, Parasher G. MicroRNA in Pancreatic Cancer: From Biology to Therapeutic Potential. Genes (Basel) 2019; 10:752. [PMID: 31557962 PMCID: PMC6827136 DOI: 10.3390/genes10100752] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is one of the most aggressive malignancies, accounting for more than 45,750 deaths annually in the U.S. alone. The aggressive nature and late diagnosis of pancreatic cancer, coupled with the limitations of existing chemotherapy, present the pressing need for the development of novel therapeutic strategies. Recent reports have demonstrated a critical role of microRNAs (miRNAs) in the initiation, progression, and metastasis of cancer. Furthermore, aberrant expressions of miRNAs have often been associated with the cause and consequence of pancreatic cancer, emphasizing the possible use of miRNAs in the effective management of pancreatic cancer patients. In this review, we provide a brief overview of miRNA biogenesis and its role in fundamental cellular process and miRNA studies in pancreatic cancer patients and animal models. Subsequent sections narrate the role of miRNA in, (i) cell cycle and proliferation; (ii) apoptosis; (iii) invasions and metastasis; and (iv) various cellular signaling pathways. We also describe the role of miRNA's in pancreatic cancer; (i) diagnosis; (ii) prognosis and (iii) therapeutic intervention. Conclusion section describes the gist of review with future directions.
Collapse
Affiliation(s)
- Manmeet Rawat
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Kavita Kadian
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand 263001, India.
| | - Yash Gupta
- Department of Internal Medicine, Loyola University Medical Center, Chicago, IL 60153, USA.
| | - Anand Kumar
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Patrick S G Chain
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Olga Kovbasnjuk
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Gulshan Parasher
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
132
|
Beck R, Chandi M, Kanke M, Stýblo M, Sethupathy P. Arsenic is more potent than cadmium or manganese in disrupting the INS-1 beta cell microRNA landscape. Arch Toxicol 2019; 93:3099-3109. [PMID: 31555879 DOI: 10.1007/s00204-019-02574-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022]
Abstract
Diabetes is a metabolic disorder characterized by fasting hyperglycemia and impaired glucose tolerance. Laboratory and population studies have shown that inorganic arsenic (iAs) can impair these pathways. Other metals including cadmium (Cd) and manganese (Mn) have also been linked to diabetes phenotypes. MicroRNAs, short non-coding RNAs that regulate gene expression, have emerged as potential drivers of metabolic dysfunction. MicroRNAs responsive to metal exposures in vitro have also been reported in independent studies to regulate insulin secretion in vivo. We hypothesize that microRNA dysregulation may associate with and possibly contribute to insulin secretion impairment upon exposure to iAs, Cd, or Mn. We exposed insulin secreting rat insulinoma cells to non-cytotoxic concentrations of iAs (1 µM), Cd (5 µM), and Mn (25 µM) for 24 h followed by small RNA sequencing to identify dysregulated microRNAs. RNA sequencing was then performed to further investigate changes in gene expression caused by iAs exposure. While all three metals significantly inhibited glucose-stimulated insulin secretion, high-throughput sequencing revealed distinct microRNA profiles specific to each exposure. One of the most significantly upregulated microRNAs post-iAs treatment is miR-146a (~ + 2-fold), which is known to be activated by nuclear factor κB (NF-κB) signaling. Accordingly, we found by RNA-seq analysis that genes upregulated by iAs exposure are enriched in the NF-κB signaling pathway and genes down-regulated by iAs exposure are enriched in miR-146a binding sites and are involved in regulating beta cell function. Notably, iAs exposure caused a significant decrease in the expression of Camk2a, a calcium-dependent protein kinase that regulates insulin secretion, has been implicated in type 2 diabetes, and is a likely target of miR-146a. Further studies are needed to elucidate potential interactions among NF-kB, miR-146a, and Camk2a in the context of iAs exposure.
