101
|
Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, Schroder HD, Boushel R, Helge JW, Dela F, Hey-Mogensen M. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 2012; 590:3349-60. [PMID: 22586215 DOI: 10.1113/jphysiol.2012.230185] [Citation(s) in RCA: 878] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle mitochondrial content varies extensively between human subjects. Biochemical measures of mitochondrial proteins, enzyme activities and lipids are often used as markers of mitochondrial content and muscle oxidative capacity (OXPHOS). The purpose of this study was to determine how closely associated these commonly used biochemical measures are to muscle mitochondrial content and OXPHOS. Sixteen young healthy male subjects were recruited for this study. Subjects completed a graded exercise test to determine maximal oxygen uptake (VO2peak) and muscle biopsies were obtained from the vastus lateralis. Mitochondrial content was determined using transmission electron microscopy imaging and OXPHOS was determined as the maximal coupled respiration in permeabilized fibres. Biomarkers of interest were citrate synthase (CS) activity, cardiolipin content, mitochondrial DNA content (mtDNA), complex I–V protein content, and complex I–IV activity. Spearman correlation coefficient tests and Lin's concordance tests were applied to assess the absolute and relative association between the markers and mitochondrial content or OXPHOS. Subjects had a large range of VO2peak (range 29.9–71.6ml min−1 kg−1) and mitochondrial content (4–15% of cell volume).Cardiolipin content showed the strongest association with mitochondrial content followed by CS and complex I activities. mtDNA was not related to mitochondrial content. Complex IV activity showed the strongest association with muscle oxidative capacity followed by complex II activity.We conclude that cardiolipin content, and CS and complex I activities are the biomarkers that exhibit the strongest association with mitochondrial content, while complex IV activity is strongly associated with OXPHOS capacity in human skeletal muscle.
Collapse
Affiliation(s)
- Steen Larsen
- Center for Healthy Aging-Department of Biomedical Sciences, Copenhagen University, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Complete failure of insulin-transmitted signaling, but not obesity-induced insulin resistance, impairs respiratory chain function in muscle. J Mol Med (Berl) 2012; 90:1145-60. [DOI: 10.1007/s00109-012-0887-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 02/09/2012] [Accepted: 02/21/2012] [Indexed: 01/22/2023]
|
103
|
Maloyan A, Mele J, Muralimanohara B, Myatt L. Measurement of mitochondrial respiration in trophoblast culture. Placenta 2012; 33:456-8. [PMID: 22336334 DOI: 10.1016/j.placenta.2012.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/18/2012] [Accepted: 01/20/2012] [Indexed: 01/10/2023]
Abstract
Pregnancy is a state of oxidative stress, which becomes exaggerated under pathological conditions, such as preeclampsia, IUGR, diabetes and obesity, where placental mitochondrial dysfunction is observed. The majority of investigations utilize isolated mitochondria when measuring mitochondrial activity in placenta. However, this does not provide a complete physiological readout of mitochondrial function. This technical note describes a method to measure respiratory function in intact primary syncytiotrophoblast from human term placenta.
Collapse
Affiliation(s)
- A Maloyan
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, Mail Code 7836, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
104
|
Role of mitochondrial function in insulin resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:215-34. [PMID: 22399424 DOI: 10.1007/978-94-007-2869-1_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The obesity pandemic increases the prevalence of type 2 diabetes (DM2).DM2 develops when pancreatic β-cells fail and cannot compensate for the decrease in insulin sensitivity. How excessive caloric intake and weight gain cause insulin resistance has not completely been elucidated.Skeletal muscle is responsible for a major part of insulin stimulated whole-body glucose disposal and, hence, plays an important role in the pathogenesis of insulin resistance.It has been hypothesized that skeletal muscle mitochondrial dysfunction is involved in the accumulation of intramyocellular lipid metabolites leading to lipotoxicity and insulin resistance. However, findings on skeletal muscle mitochondrial function in relation to insulin resistance in human subjects are inconclusive. Differences in mitochondrial activity can be the result of several factors, including a reduced mitochondrial density, differences in insulin stimulated mitochondrial respiration, lower energy demand or reduced skeletal muscle perfusion, besides an intrinsic mitochondrial defect. The inconclusive results may be explained by the use of different techniques and study populations. Also, mitochondrial capacity is in far excess to meet energy requirements and therefore it may be questioned whether a reduced mitochondrial capacity limits mitochondrial fatty acid oxidation. Whether reduced mitochondrial function is causally related to insulin resistance or rather a consequence of the sedentary lifestyle remains to be elucidated.
Collapse
|
105
|
Picard M, Hepple RT, Burelle Y. Mitochondrial functional specialization in glycolytic and oxidative muscle fibers: tailoring the organelle for optimal function. Am J Physiol Cell Physiol 2011; 302:C629-41. [PMID: 22031602 DOI: 10.1152/ajpcell.00368.2011] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In skeletal muscle, two major types of muscle fibers exist: slow-twitch oxidative (type I) fibers designed for low-intensity long-lasting contractions, and fast-twitch glycolytic (type II) fibers designed for high-intensity short-duration contractions. Such a wide range of capabilities has emerged through the selection across fiber types of a narrow set of molecular characteristics suitable to achieve a specific contractile phenotype. In this article we review evidence supporting the existence of distinct functional phenotypes in mitochondria from slow and fast fibers that may be required to ensure optimal muscle function. This includes differences with respect to energy substrate preferences, regulation of oxidative phosphorylation, dynamics of reactive oxygen species, handling of Ca2+, and regulation of cell death. The potential physiological implications on muscle function and the putative mechanisms responsible for establishing and maintaining distinct mitochondrial phenotype across fiber types are also discussed.
Collapse
Affiliation(s)
- Martin Picard
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
106
|
Franzini-Armstrong C, Boncompagni S. The evolution of the mitochondria-to-calcium release units relationship in vertebrate skeletal muscles. J Biomed Biotechnol 2011; 2011:830573. [PMID: 22013386 PMCID: PMC3196067 DOI: 10.1155/2011/830573] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/10/2011] [Indexed: 01/28/2023] Open
Abstract
The spatial relationship between mitochondria and the membrane systems, more specifically the calcium release units (CRUs) of skeletal muscle, is of profound functional significance. CRUs are the sites at which Ca(2+) is released from the sarcoplasmic reticulum during muscle activation. Close mitochondrion-CRU proximity allows the organelles to take up Ca(2+) and thus stimulate aerobic metabolism. Skeletal muscles of most mammals display an extensive, developmentally regulated, close mitochondrion-CRU association, fostered by tethering links between the organelles. A comparative look at the vertebrate subphylum however shows that this specific association is only present in the higher vertebrates (mammals). Muscles in all other vertebrates, even if capable of fast activity, rely on a less precise and more limited mitochondrion-CRU proximity, despite some tethering connections. This is most evident in fish muscles. Clustering of free subsarcolemmal mitochondria in proximity of capillaries is also more frequently achieved in mammalian than in other vertebrates.
Collapse
Affiliation(s)
- Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
107
|
Brands M, Hoeks J, Sauerwein HP, Ackermans MT, Ouwens M, Lammers NM, van der Plas MN, Schrauwen P, Groen AK, Serlie MJ. Short-term increase of plasma free fatty acids does not interfere with intrinsic mitochondrial function in healthy young men. Metabolism 2011; 60:1398-405. [PMID: 21489571 DOI: 10.1016/j.metabol.2011.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 02/02/2011] [Accepted: 02/09/2011] [Indexed: 11/21/2022]
Abstract
Free fatty acid (FFA)- and obesity-induced insulin resistance has been associated with disturbed mitochondrial function. Elevated plasma FFA can impair insulin-induced increase of adenosine triphosphate synthesis and downregulate the expression of genes important in the biogenesis of mitochondria in human skeletal muscle. Whether FAs have a direct effect on intrinsic mitochondrial capacity remains to be established. Therefore, we measured ex vivo mitochondrial respiratory capacity in human skeletal muscle after exposure to hyperinsulinemia and high levels of plasma FFA. Nine healthy lean men were studied during a 6-hour hyperinsulinemic (600 pmol/L) euglycemic clamp with concomitant infusion of Intralipid (Fresensius Kabi Nederland, Den Bosch, the Netherlands) (FFA clamped at 0.5 mmol/L) or saline. Mitochondrial respiratory capacity was measured by high-resolution respirometry in permeabilized muscle fibers using an Oxygraph (OROBOROS Instruments, Innsbruck, Austria). Each participant served as his own control. Peripheral glucose uptake (rate of disappearance) was significantly lower during infusion of the lipid emulsion compared with the control saline infusion (68 μmol/kg·min [saline] vs 40 μmol/kg·min [lipid], P = .008). However, adenosine diphosphate-stimulated and maximal carbonylcyanide-4-(trifluoromethoxy)-phenylhydrazone-stimulated uncoupled respiration rates were not different in permeabilized skeletal muscle fibers after exposure to high levels of FFA compared with the control condition. We conclude that short-term elevation of FFA within the physiological range induces insulin resistance but does not affect intrinsic mitochondrial capacity in skeletal muscle in humans.
Collapse
MESH Headings
- Adult
- Biopsy
- Blood Glucose/metabolism
- Cell Respiration/drug effects
- Cell Respiration/physiology
- Fatty Acids, Nonesterified/blood
- Fatty Acids, Nonesterified/metabolism
- Fatty Acids, Nonesterified/pharmacology
- Glucose Clamp Technique
- Health
- Humans
- Insulin/blood
- Insulin Resistance/physiology
- Male
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/physiology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiology
- Oxidation-Reduction/drug effects
- Time Factors
- Young Adult
Collapse
Affiliation(s)
- Myrte Brands
- Department of Endocrinology and Metabolism, Academic Medical Center Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med 2011; 39:1749-59. [PMID: 21460706 DOI: 10.1097/ccm.0b013e3182190b62] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Mechanical ventilation is a life-saving intervention used to provide adequate pulmonary ventilation in patients suffering from respiratory failure. However, prolonged mechanical ventilation is associated with significant diaphragmatic weakness resulting from both myofiber atrophy and contractile dysfunction. Although several signaling pathways contribute to diaphragm weakness during mechanical ventilation, it is established that oxidative stress is required for diaphragmatic weakness to occur. Therefore, identifying the site(s) of mechanical ventilation- induced reactive oxygen species production in the diaphragm is important. OBJECTIVE These experiments tested the hypothesis that elevated mitochondrial reactive oxygen species emission is required for mechanical ventilation-induced oxidative stress, atrophy, and contractile dysfunction in the diaphragm. DESIGN Cause and effect was determined by preventing mechanical ventilation-induced mitochondrial reactive oxygen species emission in the diaphragm of rats using a novel mitochondria-targeted antioxidant (SS-31). INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Compared to mechanically ventilated animals treated with saline, animals treated with SS-31 were protected against mechanical ventilation-induced mitochondrial dysfunction, oxidative stress, and protease activation in the diaphragm. Importantly, treatment of animals with the mitochondrial antioxidant also protected the diaphragm against mechanical ventilation-induced myofiber atrophy and contractile dysfunction. CONCLUSIONS These results reveal that prevention of mechanical ventilation-induced increases in diaphragmatic mitochondrial reactive oxygen species emission protects the diaphragm from mechanical ventilation-induced diaphragmatic weakness. This important new finding indicates that mitochondria are a primary source of reactive oxygen species production in the diaphragm during prolonged mechanical ventilation. These results could lead to the development of a therapeutic intervention to impede mechanical ventilation-induced diaphragmatic weakness.
