101
|
Dinoto A, Sechi E, Flanagan EP, Ferrari S, Solla P, Mariotto S, Chen JJ. Serum and Cerebrospinal Fluid Biomarkers in Neuromyelitis Optica Spectrum Disorder and Myelin Oligodendrocyte Glycoprotein Associated Disease. Front Neurol 2022; 13:866824. [PMID: 35401423 PMCID: PMC8983882 DOI: 10.3389/fneur.2022.866824] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
The term neuromyelitis optica spectrum disorder (NMOSD) describes a group of clinical-MRI syndromes characterized by longitudinally extensive transverse myelitis, optic neuritis, brainstem dysfunction and/or, less commonly, encephalopathy. About 80% of patients harbor antibodies directed against the water channel aquaporin-4 (AQP4-IgG), expressed on astrocytes, which was found to be both a biomarker and a pathogenic cause of NMOSD. More recently, antibodies against myelin oligodendrocyte glycoprotein (MOG-IgG), have been found to be a biomarker of a different entity, termed MOG antibody-associated disease (MOGAD), which has overlapping, but different pathogenesis, clinical features, treatment response, and prognosis when compared to AQP4-IgG-positive NMOSD. Despite important refinements in the accuracy of AQP4-IgG and MOG-IgG testing assays, a small proportion of patients with NMOSD still remain negative for both antibodies and are called "seronegative" NMOSD. Whilst major advances have been made in the diagnosis and treatment of these conditions, biomarkers that could help predict the risk of relapses, disease activity, and prognosis are still lacking. In this context, a number of serum and/or cerebrospinal fluid biomarkers are emerging as potentially useful in clinical practice for diagnostic and treatment purposes. These include antibody titers, cytokine profiles, complement factors, and markers of neuronal (e.g., neurofilament light chain) or astroglial (e.g., glial fibrillary acidic protein) damage. The aim of this review is to summarize current evidence regarding the role of emerging diagnostic and prognostic biomarkers in patients with NMOSD and MOGAD.
Collapse
Affiliation(s)
- Alessandro Dinoto
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Elia Sechi
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Eoin P. Flanagan
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Sergio Ferrari
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Paolo Solla
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Sara Mariotto
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - John J. Chen
- Departments of Ophthalmology and Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
102
|
Kim H, Lee EJ, Lim YM, Kim KK. Glial Fibrillary Acidic Protein in Blood as a Disease Biomarker of Neuromyelitis Optica Spectrum Disorders. Front Neurol 2022; 13:865730. [PMID: 35370870 PMCID: PMC8968934 DOI: 10.3389/fneur.2022.865730] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Glial fibrillary acidic protein (GFAP) is a type III intermediate filament protein found in astrocytes in the brain. Damaged astrocytes release GFAP into cerebrospinal fluid and blood. Thus, GFAP levels in these body fluids may reflect the disease state of neuromyelitis optica spectrum disorder (NMOSD), which includes astrocytopathy, characterized by pathogenic antibodies against aquaporin 4 located on astrocytes. Recently, single-molecule array technology that can detect these synaptic proteins in blood, even in the subfemtomolar range, has been developed. Emerging evidence suggests that GFAP protein is a strong biomarker candidate for NMOSD. This mini-review provides basic information about GFAP protein and innovative clinical data that show the potential clinical value of blood GFAP levels as a biomarker for NMOSD.
Collapse
Affiliation(s)
- Hyunjin Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Department of Medicine, Asan Medical Institute of Convergence Science and Technology, Seoul, South Korea
| | - Young-Min Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kwang-Kuk Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
103
|
Jović M, Prim D, Saini E, Pfeifer ME. Towards a Point-of-Care (POC) Diagnostic Platform for the Multiplex Electrochemiluminescent (ECL) Sensing of Mild Traumatic Brain Injury (mTBI) Biomarkers. BIOSENSORS 2022; 12:172. [PMID: 35323442 PMCID: PMC8946848 DOI: 10.3390/bios12030172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Globally, 70 million people are annually affected by TBI. A significant proportion of all TBI cases are actually mild TBI (concussion, 70-85%), which is considerably more difficult to diagnose due to the absence of apparent symptoms. Current clinical practice of diagnosing mTBI largely resides on the patients' history, clinical aspects, and CT and MRI neuroimaging observations. The latter methods are costly, time-consuming, and not amenable for decentralized or accident site measurements. As an alternative (and/or complementary), mTBI diagnostics can be performed by detection of mTBI biomarkers from patients' blood. Herein, we proposed two strategies for the detection of three mTBI-relevant biomarkers (GFAP, h-FABP, and S100β), in standard solutions and in human serum samples by using an electrochemiluminescence (ECL) immunoassay on (i) a commercial ECL platform in 96-well plate format, and (ii) a "POC-friendly" platform with disposable screen-printed carbon electrodes (SPCE) and a portable ECL reader. We further demonstrated a proof-of-concept for integrating three individually developed mTBI assays ("singleplex") into a three-plex ("multiplex") assay on a single SPCE using a spatially resolved ECL approach. The presented methodology demonstrates feasibility and a first step towards the development of a rapid POC multiplex diagnostic system for the detection of a mTBI biomarker panel on a single SPCE.
Collapse
Affiliation(s)
| | | | | | - Marc Emil Pfeifer
- Diagnostic Systems Research Group, Institute of Life Technologies, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais-Wallis), 1950 Sion, Switzerland; (M.J.); (D.P.); (E.S.)
| |
Collapse
|
104
|
Shahim P, Zetterberg H. Neurochemical Markers of Traumatic Brain Injury: Relevance to Acute Diagnostics, Disease Monitoring, and Neuropsychiatric Outcome Prediction. Biol Psychiatry 2022; 91:405-412. [PMID: 34857362 DOI: 10.1016/j.biopsych.2021.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022]
Abstract
Considerable advancements have been made in the quantification of biofluid-based biomarkers for traumatic brain injury (TBI), which provide a clinically accessible window to investigate disease mechanisms and progression. Methods with improved analytical sensitivity compared with standard immunoassays are increasingly used, and blood tests are being used in the diagnosis, monitoring, and outcome prediction of TBI. Most work to date has focused on acute TBI diagnostics, while the literature on biomarkers for long-term sequelae is relatively scarce. In this review, we give an update on the latest developments in biofluid-based biomarker research in TBI and discuss how acute and prolonged biomarker changes can be used to detect and quantify brain injury and predict clinical outcome and neuropsychiatric sequelae.
Collapse
Affiliation(s)
- Pashtun Shahim
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at University College London, London, United Kingdom; Department of Neurodegenerative Disease, University College London Institute of Neurology, London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China.
| |
Collapse
|
105
|
Papa L, Ladde JG, O’Brien JF, Thundiyil JG, Tesar J, Leech S, Cassidy DD, Roa J, Hunter C, Miller S, Baker S, Parrish GA, Davison J, Van Dillen C, Ralls GA, Briscoe J, Falk JL, Weber K, Giordano PA. Evaluation of Glial and Neuronal Blood Biomarkers Compared With Clinical Decision Rules in Assessing the Need for Computed Tomography in Patients With Mild Traumatic Brain Injury. JAMA Netw Open 2022; 5:e221302. [PMID: 35285924 PMCID: PMC9907341 DOI: 10.1001/jamanetworkopen.2022.1302] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
IMPORTANCE In 2018, the combination of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase (UCH-L1) levels became the first US Food and Drug Administration-approved blood test to detect intracranial lesions after mild to moderate traumatic brain injury (MTBI). How this blood test compares with validated clinical decision rules remains unknown. OBJECTIVES To compare the performance of GFAP and UCH-L1 levels vs 3 validated clinical decision rules for detecting traumatic intracranial lesions on computed tomography (CT) in patients with MTBI and to evaluate combining biomarkers with clinical decision rules. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study from a level I trauma center enrolled adults with suspected MTBI presenting within 4 hours of injury. The clinical decision rules included the Canadian CT Head Rule (CCHR), New Orleans Criteria (NOC), and National Emergency X-Radiography Utilization Study II (NEXUS II) criteria. Emergency physicians prospectively completed data forms for each clinical decision rule before the patients' CT scans. Blood samples for measuring GFAP and UCH-L1 levels were drawn, but laboratory personnel were blinded to clinical results. Of 2274 potential patients screened, 697 met eligibility criteria, 320 declined to participate, and 377 were enrolled. Data were collected from March 16, 2010, to March 5, 2014, and analyzed on August 11, 2021. MAIN OUTCOMES AND MEASURES The presence of acute traumatic intracranial lesions on head CT scan (positive CT finding). RESULTS Among enrolled patients, 349 (93%) had a CT scan performed and were included in the analysis. The mean (SD) age was 40 (16) years; 230 patients (66%) were men, 314 (90%) had a Glasgow Coma Scale score of 15, and 23 (7%) had positive CT findings. For the CCHR, sensitivity was 100% (95% CI, 82%-100%), specificity was 33% (95% CI, 28%-39%), and negative predictive value (NPV) was 100% (95% CI, 96%-100%). For the NOC, sensitivity was 100% (95% CI, 82%-100%), specificity was 16% (95% CI, 12%-20%), and NPV was 100% (95% CI, 91%-100%). For NEXUS II, sensitivity was 83% (95% CI, 60%-94%), specificity was 52% (95% CI, 47%-58%), and NPV was 98% (95% CI, 94%-99%). For GFAP and UCH-L1 levels combined with cutoffs at 67 and 189 pg/mL, respectively, sensitivity was 100% (95% CI, 82%-100%), specificity was 25% (95% CI, 20%-30%), and NPV was 100%; with cutoffs at 30 and 327 pg/mL, respectively, sensitivity was 91% (95% CI, 70%-98%), specificity was 20% (95% CI, 16%-24%), and NPV was 97%. The area under the receiver operating characteristic curve (AUROC) for GFAP alone was 0.83; for GFAP plus NEXUS II, 0.83; for GFAP plus NOC, 0.85; and for GFAP plus CCHR, 0.88. The AUROC for UCH-L1 alone was 0.72; for UCH-L1 plus NEXUS II, 0.77; for UCH-L1 plus NOC, 0.77; and for UCH-L1 plus CCHR, 0.79. The GFAP biomarker alone (without UCH-L1) contributed the most improvement to the clinical decision rules. CONCLUSIONS AND RELEVANCE In this cohort study, the CCHR, the NOC, and GFAP plus UCH-L1 biomarkers had equally high sensitivities, and the CCHR had the highest specificity. However, using different cutoff values reduced both sensitivity and specificity of GFAP plus UCH-L1. Use of GFAP significantly improved the performance of the clinical decision rules, independently of UCH-L1. Together, the CCHR and GFAP had the highest diagnostic performance.
Collapse
Affiliation(s)
- Linda Papa
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida
| | - Jay G. Ladde
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida
| | - John F. O’Brien
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida
| | - Josef G. Thundiyil
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida
| | - James Tesar
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida
| | - Stephen Leech
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida
| | - David D. Cassidy
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida
| | - Jesus Roa
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida
| | - Christopher Hunter
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida
| | - Susan Miller
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida
| | - Sara Baker
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida
| | - Gary A. Parrish
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida
| | - Jillian Davison
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida
| | - Christine Van Dillen
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida
| | - George A. Ralls
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida
| | - Joshua Briscoe
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida
| | - Jay L. Falk
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida
| | - Kurt Weber
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida
| | - Philip A. Giordano
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, Florida
| |
Collapse
|
106
|
Lagares A, Castaño-Leon AM, Richard M, Tsitsopoulos PP, Morales J, Mihai P, Pavlov V, Mejan O, de la Cruz J, Payen JF. Variability in the indication of brain CT scan after mild traumatic brain injury. A transnational survey. Eur J Trauma Emerg Surg 2022; 49:1189-1198. [PMID: 35178583 DOI: 10.1007/s00068-022-01902-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/30/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Clinical guidelines have been developed to standardize the management of mild traumatic brain injury (mTBI) in the emergency room, in particular the indication of brain CT scan and the use of blood biomarkers. The objective of this study was to determine the degree of adherence to guidelines in the management of these patients across four countries of Southern Europe. METHODS An electronic survey including structural and general management of mTBI patients and six clinical vignettes was conducted. In-charge physicians from France, Spain, Greece and Portugal were contacted by telephone and email. Differences among countries were searched using an unconditional approach test on contingency tables. RESULTS One hundred and eighty eight physicians from 131 Hospitals (78 Spain, 36 France, 12 Greece and 5 Portugal) completed the questionnaire. There were differences regarding the in-charge specialist across these countries. There was variability in the use of guidelines and their adherence. Spain was the country with the least guideline adherence. There was a global agreement in ordering a brain CT for patients receiving anticoagulation or platelet inhibitors, and for patients with seizures, altered consciousness, neurological deficit, clinical signs of skull fracture or signs of facial fracture. Aging was not an indication for CT in French centres. Loss of consciousness and posttraumatic amnesia were considered as indications for CT more frequently in Spain than in France. These findings were in line with the data from the 6 clinical vignettes. The estimated use of CT reached around 50% of mTBI cases. The use of S100B is restricted to five French centres. CONCLUSIONS There were large variations in the guideline adherence, especially in the situations considered to order brain CT after mTBI.
Collapse
Affiliation(s)
- Alfonso Lagares
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Instituto de Investigación imas12, Madrid, Spain.
- Department of Surgery, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.
| | - Ana María Castaño-Leon
- Department of Neurosurgery, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Instituto de Investigación imas12, Madrid, Spain
| | - Marion Richard
- Department of Anesthesia and Intensive Care, University Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Des Neurosicences, INSERM, U1216, Grenoble, France
| | - Parmenion Philip Tsitsopoulos
- Department of Neurosurgery, Hippokration General Hospital, Aristotle University School of Medicine, Thessaloniki, Greece
| | - Julian Morales
- Servicio de Urgencias, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Podaru Mihai
- Servicio de Urgencias, Hospital Universitario del Tajo, Aranjuez, Spain
| | - Vladislav Pavlov
- bioMérieux, Medical Affairs, Chemin de LÓrme, Marcy-L´Étoile, France
| | - Odile Mejan
- bioMérieux, Clinical Unit, Chemin de lÓrme, Marcy l´Étoile, France
| | - Javier de la Cruz
- Instituto de Investigación imas12, Hospital Universitario 12 de Octubre, SAMID, Madrid, Spain
| | - Jean François Payen
- Department of Anesthesia and Intensive Care, University Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Des Neurosicences, INSERM, U1216, Grenoble, France
| |
Collapse
|
107
|
Zhang C, Qian X, Zheng J, Ai P, Cao X, Pan X, Chen T, Wang Y. Controlled Decompression Alleviates Brain Injury via Attenuating Oxidative Damage and Neuroinflammation in Acute Intracranial Hypertension. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1936691. [PMID: 35187159 PMCID: PMC8850036 DOI: 10.1155/2022/1936691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/17/2021] [Accepted: 01/15/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND The benefits of controlled decompression (CDC) for patients with acute intracranial hypertension especially in terms of alleviating the complications caused by rapid decompression (RDC) have been confirmed by clinical studies. This study is aimed at evaluating the therapeutic potency of CDC with ubiquitin C-terminal hydrolase-L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) by investigating the potential molecular mechanism in the acute intracranial hypertension (AICH) rabbit model. METHODS Male New Zealand white rabbits were randomly subdivided into the sham-operated (SH) group, CDC group, and RDC group. Blood plasma samples and brain tissue were collected 2 days before operation (baseline) and at 3, 6, 24, and 72 hours after operation to measure the levels of UCH-L1, GFAP, oxidative stress indicators, and inflammatory cytokines by performing ELISA or Western blot. The neurological score of the rabbits and brain water content was graded 24 h after surgery. qPCR, immunofluorescence, and FJ-C staining were conducted. RESULTS CDC improved neurological function, lowered brain water content, ameliorated neuronal degeneration, attenuated oxidative damage, and inflammatory responses to a greater extent than RDC. Plasma UCH-L1 level was significantly lower in the CDC group at 3 h postoperatively than in the RDC group. CDC reduced plasma GFAP levels to various degrees at 3 h, 6 h, and 24 h postoperatively compared with RDC. Immunofluorescence confirmed that the expression of UCH-L1 and GFAP in the cortex of the CDC group was lower than that of the RDC group. CONCLUSIONS Our data collectively demonstrate that CDC could attenuate oxidative damage and inflammatory responses, downregulate UCH-L1 and GFAP levels, and contribute to an improved neuroprotective effect compared with RDC.