Collapse
Affiliation(s)
- Rowan Beck
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Mohit Chandi
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
133
|
Le N, Fillinger J, Szanyi S, Wichmann B, Nagy ZB, Ivády G, Burai M, Tarpay Á, Pozsár J, Pap Á, Molnár B, Csuka O, Bak M, Tulassay Z, Szmola R. Analysis of microRNA expression in brush cytology specimens improves the diagnosis of pancreatobiliary cancer. Pancreatology 2019; 19:873-879. [PMID: 31400934 DOI: 10.1016/j.pan.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Malignant pancreatobiliary strictures are in many cases clinically indistinguishable and present a major problem to endoscopy specialists. Intraductal sampling procedures such as brush cytology are commonly used for diagnosis with a sensitivity that is low for a diagnostic test used in daily clinical practice. MicroRNA (miR) alterations detected in many cancers are disease-specific, which can be utilized in clinical applications. The aim of the present study was to analyze whether determination of miR expression levels in intraductal brush cytology specimens is a feasible approach to improve the diagnosis of pancreatobiliary cancer. METHODS Brush cytology specimens have been collected during endoscopic retrograde cholangio-pancreatography (ERCP) and analyzed by routine cytology and ancillary miR assays. Total RNA was extracted using the miRNeasy Mini Kit and the expression of miRs frequently dysregulated in pancreatobiliary cancer (miR-16, miR-21, miR-196a, miR-221) were analyzed by quantitative real-time PCR using RNU6B as internal control. RESULTS Routine cytology resulted in no false positive diagnoses, however, the combined sensitivity remained at 53.8%. Expression (ΔCt values) of miR-16 (p = 0.0039), miR-196a (p = 0.0003) and miR-221 (p = 0.0049) showed a clear statistical significance between malignant and benign pancreatobiliary specimens (n = 35). Malignancy could be detected combining routine cytology and the miR-196a single marker expression levels with a sensitivity of 84.6% (92.9% in biliary strictures) with no false positives. CONCLUSIONS The results offer the first direct demonstration that microRNAs are readily detectable in brush cytology specimens obtained during ERCP, and have the potential to help the cytological diagnosis of pancreatobiliary malignancy.
Collapse
Affiliation(s)
- N Le
- Molecular Gastroenterology Laboratory, 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary; School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - J Fillinger
- Department of Cytopathology, National Institute of Oncology, Budapest, Hungary
| | - Sz Szanyi
- Department of Interventional Gastroenterology, National Institute of Oncology, Budapest, Hungary; School of PhD Studies, Semmelweis University, Budapest, Hungary
| | - B Wichmann
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Z B Nagy
- Molecular Gastroenterology Laboratory, 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - G Ivády
- Department of Cytopathology, National Institute of Oncology, Budapest, Hungary
| | - M Burai
- Department of Interventional Gastroenterology, National Institute of Oncology, Budapest, Hungary
| | - Á Tarpay
- Department of Interventional Gastroenterology, National Institute of Oncology, Budapest, Hungary
| | - J Pozsár
- Department of Interventional Gastroenterology, National Institute of Oncology, Budapest, Hungary
| | - Á Pap
- Department of Interventional Gastroenterology, National Institute of Oncology, Budapest, Hungary
| | - B Molnár
- Molecular Gastroenterology Laboratory, 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - O Csuka
- Department of Pathogenetics, National Institute of Oncology, Budapest, Hungary
| | - M Bak
- Department of Cytopathology, National Institute of Oncology, Budapest, Hungary
| | - Z Tulassay
- Molecular Gastroenterology Laboratory, 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - R Szmola
- Department of Interventional Gastroenterology, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
134
|
Chinnappan R, Mohammed R, Yaqinuddin A, Abu-Salah K, Zourob M. Highly sensitive multiplex detection of microRNA by competitive DNA strand displacement fluorescence assay. Talanta 2019; 200:487-493. [DOI: 10.1016/j.talanta.2019.03.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 12/31/2022]
|
135
|
Sutaria DS, Jiang J, Azevedo-Pouly AC, Wright L, Bray JA, Fredenburg K, Liu X, Lu J, Torres C, Mancinelli G, Grippo PJ, Coppola V, Schmittgen TD. Knockout of Acinar Enriched microRNAs in Mice Promote Duct Formation But Not Pancreatic Cancer. Sci Rep 2019; 9:11147. [PMID: 31367007 PMCID: PMC6668398 DOI: 10.1038/s41598-019-47566-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
The pancreatic acinar-enriched miR-216a, miR-216b and miR-217 are encoded within the miR217HG. These miRNAs have been purported to play a tumor suppressive role as their expression is reduced in both human and mouse pancreatic ductal adenocarcinoma (PDAC). To examine this possibility, we generated individual, germline knockout (KO) mice of miR-216a, miR-216b or miR-217. Unlike our previous study showing germline deletion of the miR217HG was embryonic lethal, CRISPR-Cas9 deleted portions of the 5' seed region of the miRNAs produced live births. To investigate possible phenotypes during pancreatic acinar ductal metaplasia (ADM), pancreatic acini from wild type and KO mice were plated on collagen and allowed to transdifferentiate over 4 days. Acini from each of the three miRNA KO mice produced greater numbers of ducts compared to controls. Evaluation of the gene expression during in vitro ADM demonstrated an increase in Krt19 and a reduction in acinar genes (Carboxypeptidase A1, Amylase2a) on day 4 of the transdifferentiation. Recovery was delayed for the miR-216a and miR-216b KOs following caerulein-induced acute pancreatitis. Also predominate in the caerulein treated miR-216a and miR-216b KO mice was the presence of pancreatic duct glands (PDGs). To further establish a phenotype, miRNA KO mice were crossed with EL-KRASG12D (EK) mice and followed up to 13 months of age. While all mice developed severe dysplasia and cystic papillary neoplasms, there existed no apparent phenotypic difference in the miRNA KO/EK mice compared to EK mice. Our data does not support a tumor suppressor role for miR-216a, miR-216b or miR-217 in PDAC and emphasizes the need for phenotypic evaluation of miRNAs in complex in vivo models beyond that performed using cell culture.