Collapse
|
109
|
Rossi AE, Boncompagni S, Wei L, Protasi F, Dirksen RT. Differential impact of mitochondrial positioning on mitochondrial Ca(2+) uptake and Ca(2+) spark suppression in skeletal muscle. Am J Physiol Cell Physiol 2011; 301:C1128-39. [PMID: 21849670 DOI: 10.1152/ajpcell.00194.2011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle contraction requires ATP and Ca(2+) and, thus, is under direct control of mitochondria and the sarcoplasmic reticulum. During postnatal skeletal muscle maturation, the mitochondrial network exhibits a shift from a longitudinal ("longitudinal mitochondria") to a mostly transversal orientation as a result of a progressive increase in mitochondrial association with Ca(2+) release units (CRUs) or triads ("triadic mitochondria"). To determine the physiological implications of this shift in mitochondrial disposition, we used confocal microscopy to monitor activity-dependent changes in myoplasmic (fluo 4) and mitochondrial (rhod 2) Ca(2+) in single flexor digitorum brevis (FDB) fibers from 1- to 4-mo-old mice. A robust and sustained Ca(2+) accumulation in triadic mitochondria was triggered by repetitive tetanic stimulation (500 ms, 100 Hz, every 2.5 s) in FDB fibers from 4-mo-old mice. Specifically, mitochondrial rhod 2 fluorescence increased 272 ± 39% after a single tetanus and 412 ± 45% after five tetani and decayed slowly over 10 min following the final tetanus. Similar results were observed in fibers expressing mitochondrial pericam, a mitochondrial-targeted ratiometric Ca(2+) indicator. Interestingly, sustained mitochondrial Ca(2+) uptake following repetitive tetanic stimulation was similar for triadic and longitudinal mitochondria in FDB fibers from 1-mo-old mice, and both mitochondrial populations were found by electron microscopy to be continuous and structurally tethered to the sarcoplasmic reticulum. Conversely, the frequency of osmotic shock-induced Ca(2+) sparks per CRU density decreased threefold (from 3.6 ± 0.2 to 1.2 ± 0.1 events·CRU(-1)·min(-1)·100 μm(-2)) during postnatal development in direct linear correspondence (r(2) = 0.95) to an increase in mitochondrion-CRU pairing. Together, these results indicate that mitochondrion-CRU association promotes Ca(2+) spark suppression but does not significantly impact mitochondrial Ca(2+) uptake.
Collapse
Affiliation(s)
- Ann E Rossi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
110
|
Picard M, Taivassalo T, Gouspillou G, Hepple RT. Mitochondria: isolation, structure and function. J Physiol 2011; 589:4413-21. [PMID: 21708903 DOI: 10.1113/jphysiol.2011.212712] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mitochondria are complex organelles constantly undergoing processes of fusion and fission, processes that not only modulate their morphology, but also their function. Yet the assessment of mitochondrial function in skeletal muscle often involves mechanical isolation of the mitochondria, a process which disrupts their normally heterogeneous branching structure and yields relatively homogeneous spherical organelles. Alternatively, methods have been used where the sarcolemma is permeabilized and mitochondrial morphology is preserved, but both methods face the downside that they remove potential influences of the intracellular milieu on mitochondrial function. Importantly, recent evidence shows that the fragmented mitochondrial morphology resulting from routine mitochondrial isolation procedures used with skeletal muscle alters key indices of function in a manner qualitatively similar to mitochondria undergoing fission in vivo. Although these results warrant caution when interpreting data obtained with mitochondria isolated from skeletal muscle, they also suggest that isolated mitochondrial preparations might present a useful way of interrogating the stress resistance of mitochondria. More importantly, these new findings underscore the empirical value of studying mitochondrial function in minimally disruptive experimental preparations. In this review, we briefly discuss several considerations and hypotheses emerging from this work.
Collapse
Affiliation(s)
- Martin Picard
- Department of Kinesiology and Physical Education, McGill University, Montreal, Qc, Canada
| | | | | | | |
Collapse
|
111
|
Picard M, Taivassalo T, Ritchie D, Wright KJ, Thomas MM, Romestaing C, Hepple RT. Mitochondrial structure and function are disrupted by standard isolation methods. PLoS One 2011; 6:e18317. [PMID: 21512578 PMCID: PMC3065478 DOI: 10.1371/journal.pone.0018317] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 02/24/2011] [Indexed: 01/28/2023] Open
Abstract
Mitochondria regulate critical components of cellular function via ATP production, reactive oxygen species production, Ca2+ handling and apoptotic signaling. Two classical methods exist to study mitochondrial function of skeletal muscles: isolated mitochondria and permeabilized myofibers. Whereas mitochondrial isolation removes a portion of the mitochondria from their cellular environment, myofiber permeabilization preserves mitochondrial morphology and functional interactions with other intracellular components. Despite this, isolated mitochondria remain the most commonly used method to infer in vivo mitochondrial function. In this study, we directly compared measures of several key aspects of mitochondrial function in both isolated mitochondria and permeabilized myofibers of rat gastrocnemius muscle. Here we show that mitochondrial isolation i) induced fragmented organelle morphology; ii) dramatically sensitized the permeability transition pore sensitivity to a Ca2+ challenge; iii) differentially altered mitochondrial respiration depending upon the respiratory conditions; and iv) dramatically increased H2O2 production. These alterations are qualitatively similar to the changes in mitochondrial structure and function observed in vivo after cellular stress-induced mitochondrial fragmentation, but are generally of much greater magnitude. Furthermore, mitochondrial isolation markedly altered electron transport chain protein stoichiometry. Collectively, our results demonstrate that isolated mitochondria possess functional characteristics that differ fundamentally from those of intact mitochondria in permeabilized myofibers. Our work and that of others underscores the importance of studying mitochondrial function in tissue preparations where mitochondrial structure is preserved and all mitochondria are represented.
Collapse
Affiliation(s)
- Martin Picard
- Department of Kinesiology, McGill University, Montreal, Quebec, Canada
| | - Tanja Taivassalo
- Department of Kinesiology, McGill University, Montreal, Quebec, Canada
| | - Darmyn Ritchie
- Muscle and Aging Laboratory, Faculty of Kinesiology and Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kathryn J. Wright
- Muscle and Aging Laboratory, Faculty of Kinesiology and Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Melissa M. Thomas
- Muscle and Aging Laboratory, Faculty of Kinesiology and Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Caroline Romestaing
- Laboratoire de Physiologie Intégrative, Cellulaire et Moléculaire, Université de Lyon, Villeurbanne, France
| | - Russell T. Hepple
- Muscle and Aging Laboratory, Faculty of Kinesiology and Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
112
|
Chomentowski P, Coen PM, Radiková Z, Goodpaster BH, Toledo FGS. Skeletal muscle mitochondria in insulin resistance: differences in intermyofibrillar versus subsarcolemmal subpopulations and relationship to metabolic flexibility. J Clin Endocrinol Metab 2011; 96:494-503. [PMID: 21106709 PMCID: PMC3048328 DOI: 10.1210/jc.2010-0822] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CONTEXT Insulin resistance is accompanied by lower lipid oxidation during fasting and metabolic inflexibility. Whether these abnormalities correlate with mitochondrial content in skeletal muscle is unknown. OBJECTIVE The objective of the study was to investigate whether decreased fasting lipid oxidation, metabolic inflexibility, and impaired glucose disposal correlate with reduced mitochondrial content in intermyofibrillar vs. subsarcolemmal (SS) subpopulations. DESIGN Forty sedentary adults with a wide spectrum of insulin sensitivity were studied: insulin-sensitive lean subjects, insulin-resistant nondiabetic subjects, and subjects with type 2 diabetes mellitus. Glucose disposal was measured by euglycemic clamp and [6,6-D(2)]-glucose methodology. Fuel oxidation and metabolic flexibility (during clamps) were assessed by indirect calorimetry. Maximum aerobic capacity was assessed by treadmill testing. Intermyofibrillar and SS mitochondrial content were measured by quantitative electron microscopy of muscle biopsy samples. RESULTS Intermyofibrillar mitochondrial content was lower in the insulin-resistant nondiabetic subjects and type 2 diabetes mellitus groups, significantly correlating with glucose disposal in both men (R = 0.72, P < 0.01) and women (R = 0.53, P < 0.01). In contrast, SS mitochondrial content was similar among groups. Lower intermyofibrillar mitochondrial content was not explained by mitochondrial size, altered fiber-type distribution, or differences in maximum aerobic capacity. Intermyofibrillar mitochondrial content was significantly correlated with fasting respiratory quotient (R = -0.46, P = 0.003) and metabolic flexibility (R = 0.38, P = 0.02). CONCLUSIONS In obese-insulin-resistant subjects with or without diabetes, intermyofibrillar mitochondrial content is decreased. This is not entirely explained by fitness status or fiber-type composition. SS mitochondrial content is unaffected, suggesting independent mitochondrial pool regulation. Lower mitochondrial content correlates with lower fasting lipid oxidation and metabolic inflexibility, suggesting it may be intrinsically linked to abnormal fuel utilization patterns of obesity-associated insulin resistance.