Collapse
Affiliation(s)
- Chonghui Zhang
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Xiao Qian
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Jie Zheng
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Pu Ai
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Xinyi Cao
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Xiaofei Pan
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Tao Chen
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu 214044, China
| | - Yuhai Wang
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, Jiangsu 214044, China
| |
Collapse
|
108
|
Blood GFAP as an emerging biomarker in brain and spinal cord disorders. Nat Rev Neurol 2022; 18:158-172. [PMID: 35115728 DOI: 10.1038/s41582-021-00616-3] [Citation(s) in RCA: 258] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
Abstract
Blood-derived biomarkers for brain and spinal cord diseases are urgently needed. The introduction of highly sensitive immunoassays led to a rapid increase in the number of potential blood-derived biomarkers for diagnosis and monitoring of neurological disorders. In 2018, the FDA authorized a blood test for clinical use in the evaluation of mild traumatic brain injury (TBI). The test measures levels of the astrocytic intermediate filament glial fibrillary acidic protein (GFAP) and neuroaxonal marker ubiquitin carboxy-terminal hydrolase L1. In TBI, blood GFAP levels are correlated with clinical severity and extent of intracranial pathology. Evidence also indicates that blood GFAP levels hold the potential to reflect, and might enable prediction of, worsening of disability in individuals with progressive multiple sclerosis. A growing body of evidence suggests that blood GFAP levels can be used to detect even subtle injury to the CNS. Most importantly, the successful completion of the ongoing validation of point-of-care platforms for blood GFAP might ameliorate the decision algorithms for acute neurological diseases, such as TBI and stroke, with important economic implications. In this Review, we provide a systematic overview of the evidence regarding the utility of blood GFAP as a biomarker in neurological diseases. We propose a model for GFAP concentration dynamics in different conditions and discuss the limitations that hamper the widespread use of GFAP in the clinical setting. In our opinion, the clinical use of blood GFAP measurements has the potential to contribute to accelerated diagnosis and improved prognostication, and represents an important step forward in the era of precision medicine.
Collapse
|
109
|
Wilde EA, Wanner I, Kenney K, Gill J, Stone JR, Disner S, Schnakers C, Meyer R, Prager EM, Haas M, Jeromin A. A Framework to Advance Biomarker Development in the Diagnosis, Outcome Prediction, and Treatment of Traumatic Brain Injury. J Neurotrauma 2022; 39:436-457. [PMID: 35057637 PMCID: PMC8978568 DOI: 10.1089/neu.2021.0099] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Elisabeth A. Wilde
- University of Utah, Neurology, 383 Colorow, Salt Lake City, Utah, United States, 84108
- VA Salt Lake City Health Care System, 20122, 500 Foothill Dr., Salt Lake City, Utah, United States, 84148-0002
| | - Ina Wanner
- UCLA, Semel Institute, NRB 260J, 635 Charles E. Young Drive South, Los Angeles, United States, 90095-7332, ,
| | - Kimbra Kenney
- Uniformed Services University of the Health Sciences, Neurology, Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, Bethesda, Maryland, United States, 20814
| | - Jessica Gill
- National Institutes of Health, National Institute of Nursing Research, 1 cloister, Bethesda, Maryland, United States, 20892
| | - James R. Stone
- University of Virginia, Radiology and Medical Imaging, Box 801339, 480 Ray C. Hunt Dr. Rm. 185, Charlottesville, Virginia, United States, 22903, ,
| | - Seth Disner
- Minneapolis VA Health Care System, 20040, Minneapolis, Minnesota, United States
- University of Minnesota Medical School Twin Cities, 12269, 10Department of Psychiatry and Behavioral Sciences, Minneapolis, Minnesota, United States
| | - Caroline Schnakers
- Casa Colina Hospital and Centers for Healthcare, 6643, Pomona, California, United States
- Ronald Reagan UCLA Medical Center, 21767, Los Angeles, California, United States
| | - Restina Meyer
- Cohen Veterans Bioscience, 476204, New York, New York, United States
| | - Eric M Prager
- Cohen Veterans Bioscience, 476204, External Affairs, 535 8th Ave, New York, New York, United States, 10018
| | - Magali Haas
- Cohen Veterans Bioscience, 476204, 535 8th Avenue, 12th Floor, New York City, New York, United States, 10018,
| | - Andreas Jeromin
- Cohen Veterans Bioscience, 476204, Translational Sciences, Cambridge, Massachusetts, United States
| |
Collapse
|
110
|
Biberthaler P, Musaelyan K, Krieg S, Meyer B, Stimmer H, Zapf J, von Matthey F, Chandran R, Marino JA, Beligere G, Hoffmann M, Zhang H, Datwyler SA, McQuiston B. Evaluation of Acute Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase-L1 Plasma Levels in Traumatic Brain Injury Patients with and without Intracranial Lesions. Neurotrauma Rep 2022; 2:617-625. [PMID: 35018363 PMCID: PMC8742277 DOI: 10.1089/neur.2021.0048] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This pilot study aimed to evaluate the association of plasma ubiquitin C-terminal hydrolase-L1 (UCH-L1), glial fibrillary acidic protein (GFAP), and S100 calcium-binding protein B (S100B) with intracranial abnormalities visible on a computed tomography (CT) scan (CT positive) and injury severity in acute traumatic brain injury (TBI). For these purposes, a cohort of 109 adult TBI patients was recruited within 6 h from the injury event. A hyperacute subcohort of 20 patients who had their blood collected within 2 h from injury was analyzed separately for early acute biomarker levels. Levels of GFAP and UCH-L1 were analyzed using the prototype Abbott i-STAT™ TBI Plasma Test (Abbott Laboratories, Abbot Park, IL), alongside S100B measurement (Elecsys; Roche Diagnostics, Penzberg, Germany). In the hyperacute subcohort, GFAP and UCH-L1, but not S100B, levels were significantly higher in the CT-positive group compared to CT-negative patients. AUC values for differentiation between CT-positive and CT-negative patients were 0.97 for GFAP, 0.87 for UCH-L1, and 0.60 for S100B. Severity discrimination, defined by Glasgow Coma Scale (GCS) score, was then analyzed in the total patient cohort. Levels of all three biomarkers were significantly different between mild (GCS, 13-15) and moderate/severe (GCS, 3-12) injury groups. UCH-L1 showed the highest area under the curve value for severity discrimination (0.94), followed by GFAP (0.91) and S100B (0.83). These results support the clinical utility of GFAP and UCH-L1 as TBI biomarkers able to rule out CT-positive injury in acute TBI. Moreover, excellent differentiation of GFAP and UCH-L1 between mild and moderate/severe TBI groups affirms their close association with the underlying pathology.
Collapse
Affiliation(s)
- Peter Biberthaler
- Department of Trauma Surgery, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Ksenia Musaelyan
- Core Diagnostics, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Sandro Krieg
- Department of Neurosurgery, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Herbert Stimmer
- Department of Radiology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Julian Zapf
- Department of Trauma Surgery, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Francesca von Matthey
- Department of Trauma Surgery, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Raj Chandran
- Core Diagnostics, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Jaime A Marino
- Core Diagnostics, Abbott Laboratories, Abbott Park, Illinois, USA
| | | | - Markus Hoffmann
- Core Diagnostics, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Hongwei Zhang
- Point of Care Division, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Saul A Datwyler
- Core Diagnostics, Abbott Laboratories, Abbott Park, Illinois, USA
| | - Beth McQuiston
- Core Diagnostics, Abbott Laboratories, Abbott Park, Illinois, USA
| |
Collapse
|
111
|
Boucher ML, Conley G, Nowlin J, Qiu J, Kawata K, Bazarian JJ, Meehan WP, Mannix R. Titrating the Translational Relevance of a Low-Level Repetitive Head Impact Model. Front Neurol 2022; 13:857654. [PMID: 35785366 PMCID: PMC9246060 DOI: 10.3389/fneur.2022.857654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, there has been increased attention in the scientific community to the phenomenon of sub-concussive impacts, those hits to the head that do not cause the signs and symptoms of a concussion. Some authors suggest that sub-concussive impacts may alter behavior and cognition, if sustained repetitively, but the mechanisms underlying these changes are not well-defined. Here, we adapt our well-established weight drop model of repetitive mild traumatic brain injury (rmTBI) to attempt to produce a model of low-level repetitive head impacts (RHI). The model was modified to eliminate differences in latency to right following impact and gross behavioral changes after a single cluster of hits. Further, we varied our model in terms of repetition of impact over a 4-h span to mimic the repeated sub-concussive impacts that may be experienced by an athlete within a single day of play. To understand the effects of a single cluster of RHIs, as well as the effect of an increased impact frequency within the cluster, we evaluated classical behavioral measures, serum biomarkers, cortical protein quantification, and immunohistochemistry both acutely and sub-acutely following the impacts. In the absence of gross behavioral changes, the impact protocol did generate pathology, in a dose-dependent fashion, in the brain. Evaluation of serum biomarkers revealed limited changes in GFAP and NF-L, which suggests that their diagnostic utility may not emerge until the exposure to low-level head impacts reaches a certain threshold. Robust decreases in both IL-1β and IL-6 were observed in the serum and the cortex, indicating downregulation of inflammatory pathways. These experiments yield initial data on pathology and biomarkers in a mouse model of low-level RHIs, with relevance to sports settings, providing a starting point for further exploration of the potential role of anti-inflammatory processes in low-level RHI outcomes, and how these markers may evolve with repeated exposure.
Collapse
Affiliation(s)
- Masen L Boucher
- Harvard Medical School, Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Grace Conley
- Harvard Medical School, Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Jordan Nowlin
- Harvard Medical School, Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Jianhua Qiu
- Harvard Medical School, Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University, Bloomington, IN, United States
| | - Jeffrey J Bazarian
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - William P Meehan
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Harvard Medical School, Division of Sports Medicine, Boston Children's Hospital, Boston, MA, United States.,The Micheli Center for Sports Injury Prevention, Waltham, MA, United States
| | - Rebekah Mannix
- Harvard Medical School, Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
112
|
Nowak MK, Ejima K, Quinn PD, Bazarian JJ, Mickleborough TD, Harezlak J, Newman SD, Kawata K. ADHD May Associate With Reduced Tolerance to Acute Subconcussive Head Impacts: A Pilot Case-Control Intervention Study. J Atten Disord 2022; 26:125-139. [PMID: 33161816 PMCID: PMC8102643 DOI: 10.1177/1087054720969977] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To test our hypothesis that individuals with ADHD would exhibit reduced resiliency to subconcussive head impacts induced by ten soccer headings. METHOD We conducted a case-control intervention study in 51 adults (20.6 ± 1.7 years old). Cognitive assessment, using ImPACT, and plasma levels of neurofilament-light (NF-L), Tau, glial-fibrillary-acidic protein (GFAP), and ubiquitin-C-terminal hydrolase-L1 (UCH-L1) were measured. RESULTS Ten controlled soccer headings demonstrated ADHD-specific transient declines in verbal memory function. Ten headings also blunted learning effects in visual memory function in the ADHD group while the non-ADHD counterparts improved both verbal and visual memory functions even after ten headings. Blood biomarker levels of the ADHD group were sensitive to the stress induced by ten headings, where plasma GFAP and UCH-L1 levels acutely increased after 10 headings. Variance in ADHD-specific verbal memory decline was correlated with increased levels of plasma GFAP in the ADHD group. CONCLUSIONS These data suggest that ADHD may reduce brain tolerance to repetitive subconcussive head impacts.
Collapse
Affiliation(s)
| | - Keisuke Ejima
- Department of Epidemiology and Biostatistics, Indiana University-Bloomington, USA
| | - Patrick D. Quinn
- Department of Applied Health, Indiana University-Bloomington, USA
| | - Jeffrey J. Bazarian
- Department of Emergency Medicine, University of Rochester Medical Center, USA
| | | | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, Indiana University-Bloomington, USA
| | - Sharlene D. Newman
- Department of Psychological and Brain Sciences, Indiana University-Bloomington, USA
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University-Bloomington, USA
- Program in Neuroscience, Indiana University-Bloomington, USA
| |
Collapse
|
113
|
Haddadi K, Moradi S, Asadian L, Montazer SH, Hosseininejad SM, Golikhatir I, Abedian Kenari S, Alaee A, Bozorgi F. Aldolase C Profiling in Serum after Mild Traumatic Brain Injury: A Prospective Cohort Study. IRANIAN JOURNAL OF MEDICAL SCIENCES 2022; 47:33-39. [PMID: 35017775 PMCID: PMC8743369 DOI: 10.30476/ijms.2021.87692.1831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/03/2020] [Accepted: 12/16/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND After a traumatic brain injury (TBI), in addition to clinical indices, the serum level of neurological biomarkers may provide valuable diagnostic and prognostic information. The present study aimed to investigate the aldolase C (ALDOC) profile in serum for early diagnosis of brain damage in patients with mild TBI (mTBI) presented to the Emergency Department (ED). METHODS A single-center prospective cohort study was carried out in 2018-2019 at Imam Khomeini Hospital affiliated with Mazandaran University of Medical Sciences, Sari, Iran. A total of 89 patients with mTBI were enrolled in the study. Blood samples were taken within three hours after head trauma to measure ALDOC serum levels. Brain CT scan was used as the gold standard. Statistical analysis was performed using the Kruskal Wallis, Mann-Whitney U, and Chi square tests. The receiver-operating characteristic (ROC) curve plot was used to determine the optimal cutoff point for ALDOC. The sensitivity and specificity of the determined cutoff point were calculated. P values less than 0.05 were considered statistically significant. RESULTS Of the 89 patients, the CT scan findings showed a positive TBI in 30 (33.7%) of the patients and in 59 (66.3%) a negative TBI. The median ALDOC serum level in the patients with positive CT scan findings (8.35 ng/mL [IQR: 1.65]) was significantly higher than those with negative CT scan findings (5.3 ng/mL [IQR: 6.9]) (P<0.001). The optimal cutoff point for ALDOC serum level was 6.95 ng/mL, and the area under the curve was 99.6% (P<0.001). The sensitivity and specificity of the determined cutoff point were 100% and 98%, respectively. CONCLUSION The ALDOC serum level in patients with mTBI significantly correlates with the pathologic findings of the brain CT scan. This biomarker, with 100% sensitivity, is a suitable tool to detect brain structural abnormalities in mTBI patients.
Collapse
Affiliation(s)
- Kaveh Haddadi
- Department of Neurosurgery, School of Medicine, Orthopedic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Siavash Moradi
- Education Development Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Leila Asadian
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Hosein Montazer
- Department of Emergency Medicine, School of Medicine, Orthopedic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Hosseininejad
- Department of Emergency Medicine, School of Medicine, Diabetes Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Iraj Golikhatir
- Department of Emergency Medicine, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abedian Kenari
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdulrassol Alaee
- Department of Radiology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farzad Bozorgi
- Department of Emergency Medicine, School of Medicine, Orthopedic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
114
|
Bassi TG, Rohrs EC, Fernandez KC, Ornowska M, Nicholas M, Gani M, Evans D, Reynolds SC. Transvenous Diaphragm Neurostimulation Mitigates Ventilation-associated Brain Injury. Am J Respir Crit Care Med 2021; 204:1391-1402. [PMID: 34491883 PMCID: PMC8865722 DOI: 10.1164/rccm.202101-0076oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Rationale: Mechanical ventilation (MV) is associated with hippocampal apoptosis and inflammation, and it is important to study strategies to mitigate them. Objectives: To explore whether temporary transvenous diaphragm neurostimulation (TTDN) in association with MV mitigates hippocampal apoptosis and inflammation after 50 hours of MV. Methods: Normal-lung porcine study comparing apoptotic index, inflammatory markers, and neurological-damage serum markers between never-ventilated subjects, subjects undergoing 50 hours of MV plus either TTDN every other breath or every breath, and subjects undergoing 50 hours of MV (MV group). MV settings in volume control were Vt of 8 ml/kg, and positive end-expiratory pressure of 5 cm H2O. Measurements and Main Results: Apoptotic indices, microglia percentages, and reactive astrocyte percentages were greater in the MV group in comparison with the other groups (P < 0.05). Transpulmonary pressure at baseline and at study end were both lower in the group receiving TTDN every breath, but lung injury scores and systemic inflammatory markers were not different between the groups. Serum concentrations of four neurological-damage markers were lower in the group receiving TTDN every breath than in the MV group (P < 0.05). Heart rate variability declined significantly in the MV group and increased significantly in both TTDN groups over the course of the experiments. Conclusions: Our study found that mechanical ventilation is associated with hippocampal apoptosis and inflammation, independent of lung injury and systemic inflammation. Also, in a porcine model, TTDN results in neuroprotection after 50 hours, and the degree of neuroprotection increases with greater exposure to TTDN.
