101
|
Estcourt LJ, Kimber C, Hopewell S, Trivella M, Doree C, Abboud MR. Interventions for preventing silent cerebral infarcts in people with sickle cell disease. Cochrane Database Syst Rev 2020; 4:CD012389. [PMID: 32250453 PMCID: PMC7134371 DOI: 10.1002/14651858.cd012389.pub3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Sickle cell disease (SCD) is one of the commonest severe monogenic disorders in the world, due to the inheritance of two abnormal haemoglobin (beta globin) genes. SCD can cause severe pain, significant end-organ damage, pulmonary complications, and premature death. Silent cerebral infarcts are the commonest neurological complication in children and probably adults with SCD. Silent cerebral infarcts also affect academic performance, increase cognitive deficits and may lower intelligence quotient. OBJECTIVES To assess the effectiveness of interventions to reduce or prevent silent cerebral infarcts in people with SCD. SEARCH METHODS We searched for relevant trials in the Cochrane Library, MEDLINE (from 1946), Embase (from 1974), the Transfusion Evidence Library (from 1980), and ongoing trial databases; all searches current to 14 November 2019. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register: 07 October 2019. SELECTION CRITERIA Randomised controlled trials comparing interventions to prevent silent cerebral infarcts in people with SCD. There were no restrictions by outcomes examined, language or publication status. DATA COLLECTION AND ANALYSIS We used standard Cochrane methodological procedures. MAIN RESULTS We included five trials (660 children or adolescents) published between 1998 and 2016. Four of the five trials were terminated early. The vast majority of participants had the haemoglobin (Hb)SS form of SCD. One trial focused on preventing silent cerebral infarcts or stroke; three trials were for primary stroke prevention and one trial dealt with secondary stroke prevention. Three trials compared the use of regular long-term red blood cell transfusions to standard care. Two of these trials included children with no previous long-term transfusions: one in children with normal transcranial doppler (TCD) velocities; and one in children with abnormal TCD velocities. The third trial included children and adolescents on long-term transfusion. Two trials compared the drug hydroxyurea and phlebotomy to long-term transfusions and iron chelation therapy: one in primary prevention (children), and one in secondary prevention (children and adolescents). The quality of the evidence was moderate to very low across different outcomes according to GRADE methodology. This was due to trials being at high risk of bias because they were unblinded; indirectness (available evidence was only for children with HbSS); and imprecise outcome estimates. Long-term red blood cell transfusions versus standard care Children with no previous long-term transfusions and higher risk of stroke (abnormal TCD velocities or previous history of silent cerebral infarcts) Long-term red blood cell transfusions may reduce the incidence of silent cerebral infarcts in children with abnormal TCD velocities, risk ratio (RR) 0.11 (95% confidence interval (CI) 0.02 to 0.86) (one trial, 124 participants, low-quality evidence); but make little or no difference to the incidence of silent cerebral infarcts in children with previous silent cerebral infarcts on magnetic resonance imaging and normal or conditional TCDs, RR 0.70 (95% CI 0.23 to 2.13) (one trial, 196 participants, low-quality evidence). No deaths were reported in either trial. Long-term red blood cell transfusions may reduce the incidence of: acute chest syndrome, RR 0.24 (95% CI 0.12 to 0.49) (two trials, 326 participants, low-quality evidence); and painful crisis, RR 0.63 (95% CI 0.42 to 0.95) (two trials, 326 participants, low-quality evidence); and probably reduces the incidence of clinical stroke, RR 0.12 (95% CI 0.03 to 0.49) (two trials, 326 participants, moderate-quality evidence). Long-term red blood cell transfusions may improve quality of life in children with previous silent cerebral infarcts (difference estimate -0.54; 95% confidence interval -0.92 to -0.17; one trial; 166 participants), but may have no effect on cognitive function (least squares means: 1.7, 95% CI -1.1 to 4.4) (one trial, 166 participants, low-quality evidence). Transfusions continued versus transfusions halted: children and adolescents with normalised TCD velocities (79 participants; one trial) Continuing red blood cell transfusions may reduce the incidence of silent cerebral infarcts, RR 0.29 (95% CI 0.09 to 0.97 (low-quality evidence). We are very uncertain whether continuing red blood cell transfusions has any effect on all-cause mortality, Peto odds ratio (OR) 8.00 (95% CI 0.16 to 404.12); or clinical stroke, RR 0.22 (95% CI 0.01 to 4.35) (very low-quality evidence). The trial did not report: comparative numbers for SCD-related adverse events; quality of life; or cognitive function. Hydroxyurea and phlebotomy versus transfusions and chelation Primary prevention, children (121 participants; one trial) We are very uncertain whether switching to hydroxyurea and phlebotomy has any effect on: silent cerebral infarcts (no infarcts); all-cause mortality (no deaths); risk of stroke (no strokes); or SCD-related complications, RR 1.52 (95% CI 0.58 to 4.02) (very low-quality evidence). Secondary prevention, children and adolescents with a history of stroke (133 participants; one trial) We are very uncertain whether switching to hydroxyurea and phlebotomy has any effect on: silent cerebral infarcts, Peto OR 7.28 (95% CI 0.14 to 366.91); all-cause mortality, Peto OR 1.02 (95%CI 0.06 to 16.41); or clinical stroke, RR 14.78 (95% CI 0.86 to 253.66) (very low-quality evidence). Switching to hydroxyurea and phlebotomy may increase the risk of SCD-related complications, RR 3.10 (95% CI 1.42 to 6.75) (low-quality evidence). Neither trial reported on quality of life or cognitive function. AUTHORS' CONCLUSIONS We identified no trials for preventing silent cerebral infarcts in adults, or in children who do not have HbSS SCD. Long-term red blood cell transfusions may reduce the incidence of silent cerebral infarcts in children with abnormal TCD velocities, but may have little or no effect on children with normal TCD velocities. In children who are at higher risk of stroke and have not had previous long-term transfusions, long-term red blood cell transfusions probably reduce the risk of stroke, and other SCD-related complications (acute chest syndrome and painful crises). In children and adolescents at high risk of stroke whose TCD velocities have normalised, continuing red blood cell transfusions may reduce the risk of silent cerebral infarcts. No treatment duration threshold has been established for stopping transfusions. Switching to hydroxyurea with phlebotomy may increase the risk of silent cerebral infarcts and SCD-related serious adverse events in secondary stroke prevention. All other evidence in this review is of very low-quality.
Collapse
Affiliation(s)
- Lise J Estcourt
- NHS Blood and TransplantHaematology/Transfusion MedicineLevel 2, John Radcliffe HospitalHeadingtonOxfordUKOX3 9BQ
| | | | - Sally Hopewell
- University of OxfordNuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS)Botnar Research Centre, Windmill RoadOxfordOxfordshireUKOX3 7LD
| | - Marialena Trivella
- University of OxfordCentre for Statistics in MedicineBotnar Research CentreWindmill RoadOxfordUKOX3 7LD
| | - Carolyn Doree
- NHS Blood and TransplantSystematic Review InitiativeJohn Radcliffe HospitalOxfordUKOX3 9BQ
| | - Miguel R Abboud
- American University of Beirut Medical CenterDepartment of Pediatrics and Adolescent MedicineBeirutLebanon
| | | |
Collapse
|
102
|
Hasan MN, Fraiwan A, An R, Alapan Y, Ung R, Akkus A, Xu JZ, Rezac AJ, Kocmich NJ, Creary MS, Oginni T, Olanipekun GM, Hassan-Hanga F, Jibir BW, Gambo S, Verma AK, Bharti PK, Riolueang S, Ngimhung T, Suksangpleng T, Thota P, Werner G, Shanmugam R, Das A, Viprakasit V, Piccone CM, Little JA, Obaro SK, Gurkan UA. Paper-based microchip electrophoresis for point-of-care hemoglobin testing. Analyst 2020; 145:2525-2542. [PMID: 32123889 DOI: 10.1039/c9an02250c] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nearly 7% of the world's population live with a hemoglobin variant. Hemoglobins S, C, and E are the most common and significant hemoglobin variants worldwide. Sickle cell disease, caused by hemoglobin S, is highly prevalent in sub-Saharan Africa and in tribal populations of Central India. Hemoglobin C is common in West Africa, and hemoglobin E is common in Southeast Asia. Screening for significant hemoglobin disorders is not currently feasible in many low-income countries with the high disease burden. Lack of early diagnosis leads to preventable high morbidity and mortality in children born with hemoglobin variants in low-resource settings. Here, we describe HemeChip, the first miniaturized, paper-based, microchip electrophoresis platform for identifying the most common hemoglobin variants easily and affordably at the point-of-care in low-resource settings. HemeChip test works with a drop of blood. HemeChip system guides the user step-by-step through the test procedure with animated on-screen instructions. Hemoglobin identification and quantification is automatically performed, and hemoglobin types and percentages are displayed in an easily understandable, objective way. We show the feasibility and high accuracy of HemeChip via testing 768 subjects by clinical sites in the United States, Central India, sub-Saharan Africa, and Southeast Asia. Validation studies include hemoglobin E testing in Bangkok, Thailand, and hemoglobin S testing in Chhattisgarh, India, and in Kano, Nigeria, where the sickle cell disease burden is the highest in the world. Tests were performed by local users, including healthcare workers and clinical laboratory personnel. Study design, methods, and results are presented according to the Standards for Reporting Diagnostic Accuracy (STARD). HemeChip correctly identified all subjects with hemoglobin S, C, and E variants with 100% sensitivity, and displayed an overall diagnostic accuracy of 98.4% in comparison to reference standard methods. HemeChip is a versatile, mass-producible microchip electrophoresis platform that addresses a major unmet need of decentralized hemoglobin analysis in resource-limited settings.
Collapse
Affiliation(s)
- Muhammad Noman Hasan
- Case Biomanufacturing and Microfabrication Laboratory, Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Ballas SK. The Evolving Pharmacotherapeutic Landscape for the Treatment of Sickle Cell Disease. Mediterr J Hematol Infect Dis 2020; 12:e2020010. [PMID: 31934320 PMCID: PMC6951351 DOI: 10.4084/mjhid.2020.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 01/02/2023] Open
Abstract
Sickle cell disease (SCD) is an extremely heterogeneous disease that has been associated with global morbidity and early mortality. More effective and inexpensive therapies are needed. During the last five years, the landscape of the pharmacotherapy of SCD has changed dramatically. Currently, 54 drugs have been used or under consideration to use for the treatment of SCD. These fall into 3 categories: the first category includes the four drugs (Hydroxyurea, L-Glutamine, Crizanlizumab tmca and Voxelotor) that have been approved by the United States Food and Drug Administration (FDA) based on successful clinical trials. The second category includes 22 drugs that failed, discontinued or terminated for now and the third category includes 28 drugs that are actively being considered for the treatment of SCD. Crizanlizumab and Voxelotor are included in the first and third categories because they have been used in more than one trial. New therapies targeting multiple pathways in the complex pathophysiology of SCD have been achieved or are under continued investigation. The emerging trend seems to be the use of multimodal drugs (i.e. drugs that have different mechanisms of action) to treat SCD similar to the use of multiple chemotherapeutic agents to treat cancer.
Collapse
Affiliation(s)
- Samir K Ballas
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
104
|
Olubiyi OO, Olagunju MO, Strodel B. Rational Drug Design of Peptide-Based Therapies for Sickle Cell Disease. Molecules 2019; 24:E4551. [PMID: 31842406 PMCID: PMC6943517 DOI: 10.3390/molecules24244551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022] Open
Abstract
Sickle cell disease (SCD) is a group of inherited disorders affecting red blood cells, which is caused by a single mutation that results in substitution of the amino acid valine for glutamic acid in the sixth position of the β-globin chain of hemoglobin. These mutant hemoglobin molecules, called hemoglobin S, can polymerize upon deoxygenation, causing erythrocytes to adopt a sickled form and to suffer hemolysis and vaso-occlusion. Until recently, only two drug therapies for SCD, which do not even fully address the manifestations of SCD, were approved by the United States (US) Food and Drug Administration. A third treatment was newly approved, while a monoclonal antibody preventing vaso-occlusive crises is also now available. The complex nature of SCD manifestations provides multiple critical points where drug discovery efforts can be and have been directed. These notwithstanding, the need for new therapeutic approaches remains high and one of the recent efforts includes developments aimed at inhibiting the polymerization of hemoglobin S. This review focuses on anti-sickling approaches using peptide-based inhibitors, ranging from individual amino acid dipeptides investigated 30-40 years ago up to more promising 12- and 15-mers under consideration in recent years.
Collapse
Affiliation(s)
- Olujide O. Olubiyi
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany; (M.O.O.); (B.S.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife 220282, Nigeria
| | - Maryam O. Olagunju
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany; (M.O.O.); (B.S.)
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany; (M.O.O.); (B.S.)
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
105
|
Howard J, Thein SL. Optimal disease management and health monitoring in adults with sickle cell disease. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:505-512. [PMID: 31808832 PMCID: PMC6913450 DOI: 10.1182/hematology.2019000055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In countries with access to organized health care, survival of children with sickle cell disease (SCD) has greatly improved, resulting in a growing population of adults with SCD. Transition from pediatric to adult care presents many challenges for the patient, who now faces the reality of emerging complications in many organs that are cumulative, adding to other age-related nonsickle conditions that interact and add to the disease morbidity. We recommend regular comprehensive annual assessments, monitoring for early signs of organ damage and joint clinics with relevant specialists, if applicable. While maintaining a low threshold for intervention with disease-modifying therapies, we should always keep in mind that there is no single complication that is pathognomonic of SCD, and nonsickle comorbidities should always be excluded and treated if present. We need to reevaluate our approach to managing adults with SCD by putting a greater emphasis on multidisciplinary care while proactively considering curative options (hematopoietic stem cell transplant and gene therapy) and experimental pharmacological agents for adults with SCD of all ages before complications render the patients ineligible for these treatments.
Collapse
Affiliation(s)
- Jo Howard
- Department of Haematology, Guy's and St Thomas' Hospitals NHS Foundation Trust, London, United Kingdom; and
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart, Lung, and Blood Institute/National Institutes of Health, Bethesda, MD
| |
Collapse
|
106
|
Kanter J, Lanzkron S. Innovations in Targeted Anti-Adhesion Treatment for Sickle Cell Disease. Clin Pharmacol Ther 2019; 107:140-146. [PMID: 31617585 DOI: 10.1002/cpt.1682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/13/2019] [Indexed: 02/02/2023]
Abstract
Sickle cell disease (SCD) is an inherited hemoglobinopathy that leads to significant lifetime morbidity and early mortality. An enhanced understanding of the complex pathophysiology of the disease has elucidated novel therapeutic targets for which new therapies are in development. In order to increase the therapeutic landscape, it has been important to identify the blood vessel and more specifically the endothelium as the target organ in this complex disease. Through this lens, we present a review of new anti-adhesion therapies for SCD in development. The long-term promise of multimodal therapies for SCD is finally on the horizon.
Collapse
Affiliation(s)
- Julie Kanter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sophie Lanzkron
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
107
|
Bernaudin F. Why, Who, When, and How? Rationale for Considering Allogeneic Stem Cell Transplantation in Children with Sickle Cell Disease. J Clin Med 2019; 8:jcm8101523. [PMID: 31546720 PMCID: PMC6833062 DOI: 10.3390/jcm8101523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/14/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
Considering the progress made in the management of sickle cell disease during the past 30 years, along with the excellent results obtained with hematopoietic stem cell transplantation (SCT), it is important to reexamine why, who, when and how to recommend allogeneic SCT in children with sickle cell disease. While sickle cell disease has a low risk of death in children and a high risk for morbidity during aging, SCT carries an early risk of death, graft-vs-host disease and infertility. Nevertheless, SCT offers at least 95% chance of cure with low risk of chronic graft-vs-host disease when a matched-sibling donor is available and the risks of infertility can be reduced by ovarian, sperm or testis cryopreservation. Thus, all available therapies such as hydroxyurea, transfusions and SCT should be presented to the parents, providers, and affected children and discussed with them from infancy. Furthermore, the use of these therapies should be adjusted to the severity of the disease and to local availabilities in order to choose the treatment offering the best benefit/risk ratio.