Collapse
Affiliation(s)
- Peter Chomentowski
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
113
|
MINAMI Y, KAWAI M, MIGITA TC, HIRAGA A, MIYATA H. Free Radical Formation after Intensive Exercise in Thoroughbred Skeletal Muscles. J Equine Sci 2011; 22:21-8. [PMID: 24833984 PMCID: PMC4013973 DOI: 10.1294/jes.22.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2011] [Indexed: 11/24/2022] Open
Abstract
Although high oxygen consumption in skeletal muscle may result in severe oxidative
stress, there are no direct studies that have documented free radical production in horse
muscles after intensive exercise. To find a new parameter indicating the muscle adaptation
state for the training of Thoroughbred horses, we examined free radical formation in the
muscle by using electron paramagnetic resonance (EPR). Ten male Thoroughbred horses
received conventional training for 18 weeks. Before and after the training period, all
horses performed an exhaustive incremental load exercise on a 6% incline treadmill. Muscle
samples of the middle gluteal muscle were taken pre-exercise and 1 min, 1 hr, and 1 day
after exercise. Muscle fiber type composition was also determined in the pre-exercise
samples by immunohistochemical staining with monoclonal antibody to myosin heavy chain. We
measured the free radical in the muscle homogenate using EPR at room temperature, and the
amount was expressed as relative EPR signal intensity. There was a significant increase in
Type IIA muscle fiber composition and a decrease in Type IIX fiber composition after the
training period. Before the training period, the mean value of the relative EPR signal
intensity showed a significant increase over the pre-exercise value at 1 min after the
exercise and an incomplete recovery at 24 hr after the exercise. While no significant
changes were found in the relative EPR signal intensity after the training period. There
was a significant relationship between percentages of Type IIA fiber and change rates in
EPR signal intensity at 1 min after exercise. The measurement of free radicals may be
useful for determining the muscle adaptation state in the training of Thoroughbred
horses.
Collapse
Affiliation(s)
- Yoshio MINAMI
- Biological Science, Graduate School of Medicine, Yamaguchi University
| | - Minako KAWAI
- Biological Science, Graduate School of Medicine, Yamaguchi University
| | - Taiko C. MIGITA
- Biological Chemistry, Faculty of Agriculture, Yamaguchi University
| | | | - Hirofumi MIYATA
- Biological Science, Graduate School of Medicine, Yamaguchi University
| |
Collapse
|
114
|
Picard M, Ritchie D, Wright KJ, Romestaing C, Thomas MM, Rowan SL, Taivassalo T, Hepple RT. Mitochondrial functional impairment with aging is exaggerated in isolated mitochondria compared to permeabilized myofibers. Aging Cell 2010; 9:1032-46. [PMID: 20849523 DOI: 10.1111/j.1474-9726.2010.00628.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mitochondria regulate cellular bioenergetics and apoptosis and have been implicated in aging. However, it remains unclear whether age-related loss of muscle mass, known as sarcopenia, is associated with abnormal mitochondrial function. Two technically different approaches have mainly been used to measure mitochondrial function: isolated mitochondria and permeabilized myofiber bundles, but the reliability of these measures in the context of sarcopenia has not been systematically assessed before. A key difference between these approaches is that contrary to isolated mitochondria, permeabilized bundles contain the totality of fiber mitochondria where normal mitochondrial morphology and intracellular interactions are preserved. Using the gastrocnemius muscle from young adult and senescent rats, we show marked effects of aging on three primary indices of mitochondrial function (respiration, H(2) O(2) emission, sensitivity of permeability transition pore to Ca(2+) ) when measured in isolated mitochondria, but to a much lesser degree when measured in permeabilized bundles. Our results clearly demonstrate that mitochondrial isolation procedures typically employed to study aged muscles expose functional impairments not seen in situ. We conclude that aging is associated with more modest changes in mitochondrial function in sarcopenic muscle than suggested previously from isolated organelle studies.
Collapse
Affiliation(s)
- Martin Picard
- Department of Kinesiology, McGill University, Montreal, QC H2W 1S4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Fan X, Hussien R, Brooks GA. H2O2-induced mitochondrial fragmentation in C2C12 myocytes. Free Radic Biol Med 2010; 49:1646-54. [PMID: 20801212 PMCID: PMC2970628 DOI: 10.1016/j.freeradbiomed.2010.08.024] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 08/17/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022]
Abstract
In skeletal muscle and many other cell types, mitochondria exist as an elaborate and dynamic network in which "individual" mitochondria exist only transiently even under nonstimulated conditions. The balance of continuous mitochondrial fission and fusion defines the morphology of the mitochondrial reticulum. Environmental stimuli, such as oxidative stress, can influence fusion and fission rates, resulting in a transformation of the network's connectivity. Using confocal laser scanning microscopy of C(2)C(12) mouse myocytes, we show that acute exposure to the reactive oxygen species (ROS) hydrogen peroxide (H(2)O(2)) induces a slow fragmentation of the mitochondrial reticulum that is reversible over 24h. Although H(2)O(2) decomposes rapidly in culture medium, the full extent of fragmentation occurs 5-6h posttreatment, suggesting that H(2)O(2) affects mitochondrial morphology by modulating cellular physiology. Supraphysiological (>1 mM) concentrations of H(2)O(2) are cytotoxic, but lower concentrations (250 μM) sufficient to induce transient fragmentation do not lower cell viability. H(2)O(2)-induced mitochondrial fragmentation is preceded by decreases in inner mitochondrial membrane potential and maximal respiratory rate, suggesting a possible mechanism. Because H(2)O(2) is produced in contracting muscle, our results raise the possibility that ROS generation may contribute to exercise-induced changes in mitochondrial morphology in vivo.
Collapse
Affiliation(s)
- Xiying Fan
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | | | | |
Collapse
|
116
|
Perry CGR, Lally J, Holloway GP, Heigenhauser GJF, Bonen A, Spriet LL. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol 2010; 588:4795-810. [PMID: 20921196 DOI: 10.1113/jphysiol.2010.199448] [Citation(s) in RCA: 388] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Exercise training induces mitochondrial biogenesis, but the time course of molecular sequelae that accompany repetitive training stimuli remains to be determined in human skeletal muscle. Therefore, throughout a seven-session, high-intensity interval training period that increased (12%), we examined the time course of responses of (a) mitochondrial biogenesis and fusion and fission proteins, and (b) selected transcriptional and mitochondrial mRNAs and proteins in human muscle. Muscle biopsies were obtained 4 and 24 h after the 1st, 3rd, 5th and 7th training session. PGC-1α mRNA was increased >10-fold 4 h after the 1st session and returned to control within 24 h. This 'saw-tooth' pattern continued until the 7th bout, with smaller increases after each bout. In contrast, PGC-1α protein was increased 24 h after the 1st bout (23%) and plateaued at +30-40% between the 3rd and 7th bout. Increases in PGC-1β mRNA and protein were more delayed and smaller, and did not persist. Distinct patterns of increases were observed in peroxisome proliferator-activated receptor (PPAR) α and γ protein (1 session), PPAR β/δ mRNA and protein (5 sessions) and nuclear respiratory factor-2 protein (3 sessions) while no changes occurred in mitochondrial transcription factor A protein. Citrate synthase (CS) and β-HAD mRNA were rapidly increased (1 session), followed 2 sessions later (session 3) by increases in CS and β-HAD activities, and mitochondrial DNA. Changes in COX-IV mRNA (session 3) and protein (session 5) were more delayed. Training also increased mitochondrial fission proteins (fission protein-1, >2-fold; dynamin-related protein-1, 47%) and the fusion protein mitofusin-1 (35%) but not mitofusin-2. This study has provided the following novel information: (a) the training-induced increases in transcriptional and mitochondrial proteins appear to result from the cumulative effects of transient bursts in their mRNAs, (b) training-induced mitochondrial biogenesis appears to involve re-modelling in addition to increased mitochondrial content, and (c) the 'transcriptional capacity' of human muscle is extremely sensitive, being activated by one training bout.
Collapse
Affiliation(s)
- Christopher G R Perry
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | | | | | | | | | | |
Collapse
|
117
|
Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, Chan DC. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 2010; 141:280-9. [PMID: 20403324 DOI: 10.1016/j.cell.2010.02.026] [Citation(s) in RCA: 886] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 12/13/2009] [Accepted: 02/09/2010] [Indexed: 11/17/2022]
Abstract
Mitochondria are highly mobile and dynamic organelles that continually fuse and divide. These processes allow mitochondria to exchange contents, including mitochondrial DNA (mtDNA). Here we examine the functions of mitochondrial fusion in differentiated skeletal muscle through conditional deletion of the mitofusins Mfn1 and Mfn2, mitochondrial GTPases essential for fusion. Loss of the mitofusins causes severe mitochondrial dysfunction, compensatory mitochondrial proliferation, and muscle atrophy. Mutant mice have severe mtDNA depletion in muscle that precedes physiological abnormalities. Moreover, the mitochondrial genomes of the mutant muscle rapidly accumulate point mutations and deletions. In a related experiment, we find that disruption of mitochondrial fusion strongly increases mitochondrial dysfunction and lethality in a mouse model with high levels of mtDNA mutations. With its dual function in safeguarding mtDNA integrity and preserving mtDNA function in the face of mutations, mitochondrial fusion is likely to be a protective factor in human disorders associated with mtDNA mutations.
Collapse
Affiliation(s)
- Hsiuchen Chen
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, Chan DC. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 2010. [PMID: 20403324 DOI: 10.1016/j.cell.2010.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mitochondria are highly mobile and dynamic organelles that continually fuse and divide. These processes allow mitochondria to exchange contents, including mitochondrial DNA (mtDNA). Here we examine the functions of mitochondrial fusion in differentiated skeletal muscle through conditional deletion of the mitofusins Mfn1 and Mfn2, mitochondrial GTPases essential for fusion. Loss of the mitofusins causes severe mitochondrial dysfunction, compensatory mitochondrial proliferation, and muscle atrophy. Mutant mice have severe mtDNA depletion in muscle that precedes physiological abnormalities. Moreover, the mitochondrial genomes of the mutant muscle rapidly accumulate point mutations and deletions. In a related experiment, we find that disruption of mitochondrial fusion strongly increases mitochondrial dysfunction and lethality in a mouse model with high levels of mtDNA mutations. With its dual function in safeguarding mtDNA integrity and preserving mtDNA function in the face of mutations, mitochondrial fusion is likely to be a protective factor in human disorders associated with mtDNA mutations.
Collapse
Affiliation(s)
- Hsiuchen Chen
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | |
Collapse
|
119
|
Guerrero K, Monge C, Brückner A, Puurand U, Kadaja L, Käämbre T, Seppet E, Saks V. Study of possible interactions of tubulin, microtubular network, and STOP protein with mitochondria in muscle cells. Mol Cell Biochem 2009; 337:239-49. [PMID: 19888554 DOI: 10.1007/s11010-009-0304-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 10/18/2009] [Indexed: 10/20/2022]
Abstract
We studied possible connections of tubulin, microtubular system, and microtubular network stabilizing STOP protein with mitochondria in rat and mouse cardiac and skeletal muscles by confocal microscopy and oxygraphy. Intracellular localization and content of tubulin was found to be muscle type-specific, with high amounts in oxidative muscles, and much lower in glycolytic skeletal muscle. STOP protein localization and content in muscle cells was also muscle type-specific. In isolated heart mitochondria, addition of 1 microM tubulin heterodimer increased apparent K(m) for ADP significantly. Dissociation of microtubular system into free tubulin by colchicine treatment only slightly decreased initially high apparent K(m) for ADP in permeabilized cells, and diffusely distributed free tubulin stayed inside the cells, obviously connected to the intracellular structures. To identify the genes that are specific for oxidative muscle, we developed and applied a method of kindred DNA. The results of sequencing and bioinformatic analysis of isolated cDNA pool common for heart and m. soleus showed that in adult mice the beta-tubulin gene is expressed predominantly in oxidative muscle cells. It is concluded that whereas dimeric tubulin may play a significant role in regulation of mitochondrial outer membrane permeability in the cells in vivo, its organization into microtubular network has a minor significance on that process.