Collapse
Affiliation(s)
- Thiago G. Bassi
- Simon Fraser University, Burnaby, British Columbia, Canada
- Lungpacer Medical Inc., Vancouver, British Columbia, Canada; and
| | - Elizabeth C. Rohrs
- Simon Fraser University, Burnaby, British Columbia, Canada
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, British Columbia, Canada
| | - Karl C. Fernandez
- Simon Fraser University, Burnaby, British Columbia, Canada
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, British Columbia, Canada
| | | | - Michelle Nicholas
- Simon Fraser University, Burnaby, British Columbia, Canada
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, British Columbia, Canada
| | - Matt Gani
- Lungpacer Medical Inc., Vancouver, British Columbia, Canada; and
| | - Doug Evans
- Lungpacer Medical Inc., Vancouver, British Columbia, Canada; and
| | - Steven C. Reynolds
- Simon Fraser University, Burnaby, British Columbia, Canada
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, British Columbia, Canada
| |
Collapse
|
115
|
Yeung C, Bhatia R, Bhattarai B, Sinha M. Role of Salivary Biomarkers in Predicting Significant Traumatic Brain Injury: An Exploratory Study. Pediatr Emerg Care 2021; 37:e1373-e1376. [PMID: 32149999 DOI: 10.1097/pec.0000000000002050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The highest rates of traumatic brain injury (TBI)-related morbidity and mortality occur in young children and adolescents. The objective of this study was to describe the levels of 3 biomarkers (S100B, glial fibrillary acidic protein, neuron-specific enolase) in saliva of children with TBI requiring inpatient admission at a pediatric trauma center and compare these levels in children without TBI. METHODS A convenience sample of 24 children aged 0 to 18 years, presenting with acute isolated TBI, was enrolled prospectively. The non-TBI comparison groups consisted of patients with medical complaints and musculoskeletal injuries only. Salivary specimens were collected, and biomarkers were measured using quantitative enzyme-linked immunosorbent assay method. Demographic, clinical data, and brain imaging findings were obtained. RESULTS Seventy-four children were enrolled. Twenty-four had TBI (mean age, 5.07 years; SD, 4.8 years); 14 subjects (58.3%) with TBI were found to have significant traumatic brain injury (SBI) on computed tomography scan. S100B levels were significantly higher in TBI group compared with those with musculoskeletal injury only (median, 113.2 pg/mL vs 18 pg/mL; P = 0.021). Area under the receiver operating characteristic curve for S100B in predicting SBI was 0.675; the optimum threshold for S100B to achieve the optimum sensitivity and specificity of SBI was at 86.9 pg/mL for SBI versus no injury group. CONCLUSIONS S100B levels in saliva were higher in children with TBI and may be predictive of SBI identified by presence of computed tomography abnormalities. Larger studies are needed to replicate our findings in using a noninvasive diagnostic measure for children with TBI and SBI.
Collapse
Affiliation(s)
- Claudia Yeung
- From the Department of Emergency Medicine, Phoenix Children's Hospital
| | - Rahul Bhatia
- Department of Pediatrics, Arizona Children's Center
| | - Bikash Bhattarai
- Department of Research, Maricopa Integrated Health System, Phoenix, AZ
| | | |
Collapse
|
116
|
Sarkis GA, Zhu T, Yang Z, Li X, Shi Y, Rubenstein R, Yost RA, Manley GT, Wang KK. Characterization and standardization of multiassay platforms for four commonly studied traumatic brain injury protein biomarkers: a TBI Endpoints Development Study. Biomark Med 2021; 15:1721-1732. [PMID: 34674546 PMCID: PMC8739397 DOI: 10.2217/bmm-2021-0284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022] Open
Abstract
Aim: There is a critical need to validate biofluid-based biomarkers as diagnostic and drug development tools for traumatic brain injury (TBI). As part of the TBI Endpoints Development Initiative, we identified four potentially predictive and pharmacodynamic biomarkers for TBI: astroglial markers GFAP and S100B and the neuronal markers UCH-L1 and Tau. Materials & methods: Several commonly used platforms for these four biomarkers were identified and compared on analytic performance and ability to detect gold standard recombinant protein antigens and to pool control versus TBI cerebrospinal fluid (CSF). Results: For each marker, only some assay formats could differentiate TBI CSF from the control CSF. Also, different assays for the same biomarker reported divergent biomarker values for the same biosamples. Conclusion: Due to the variability of TBI marker assay in performance and reported values, standardization strategies are recommended when comparing reported biomarker levels across assay platforms.
Collapse
Affiliation(s)
- George Anis Sarkis
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Tian Zhu
- Department of Emergency Medicine, University of Florida, 1149 Newell Drive, L4-100, Gainesville, FL 32611, USA
- Department of Pediatrics, Daping Hospital, Chongqing, Third Military Medical University, Chongqing, China
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Zhihui Yang
- Department of Emergency Medicine, University of Florida, 1149 Newell Drive, L4-100, Gainesville, FL 32611, USA
| | - Xue Li
- Department of Emergency Medicine, University of Florida, 1149 Newell Drive, L4-100, Gainesville, FL 32611, USA
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Shi
- Department of Pediatrics, Daping Hospital, Chongqing, Third Military Medical University, Chongqing, China
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Richard Rubenstein
- Department of Neurology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA
| | - Richard A Yost
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Geoffrey T Manley
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kevin K Wang
- Department of Emergency Medicine, University of Florida, 1149 Newell Drive, L4-100, Gainesville, FL 32611, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Gainesville, FL 32608, USA
| |
Collapse
|
117
|
Wang KK, Munoz Pareja JC, Mondello S, Diaz-Arrastia R, Wellington C, Kenney K, Puccio AM, Hutchison J, McKinnon N, Okonkwo DO, Yang Z, Kobeissy F, Tyndall JA, Büki A, Czeiter E, Pareja Zabala MC, Gandham N, Berman R. Blood-based traumatic brain injury biomarkers - Clinical utilities and regulatory pathways in the United States, Europe and Canada. Expert Rev Mol Diagn 2021; 21:1303-1321. [PMID: 34783274 DOI: 10.1080/14737159.2021.2005583] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major global health issue, resulting in debilitating consequences to families, communities, and health-care systems. Prior research has found that biomarkers aid in the pathophysiological characterization and diagnosis of TBI. Significantly, the FDA has recently cleared both a bench-top assay and a rapid point-of-care assays of tandem biomarker (UCH-L1/GFAP)-based blood test to aid in the diagnosis mTBI patients. With the global necessity of TBI biomarkers research, several major consortium multicenter observational studies with biosample collection and biomarker analysis have been created in the USA, Europe, and Canada. As each geographical region regulates its data and findings, the International Initiative for Traumatic Brain Injury Research (InTBIR) was formed to facilitate data integration and dissemination across these consortia. AREAS COVERED This paper covers heavily investigated TBI biomarkers and emerging non-protein markers. Finally, we analyze the regulatory pathways for converting promising TBI biomarkers into approved in-vitro diagnostic tests in the United States, European Union, and Canada. EXPERT OPINION TBI biomarker research has significantly advanced in the last decade. The recent approval of an iSTAT point of care test to detect mild TBI has paved the way for future biomarker clearance and appropriate clinical use across the globe.
Collapse
Affiliation(s)
- Kevin K Wang
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Jennifer C Munoz Pareja
- Department of Pediatric Critical Care, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cheryl Wellington
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| | - Kimbra Kenney
- Department of Neurology, Uniformed Service University, Bethesda, Maryland, USA
| | - Ava M Puccio
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jamie Hutchison
- The Hospital for Sick Children, Department of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nicole McKinnon
- The Hospital for Sick Children, Department of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA.,Brain Rehabilitation Research Center (BRRC), Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - J Adrian Tyndall
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | | | - Endre Czeiter
- Department of Neurosurgery, Pecs University, Pecs, Hungary
| | | | - Nithya Gandham
- Program for Neurotrauma, Neuroprotoemics & Biomarker Research, Department of Emergency Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Rebecca Berman
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, USA
| | | |
Collapse
|
118
|
KURTULUŞ DERELİ A, SEÇME M, ACAR K. Analysis of Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase L1 in Postmortem Serum and Cerebrospinal Fluid in Traumatic Cerebral Deaths. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2021. [DOI: 10.33808/clinexphealthsci.943779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
119
|
Kochis RM, Ahota A, Garcia HB, Gottlieb RZ, Ruelas EB, Cauwenberghs G. Modeling the Dynamics of a Secondary Neurodegenerative Injury Following a Mild Traumatic Brain Injury. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4469-4472. [PMID: 34892211 DOI: 10.1109/embc46164.2021.9629960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
During a traumatic brain injury (TBI), there is an injection of glial fibrillary acidic protein (GFAP) from the brain into the bloodstream through a lesion in the blood-brain barrier (BBB). In the blood, a bio controller responds by up-regulating Immunoglobulin G (IgG) production into the bloodstream to remove the excess protein. Here, we model the concentrations over time of GFAP and IgG in the bloodstream following a mild TBI. We apply these dynamics to repeated traumas that aggravate the recovery process, as well as increasing the severity of injury. Both show substantially elevated and prolonged GFAP levels. This research and model is clinically relevant in that it could lead to the analyzation of GFAP levels in the brain through methods as simple as a blood draw. This information can be used to predict the extent of brain lesions as well as help understand the recovery process that the brain takes when having undergone a TBI.
Collapse
|
120
|
Amoo M, Henry J, O'Halloran PJ, Brennan P, Husien MB, Campbell M, Caird J, Javadpour M, Curley GF. S100B, GFAP, UCH-L1 and NSE as predictors of abnormalities on CT imaging following mild traumatic brain injury: a systematic review and meta-analysis of diagnostic test accuracy. Neurosurg Rev 2021; 45:1171-1193. [PMID: 34709508 DOI: 10.1007/s10143-021-01678-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/03/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022]
Abstract
Biomarkers such as calcium channel binding protein S100 subunit beta (S100B), glial fibrillary acidic protein (GFAP), ubiquitin c-terminal hydrolase L1 (UCH-L1) and neuron-specific enolase (NSE) have been proposed to aid in screening patients presenting with mild traumatic brain injury (mTBI). As such, we aimed to characterise their accuracy at various thresholds. MEDLINE, SCOPUS and EMBASE were searched, and articles reporting the diagnostic performance of included biomarkers were eligible for inclusion. Risk of bias was assessed using the QUADAS-II criteria. A meta-analysis was performed to assess the predictive value of biomarkers for imaging abnormalities on CT. A total of 2939 citations were identified, and 38 studies were included. Thirty-two studies reported data for S100B. At its conventional threshold of 0.1 μg/L, S100B had a pooled sensitivity of 91% (95%CI 87-94) and a specificity of 30% (95%CI 26-34). The optimal threshold for S100B was 0.72 μg/L, with a sensitivity of 61% (95% CI 50-72) and a specificity of 69% (95% CI 64-74). Nine studies reported data for GFAP. The optimal threshold for GFAP was 626 pg/mL, at which the sensitivity was 71% (95%CI 41-91) and specificity was 71% (95%CI 43-90). Sensitivity of GFAP was maximised at a threshold of 22 pg/mL, which had a sensitivity of 93% (95%CI 73-99) and a specificity of 36% (95%CI 12-68%). Three studies reported data for NSE and two studies for UCH-L1, which precluded meta-analysis. There is evidence to support the use of S100B as a screening tool in mild TBI, and potential advantages to the use of GFAP, which requires further investigation.
Collapse
Affiliation(s)
- Michael Amoo
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland. .,National Neurosurgical Centre, Beaumont Hospital, Dublin 9, Ireland. .,Beacon Academy, Beacon Hospital, Sandyford, Dublin 18, Ireland.
| | - Jack Henry
- National Neurosurgical Centre, Beaumont Hospital, Dublin 9, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| | - Philip J O'Halloran
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paul Brennan
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Radiology, Beaumont Hospital, Dublin 9, Ireland
| | - Mohammed Ben Husien
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,National Neurosurgical Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Matthew Campbell
- Department of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - John Caird
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,National Neurosurgical Centre, Beaumont Hospital, Dublin 9, Ireland
| | - Mohsen Javadpour
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,National Neurosurgical Centre, Beaumont Hospital, Dublin 9, Ireland.,Department of Academic Neurology, Trinity College Dublin, Dublin 2, Ireland
| | - Gerard F Curley
- Department of Neurosurgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
121
|
Zwirner J, Bohnert S, Franke H, Garland J, Hammer N, Möbius D, Tse R, Ondruschka B. Assessing Protein Biomarkers to Detect Lethal Acute Traumatic Brain Injuries in Cerebrospinal Fluid. Biomolecules 2021; 11:1577. [PMID: 34827575 PMCID: PMC8615532 DOI: 10.3390/biom11111577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/30/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Diagnosing traumatic brain injury (TBI) from body fluids in cases where there are no obvious external signs of impact would be useful for emergency physicians and forensic pathologists alike. None of the previous attempts has so far succeeded in establishing a single biomarker to reliably detect TBI with regards to the sensitivity: specificity ratio in a post mortem setting. This study investigated a combination of body fluid biomarkers (obtained post mortem), which may be a step towards increasing the accuracy of biochemical TBI detection. In this study, serum and cerebrospinal fluid (CSF) samples from 30 acute lethal TBI cases and 70 controls without a TBI-related cause of death were evaluated for the following eight TBI-related biomarkers: brain-derived neurotrophic factor (BDNF), ferritin, glial fibrillary acidic protein (GFAP), interleukin 6 (IL-6), lactate dehydrogenase, neutrophil gelatinase-associated lipocalin (NGAL), neuron-specific enolase and S100 calcium-binding protein B. Correlations among the individual TBI biomarkers were assessed, and a specificity-accentuated threshold value analysis was conducted for all biomarkers. Based on these values, a decision tree modelling approach was performed to assess the most accurate biomarker combination to detect acute lethal TBIs. The results showed that 92.45% of acute lethal TBIs were able to be diagnosed using a combination of IL-6 and GFAP in CSF. The probability of detecting an acute lethal TBI was moderately increased by GFAP alone and considerably increased by the remaining biomarkers. BDNF and NGAL were almost perfectly correlated (p = 0.002; R2 = 0.944). This study provides evidence that acute lethal TBIs can be detected to a high degree of statistical accuracy using forensic biochemistry. The high inter-individual correlations of biomarkers may help to estimate the CSF concentration of an unknown biomarker, using extrapolation techniques.