Collapse
Affiliation(s)
- Dhruvitkumar S Sutaria
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jinmai Jiang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Ana Clara Azevedo-Pouly
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Lais Wright
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Julie A Bray
- Department of Pathology, University of Florida, Gainesville, Florida, USA
| | | | - Xiuli Liu
- Department of Pathology, University of Florida, Gainesville, Florida, USA
| | - Jun Lu
- Department of Pathology, Beijing Chaoyang Hospital, Capital University, Beijing, China
| | - Carolina Torres
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | | | - Paul J Grippo
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Thomas D Schmittgen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
136
|
Cui M, Wang H, Yao X, Zhang D, Xie Y, Cui R, Zhang X. Circulating MicroRNAs in Cancer: Potential and Challenge. Front Genet 2019; 10:626. [PMID: 31379918 PMCID: PMC6656856 DOI: 10.3389/fgene.2019.00626] [Citation(s) in RCA: 314] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding small RNA molecules that can be secreted into the circulation and exist in remarkably stable forms. Like intercellular miRNAs, circulating miRNAs participate in numerous regulations of biological process and expressed aberrantly under abnormal or pathological status. The quality and quantity changes of circulating miRNAs are associated with the initiation and progression of cancer and can be easily detected by basic molecular biology techniques. Consequently, considerable effort has been devoted to identify suitable extracellular miRNAs for noninvasive biomarkers in cancer. However, several challenges need to be overcome before the practical application. In this review, we discuss several issues of circulating miRNAs: biological function and basic transport carriers; extracellular cell communication process; roles as reliable cancer biomarkers and usage in targeted cancer therapy; and challenges for clinical application.
Collapse
Affiliation(s)
- Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hongdan Wang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yingjun Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
137
|
Chao CT, Yeh HY, Yuan TH, Chiang CK, Chen HW. MicroRNA-125b in vascular diseases: An updated systematic review of pathogenetic implications and clinical applications. J Cell Mol Med 2019; 23:5884-5894. [PMID: 31301111 PMCID: PMC6714222 DOI: 10.1111/jcmm.14535] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/02/2019] [Accepted: 06/19/2019] [Indexed: 12/26/2022] Open
Abstract
Epigenetic changes, particularly non‐coding RNAs, have been implicated extensively in the pathogenesis of vascular diseases. Specific miRNAs are involved in the differentiation, phenotypic switch, proliferation, apoptosis, cytokine production and matrix deposition of endothelial cells and/or vascular smooth muscle cells. MicroRNA‐125b has been studied in depth for its role in carcinogenesis with a double‐edged role; that is, it can act as an oncogene in some cancer types and as a tumour suppressor gene in others. However, cumulative evidence from the use of advanced miRNA profiling techniques and bioinformatics analysis suggests that miR‐125b can be a potential mediator and useful marker of vascular diseases. Currently, the exact role of miR‐125b in vascular diseases is not known. In this systematic review, we intend to provide an updated compilation of all the recent findings of miR‐125b in vascular diseases, using a systematic approach of retrieving data from all available reports followed by data summarization. MiR‐125b serves as a pathogenic player in multiple vascular pathologies involving endothelia and vascular smooth muscle cells and also serves as a diagnostic marker for vascular diseases. We further provide a computational biologic presentation of the complex network of miR‐125b and its target genes within the scope of vascular diseases.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Department of Medicine, National Taiwan University Hospital BeiHu Branch, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiang-Yuan Yeh
- School of Big Data Management, Soochow University, Taipei, Taiwan
| | - Tzu-Hang Yuan
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
138
|
Misso G, Zarone MR, Lombardi A, Grimaldi A, Cossu AM, Ferri C, Russo M, Vuoso DC, Luce A, Kawasaki H, Di Martino MT, Virgilio A, Festa A, Galeone A, De Rosa G, Irace C, Donadelli M, Necas A, Amler E, Tagliaferri P, Tassone P, Caraglia M. miR-125b Upregulates miR-34a and Sequentially Activates Stress Adaption and Cell Death Mechanisms in Multiple Myeloma. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:391-406. [PMID: 31009917 PMCID: PMC6479071 DOI: 10.1016/j.omtn.2019.02.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/12/2022]
Abstract