Collapse
Affiliation(s)
- Karen Guerrero
- Laboratory of Fundamental and Applied Bioenergetics, INSERM E221, Joseph Fourier University, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
120
|
A mathematical analysis of obstructed diffusion within skeletal muscle. Biophys J 2009; 96:4764-78. [PMID: 19527637 DOI: 10.1016/j.bpj.2009.02.060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 02/04/2009] [Accepted: 02/24/2009] [Indexed: 11/20/2022] Open
Abstract
Molecules are transported through the myofilament lattice of skeletal muscle fibers during muscle activation. The myofilaments, along with the myosin heads, sarcoplasmic reticulum, t-tubules, and mitochondria, obstruct the diffusion of molecules through the muscle fiber. In this work, we studied the process of obstructed diffusion within the myofilament lattice using Monte Carlo simulation, level-set and homogenization theory. We found that these intracellular obstacles significantly reduce the diffusion of material through skeletal muscle and generate diffusion anisotropy that is consistent with experimentally observed slower diffusion in the radial than the longitudinal direction. Our model also predicts that protein size has a significant effect on the diffusion of material through muscle, which is consistent with experimental measurements. Protein diffusion on the myofilament lattice is also anomalous (i.e., it does not obey Brownian motion) for proteins that are close in size to the myofilament spacing. The obstructed transport of Ca2+ and ATP-bound Ca2+ through the myofilament lattice also generates smaller Ca2+ transients. In addition, we used homogenization theory to discover that the nonhomogeneous distribution in the troponin binding sites has no effect on the macroscopic Ca2+ dynamics. The nonuniform sarcoplasmic reticulum Ca2+-ATPase pump distribution also introduces small asymmetries in the myoplasmic Ca2+ transients.
Collapse
|
121
|
Salanova M, Schiffl G, Blottner D. Atypical fast SERCA1a protein expression in slow myofibers and differential S-nitrosylation prevented by exercise during long term bed rest. Histochem Cell Biol 2009; 132:383-94. [DOI: 10.1007/s00418-009-0624-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2009] [Indexed: 10/20/2022]
|
122
|
Dumas JF, Simard G, Flamment M, Ducluzeau PH, Ritz P. Is skeletal muscle mitochondrial dysfunction a cause or an indirect consequence of insulin resistance in humans? DIABETES & METABOLISM 2009; 35:159-67. [DOI: 10.1016/j.diabet.2009.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 02/21/2009] [Accepted: 02/23/2009] [Indexed: 12/25/2022]
|
123
|
Kuum M, Kaasik A, Joubert F, Ventura-Clapier R, Veksler V. Energetic state is a strong regulator of sarcoplasmic reticulum Ca2+ loss in cardiac muscle: different efficiencies of different energy sources. Cardiovasc Res 2009; 83:89-96. [PMID: 19389722 DOI: 10.1093/cvr/cvp125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Increased diastolic sarcoplasmic reticulum (SR) Ca(2+) loss could depress contractility in heart failure. Since the failing myocardium has impaired energetics, we investigated whether Ca(2+) loss is linked to changes in energetic pathways. METHODS AND RESULTS Leakage from SR in mouse permeabilized preparations was assessed using exogenous ATP, ATP + phosphocreatine (activation of bound creatine kinase, CK), ATP + mitochondrial substrates (mitochondrial activation), or with all of these together (optimal energetic conditions) in Ca(2+)-free solution. In ventricular fibres caffeine-induced tension transients under optimal energetic conditions were used to estimate SR [Ca(2+)]. In cardiomyocytes, intra-SR Ca(2+) was monitored by use of the fluorescent marker Mag-fluo 4. In fibres, SR Ca(2+) content after 5 min incubation strongly depended on energy supply (100%-optimal energetic conditions; 27 +/- 5%-exogenous ATP only, 52 +/- 5%-endogenous CK activation; 88 +/- 8%-mitochondrial activation, P < 0.01 vs. CK system). The significant loss with only exogenous ATP was not inhibited by the ryanodine receptor blockers tetracaine or ruthenium red. However, the SR Ca(2+)-ATPase (SERCA) inhibitors cyclopiazonic acid or 2,5-di(tert-butyl)-1,4-benzohydroquinone significantly decreased Ca(2+) loss. At 100 nM external [Ca(2+)], the SR Ca(2+) loss was also energy dependent and was not significantly inhibited by tetracaine. In cardiomyocytes, the decline in SR [Ca(2+)] at zero external [Ca(2+)] was almost two times slower under optimal energetic conditions than in the presence of exogenous ATP only. CONCLUSION At low extra-reticular [Ca(2+)], the main leak pathway is an energy-sensitive backward Ca(2+) pump, and direct mitochondrial-SERCA ATP channelling is more effective in leak prevention than local ATP generation by bound CK.
Collapse
Affiliation(s)
- Malle Kuum
- Faculté de Pharmacie, U-769 INSERM, Université Paris-Sud, Châtenay-Malabry, France
| | | | | | | | | |
Collapse
|
124
|
Picard M, Csukly K, Robillard ME, Godin R, Ascah A, Bourcier-Lucas C, Burelle Y. Resistance to Ca2+-induced opening of the permeability transition pore differs in mitochondria from glycolytic and oxidative muscles. Am J Physiol Regul Integr Comp Physiol 2008; 295:R659-68. [DOI: 10.1152/ajpregu.90357.2008] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study determined whether susceptibility to opening of the permeability transition pore (PTP) varies according to muscle phenotype represented by the slow oxidative soleus (Sol) and superficial white gastrocnemius (WG). Threshold for Ca2+-induced mitochondrial Ca2+ release following PTP opening was determined with a novel approach using permeabilized ghost myofibers. Threshold values for PTP opening were approximately threefold higher in fibers from WG compared with those from Sol (124 ± 47 vs. 30.4 ± 6.8 pmol Ca2+/mU citrate synthase). A similar phenomenon was also observed in isolated mitochondria (threshold: 121 ± 60 vs. 40 ± 10 nmol Ca2+/mg protein in WG and Sol), indicating that this was linked to differences in mitochondrial factors between the two muscles. The resistance of WG fibers to PTP opening was not related to the expression of putative protein modulators (cyclophilin D, adenylate nucleotide translocator-1, and voltage-dependent anion channels) or to difference in respiratory properties and occurred despite the fact that production of reactive oxygen species, which promote pore opening, was higher than in the Sol. However, endogenous matrix Ca2+ measured in mitochondria isolated under resting baseline conditions was approximately twofold lower in the WG than in the Sol (56 ± 4 vs. 111 ± 11 nmol/mg protein), which significantly accounted for the resistance of WG. Together, these results reveal fiber type differences in the sensitivity to Ca2+-induced PTP opening, which may constitute a physiological mechanism to adapt mitochondria to the differences in Ca2+ dynamics between fiber types.
Collapse
|
125
|
Pipinos II, Swanson SA, Zhu Z, Nella AA, Weiss DJ, Gutti TL, McComb RD, Baxter BT, Lynch TG, Casale GP. Chronically ischemic mouse skeletal muscle exhibits myopathy in association with mitochondrial dysfunction and oxidative damage. Am J Physiol Regul Integr Comp Physiol 2008; 295:R290-6. [PMID: 18480238 DOI: 10.1152/ajpregu.90374.2008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A myopathy characterized by mitochondrial pathology and oxidative stress is present in patients with peripheral arterial disease (PAD). Patients with PAD differ in disease severity, mode of presentation, and presence of comorbid conditions. In this study, we used a mouse model of hindlimb ischemia to isolate and directly investigate the effects of chronic inflow arterial occlusion on skeletal muscle microanatomy, mitochondrial function and expression, and oxidative stress. Hindlimb ischemia was induced by staged ligation/division of the common femoral and iliac arteries in C57BL/6 mice, and muscles were harvested 12 wk later. Muscle microanatomy was examined by bright-field microscopy, and mitochondrial content was determined as citrate synthase activity in muscle homogenates and ATP synthase expression by fluorescence microscopy. Electron transport chain (ETC) complexes I through IV were analyzed individually by respirometry. Oxidative stress was assessed as total protein carbonyls and 4-hydroxy-2-nonenal (HNE) adducts and altered expression and activity of manganese superoxide dismutase (MnSOD). Ischemic muscle exhibited histological features of myopathy and increased mitochondrial content compared with control muscle. Complex-dependent respiration was significantly reduced for ETC complexes I, III, and IV in ischemic muscle. Protein carbonyls, HNE adducts, and MnSOD expression were significantly increased in ischemic muscle. MnSOD activity was not significantly changed, suggesting MnSOD inactivation. Using a mouse model, we have demonstrated for the first time that inflow arterial occlusion alone, i.e., in the absence of other comorbid conditions, causes myopathy with mitochondrial dysfunction and increased oxidative stress, recapitulating the muscle pathology of PAD patients.
Collapse
Affiliation(s)
- Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198-3280, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Toledo FGS, Menshikova EV, Azuma K, Radiková Z, Kelley CA, Ritov VB, Kelley DE. Mitochondrial capacity in skeletal muscle is not stimulated by weight loss despite increases in insulin action and decreases in intramyocellular lipid content. Diabetes 2008; 57:987-94. [PMID: 18252894 DOI: 10.2337/db07-1429] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE In obesity and type 2 diabetes, exercise combined with weight loss increases skeletal muscle mitochondrial capacity. It remains unclear whether mitochondrial capacity increases because of weight loss, improvements in insulin resistance, or physical training. In this study, we examined the effects of an intervention of weight loss induced by diet and compared these with those of a similar intervention of weight loss by diet with exercise. Both are known to improve insulin resistance, and we tested the hypothesis that physical activity, rather than improved insulin resistance, is required to increase mitochondrial capacity of muscle. RESEARCH DESIGN AND METHODS Sixteen sedentary overweight/obese volunteers were randomized to a 16-week intervention of diet (n = 7) or diet plus exercise (n = 9). Insulin sensitivity was measured using euglycemic clamps. Mitochondria were examined in muscle biopsies before and after intervention. We measured mitochondrial content and size by electron microscopy, electron transport chain (ETC) activity, cardiolipin content, and mitochondrial DNA content. Intramyocellular content of lipid (IMCL) and fiber-type distribution were determined by histology. RESULTS The diet-only and diet plus exercise groups achieved similar weight loss (10.8 and 9.2%, respectively); only the diet plus exercise group improved aerobic capacity. Insulin sensitivity improved similarly in both groups. Mitochondrial content and ETC activity increased following the diet plus exercise intervention but remained unchanged following the diet-only intervention, and mitochondrial size decreased with weight loss despite improvement in insulin resistance. IMCL decreased in the diet-only but not in the diet plus exercise intervention. CONCLUSIONS Despite similar effects to improve insulin resistance, these interventions had differential effects on mitochondria. Clinically significant weight loss in the absence of increased physical activity ameliorates insulin resistance and IMCL but does not increase muscle mitochondrial capacity in obesity.