Collapse
Affiliation(s)
- Johann Zwirner
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany;
- Institute of Legal Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Simone Bohnert
- Institute of Forensic Medicine, University of Wuerzburg, 97078 Wuerzburg, Germany;
| | - Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany;
| | - Jack Garland
- Forensic and Analytical Science Service, NSW Health Pathology, Lidcombe 2141, Australia;
| | - Niels Hammer
- Institute of Macroscopic and Clinical Anatomy, University of Graz, 8010 Graz, Austria;
- Department of Orthopedic and Trauma Surgery, University of Leipzig, 04103 Leipzig, Germany
- Fraunhofer IWU, 47720 Dresden, Germany
| | - Dustin Möbius
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany;
| | - Rexson Tse
- Department of Forensic Pathology, LabPLUS, Auckland City Hospital, Auckland 1148, New Zealand;
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany;
| |
Collapse
|
122
|
Benedet AL, Milà-Alomà M, Vrillon A, Ashton NJ, Pascoal TA, Lussier F, Karikari TK, Hourregue C, Cognat E, Dumurgier J, Stevenson J, Rahmouni N, Pallen V, Poltronetti NM, Salvadó G, Shekari M, Operto G, Gispert JD, Minguillon C, Fauria K, Kollmorgen G, Suridjan I, Zimmer ER, Zetterberg H, Molinuevo JL, Paquet C, Rosa-Neto P, Blennow K, Suárez-Calvet M. Differences Between Plasma and Cerebrospinal Fluid Glial Fibrillary Acidic Protein Levels Across the Alzheimer Disease Continuum. JAMA Neurol 2021; 78:1471-1483. [PMID: 34661615 PMCID: PMC8524356 DOI: 10.1001/jamaneurol.2021.3671] [Citation(s) in RCA: 240] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Question What are the levels of plasma glial fibrillary acidic protein (GFAP) throughout the Alzheimer disease (AD) continuum, and how do they compare with the levels of cerebrospinal fluid (CSF) GFAP? Findings In this cross-sectional study, plasma GFAP levels were elevated in the preclinical and symptomatic stages of AD, with levels higher than those of CSF GFAP. Plasma GFAP had a higher accuracy than CSF GFAP to discriminate between amyloid-β (Aβ)–positive and Aβ-negative individuals, also at the preclinical stage. Meaning This study suggests that plasma GFAP is a sensitive biomarker that significantly outperforms CSF GFAP in indicating Aβ pathology in the early stages of AD. Importance Glial fibrillary acidic protein (GFAP) is a marker of reactive astrogliosis that increases in the cerebrospinal fluid (CSF) and blood of individuals with Alzheimer disease (AD). However, it is not known whether there are differences in blood GFAP levels across the entire AD continuum and whether its performance is similar to that of CSF GFAP. Objective To evaluate plasma GFAP levels throughout the entire AD continuum, from preclinical AD to AD dementia, compared with CSF GFAP. Design, Setting, and Participants This observational, cross-sectional study collected data from July 29, 2014, to January 31, 2020, from 3 centers. The Translational Biomarkers in Aging and Dementia (TRIAD) cohort (Montreal, Canada) included individuals in the entire AD continuum. Results were confirmed in the Alzheimer’s and Families (ALFA+) study (Barcelona, Spain), which included individuals with preclinical AD, and the BioCogBank Paris Lariboisière cohort (Paris, France), which included individuals with symptomatic AD. Main Outcomes and Measures Plasma and CSF GFAP levels measured with a Simoa assay were the main outcome. Other measurements included levels of CSF amyloid-β 42/40 (Aβ42/40), phosphorylated tau181 (p-tau181), neurofilament light (NfL), Chitinase-3-like protein 1 (YKL40), and soluble triggering receptor expressed on myeloid cells 2 (sTREM2) and levels of plasma p-tau181 and NfL. Results of amyloid positron emission tomography (PET) were available in TRIAD and ALFA+, and results of tau PET were available in TRIAD. Results A total of 300 TRIAD participants (177 women [59.0%]; mean [SD] age, 64.6 [17.6] years), 384 ALFA+ participants (234 women [60.9%]; mean [SD] age, 61.1 [4.7] years), and 187 BioCogBank Paris Lariboisière participants (116 women [62.0%]; mean [SD] age, 69.9 [9.2] years) were included. Plasma GFAP levels were significantly higher in individuals with preclinical AD in comparison with cognitively unimpaired (CU) Aβ-negative individuals (TRIAD: Aβ-negative mean [SD], 185.1 [93.5] pg/mL, Aβ-positive mean [SD], 285.0 [142.6] pg/mL; ALFA+: Aβ-negative mean [SD], 121.9 [42.4] pg/mL, Aβ-positive mean [SD], 169.9 [78.5] pg/mL). Plasma GFAP levels were also higher among individuals in symptomatic stages of the AD continuum (TRIAD: CU Aβ-positive mean [SD], 285.0 [142.6] pg/mL, mild cognitive impairment [MCI] Aβ-positive mean [SD], 332.5 [153.6] pg/mL; AD mean [SD], 388.1 [152.8] pg/mL vs CU Aβ-negative mean [SD], 185.1 [93.5] pg/mL; Paris: MCI Aβ-positive, mean [SD], 368.6 [158.5] pg/mL; AD dementia, mean [SD], 376.4 [179.6] pg/mL vs CU Aβ-negative mean [SD], 161.2 [67.1] pg/mL). Plasma GFAP magnitude changes were consistently higher than those of CSF GFAP. Plasma GFAP more accurately discriminated Aβ-positive from Aβ-negative individuals than CSF GFAP (area under the curve for plasma GFAP, 0.69-0.86; area under the curve for CSF GFAP, 0.59-0.76). Moreover, plasma GFAP levels were positively associated with tau pathology only among individuals with concomitant Aβ pathology. Conclusions and Relevance This study suggests that plasma GFAP is a sensitive biomarker for detecting and tracking reactive astrogliosis and Aβ pathology even among individuals in the early stages of AD.
Collapse
Affiliation(s)
- Andréa L Benedet
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
| | - Marta Milà-Alomà
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Agathe Vrillon
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Université de Paris, Institut national de la santé et de la recherche médicale U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France.,Centre de Neurologie Cognitive, Groupe Hospitalo Universitaire Assistance Publique Hôpitaux de Paris Nord Hôpital Lariboisière Fernand-Widal, Paris, France
| | - Nicholas J Ashton
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,National Institute for Health Research Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley National Health Service Foundation, London, United Kingdom
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
| | - Firoza Lussier
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
| | - Thomas K Karikari
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claire Hourregue
- Centre de Neurologie Cognitive, Groupe Hospitalo Universitaire Assistance Publique Hôpitaux de Paris Nord Hôpital Lariboisière Fernand-Widal, Paris, France
| | - Emmanuel Cognat
- Université de Paris, Institut national de la santé et de la recherche médicale U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France.,Centre de Neurologie Cognitive, Groupe Hospitalo Universitaire Assistance Publique Hôpitaux de Paris Nord Hôpital Lariboisière Fernand-Widal, Paris, France
| | - Julien Dumurgier
- Centre de Neurologie Cognitive, Groupe Hospitalo Universitaire Assistance Publique Hôpitaux de Paris Nord Hôpital Lariboisière Fernand-Widal, Paris, France
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
| | - Vanessa Pallen
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
| | - Nina M Poltronetti
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada
| | - Gemma Salvadó
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Mahnaz Shekari
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Gregory Operto
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Juan Domingo Gispert
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | - Carolina Minguillon
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Karine Fauria
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | | | | | - Eduardo R Zimmer
- Department of Pharmacology, Graduate Program in Biological Sciences: Biochemistry (PPGBioq) and Phamacology and Therapeutics (PPGFT), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, University College London Institute of Neurology, London, United Kingdom.,UK Dementia Research Institute at University College London, London, United Kingdom
| | - José Luis Molinuevo
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Claire Paquet
- Université de Paris, Institut national de la santé et de la recherche médicale U1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France.,Centre de Neurologie Cognitive, Groupe Hospitalo Universitaire Assistance Publique Hôpitaux de Paris Nord Hôpital Lariboisière Fernand-Widal, Paris, France
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Quebec, Canada.,Montreal Neurological Institute, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Marc Suárez-Calvet
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.,Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | | |
Collapse
|
123
|
Relationship Between Time-Weighted Head Impact Exposure on Directional Changes in Diffusion Imaging in Youth Football Players. Ann Biomed Eng 2021; 49:2852-2862. [PMID: 34549344 PMCID: PMC8978207 DOI: 10.1007/s10439-021-02862-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023]
Abstract
Approximately 3.5 million youth and adolescents in the US play football, a sport with one of the highest rates of concussion. Repeated subconcussive head impact exposure (HIE) may lead to negative neurological sequelae. To understand HIE as an independent predictive variable, quantitative cumulative kinematic metrics have been developed to capture the volume (i.e., number), severity (i.e., magnitude), and frequency (i.e., time-weighting by the interval between head impacts). In this study, time-weighted cumulative HIE metrics were compared with directional changes in diffusion tensor imaging (DTI) metrics. Changes in DTI conducted on a per-season, per-player basis were assessed as a dependent variable. Directional changes were defined separately as increases and decreases in the number of abnormal voxels relative to non-contact sport controls. Biomechanical and imaging data from 117 athletes (average age 11.9 ± 1.0 years) enrolled in this study was analyzed. Cumulative HIE metrics were more strongly correlated with increases in abnormal voxels than decreases in abnormal voxels. Additionally, across DTI sub-measures, increases and decreases in mean diffusivity (MD) had the strongest relationships with HIE metrics (increases in MD: average R2 = 0.1753, average p = 0.0002; decreases in MD: average R2 = 0.0997, average p = 0.0073). This encourages further investigation into the physiological phenomena represented by directional changes.
Collapse
|
124
|
Huie JR, Mondello S, Lindsell CJ, Antiga L, Yuh EL, Zanier ER, Masson S, Rosario BL, Ferguson AR. Biomarkers for Traumatic Brain Injury: Data Standards and Statistical Considerations. J Neurotrauma 2021; 38:2514-2529. [PMID: 32046588 PMCID: PMC8403188 DOI: 10.1089/neu.2019.6762] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Recent biomarker innovations hold potential for transforming diagnosis, prognostic modeling, and precision therapeutic targeting of traumatic brain injury (TBI). However, many biomarkers, including brain imaging, genomics, and proteomics, involve vast quantities of high-throughput and high-content data. Management, curation, analysis, and evidence synthesis of these data are not trivial tasks. In this review, we discuss data management concepts and statistical and data sharing strategies when dealing with biomarker data in the context of TBI research. We propose that application of biomarkers involves three distinct steps-discovery, evaluation, and evidence synthesis. First, complex/big data has to be reduced to useful data elements at the stage of biomarker discovery. Second, inferential statistical approaches must be applied to these biomarker data elements for assessment of biomarker clinical utility and validity. Last, synthesis of relevant research is required to support practice guidelines and enable health decisions informed by the highest quality, up-to-date evidence available. We focus our discussion around recent experiences from the International Traumatic Brain Injury Research (InTBIR) initiative, with a specific focus on four major clinical projects (Transforming Research and Clinical Knowledge in TBI, Collaborative European NeuroTrauma Effectiveness Research in TBI, Collaborative Research on Acute Traumatic Brain Injury in Intensive Care Medicine in Europe, and Approaches and Decisions in Acute Pediatric TBI Trial), which are currently enrolling subjects in North America and Europe. We discuss common data elements, data collection efforts, data-sharing opportunities, and challenges, as well as examine the statistical techniques required to realize successful adoption and use of biomarkers in the clinic as a foundation for precision medicine in TBI.
Collapse
Affiliation(s)
- J. Russell Huie
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Christopher J. Lindsell
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Esther L. Yuh
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Elisa R. Zanier
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Serge Masson
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Bedda L. Rosario
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Adam R. Ferguson
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- San Francisco Veterans Affairs Medical Center (SFVAMC), San Francisco, California, USA
| |
Collapse
|
125
|
Hergenroeder GW, Yokobori S, Choi HA, Schmitt K, Detry MA, Schmitt LH, McGlothlin A, Puccio AM, Jagid J, Kuroda Y, Nakamura Y, Suehiro E, Ahmad F, Viele K, Wilde EA, McCauley SR, Kitagawa RS, Temkin NR, Timmons SD, Diringer MN, Dash PK, Bullock R, Okonkwo DO, Berry DA, Kim DH. Hypothermia for Patients Requiring Evacuation of Subdural Hematoma: A Multicenter Randomized Clinical Trial. Neurocrit Care 2021; 36:560-572. [PMID: 34518968 PMCID: PMC8964656 DOI: 10.1007/s12028-021-01334-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/13/2021] [Indexed: 11/24/2022]
Abstract
Background Hypothermia is neuroprotective in some ischemia–reperfusion injuries. Ischemia–reperfusion injury may occur with traumatic subdural hematoma (SDH). This study aimed to determine whether early induction and maintenance of hypothermia in patients with acute SDH would lead to decreased ischemia–reperfusion injury and improve global neurologic outcome. Methods This international, multicenter randomized controlled trial enrolled adult patients with SDH requiring evacuation of hematoma within 6 h of injury. The intervention was controlled temperature management of hypothermia to 35 °C prior to dura opening followed by 33 °C for 48 h compared with normothermia (37 °C). Investigators randomly assigned patients at a 1:1 ratio between hypothermia and normothermia. Blinded evaluators assessed outcome using a 6-month Glasgow Outcome Scale Extended score. Investigators measured circulating glial fibrillary acidic protein and ubiquitin C-terminal hydrolase L1 levels. Results Independent statisticians performed an interim analysis of 31 patients to assess the predictive probability of success and the Data and Safety Monitoring Board recommended the early termination of the study because of futility. Thirty-two patients, 16 per arm, were analyzed. Favorable 6-month Glasgow Outcome Scale Extended outcomes were not statistically significantly different between hypothermia vs. normothermia groups (6 of 16, 38% vs. 4 of 16, 25%; odds ratio 1.8 [95% confidence interval 0.39 to ∞], p = .35). Plasma levels of glial fibrillary acidic protein (p = .036), but not ubiquitin C-terminal hydrolase L1 (p = .26), were lower in the patients with favorable outcome compared with those with unfavorable outcome, but differences were not identified by temperature group. Adverse events were similar between groups. Conclusions This trial of hypothermia after acute SDH evacuation was terminated because of a low predictive probability of meeting the study objectives. There was no statistically significant difference in functional outcome identified between temperature groups. Supplementary Information The online version contains supplementary material available at 10.1007/s12028-021-01334-w.
Collapse
Affiliation(s)
- Georgene W Hergenroeder
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.156, Houston, TX, 77030, USA. .,Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA.
| | - Shoji Yokobori
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Huimahn Alex Choi
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.156, Houston, TX, 77030, USA.,Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Karl Schmitt
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.156, Houston, TX, 77030, USA.,Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Michelle A Detry
- Statistical and Software Team, Berry Consultants, Austin, TX, USA
| | - Lisa H Schmitt
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.156, Houston, TX, 77030, USA.,Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Anna McGlothlin
- Statistical and Software Team, Berry Consultants, Austin, TX, USA
| | - Ava M Puccio
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jonathan Jagid
- Department of Neurological Surgery, Jackson Memorial Hospital, University of Miami, Miami, FL, USA
| | - Yasuhiro Kuroda
- Department of Emergency, Disaster, and Critical Care Medicine, Kagawa University Hospital, Kagawa Prefecture, Japan
| | - Yukihiko Nakamura
- Emergency and Critical Care Medicine, Kurume University Hospital, Fukuoka, Japan
| | - Eiichi Suehiro
- Department of Neurosurgery, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Faiz Ahmad
- Department of Neurological Surgery, Grady Memorial Hospital, Emory University School of Medicine, Atlanta, GA, USA
| | - Kert Viele
- Statistical and Software Team, Berry Consultants, Austin, TX, USA
| | - Elisabeth A Wilde
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Stephen R McCauley
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Ryan S Kitagawa
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.156, Houston, TX, 77030, USA.,Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| | - Nancy R Temkin
- Departments of Neurological Surgery and Biostatistics, University of Washington, Seattle, WA, USA
| | - Shelly D Timmons
- Department of Neurological Surgery, Indiana University Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael N Diringer
- Departments of Neurology, Neurological Surgery, Anesthesiology, and Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Pramod K Dash
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.156, Houston, TX, 77030, USA.,Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ross Bullock
- Department of Neurological Surgery, Jackson Memorial Hospital, University of Miami, Miami, FL, USA
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Donald A Berry
- Statistical and Software Team, Berry Consultants, Austin, TX, USA
| | - Dong H Kim
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 7.156, Houston, TX, 77030, USA.,Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA
| |
Collapse
|
126
|
Krausz AD, Korley FK, Burns MA. The Current State of Traumatic Brain Injury Biomarker Measurement Methods. BIOSENSORS 2021; 11:319. [PMID: 34562909 PMCID: PMC8469272 DOI: 10.3390/bios11090319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is associated with high rates of morbidity and mortality partially due to the limited tools available for diagnosis and classification. Measuring panels of protein biomarkers released into the bloodstream after injury has been proposed to diagnose TBI, inform treatment decisions, and monitor the progression of the injury. Being able to measure these protein biomarkers at the point-of-care would enable assessment of TBIs from the point-of-injury to the patient's hospital bedside. In this review, we provide a detailed discussion of devices reported in the academic literature and available on the market that have been designed to measure TBI protein biomarkers in various biofluids and contexts. We also assess the challenges associated with TBI biomarker measurement devices and suggest future research directions to encourage translation of these devices to clinical use.