miR-125b, ubiquitously expressed and frequently dysregulated in several tumors, has gained special interest in the field of cancer research, displaying either oncogenic or oncosuppressor potential based on tumor type. We have previously demonstrated its tumor-suppressive role in multiple myeloma (MM), but the analysis of molecular mechanisms needs additional investigation. The purpose of this study was to explore the effects of miR-125b and its chemically modified analogs in modulating cell viability and cancer-associated molecular pathways, also focusing on the functional aspects of stress adaptation (autophagy and senescence), as well as programmed cell death (apoptosis). Based on the well-known low microRNA (miRNA) stability in therapeutic application, we designed chemically modified miR-125b mimics, laying the bases for their subsequent investigation in in vivo models. Our study clearly confirmed an oncosuppressive function depending on the repression of multiple targets, and it allowed the identification, for the first time, of miR-125b-dependent miR-34a stimulation as a possible consequence of the inhibitory role on the interleukin-6 receptor (IL-6R)/signal transducer and activator of transcription 3 (STAT3)/miR-34a feedback loop. Moreover, we identified a pattern of miR-125b-co-regulated miRNAs, shedding light on possible new players of anti-MM activity. Finally, functional studies also revealed a sequential activation of senescence, autophagy, and apoptosis, thus indicating, for the first two processes, an early cytoprotective and inhibitory role from apoptosis activation.
Collapse
Affiliation(s)
- Gabriella Misso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," 80138 Naples, Italy.
| | - Mayra Rachele Zarone
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," 80138 Naples, Italy
| | - Angela Lombardi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," 80138 Naples, Italy
| | - Anna Grimaldi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," 80138 Naples, Italy
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," 80138 Naples, Italy; IRGS, Biogem, Molecular and Precision Oncology Laboratory, Via Camporeale, 83031 Ariano Irpino, Italy
| | - Carmela Ferri
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," 80138 Naples, Italy
| | - Margherita Russo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," 80138 Naples, Italy
| | - Daniela Cristina Vuoso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," 80138 Naples, Italy
| | - Amalia Luce
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," 80138 Naples, Italy
| | - Hiromichi Kawasaki
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd., Hiroshima, Japan
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Salvatore Venuta University Campus, 88100 Catanzaro, Italy.
| | - Antonella Virgilio
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Agostino Festa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," 80138 Naples, Italy
| | - Aldo Galeone
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Giuseppe De Rosa
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Carlo Irace
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Alois Necas
- CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Evzen Amler
- Second Medical Faculty, Charles University in Prague, Prague, Czech Republic
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Salvatore Venuta University Campus, 88100 Catanzaro, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," 80138 Naples, Italy; IRGS, Biogem, Molecular and Precision Oncology Laboratory, Via Camporeale, 83031 Ariano Irpino, Italy.
| |
Collapse
|
139
|
Wang X, Liao X, Huang K, Zeng X, Liu Z, Zhou X, Yu T, Yang C, Yu L, Wang Q, Han C, Zhu G, Ye X, Peng T. Clustered microRNAs hsa-miR-221-3p/hsa-miR-222-3p and their targeted genes might be prognostic predictors for hepatocellular carcinoma. J Cancer 2019; 10:2520-2533. [PMID: 31258758 PMCID: PMC6584338 DOI: 10.7150/jca.29207] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 04/27/2019] [Indexed: 12/16/2022] Open
Abstract
Objective: MicroRNAs (miRNAs) have been explored in malignancies. We investigated the functions of clustered miRNAs hsa-miR-221/222-3p in hepatocellular carcinoma (HCC). Methods: Human miRNA tissue atlas website was determined expression levels in liver tissue. Four databases, TarBase, miRTarBase, miRecords and miRPathDB, were found experimentally validated target genes of clustered miRNAs. TargetScanHuman was predicted target genes. The STRING website was depicted protein-protein interaction (PPI) networks. The OncoLnc website analyzed prognostic values for hsa-miR-221/222-3p and their target genes. The MCODE plugin calculated modules of PPI networks. Receiver operating characteristic (ROC) curves were predicted 1, 3, and 5 years prognostic values. Results: Expression of clustered miRNAs was high in liver tissues. A total of 1577 target genes were identified. Enrichment analysis showed that target genes were enriched mainly in cancer, Wnt signaling and ErbB signaling pathways. Two modules were calculated using PPI networks. Has-miR-221-3p was not associated with prognosis (P = 0.401). Has-miR-222-3p and target genes ESR1, TMED7, CBFB, ETS2, UBE2J1 and UBE2N of the clustered miRNAs were associated with HCC survival (all P < 0.05). Has-miR-222-3p, CBFB, and UBE2N showed good performance of ROC in prognosis prediction at 1, 3, and 5 years (all area under curves > 0.600). Conclusion: Has-miR-222-3p and target genes, especially CBFB, UBE2N, may serve as prognostic predictors for HCC.