Collapse
Affiliation(s)
- Frederico G S Toledo
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | |
Collapse
|
127
|
Ferreira LF, Reid MB. Muscle-derived ROS and thiol regulation in muscle fatigue. J Appl Physiol (1985) 2008; 104:853-60. [DOI: 10.1152/japplphysiol.00953.2007] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Muscles produce oxidants, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), from a variety of intracellular sources. Oxidants are detectable in muscle at low levels during rest and at higher levels during contractions. RNS depress force production but do not appear to cause fatigue of healthy muscle. In contrast, muscle-derived ROS contribute to fatigue because loss of function can be delayed by ROS-specific antioxidants. Thiol regulation appears to be important in this biology. Fatigue causes oxidation of glutathione, a thiol antioxidant in muscle fibers, and is reversed by thiol-specific reducing agents. N-acetylcysteine (NAC), a drug that supports glutathione synthesis, has been shown to lessen oxidation of cellular constituents and delay muscle fatigue. In humans, NAC pretreatment improves performance of limb and respiratory muscles during fatigue protocols and extends time to task failure during volitional exercise. These findings highlight the importance of ROS and thiol chemistry in fatigue, show the feasibility of thiol-based countermeasures, and identify new directions for mechanistic and translational research.
Collapse
|
128
|
Shaw CS, Jones DA, Wagenmakers AJM. Network distribution of mitochondria and lipid droplets in human muscle fibres. Histochem Cell Biol 2007; 129:65-72. [PMID: 17938948 DOI: 10.1007/s00418-007-0349-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2007] [Indexed: 12/22/2022]
Abstract
The objective of the present study was to develop a combination of fluorescent stains that would allow visualisation of the network of mitochondria and lipid droplets (intramyocellular lipids or IMCL) in human skeletal muscle fibres by means of conventional and confocal microscopy. Muscle biopsies were taken from the vastus lateralis of three lean, healthy and physically active male subjects. Frozen muscle sections were stained for mitochondria using antibodies against three mitochondrial proteins; porin, cytochrome c oxidase (COX) and NADH-ubiquinol oxidoreductase and neutral lipids were stained with oil red O. Anti-COX staining produced images with the strongest fluorescence signal and the highest resolution of the mitochondrial network and this stain was successfully combined with the antibody against type I fibre myosin. A highly organised matrix arrangement of mitochondria within the sarcomeres (in pairs at the I-band) was observed in the oxidative type I fibres. The density of mitochondria was the highest in the subsarcolemmal region. Anti-COX staining was combined with oil red O demonstrating that in type I fibres lipid droplets are mainly located in the space between the mitochondria.
Collapse
Affiliation(s)
- Christopher S Shaw
- Exercise Metabolism Research Group, School of Sport and Exercise Sciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | | | | |
Collapse
|
129
|
Novotová M, Pavlovicová M, Veksler VI, Ventura-Clapier R, Zahradník I. Ultrastructural remodeling of fast skeletal muscle fibers induced by invalidation of creatine kinase. Am J Physiol Cell Physiol 2006; 291:C1279-85. [PMID: 16855221 DOI: 10.1152/ajpcell.00114.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Understanding muscle adaptation to various stimuli is difficult because of the complex nature of stimuli and responses. In particular, responses to perturbations in energy metabolism require careful examination, because they may involve both structural and functional elements. To estimate the structural component of the myocyte adaptation to energetic deficiency, we used transgenic mice with blocked expression of mitochondrial and cytosolic creatine kinases (CK). The ultrastructure was analyzed using the stereological method of vertical sections applied to electron microscopic images of ultrathin longitudinal sections of fast muscle fibers of gastrocnemius, known to adapt to CK deficiency by increasing oxidative metabolism. The lack of CK induced a profound structural adaptation response that included changes in the volume and surface densities of major organelles. In addition, using a new stereological parameter, the environment of an organelle, substantial changes in the mitochondrial neighborhood were identified pointing to their relocation closer to the major sites of energy consumption, supposedly to compensate for invalidated energy transfer. Using quantitative arguments, we have shown for the first time that spatial relations among organelles of muscle cells undergo adaptation in response to nonstructural stimuli like metabolic deficiency.
Collapse
Affiliation(s)
- Marta Novotová
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
130
|
Abstract
The endoplasmic reticulum (ER) has distinct morphological domains composed of sheets and tubules, which differ in their characteristic membrane curvature. Key proteins may drive the formation of these structural morphologies, which in turn could generate the rough and smooth functional domains of the ER.
Collapse
Affiliation(s)
- Yoko Shibata
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
131
|
Toledo FGS, Watkins S, Kelley DE. Changes induced by physical activity and weight loss in the morphology of intermyofibrillar mitochondria in obese men and women. J Clin Endocrinol Metab 2006; 91:3224-7. [PMID: 16684829 DOI: 10.1210/jc.2006-0002] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT In obesity, skeletal muscle insulin resistance may be associated with smaller mitochondria. OBJECTIVE Our objective was to examine the effect of a lifestyle-modification intervention on the content and morphology of skeletal muscle mitochondria and its relationship to insulin sensitivity in obese, insulin-resistant subjects. DESIGN In this prospective interventional study, intermyofibrillar mitochondrial content and size were quantified by transmission electron microscopy with quantitative morphometric analysis of biopsy samples from vastus lateralis muscle. Systemic insulin sensitivity was measured with euglycemic hyperinsulinemic clamps. SETTING The study took place at a university-based clinical research center. PARTICIPANTS Eleven sedentary, overweight/obese volunteers without diabetes participated in the study. INTERVENTION Intervention included 16 wk of aerobic training with dietary restriction of 500-1000 kcal/d. MAIN OUTCOME MEASURES We assessed changes in mitochondrial content and size and changes in insulin sensitivity. RESULTS The percentage of myofiber volume occupied by mitochondria significantly increased from 3.70 +/- 0.31 to 4.87 +/- 0.33% after intervention (P = 0.01). The mean individual increase was 42.5 +/- 18.1%. There was also a change in the mean cross-sectional mitochondrial area, increasing from a baseline of 0.078 +/- 0.007 to 0.091 +/- 0.007 microm(2) (P < 0.01), a mean increase of 19.2 +/- 6.1% per subject. These changes in mitochondrial size and content highly correlated with improvements in insulin resistance (r = 0.68 and 0.72, respectively; P = 0.01). CONCLUSIONS A combined intervention of weight loss and physical activity in previously sedentary obese adults is associated with enlargement of mitochondria and an increase in the mitochondrial content in skeletal muscle. These findings indicate that in obesity with insulin resistance, ultrastructural mitochondrial plasticity is substantially retained and, importantly, that changes in the morphology of mitochondria are associated with improvements in insulin resistance.
Collapse
Affiliation(s)
- Frederico G S Toledo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, 807N Montefiore Hospital, 3459 5th Avenue, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
132
|
Benard G, Faustin B, Passerieux E, Galinier A, Rocher C, Bellance N, Delage JP, Casteilla L, Letellier T, Rossignol R. Physiological diversity of mitochondrial oxidative phosphorylation. Am J Physiol Cell Physiol 2006; 291:C1172-82. [PMID: 16807301 DOI: 10.1152/ajpcell.00195.2006] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the physiological diversity in the regulation and control of mitochondrial oxidative phosphorylation, we determined the composition and functional features of the respiratory chain in muscle, heart, liver, kidney, and brain. First, we observed important variations in mitochondrial content and infrastructure via electron micrographs of the different tissue sections. Analyses of respiratory chain enzyme content by Western blot also showed large differences between tissues, in good correlation with the expression level of mitochondrial transcription factor A and the activity of citrate synthase. On the isolated mitochondria, we observed a conserved molar ratio between the respiratory chain complexes and a variable stoichiometry for coenzyme Q and cytochrome c, with typical values of [1-1.5]:[30-135]:[3]:[9-35]:[6.5-7.5] for complex II:coenzyme Q:complex III:cytochrome c:complex IV in the different tissues. The functional analysis revealed important differences in maximal velocities of respiratory chain complexes, with higher values in heart. However, calculation of the catalytic constants showed that brain contained the more active enzyme complexes. Hence, our study demonstrates that, in tissues, oxidative phosphorylation capacity is highly variable and diverse, as determined by different combinations of 1) the mitochondrial content, 2) the amount of respiratory chain complexes, and 3) their intrinsic activity. In all tissues, there was a large excess of enzyme capacity and intermediate substrate concentration, compared with what is required for state 3 respiration. To conclude, we submitted our data to a principal component analysis that revealed three groups of tissues: muscle and heart, brain, and liver and kidney.
Collapse
Affiliation(s)
- G Benard
- INSERM U688, Physiopathologie mitochondriale, Université Victor Segalen-Bordeaux 2, Bordeaux, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Anderson EJ, Neufer PD. Type II skeletal myofibers possess unique properties that potentiate mitochondrial H2O2generation. Am J Physiol Cell Physiol 2006; 290:C844-51. [PMID: 16251473 DOI: 10.1152/ajpcell.00402.2005] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mitochondrial dysfunction is implicated in a number of skeletal muscle pathologies, most notably aging-induced atrophy and loss of type II myofibers. Although oxygen-derived free radicals are thought to be a primary cause of mitochondrial dysfunction, the underlying factors governing mitochondrial superoxide production in different skeletal myofiber types is unknown. Using a novel in situ approach to measure H2O2production (indicator of superoxide formation) in permeabilized rat skeletal muscle fiber bundles, we found that mitochondrial free radical leak (H2O2produced/O2consumed) is two- to threefold higher ( P < 0.05) in white (WG, primarily type IIB fibers) than in red (RG, type IIA) gastrocnemius or soleus (type I) myofibers during basal respiration supported by complex I (pyruvate + malate) or complex II (succinate) substrates. In the presence of respiratory inhibitors, maximal rates of superoxide produced at both complex I and complex III are markedly higher in RG and WG than in soleus muscle despite ∼50% less mitochondrial content in WG myofibers. Duplicate experiments conducted with ±exogenous superoxide dismutase revealed striking differences in the topology and/or dismutation of superoxide in WG vs. soleus and RG muscle. When normalized for mitochondrial content, overall H2O2scavenging capacity is lower in RG and WG fibers, whereas glutathione peroxidase activity, which is largely responsible for H2O2removal in mitochondria, is similar in all three muscle types. These findings suggest that type II myofibers, particularly type IIB, possess unique properties that potentiate mitochondrial superoxide production and/or release, providing a potential mechanism for the heterogeneous development of mitochondrial dysfunction in skeletal muscle.