Collapse
Affiliation(s)
- Alyse D. Krausz
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frederick K. Korley
- Emergency Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mark A. Burns
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
127
|
Krausz AD, Korley FK, Burns MA. A Variable Height Microfluidic Device for Multiplexed Immunoassay Analysis of Traumatic Brain Injury Biomarkers. BIOSENSORS 2021; 11:320. [PMID: 34562910 PMCID: PMC8472232 DOI: 10.3390/bios11090320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of global morbidity and mortality, partially due to the lack of sensitive diagnostic methods and efficacious therapies. Panels of protein biomarkers have been proposed as a way of diagnosing and monitoring TBI. To measure multiple TBI biomarkers simultaneously, we present a variable height microfluidic device consisting of a single channel that varies in height between the inlet and outlet and can passively multiplex bead-based immunoassays by trapping assay beads at the point where their diameter matches the channel height. We developed bead-based quantum dot-linked immunosorbent assays (QLISAs) for interleukin-6 (IL-6), glial fibrillary acidic protein (GFAP), and interleukin-8 (IL-8) using DynabeadsTM M-450, M-270, and MyOneTM, respectively. The IL-6 and GFAP QLISAs were successfully multiplexed using a variable height channel that ranged in height from ~7.6 µm at the inlet to ~2.1 µm at the outlet. The IL-6, GFAP, and IL-8 QLISAs were also multiplexed using a channel that ranged in height from ~6.3 µm at the inlet to ~0.9 µm at the outlet. Our system can keep pace with TBI biomarker discovery and validation, as additional protein biomarkers can be multiplexed simply by adding in antibody-conjugated beads of different diameters.
Collapse
Affiliation(s)
- Alyse D. Krausz
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frederick K. Korley
- Department of Emergency Medicine and Michigan Medicle, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mark A. Burns
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
- Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
128
|
Huibregtse ME, Bazarian JJ, Shultz SR, Kawata K. The biological significance and clinical utility of emerging blood biomarkers for traumatic brain injury. Neurosci Biobehav Rev 2021; 130:433-447. [PMID: 34474049 DOI: 10.1016/j.neubiorev.2021.08.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022]
Abstract
HUIBREGTSE, M.E, Bazarian, J.J., Shultz, S.R., and Kawata K. The biological significance and clinical utility of emerging blood biomarkers for traumatic brain injury. NEUROSCI BIOBEHAV REV XX (130) 433-447, 2021.- Blood biomarkers can serve as objective measures to gauge traumatic brain injury (TBI) severity, identify patients at risk for adverse outcomes, and predict recovery duration, yet the clinical use of blood biomarkers for TBI is limited to a select few and only to rule out the need for CT scanning. The biomarkers often examined in neurotrauma research are proteomic markers, which can reflect a range of pathological processes such as cellular damage, astrogliosis, or neuroinflammation. However, proteomic blood biomarkers are vulnerable to degradation, resulting in short half-lives. Emerging biomarkers for TBI may reflect the complex genetic and neurometabolic alterations that occur following TBI that are not captured by proteomics, are less vulnerable to degradation, and are comprised of microRNA, extracellular vesicles, and neurometabolites. Therefore, this review aims to summarize our understanding of how biomarkers for brain injury escape the brain parenchymal space and appear in the bloodstream, update recent research findings in several proteomic biomarkers, and characterize biological significance and examine clinical utility of microRNA, extracellular vesicles, and neurometabolites.
Collapse
Affiliation(s)
- Megan E Huibregtse
- Department of Kinesiology, School of Public Health, Indiana University, 1025 E 7th St, Suite 112, Bloomington, IN 47405, USA.
| | - Jeffrey J Bazarian
- Department of Emergency Medicine, University of Rochester Medical Center, 200 E River Rd, Rochester, NY 14623, USA.
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, The Alfred Centre, Level 6, 99 Commercial Road, Melbourne, VIC 3004, Australia; Department of Medicine, University of Melbourne, Clinical Sciences Building, 4th Floor, 300 Grattan St, Parkville, VIC 3050, Australia.
| | - Keisuke Kawata
- Department of Kinesiology, School of Public Health, Indiana University, 1025 E 7th St, Suite 112, Bloomington, IN 47405, USA; Program in Neuroscience, College of Arts and Sciences, Indiana University, 1101 E 10th St, Bloomington, IN 47405, USA.
| |
Collapse
|
129
|
Al-Adli N, Akbik OS, Rail B, Montgomery E, Caldwell C, Barrie U, Vira S, Al Tamimi M, Bagley CA, Aoun SG. The Clinical Use of Serum Biomarkers in Traumatic Brain Injury: A Systematic Review Stratified by Injury Severity. World Neurosurg 2021; 155:e418-e438. [PMID: 34438102 DOI: 10.1016/j.wneu.2021.08.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Serum biomarkers have gained significant popularity as an adjunctive measure in the evaluation and prognostication of traumatic brain injury (TBI). However, a concise and clinically oriented report of the major markers in function of TBI severity is lacking. This systematic review aims to report current data on the diagnostic and prognostic utility of blood-based biomarkers across the spectrum of TBI. METHODS A literature search of the PubMed/Medline electronic database was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. We excluded systematic reviews and meta-analyses that did not provide novel data. The American College of Cardiology/American Heart Association criteria were used to assess levels of evidence. RESULTS An initial 1463 studies were identified. In total, 115 full-text articles reporting on 94 distinct biomarkers met the inclusion criteria. Glasgow Coma Scale scores, computed tomography/magnetic resonance imaging abnormalities, and injury severity scores were the most used clinical diagnostic variables. Glasgow Outcome Scores and 1-, 3-, and 6-month mortality were the most used clinical prognostic variables. Several biomarkers significantly correlated with these variables and had statistically significant different levels in TBI subjects when compared with healthy, orthopedic, and polytrauma controls. The biomarkers also displayed significant variability across mild, moderate, and severe TBI categories, as well as in concussion cases. CONCLUSIONS This review summarizes existing high-quality evidence that supports the use of severity-specific biomarkers in the diagnostic and prognostic evaluation of TBI. These data can be used as a launching platform for the validation of upcoming clinical studies.
Collapse
Affiliation(s)
- Nadeem Al-Adli
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA.
| | - Omar S Akbik
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Benjamin Rail
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Eric Montgomery
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Christie Caldwell
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Umaru Barrie
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shaleen Vira
- Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Mazin Al Tamimi
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Carlos A Bagley
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Orthopedic Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Salah G Aoun
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
130
|
Luger S, Jæger HS, Dixon J, Bohmann FO, Schaefer J, Richieri SP, Larsen K, Hov MR, Bache KG, Foerch C. Diagnostic Accuracy of Glial Fibrillary Acidic Protein and Ubiquitin Carboxy-Terminal Hydrolase-L1 Serum Concentrations for Differentiating Acute Intracerebral Hemorrhage from Ischemic Stroke. Neurocrit Care 2021; 33:39-48. [PMID: 32096121 DOI: 10.1007/s12028-020-00931-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Biomarkers indicative of intracerebral hemorrhage (ICH) may help triage acute stroke patients in the pre-hospital phase. We hypothesized that serum concentration of glial fibrillary acidic protein (GFAP) in combination with ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1), measured by a rapid bio-assay, could be used to distinguish ICH from ischemic stroke. METHODS This prospective two-center study recruited patients with a clinical diagnosis of acute stroke both in the pre-hospital phase and at hospital admission (within 4 and 6 h after symptom onset, respectively). Blood samples were analyzed for concentrations of GFAP and UCH-L1 using ELISA techniques. The reference standard was the diagnosis of ICH, ischemic stroke, or stroke mimicking condition achieved after clinical workup including brain imaging. RESULTS A total of 251 patients were included (mean age [± SD] 72 ± 15 years; 5 ICH, 23 ischemic strokes and 14 stroke mimics in the pre-hospital part; and 59 ICH, 148 ischemic strokes and 2 stroke mimics in the in-hospital part). Mean delay (± SD) from symptom onset to blood withdrawal was 130 ± 79 min for the pre-hospital patients and 136 ± 86 min for the in-hospital patients. Both GFAP and UCH-L1 serum concentrations were higher in patients having ICH as compared to other diagnoses (GFAP: median 330 ng/L [interquartile range 64-7060, range 8-56,100] vs. 27.5 ng/L [14-57.25, 0-781], p < 0.001; UCH-L1: 401 ng/L [265-764, 133-1812] vs. 338 ng/L [213-549.5, 0-2950], p = 0.025). Area-under-the-curve values were 0.866 (95% CI 0.809-0.924, p < 0.001) for GFAP, and 0.590 (0.511-0.670, p = 0.033) for UCH-L1. Regarding overall diagnostic accuracy, UCH-L1 did not add significantly to the performance of GFAP. CONCLUSIONS GFAP may differentiate ICH from ischemic stroke and stroke mimics. A point-of-care test to distinguish between ischemic and hemorrhagic strokes might facilitate triage to different treatment pathways or locations, or be used to select patients for trials of ultra-early interventions.
Collapse
Affiliation(s)
- Sebastian Luger
- Department of Neurology, Goethe-University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.
| | - Henriette S Jæger
- The Norwegian Air Ambulance Foundation, Oslo, Norway.,Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Joanna Dixon
- Department of Neurology, Goethe-University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Ferdinand O Bohmann
- Department of Neurology, Goethe-University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - JanHendrik Schaefer
- Department of Neurology, Goethe-University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | | | - Karianne Larsen
- The Norwegian Air Ambulance Foundation, Oslo, Norway.,Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maren R Hov
- The Norwegian Air Ambulance Foundation, Oslo, Norway.,Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Kristi G Bache
- The Norwegian Air Ambulance Foundation, Oslo, Norway.,Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Christian Foerch
- Department of Neurology, Goethe-University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | | |
Collapse
|
131
|
Zeng S, Huang Y, Zhong T, Huang T, Dong X, Zhu H, Ouyang F. The expression and clinical value of ubiquitin carboxyl-terminal hydrolase L1 in the blood of neonates with hypoxic ischemic encephalopathy. Transl Pediatr 2021; 10:2063-2068. [PMID: 34584876 PMCID: PMC8429861 DOI: 10.21037/tp-21-327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/01/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Neonatal hypoxic ischemic encephalopathy (HIE) can result in mental retardation due to the associated brain damage. Early identification of brain injury is vital for the prevention and treatment of brain damage in neonates. This study investigated the expression levels of serum ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) in neonates with HIE and its correlation with brain damage. METHODS From January 2019 to December 2020, 56 cases of neonatal patients with HIE were selected as the observation group, and 60 cases of healthy newborns delivered in our hospital during the same period were selected as the control group. Blood samples were obtained from neonates and the serum expression of UCH-L1 was detected by enzyme-linked immunosorbent assays (ELISAs). The relationship between UCH-L1 and neonatal prognosis and clinical features was analyzed. RESULTS Compared with the healthy control group, the serum levels of UCH-L1 in the observation group was significantly higher (2.28±1.21 vs. 0.81±0.39 ng/mL, P=0.000). Furthermore, at 6 hours after birth, the serum levels of UCH-L1 were significantly higher in neonates with moderate to severe HIE compared to patients with mild HIE (2.92±0.80 and 1.76±0.72 ng/mL, respectively, P=0.000). Pearson correlation analysis showed that the expression levels of UCH-L1 were negatively correlated with the development quotient (DQ), intelligence index (MI), and the Neonatal Behavioral Neurological Assessment (NBNA) score of HIE newborns (P<0.05). CONCLUSIONS The level of UCH-L1 protein expression is elevated in the serum of newborns with HIE, and this may have a certain clinical value in predicting the intelligence of children.
Collapse
Affiliation(s)
- Shuying Zeng
- Department of Pediatrics, Ganzhou People's Hospital, Ganzhou, China
| | - Yubo Huang
- Department of Pediatrics, Ganzhou People's Hospital, Ganzhou, China
| | - Tao Zhong
- Department of Pediatrics, Ganzhou People's Hospital, Ganzhou, China
| | - Tao Huang
- Department of Pediatrics, Ganzhou People's Hospital, Ganzhou, China
| | - Xianyan Dong
- Department of Pediatrics, Ganzhou People's Hospital, Ganzhou, China
| | - Huadong Zhu
- Department of Pediatrics, Ganzhou People's Hospital, Ganzhou, China
| | - Fulian Ouyang
- Department of Pediatrics, Ganzhou People's Hospital, Ganzhou, China
| |
Collapse
|
132
|
Stukas S, Gill J, Cooper J, Belanger L, Ritchie L, Tsang A, Dong K, Streijger F, Street J, Paquette S, Ailon T, Dea N, Charest-Morin R, Fisher CG, Dhall S, Mac-Thiong JM, Wilson JR, Bailey C, Christie S, Dvorak MF, Wellington C, Kwon BK. Characterization of Cerebrospinal Fluid Ubiquitin C-Terminal Hydrolase L1 as a Biomarker of Human Acute Traumatic Spinal Cord Injury. J Neurotrauma 2021; 38:2055-2064. [PMID: 33504255 DOI: 10.1089/neu.2020.7352] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A major obstacle for translational research in acute spinal cord injury (SCI) is the lack of biomarkers that can objectively stratify injury severity and predict outcome. Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a neuron-specific enzyme that shows promise as a diagnostic biomarker in traumatic brain injury (TBI), but has not been studied in SCI. In this study, cerebrospinal fluid (CSF) and serum samples were collected over the first 72-96 h post-injury from 32 acute SCI patients who were followed prospectively to determine neurological outcomes at 6 months post-injury. UCH-L1 concentration was measured using the Quanterix Simoa platform (Quanterix, Billerica, MA) and correlated to injury severity, time, and neurological recovery. We found that CSF UCH-L1 was significantly elevated by 10- to 100-fold over laminectomy controls in an injury severity- and time-dependent manner. Twenty-four-hour post-injury CSF UCH-L1 concentrations distinguished between American Spinal Injury Association Impairment Scale (AIS) A and AIS B, and AIS A and AIS C patients in the acute setting, and predicted who would remain "motor complete" (AIS A/B) at 6 months with a sensitivity of 100% and a specificity of 86%. AIS A patients who did not improve their AIS grade at 6 months post-injury were characterized by sustained elevations in CSF UCH-L1 up to 96 h. Similarly, the failure to gain >8 points on the total motor score at 6 months post-injury was associated with higher 24-h CSF UCH-L1. Unfortunately, serum UCH-L1 levels were not informative about injury severity or outcome. In conclusion, CSF UCH-L1 in acute SCI shows promise as a biomarker to reflect injury severity and predict outcome.
Collapse
Affiliation(s)
- Sophie Stukas
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jasmine Gill
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer Cooper
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lise Belanger
- Vancouver Spine Research Program, Vancouver General Hospital, Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leanna Ritchie
- Vancouver Spine Research Program, Vancouver General Hospital, Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Angela Tsang
- Vancouver Spine Research Program, Vancouver General Hospital, Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Dong
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - John Street
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Spine Surgery Institute, Department of Orthopaedics, Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott Paquette
- Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tamir Ailon
- Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicolas Dea
- Division of Neurosurgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Raphaële Charest-Morin
- Vancouver Spine Surgery Institute, Department of Orthopaedics, Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charles G Fisher
- Vancouver Spine Surgery Institute, Department of Orthopaedics, Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sanjay Dhall
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Jean-Marc Mac-Thiong
- Department of Surgery, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
- Department of Surgery, Chu Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Jefferson R Wilson
- Division of Neurosurgery, University of Toronto, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Christopher Bailey
- Division of Orthopaedic Surgery, Schulich Medicine & Dentistry, Victoria Hospital, London, Ontario, Canada
| | - Sean Christie
- Division of Neurosurgery, Halifax Infirmary, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Marcel F Dvorak
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Spine Surgery Institute, Department of Orthopaedics, Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cheryl Wellington
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Spine Surgery Institute, Department of Orthopaedics, Blusson Spinal Cord Center, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
133
|
Wang Y, Wang J, Zuo YC, Jiang J, Tu T, Yan XX, Liu F. Elevation of CSF Sortilin Following Subarachnoid Hemorrhage in Patients and Experimental Model Rats. Neuroscience 2021; 470:23-36. [PMID: 34273414 DOI: 10.1016/j.neuroscience.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Subarachnoid hemorrhage (SAH) can cause acute neuronal injury and chronic neurocognitive deficits; biomarkers reflecting its associated neuronal injury are of potential prognostic value. Sortilin, a member of the vacuolar protein sorting 10p (Vps10p) family, is enriched in neurons and is likely involved in neurodegenerative diseases. Here, we explored sortilin in the cerebrospinal fluid (CSF) as a potential biomarker for early neuronal injury after SAH. Sortilin levels in the CSF of SAH patients (n = 11) and controls (n = 6) were analyzed by immunoblot. SAH rats surviving 3-72 h (h) were evaluated neurologically, with their brain and CSF samples examined histologically and biochemically. Sortilin protein ~100 kDa was detected in the CSF from SAH patients only, with its levels correlated to Hunt-Hess scale. Rats in the SAH groups showed poorer Garcia score and beam balancing capability than sham controls. Sortilin ~100 kDa was detectable in the CSF of the SAH, but not sham, animals. Levels of sortilin ~100 kDa and fragments ~40 kDa in cortical lysates were elevated in the SAH relative to control rats. Levels of cortical glial fibrillary acidic protein (GFAP) were also elevated in the SAH rats. In immunohistochemistry, the pattern of sortilin labeling in the brain was largely comparable between the SAH and control rats, whereas an increased astrocytic GFAP immunolabeling was evident in the former. Together, these results suggest that SAH can cause an early and remarkable rise of sortilin products in CSF, likely reflecting neuronal change. Sortilin could be further explored as a potential biomarker in some brain disorders.