Collapse
Affiliation(s)
- Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Xianmin Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Zhengqian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Long Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan Province, China
| | - Qiaoqi Wang
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Province, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| |
Collapse
|
140
|
El-Gohary AM, Zeid AE, Ibrahim ME, Dewedar FI, Elzoheiry EA. Serum microRNA 143 as a potential biomarker for the diagnosis of hepatitis C virus-related hepatocellular carcinoma. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2019. [DOI: 10.4103/ejim.ejim_82_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
141
|
Felix TF, Lopez Lapa RM, de Carvalho M, Bertoni N, Tokar T, Oliveira RA, M. Rodrigues MA, Hasimoto CN, Oliveira WK, Pelafsky L, Spadella CT, Llanos JC, F. Silva G, Lam WL, Rogatto SR, Amorim LS, Drigo SA, Carvalho RF, Reis PP. MicroRNA modulated networks of adaptive and innate immune response in pancreatic ductal adenocarcinoma. PLoS One 2019; 14:e0217421. [PMID: 31150430 PMCID: PMC6544344 DOI: 10.1371/journal.pone.0217421] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
Despite progress in treatment strategies, only ~24% of pancreatic ductal adenocarcinoma (PDAC) patients survive >1 year. Our goal was to elucidate deregulated pathways modulated by microRNAs (miRNAs) in PDAC and Vater ampulla (AMP) cancers. Global miRNA expression was identified in 19 PDAC, 6 AMP and 25 paired, histologically normal pancreatic tissues using the GeneChip 4.0 miRNA arrays. Computational approaches were used for miRNA target prediction/identification of miRNA-regulated pathways. Target gene expression was validated in 178 pancreatic cancer and 4 pancreatic normal tissues from The Cancer Genome Atlas (TCGA). 20 miRNAs were significantly deregulated (FC≥2 and p<0.05) (15 down- and 5 up-regulated) in PDAC. miR-216 family (miR-216a-3p, miR-216a-5p, miR-216b-3p and miR-216b-5p) was consistently down-regulated in PDAC. miRNA-modulated pathways are associated with innate and adaptive immune system responses in PDAC. AMP cancers showed 8 down- and 1 up-regulated miRNAs (FDR p<0.05). Most enriched pathways (p<0.01) were RAS and Nerve Growth Factor signaling. PDAC and AMP display different global miRNA expression profiles and miRNA regulated networks/tumorigenesis pathways. The immune response was enriched in PDAC, suggesting the existence of immune checkpoint pathways more relevant to PDAC than AMP.
Collapse
Affiliation(s)
- Tainara F. Felix
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
- Experimental Research Unity (UNIPEX), Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Rainer M. Lopez Lapa
- Experimental Research Unity (UNIPEX), Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
- Department of Genetics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Márcio de Carvalho
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Natália Bertoni
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
- Experimental Research Unity (UNIPEX), Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Tomas Tokar
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Rogério A. Oliveira
- Department of Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Maria A. M. Rodrigues
- Department of Pathology, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Cláudia N. Hasimoto
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Walmar K. Oliveira
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Leonardo Pelafsky
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - César T. Spadella
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Juan C. Llanos
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Giovanni F. Silva
- Department of Clinics and Gastroenterology, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Wan L. Lam
- Genetics Unity, Integrative Oncology, British Columbia Cancer Center, Vancouver, BC, Canada
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, Vejle Hospital, Institute of Regional Health Research, University of Southern Denmark, Denmark, DK
| | | | - Sandra A. Drigo
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
- Experimental Research Unity (UNIPEX), Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Robson F. Carvalho
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Patricia P. Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
- Experimental Research Unity (UNIPEX), Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP, Brazil
- * E-mail:
| |
Collapse
|
142
|
Michaille JJ, Awad H, Fortman EC, Efanov AA, Tili E. miR-155 expression in antitumor immunity: The higher the better? Genes Chromosomes Cancer 2019; 58:208-218. [PMID: 30382602 DOI: 10.1002/gcc.22698] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small noncoding RNAs that modulate gene expression either directly, by impairing the stability and/or translation of transcripts that contain their specific target sequence, or indirectly through the targeting of transcripts that encode transcription factors, factors implicated in signal transduction pathways, or epigenetic regulators. Abnormal expression of micro-RNAs has been found in nearly all types of pathologies, including cancers. MiR-155 has been the first microRNA to be implicated in the regulation of the innate and adaptative immune responses, and its expression is either increased or decreased in a variety of liquid and solid malignancies. In this review, we examine the oncogenic and antitumor potentials of miR-155, with special emphasize on its dose-dependent effects. We describe the impact of miR-155 levels on antitumor activity of lymphocytes and myeloid cells. We discuss miR-155 dose-dependent effects in leukemias and analyze results showing that miR-155 intermediate levels tend to be detrimental, whereas high levels of miR-155 expression usually prove beneficial. We also examine the beneficial effects of high levels of miR-155 expression in solid tumors. We discuss the possible causal involvement of miR-155 in leukemias and dementia in individuals with Down's syndrome. We finally propose that increasing miR-155 levels in immune cells might increase the efficiency of newly developed cancer immunotherapies, due to miR-155 ability to target transcripts encoding immune checkpoints such as cytotoxic T lymphocyte antigen-4 or programmed death-ligand 1.