Collapse
Affiliation(s)
- Françoise Bernaudin
- French Referral Center for Sickle Cell Disease; SFGM-TC (Société Française de Greffe de Moelle et de Thérapie Cellulaire); DrepaGreffe Association 20 rue de Coulmiers, 94130 Nogent sur Marne, France.
| |
Collapse
|
108
|
Park SH, Lee CM, Dever DP, Davis TH, Camarena J, Srifa W, Zhang Y, Paikari A, Chang AK, Porteus MH, Sheehan VA, Bao G. Highly efficient editing of the β-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Res 2019; 47:7955-7972. [PMID: 31147717 PMCID: PMC6735704 DOI: 10.1093/nar/gkz475] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/14/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
Sickle cell disease (SCD) is a monogenic disorder that affects millions worldwide. Allogeneic hematopoietic stem cell transplantation is the only available cure. Here, we demonstrate the use of CRISPR/Cas9 and a short single-stranded oligonucleotide template to correct the sickle mutation in the β-globin gene in hematopoietic stem and progenitor cells (HSPCs) from peripheral blood or bone marrow of patients with SCD, with 24.5 ± 7.6% efficiency without selection. Erythrocytes derived from gene-edited cells showed a marked reduction of sickle cells, with the level of normal hemoglobin (HbA) increased to 25.3 ± 13.9%. Gene-corrected SCD HSPCs retained the ability to engraft when transplanted into non-obese diabetic (NOD)-SCID-gamma (NSG) mice with detectable levels of gene correction 16-19 weeks post-transplantation. We show that, by using a high-fidelity SpyCas9 that maintained the same level of on-target gene modification, the off-target effects including chromosomal rearrangements were significantly reduced. Taken together, our results demonstrate efficient gene correction of the sickle mutation in both peripheral blood and bone marrow-derived SCD HSPCs, a significant reduction in sickling of red blood cells, engraftment of gene-edited SCD HSPCs in vivo and the importance of reducing off-target effects; all are essential for moving genome editing based SCD treatment into clinical practice.
Collapse
Affiliation(s)
- So Hyun Park
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Ciaran M Lee
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Daniel P Dever
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Timothy H Davis
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Joab Camarena
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Waracharee Srifa
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Yankai Zhang
- Texas Children’s Hematology Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alireza Paikari
- Texas Children’s Hematology Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alicia K Chang
- Texas Children’s Hematology Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Vivien A Sheehan
- Texas Children’s Hematology Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| |
Collapse
|
109
|
Thomas R, Dulman R, Lewis A, Notarangelo B, Yang E. Prospective longitudinal follow-up of children with sickle cell disease treated with hydroxyurea since infancy. Pediatr Blood Cancer 2019; 66:e27816. [PMID: 31157521 DOI: 10.1002/pbc.27816] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/09/2019] [Accepted: 04/18/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Hydroxyurea (HU) increases fetal hemoglobin (HgbF) and ameliorates sickle cell disease (SCD) symptoms. Studies have demonstrated the safety and efficacy of HU in infants and children. Initiation of HU in infancy for children with SCD needs to be implemented in community practice. PROCEDURE Starting in 2011, the Pediatric Sickle Cell Program of Northern Virginia initiated HU in infants with SCD. A prospective longitudinal database tracked the clinical course and outcomes. RESULTS Twenty-four children with HgbSS who started HU by age 1 were continuously followed for a total of 95 person-years. Age at the time of analysis ranged from 2 to 7 years. Average hemoglobin at 6-month intervals ranged from 9.5 + 1.9 to 10.7 + 0.8 g/dL, and average HgbF ranged from 27.8 + 5.0% to 34.1 + 6.6%. Twenty-seven hospitalizations occurred (0.28/person-year), all before age 3, including 19 (70%) for fever or infection, five (19%) for splenic sequestration, and one (4%) for pain in an infant prior to starting HU. The treat-and-release emergency department visits totaled 68 (0.72/person-year), including 62 visits (91%) for fever, infection, or viral illness, and two visits (3%) for pain/dactylitis in infants before HU initiation. Splenic sequestration accounted for all five transfusions. No pain episodes requiring medical attention were documented after HU initiation. No complicated acute chest syndrome, no abnormal or conditional transcranial Doppler ultrasound, and no overt strokes occurred. CONCLUSION Implementation of HU in infancy for patients with SCD in community practice is feasible and is highly effective in preventing disease complications.
Collapse
Affiliation(s)
- Ronay Thomas
- Department of Hematology-Oncology, Pediatric Specialists of Virginia, Falls Church, Virginia
| | - Robin Dulman
- Department of Hematology-Oncology, Pediatric Specialists of Virginia, Falls Church, Virginia.,Department of Pediatics, Virginia Commonwealth University School of Medicine, Inova Campus, Falls Church, Virginia
| | - Angela Lewis
- Department of Hematology-Oncology, Pediatric Specialists of Virginia, Falls Church, Virginia
| | - Bailey Notarangelo
- Department of Hematology-Oncology, Pediatric Specialists of Virginia, Falls Church, Virginia
| | - Elizabeth Yang
- Department of Hematology-Oncology, Pediatric Specialists of Virginia, Falls Church, Virginia.,Department of Pediatics, Virginia Commonwealth University School of Medicine, Inova Campus, Falls Church, Virginia.,Department of Pediatrics, George Washington University School of Medicine, Washington, District of Columbia
| |
Collapse
|
110
|
Regan S, Yang X, Finnberg NK, El-Deiry WS, Pu JJ. Occurrence of acute myeloid leukemia in hydroxyurea-treated sickle cell disease patient. Cancer Biol Ther 2019; 20:1389-1397. [PMID: 31423878 DOI: 10.1080/15384047.2019.1647055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Hydroxyurea (HU) has been widely used in sickle cell disease. Its potential long-term risk for carcinogenesis or leukemogenic risk remains undefined. Here, we report a 26 y old African-American female with Sickle Cell Disease (SCD) who developed refractory/relapsed acute myeloid leukemia (AML) 6 months after 26 months of HU use. That patient's cytogenetics and molecular genetics analyses demonstrated a complex mutation profile with 5q deletion, trisomy 8, and P53 deletion (deletion of 17p13.1). P53 gene sequence studies revealed a multitude of somatic mutations that most suggest a treatment-related etiology. The above-mentioned data indicates that the patient may have developed acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) as a direct result of HU exposure.
Collapse
Affiliation(s)
- Samuel Regan
- Department of Medicine, College of Medicine, SUNY Upstate Medical University , Syracuse , New York , USA
| | - Xuebin Yang
- Department of Pathology, Perelman School of Medicine at the University of Pennsylvania , Philadelphia , PA , USA
| | | | - Wafik S El-Deiry
- Department of Pathology, Warren Alpert Medical School, Brown University , Providence , Rhode Island , USA
| | - Jeffrey J Pu
- Department of Medicine, College of Medicine, SUNY Upstate Medical University , Syracuse , New York , USA.,Upstate Cancer Center, Departments of Medicine, Pathology, and Pharmacology, SUNY Upstate Medical University , Syracuse , New York , USA.,Syracuse VA Medical Center, SUNY Upstate Medical University , Syracuse , New York , USA
| |
Collapse
|
111
|
Cantisani C, Kiss N, Naqeshbandi AF, Tosti G, Tofani S, Cartoni C, Carmosino I, Cantoresi F. Nonmelanoma skin cancer associated with Hydroxyurea treatment: Overview of the literature and our own experience. Dermatol Ther 2019; 32:e13043. [PMID: 31364787 DOI: 10.1111/dth.13043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/15/2019] [Accepted: 07/27/2019] [Indexed: 12/16/2022]
Abstract
Nonmelanoma skin cancer is the most common malignant tumor in the fair skin population, with each year several millions of diagnosed cases. Their most common risk factors are fair skin, a history of excessive ultraviolet light exposure, chronic inflammatory skin conditions, exposure to radiation, and contact with arsenic. Certain drugs can also be associated with a higher risk of nonmelanoma skin cancer. These include hydroxyurea, which acts as a metabolic inhibitor of ribonucleotide reductase and a potent nonalkylating myelosuppressive agent. It is used for the treatment of various myeloproliferative disorders, including chronic myeloid leukemia, polycythemia vera, and essential thrombocytopenia. Several publications describe an increased occurrence of skin manifestations following hydroxyurea treatment. A growing body of evidence indicates a possible role of hydroxyurea in skin cancer progression. In this review article, we summarize some relevant observations about the association of hydroxyurea and skin cancer, and we describe our own clinical experiences to provide up to date recommendations about the care of patients on hydroxyurea therapy.
Collapse
Affiliation(s)
- Carmen Cantisani
- UOC of Dermatology, Policlinico Umberto I, Sapienza Medical School of Rome, Rome, Italy
| | - Norbert Kiss
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | | | - Giulio Tosti
- Melanoma and Soft Tissue Sarcoma Division, IRCCS, European Institute of Oncology, Milan, Italy
| | - Sonia Tofani
- UOC of Dermatology, Policlinico Umberto I, Sapienza Medical School of Rome, Rome, Italy
| | - Claudio Cartoni
- Translational and precision medicine Hematology Department Umberto I Hospital Sapienza University, Rome, Italy
| | - Ida Carmosino
- Translational and precision medicine Hematology Department Umberto I Hospital Sapienza University, Rome, Italy
| | - Franca Cantoresi
- UOC of Dermatology, Policlinico Umberto I, Sapienza Medical School of Rome, Rome, Italy
| |
Collapse
|
112
|
Abstract
Background: Sickle cell disease (SCD) is an inherited hemoglobinopathy associated with severe morbidity, impaired quality of life, and premature mortality. Hematopoietic stem cell transplantation (HSCT) is the only curative treatment available for patients with SCD and has a >90% event-free survival when a matched related donor is used. However, availability of human leukocyte antigen (HLA)-identical sibling donors for the SCD population is limited. The use of HLA-matched unrelated donors or related haploidentical donors has the potential to expand the donor pool. Methods: We reviewed the current literature on the indications for SCD transplantation, donor options, and the emerging use of gene therapy as a treatment option. Google Scholar and PubMed were searched using the terms SCD, bone marrow transplantation, donor sources, gene therapy, HSCT, and HLA matching. Additional articles were identified from the bibliographies of retrieved articles. All articles were reviewed for pertinent information related to SCD and transplantation. Results: HSCT has the potential to establish donor-derived normal erythropoiesis with stable long-term engraftment, amelioration of symptoms, and stabilization of organ damage. The majority of HSCT has been performed in children from HLA-identical sibling donors and has resulted in excellent rates of survival. The use of alternate donors such as HLA-matched unrelated donors and haploidentical donors has the potential to expand the applicability of HSCT for SCD. Early results in gene therapy for SCD are encouraging. Conclusion: Evaluation of the long-term benefits of curative therapies for SCD requires comparative clinical trials and studies of late effects.
Collapse
|
113
|
Russo G, De Franceschi L, Colombatti R, Rigano P, Perrotta S, Voi V, Palazzi G, Fidone C, Quota A, Graziadei G, Pietrangelo A, Pinto V, Ruffo GB, Sorrentino F, Venturelli D, Casale M, Ferrara F, Sainati L, Cappellini MD, Piga A, Maggio A, Forni GL. Current challenges in the management of patients with sickle cell disease - A report of the Italian experience. Orphanet J Rare Dis 2019; 14:120. [PMID: 31146777 PMCID: PMC6543611 DOI: 10.1186/s13023-019-1099-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/19/2019] [Indexed: 12/22/2022] Open
Abstract
Sickle cell disease (SCD) is an inherited red blood cell disorder caused by a structural abnormality of hemoglobin called sickle hemoglobin (HbS). Clinical manifestations of SCD are mainly characterized by chronic hemolysis and acute vaso-occlusive crisis, which are responsible for severe acute and chronic organ damage. SCD is widespread in sub-Saharan Africa, in the Middle East, Indian subcontinent, and some Mediterranean regions. With voluntary population migrations, people harboring the HbS gene have spread globally. In 2006, the World Health Organization recognized hemoglobinopathies, including SCD, as a global public health problem and urged national health systems worldwide to design and establish programs for the prevention and management of SCD. Herein we describe the historical experience of the network of hemoglobinopathy centers and their approach to SCD in Italy, a country where hemoglobinopathies have a high prevalence and where SCD, associated with different genotypes including ß-thalassemia, is present in the native population.
Collapse
Affiliation(s)
- Giovanna Russo
- Oncoematologia Pediatrica, Azienda Policlinico-Vittorio Emanuele, Università di Catania, Via Santa Sofia 78, 95123, Catania, Italy.
| | - Lucia De Franceschi
- Dipartimento di Medicina, Sezione Medicina Interna, Università di Verona, Policlinico GB Rossi, AOUI, Verona, Italy
| | - Raffaella Colombatti
- Clinica di Oncoematologia Pediatrica, Dipartimento della Salute della Donna e del Bambino Azienda Ospedaliera, Università di Padova, Padova, Italy
| | - Paolo Rigano
- U.O.C Ematologia e Malattie Rare del Sangue e degli Organi Ematopoietici-P.O. Cervello Palermo, Palermo, Italy
| | - Silverio Perrotta
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Università̀ degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Vincenzo Voi
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Ospedale San Luigi Gonzaga, Orbassano, Italy
| | - Giovanni Palazzi
- Dipartimento Integrato Materno Infantile U. O. Complessa di Pediatria Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Carmelo Fidone
- Unità operativa semplice Studio Emoglobinopatie Simt, Ragusa, Italy
| | | | - Giovanna Graziadei
- UOC di Medicina Generale, Centro Malattie Rare Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Pad, Granelli, Milano, Italy
| | - Antonello Pietrangelo
- Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Valeria Pinto
- Centro della Microcitemia e delle Anemie Congenite, Ospedale Galliera, Via Volta 6, 16128, Genova, Italy
| | | | - Francesco Sorrentino
- U.O. Talassemici Centro Anemia Rare e Disturbi del metabolismo del Ferro ASL ROMA 2 Ospedale S Eugenio, Roma, Italy
| | - Donatella Venturelli
- Struttura Complessa di Immuno-trasfusionale Azienda Ospedaliero, Universitaria di Modena, Modena, Italy
| | - Maddalena Casale
- Dipartimento della Donna, del Bambino e di Chirurgia Generale e Specialistica, Università̀ degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Francesca Ferrara
- Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Laura Sainati
- Clinica di Oncoematologia Pediatrica, Dipartimento della Salute della Donna e del Bambino Azienda Ospedaliera, Università di Padova, Padova, Italy
| | - Maria Domenica Cappellini
- UOC di Medicina Generale, Centro Malattie Rare Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Pad, Granelli, Milano, Italy
| | - Antonio Piga
- Struttura Complessa di Pediatria-Microcitemie dell'Ospedale San Luigi di Orbassano, Orbassano, TO, Italy
| | - Aurelio Maggio
- U.O.C Ematologia e Malattie Rare del Sangue e degli Organi Ematopoietici-P.O. Cervello Palermo, Palermo, Italy
| | - Gian Luca Forni
- Centro della Microcitemia e delle Anemie Congenite, Ospedale Galliera, Via Volta 6, 16128, Genova, Italy.
| |
Collapse
|
114
|
Thi Nhat Ho A, Shmelev A, Joshi A, Ho N. Trends in Hospitalizations for Sickle Cell Disease Related-Complications in USA 2004 - 2012. J Hematol 2019; 8:11-16. [PMID: 32300435 PMCID: PMC7153675 DOI: 10.14740/jh475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/26/2019] [Indexed: 01/05/2023] Open
Abstract
Background Sickle cell disease (SCD) affects 100,000 patients in the USA. However, no recent data was available for annual national trends in hospitalization rates, in-hospital mortality, hospital length of stay (LOS) and costs of SCD admissions due to its complications. Methods This study was conducted to study the trends of hospitalization rates, in-hospital mortality, LOS and hospital charges due to SCD-related complications in African American (AA) patients from 2004 to 2012 in the USA. Complications included acute chest syndrome, splenic sequestration, bacterial pneumonia, sepsis, stroke, deep vein thrombosis (DVT) or pulmonary embolism, retinal circulation complications, priapism, disorders related to biliary stones, or those required blood transfusions. We obtained the study population from the Nationwide Inpatient Sample. Results Hospital admission rate rose steadily from 106 per 100,000 AA population in 2004 to 137 in 2012. Seasonal and trend decomposition revealed the highest hospitalization rate in January. Hospital LOS decreased from 7.1 ± 7.65 days in 2004 to 6.23 ± 6.42 days in 2012. Hospital charges increased from 15.35 (8.99 - 27.57) thousand dollars per admission in 2004 to 24.78 (14.37 - 45.24) in 2012. Medicaid remained the primary payer in the highest number of patients in 9 years. In-hospital mortality did not change significantly, being 1.03% in 2004 and 1.02% in 2012, with no significant seasonal variation in mortality. Most common complications were acute pain crisis and blood transfusion requirement. Biliary pathology was the only complication that decreased over time. Admissions for each complication were initially uprising with a decline from 2010 to 2012, except for DVT/pulmonary embolism with a significant uptrend. Conclusions Overall, from 2004 to 2012, hospital admission rates and charges increased, and hospital LOS decreased, while in-hospital mortality remained unchanged.