Collapse
Affiliation(s)
- Yiping Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Jikai Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yu-Chun Zuo
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, Hunan 410008, China
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Tian Tu
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China.
| | - Fei Liu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| |
Collapse
|
134
|
Korley F, Pauls Q, Yeatts SD, Jones CMC, Corbett-Valade E, Silbergleit R, Frankel M, Barsan W, Cahill ND, Bazarian JJ, Wright DW. Progesterone Treatment Does Not Decrease Serum Levels of Biomarkers of Glial and Neuronal Cell Injury in Moderate and Severe Traumatic Brain Injury Subjects: A Secondary Analysis of the Progesterone for Traumatic Brain Injury, Experimental Clinical Treatment (ProTECT) III Trial. J Neurotrauma 2021; 38:1953-1960. [PMID: 33319651 PMCID: PMC8260894 DOI: 10.1089/neu.2020.7072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Early treatment of moderate/severe traumatic brain injury (TBI) with progesterone does not improve clinical outcomes. This is in contrast with findings from pre-clinical studies of progesterone in TBI. To understand the reasons for the negative clinical trial, we investigated whether progesterone treatment has the desired biological effect of decreasing brain cell death. We quantified brain cell death using serum levels of biomarkers of glial and neuronal cell death (glial fibrillary acidic protein [GFAP], ubiquitin carboxy-terminal hydrolase-L1 [UCH-L1], S100 calcium-binding protein B [S100B], and Alpha II Spectrin Breakdown Product 150 [SBDP]) in the Biomarkers of Injury and Outcome-Progesterone for Traumatic Brain Injury, Experimental Clinical Treatment (BIO-ProTECT) study. Serum levels of GFAP, UCHL1, S100B, and SBDP were measured at baseline (≤4 h post-injury and before administration of study drug) and at 24 and 48 h post-injury. Serum progesterone levels were measured at 24 and 48 h post-injury. The primary outcome of ProTECT was based on the Glasgow Outcome Scale-Extended assessed at 6 months post-randomization. We found that at baseline, there were no differences in biomarker levels between subjects randomized to progesterone treatment and those randomized to placebo (p > 0.10). Similarly, at 24 and 48 h post-injury, there were no differences in biomarker levels in the progesterone versus placebo groups (p > 0.15). There was no statistically significant correlation between serum progesterone concentrations and biomarker values obtained at 24 and 48 h. When examined as a continuous variable, baseline biomarker levels did not modify the association between progesterone treatment and neurological outcome (p of interaction term >0.39 for all biomarkers). We conclude that progesterone treatment does not decrease levels of biomarkers of glial and neuronal cell death during the first 48 h post-injury.
Collapse
Affiliation(s)
- Frederick Korley
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Qi Pauls
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sharon D. Yeatts
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Courtney Marie Cora Jones
- Departments of Emergency Medicine, Neurosurgery, and Physical Medicine and Rehabilitation, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
- Public Health Sciences, Neurosurgery, and Physical Medicine and Rehabilitation, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Emily Corbett-Valade
- Departments of Emergency Medicine, Neurosurgery, and Physical Medicine and Rehabilitation, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Robert Silbergleit
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael Frankel
- Department of Neurology, Grady Memorial Hospital, Marcus Stroke and Neuroscience Center, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - William Barsan
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nathan D. Cahill
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York, USA
| | - Jeffrey J. Bazarian
- Departments of Emergency Medicine, Neurosurgery, and Physical Medicine and Rehabilitation, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
- Public Health Sciences, Neurosurgery, and Physical Medicine and Rehabilitation, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
- Departments of Neurology, Neurosurgery, and Physical Medicine and Rehabilitation, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - David W. Wright
- Department of Emergency Medicine, Grady Memorial Hospital, Marcus Stroke and Neuroscience Center, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
135
|
Kim H, Lee EJ, Kim S, Choi LK, Kim HJ, Kim HW, Chung K, Seo D, Moon S, Kim KK, Lim YM. Longitudinal follow-up of serum biomarkers in patients with neuromyelitis optica spectrum disorder. Mult Scler 2021; 28:512-521. [PMID: 34212756 DOI: 10.1177/13524585211024978] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Recently, several serum biomarkers have been proposed in Neuromyelitis Optica Spectrum Disorders (NMOSD) to monitor disease activity. OBJECTIVE The objective of the study is to evaluate the longitudinal clinical value of serum biomarkers in patients with NMOSD. METHODS We prospectively recruited consecutive NMOSD patients with anti-aquaporin-4 antibody and obtained serum samples at enrollment, after 6-12 months of follow-up (main period), and at attacks. Using single-molecule array assays, we evaluated longitudinal changes of serum neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and GFAP/NfL levels. RESULTS Overall, 64 patients (58 women) were enrolled (age: 51 years, disease duration: 6.7 years) and 133 samples were obtained. Among patients who did not develop new attacks during the main period (n = 62), serum levels of NfL, GFAP, and GFAP/NfL were significantly decreased over time in patients with attacks (<2 months) at enrollment (n = 14 (23%)), whereas serum NfL and GFAP levels gradually increased in the others (n = 48 (77%)). During the study, five (8%) patients developed new attacks; only serum GFAP levels increased consistently upon these events compared with baseline levels. To differentiate attacks from remissions, serum GFAP levels showed the largest area under the receiver operating characteristic curve (0.876, 95% confidence interval: 0.801-0.951). CONCLUSION Among NfL, GFAP, and GFAP/NfL, serum GFAP might be the most appropriate for monitoring NMOSD longitudinally, which warrants future confirming studies.
Collapse
Affiliation(s)
- Hyunjin Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Seoul, South Korea
| | - Seungmi Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Seoul, South Korea
| | - Lyn-Kyung Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyun-Ji Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Seoul, South Korea
| | - Hye Weon Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kyuyoon Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dayoung Seo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seongshin Moon
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kwang-Kuk Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young-Min Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
136
|
Jiang L, Wu Y, Zhang Y, Lu D, Yan K, Gao J. Effects of intraoperative lung-protective ventilation on clinical outcomes in patients with traumatic brain injury: a randomized controlled trial. BMC Anesthesiol 2021; 21:182. [PMID: 34182951 PMCID: PMC8236740 DOI: 10.1186/s12871-021-01402-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/15/2021] [Indexed: 11/11/2022] Open
Abstract
Background Secondary lung injury is the most common non-neurological complication after traumatic brain injury (TBI). Lung-protective ventilation (LPV) has been proven to improve perioperative oxygenation and lung compliance in some critical patients. This study aimed to investigate whether intraoperative LPV could improve respiratory function and prevent postoperative complications in emergency TBI patients. Methods Ninety TBI patients were randomly allocated to three groups (1:1:1): Group A, conventional mechanical ventilation [tidal volume (VT) 10 mL/kg only]; Group B, small VT (8 mL/kg) + positive end-expiratory pressure (PEEP) (5 cmH2O); and Group C, small VT (8 mL/kg) + PEEP (5 cmH2O) + recruitment maneuvers (RMs). The primary outcome was the incidence of total postoperative pulmonary complications; Secondary outcomes were intraoperative respiratory mechanics parameters and serum levels of brain injury markers, and the incidence of each postoperative pulmonary and neurological complication. Results Seventy-nine patients completed the final analysis. The intraoperative PaO2 and dynamic pulmonary compliance of Groups B and C were higher than those of Group A (P = 0.028; P = 0.005), while their airway peak pressure and plateau pressure were lower than those of group A (P = 0.004; P = 0.005). Compared to Group A, Groups B and C had decreased 30-day postoperative incidences of total pulmonary complications, hypoxemia, pulmonary infection, and atelectasis (84.0 % vs. 57.1 % vs. 53.8 %, P = 0.047; 52.0 % vs. 14.3 % vs. 19.2 %, P = 0.005; 84.0 % vs. 50.0 % vs. 42.3 %, P = 0.006; 24.0 % vs. 3.6 % vs. 0.0 %, P = 0.004). Moreover, intraoperative hypotension was more frequent in Group C than in Groups A and B (P = 0.007). At the end of surgery, the serum levels of glial fibrillary acidic protein and ubiquitin carboxyl-terminal hydrolase isozyme L1 in Group B were lower than those in Groups A and C (P = 0.002; P < 0.001). The postoperative incidences of neurological complications among the three groups were comparable. Conclusions Continuous intraoperative administration of small VT + PEEP is beneficial to TBI patients. Additional RMs can be performed with caution to prevent disturbances in the stability of cerebral hemodynamics. Trial registration Chinese Clinical Trial Registry (ChiCTR2000038314), retrospectively registered on September 17, 2020.
Collapse
Affiliation(s)
- Lulu Jiang
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, 139# Renmin Central Road, 410011, Changsha, China.,Department of Anesthesiology, Northern Jiangsu People's Hospital, Clinical Medical School, Yangzhou University, 98# Nantong West Road, 225001, Yangzhou, China
| | - Yujuan Wu
- Department of Anesthesiology, Xiangtan Central Hospital, 120# Heping Road, 411100, Xiangtan, China
| | - Yang Zhang
- Department of Anesthesiology, the Second Xiangya Hospital, Central South University, 139# Renmin Central Road, 410011, Changsha, China.,Department of Anesthesiology, Northern Jiangsu People's Hospital, Clinical Medical School, Yangzhou University, 98# Nantong West Road, 225001, Yangzhou, China
| | - Dahao Lu
- Department of Anesthesiology, Northern Jiangsu People's Hospital, Clinical Medical School, Yangzhou University, 98# Nantong West Road, 225001, Yangzhou, China
| | - Keshi Yan
- Department of Anesthesiology, Northern Jiangsu People's Hospital, Clinical Medical School, Yangzhou University, 98# Nantong West Road, 225001, Yangzhou, China
| | - Ju Gao
- Department of Anesthesiology, Northern Jiangsu People's Hospital, Clinical Medical School, Yangzhou University, 98# Nantong West Road, 225001, Yangzhou, China.
| |
Collapse
|
137
|
Zwirner J, Lier J, Franke H, Hammer N, Matschke J, Trautz F, Tse R, Ondruschka B. GFAP positivity in neurons following traumatic brain injuries. Int J Legal Med 2021; 135:2323-2333. [PMID: 34114049 PMCID: PMC8523453 DOI: 10.1007/s00414-021-02568-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/10/2021] [Indexed: 11/29/2022]
Abstract
Glial fibrillary acidic protein (GFAP) is a well-established astrocytic biomarker for the diagnosis, monitoring and outcome prediction of traumatic brain injury (TBI). Few studies stated an accumulation of neuronal GFAP that was observed in various brain pathologies, including traumatic brain injuries. As the neuronal immunopositivity for GFAP in Alzheimer patients was shown to cross-react with non-GFAP epitopes, the neuronal immunopositivity for GFAP in TBI patients should be challenged. In this study, cerebral and cerebellar tissues of 52 TBI fatalities and 17 controls were screened for immunopositivity for GFAP in neurons by means of immunohistochemistry and immunofluorescence. The results revealed that neuronal immunopositivity for GFAP is most likely a staining artefact as negative controls also revealed neuronal GFAP staining. However, the phenomenon was twice as frequent for TBI fatalities compared to non-TBI control cases (12 vs. 6%). Neuronal GFAP staining was observed in the pericontusional zone and the ipsilateral hippocampus, but was absent in the contralateral cortex of TBI cases. Immunopositivity for GFAP was significantly correlated with the survival time (r = 0.306, P = 0.015), but no correlations were found with age at death, sex nor the post-mortem interval in TBI fatalities. This study provides evidence that the TBI-associated neuronal immunopositivity for GFAP is indeed a staining artefact. However, an absence post-traumatic neuronal GFAP cannot readily be assumed. Regardless of the particular mechanism, this study revealed that the artefact/potential neuronal immunopositivity for GFAP is a global, rather than a regional brain phenomenon and might be useful for minimum TBI survival time determinations, if certain exclusion criteria are strictly respected.
Collapse
Affiliation(s)
- Johann Zwirner
- Department of Anatomy, University of Otago, Dunedin, New Zealand. .,Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Institute of Legal Medicine, University of Leipzig, Leipzig, Germany.
| | - Julia Lier
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Niels Hammer
- Institute of Macroscopic and Clinical Anatomy, University of Graz, Graz, Austria.,Department of Trauma, Orthopedic and Plastic Surgery, University Hospital of Leipzig, Leipzig, Germany.,Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Trautz
- Institute of Legal Medicine, University of Leipzig, Leipzig, Germany
| | - Rexon Tse
- Department of Forensic Pathology, LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
138
|
Scrimgeour AG, Condlin ML, Loban A, DeMar JC. Omega-3 Fatty Acids and Vitamin D Decrease Plasma T-Tau, GFAP, and UCH-L1 in Experimental Traumatic Brain Injury. Front Nutr 2021; 8:685220. [PMID: 34150829 PMCID: PMC8211733 DOI: 10.3389/fnut.2021.685220] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) results in neuronal, axonal and glial damage. Interventions targeting neuroinflammation to enhance recovery from TBI are needed. Exercise is known to improve cognitive function in TBI patients. Omega-3 fatty acids and vitamin D reportedly reduce inflammation, and in combination, might improve TBI outcomes. This study examined how an anti-inflammatory diet affected plasma TBI biomarkers, voluntary exercise and behaviors following exposure to mild TBI (mTBI). Adult, male rats were individually housed in cages fitted with running wheels and daily running distance was recorded throughout the study. A modified weight drop method induced mTBI, and during 30 days post-injury, rats were fed diets supplemented with omega-3 fatty acids and vitamin D3 (AIDM diet), or non-supplemented AIN-76A diets (CON diet). Behavioral tests were periodically conducted to assess functional deficits. Plasma levels of Total tau (T-tau), glial fibrillary acidic protein (GFAP), ubiquitin c-terminal hydrolase L1 (UCH-L1) and neurofilament light chain (NF-L) were measured at 48 h, 14 days, and 30 days post-injury. Fatty acid composition of food, plasma, and brain tissues was determined. In rats exposed to mTBI, NF-L levels were significantly elevated at 48 h post-injury (P < 0.005), and decreased to levels seen in uninjured rats by 14 days post-injury. T-tau, GFAP, and UCH-L1 plasma levels did not change at 48 h or 14 days post-injury. However, at 30 days post-injury, T-tau, GFAP and UCH-L1 all significantly increased in rats exposed to mTBI and fed CON diets (P < 0.005), but not in rats fed AIDM diets. Behavioral tests conducted post-injury showed that exercise counteracted cognitive deficits associated with mTBI. The AIDM diets significantly increased docosahexaenoic acid levels in plasma and brain tissue (P < 0.05), and in serum levels of vitamin D (P < 0.05). The temporal response of the four injury biomarkers examined is consistent with studies by others demonstrating acute and chronic neural tissue damage following exposure to TBI. The anti-inflammatory diet significantly altered the temporal profiles of plasma T-tau, GFAP, and UCH-L1 following mTBI. Voluntary exercise protected against mTBI-induced cognitive deficits, but had no impact on plasma levels of neurotrauma biomarkers. Thus, the prophylactic effect of exercise, when combined with an anti-inflammatory diet, may facilitate recovery in patients with mTBI.