Collapse
Affiliation(s)
- Jean-Jacques Michaille
- BioPerox-IL, Université de Bourgogne-Franche Comté (EA 7270), Dijon, France.,Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Hamdy Awad
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Emily C Fortman
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Alexander A Efanov
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - Esmerina Tili
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, Ohio.,Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
143
|
He C, Chen ZY, Li Y, Yang ZQ, Zeng F, Cui Y, He Y, Chen JB, Chen HQ. miR-10b suppresses cell invasion and metastasis through targeting HOXA3 regulated by FAK/YAP signaling pathway in clear-cell renal cell carcinoma. BMC Nephrol 2019; 20:127. [PMID: 30975094 PMCID: PMC6458703 DOI: 10.1186/s12882-019-1322-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/31/2019] [Indexed: 12/27/2022] Open
Abstract
Background MicroRNAs have been related to tumor progression in diverse human cancers including clear-cell renal cell carcinoma (ccRCC). Previous study has suggested the important regulation function of miR-10b in ccRCC. However, the direct target of miR-10b in ccRCC and the related molecular mechanisms has not yet been revealed. Methods miR-10b and HOXA3 was detected by qRT-PCR. MTT, colony formation assay, wound-healing and transwell assays were performed to detect cell proliferation, colony formation, migration, and invasion abilities in ccRCC. Western blot analyses were performed to evaluate the protein expression of HOXA3, YAP, FAK and MMP-9. Dual luciferase reporter assay was employed to measure potential molecular mechanism of miR-10b in ccRCC. Results miR-10b was down-regulated in 786-O and A498 cells as compared to renal tubular HK-2 cells. By contrast, HOXA3 and YAP was up-regulated in ccRCC cells and tissues. Functionally, knockdown of YAP inhibited cell proliferation, migration and invasion. Knockdown of FAK downregulated YAP, in turn, resulted in a decrease of HOXA3 expression. Mechanically, miR-10b targets HOXA3 to exert its tumor-suppressive effect on ccRCC in vitro. Conclusions These novel data suggest that miR-10b suppresses cell invasion and metastasis through targeting HOXA3, which partially passed through the FAK/YAP signaling pathway.
Collapse
Affiliation(s)
- Cheng He
- Department of Urology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410000, Hunan Province, People's Republic of China
| | - Zhi-Yong Chen
- Department of Urology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410000, Hunan Province, People's Republic of China
| | - Yang Li
- Department of Urology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410000, Hunan Province, People's Republic of China
| | - Zhong-Qing Yang
- Department of Urology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410000, Hunan Province, People's Republic of China
| | - Feng Zeng
- Department of Urology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410000, Hunan Province, People's Republic of China
| | - Yu Cui
- Department of Urology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410000, Hunan Province, People's Republic of China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410000, Hunan Province, People's Republic of China
| | - Jin-Bo Chen
- Department of Urology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410000, Hunan Province, People's Republic of China
| | - He-Qun Chen
- Department of Urology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410000, Hunan Province, People's Republic of China.