Collapse
Affiliation(s)
| | | | | | - Nghi Ho
- MedStar Harbor Hospital, Baltimore, MD, USA
| |
Collapse
|
115
|
Preliminary evidence that hydroxyurea is associated with attenuated peripheral sensitization in adults with sickle cell disease. Pain Rep 2019; 4:e724. [PMID: 31041423 PMCID: PMC6455681 DOI: 10.1097/pr9.0000000000000724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/04/2019] [Accepted: 01/30/2019] [Indexed: 01/21/2023] Open
Abstract
Introduction: Hydroxyurea (HU) is a drug that targets the underlying pathophysiology of sickle cell disease (SCD); however, it continues to be an underutilized treatment for adults. Previous research suggests that HU treatment can result in fewer hospital contacts for acute vaso-occlusive pain crises (VOC). Hydroxyurea's impact on non-VOC pain, however, is not well established. Objectives: This study examined whether HU moderated patterns of static and dynamic pain processing and clinical pain in SCD individuals. Methods: Fifty-eight patients with SCD (N taking HU = 17) underwent quantitative sensory testing (QST) and completed twice daily symptom diaries for 12 weeks. Quantitative sensory testing established thermal threshold and tolerance, mechanical thresholds, and thermal and mechanical temporal summation of pain. Results: Groups did not differ in age, sex, or opioid use. After controlling for morphine use, QST results showed that participants taking HU had higher heat and mechanical pain thresholds (static QST measures) but not thermal and mechanical temporal summation (dynamic QST measures). Participants taking HU also reported lower VOC pain compared with SCD participants not taking HU; however, HU did not moderate non-VOC clinical pain ratings. Conclusion: Findings cautiously suggest that HU acts on pain hypersensitivity and VOC pain, rather than inhibiting pain facilitation and non-VOC pain. These differences may reflect HU's influence on peripheral rather than central sensitization. Future research is warranted to replicate these findings in a larger sample and determine whether early HU administration can prevent peripheral sensitization in SCD individuals.
Collapse
|
116
|
Khan S, Damanhouri G, Jameel T, Ali A, Makki A, Khan S, AlAnsari I, Halawani S, Zahrani F, AlKazmi M, Ghita I. Impact of omega-3 fatty acids on calorie intake and certain anthropometric measurements in children with sickle cell disease in Saudi Arabia. Bioinformation 2019; 15:189-193. [PMID: 31354194 PMCID: PMC6637403 DOI: 10.6026/97320630015189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 01/09/2023] Open
Abstract
The nutritional status and growth in children with sickle cell disease is compromised due to intake of diet that is low in calories as well as deficient in nutrients. Growth stunting and a low body mass index have been observed in these children. Some children exhibit pica, which is an abnormal eating pattern by ingesting things other than food, like paper, wood etc. This also was found to correlate to lower hemoglobin values. Interventions with certain essential nutrients such as omega-3 fatty acids are known to benefit these children in terms of lowering their complications due to the disease. We therefore wished to see if omega-3 fatty acids exhibit positive effects on their nutritional intake and growth parameters too. Hence, we supplemented these children with omega-3 fatty acids for a period of six months. Both the male and female children with the disease significantly improved their calorific intake as well as body mass index. Also a lowering of pica status was distinctly observed.
Collapse
Affiliation(s)
- Shahida Khan
- Applied Nutrition Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Medical Laboratory technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ghazi Damanhouri
- Applied Nutrition Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Hematology, King Abdulaziz University hospital, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Tahir Jameel
- King Abdulaziz University hospital, Hematology department, Rabigh Branch, Kingdom of Saudi Arabia
| | - Ashraf Ali
- Applied Nutrition Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Medical Laboratory technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ahmad Makki
- Applied Nutrition Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Medical Laboratory technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Sarah Khan
- Applied Nutrition Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Diabetes Unit, King Edward Memorial Hospital, 489, Sardar Moodliar Road, Rasta Peth, Pune, India
| | - Ibtehal AlAnsari
- Applied Nutrition Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Saeed Halawani
- Department of Hematology and Immunology, Umm Al Qura University, Faculty of Medicine, Makkah, Kingdom of Saudi Arabia
| | - Fatma Zahrani
- Department of Pediatrics, King Abdulaziz University hospital,King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohammad AlKazmi
- Department of Hematology, Al-Noor Specialist hospital Makah, Kingdom of Saudi Arabia
| | - Ibrahim Ghita
- Department of Hematology, Al-Noor Specialist hospital Makah, Kingdom of Saudi Arabia
| |
Collapse
|
117
|
Tshilolo L, Tomlinson G, Williams TN, Santos B, Olupot-Olupot P, Lane A, Aygun B, Stuber SE, Latham TS, McGann PT, Ware RE. Hydroxyurea for Children with Sickle Cell Anemia in Sub-Saharan Africa. N Engl J Med 2019; 380:121-131. [PMID: 30501550 PMCID: PMC6454575 DOI: 10.1056/nejmoa1813598] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hydroxyurea is an effective treatment for sickle cell anemia, but few studies have been conducted in sub-Saharan Africa, where the burden is greatest. Coexisting conditions such as malnutrition and malaria may affect the feasibility, safety, and benefits of hydroxyurea in low-resource settings. METHODS We enrolled children 1 to 10 years of age with sickle cell anemia in four sub-Saharan countries. Children received hydroxyurea at a dose of 15 to 20 mg per kilogram of body weight per day for 6 months, followed by dose escalation. The end points assessed feasibility (enrollment, retention, and adherence), safety (dose levels, toxic effects, and malaria), and benefits (laboratory variables, sickle cell-related events, transfusions, and survival). RESULTS A total of 635 children were fully enrolled; 606 children completed screening and began receiving hydroxyurea at a mean (±SD) dose of 17.5±1.8 mg per kilogram per day. The retention rate was 94.2% at 3 years of treatment. Hydroxyurea therapy led to significant increases in both the hemoglobin and fetal hemoglobin levels. Dose-limiting toxic events regarding laboratory variables occurred in 5.1% of the participants, which was below the protocol-specified threshold for safety. During the treatment phase, 20.6 dose-limiting toxic effects per 100 patient-years occurred, as compared with 20.7 events per 100 patient-years before treatment. As compared with the pretreatment period, the rates of clinical adverse events decreased with hydroxyurea use, including rates of vaso-occlusive pain (98.3 vs. 44.6 events per 100 patient-years; incidence rate ratio, 0.45; 95% confidence interval [CI], 0.37 to 0.56), nonmalaria infection (142.5 vs. 90.0 events per 100 patient-years; incidence rate ratio, 0.62; 95% CI, 0.53 to 0.72), malaria (46.9 vs. 22.9 events per 100 patient-years; incidence rate ratio, 0.49; 95% CI, 0.37 to 0.66), transfusion (43.3 vs. 14.2 events per 100 patient-years; incidence rate ratio, 0.33; 95% CI, 0.23 to 0.47), and death (3.6 vs. 1.1 deaths per 100 patient-years; incidence rate ratio, 0.30; 95% CI, 0.10 to 0.88). CONCLUSIONS Hydroxyurea treatment was feasible and safe in children with sickle cell anemia living in sub-Saharan Africa. Hydroxyurea use reduced the incidence of vaso-occlusive events, infections, malaria, transfusions, and death, which supports the need for wider access to treatment. (Funded by the National Heart, Lung, and Blood Institute and others; REACH ClinicalTrials.gov number, NCT01966731 .).
Collapse
Affiliation(s)
- Léon Tshilolo
- From Centre Hospitalier Monkole, Kinshasa, Democratic Republic of Congo (L.T.); the Department of Medicine, University Health Network and Mt. Sinai Hospital, and the University of Toronto, Toronto (G.T.); the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Program, Kilifi, Kenya (T.N.W.); the Department of Medicine, Imperial College London, London (T.N.W.); Hospital Pediátrico David Bernardino, Luanda, Angola (B.S.); Mbale Clinical Research Institute and Mbale Regional Referral and Teaching Hospital-Busitema University, Mbale, Uganda (P.O.-O.); the Division of Hematology, Department of Pediatrics, Cincinnati Children's Hospital (A.L., S.E.S., T.S.L., P.T.M., R.E.W.), University of Cincinnati College of Medicine (A.L., P.T.M., R.E.W.), and the Global Health Center, Cincinnati Children's Hospital Medical Center (S.E.S., P.T.M., R.E.W.), Cincinnati; and Cohen Children's Medical Center, New Hyde Park, and the Zucker School of Medicine at Hofstra/Northwell, Hempstead - both in New York (B.A.)
| | - George Tomlinson
- From Centre Hospitalier Monkole, Kinshasa, Democratic Republic of Congo (L.T.); the Department of Medicine, University Health Network and Mt. Sinai Hospital, and the University of Toronto, Toronto (G.T.); the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Program, Kilifi, Kenya (T.N.W.); the Department of Medicine, Imperial College London, London (T.N.W.); Hospital Pediátrico David Bernardino, Luanda, Angola (B.S.); Mbale Clinical Research Institute and Mbale Regional Referral and Teaching Hospital-Busitema University, Mbale, Uganda (P.O.-O.); the Division of Hematology, Department of Pediatrics, Cincinnati Children's Hospital (A.L., S.E.S., T.S.L., P.T.M., R.E.W.), University of Cincinnati College of Medicine (A.L., P.T.M., R.E.W.), and the Global Health Center, Cincinnati Children's Hospital Medical Center (S.E.S., P.T.M., R.E.W.), Cincinnati; and Cohen Children's Medical Center, New Hyde Park, and the Zucker School of Medicine at Hofstra/Northwell, Hempstead - both in New York (B.A.)
| | - Thomas N Williams
- From Centre Hospitalier Monkole, Kinshasa, Democratic Republic of Congo (L.T.); the Department of Medicine, University Health Network and Mt. Sinai Hospital, and the University of Toronto, Toronto (G.T.); the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Program, Kilifi, Kenya (T.N.W.); the Department of Medicine, Imperial College London, London (T.N.W.); Hospital Pediátrico David Bernardino, Luanda, Angola (B.S.); Mbale Clinical Research Institute and Mbale Regional Referral and Teaching Hospital-Busitema University, Mbale, Uganda (P.O.-O.); the Division of Hematology, Department of Pediatrics, Cincinnati Children's Hospital (A.L., S.E.S., T.S.L., P.T.M., R.E.W.), University of Cincinnati College of Medicine (A.L., P.T.M., R.E.W.), and the Global Health Center, Cincinnati Children's Hospital Medical Center (S.E.S., P.T.M., R.E.W.), Cincinnati; and Cohen Children's Medical Center, New Hyde Park, and the Zucker School of Medicine at Hofstra/Northwell, Hempstead - both in New York (B.A.)
| | - Brígida Santos
- From Centre Hospitalier Monkole, Kinshasa, Democratic Republic of Congo (L.T.); the Department of Medicine, University Health Network and Mt. Sinai Hospital, and the University of Toronto, Toronto (G.T.); the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Program, Kilifi, Kenya (T.N.W.); the Department of Medicine, Imperial College London, London (T.N.W.); Hospital Pediátrico David Bernardino, Luanda, Angola (B.S.); Mbale Clinical Research Institute and Mbale Regional Referral and Teaching Hospital-Busitema University, Mbale, Uganda (P.O.-O.); the Division of Hematology, Department of Pediatrics, Cincinnati Children's Hospital (A.L., S.E.S., T.S.L., P.T.M., R.E.W.), University of Cincinnati College of Medicine (A.L., P.T.M., R.E.W.), and the Global Health Center, Cincinnati Children's Hospital Medical Center (S.E.S., P.T.M., R.E.W.), Cincinnati; and Cohen Children's Medical Center, New Hyde Park, and the Zucker School of Medicine at Hofstra/Northwell, Hempstead - both in New York (B.A.)
| | - Peter Olupot-Olupot
- From Centre Hospitalier Monkole, Kinshasa, Democratic Republic of Congo (L.T.); the Department of Medicine, University Health Network and Mt. Sinai Hospital, and the University of Toronto, Toronto (G.T.); the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Program, Kilifi, Kenya (T.N.W.); the Department of Medicine, Imperial College London, London (T.N.W.); Hospital Pediátrico David Bernardino, Luanda, Angola (B.S.); Mbale Clinical Research Institute and Mbale Regional Referral and Teaching Hospital-Busitema University, Mbale, Uganda (P.O.-O.); the Division of Hematology, Department of Pediatrics, Cincinnati Children's Hospital (A.L., S.E.S., T.S.L., P.T.M., R.E.W.), University of Cincinnati College of Medicine (A.L., P.T.M., R.E.W.), and the Global Health Center, Cincinnati Children's Hospital Medical Center (S.E.S., P.T.M., R.E.W.), Cincinnati; and Cohen Children's Medical Center, New Hyde Park, and the Zucker School of Medicine at Hofstra/Northwell, Hempstead - both in New York (B.A.)
| | - Adam Lane
- From Centre Hospitalier Monkole, Kinshasa, Democratic Republic of Congo (L.T.); the Department of Medicine, University Health Network and Mt. Sinai Hospital, and the University of Toronto, Toronto (G.T.); the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Program, Kilifi, Kenya (T.N.W.); the Department of Medicine, Imperial College London, London (T.N.W.); Hospital Pediátrico David Bernardino, Luanda, Angola (B.S.); Mbale Clinical Research Institute and Mbale Regional Referral and Teaching Hospital-Busitema University, Mbale, Uganda (P.O.-O.); the Division of Hematology, Department of Pediatrics, Cincinnati Children's Hospital (A.L., S.E.S., T.S.L., P.T.M., R.E.W.), University of Cincinnati College of Medicine (A.L., P.T.M., R.E.W.), and the Global Health Center, Cincinnati Children's Hospital Medical Center (S.E.S., P.T.M., R.E.W.), Cincinnati; and Cohen Children's Medical Center, New Hyde Park, and the Zucker School of Medicine at Hofstra/Northwell, Hempstead - both in New York (B.A.)