Collapse
Affiliation(s)
- Angus G Scrimgeour
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Michelle L Condlin
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - Andrei Loban
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States
| | - James C DeMar
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience Research, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| |
Collapse
|
139
|
Diagnostic accuracy of prehospital serum S100B and GFAP in patients with mild traumatic brain injury: a prospective observational multicenter cohort study - "the PreTBI I study". Scand J Trauma Resusc Emerg Med 2021; 29:75. [PMID: 34078435 PMCID: PMC8173808 DOI: 10.1186/s13049-021-00891-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/18/2021] [Indexed: 12/02/2022] Open
Abstract
Background The biomarker serum S100 calcium-binding protein B (S100B) is used in in-hospital triage of adults with mild traumatic brain injury to rule out intracranial lesions. The biomarker glial fibrillary acidic protein (GFAP) is suggested as a potential diagnostic biomarker for traumatic brain injury. The aim of this study was to investigate the diagnostic accuracy of early prehospital S100B and GFAP measurements to rule out intracranial lesions in adult patients with mild traumatic brain injury. Methods Prehospital and in-hospital blood samples were drawn from 566 adult patients with mild traumatic brain injury (Glasgow Coma Scale Score 14–15). The index test was S100B and GFAP concentrations. The reference standard was endpoint adjudication of the traumatic intracranial lesion based on medical records. The primary outcome was prehospital sensitivity of S100B in relation to the traumatic intracranial lesion. Results Traumatic intracranial lesions were found in 32/566 (5.6%) patients. The sensitivity of S100B > 0.10 μg/L was 100% (95%CI: 89.1;100.0) in prehospital samples and 100% (95% CI 89.1;100.0) in in-hospital samples. The specificity was 15.4% (95%CI: 12.4;18.7) in prehospital samples and 31.5% (27.5;35.6) in in-hospital samples. GFAP was only detected in less than 2% of cases with the assay used. Conclusion Early prehospital and in-hospital S100B levels < 0.10 μg/L safely rules out traumatic intracranial lesions in adult patients with mild traumatic brain injury, but specificity is lower with early prehospital sampling than with in-hospital sampling. The very limited cases with values detectable with our assay do not allow conclusions to be draw regarding the diagnostic accuracy of GFAP. Trial registration ClinicalTrials.gov identifier: NCT02867137. Supplementary Information The online version contains supplementary material available at 10.1186/s13049-021-00891-5.
Collapse
|
140
|
Hiskens MI, Schneiders AG, Vella RK, Fenning AS. Repetitive mild traumatic brain injury affects inflammation and excitotoxic mRNA expression at acute and chronic time-points. PLoS One 2021; 16:e0251315. [PMID: 33961674 PMCID: PMC8104440 DOI: 10.1371/journal.pone.0251315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/24/2021] [Indexed: 12/30/2022] Open
Abstract
The cumulative effect of mild traumatic brain injuries (mTBI) can result in chronic neurological damage, however the molecular mechanisms underpinning this detriment require further investigation. A closed head weight drop model that replicates the biomechanics and head acceleration forces of human mTBI was used to provide an exploration of the acute and chronic outcomes following single and repeated impacts. Adult male C57BL/6J mice were randomly assigned into one of four impact groups (control; one, five and 15 impacts) which were delivered over 23 days. Outcomes were assessed 48 hours and 3 months following the final mTBI. Hippocampal spatial learning and memory assessment revealed impaired performance in the 15-impact group compared with control in the acute phase that persisted at chronic measurement. mRNA analyses were performed on brain tissue samples of the cortex and hippocampus using quantitative RT-PCR. Eight genes were assessed, namely MAPT, GFAP, AIF1, GRIA1, CCL11, TARDBP, TNF, and NEFL, with expression changes observed based on location and follow-up duration. The cortex and hippocampus showed vulnerability to insult, displaying upregulation of key excitotoxicity and inflammation genes. Serum samples showed no difference between groups for proteins phosphorylated tau and GFAP. These data suggest that the cumulative effect of the impacts was sufficient to induce mTBI pathophysiology and clinical features. The genes investigated in this study provide opportunity for further investigation of mTBI-related neuropathology and may provide targets in the development of therapies that help mitigate the effects of mTBI.
Collapse
Affiliation(s)
- Matthew I. Hiskens
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
- Mackay Institute of Research and Innovation, Mackay Hospital and Health Service, Mackay, Queensland, Australia
| | - Anthony G. Schneiders
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| | - Rebecca K. Vella
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| | - Andrew S. Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| |
Collapse
|
141
|
Schindler P, Grittner U, Oechtering J, Leppert D, Siebert N, Duchow AS, Oertel FC, Asseyer S, Kuchling J, Zimmermann HG, Brandt AU, Benkert P, Reindl M, Jarius S, Paul F, Bellmann-Strobl J, Kuhle J, Ruprecht K. Serum GFAP and NfL as disease severity and prognostic biomarkers in patients with aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder. J Neuroinflammation 2021; 18:105. [PMID: 33933106 PMCID: PMC8088712 DOI: 10.1186/s12974-021-02138-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/24/2021] [Indexed: 11/25/2022] Open
Abstract
Background Neuromyelitis optica spectrum disorder (NMOSD) is a frequently disabling neuroinflammatory syndrome with a relapsing course. Blood-based disease severity and prognostic biomarkers for NMOSD are a yet unmet clinical need. Here, we evaluated serum glial fibrillary acidic protein (sGFAP) and neurofilament light (sNfL) as disease severity and prognostic biomarkers in patients with aquaporin-4 immunoglobulin (Ig)G positive (AQP4-IgG+) NMOSD. Methods sGFAP and sNfL were determined by single-molecule array technology in a prospective cohort of 33 AQP4-IgG+ patients with NMOSD, 32 of which were in clinical remission at study baseline. Sixteen myelin oligodendrocyte glycoprotein IgG-positive (MOG-IgG+) patients and 38 healthy persons were included as controls. Attacks were recorded in all AQP4-IgG+ patients over a median observation period of 4.25 years. Results In patients with AQP4-IgG+ NMOSD, median sGFAP (109.2 pg/ml) was non-significantly higher than in MOG-IgG+ patients (81.1 pg/ml; p = 0.83) and healthy controls (67.7 pg/ml; p = 0.07); sNfL did not substantially differ between groups. Yet, in AQP4-IgG+, but not MOG-IgG+ patients, higher sGFAP was associated with worse clinical disability scores, including the Expanded Disability Status Scale (EDSS, standardized effect size = 1.30, p = 0.007) and Multiple Sclerosis Functional Composite (MSFC, standardized effect size = − 1.28, p = 0.01). While in AQP4-IgG+, but not MOG-IgG+ patients, baseline sGFAP and sNfL were positively associated (standardized effect size = 2.24, p = 0.001), higher sNfL was only non-significantly associated with worse EDSS (standardized effect size = 1.09, p = 0.15) and MSFC (standardized effect size = − 1.75, p = 0.06) in patients with AQP4-IgG+ NMOSD. Patients with AQP4-IgG+ NMOSD with sGFAP > 90 pg/ml at baseline had a shorter time to a future attack than those with sGFAP ≤ 90 pg/ml (adjusted hazard ratio [95% confidence interval] = 11.6 [1.3–105.6], p = 0.03). In contrast, baseline sNfL levels above the 75th age adjusted percentile were not associated with a shorter time to a future attack in patients with AQP4-IgG+ NMOSD. Conclusion These findings suggest a potential role for sGFAP as biomarker for disease severity and future disease activity in patients with AQP4-IgG+ NMOSD in phases of clinical remission.
Collapse
Affiliation(s)
- Patrick Schindler
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrike Grittner
- Institute for Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Johanna Oechtering
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - David Leppert
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nadja Siebert
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ankelien S Duchow
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frederike C Oertel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Susanna Asseyer
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Joseph Kuchling
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hanna G Zimmermann
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexander U Brandt
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, University of California, Irvine, CA, USA
| | - Pascal Benkert
- Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Friedemann Paul
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Judith Bellmann-Strobl
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
142
|
Reece JT, Milone M, Wang P, Herman D, Petrov D, Shaw LM. A Biomarker for Concussion: The Good, the Bad, and the Unknown. J Appl Lab Med 2021; 5:170-182. [PMID: 32445345 DOI: 10.1093/jalm.2019.031187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/28/2019] [Indexed: 11/14/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a significant cause of morbidity, mortality, and disability in the US, with >2.8 million patients presenting to the emergency department (ED) annually. However, the diagnosis of TBI is challenging and presents a number of difficulties, particularly at the mildest end of the spectrum: concussion. A number of groups have researched biomarkers to aid in the evaluation of TBI, and most recently in 2018 the Food and Drug Administration approved a new blood-based immunoassay biomarker using ubiquitin carboxyl hydrolase L1 and glial fibrillary acidic protein to aid in head computed tomography (CT) triage. CONTENT This review clarifies the practical challenges in assessing and implementing a new blood biomarker. It then examines the clinical context and need, as well as the evidence used to validate this new immunoassay. SUMMARY Concussion is a multifaceted diagnosis with a need for biomarkers to assist in diagnostic and prognostic assessment. Recent articles in the lay press have revealed misunderstanding about the function of this new test, expressing hopes that this biomarker serves patients at the mildest end of the spectrum and is useful for athletes and children. None of these assumptions are correct, as this biomarker has been evaluated in patients only at the moderate end of the spectrum and has been validated only in adults presenting to the ED who have already been triaged to receive head CT, not in athletes or children. The next steps for this assay should consider clinical work flow and clarifying its intended use, including integration with existing triage methods, and validating the assay for a broader population.
Collapse
Affiliation(s)
- Jenna T Reece
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael Milone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ping Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel Herman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dmitriy Petrov
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
143
|
Clarke GJB, Skandsen T, Zetterberg H, Einarsen CE, Feyling C, Follestad T, Vik A, Blennow K, Håberg AK. One-Year Prospective Study of Plasma Biomarkers From CNS in Patients With Mild Traumatic Brain Injury. Front Neurol 2021; 12:643743. [PMID: 33967940 PMCID: PMC8097004 DOI: 10.3389/fneur.2021.643743] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
Objective: To investigate the longitudinal evolution of three blood biomarkers: neurofilament light (NFL), glial fibrillary acidic protein (GFAP) and tau, in out-patients and hospitalized patients with mild traumatic brain injury (mTBI) compared to controls, along with their associations—in patients—with clinical injury characteristics and demographic variables, and ability to discriminate patients with mTBI from controls. Methods: A longitudinal observation study including 207 patients with mTBI, 84 age and sex-matched community controls (CCs) and 52 trauma controls (TCs). Blood samples were collected at 5 timepoints: acute (<24 h), 72 h (24–72 h post-injury), 2 weeks, 3 and 12 months. Injury-related, clinical and demographic variables were obtained at inclusion and brain MRI within 72 h. Results: Plasma GFAP and tau were most elevated acutely and NFL at 2 weeks and 3 months. The group of patients with mTBI and concurrent other somatic injuries (mTBI+) had the highest elevation in all biomarkers across time points, and were more likely to be victims of traffic accidents and violence. All biomarkers were positively associated with traumatic intracranial findings on MRI obtained within 72 h. Glial fibrillary acidic protein and NFL levels were associated with Glasgow Coma Scale (GCS) score and presence of other somatic injuries. Acute GFAP concentrations showed the highest discriminability between patients and controls with an Area Under the Curve (AUC) of 0.92. Acute tau and 2-week NFL concentrations showed moderate discriminability (AUC = 0.70 and AUC = 0.75, respectively). Tau showed high discriminability between mTBI+ and TCs (AUC = 0.80). Conclusions: The association of plasma NFL with traumatic intracranial MRI findings, together with its later peak, could reflect ongoing secondary injury or repair mechanisms, allowing for a protracted diagnostic time window. Patients experiencing both mTBI and other injuries appear to be a subgroup with greater neural injury, differing from both the mTBI without other injuries and from both control groups. Acute GFAP concentrations showed the highest discriminability between patients and controls, were highly associated with intracranial traumatic injury, and showed the largest elevations compared to controls at the acute timepoint, suggesting it to be the most clinically useful plasma biomarker of primary CNS injury in mTBI.
Collapse
Affiliation(s)
- Gerard Janez Brett Clarke
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Toril Skandsen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, United Kingdom.,UK Dementia Research Institute at University College London, London, United Kingdom
| | - Cathrine Elisabeth Einarsen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Casper Feyling
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Turid Follestad
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anne Vik
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Asta Kristine Håberg
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| |
Collapse
|
144
|
Zyblewski SC, Martin RH, Shipes VB, Hamlin-Smith K, Atz AM, Bradley SM, Kavarana MN, Mahle WT, Everett AD, Graham EM. Intraoperative methylprednisolone and neurodevelopmental outcomes in infants after cardiac surgery. Ann Thorac Surg 2021; 113:2079-2084. [PMID: 33864754 DOI: 10.1016/j.athoracsur.2021.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/03/2021] [Accepted: 04/05/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Neurodevelopmental impairment is a significant consequence for survivors of surgery for critical congenital heart disease. This study sought to determine if intraoperative methylprednisolone during neonatal cardiac surgery is associated with neurodevelopmental outcomes at 12 months of age and to identify early prognostic variables associated with neurodevelopmental outcomes. METHODS A planned secondary analysis of a two-center, double-blind, randomized, placebo-controlled trial of intraoperative methylprednisolone in neonates undergoing cardiac surgery was performed. A brain injury biomarker was measured perioperatively. Bayley Scales of Infant and Toddler Development-III (BSID-III) were performed at 12 months of age. Two sample t-tests and generalized linear models were used. RESULTS There were 129 participants (n=61 methylprednisolone, n=68 placebo). There were no significant differences in BSID-III scores and brain injury biomarker levels between the two treatment groups. Participants who underwent a palliative (vs. corrective) procedure had lower mean BSID-III cognitive (101+15 vs. 106+14, p=0.03) and motor scores (85+18 vs. 94+16, p<0.01). Longer ventilation time was associated with lower motor scores. Longer cardiac intensive care unit (CICU) stay was associated with lower cognitive, language, and motor scores. Cardiopulmonary bypass time, aortic cross clamp time, and deep hypothermic circulatory arrest were not associated with BSID-III scores. CONCLUSIONS Neurodevelopmental outcomes were not associated with intraoperative methylprednisolone or intraoperative variables. Participants who underwent a neonatal palliative (vs. corrective) procedure had longer CICU stays and worse neurodevelopmental outcomes at 1 year. This work suggests that interventions focused solely on the operative period may not be associated with a long-term neurodevelopmental benefit.
Collapse
Affiliation(s)
- Sinai C Zyblewski
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC.
| | - Reneé H Martin
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Virginia B Shipes
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Kasey Hamlin-Smith
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Andrew M Atz
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Scott M Bradley
- Section of Pediatric Cardiac Surgery, Medical University of South Carolina, Charleston, SC
| | - Minoo N Kavarana
- Section of Pediatric Cardiac Surgery, Medical University of South Carolina, Charleston, SC
| | - William T Mahle
- Department of Pediatrics, Children's Healthcare of Atlanta and Emory University, Atlanta, GA
| | - Allen D Everett
- Department of Pediatrics, The Johns Hopkins University, Baltimore, MD
| | - Eric M Graham
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
145
|
Korley FK, Datwyler SA, Jain S, Sun X, Beligere G, Chandran R, Marino JA, McQuiston B, Zhang H, Caudle KL, Wang KKW, Puccio AM, Okonkwo DO, Yue JK, Taylor SR, Markowitz A, Manley GT, Diaz-Arrastia R. Comparison of GFAP and UCH-L1 Measurements from Two Prototype Assays: The Abbott i-STAT and ARCHITECT Assays. Neurotrauma Rep 2021; 2:193-199. [PMID: 33937911 PMCID: PMC8086519 DOI: 10.1089/neur.2020.0037] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glial fibrillary acidic protein (GFAP) and ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) may aid in the evaluation of traumatic brain injury (TBI). The objective of this analysis was to compare GFAP and UCH-L1 values measured using a handheld device compared with a core laboratory platform. We analyzed plasma samples from patients with TBI and healthy controls enrolled in the Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) cohort study. GFAP and UCH-L1 were measured twice in each subject using prototype assays, first with the Abbott i-STAT™ handheld device, and second with the Abbott ARCHITECT® platform. We then quantified the agreement in biomarker values obtained using these two methods. GFAP and UCH-L1 were measured twice in 570 and 572 samples, respectively. GFAP values measured by the ARCHITECT platform (median 143.3 [interquartile range (IQR): 19.8–925.8] pg/mL) were higher than values measured by the i-STAT (median 116.0 [IQR: 9.2–856.5] pg/mL). GFAP values from the two platforms were strongly correlated (p = 0.985). Similarly, UCH-L1 values measured by the ARCHITECT platform (median 163.9 [IQR: 82.5–412.4] pg/mL) were higher than values measured by the i-STAT (median 122.5 [IQR: 63.0–297.3] pg/mL). UCH-L1 values from the two platforms were strongly correlated (p = 0.933). Passing-Bablok regression equations were developed to estimate the relationship between the two platforms, specifically to predict i-STAT values from the ARCHITECT platform. GFAP and UCH-L1 values measured using the prototype assays on the Abbott i-STAT and ARCHITECT platforms are strongly correlated and values from either platform may be converted to the other.