Collapse
Affiliation(s)
- Ethan J Anderson
- John B. Pierce Laboratory, Yale University, 290 Congress Ave., New Haven, CT 06519, USA
| | | |
Collapse
|
134
|
Guerrero K, Wuyam B, Mezin P, Vivodtzev I, Vendelin M, Borel JC, Hacini R, Chavanon O, Imbeaud S, Saks V, Pison C. Functional coupling of adenine nucleotide translocase and mitochondrial creatine kinase is enhanced after exercise training in lung transplant skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1144-54. [PMID: 16020522 DOI: 10.1152/ajpregu.00229.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanisms responsible for limitation of exercise capacity in lung transplant recipients (LR) and benefits gained by exercise training were studied. Mitochondrial respiration parameters, energy transfer, and cell structure were assessed in vastus lateralis biopsies using the permeabilized fiber technique with histochemical and morphometric measurements. Twelve male controls (C) and 12 LR performed exercise training over 12 wk. Before exercise training, there were strong correlations between exercise capacity (maximal O2 consumption and endurance time at 70% maximal power output) and cellular events, as assessed by percentage of type I fibers and apparent Km for exogenous ADP. Anticalcineurins were not involved in LR exercise limitation, since there were no differences in maximal mitochondrial rate of respiration before exercise training and no abnormalities in respiratory chain complexes compared with C. Training resulted in a significant increase in physiological parameters both at the cellular (apparent Km for exogenous ADP and stimulating effect of creatine) and integrated (maximal O2 consumption, power output at ventilatory threshold, maximal power output, and endurance time at 70% maximal power output) levels in LR and C. After the training period, improvements in maximal O2 consumption and in maximal mitochondrial rate of respiration were noted, as well as changes in endurance time and percentage of type I fibers. Because there were no changes in diameters and fiber types, baseline alteration of apparent Km for exogenous ADP and its improvement after training might be related to changes within the intracellular energetic units. After the training period, intracellular energetic units exhibited a higher control of mitochondrial respiration by creatine linked to a more efficient functional coupling adenine nucleotide translocase-mitochondrial creatine kinase, resulting in better exercise performances in C and LR.
Collapse
Affiliation(s)
- Karen Guerrero
- Laboratoire de Bioénergétique Fondamentale et Appliquée, Institut National de la Santé et de la Recherche Médicale E221, Université Joseph Fourier, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Rothstein EC, Carroll S, Combs CA, Jobsis PD, Balaban RS. Skeletal muscle NAD(P)H two-photon fluorescence microscopy in vivo: topology and optical inner filters. Biophys J 2004; 88:2165-76. [PMID: 15596503 PMCID: PMC1305268 DOI: 10.1529/biophysj.104.053165] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-photon excitation fluorescence microscopy (TPEFM) permits the investigation of the topology of intercellular events within living animals. TPEFM was used to monitor the distribution of mitochondrial reduced nicotinamide adenine dinucleotide (NAD(P)H) in murine skeletal muscle in vivo. NAD(P)H fluorescence emission was monitored ( approximately 460 nm) using 710-720 nm excitation. High-resolution TPEFM images were collected up to a depth of 150 microm from the surface of the tibialis anterior muscle. The NAD(P)H fluorescence images revealed subcellular structures consistent with subsarcolemmal, perivascular, intersarcomeric, and paranuclear mitochondria. In vivo fiber typing between IIB and IIA/D fibers was possible using the distribution and content of mitochondria from the NAD(P)H fluorescence signal. The intersarcomeric mitochondria concentrated at the Z-line in the IIB fiber types resulting in a periodic pattern with a spacing of one sarcomere (2.34 +/- 0.17 microm). The primary inner filter effects were nearly equivalent to water, however, the secondary inner filter effects were highly significant and dynamically affected the observed emission frequency and amplitude of the NAD(P)H fluorescence signal. These data demonstrate the feasibility, and highlight the complexity, of using NAD(P)H TPEFM in skeletal muscle to characterize the topology and metabolic function of mitochondria within the living mouse.
Collapse
Affiliation(s)
- Emily C Rothstein
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, National Institutes of Health, Department of Human Health Services, Bldg. 10, Rm. B1D416, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
136
|
Saks VA, Kuznetsov AV, Vendelin M, Guerrero K, Kay L, Seppet EK. Functional coupling as a basic mechanism of feedback regulation of cardiac energy metabolism. Mol Cell Biochem 2004; 256-257:185-99. [PMID: 14977180 DOI: 10.1023/b:mcbi.0000009868.92189.fb] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this review we analyze the concepts and the experimental data on the mechanisms of the regulation of energy metabolism in muscle cells. Muscular energetics is based on the force-length relationship, which in the whole heart is expressed as a Frank-Starling law, by which the alterations of left ventricle diastolic volume change linearly both the cardiac work and oxygen consumption. The second basic characteristics of the heart is the metabolic stability--almost constant levels of high energy phosphates, ATP and phosphocreatine, which are practically independent of the workload and the rate of oxygen consumption, in contrast to the fast-twitch skeletal muscle with no metabolic stability and rapid fatigue. Analysis of the literature shows that an increase in the rate of oxygen consumption by order of magnitude, due to Frank-Starling law, is observed without any significant changes in the intracellular calcium transients. Therefore, parallel activation of contraction and mitochondrial respiration by calcium ions may play only a minor role in regulation of respiration in the cells. The effective regulation of the respiration under the effect of Frank-Starling law and metabolic stability of the heart are explained by the mechanisms of functional coupling within supramolecular complexes in mitochondria, and at the subcellular level within the intracellular energetic units. Such a complex structural and functional organisation of heart energy metabolism can be described quantitatively by mathematical models.
Collapse
Affiliation(s)
- V A Saks
- Structural and Quantitative Bioenergetics Research Group, Laboratory of Fundamental and Applied Bioenergetics, INSERM E0221, Joseph Fourier University, Grenoble, France.
| | | | | | | | | | | |
Collapse
|
137
|
Vendelin M, Béraud N, Guerrero K, Andrienko T, Kuznetsov AV, Olivares J, Kay L, Saks VA. Mitochondrial regular arrangement in muscle cells: a "crystal-like" pattern. Am J Physiol Cell Physiol 2004; 288:C757-67. [PMID: 15496480 DOI: 10.1152/ajpcell.00281.2004] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this work was to characterize quantitatively the arrangement of mitochondria in heart and skeletal muscles. We studied confocal images of mitochondria in nonfixed cardiomyocytes and fibers from soleus and white gastrocnemius muscles of adult rats. The arrangement of intermyofibrillar mitochondria was analyzed by estimating the densities of distribution of mitochondrial centers relative to each other (probability density function). In cardiomyocytes (1,820 mitochondrial centers marked), neighboring mitochondria are aligned along a rectangle, with distance between the centers equal to 1.97 +/- 0.43 and 1.43 +/- 0.43 microm in the longitudinal and transverse directions, respectively. In soleus (1,659 mitochondrial centers marked) and white gastrocnemius (621 pairs of mitochondria marked), mitochondria are mainly organized in pairs at the I-band level. Because of this organization, there are two distances characterizing mitochondrial distribution in the longitudinal direction in these muscles. The distance between mitochondrial centers in the longitudinal direction within the same I band is 0.91 +/- 0.11 and 0.61 +/- 0.07 microm in soleus and white gastrocnemius, respectively. The distance between mitochondrial centers in different I bands is approximately 3.7 and approximately 3.3 microm in soleus and gastrocnemius, respectively. In the transverse direction, the mitochondria are packed considerably closer to each other in soleus than in white gastrocnemius, with the distance equal to 0.75 +/- 0.22 microm in soleus and 1.09 +/- 0.41 microm in gastrocnemius. Our results show that intermyofibrillar mitochondria are arranged in a highly ordered crystal-like pattern in a muscle-specific manner with relatively small deviation in the distances between neighboring mitochondria. This is consistent with the concept of the unitary nature of the organization of the muscle energy metabolism.
Collapse
Affiliation(s)
- Marko Vendelin
- Group of Quantitative and Structural Bioenergetics, Laboratory of Fundamental and Applied Bioenergetics, Institut National de la Santé et de la Recherche Médicale E0221, Joseph Fourier University, Grenoble, France.
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Draeger A, Monastyrskaya K, Burkhard FC, Wobus AM, Moss SE, Babiychuk EB. Membrane segregation and downregulation of raft markers during sarcolemmal differentiation in skeletal muscle cells. Dev Biol 2003; 262:324-34. [PMID: 14550795 DOI: 10.1016/s0012-1606(03)00398-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Muscle contraction implies flexibility in combination with force resistance and requires a high degree of sarcolemmal organization. Smooth muscle cells differentiate largely from mesenchymal precursor cells and gradually assume a highly periodic sarcolemmal organization. Skeletal muscle undergoes an even more striking differentiation programme, leading to cell fusion and alignment into myofibrils. The lipid bilayer of each cell type is further segregated into raft and non-raft microdomains of distinct lipid composition. Considering the extent of developmental rearrangement in skeletal muscle, we investigated sarcolemmal microdomain organization in skeletal and smooth muscle cells. The rafts in both muscle types are characterized by marker proteins belonging to the annexin family which localize to the inner membrane leaflet, as well as glycosyl-phosphatidyl-inositol (GPI)-anchored enzymes attached to the outer leaflet. We demonstrate that the profound structural rearrangements that occur during skeletal muscle maturation coincide with a striking decrease in membrane lipid segregation, downregulation of annexins 2 and 6, and a significant decrease in raft-associated 5'-nucleotidase activity. The relative paucity of lipid rafts in mature skeletal in contrast to smooth muscle suggests that the organization of sarcolemmal microdomains contributes to the muscle-specific differences in stimulatory responses and contractile properties.