| | - Banu Aygun
- From Centre Hospitalier Monkole, Kinshasa, Democratic Republic of Congo (L.T.); the Department of Medicine, University Health Network and Mt. Sinai Hospital, and the University of Toronto, Toronto (G.T.); the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Program, Kilifi, Kenya (T.N.W.); the Department of Medicine, Imperial College London, London (T.N.W.); Hospital Pediátrico David Bernardino, Luanda, Angola (B.S.); Mbale Clinical Research Institute and Mbale Regional Referral and Teaching Hospital-Busitema University, Mbale, Uganda (P.O.-O.); the Division of Hematology, Department of Pediatrics, Cincinnati Children's Hospital (A.L., S.E.S., T.S.L., P.T.M., R.E.W.), University of Cincinnati College of Medicine (A.L., P.T.M., R.E.W.), and the Global Health Center, Cincinnati Children's Hospital Medical Center (S.E.S., P.T.M., R.E.W.), Cincinnati; and Cohen Children's Medical Center, New Hyde Park, and the Zucker School of Medicine at Hofstra/Northwell, Hempstead - both in New York (B.A.)
| | - Susan E Stuber
- From Centre Hospitalier Monkole, Kinshasa, Democratic Republic of Congo (L.T.); the Department of Medicine, University Health Network and Mt. Sinai Hospital, and the University of Toronto, Toronto (G.T.); the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Program, Kilifi, Kenya (T.N.W.); the Department of Medicine, Imperial College London, London (T.N.W.); Hospital Pediátrico David Bernardino, Luanda, Angola (B.S.); Mbale Clinical Research Institute and Mbale Regional Referral and Teaching Hospital-Busitema University, Mbale, Uganda (P.O.-O.); the Division of Hematology, Department of Pediatrics, Cincinnati Children's Hospital (A.L., S.E.S., T.S.L., P.T.M., R.E.W.), University of Cincinnati College of Medicine (A.L., P.T.M., R.E.W.), and the Global Health Center, Cincinnati Children's Hospital Medical Center (S.E.S., P.T.M., R.E.W.), Cincinnati; and Cohen Children's Medical Center, New Hyde Park, and the Zucker School of Medicine at Hofstra/Northwell, Hempstead - both in New York (B.A.)
| | - Teresa S Latham
- From Centre Hospitalier Monkole, Kinshasa, Democratic Republic of Congo (L.T.); the Department of Medicine, University Health Network and Mt. Sinai Hospital, and the University of Toronto, Toronto (G.T.); the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Program, Kilifi, Kenya (T.N.W.); the Department of Medicine, Imperial College London, London (T.N.W.); Hospital Pediátrico David Bernardino, Luanda, Angola (B.S.); Mbale Clinical Research Institute and Mbale Regional Referral and Teaching Hospital-Busitema University, Mbale, Uganda (P.O.-O.); the Division of Hematology, Department of Pediatrics, Cincinnati Children's Hospital (A.L., S.E.S., T.S.L., P.T.M., R.E.W.), University of Cincinnati College of Medicine (A.L., P.T.M., R.E.W.), and the Global Health Center, Cincinnati Children's Hospital Medical Center (S.E.S., P.T.M., R.E.W.), Cincinnati; and Cohen Children's Medical Center, New Hyde Park, and the Zucker School of Medicine at Hofstra/Northwell, Hempstead - both in New York (B.A.)
| | - Patrick T McGann
- From Centre Hospitalier Monkole, Kinshasa, Democratic Republic of Congo (L.T.); the Department of Medicine, University Health Network and Mt. Sinai Hospital, and the University of Toronto, Toronto (G.T.); the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Program, Kilifi, Kenya (T.N.W.); the Department of Medicine, Imperial College London, London (T.N.W.); Hospital Pediátrico David Bernardino, Luanda, Angola (B.S.); Mbale Clinical Research Institute and Mbale Regional Referral and Teaching Hospital-Busitema University, Mbale, Uganda (P.O.-O.); the Division of Hematology, Department of Pediatrics, Cincinnati Children's Hospital (A.L., S.E.S., T.S.L., P.T.M., R.E.W.), University of Cincinnati College of Medicine (A.L., P.T.M., R.E.W.), and the Global Health Center, Cincinnati Children's Hospital Medical Center (S.E.S., P.T.M., R.E.W.), Cincinnati; and Cohen Children's Medical Center, New Hyde Park, and the Zucker School of Medicine at Hofstra/Northwell, Hempstead - both in New York (B.A.)
| | - Russell E Ware
- From Centre Hospitalier Monkole, Kinshasa, Democratic Republic of Congo (L.T.); the Department of Medicine, University Health Network and Mt. Sinai Hospital, and the University of Toronto, Toronto (G.T.); the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Program, Kilifi, Kenya (T.N.W.); the Department of Medicine, Imperial College London, London (T.N.W.); Hospital Pediátrico David Bernardino, Luanda, Angola (B.S.); Mbale Clinical Research Institute and Mbale Regional Referral and Teaching Hospital-Busitema University, Mbale, Uganda (P.O.-O.); the Division of Hematology, Department of Pediatrics, Cincinnati Children's Hospital (A.L., S.E.S., T.S.L., P.T.M., R.E.W.), University of Cincinnati College of Medicine (A.L., P.T.M., R.E.W.), and the Global Health Center, Cincinnati Children's Hospital Medical Center (S.E.S., P.T.M., R.E.W.), Cincinnati; and Cohen Children's Medical Center, New Hyde Park, and the Zucker School of Medicine at Hofstra/Northwell, Hempstead - both in New York (B.A.)
| |
Collapse
|
118
|
Li B, Zhu X, Ward CM, Starlard-Davenport A, Takezaki M, Berry A, Ward A, Wilder C, Neunert C, Kutlar A, Pace BS. MIR-144-mediated NRF2 gene silencing inhibits fetal hemoglobin expression in sickle cell disease. Exp Hematol 2018; 70:85-96.e5. [PMID: 30412705 DOI: 10.1016/j.exphem.2018.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 12/30/2022]
Abstract
Inherited genetic modifiers and pharmacologic agents that enhance fetal hemoglobin (HbF) expression reverse the clinical severity of sickle cell disease (SCD). Recent efforts to develop novel strategies of HbF induction include discovery of molecular targets that regulate γ-globin gene transcription and translation. The purpose of this study was to perform genome-wide microRNA (miRNA) analysis to identify genes associated with HbF expression in patients with SCD. We isolated RNA from purified reticulocytes for microarray-based miRNA expression profiling. Using samples from patients with contrasting HbF levels, we observed an eightfold upregulation of miR-144-3p (miR-144) and miR-144-5p in the low-HbF group compared with those with high HbF. Additional analysis by reverse transcription quantitative polymerase chain reaction confirmed individual miR-144 expression levels of subjects in the two groups. Subsequent functional studies in normal and sickle erythroid progenitors showed NRF2 gene silencing by miR-144 and concomitant repression of γ-globin transcription; by contrast, treatment with miR-144 antagomir reversed its silencing effects in a dose-dependent manner. Because NRF2 regulates reactive oxygen species levels, additional studies investigated mechanisms of HbF regulation using a hemin-induced oxidative stress model. Treatment of KU812 cells with hemin produced an increase in NRF2 expression and HbF induction that reversed with miR-144 pretreatment. Chromatin immunoprecipitation assay confirmed NRF2 binding to the γ-globin antioxidant response element, which was inhibited by miR-144 mimic treatment. The genome-wide miRNA microarray and primary erythroid progenitor data support a miR-144/NRF2-mediated mechanism of γ-globin gene regulation in SCD.
Collapse
Affiliation(s)
- Biaoru Li
- Department of Pediatrics, Augusta University, Augusta, GA, USA
| | - Xingguo Zhu
- Department of Pediatrics, Augusta University, Augusta, GA, USA
| | - Christina M Ward
- Department of Biochemistry and Molecular Biology, Boston University, Boston, MA, USA
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Mayuko Takezaki
- Department of Pediatrics, Augusta University, Augusta, GA, USA
| | - Amber Berry
- Medical College of Georgia, Augusta, GA, USA
| | - Alexander Ward
- Department of Pediatrics, Augusta University, Augusta, GA, USA
| | - Caroline Wilder
- Department of Otolaryngology, Augusta University, Augusta, GA, USA
| | - Cindy Neunert
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Abdullah Kutlar
- Department of Medicine, Augusta University, Augusta, GA, USA
| | - Betty S Pace
- Department of Pediatrics, Augusta University, Augusta, GA, USA; Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA.
| |
Collapse
|
119
|
Arlt MF, Rajendran S, Holmes SN, Wang K, Bergin IL, Ahmed S, Wilson TE, Glover TW. Effects of hydroxyurea on CNV induction in the mouse germline. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:698-714. [PMID: 30218578 PMCID: PMC7275641 DOI: 10.1002/em.22233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/19/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Copy number variants (CNVs) are important in genome variation and genetic disease, with new mutations arising frequently in the germline and somatic cells. Replication stress caused by aphidicolin and hydroxyurea (HU) is a potent inducer of de novo CNVs in cultured mammalian cells. HU is used extensively for long-term management of sickle cell disease. Here, we examined the effects of HU treatment on germline CNVs in vivo in male mice to explore whether replication stress can act as a CNV mutagen in germline mitotic divisions as in cultured cells and whether this would support a concern for increased CNV mutations in offspring of men treated with HU. Several trials of HU administration were performed by oral gavage and subcutaneous pump, with CNVs characterized in C57BL/6 x C3H/HeJ hybrid mouse offspring by microarray and mate-pair sequencing. HU had a short half-life of ~14 min and a narrow dose window over which studies could be performed while maintaining fertility. Tissue histopathology and reticulocyte micronucleus assays verified that doses had a substantial tissue and genetic toxicity. CNVs were readily detected in offspring that originated in both paternal and maternal mouse strains, as de novo and inherited events. However, HU did not increase CNV formation above baseline levels. These results reveal a high rate of CNV mutagenesis in the mouse germline but do not support the hypothesis that HU would increase CNV formation during mammalian spermatogenesis, perhaps due to highly toxic effects on sperm development or experimental variables related to HU pharmacology in mice. Environ. Mol. Mutagen. 59:698-714, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Martin F. Arlt
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sountharia Rajendran
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sandra N. Holmes
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kathleen Wang
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ingrid L. Bergin
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Samreen Ahmed
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas E. Wilson
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas W. Glover
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
120
|
How I treat the older adult with sickle cell disease. Blood 2018; 132:1750-1760. [PMID: 30206116 DOI: 10.1182/blood-2018-03-818161] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/21/2018] [Indexed: 12/31/2022] Open
Abstract
With increasing survival, cumulative complications of sickle cell disease (SCD), which develop insidiously over time, are becoming more apparent and common in older patients, particularly those in their fifth decade and beyond. The older patient is also more likely to develop other age-related nonsickle conditions that interact and add to the disease morbidity. A common misconception is that any symptom in a SCD patient is attributable to their SCD and this may lead to delays in diagnosis and appropriate intervention. We recommend regular comprehensive reviews and monitoring for early signs of organ damage and a low threshold for the use of hydroxyurea and blood transfusions as preventative measures for end-organ disease. Treatable comorbidities and acute deterioration should be managed aggressively. Although the primary goal in management of the older adult with SCD is improving anemia and minimizing organ damage, the time has come for us to be more proactive in considering curative therapies previously offered to the younger patient. Curative or experimental interventions should be discussed early, before complications render the patients ineligible for these treatments.
Collapse
|
121
|
Inusa BPD, Wale A, Hassan AA, Idhate T, Dogara L, Ijei I, Qin Y, Anie K, Lawson JO, Hsu L. Low-dose hydroxycarbamide therapy may offer similar benefit as maximum tolerated dose for children and young adults with sickle cell disease in low-middle-income settings. F1000Res 2018; 7. [PMID: 30228870 PMCID: PMC6124375 DOI: 10.12688/f1000research.14589.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2018] [Indexed: 12/14/2022] Open
Abstract
The multiple clinical benefits of hydroxycarbamide in sickle cell disease are supported by a large body of evidence. The maximum tolerated dose (MTD) is the regimen recommended by guidelines from a panel of National Heart, Lung, and Blood Institute (NHLBI) experts, but other dosage regimens have been used in babies (BABY-HUG) 9 to 18 months old (20 mg/kg per day) and developing countries such as India (10 mg/kg per day); however, there has been no direct comparison of the efficacy, effectiveness, or cost-effectiveness of these different regimens. The purpose of this review was to investigate the current situation with various hydroxycarbamide regimens with particular relevance to low-middle-income countries. In regard to methodology, a literature review was undertaken by using multiple databases in PubMed and Google and the search terms included sickle cell disease, hydroxyurea, hydroxycarbamide, sickle cell anaemia, low-middle-income countries, Sub-Saharan Africa, and India. Although MTD regimens have been widely used in research, especially within North America, clinical trials elsewhere tend to use fixed-dose regimens. In a survey of haematologists across Europe and Africa, 60% (75% response rate) did not use the MTD regimen for hydroxycarbamide treatment of sickle cell disease. The recommendations are (1) for practical purposes to commence using fixed-dose hydroxycarbamide in line with BABY-HUG recommendations and then (2) to consider or propose a trial comparing MTD escalation with various fixed doses and to include as end points health-related quality of life, haemoglobin F levels, adherence, and cost-effectiveness.
Collapse
Affiliation(s)
- Baba Psalm Duniya Inusa
- Paediatric Haematology, Evelina London Children's Hospital, Guy's and St Thomas NHS Foundation Trust, London, UK
| | - Atoyebi Wale
- Department of Haematology, Oxford University Teaching Hospital, Oxford, UK
| | - Abdul Aziz Hassan
- Department of Haematology & Blood Transfusion, Faculty of Basic Clinical Sciences, College of Health Sciences, Ahmadu Bello University & ABU Teaching Hospital, Zaria, Nigeria
| | - Tushar Idhate
- Division of Paediatric Haematology and Oncology, Department of Paediatrics, Mahatma Gandhi Mission Medical College and Hospital, Aurangabad, India
| | - Livingstone Dogara
- Haematology and Blood Transfusion, Faculty of Clinical Sciences, Kaduna State University College of Medicine, Kaduna State University, Kaduna, Nigeria
| | - Ifeoma Ijei
- Haematology and Blood Transfusion, Faculty of Clinical Sciences, Kaduna State University College of Medicine, Kaduna State University, Kaduna, Nigeria
| | - Yewen Qin
- Paediatrics Department, University Hospital, Lewisham and Greenwich NHS Trust, King's College London, London, UK
| | - Kofi Anie
- Haematology and Sickle Cell Centre, London North West University Healthcare NHS Trust, London, UK.,Imperial College London, London, UK
| | | | - Lewis Hsu
- Pediatric Sickle Cell Center, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
122
|
McGann PT, Williams TN, Olupot-Olupot P, Tomlinson GA, Lane A, Luís Reis da Fonseca J, Kitenge R, Mochamah G, Wabwire H, Stuber S, Howard TA, McElhinney K, Aygun B, Latham T, Santos B, Tshilolo L, Ware RE. Realizing effectiveness across continents with hydroxyurea: Enrollment and baseline characteristics of the multicenter REACH study in Sub-Saharan Africa. Am J Hematol 2018; 93:537-545. [PMID: 29318647 DOI: 10.1002/ajh.25034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/22/2022]
Abstract
Despite its well-described safety and efficacy in the treatment of sickle cell anemia (SCA) in high-income settings, hydroxyurea remains largely unavailable in sub-Saharan Africa, where more than 75% of annual SCA births occur and many comorbidities exist. Realizing Effectiveness Across Continents with Hydroxyurea (REACH, ClinicalTrials.gov NCT01966731) is a prospective, Phase I/II open-label trial of hydroxyurea designed to evaluate the feasibility, safety, and benefits of hydroxyurea treatment for children with SCA in four sub-Saharan African countries. Following comprehensive training of local research teams, REACH was approved by local Ethics Committees and achieved full enrollment ahead of projections with 635 participants enrolled over a 30-month period, despite half of families living >12 km from their clinical site. At enrollment, study participants (age 5.4 ± 2.4 years) had substantial morbidity, including a history of vaso-occlusive pain (98%), transfusion (68%), malaria (85%), and stroke (6%). Significant differences in laboratory characteristics were noted across sites, with lower hemoglobin concentrations (P < .01) in Angola (7.2 ± 1.0 g/dL) and the DRC (7.0 ± 0.9 g/dL) compared to Kenya (7.4 ± 1.1 g/dL) and Uganda (7.5 ± 1.1 g/dL). Analysis of known genetic modifiers of SCA demonstrated a high frequency of α-thalassemia (58.4% with at least a single α-globin gene deletion) and G6PD deficiency (19.7% of males and 2.4% of females) across sites. The CAR β-globin haplotype was present in 99% of participants. The full enrollment to REACH confirms the feasibility of conducting high-quality SCA research in Africa; this study will provide vital information to guide safe and effective dosing of hydroxyurea for children with SCA living in Africa.