| |
Collapse
|
144
|
Abstract
Objectives: The aim of this research was to study whether plasma microRNAs (miRNA) can be used for early detection of pancreatic cancer (PC) by analyzing prediagnostic plasma samples collected before a PC diagnosis. Background: PC has a poor prognosis due to late presenting symptoms and early metastasis. Circulating miRNAs are altered in PC at diagnosis but have not been evaluated in a prediagnostic setting. Methods: We first performed an initial screen using a panel of 372 miRNAs in a retrospective case-control cohort that included early-stage PC patients and healthy controls. Significantly altered miRNAs at diagnosis were then measured in an early detection case-control cohort wherein plasma samples in the cases are collected before a PC diagnosis. Carbohydrate antigen 19–9 (Ca 19–9) levels were measured in all samples for comparison. Results: Our initial screen, including 23 stage I-II PC cases and 22 controls, revealed 15 candidate miRNAs that were differentially expressed in plasma samples at PC diagnosis. We combined all 15 miRNAs into a multivariate statistical model, which outperformed Ca 19–9 in receiver-operating characteristics analysis. However, none of the candidate miRNAs, individually or in combination, were significantly altered in prediagnostic plasma samples from 67 future PC patients compared with 132 matched controls. In comparison, Ca 19–9 levels were significantly higher in the cases at <5 years before diagnosis. Conclusion: Plasma miRNAs are altered in PC patients at diagnosis, but the candidate miRNAs found in this study appear late in the course of the disease and cannot be used for early detection of the disease.
Collapse
|
145
|
Eerdunduleng E. circ-LDLRAD3 regulates cell proliferation, migration and invasion of pancreatic cancer by miR-876-3p/STAT3. ACTA ACUST UNITED AC 2019. [DOI: 10.31491/csrc.2019.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
146
|
Lu L, Liu Q, Wang P, Wu Y, Liu X, Weng C, Fang X, Li B, Cao X, Mao H, Wang L, Guan M, Wang W, Liu G. MicroRNA-148b regulates tumor growth of non-small cell lung cancer through targeting MAPK/JNK pathway. BMC Cancer 2019; 19:209. [PMID: 30849960 PMCID: PMC6408859 DOI: 10.1186/s12885-019-5400-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/21/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MicroRNA-148b (miR-148b) has been detected in various types of tumors, and is generally viewed as a tumor suppressor. Our previous study found the decreased expression of miR-148b in human non small cell lung cancer (NSCLC) specimens and cell lines. However, the underlying mechanisms of miR-148b in regulating tumor progression remain unclear. METHODS Firstly animal experiments were performed to verify whether miR-148b could inhibit the tumor growth. Then, the underlying mechanisms were studied by transfecting recombinant plasmids containing a miR-148b mimic or a negative control (NC) mimic (shRNA control) into NSCLC cell lines PC14/B and A549 cells. Tumor cells transfected with unpackaged lentiviral vectors was used as blank control. Cell proliferation capabilities were measured by using CCK-8 kit and colony formation assay. Cell cycle arrest was compared to clarify the mechanism underlying the tumor cell proliferation. Annexin V-FITC Apoptosis Detection kit was applied to investigate the effect of miR-148b on cell apoptosis. Furthermore, western blot analysis were performed to study the targeting pathway. RESULTS We found that over-expression of miR148b could significantly inhibit tumor growth, while knocking down miR148b could obviously promote tumor growth. Further experiment showed that miR-148b inhibited tumor cell proliferation. Besides, over-expression of miR148b decreased the G2/M phase population of the cell cycle by preventing NSCLC cells from entering the mitotic phase and enhanced tumor cell apoptosis. Further western blot analysis indicated that miR148b could inhibit mitogen-activated protein kinase/Jun N-terminal kinase (MAPK/JNK) signaling by decreasing the expression of phosphorylated (p) JNK. CONCLUSIONS These results demonstrate that miR-148b could inhibit the tumor growth and act as tumor suppressor by inhibiting the proliferation and inducing apoptosis of NSCLC cells by blocking the MAPK/JNK pathway.
Collapse
Affiliation(s)
- Lin Lu
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Qiyao Liu
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Peipei Wang
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Yong Wu
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Xia Liu
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Chengyin Weng
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Xisheng Fang
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Baoxiu Li
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Xiaofei Cao
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Haibo Mao
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Lina Wang
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Mingmei Guan
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Wei Wang
- Department of Experimental Research and State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, 510080 Guangdong China
| | - Guolong Liu
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| |
Collapse
|
147
|
Hasan S, Jacob R, Manne U, Paluri R. Advances in pancreatic cancer biomarkers. Oncol Rev 2019; 13:410. [PMID: 31044028 PMCID: PMC6478006 DOI: 10.4081/oncol.2019.410] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
Biomarkers play an essential role in the management of patients with invasive cancers. Pancreatic ductal adenocarcinoma (PDC) associated with poor prognosis due to advanced presentation and limited therapeutic options. This is further complicated by absence of validated screening and predictive biomarkers for early diagnosis and precision treatments respectively. There is emerging data on biomarkers in pancreatic cancer in past two decades. So far, the CA 19-9 remains the only approved biomarker for diagnosis and response assessment but limited by low sensitivity and specificity. In this article, we aim to review current and future biomarkers that has potential serve as critical tools for early diagnostic, predictive and prognostic indications in pancreatic cancer.