Collapse
Affiliation(s)
- Frederick K Korley
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Sonia Jain
- Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, California, USA
| | - Xiaoying Sun
- Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, California, USA
| | | | | | | | | | | | - Krista L Caudle
- U.S. Army Medical Materiel Development Activity (USAMMDA), Warfighter Brain Health Project Management Office (WBH PMO), Fort Detrick, Maryland, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics & Biomarker Research, Departments of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Ava M Puccio
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - John K Yue
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Sabrina R Taylor
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, California, USA
| | - Amy Markowitz
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, California, USA
| | - Geoffrey T Manley
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Traumatic Brain Injury Clinical Research Center, Penn Presbyterian Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
146
|
Tate DF, Dennis EL, Adams JT, Adamson MM, Belanger HG, Bigler ED, Bouchard HC, Clark AL, Delano-Wood LM, Disner SG, Eapen BC, Franz CE, Geuze E, Goodrich-Hunsaker NJ, Han K, Hayes JP, Hinds SR, Hodges CB, Hovenden ES, Irimia A, Kenney K, Koerte IK, Kremen WS, Levin HS, Lindsey HM, Morey RA, Newsome MR, Ollinger J, Pugh MJ, Scheibel RS, Shenton ME, Sullivan DR, Taylor BA, Troyanskaya M, Velez C, Wade BS, Wang X, Ware AL, Zafonte R, Thompson PM, Wilde EA. Coordinating Global Multi-Site Studies of Military-Relevant Traumatic Brain Injury: Opportunities, Challenges, and Harmonization Guidelines. Brain Imaging Behav 2021; 15:585-613. [PMID: 33409819 PMCID: PMC8035292 DOI: 10.1007/s11682-020-00423-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/19/2022]
Abstract
Traumatic brain injury (TBI) is common among military personnel and the civilian population and is often followed by a heterogeneous array of clinical, cognitive, behavioral, mood, and neuroimaging changes. Unlike many neurological disorders that have a characteristic abnormal central neurologic area(s) of abnormality pathognomonic to the disorder, a sufficient head impact may cause focal, multifocal, diffuse or combination of injury to the brain. This inconsistent presentation makes it difficult to establish or validate biological and imaging markers that could help improve diagnostic and prognostic accuracy in this patient population. The purpose of this manuscript is to describe both the challenges and opportunities when conducting military-relevant TBI research and introduce the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Military Brain Injury working group. ENIGMA is a worldwide consortium focused on improving replicability and analytical power through data sharing and collaboration. In this paper, we discuss challenges affecting efforts to aggregate data in this patient group. In addition, we highlight how "big data" approaches might be used to understand better the role that each of these variables might play in the imaging and functional phenotypes of TBI in Service member and Veteran populations, and how data may be used to examine important military specific issues such as return to duty, the late effects of combat-related injury, and alteration of the natural aging processes.
Collapse
Affiliation(s)
- David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA.
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - Emily L Dennis
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
| | - John T Adams
- Western University of Health Sciences, Pomona, CA, USA
| | - Maheen M Adamson
- Defense and Veterans Brain Injury Center, VA Palo Alto, Palo Alto, CA, USA
- Neurosurgery, Stanford School of Medicine, Stanford, CA, USA
| | - Heather G Belanger
- United States Special Operations Command (USSOCOM), Tampa, FL, USA
- Department of Psychology, University of South Florida, Tampa, FL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL, USA
- St Michaels Inc, Tampa, FL, USA
| | - Erin D Bigler
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Heather C Bouchard
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Alexandra L Clark
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Lisa M Delano-Wood
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Seth G Disner
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Blessen C Eapen
- Department of Physical Medicine and Rehabilitation, VA Greater Los Angeles Health Care System, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Carol E Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Elbert Geuze
- University Medical Center Utrecht, Utrecht, Netherlands
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Naomi J Goodrich-Hunsaker
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Kihwan Han
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Jasmeet P Hayes
- Psychology Department, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| | - Sidney R Hinds
- Department of Defense/United States Army Medical Research and Materiel Command, Fort Detrick, Frederick, MD, USA
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Cooper B Hodges
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Elizabeth S Hovenden
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Kimbra Kenney
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Harvey S Levin
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Hannah M Lindsey
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Rajendra A Morey
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Mary R Newsome
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - John Ollinger
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Mary Jo Pugh
- Information Decision-Enhancement and Analytic Sciences Center, VA Salt Lake City, Salt Lake City, UT, USA
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Randall S Scheibel
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Brockton Division, VA Boston Healthcare System, Brockton, MA, USA
| | - Danielle R Sullivan
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Brian A Taylor
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Maya Troyanskaya
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Carmen Velez
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Benjamin Sc Wade
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xin Wang
- Department of Psychiatry, University of Toledo, Toledo, OH, USA
| | - Ashley L Ware
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | - Ross Zafonte
- Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital/Brigham & Women's Hospital, Boston, MA, USA
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Department of Neurology, USC, Los Angeles, CA, USA
- Department of Pediatrics, USC, Los Angeles, CA, USA
- Department of Psychiatry, USC, Los Angeles, CA, USA
- Department of Radiology, USC, Los Angeles, CA, USA
- Department of Engineering, USC, Los Angeles, CA, USA
- Department of Ophthalmology, USC, Los Angeles, CA, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
147
|
Di Pietro V, O'Halloran P, Watson CN, Begum G, Acharjee A, Yakoub KM, Bentley C, Davies DJ, Iliceto P, Candilera G, Menon DK, Cross MJ, Stokes KA, Kemp SP, Belli A. Unique diagnostic signatures of concussion in the saliva of male athletes: the Study of Concussion in Rugby Union through MicroRNAs (SCRUM). Br J Sports Med 2021; 55:1395-1404. [PMID: 33757972 PMCID: PMC8639909 DOI: 10.1136/bjsports-2020-103274] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
Objective To investigate the role of salivary small non-coding RNAs (sncRNAs) in the diagnosis of sport-related concussion. Methods Saliva was obtained from male professional players in the top two tiers of England’s elite rugby union competition across two seasons (2017–2019). Samples were collected preseason from 1028 players, and during standardised head injury assessments (HIAs) at three time points (in-game, post-game, and 36–48 hours post-game) from 156 of these. Samples were also collected from controls (102 uninjured players and 66 players sustaining a musculoskeletal injury). Diagnostic sncRNAs were identified with next generation sequencing and validated using quantitative PCR in 702 samples. A predictive logistic regression model was built on 2017–2018 data (training dataset) and prospectively validated the following season (test dataset). Results The HIA process confirmed concussion in 106 players (HIA+) and excluded this in 50 (HIA−). 32 sncRNAs were significantly differentially expressed across these two groups, with let-7f-5p showing the highest area under the curve (AUC) at 36–48 hours. Additionally, a combined panel of 14 sncRNAs (let-7a-5p, miR-143-3p, miR-103a-3p, miR-34b-3p, RNU6-7, RNU6-45, Snora57, snoU13.120, tRNA18Arg-CCT, U6-168, U6-428, U6-1249, Uco22cjg1, YRNA_255) could differentiate concussed subjects from all other groups, including players who were HIA− and controls, immediately after the game (AUC 0.91, 95% CI 0.81 to 1) and 36–48 hours later (AUC 0.94, 95% CI 0.86 to 1). When prospectively tested, the panel confirmed high predictive accuracy (AUC 0.96, 95% CI 0.92 to 1 post-game and AUC 0.93, 95% CI 0.86 to 1 at 36–48 hours). Conclusions SCRUM, a large prospective observational study of non-invasive concussion biomarkers, has identified unique signatures of concussion in saliva of male athletes diagnosed with concussion.
Collapse
Affiliation(s)
- Valentina Di Pietro
- University of Birmingham, Institute of Inflammation and Ageing, Birmingham, UK .,NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Marker Diagnostics UK Limited, the BioHub, Birmingham research park, Birmingham, UK
| | - Patrick O'Halloran
- University of Birmingham, Institute of Inflammation and Ageing, Birmingham, UK.,Marker Diagnostics UK Limited, the BioHub, Birmingham research park, Birmingham, UK
| | - Callum N Watson
- University of Birmingham, Institute of Inflammation and Ageing, Birmingham, UK
| | - Ghazala Begum
- Marker Diagnostics UK Limited, the BioHub, Birmingham research park, Birmingham, UK
| | - Animesh Acharjee
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham, UK.,Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, Birmingham, UK
| | - Kamal M Yakoub
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Conor Bentley
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - David J Davies
- University of Birmingham, Institute of Inflammation and Ageing, Birmingham, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | | | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Matthew J Cross
- Department for Health, University of Bath, Bath, UK.,Premier Rugby Limited, Twickenham, London, UK
| | - Keith A Stokes
- Department for Health, University of Bath, Bath, UK.,Rugby Football Union, Twickenham, London, UK
| | - Simon Pt Kemp
- Rugby Football Union, Twickenham, London, UK.,Faculty of Epidemiology and Public Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Antonio Belli
- University of Birmingham, Institute of Inflammation and Ageing, Birmingham, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Marker Diagnostics UK Limited, the BioHub, Birmingham research park, Birmingham, UK
| |
Collapse
|
148
|
Gong Z, Ye Q, Wu JW, Zhou JL, Kong XY, Ma LK. UCHL1 inhibition attenuates cardiac fibrosis via modulation of nuclear factor-κB signaling in fibroblasts. Eur J Pharmacol 2021; 900:174045. [PMID: 33745956 DOI: 10.1016/j.ejphar.2021.174045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 03/16/2021] [Indexed: 01/05/2023]
Abstract
The ubiquitin-proteasome system (UPS) plays an essential role in cellular homeostasis and myocardial function. Ubiquitin carboxy-terminal hydrolase 1 (UCHL1) is involved in cardiac remodeling, but its underlying mechanisms are largely unknown. Here, we observed that the UCHL1 was significantly up-regulated in angiotensin II-infused heart and primary cardiac fibroblast (CF). Systemic administration of the UCHL1 inhibitor LDN57444 significantly ameliorated cardiac fibrosis and improved cardiac function induced by angiotensin II. Also, LDN57444 inhibited CF cell proliferation as well as attenuated collagen I, and CTGF gene expression in the presence of Ang II. Mechanistically, UCHL1 promotes angiotensin II-induced fibrotic responses by way of activating nuclear factor kappa B (NF-κB) signaling. Moreover, suppression of the NF-κB pathway interfered with UCHL1 overexpression-mediated fibrotic responses. Besides, the chromatin immunoprecipitation assay demonstrated that NF-κB can bind to the UCHL1 promoter and trigger its transcription in cardiac fibroblasts. These findings suggest that UCHL1 positively regulates cardiac fibrosis by modulating NF-κB signaling pathway and identify UCHL1 could be a new treatment strategy for cardiac fibrosis.
Collapse
Affiliation(s)
- Zheng Gong
- Provincial Hospital of Anhui Medical University, Hefei, 230000, Anhui, PR China
| | - Qing Ye
- The First Hospital of University of Science and Technology of China, Hefei, 230000, Anhui, PR China
| | - Jia-Wei Wu
- The First Hospital of University of Science and Technology of China, Hefei, 230000, Anhui, PR China
| | - Jun-Ling Zhou
- The First Hospital of University of Science and Technology of China, Hefei, 230000, Anhui, PR China
| | - Xiang-Yong Kong
- The First Hospital of University of Science and Technology of China, Hefei, 230000, Anhui, PR China
| | - Li-Kun Ma
- Provincial Hospital of Anhui Medical University, Hefei, 230000, Anhui, PR China; The First Hospital of University of Science and Technology of China, Hefei, 230000, Anhui, PR China.
| |
Collapse
|
149
|
Development of a novel, sensitive translational immunoassay to detect plasma glial fibrillary acidic protein (GFAP) after murine traumatic brain injury. ALZHEIMERS RESEARCH & THERAPY 2021; 13:58. [PMID: 33678186 PMCID: PMC7938597 DOI: 10.1186/s13195-021-00793-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/17/2021] [Indexed: 12/21/2022]
Abstract
Background Glial fibrillary acidic protein (GFAP) has emerged as a promising fluid biomarker for several neurological indications including traumatic brain injury (TBI), a leading cause of death and disability worldwide. In humans, serum or plasma GFAP levels can predict brain abnormalities including hemorrhage on computed tomography (CT) scans and magnetic resonance imaging (MRI). However, assays to quantify plasma or serum GFAP in preclinical models are not yet available. Methods We developed and validated a novel sensitive GFAP immunoassay assay for mouse plasma on the Meso Scale Discovery immunoassay platform and validated assay performance for robustness, precision, limits of quantification, dilutional linearity, parallelism, recovery, stability, selectivity, and pre-analytical factors. To provide proof-of-concept data for this assay as a translational research tool for TBI and Alzheimer’s disease (AD), plasma GFAP was measured in mice exposed to TBI using the Closed Head Impact Model of Engineered Rotational Acceleration (CHIMERA) model and in APP/PS1 mice with normal or reduced levels of plasma high-density lipoprotein (HDL). Results We performed a partial validation of our novel assay and found its performance by the parameters studied was similar to assays used to quantify human GFAP in clinical neurotrauma blood specimens and to assays used to measure murine GFAP in tissues. Specifically, we demonstrated an intra-assay CV of 5.0%, an inter-assay CV of 7.2%, a lower limit of detection (LLOD) of 9.0 pg/mL, a lower limit of quantification (LLOQ) of 24.8 pg/mL, an upper limit of quantification (ULOQ) of at least 16,533.9 pg/mL, dilution linearity of calibrators from 20 to 200,000 pg/mL with 90–123% recovery, dilution linearity of plasma specimens up to 32-fold with 96–112% recovery, spike recovery of 67–100%, and excellent analyte stability in specimens exposed to up to 7 freeze-thaw cycles, 168 h at 4 °C, 24 h at room temperature (RT), or 30 days at − 20 °C. We also observed elevated plasma GFAP in mice 6 h after TBI and in aged APP/PS1 mice with plasma HDL deficiency. This assay also detects GFAP in serum. Conclusions This novel assay is a valuable translational tool that may help to provide insights into the mechanistic pathophysiology of TBI and AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00793-9.
Collapse
|
150
|
Valproic acid treatment rescues injured tissues after traumatic brain injury. J Trauma Acute Care Surg 2021; 89:1156-1165. [PMID: 32890344 DOI: 10.1097/ta.0000000000002918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND No agents that are specifically neuroprotective are currently approved to emergently treat patients with traumatic brain injury (TBI). The histone deacetylase inhibitor, high-dose valproic acid (VPA) has been shown to have cytoprotective potential in models of combined TBI and hemorrhagic shock, but it has not been tested in an isolated TBI model. We hypothesized that VPA, administered after isolated TBI, will penetrate the injured brain, attenuate the lesion size, and activate prosurvival pathways. METHODS Yorkshire swine were subjected to severe TBI by cortical impact. One hour later, animals were randomized to VPA treatment (150 mg/kg delivered intravenously for 1 hour; n = 4) or control (saline vehicle; n = 4) groups. Seven hours after injury, animals were sacrificed, and brain lesion size was measured. Mass spectrometry imaging was used to visualize and quantitate brain tissue distribution of VPA. Sequential serum samples were assayed for key biomarkers and subjected to proteomic and pathway analysis. RESULTS Brain lesion size was 50% smaller (p = 0.01) in the VPA-treated animals (3,837 ± 948 mm) compared with the controls (1,900 ± 614 mm). Endothelial regions had eightfold higher VPA concentrations than perivascular regions by mass spectrometry imaging, and it readily penetrated the injured brain tissues. Serum glial fibrillary acid protein was significantly lower in the VPA-treated compared with the control animals (p < 0.05). More than 500 proteins were differentially expressed in the brain, and pathway analysis revealed that VPA affected critical modulators of TBI response including calcium signaling pathways, mitochondria metabolism, and biosynthetic machinery. CONCLUSION Valproic acid penetrates injured brain tissues and exerts neuroprotective and prosurvival effects that resulted in a significant reduction in brain lesion size after isolated TBI. Levels of serum biomarkers reflect these changes, which could be useful for monitoring the response of TBI patients during clinical studies.
Collapse
|