Collapse
Affiliation(s)
| | - Thomas N. Williams
- KEMRI/Wellcome Trust Research Programme; Kilifi Kenya
- Imperial College; London UK
| | | | | | - Adam Lane
- Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
| | | | | | | | - Ham Wabwire
- Mbale Regional Hospital Clinical Research Unit; Mbale Uganda
| | - Susan Stuber
- Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
| | - Thad A. Howard
- Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
| | | | - Banu Aygun
- Cohen Children's Medical Center; New Hyde Park New York
| | - Teresa Latham
- Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
| | | | | | - Russell E. Ware
- Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
| | | |
Collapse
|
123
|
Riley TR, Boss A, McClain D, Riley TT. Review of Medication Therapy for the Prevention of Sickle Cell Crisis. P & T : A PEER-REVIEWED JOURNAL FOR FORMULARY MANAGEMENT 2018; 43:417-437. [PMID: 30013299 PMCID: PMC6027858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This article reviews the clinical data concerning the uses of hydroxyurea, L-glutamine, and crizanlizumab in treating pain crises associated with sickle cell disease.
Collapse
|
124
|
Metformin induces FOXO3-dependent fetal hemoglobin production in human primary erythroid cells. Blood 2018; 132:321-333. [PMID: 29884740 DOI: 10.1182/blood-2017-11-814335] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/25/2018] [Indexed: 01/08/2023] Open
Abstract
Induction of red blood cell (RBC) fetal hemoglobin (HbF; α2γ2) ameliorates the pathophysiology of sickle cell disease (SCD) by reducing the concentration of sickle hemoglobin (HbS; α2βS2) to inhibit its polymerization. Hydroxyurea (HU), the only US Food and Drug Administration (FDA)-approved drug for SCD, acts in part by inducing HbF; however, it is not fully effective, reflecting the need for new therapies. Whole-exome sequence analysis of rare genetic variants in SCD patients identified FOXO3 as a candidate regulator of RBC HbF. We validated these genomic findings through loss- and gain-of-function studies in normal human CD34+ hematopoietic stem and progenitor cells induced to undergo erythroid differentiation. FOXO3 gene silencing reduced γ-globin RNA levels and HbF levels in erythroblasts, whereas overexpression of FOXO3 produced the opposite effect. Moreover, treatment of primary CD34+ cell-derived erythroid cultures with metformin, an FDA-approved drug known to enhance FOXO3 activity in nonerythroid cells, caused dose-related FOXO3-dependent increases in the percentage of HbF protein and the fraction of HbF-immunostaining cells (F cells). Combined HU and metformin treatment induced HbF additively and reversed the arrest in erythroid maturation caused by HU treatment alone. HbF induction by metformin in erythroid precursors was dependent on FOXO3 expression and did not alter expression of BCL11A, MYB, or KLF1. Collectively, our data implicate FOXO3 as a positive regulator of γ-globin expression and identify metformin as a potential therapeutic agent for SCD.
Collapse
|
125
|
Abstract
Introduction Sickle cell disease (SCD) is an orphan disease in the United States, but is highly prevalent worldwide. Only two drugs, hydroxyurea and L-glutamine, are approved for this disease. With an improved understanding of the pathophysiology of SCD as well as the success of several recently approved drugs for other orphan diseases, there is an increased interest in the development of drugs for SCD. Areas covered This review summarizes published studies of drug therapies and ongoing trials of novel agents. Expert opinion The development of drugs with different mechanisms of action offers opportunities for combination and individualized therapy in SCD. In addition to acute pain crisis, the evaluation of other SCD-related complications, exercise capacity, patient reported outcomes and validated surrogate endpoints are necessary to advance drug development. It is important to involve sites in sub-Saharan Africa and India, which have the highest burden of SCD, in trials of novel therapies.
Collapse
Affiliation(s)
- Kenneth I Ataga
- Division of Hematology/Oncology, University of North Carolina, Chapel Hill, NC
| | - Payal C Desai
- Division of Hematology/Oncology, University of North Carolina, Chapel Hill, NC.,#Division of Hematology, The Ohio State University, Columbus, OH
| |
Collapse
|
126
|
Nakagawa A, Ferrari M, Schleifer G, Cooper MK, Liu C, Yu B, Berra L, Klings ES, Safo RS, Chen Q, Musayev FN, Safo MK, Abdulmalik O, Bloch DB, Zapol WM. A Triazole Disulfide Compound Increases the Affinity of Hemoglobin for Oxygen and Reduces the Sickling of Human Sickle Cells. Mol Pharm 2018; 15:1954-1963. [PMID: 29634905 PMCID: PMC5942180 DOI: 10.1021/acs.molpharmaceut.8b00108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sickle cell disease is an inherited disorder of hemoglobin (Hb). During a sickle cell crisis, deoxygenated sickle hemoglobin (deoxyHbS) polymerizes to form fibers in red blood cells (RBCs), causing the cells to adopt "sickled" shapes. Using small molecules to increase the affinity of Hb for oxygen is a potential approach to treating sickle cell disease, because oxygenated Hb interferes with the polymerization of deoxyHbS. We have identified a triazole disulfide compound (4,4'-di(1,2,3-triazolyl)disulfide, designated TD-3), which increases the affinity of Hb for oxygen. The crystal structures of carboxy- and deoxy-forms of human adult Hb (HbA), each complexed with TD-3, revealed that one molecule of the monomeric thiol form of TD-3 (5-mercapto-1H-1,2,3-triazole, designated MT-3) forms a disulfide bond with β-Cys93, which inhibits the salt-bridge formation between β-Asp94 and β-His146. This inhibition of salt bridge formation stabilizes the R-state and destabilizes the T-state of Hb, resulting in reduced magnitude of the Bohr effect and increased affinity of Hb for oxygen. Intravenous administration of TD-3 (100 mg/kg) to C57BL/6 mice increased the affinity of murine Hb for oxygen, and the mice did not appear to be adversely affected by the drug. TD-3 reduced in vitro hypoxia-induced sickling of human sickle RBCs. The percentage of sickled RBCs and the P50 of human SS RBCs by TD-3 were inversely correlated with the fraction of Hb modified by TD-3. Our study shows that TD-3, and possibly other triazole disulfide compounds that bind to Hb β-Cys93, may provide new treatment options for patients with sickle cell disease.
Collapse
Affiliation(s)
- Akito Nakagawa
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Michele Ferrari
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Grigorij Schleifer
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Marissa K Cooper
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Chen Liu
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Binglan Yu
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Lorenzo Berra
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Elizabeth S Klings
- The Pulmonary Center , Boston University School of Medicine , Boston , Massachusetts 02118 , United States
| | - Ronni S Safo
- Department of Medicinal Chemistry, The Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy , Virginia Commonwealth University , Richmond , Virginia 23298 , United States
| | - Qiukan Chen
- Division of Hematology , The Children's Hospital of Philadelphia , Philadelphia , Pennsylvania 19104 , United States
| | - Faik N Musayev
- Department of Medicinal Chemistry, The Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy , Virginia Commonwealth University , Richmond , Virginia 23298 , United States
| | - Martin K Safo
- Department of Medicinal Chemistry, The Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy , Virginia Commonwealth University , Richmond , Virginia 23298 , United States
| | - Osheiza Abdulmalik
- Division of Hematology , The Children's Hospital of Philadelphia , Philadelphia , Pennsylvania 19104 , United States
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts 02114 , United States.,Division of Rheumatology, Allergy and Immunology, Department of Medicine , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Warren M Zapol
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts 02114 , United States
| |
Collapse
|
127
|
Di Maggio R, Hsieh MM, Zhao X, Calvaruso G, Rigano P, Renda D, Tisdale JF, Maggio A. Chronic Administration of Hydroxyurea (HU) Benefits Caucasian Patients with Sickle-Beta Thalassemia. Int J Mol Sci 2018; 19:ijms19030681. [PMID: 29495591 PMCID: PMC5877542 DOI: 10.3390/ijms19030681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 01/10/2023] Open
Abstract
In sickle cell disease (SCD), hydroxyurea (HU) treatment decreases the number of vaso-occlusive crisis (VOC) and acute chest syndrome (ACS) by increasing fetal hemoglobin (HbF). Data are lacking regarding the frequency of HU dose modification or whether sub-therapeutic doses (<15 mg/kg/day) are beneficial. We reviewed the medical records of 140 patients from 2010 to 2014. The laboratory parameters and SCD complications were compared between the first and last visits based on HU use. Fifty patients (36%) never took HU or suspended HU (“no HU” group). Among patients taking <15 mg/kg/day HU on their first visit, half remained at the same dose, and the other half increased to ≥15 mg/kg/day. Among patients taking ≥15 mg/kg/day, 17% decreased to <15 mg/kg/day, and 83% stayed at ≥15 mg/kg/day. The “no HU” group had fewer episodes of VOC and ACS. Both HU treatment groups had a reduction in both complications (p < 0.0001). This improvement was observed in all SCD phenotypes. The white blood cell (WBC) counts were found to be lower, and HbF increased in both HU groups (p = 0.004, 0.001). The maximal HbF response to HU in HbS/β+-thalassemia was 20%, similar to those observed for HbSS (19%) and HbS/β0-thalassemia (22%). HbS/β+-thalassemia could have a similar disease severity as HbSS or HbS/β0-thalassemia. Patients with HbS/β0-thalassemia or HbS/β+-thalassemia phenotypes responded to HU.
Collapse
Affiliation(s)
- Rosario Di Maggio
- Campus of Haematology Franco and Piera Cutino, AOOR Villa Sofia-V. Cervello, 90142 Palermo, Italy.
| | - Matthew M Hsieh
- Molecular and Clinical Hematology Branch, National Institute of Diabetes and Digestive and Kidney Diseases/National Heart, Lung, and Blood Institute, Bethesda, MD 20814, USA.
| | - Xiongce Zhao
- Office of Clinical Director, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20814, USA.
| | - Giuseppina Calvaruso
- Campus of Haematology Franco and Piera Cutino, AOOR Villa Sofia-V. Cervello, 90142 Palermo, Italy.
| | - Paolo Rigano
- Campus of Haematology Franco and Piera Cutino, AOOR Villa Sofia-V. Cervello, 90142 Palermo, Italy.
| | - Disma Renda
- Campus of Haematology Franco and Piera Cutino, AOOR Villa Sofia-V. Cervello, 90142 Palermo, Italy.
| | - John F Tisdale
- Molecular and Clinical Hematology Branch, National Institute of Diabetes and Digestive and Kidney Diseases/National Heart, Lung, and Blood Institute, Bethesda, MD 20814, USA.
| | - Aurelio Maggio
- Campus of Haematology Franco and Piera Cutino, AOOR Villa Sofia-V. Cervello, 90142 Palermo, Italy.
| |
Collapse
|
128
|
Abstract
BACKGROUND Sickle cell disease, a common recessively inherited haemoglobin disorder, affects people from sub-Saharan Africa, the Middle East, Mediterranean basin, Indian subcontinent, Caribbean and South America. It is associated with complications and a reduced life expectancy. Phytomedicines (medicine derived from plants in their original state) encompass many of the plant remedies from traditional healers which the populations most affected would encounter. Laboratory research and limited clinical trials have suggested positive effects of phytomedicines both in vivo and in vitro. However, there has been little systematic appraisal of their benefits. This is an update of a Cochrane Review first published in 2004, and updated in 2010, 2013, and 2015. OBJECTIVES To assess the benefits and risks of phytomedicines in people with sickle cell disease of all types, of any age, in any setting. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Haemoglobinopathies Trials Register, the International Standard Randomised Controlled Trial Number Register (ISRCTN), the Allied and Complimentary Medicine Database (AMED), ClinicalTrials.gov and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP).Dates of most recent searches: Cochrane Cystic Fibrosis and Genetic Disorders Haemoglobinopathies Trials Register: 10 April 2017; ISRCTN: 26 July 2017; AMED: 24 August 2017; ClinicalTrials.gov: 02 August 2017; and the WHO ICTRP: 27 July 2017. SELECTION CRITERIA Randomised or quasi-randomised trials with participants of all ages with sickle cell disease, in all settings, comparing the administration of phytomedicines, by any mode to placebo or conventional treatment, including blood transfusion and hydroxyurea. DATA COLLECTION AND ANALYSIS Both authors independently assessed trial quality and extracted data. MAIN RESULTS Two trials (182 participants) and two phytomedicines Niprisan® (also known as Nicosan®) and Ciklavit® were included. The Phase IIB (pivotal) trial suggests that Niprisan® was effective in reducing episodes of severe painful sickle cell disease crisis over a six-month period (low-quality evidence). It did not affect the risk of severe complications or the level of anaemia (low-quality evidence). No serious adverse effects were reported. The single trial of Cajanus cajan (Ciklavit®) reported a possible benefit to individuals with painful crises (low-quality evidence), and a possible adverse effect (non-significant) on the level of anaemia (low-quality evidence). AUTHORS' CONCLUSIONS While Niprisan® appeared to be safe and effective in reducing severe painful crises over a six-month follow-up period, further trials are required to assess its role in the management of people with sickle cell disease and the results of its multicentre trials are awaited. Currently no conclusions can be made regarding the efficacy of Ciklavit®. Based on the published results for Niprisan® and in view of the limitations in data collection and analysis of both trials, phytomedicines may have a potential beneficial effect in reducing painful crises in sickle cell disease. This needs to be further validated in future trials. More trials are required on the safety and efficacy of phytomedicines used in managing sickle cell disease.