Collapse
Affiliation(s)
- Syed Hasan
- University of Alabama at Birmingham, USA
| | | | | | | |
Collapse
|
148
|
Batista IA, Melo SA. Exosomes and the Future of Immunotherapy in Pancreatic Cancer. Int J Mol Sci 2019; 20:ijms20030567. [PMID: 30699928 PMCID: PMC6387297 DOI: 10.3390/ijms20030567] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 12/26/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease, associated with a late diagnosis and a five-year survival rate of 8%. Currently available treatments fall short in improving the survival and quality of life of PDAC patients. The only possible curative option is still the surgical resection of the tumor. Exosomes are extracellular vesicles secreted by cells that transport proteins, lipids, and nucleic acids to other cells, triggering phenotypic changes in the recipient cells. Tumor cells often secrete increased amounts of exosomes. Tumor exosomes are now accepted as important players in the remodeling of PDAC tumor stroma, particularly in the establishment of an immunosuppressive microenvironment. This has sparked the interest in their usefulness as mediators of immunomodulatory effects for the treatment of PDAC. In fact, exosomes are now under study to understand their potential as nanocarriers to stimulate an immune response against cancer. This review highlights the latest findings regarding the function of exosomes in tumor-driven immunomodulation, and the challenges and advantages associated with the use of these vesicles to potentiate immunotherapy in PDAC.
Collapse
Affiliation(s)
- Ines A Batista
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal (i3S), 4200-135 Porto, Portugal.
- Institute of Molecular Pathology & Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal.
| | - Sonia A Melo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal (i3S), 4200-135 Porto, Portugal.
- Institute of Molecular Pathology & Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal.
- Medical Faculty of the University of Porto (FMUP), 4200-319 Porto, Portugal.
| |
Collapse
|
149
|
Li X, Li C, Wei J, Ni W, Xu Y, Yao R, Zhang M, Li H, Liu L, Dang H, Hazi W, Hu S. Comprehensive Expression Profiling Analysis of Pituitary Indicates that circRNA Participates in the Regulation of Sheep Estrus. Genes (Basel) 2019; 10:genes10020090. [PMID: 30696117 PMCID: PMC6409929 DOI: 10.3390/genes10020090] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 01/01/2023] Open
Abstract
The pituitary gland is the most important endocrine organ that mainly regulates animal estrus by controlling the hormones synthesis. There is a significant difference between the estrus state and anestrus state of sheep pituitary system. Here, we studied the circular RNA (circRNA) expression profiles of the anterior pituitary of estrus and anestrus sheep using RNA-seq technology. Through this study, we identified a total of 12,468 circRNAs and 9231 differentially expressed circRNAs in the estrus and anestrus pituitary system of sheep. We analyzed some differentially expressed circRNAs by reverse transcription quantitative-PCR (RT-qPCR), and some circRNAs were demonstrated using RNase-R+ resistance experiments. CircRNAs involving the regulation of estrus-related terms and pathways are enriched by using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. In addition, we also predicted partial microRNA-circRNA interaction network for circRNAs that regulate sheep estrus. Overall, this study explored a potential substantial role played by circRNAs involved in pituitary regulation on sheep estrus and proposed new questions for further study.
Collapse
Affiliation(s)
- Xiaoyue Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Junchang Wei
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Yueren Xu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Rui Yao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Mengdan Zhang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Huixiang Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Li Liu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Hanli Dang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Wureli Hazi
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| |
Collapse
|
150
|
Zhao Y, Wang Y, Liu S, Wang C, Liang J, Li S, Qu X, Zhang R, Yu J, Huang J. Triple-helix molecular-switch-actuated exponential rolling circular amplification for ultrasensitive fluorescence detection of miRNAs. Analyst 2019; 144:5245-5253. [DOI: 10.1039/c9an00953a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have developed a rapid and high-efficiency fluorescent biosensing platform based on triple-helix molecular-switch (THMS)-actuated exponential rolling circular amplification (RCA) strategy for the ultrasensitive detection of miR-21.
Collapse
Affiliation(s)
- Yihan Zhao
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P.R. China
| | - Yu Wang
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P.R. China
| | - Su Liu
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- P.R. China
| | - Chonglin Wang
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P.R. China
| | - Jiaxu Liang
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P.R. China
| | - Shasha Li
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P.R. China
| | - Xiaonan Qu
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- P.R. China
| | - Rufeng Zhang
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- P.R. China
| | - Jinghua Yu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P.R. China
| | - Jiadong Huang
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P.R. China
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
| |
Collapse
|