Collapse
Affiliation(s)
- A Draeger
- Department of Cell Biology, Institute of Anatomy, University of Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
139
|
Andrienko T, Kuznetsov AV, Kaambre T, Usson Y, Orosco A, Appaix F, Tiivel T, Sikk P, Vendelin M, Margreiter R, Saks VA. Metabolic consequences of functional complexes of mitochondria, myofibrils and sarcoplasmic reticulum in muscle cells. J Exp Biol 2003; 206:2059-72. [PMID: 12756288 DOI: 10.1242/jeb.00242] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regulation of mitochondrial respiration both by endogenous and exogenous ADP in the cells in situ was studied in isolated and permeabilized cardiomyocytes, permeabilized cardiac fibers and 'ghost' fibers (all with a diameter of 10-20 micro m) at different (0-3 micro moll(-1)) free Ca(2+) concentrations in the medium. In all these preparations, the apparent K(m) of mitochondrial respiration for exogenous ADP at free Ca(2+) concentrations of 0-0.1 micro moll(-1) was very high, in the range of 250-350 micro moll(-1), in contrast to isolated mitochondria in vitro (apparent K(m) for ADP is approximately 20 micro moll(-1)). An increase in the free Ca(2+) concentration (up to 3 micro moll(-1), which is within physiological range), resulted in a very significant decrease of the apparent K(m) value to 20-30 micro moll(-1), a decrease of V(max) of respiration in permeabilized intact fibers and a strong contraction of sarcomeres. In ghost cardiac fibers, from which myosin was extracted but mitochondria were intact, neither the high apparent K(m) for ADP (300-350 micro moll(-1)) nor V(max) of respiration changed in the range of free Ca(2+) concentration studied, and no sarcomere contraction was observed. The exogenous-ADP-trapping system (pyruvate kinase + phosphoenolpyruvate) inhibited endogenous-ADP-supported respiration in permeabilized cells by no more than 40%, and this inhibition was reversed by creatine due to activation of mitochondrial creatine kinase. These results are taken to show strong structural associations (functional complexes) among mitochondria, sarcomeres and sarcoplasmic reticulum. Inside these complexes, mitochondrial functional state is controlled by channeling of ADP, mostly via energy- and phosphoryl-transfer networks, and apparently depends on the state of sarcomere structures.
Collapse
Affiliation(s)
- T Andrienko
- Laboratory of Fundamental and Applied Bioenergetics, INSERM E0221, Joseph Fourier University, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Abstract
Skeletal muscle is strongly dependent on oxidative phosphorylation for energy production. Because the insulin resistance of skeletal muscle in type 2 diabetes and obesity entails dysregulation of the oxidation of both carbohydrate and lipid fuels, the current study was undertaken to examine the potential contribution of perturbation of mitochondrial function. Vastus lateralis muscle was obtained by percutaneous biopsy during fasting conditions from lean (n = 10) and obese (n = 10) nondiabetic volunteers and from volunteers with type 2 diabetes (n = 10). The activity of rotenone-sensitive NADH:O(2) oxidoreductase, reflecting the overall activity of the respiratory chain, was measured in a mitochondrial fraction by a novel method based on providing access for NADH to intact mitochondria via alamethicin, a channel-forming antibiotic. Creatine kinase and citrate synthase activities were measured as markers of myocyte and mitochondria content, respectively. Activity of rotenone-sensitive NADH:O(2) oxidoreductase was normalized to creatine kinase activity, as was citrate synthase activity. NADH:O(2) oxidoreductase activity was lowest in type 2 diabetic subjects and highest in the lean volunteers (lean 0.95 +/- 0.17, obese 0.76 +/- 0.30, type 2 diabetes 0.56 +/- 0.14 units/mU creatine kinase; P < 0.005). Also, citrate synthase activity was reduced in type 2 diabetic patients (lean 3.10 +/- 0.74, obese 3.24 +/- 0.82, type 2 diabetes 2.48 +/- 0.47 units/mU creatine kinase; P < 0.005). As measured by electron microscopy, skeletal muscle mitochondria were smaller in type 2 diabetic and obese subjects than in muscle from lean volunteers (P < 0.01). We conclude that there is an impaired bioenergetic capacity of skeletal muscle mitochondria in type 2 diabetes, with some impairment also present in obesity.
Collapse
Affiliation(s)
- David E Kelley
- Department of Medicine, University of Pittsburgh School of Medicine, Pennsylvania 15213, USA.
| | | | | | | |
Collapse
|
141
|
Duman JG, Pathak NJ, Ladinsky MS, McDonald KL, Forte JG. Three-dimensional reconstruction of cytoplasmic membrane networks in parietal cells. J Cell Sci 2002; 115:1251-8. [PMID: 11884524 DOI: 10.1242/jcs.115.6.1251] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
There is general agreement that stimulation and consequent secretion of gastric parietal cells result in a great expansion of the apical canalicular membrane at the expense of an extensive intracellular network of membranes rich in the gastric proton pump (H,K-ATPase). However, there is ongoing controversy as to the precise nature of the intracellular membrane network,conventionally called tubulovesicles. At the heart of this controversy lies the question of whether tubulovesicles are a distinct membrane compartment or whether they are continuous with the apical plasma membrane.To address this controversy we used high-pressure, rapid freezing techniques to fix non-stimulated (resting) rabbit gastric glands for electron microscopy. Ultra-thin (60-70 nm) serial sections were used for conventional TEM; 400-500 nm sections were used for tomography. Images were digitized and models constructed using Midas and Imod software(http://bio3d.colorado.edu). Images were aligned and contours drawn on specific cellular structures. The contours from a stack of serial sections were arranged into objects and meshed into 3D structures. For resting parietal cells our findings are as follows:(1) The apical canaliculus is a microvilli-decorated, branching membrane network that extends into and throughout the parietal cell. This agrees well with a host of previous studies. (2) The plentiful mitochondria form an extensive reticular network throughout the cytoplasm. This has not previously been reported for the parietal cell, and the significance of this observation and the dynamics of the mitochondrial network remain unknown. (3)H,K-ATPase-rich membranes do include membrane tubules and vesicles; however,the tubulovesicular compartment is chiefly comprised of small stacks of cisternae. Thus a designation of tubulocisternae seems appropriate; however,in the resting cell there are no continuities between the apical canaliculus and the tubulocisternae or between tubulocisternae. These data support the recruitment-recycling model of parietal cell stimulation.
Collapse
Affiliation(s)
- Joseph G Duman
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
142
|
Lindén M, Li Z, Paulin D, Gotow T, Leterrier JF. Effects of desmin gene knockout on mice heart mitochondria. J Bioenerg Biomembr 2001; 33:333-41. [PMID: 11710808 DOI: 10.1023/a:1010611408007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In heart tissue from mice lacking the intermediate filament (IF) desmin, mitochondria show an abnormal shape and distribution (Thornell et al., 1997). In the present study we have isolated heart mitochondria from desmin null (D-/-) and control (D+/+) mice, and analyzed their composition by SDS-PAGE, immunoblotting, and enzyme measurements. We found both in vitro and in situ that the conventional kinesin, the microtubule-associated plus-end directed motor, was frequently associated with D+/+ heart mitochondria, but not with D-/- heart mitochondria, suggesting that the positioning of mitochondria in heart is a dynamic event involving the IF desmin, the molecular motor kinesin, and, most likely, the microtubules (MT) network. Furthermore, an increased capacity in energy production was found, as indicated by a threefold higher creatine kinase activity in heart mitochondria from D-/- compared to D+/+ mice. We also observed a significantly lower amount of cytochrome c in heart mitochondria from D-/- mice, and a relocalization of Bcl-2, which may indicate an apoptotic condition in the cell leading to the earlier reported pathological events, such as cardiomyocytes degeneration and calcinosis of the heart (Thornell et al., 1997).
Collapse
Affiliation(s)
- M Lindén
- Groupe de Biologie des Interactions Cellulaires, UMR CNRS 6558, Poitiers, France.
| | | | | | | | | |
Collapse
|
143
|
Kaasik A, Veksler V, Boehm E, Novotova M, Minajeva A, Ventura-Clapier R. Energetic crosstalk between organelles: architectural integration of energy production and utilization. Circ Res 2001; 89:153-9. [PMID: 11463722 DOI: 10.1161/hh1401.093440] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cells with high and fluctuating energy demands such as cardiomyocytes need efficient systems to link energy production to energy utilization. This is achieved in part by compartmentalized energy transfer enzymes such as creatine kinase (CK). However, hearts from CK-deficient mice develop normal cardiac function under conditions of moderate workload. We have therefore investigated whether a direct functional interplay exists between mitochondria and sarcoplasmic reticulum or between mitochondria and myofilaments in cardiac cells that catalyzes direct energy and signal channeling between organelles. We used the selective permeabilization of sarcolemmal membranes with saponin to study the functional interactions between organelles within the cellular architecture. We measured contractile kinetics, oxygen consumption, and caffeine-induced tension transients. The results show that in hearts of normal mice, ATP produced by mitochondria (supplied with substrates, oxygen, and adenine nucleotides) was able to sustain calcium uptake and contractile speed. Moreover, direct mitochondrially supplied ATP was nearly as effective as CK-supplied ATP and much more effective than externally supplied ATP, suggesting that a direct ATP/ADP channeling exists between the sites of energy production (mitochondria) and energy utilization (sarcoplasmic reticulum and myofilaments). On the other hand, in cardiac cells of mice deficient in mitochondrial and cytosolic CK, marked cytoarchitectural modifications were observed, and direct adenine nucleotide channeling between mitochondria and organelles was still effective for sarcoplasmic reticulum and myofilaments. Such direct crosstalk between organelles may explain the preserved cardiac function of CK-deficient mice under moderate workloads.
Collapse
Affiliation(s)
- A Kaasik
- Cardiologie Cellulaire et Moléculaire U-446 INSERM, Université Paris-Sud, Châtenay-Malabry, France
| | | | | | | | | | | |
Collapse
|
144
|
Saks VA, Kaambre T, Sikk P, Eimre M, Orlova E, Paju K, Piirsoo A, Appaix F, Kay L, Regitz-Zagrosek V, Fleck E, Seppet E. Intracellular energetic units in red muscle cells. Biochem J 2001; 356:643-57. [PMID: 11368796 PMCID: PMC1221880 DOI: 10.1042/0264-6021:3560643] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The kinetics of regulation of mitochondrial respiration by endogenous and exogenous ADP in muscle cells in situ was studied in skinned cardiac and skeletal muscle fibres. Endogenous ADP production was initiated by addition of MgATP; under these conditions the respiration rate and ADP concentration in the medium were dependent on the calcium concentration, and 70-80% of maximal rate of respiration was achieved at ADP concentration below 20 microM in the medium. In contrast, when exogenous ADP was added, maximal respiration rate was observed only at millimolar concentrations. An exogenous ADP-consuming system consisting of pyruvate kinase (PK; 20-40 units/ml) and phosphoenolpyruvate (PEP; 5 mM), totally suppressed respiration activated by exogenous ADP, but the respiration maintained by endogenous ADP was not suppressed by more than 20-40%. Creatine (20 mM) further activated respiration in the presence of ATP and PK+PEP. Short treatment with trypsin (50-500 nM for 5 min) decreased the apparent K(m) for exogenous ADP from 300-350 microM to 50-60 microM, increased inhibition of respiration by PK+PEP system up to 70-80%, with no changes in MgATPase activity and maximal respiration rates. Electron-microscopic observations showed detachment of mitochondria and disordering of the regular structure of the sarcomere after trypsin treatment. Two-dimensional electrophoresis revealed a group of at least seven low-molecular-mass proteins in cardiac skinned fibres which were very sensitive to trypsin and not present in glycolytic fibres, which have low apparent K(m) for exogenous ADP. It is concluded that, in oxidative muscle cells, mitochondria are incorporated into functional complexes ('intracellular energetic units') with adjacent ADP-producing systems in myofibrils and in sarcoplasmic reticulum, probably due to specific interaction with cytoskeletal elements responsible for mitochondrial distribution in the cell. It is suggested that these complexes represent the basic pattern of organization of muscle-cell energy metabolism.