Collapse
Affiliation(s)
- Oluseyi Oniyangi
- National HospitalPaediatrics DepartmentPlot 132 Central District (Phase II)PMB 425 GarkiAbujaNigeria
| | - Damian H Cohall
- University of the West IndiesFaculty of Medical SciencesCave HillSt MichaelBarbados
| | | |
Collapse
|
129
|
Ozdogu H, Boga C, Asma S, Kozanoglu I, Gereklioglu C, Yeral M, Buyukkurt NT, Solmaz S, Korur A, Aytan P, Maytalman E, Kasar M. Organ damage mitigation with the Baskent Sickle Cell Medical Care Development Program (BASCARE). Medicine (Baltimore) 2018; 97:e9844. [PMID: 29419693 PMCID: PMC5944669 DOI: 10.1097/md.0000000000009844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The Eastern Mediterranean is among the regions where sickle cell disease (SCD) is common. The morbidity and mortality of this disease can be postponed to adulthood through therapies implemented in childhood. The present study focuses on the organ damage-reducing effects of the Baskent Sickle Cell Medical Care Development Program (BASCARE), which was developed by a team who lives in this region and has approximately 25 years of experience. The deliverables of the program included the development of an electronic health recording system (PRANA) and electronic vaccination system; the use of low citrate infusion in routine prophylactic automatic erythrocyte exchange (ARCE) programs including pregnant women; the use of leukocyte-filtered and irradiated blood for transfusion; the use of magnetic resonance imaging methods (T2) for the management of transfusion-related hemosiderosis; and the implementation of an allogeneic hematopoietic stem cell transplantation protocol for adult patients. The sample was composed of 376 study subjects and 249 control subjects. The hospital's Data Management System and the central population operating system were used for data collection. BASCARE enabled better analysis and interpretation of complication and mortality data. Vaccination rates against influenza and pneumococcal disease improved (21.5% vs 50.8% and 21.5% vs 49.2%, respectively). Effective and safe ARCE with low citrate infusion were maintained in 352 subjects (1003 procedures). Maternal and fetal mortality was prevented in 35 consecutive pregnant patients with ARCE. Chelating therapy rates reduced from 6.7% to 5%. Successful outcomes could be obtained in all 13 adult patients who underwent allogeneic peripheral stem cell transplantation from a fully matched, related donor. No patients died by day 100 or after the first year. Cure could be achieved without graft loss, grades III to IV acute graft versus host disease, extensive chronic graft versus host disease, or other major complications. The BASCARE program significantly improved patient care and thereby prolonged the life span of SCD patients (42 ± 13 years vs 29 ± 7 years, P < .001). We may recommend using such individualized programs in centers that provide health care for patients with SCD, in accordance with holistic approach due to the benign nature but malignant course of the disease.
Collapse
Affiliation(s)
- Hakan Ozdogu
- Adana Adult Bone Marrow Transplantation Center, University Hospital of Baskent, Adana
- Department of Hematology
| | - Can Boga
- Adana Adult Bone Marrow Transplantation Center, University Hospital of Baskent, Adana
- Department of Hematology
| | | | | | | | - Mahmut Yeral
- Adana Adult Bone Marrow Transplantation Center, University Hospital of Baskent, Adana
- Department of Hematology
| | | | | | | | - Pelin Aytan
- Adana Adult Bone Marrow Transplantation Center, University Hospital of Baskent, Adana
- Department of Hematology
| | - Erkan Maytalman
- Adana Adult Bone Marrow Transplantation Center, University Hospital of Baskent, Adana
| | - Mutlu Kasar
- Department of Immunology, Faculty of Medicine, University of Baskent, Ankara, Turkey
| |
Collapse
|
130
|
Andresen V, Gjertsen BT. Drug Repurposing for the Treatment of Acute Myeloid Leukemia. Front Med (Lausanne) 2017; 4:211. [PMID: 29238707 PMCID: PMC5712546 DOI: 10.3389/fmed.2017.00211] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/09/2017] [Indexed: 01/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by the accumulation of immature myeloid progenitor cells in the bone marrow, compromising of normal blood cell production and ultimately resulting in bone marrow failure. With a 20% overall survival rate at 5 years and 50% in the 18- to 65-year-old age group, new medicines are needed. It is proposed that development of repurposed drugs may be a part of the new therapy needed. AML is subdivided into recurrent molecular entities based on molecular genetics increasingly accessible for precision medicine. Novel therapy developments form a basis for novel multimodality therapy and include liposomal daunorubicin/cytarabine, broad or FLT3-specific tyrosine kinase inhibitors, Bcl-2 family inhibitors, selective inhibitors of nuclear export, metabolic inhibitors, and demethylating agents. The use of non-transplant immunotherapy is in early development in AML with the exceptional re-approval of a toxin-conjugated anti-CD33. However, the full potential of small molecule inhibitors and modalities like immunological checkpoint inhibitors, immunostimulatory small molecules, and CAR-T cell therapy is unknown. Some novel therapeutics will certainly benefit AML patient subgroups; however, due to high cost, more affordable alternatives are needed globally. Also the heterogeneity of AML will likely demand a broader repertoire of therapeutic molecules. Drug repurposing or repositioning represent a source for potential therapeutics with well-known toxicity profiles and reasonable prices. This implies that biomarkers of response need to accompany the development of antileukemic therapies for sharply defined patient subgroups. We will illustrate repurposing in AML with selected examples and discuss some experimental and regulatory limitations that may obstruct this development.
Collapse
Affiliation(s)
- Vibeke Andresen
- Center for Cancer Biomarkers (CCBIO), Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
| | - Bjørn T. Gjertsen
- Center for Cancer Biomarkers (CCBIO), Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
131
|
Abstract
Fetal haemoglobin (HbF, α2γ2) induction has long been an area of investigation, as it is known to ameliorate the clinical complications of sickle cell disease (SCD). Progress in identifying novel HbF-inducing strategies has been stymied by limited understanding of gamma (γ)-globin regulation. Genome-wide association studies (GWAS) have identified variants in BCL11A and HBS1L-MYB that are associated with HbF levels. Functional studies have established the roles of BCL11A, MYB, and KLF1 in γ-globin regulation, but this information has not yielded new pharmacological agents. Several drugs are under investigation in clinical trials as HbF-inducing agents, but hydroxycarbamide remains the only widely used pharmacologic therapy for SCD. Autologous transplant of edited haematopoietic stem cells holds promise as a cure for SCD, either through HbF induction or correction of the causative mutation, but several technical and safety hurdles must be overcome before this therapy can be offered widely, and pharmacological therapies are still needed.
Collapse
Affiliation(s)
- Alireza Paikari
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Vivien A Sheehan
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
132
|
King AA, Baumann AA. Sickle cell disease and implementation science: A partnership to accelerate advances. Pediatr Blood Cancer 2017; 64:10.1002/pbc.26649. [PMID: 28556441 PMCID: PMC6026013 DOI: 10.1002/pbc.26649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/05/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
Abstract
Sickle cell disease (SCD) results in end organ damage and a shortened lifespan. Both the pathophysiology of the disease and the social determinants of health affect patient outcomes. Randomized controlled trials have been completed among this population and resulted in medical advances; however, the gestation of these advances and the lack of penetrance into clinical practice have limited advancements in clinical improvements for many people with SCD. We discuss the role of implementation science in SCD and highlight the need for this science to shorten the length of time to implement evidence-based care for more people with SCD.
Collapse
Affiliation(s)
- Allison A. King
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Ana A. Baumann
- Brown School, Washington University, St. Louis, Missouri
| |
Collapse
|
133
|
Dai Y, Chen T, Ijaz H, Cho EH, Steinberg MH. SIRT1 activates the expression of fetal hemoglobin genes. Am J Hematol 2017; 92:1177-1186. [PMID: 28776729 DOI: 10.1002/ajh.24879] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 02/06/2023]
Abstract
High fetal hemoglobin (HbF, α2 γ2 ) levels ameliorate the clinical manifestations of sickle cell disease and β thalassemia. The mechanisms that repress HbF expression and silence γ-globin genes in adults are incompletely characterized and only a single HbF inducer, hydroxyurea, is approved for treatment, and only in patients with sickle cell disease. We identified SIRT1, a protein deacetylase, as a new inducer of γ-globin. SIRT1 knockdown decreased, while SIRT1 ectopic expression upregulated γ-globin gene (HBG) expression in primary human erythroid cells and in K562 cells. The small molecule SIRT1 activators SRT2104 and SRT1720 enhanced HBG expression in cord blood human erythroblasts and reactivated silenced HBG in adult human erythroblasts. Furthermore, SIRT1 binds in the β-globin gene cluster locus control region (LCR) and HBG promoters, promotes the looping of the LCR to HBG promoter, and increases the binding of RNA polymerase II and H4K16Ac in the HBG promoter. SIRT1 suppressed the expression of the HBG suppressors BCL11A, KLF1, HDAC1 and HDAC2. Lastly, SIRT1 did not change the proliferation of human erythroid progenitor cells or the expression of differentiation marker CD235a. These data suggest that SIRT1 activates HBG expression through facilitating LCR looping to the HBG promoter, inhibiting the expression of transcriptional suppressors of HBG, and indirectly increasing histone acetylation in the HBG promoter. SIRT1 is a potential therapeutic target for γ-globin gene induction, and small molecule SIRT1 activators might serve as a lead compound for the development of new HbF inducers.
Collapse
Affiliation(s)
- Yan Dai
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| | - Tyngwei Chen
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| | - Heba Ijaz
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| | - Elizabeth H. Cho
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| | - Martin H. Steinberg
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| |
Collapse
|
134
|
Krishnamoorthy S, Pace B, Gupta D, Sturtevant S, Li B, Makala L, Brittain J, Moore N, Vieira BF, Thullen T, Stone I, Li H, Hobbs WE, Light DR. Dimethyl fumarate increases fetal hemoglobin, provides heme detoxification, and corrects anemia in sickle cell disease. JCI Insight 2017; 2:96409. [PMID: 29046485 DOI: 10.1172/jci.insight.96409] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/07/2017] [Indexed: 12/31/2022] Open
Abstract
Sickle cell disease (SCD) results from a point mutation in the β-globin gene forming hemoglobin S (HbS), which polymerizes in deoxygenated erythrocytes, triggering recurrent painful vaso-occlusive crises and chronic hemolytic anemia. Reactivation of fetal Hb (HbF) expression ameliorates these symptoms of SCD. Nuclear factor (erythroid derived-2)-like 2 (Nrf2) is a transcription factor that triggers cytoprotective and antioxidant pathways to limit oxidative damage and inflammation and increases HbF synthesis in CD34+ stem cell-derived erythroid progenitors. We investigated the ability of dimethyl fumarate (DMF), a small-molecule Nrf2 agonist, to activate γ-globin transcription and enhance HbF in tissue culture and in murine and primate models. DMF recruited Nrf2 to the γ-globin promoters and the locus control region of the β-globin locus in erythroleukemia cells, elevated HbF in SCD donor-derived erythroid progenitors, and reduced hypoxia-induced sickling. Chronic DMF administration in SCD mice induced HbF and increased Nrf2-dependent genes to detoxify heme and limit inflammation. This improved hematological parameters, reduced plasma-free Hb, and attenuated inflammatory markers. Chronic DMF administration to nonanemic primates increased γ-globin mRNA in BM and HbF protein in rbc. DMF represents a potential therapy for SCD to induce HbF and augment vasoprotection and heme detoxification.
Collapse
Affiliation(s)
| | | | - Dipti Gupta
- Hematology Research, Bioverativ, Waltham, Massachusetts, USA
| | | | | | | | - Julia Brittain
- Vascular Biology Center, Augusta University, Augusta, Georgia, USA
| | - Nancy Moore
- Hematology Research, Bioverativ, Waltham, Massachusetts, USA
| | | | | | | | - Huo Li
- Computational Biology, Biogen, Cambridge, Massachusetts, USA
| | - William E Hobbs
- Hematology Research, Bioverativ, Waltham, Massachusetts, USA
| | - David R Light
- Hematology Research, Bioverativ, Waltham, Massachusetts, USA
| |
Collapse
|
135
|
Zhu X, Hu T, Ho MH, Wang Y, Yu M, Patel N, Pi W, Choi JH, Xu H, Ganapathy V, Kutlar F, Kutlar A, Tuan D. Hydroxyurea differentially modulates activator and repressors of γ-globin gene in erythroblasts of responsive and non-responsive patients with sickle cell disease in correlation with Index of Hydroxyurea Responsiveness. Haematologica 2017; 102:1995-2004. [PMID: 28971909 PMCID: PMC5709098 DOI: 10.3324/haematol.2017.175646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/29/2017] [Indexed: 01/24/2023] Open
Abstract
Hydroxyurea (HU), the first of two drugs approved by the US Food and Drug Administration for treating patients with sickle cell disease (SCD), produces anti-sickling effect by re-activating fetal γ-globin gene to enhance production of fetal hemoglobin. However, approximately 30% of the patients do not respond to HU therapy. The molecular basis of non-responsiveness to HU is not clearly understood. To address this question, we examined HU-induced changes in the RNA and protein levels of transcription factors NF-Y, GATA-1, -2, BCL11A, TR4, MYB and NF-E4 that assemble the γ-globin promoter complex and regulate transcription of γ-globin gene. In erythroblasts cultured from peripheral blood CD34+ cells of patients with SCD, we found that HU-induced changes in the protein but not the RNA levels of activator GATA-2 and repressors GATA-1, BCL11A and TR4 correlated with HU-induced changes in fetal hemoglobin (HbF) levels in the peripheral blood of HU high and low responders. However, HU did not significantly induce changes in the protein or RNA levels of activators NF-Y and NF-E4. Based on HU-induced changes in the protein levels of GATA-2, -1 and BCL11A, we calculated an Index of Hydroxyurea Responsiveness (IndexHU-3). Compared to the HU-induced fold changes in the individual transcription factor protein levels, the numerical values of IndexHU-3 statistically correlated best with the HU-induced peripheral blood HbF levels of the patients. Thus, IndexHU-3 can serve as an appropriate indicator for inherent HU responsiveness of patients with SCD.
Collapse
Affiliation(s)
- Xingguo Zhu
- Department of Biochemistry and Molecular Biology, Augusta University, GA, USA
| | - Tianxiang Hu
- Department of Biochemistry and Molecular Biology, Augusta University, GA, USA
| | - Meng Hsuan Ho
- Department of Biochemistry and Molecular Biology, Augusta University, GA, USA.,School of Dentistry, Meharry Medical College, Nashville, TN, USA
| | - Yongchao Wang
- Department of Biochemistry and Molecular Biology, Augusta University, GA, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Miao Yu
- Georgia Cancer Research Center, Augusta University, GA, USA
| | - Niren Patel
- Division of Hematology/Oncology, Augusta University, GA, USA
| | - Wenhu Pi
- Department of Biochemistry and Molecular Biology, Augusta University, GA, USA.,Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jeong-Hyeon Choi
- Georgia Cancer Research Center, Augusta University, GA, USA.,Department of Biostatistics, Augusta University, GA, USA
| | - Hongyan Xu
- Department of Biostatistics, Augusta University, GA, USA
| | - Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Augusta University, GA, USA.,Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ferdane Kutlar
- Division of Hematology/Oncology, Augusta University, GA, USA
| | - Abdullah Kutlar
- Division of Hematology/Oncology, Augusta University, GA, USA
| | - Dorothy Tuan
- Department of Biochemistry and Molecular Biology, Augusta University, GA, USA
| |
Collapse
|
136
|
McFarlane IM, Ozeri DJ, Pathiparampil J, Sanchez R, Levinson J, Barrett-Campbell O, Saladini-Aponte C, Boisette B, Salifu M. Prevalence and Clinical Characteristics of Rheumatoid Arthritis in an Inner City Population with Sickle Cell Disease. ACTA ACUST UNITED AC 2017; 7. [PMID: 28944097 DOI: 10.4172/2329-8731.1000218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Rheumatoid arthritis (RA) has been rarely reported in association with sickle cell disease (SCD). Our study aimed to estimate the prevalence of RA in SCD population and to describe the clinical characteristics of RA associated with SCD. METHODS Retrospective chart review of SCD and RA patients followed at 2 large urban hospitals. Seven RA/SCD patients were identified and compared to age and sex matched cohort of SCD only and of RA only group. All patients were Black. RESULTS There were 739 SCD cases, seven (0.94%) met ACR criteria for RA (SCD-RA), 411 cases were RA only group. Mean age was significantly higher in SCD-RA compared to the entire population of SCD and RA (41.7 ± 3.9 (± SEM) vs. 33.26 ± 0.47, vs. 61.39 ± 0.79, p<0.01). SCD-RA patients had lower hemoglobin (g/dl) when compared to the age and sex matched SCD or RA only patients (7.4 ± 0.49 vs. 8.3 ± 0.60 vs. 11 ± 0.59, p <0.01) respectively. There were no significant differences in laboratory and treatment approach between SCD-RA and RA only groups, except for the radiographic evidence of periarticular osteopenia and greater difficulty in the activities of daily living (ADL) among SCD-RA cohort, compared to the age and sex matched RA cohort (p=0.01). CONCLUSION In contrast to older reports, the prevalence of RA among SCD patients in our study (0.94%) was similar to that reported in the general population (0.5-1%) and was to be associated with difficulty in ADL and periarticular osteopenia. Since RA manifests at an older age, our reported prevalence is likely explainable by improved survival of SCD patients due to enhanced medical care and the advent of hydroxyurea as a major therapeutic breakthrough for SCD.
Collapse
Affiliation(s)
- Isabel M McFarlane
- Department of Medicine, Division of Rheumatology and Nephrology, State University of New York, Downstate Medical Center/Health and Hospitals Kings County Brooklyn, USA
| | - David J Ozeri
- Department of Medicine, Division of Rheumatology and Nephrology, State University of New York, Downstate Medical Center/Health and Hospitals Kings County Brooklyn, USA
| | - Joshy Pathiparampil
- Department of Medicine, Division of Rheumatology and Nephrology, State University of New York, Downstate Medical Center/Health and Hospitals Kings County Brooklyn, USA
| | - Randolph Sanchez
- Department of Medicine, Division of Rheumatology and Nephrology, State University of New York, Downstate Medical Center/Health and Hospitals Kings County Brooklyn, USA
| | - Justin Levinson
- Department of Medicine, Division of Rheumatology and Nephrology, State University of New York, Downstate Medical Center/Health and Hospitals Kings County Brooklyn, USA
| | - Odeth Barrett-Campbell
- Department of Medicine, Division of Rheumatology and Nephrology, State University of New York, Downstate Medical Center/Health and Hospitals Kings County Brooklyn, USA
| | - Carla Saladini-Aponte
- Department of Medicine, Division of Rheumatology and Nephrology, State University of New York, Downstate Medical Center/Health and Hospitals Kings County Brooklyn, USA
| | - Beatrix Boisette
- Department of Medicine, Division of Rheumatology and Nephrology, State University of New York, Downstate Medical Center/Health and Hospitals Kings County Brooklyn, USA
| | - Moro Salifu
- Department of Medicine, Division of Rheumatology and Nephrology, State University of New York, Downstate Medical Center/Health and Hospitals Kings County Brooklyn, USA
| |
Collapse
|
137
|
Kuo KH. Multiple Testing in the Context of Gene Discovery in Sickle Cell Disease Using Genome-Wide Association Studies. GENOMICS INSIGHTS 2017; 10:1178631017721178. [PMID: 28811740 PMCID: PMC5542087 DOI: 10.1177/1178631017721178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 06/26/2017] [Indexed: 12/25/2022]
Abstract
The issue of multiple testing, also termed multiplicity, is ubiquitous in studies where multiple hypotheses are tested simultaneously. Genome-wide association study (GWAS), a type of genetic association study that has gained popularity in the past decade, is most susceptible to the issue of multiple testing. Different methodologies have been employed to address the issue of multiple testing in GWAS. The purpose of the review is to examine the methodologies employed in dealing with multiple testing in the context of gene discovery using GWAS in sickle cell disease complications.
Collapse
Affiliation(s)
- Kevin H.M. Kuo
- Departments of Medical Oncology and Hematology and Medicine, University Health Network, Toronto, ON, Canada
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
138
|
Bakshi N, Sinha CB, Ross D, Khemani K, Loewenstein G, Krishnamurti L. Proponent or collaborative: Physician perspectives and approaches to disease modifying therapies in sickle cell disease. PLoS One 2017; 12:e0178413. [PMID: 28727801 PMCID: PMC5518995 DOI: 10.1371/journal.pone.0178413] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/13/2017] [Indexed: 11/18/2022] Open
Abstract
Sickle cell disease (SCD) is an inherited blood disorder that primarily affects African-American and other ethnic minority populations. There are three available disease-modifying therapies for sickle cell disease: hydroxyurea (HU), bone marrow transplantation (BMT), and chronic blood transfusion (CBT). Since these treatments vary in their therapeutic intent, efficacy in preventing progression of the disease, short and long-term adverse effects, costs and patient burden, the decision-making process regarding these therapies is complicated for both the patient and healthcare provider. While previous research has focused on the patient perspective of treatment-related decision making, there is a paucity of research investigating the physician perspective of treatment-related decision making. We conducted a qualitative study with physicians who were experts in the field of SCD. Interviews focused on physician perceptions of patient decisional needs as well as physicians' approach to decision making regarding disease-modifying therapies in SCD. Thirty-six physician interviews were analyzed, with a focus on their perspectives regarding available treatment options and on how they approach decision making with patients. We identified two narrative approaches. The Collaborative approach (CA) was characterized by emphasizing the need to discuss all possible treatment options to ensure that the patient and/or family was equipped to make an informed decision. The Proponent approach (PA) was characterized by strongly advocating a pre-determined treatment plan and providing patients/families with information, with the objective of convincing them to accept the treatment. An interplay of patient-related and disease-related factors, decision type and physician-related factors, as well as institutional frameworks, influenced physician perspectives on treatment options and decision making regarding these therapies. These findings point to the potential value of developing systems to foster patient engagement as a way of facilitating shared decision making.
Collapse
Affiliation(s)
- Nitya Bakshi
- Division of Pediatric Hematology-Oncology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,Aflac Cancer and Blood Disorders, Children's Healthcare of Atlanta, Atlanta, Georgia, United States of America.,Division of Pediatric Hematology-Oncology-BMT, Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - Cynthia B Sinha
- Division of Pediatric Hematology-Oncology-BMT, Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - Diana Ross
- Division of Pediatric Hematology-Oncology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,Division of Pediatric Hematology-Oncology-BMT, Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - Kirshma Khemani
- Division of Pediatric Hematology-Oncology-BMT, Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - George Loewenstein
- Department of Social and Decision Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Lakshmanan Krishnamurti
- Division of Pediatric Hematology-Oncology, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America.,Aflac Cancer and Blood Disorders, Children's Healthcare of Atlanta, Atlanta, Georgia, United States of America.,Division of Pediatric Hematology-Oncology-BMT, Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
139
|
Estcourt LJ, Fortin PM, Hopewell S, Trivella M, Doree C, Abboud MR. Interventions for preventing silent cerebral infarcts in people with sickle cell disease. Cochrane Database Syst Rev 2017; 5:CD012389. [PMID: 28500860 PMCID: PMC5460750 DOI: 10.1002/14651858.cd012389.pub2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sickle cell disease (SCD) is one of the commonest severe monogenic disorders in the world, due to the inheritance of two abnormal haemoglobin (beta globin) genes. SCD can cause severe pain, significant end-organ damage, pulmonary complications, and premature death. Silent cerebral infarcts are the commonest neurological complication in children and probably adults with SCD. Silent cerebral infarcts also affect academic performance, increase cognitive deficits and may lower intelligence quotient. OBJECTIVES To assess the effectiveness of interventions to reduce or prevent silent cerebral infarcts in people with SCD. SEARCH METHODS We searched for relevant trials in the Cochrane Library, MEDLINE (from 1946), Embase (from 1974), the Transfusion Evidence Library (from 1980), and ongoing trial databases; all searches current to 19 September 2016. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register: 06 October 2016. SELECTION CRITERIA Randomised controlled trials comparing interventions to prevent silent cerebral infarcts in people with SCD. There were no restrictions by outcomes examined, language or publication status. DATA COLLECTION AND ANALYSIS We used standard Cochrane methodological procedures. MAIN RESULTS We included five trials (660 children or adolescents) published between 1998 and 2016. Four of the five trials were terminated early. The vast majority of participants had the haemoglobin (Hb)SS form of SCD. One trial focused on preventing silent cerebral infarcts or stroke; three trials were for primary stroke prevention and one trial dealt with secondary stroke prevention.Three trials compared the use of regular long-term red blood cell transfusions to standard care. Two of these trials included children with no previous long-term transfusions: one in children with normal transcranial doppler (TCD) velocities; and one in children with abnormal TCD velocities. The third trial included children and adolescents on long-term transfusion.Two trials compared the drug hydroxyurea and phlebotomy to long-term transfusions and iron chelation therapy: one in primary prevention (children), and one in secondary prevention (children and adolescents).The quality of the evidence was moderate to very low across different outcomes according to GRADE methodology. This was due to trials being at high risk of bias because they were unblinded; indirectness (available evidence was only for children with HbSS); and imprecise outcome estimates. Long-term red blood cell transfusions versus standard care Children with no previous long-term transfusions and higher risk of stroke (abnormal TCD velocities or previous history of silent cerebral infarcts) Long-term red blood cell transfusions may reduce the incidence of silent cerebral infarcts in children with abnormal TCD velocities, risk ratio (RR) 0.11 (95% confidence interval (CI) 0.02 to 0.86) (one trial, 124 participants, low-quality evidence); but make little or no difference to the incidence of silent cerebral infarcts in children with previous silent cerebral infarcts on magnetic resonance imaging and normal or conditional TCDs, RR 0.70 (95% CI 0.23 to 2.13) (one trial, 196 participants, low-quality evidence).No deaths were reported in either trial.Long-term red blood cell transfusions may reduce the incidence of: acute chest syndrome, RR 0.24 (95% CI 0.12 to 0.49) (two trials, 326 participants, low-quality evidence); and painful crisis, RR 0.63 (95% CI 0.42 to 0.95) (two trials, 326 participants, low-quality evidence); and probably reduces the incidence of clinical stroke, RR 0.12 (95% CI 0.03 to 0.49) (two trials, 326 participants, moderate-quality evidence).Long-term red blood cell transfusions may improve quality of life in children with previous silent cerebral infarcts (difference estimate -0.54; 95% confidence interval -0.92 to -0.17; one trial; 166 participants), but may have no effect on cognitive function (least squares means: 1.7, 95% CI -1.1 to 4.4) (one trial, 166 participants, low-quality evidence). Transfusions continued versus transfusions halted: children and adolescents with normalised TCD velocities (79 participants; one trial)Continuing red blood cell transfusions may reduce the incidence of silent cerebral infarcts, RR 0.29 (95% CI 0.09 to 0.97 (low-quality evidence).We are very uncertain whether continuing red blood cell transfusions has any effect on all-cause mortality, Peto odds ratio (OR) 8.00 (95% CI 0.16 to 404.12); or clinical stroke, RR 0.22 (95% CI 0.01 to 4.35) (very low-quality evidence).The trial did not report: comparative numbers for SCD-related adverse events; quality of life; or cognitive function. Hydroxyurea and phlebotomy versus transfusions and chelation Primary prevention, children (121 participants; one trial)We are very uncertain whether switching to hydroxyurea and phlebotomy has any effect on: silent cerebral infarcts (no infarcts); all-cause mortality (no deaths); risk of stroke (no strokes); or SCD-related complications, RR 1.52 (95% CI 0.58 to 4.02) (very low-quality evidence). Secondary prevention, children and adolescents with a history of stroke (133 participants; one trial)We are very uncertain whether switching to hydroxyurea and phlebotomy has any effect on: silent cerebral infarcts, Peto OR 7.28 (95% CI 0.14 to 366.91); all-cause mortality, Peto OR 1.02 (95%CI 0.06 to 16.41); or clinical stroke, RR 14.78 (95% CI 0.86 to 253.66) (very low-quality evidence).Switching to hydroxyurea and phlebotomy may increase the risk of SCD-related complications, RR 3.10 (95% CI 1.42 to 6.75) (low-quality evidence).Neither trial reported on quality of life or cognitive function. AUTHORS' CONCLUSIONS We identified no trials for preventing silent cerebral infarcts in adults, or in children who do not have HbSS SCD.Long-term red blood cell transfusions may reduce the incidence of silent cerebral infarcts in children with abnormal TCD velocities, but may have little or no effect on children with normal TCD velocities. In children who are at higher risk of stroke and have not had previous long-term transfusions, long-term red blood cell transfusions probably reduce the risk of stroke, and other SCD-related complications (acute chest syndrome and painful crises).In children and adolescents at high risk of stroke whose TCD velocities have normalised, continuing red blood cell transfusions may reduce the risk of silent cerebral infarcts. No treatment duration threshold has been established for stopping transfusions.Switching to hydroxyurea with phlebotomy may increase the risk of silent cerebral infarcts and SCD-related serious adverse events in secondary stroke prevention.All other evidence in this review is of very low-quality.
Collapse
Affiliation(s)
- Lise J Estcourt
- NHS Blood and TransplantHaematology/Transfusion MedicineLevel 2, John Radcliffe HospitalHeadingtonOxfordUKOX3 9BQ
| | - Patricia M Fortin
- NHS Blood and TransplantSystematic Review InitiativeJohn Radcliffe HospitalOxfordUKOX3 9BQ
| | - Sally Hopewell
- University of OxfordOxford Clinical Trials Research UnitNuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesWindmill RoadOxfordUKOX3 7LD
| | - Marialena Trivella
- University of OxfordCentre for Statistics in MedicineBotnar Research CentreWindmill RoadOxfordUKOX3 7LD
| | - Carolyn Doree
- NHS Blood and TransplantSystematic Review InitiativeJohn Radcliffe HospitalOxfordUKOX3 9BQ
| | - Miguel R Abboud
- American University of Beirut Medical CenterDepartment of Pediatrics and Adolescent MedicineBeirutLebanon
| |
Collapse
|
140
|
Abstract
BACKGROUND Sickle cell disease (SCD) is one of the most common inherited diseases worldwide. It is associated with lifelong morbidity and a reduced life expectancy. Hydroxyurea (hydroxycarbamide), an oral chemotherapeutic drug, ameliorates some of the clinical problems of SCD, in particular that of pain, by raising fetal haemoglobin. This is an update of a previously published Cochrane Review. OBJECTIVES To assess the effects of hydroxyurea therapy in people with SCD (all genotypes), of any age, regardless of setting. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Haemoglobinopathies Register, comprising of references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. We also searched online trial registries.Date of the most recent search: 16 January 2017. SELECTION CRITERIA Randomised and quasi-randomised controlled trials, of one month or longer, comparing hydroxyurea with placebo, standard therapy or other interventions for people with SCD. DATA COLLECTION AND ANALYSIS Authors independently assessed studies for inclusion, carried out data extraction and assessed the risk of bias. MAIN RESULTS Seventeen studies were identified in the searches; eight randomised controlled trials were included, recruiting 899 adults and children with SCD (haemoglobin SS (HbSS), haemoglobin SC (HbSC) or haemoglobin Sβºthalassaemia (HbSβºthal) genotypes). Studies lasted from six to 30 months.Four studies (577 adults and children with HbSS or HbSβºthal) compared hydroxyurea to placebo; three recruited individuals with only severe disease and one recruited individuals with all disease severities. There were statistically significant improvements in terms of pain alteration (using measures such as pain crisis frequency, duration, intensity, hospital admissions and opoid use), measures of fetal haemoglobin and neutrophil counts and fewer occurrences of acute chest syndrome and blood transfusions in the hydroxyurea groups. There were no consistent statistically significant differences in terms of quality of life and adverse events (including serious or life-threatening events). Seven deaths occurred during the studies, but the rates by treatment group were not statistically significantly different.Two studies (254 children with HbSS or HbSβºthal also with risk of primary or secondary stroke) compared hydroxyurea and phlebotomy to transfusion and chelation; there were statistically significant improvements in terms of measures of fetal haemoglobin and neutrophil counts, but more occurrences of acute chest syndrome and infections in the hydroxyurea and phlebotomy group. There were no consistent statistically significant differences in terms of pain alteration and adverse events (including serious or life-threatening events). Two deaths occurred during the studies (one in a the hydroxyurea treatment arm and one in the control arm), but the rates by treatment group were not statistically significantly different. In the primary prevention study, no strokes occurred in either treatment group but in the secondary prevention study, seven strokes occurred in the hydroxyurea and phlebotomy group (none in the transfusion and chelation group) and the study was terminated early.The quality of the evidence for the above two comparisons was judged as moderate to low as the studies contributing to these comparisons were mostly large and well designed (and at low risk of bias); however evidence was limited and imprecise for some outcomes such as quality of life, deaths during the studies and adverse events and results are applicable only to individuals with HbSS and HbSβºthal genotypes.Of the remaining two studies, one (22 children with HbSS or HbSβºthal also at risk of stoke) compared hydroxyurea to observation; there were statistically significant improvements in terms of measures of fetal haemoglobin and neutrophil counts but no statistically significant differences in terms of adverse events (including serious or life-threatening events).The final study (44 adults and children with HbSC) compared treatment regimens with and without hydroxyurea - there was statistically significant improvement in terms of measures of fetal haemoglobin, but no statistically significant differences in terms of adverse events (including serious or life-threatening events). No participants died in either of these studies and other outcomes relevant to the review were not reported.The quality of the evidence for the above two comparisons was judged to be very low due to the limited number of participants, the lack of statistical power (as both studies were terminated early with approximately only 20% of their target sample size recruited) and the lack of applicability to all age groups and genotypes. AUTHORS' CONCLUSIONS There is evidence to suggest that hydroxyurea is effective in decreasing the frequency of pain episodes and other acute complications in adults and children with sickle cell anaemia of HbSS or HbSβºthal genotypes and in preventing life-threatening neurological events in those with sickle cell anaemia at risk of primary stroke by maintaining transcranial doppler velocities. However, there is still insufficient evidence on the long-term benefits of hydroxyurea, particularly in preventing chronic complications of SCD, recommending a standard dose or dose escalation to maximum tolerated dose. There is also insufficient evidence about the long-term risks of hydroxyurea, including its effects on fertility and reproduction. Evidence is also limited on the effects of hydroxyurea on individuals with HbSC genotype. Future studies should be designed to address such uncertainties.