Collapse
MESH Headings
- Adenosine Diphosphate/metabolism
- Adenosine Diphosphate/pharmacology
- Animals
- Creatine/metabolism
- Energy Metabolism/drug effects
- Heart/drug effects
- In Vitro Techniques
- Kinetics
- Male
- Microscopy, Electron
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Models, Biological
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/ultrastructure
- Myocardium/metabolism
- Myocardium/ultrastructure
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- V A Saks
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Beutner G, Sharma VK, Giovannucci DR, Yule DI, Sheu SS. Identification of a ryanodine receptor in rat heart mitochondria. J Biol Chem 2001; 276:21482-8. [PMID: 11297554 DOI: 10.1074/jbc.m101486200] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent studies have shown that, in a wide variety of cells, mitochondria respond dynamically to physiological changes in cytosolic Ca(2+) concentrations ([Ca(2+)](c)). Mitochondrial Ca(2+) uptake occurs via a ruthenium red-sensitive calcium uniporter and a rapid mode of Ca(2+) uptake. Surprisingly, the molecular identity of these Ca(2+) transport proteins is still unknown. Using electron microscopy and Western blotting, we identified a ryanodine receptor in the inner mitochondrial membrane with a molecular mass of approximately 600 kDa in mitochondria isolated from the rat heart. [(3)H]Ryanodine binds to this mitochondrial ryanodine receptor with high affinity. This binding is modulated by Ca(2+) but not caffeine and is inhibited by Mg(2+) and ruthenium red in the assay medium. In the presence of ryanodine, Ca(2+) uptake into isolated heart mitochondria is suppressed. In addition, ryanodine inhibited mitochondrial swelling induced by Ca(2+) overload. This swelling effect was not observed when Ca(2+) was applied to the cytosolic fraction containing sarcoplasmic reticulum. These results are the first to identify a mitochondrial Ca(2+) transport protein that has characteristics similar to the ryanodine receptor. This mitochondrial ryanodine receptor is likely to play an essential role in the dynamic uptake of Ca(2+) into mitochondria during Ca(2+) oscillations.
Collapse
Affiliation(s)
- G Beutner
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
146
|
Bottinelli R, Reggiani C. Human skeletal muscle fibres: molecular and functional diversity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 73:195-262. [PMID: 10958931 DOI: 10.1016/s0079-6107(00)00006-7] [Citation(s) in RCA: 360] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Contractile and energetic properties of human skeletal muscle have been studied for many years in vivo in the body. It has been, however, difficult to identify the specific role of muscle fibres in modulating muscle performance. Recently it has become possible to dissect short segments of single human muscle fibres from biopsy samples and make them work in nearly physiologic conditions in vitro. At the same time, the development of molecular biology has provided a wealth of information on muscle proteins and their genes and new techniques have allowed analysis of the protein isoform composition of the same fibre segments used for functional studies. In this way the histological identification of three main human muscle fibre types (I, IIA and IIX, previously called IIB) has been followed by a precise description of molecular composition and functional and biochemical properties. It has become apparent that the expression of different protein isoforms and therefore the existence of distinct muscle fibre phenotypes is one of the main determinants of the muscle performance in vivo. The present review will first describe the mechanisms through which molecular diversity is generated and how fibre types can be identified on the basis of structural and functional characteristics. Then the molecular and functional diversity will be examined with regard to (1) the myofibrillar apparatus; (2) the sarcolemma and the sarcoplasmic reticulum; and (3) the metabolic systems devoted to producing ATP. The last section of the review will discuss the advantage that fibre diversity can offer in optimizing muscle contractile performance.
Collapse
Affiliation(s)
- R Bottinelli
- Institute of Human Physiology, University of Pavia, Via Forlanni 6, 27100, Pavia, Italy.
| | | |
Collapse
|
147
|
Challet C, Maechler P, Wollheim CB, Ruegg UT. Mitochondrial calcium oscillations in C2C12 myotubes. J Biol Chem 2001; 276:3791-7. [PMID: 11036072 DOI: 10.1074/jbc.m006209200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial Ca(2+) concentration ([Ca(2+)](m)) was monitored in C2C12 skeletal muscle cells stably expressing the Ca(2+)-sensitive photoprotein aequorin targeted to mitochondria. In myotubes, KCl-induced depolarization caused a peak of 3.03 +/- 0.14 micrometer [Ca(2+)](m) followed by an oscillatory second phase (5.1 +/- 0.1 per min). Chelation of extracellular Ca(2+) or blockade of the voltage-operated Ca(2+) channel attenuated both phases of the KCl response. The inhibitor of the sarcoplasmic reticulum Ca(2+)-ATPase, cyclopiazonic acid, reduced the amplitude of the KCl-induced [Ca(2+)](m) peak and prevented the oscillations, suggesting that these were generated intracellularly. No such [Ca(2+)](m) oscillations occurred with the nicotinic agonist carbachol, cyclopiazonic acid alone, or the purinergic agonist ATP. In contrast, caffeine produced an oscillatory behavior, indicating a role of ryanodine receptors as mediators of the oscillations. The [Ca(2+)](m) response was desensitized when cells were exposed to two consecutive challenges with KCl separated by a 5-min wash, whereas a second pulse of carbachol potentiated [Ca(2+)](m), indicating differences in intracellular Ca(2+) redistribution. Cross-desensitization between KCl and carbachol and cross-potentiation between carbachol and KCl were observed. These results suggest that close contacts between mitochondria and sarcoplasmic reticulum exist permitting Ca(2+) exchanges during KCl depolarization. These newly demonstrated dynamic changes in [Ca(2+)](m) in stimulated skeletal muscle cells might contribute to the understanding of physiological and pathological processes in muscular disorders.
Collapse
Affiliation(s)
- C Challet
- Pharmacology Group, School of Pharmacy, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
148
|
Anflous K, Armstrong DD, Craigen WJ. Altered mitochondrial sensitivity for ADP and maintenance of creatine-stimulated respiration in oxidative striated muscles from VDAC1-deficient mice. J Biol Chem 2001; 276:1954-60. [PMID: 11044447 DOI: 10.1074/jbc.m006587200] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-dependent anion channels (VDACs) form the main pathway for metabolites across the mitochondrial outer membrane. The mouse vdac1 gene has been disrupted by gene targeting, and the resulting mutant mice have been examined for defects in muscle physiology. To test the hypothesis that VDAC1 constitutes a pathway for ADP translocation into mitochondria, the apparent mitochondrial sensitivity for ADP (Km(ADP)) and the calculated rate of respiration in the presence of the maximal ADP concentration (Vmax) have been assessed using skinned fibers prepared from two oxidative muscles (ventricle and soleus) and a glycolytic muscle (gastrocnemius) in control and vdac1(-/-) mice. We observed a significant increase in the apparent Km((ADP)) in heart and gastrocnemius, whereas the V(max) remained unchanged in both muscles. In contrast, a significant decrease in both the apparent Km((ADP)) and V(max) was observed in soleus. To test whether VDAC1 is required for creatine stimulation of mitochondrial respiration in oxidative muscles, the apparent Km((ADP)) and Vmax were determined in the presence of 25 mm creatine. The creatine effect on mitochondrial respiration was unchanged in both heart and soleus. These data, together with the significant increase in citrate synthase activity in heart, but not in soleus and gastrocnemius, suggest that distinct metabolic responses to altered mitochondrial outer membrane permeability occur in these different striated muscle types.
Collapse
Affiliation(s)
- K Anflous
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
149
|
Abstract
Mitochondria exist in two interconverting forms; as small isolated particles, and as extended filaments, networks or clusters connected with intermitochondrial junctions. Extended mitochondria can represent electrically united systems, which can facilitate energy delivery from the cell periphery to the cell core and organize antioxidant defence of the cell interior when O2 is consumed by mitochondrial clusters near the the outer cell membrane, and protonic potential is transmitted to the cell core mitochondria to form ATP. As to small mitochondria, they might represent a transportable form of these organelles.
Collapse
Affiliation(s)
- V P Skulachev
- Department of Bioenergetics, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia.
| |
Collapse
|
150
|
Baum O, Planitzer G, Richter H, Gossrau R. Irregular costameres represent nitric oxide synthase-1-positive sarcolemma invaginations enriched in contracted skeletal muscle fibres. THE HISTOCHEMICAL JOURNAL 2000; 32:743-51. [PMID: 11254090 DOI: 10.1023/a:1004153111532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
NADPH diaphorase histochemistry and NOS-1 immunohistochemistry on 60 microm thick frozen sections of rat extensor digitorum longus muscles led to the detection of prominent rings clearly encompassing the surface of the muscle fibres. These so far unknown costameres were usually found as doublets flanking a space of about 2 microm width. Because these costameric doublets did not appear in regular periods, we designate them irregular costameres to discriminate them from regular ones with a 1 microm periodicity overlying Z-discs and M-lines. Irregular costameres were thicker than the regular ones and free of intercostameres. Immunohistochemistry demonstrated that NOS-1 was co-localized with integral (beta-dystroglycan, alpha-sarcoglycan) and peripheral (caveolin-3, dystrophin) members of the enlarged dystrophin complex in the irregular costameres but not with non-sarcolemmal organized proteins (myosin heavy chain, alpha-actinin, desmin and sarcoplasmic reticulum-located Ca2+-dependent ATPase-1). Invaginations of the sarcolemma to form irregular costameres were observed. In teased myofibres the sarcolemma between two following irregular costameres was ballooned, while the irregular costameres themselves clamped the fibres together. Finally, the number of detectable irregular costameres was significantly increased in maximally contracted extensor digitorum longus muscles generated by electric stimulation but decreased in mechanically stretched ones. Combining these observations, we hypothesize that irregular costameres belong to a reserve zone for the sarcolemma necessary for the contraction/relaxation cycle in myofibres.
Collapse
Affiliation(s)
- O Baum
- Department of Anatomy, University Clinic Benjamin Franklin, Free University of Berlin, Germany
| | | | | | | |
Collapse
|