Collapse
Affiliation(s)
- Sarah J Nevitt
- University of LiverpoolDepartment of BiostatisticsBlock F, Waterhouse Building1‐5 Brownlow HillLiverpoolUKL69 3GL
| | - Ashley P Jones
- University of LiverpoolDepartment of BiostatisticsBlock F, Waterhouse Building1‐5 Brownlow HillLiverpoolUKL69 3GL
| | - Jo Howard
- Guy's and St Thomas' Hospitals NHS Foundation TrustDepartment of HaematologyGreat Maze PondLondonUKSE1 9RT
| | | |
Collapse
|
141
|
Gluckman E, Cappelli B, Bernaudin F, Labopin M, Volt F, Carreras J, Pinto Simões B, Ferster A, Dupont S, de la Fuente J, Dalle JH, Zecca M, Walters MC, Krishnamurti L, Bhatia M, Leung K, Yanik G, Kurtzberg J, Dhedin N, Kuentz M, Michel G, Apperley J, Lutz P, Neven B, Bertrand Y, Vannier JP, Ayas M, Cavazzana M, Matthes-Martin S, Rocha V, Elayoubi H, Kenzey C, Bader P, Locatelli F, Ruggeri A, Eapen M. Sickle cell disease: an international survey of results of HLA-identical sibling hematopoietic stem cell transplantation. Blood 2017; 129:1548-1556. [PMID: 27965196 PMCID: PMC5356458 DOI: 10.1182/blood-2016-10-745711] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/01/2016] [Indexed: 12/17/2022] Open
Abstract
Despite advances in supportive therapy to prevent complications of sickle cell disease (SCD), access to care is not universal. Hematopoietic cell transplantation is, to date, the only curative therapy for SCD, but its application is limited by availability of a suitable HLA-matched donor and lack of awareness of the benefits of transplant. Included in this study are 1000 recipients of HLA-identical sibling transplants performed between 1986 and 2013 and reported to the European Society for Blood and Marrow Transplantation, Eurocord, and the Center for International Blood and Marrow Transplant Research. The primary endpoint was event-free survival, defined as being alive without graft failure; risk factors were studied using a Cox regression models. The median age at transplantation was 9 years, and the median follow-up was longer than 5 years. Most patients received a myeloablative conditioning regimen (n = 873; 87%); the remainder received reduced-intensity conditioning regimens (n = 125; 13%). Bone marrow was the predominant stem cell source (n = 839; 84%); peripheral blood and cord blood progenitors were used in 73 (7%) and 88 (9%) patients, respectively. The 5-year event-free survival and overall survival were 91.4% (95% confidence interval, 89.6%-93.3%) and 92.9% (95% confidence interval, 91.1%-94.6%), respectively. Event-free survival was lower with increasing age at transplantation (hazard ratio [HR], 1.09; P < .001) and higher for transplantations performed after 2006 (HR, 0.95; P = .013). Twenty-three patients experienced graft failure, and 70 patients (7%) died, with the most common cause of death being infection. The excellent outcome of a cohort transplanted over the course of 3 decades confirms the role of HLA-identical sibling transplantation for children and adults with SCD.
Collapse
Affiliation(s)
- Eliane Gluckman
- Eurocord, Paris-Diderot University Equipe d'Accueil 3518, Hospital Saint Louis, Paris, France
- Monacord, International Observatory on Sickle Cell Disease, Centre Scientifique de Monaco, Monaco
| | - Barbara Cappelli
- Monacord, International Observatory on Sickle Cell Disease, Centre Scientifique de Monaco, Monaco
| | - Francoise Bernaudin
- Department of Pediatrics, Referral Center for Sickle Cell Disease, Centre Hospitalier Intercommunal Créteil, Paris XII University, Créteil, France
| | - Myriam Labopin
- European Society for Blood and Marrow Transplantation Statistical Unit, Hospital Saint Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Fernanda Volt
- Eurocord, Paris-Diderot University Equipe d'Accueil 3518, Hospital Saint Louis, Paris, France
- Monacord, International Observatory on Sickle Cell Disease, Centre Scientifique de Monaco, Monaco
| | - Jeanette Carreras
- Department of Medicine, Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
| | | | - Alina Ferster
- Hemato-Oncology Unit, Hospital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Sophie Dupont
- Cliniques Universitaires Saint Luc, Hemato-Oncology Unit, Brussels, Belgium
| | - Josu de la Fuente
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Jean-Hugues Dalle
- Hemato-immunology, Hospital Robert Debré and Paris-Diderot University, Paris, France
| | - Marco Zecca
- Pediatric Hematology-Oncology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Mark C Walters
- University of California San Francisco Benioff Children's Hospital, Oakland, CA
| | | | - Monica Bhatia
- Morgan Stanley Children's Hospital of New York, New York, NY
| | | | | | - Joanne Kurtzberg
- Pediatric Blood and Marrow Transplant Program, Duke University Medical Center, Durham, NC
| | - Nathalie Dhedin
- Adolescent and Young Adults Hematology Department, Hospital Saint-Louis, Paris, France
| | - Mathieu Kuentz
- Department of Pediatrics, Referral Center for Sickle Cell Disease, Centre Hospitalier Intercommunal Créteil, Paris XII University, Créteil, France
| | - Gerard Michel
- Department of Pediatric Hematology and Oncology and Research Unit Equipe d'Accueil 3279, Aix-Marseille University and Timone Children's Hospital Marseille, Marseille, France
| | - Jane Apperley
- Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Patrick Lutz
- Service D'hémato Oncologie Pédiatrique, Centre Hospitalier Universitaire de Strasbourg, Strasbourg, France
| | - Bénédicte Neven
- Pediatric Hematology-Immunology Department, Hospital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Yves Bertrand
- Department of Pediatric Hematology and Oncology, University Hospital of Lyon, Lyon, France
| | - Jean Pierre Vannier
- Equipe d'Accueil 3829, Institut de Recherche et d'Innovation Biomédicale, Faculté de Médecine-Pharmacie, Rouen, France
| | - Mouhab Ayas
- Paediatric Haematology/Oncology, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Marina Cavazzana
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | | | - Vanderson Rocha
- Eurocord, Paris-Diderot University Equipe d'Accueil 3518, Hospital Saint Louis, Paris, France
- Hospital Sirio-Libanes, and Serviço de Hematologia, Hemoterapia e Terapia Celular, São Paulo University, São Paulo, Brazil
- Churchill Hospital, Oxford, United Kingdom
| | - Hanadi Elayoubi
- Eurocord, Paris-Diderot University Equipe d'Accueil 3518, Hospital Saint Louis, Paris, France
- Monacord, International Observatory on Sickle Cell Disease, Centre Scientifique de Monaco, Monaco
| | - Chantal Kenzey
- Eurocord, Paris-Diderot University Equipe d'Accueil 3518, Hospital Saint Louis, Paris, France
- Monacord, International Observatory on Sickle Cell Disease, Centre Scientifique de Monaco, Monaco
| | - Peter Bader
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Franco Locatelli
- Dipartimento di Oncoematologia Pediatrica, Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Bambino Gesù, Rome, Italy
- Dipartimento di Scienze Pediatriche, Università di Pavia, Pavia, Italy; and
| | - Annalisa Ruggeri
- Eurocord, Paris-Diderot University Equipe d'Accueil 3518, Hospital Saint Louis, Paris, France
- Monacord, International Observatory on Sickle Cell Disease, Centre Scientifique de Monaco, Monaco
- Department of Hematology and Cell Therapy, Hospital Saint Antoine, Paris, France
| | - Mary Eapen
- Department of Medicine, Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
142
|
Huber SE, Śmiałek MA, Tanzer K, Denifl S. Dissociative electron attachment to the radiosensitizing chemotherapeutic agent hydroxyurea. J Chem Phys 2017; 144:224309. [PMID: 27306009 DOI: 10.1063/1.4953579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dissociative electron attachment to hydroxyurea was studied in the gas phase for electron energies ranging from zero to 9 eV in order to probe its radiosensitizing capabilities. The experiments were carried out using a hemispherical electron monochromator coupled with a quadrupole mass spectrometer. Diversified fragmentation of hydroxyurea was observed upon low energy electron attachment and here we highlight the major dissociation channels. Moreover, thermodynamic thresholds for various fragmentation reactions are reported to support the discussion of the experimental findings. The dominant dissociation channel, which was observed over a broad range of energies, is associated with formation of NCO(-), water, and the amidogen (NH2) radical. The second and third most dominant dissociation channels are associated with formation of NCNH(-) and NHCONH2 (-), respectively, which are both directly related to formation of the highly reactive hydroxyl radical. Other ions observed with significant abundance in the mass spectra were NH2 (-)/O(-), OH(-), CN(-), HNOH(-), NCONH2 (-), and ONHCONH2 (-).
Collapse
Affiliation(s)
- S E Huber
- Institute for Ion Physics and Applied Physics and Center of Molecular Biosciences Innsbruck, Leopold Franzens University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - M A Śmiałek
- Department of Control and Power Engineering, Faculty of Ocean Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - K Tanzer
- Institute for Ion Physics and Applied Physics and Center of Molecular Biosciences Innsbruck, Leopold Franzens University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - S Denifl
- Institute for Ion Physics and Applied Physics and Center of Molecular Biosciences Innsbruck, Leopold Franzens University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| |
Collapse
|
143
|
Common Chemical Inductors of Replication Stress: Focus on Cell-Based Studies. Biomolecules 2017; 7:biom7010019. [PMID: 28230817 PMCID: PMC5372731 DOI: 10.3390/biom7010019] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/10/2017] [Indexed: 01/01/2023] Open
Abstract
DNA replication is a highly demanding process regarding the energy and material supply and must be precisely regulated, involving multiple cellular feedbacks. The slowing down or stalling of DNA synthesis and/or replication forks is referred to as replication stress (RS). Owing to the complexity and requirements of replication, a plethora of factors may interfere and challenge the genome stability, cell survival or affect the whole organism. This review outlines chemical compounds that are known inducers of RS and commonly used in laboratory research. These compounds act on replication by direct interaction with DNA causing DNA crosslinks and bulky lesions (cisplatin), chemical interference with the metabolism of deoxyribonucleotide triphosphates (hydroxyurea), direct inhibition of the activity of replicative DNA polymerases (aphidicolin) and interference with enzymes dealing with topological DNA stress (camptothecin, etoposide). As a variety of mechanisms can induce RS, the responses of mammalian cells also vary. Here, we review the activity and mechanism of action of these compounds based on recent knowledge, accompanied by examples of induced phenotypes, cellular readouts and commonly used doses.
Collapse
|
144
|
Cannas G, Poutrel S, Thomas X. Hydroxycarbamine: from an Old Drug Used in Malignant Hemopathies to a Current Standard in Sickle Cell Disease. Mediterr J Hematol Infect Dis 2017; 9:e2017015. [PMID: 28293403 PMCID: PMC5333733 DOI: 10.4084/mjhid.2017.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/20/2017] [Indexed: 01/31/2023] Open
Abstract
While hydroxycarbamide (hydroxyurea, HU) has less and fewer indications in malignant hemopathies, it represents the only widely used drug which modifies sickle cell disease pathogenesis. Clinical experience with HU for patients with sickle cell disease has been accumulated over the past 25 years in Western countries. The review of the literature provides increasing support for safety and efficacy in both children and adults for reducing acute vaso-occlusive events including pain episodes and acute chest syndrome. No increased incidence of leukemia and teratogenicity was demonstrated. HU has become the standard-of-care for sickle cell anemia but remains underused. Barriers to its use should be identified and overcome.
Collapse
Affiliation(s)
- Giovanna Cannas
- Hospices Civils de Lyon, Department of Internal Medicine, Edouard Herriot Hospital, Lyon, France
- Claude Bernard University Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité EA7424, Equipe ‘Vascular biology and red blood cell’, Villeurbanne, France
| | - Solène Poutrel
- Hospices Civils de Lyon, Department of Internal Medicine, Edouard Herriot Hospital, Lyon, France
| | - Xavier Thomas
- Hospices Civils de Lyon, Hematology Department, Lyon-Sud Hospital, Pierre Bénite, France
| |
Collapse
|
145
|
Field JJ, Majerus E, Ataga KI, Vichinsky EP, Schaub R, Mashal R, Nathan DG. NNKTT120, an anti-iNKT cell monoclonal antibody, produces rapid and sustained iNKT cell depletion in adults with sickle cell disease. PLoS One 2017; 12:e0171067. [PMID: 28152086 PMCID: PMC5289534 DOI: 10.1371/journal.pone.0171067] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/13/2017] [Indexed: 02/07/2023] Open
Abstract
Invariant NKT (iNKT) cells can be activated to stimulate a broad inflammatory response. In murine models of sickle cell disease (SCD), interruption of iNKT cell activity prevents tissue injury from vaso-occlusion. NKTT120 is an anti-iNKT cell monoclonal antibody that has the potential to rapidly and specifically deplete iNKT cells and, potentially, prevent vaso-occlusion. We conducted an open-label, multi-center, single-ascending-dose study of NKTT120 to determine its pharmacokinetics, pharmacodynamics and safety in steady-state patients with SCD. Doses were escalated in a 3+3 study design over a range from 0.001 mg/kg to 1.0 mg/kg. Twenty-one adults with SCD were administered NKTT120 as part of 7 dose cohorts. Plasma levels of NKTT120 predictably increased with higher doses. Median half-life of NKTT120 was 263 hours. All subjects in the higher dose cohorts (0.1 mg/kg, 0.3 mg/kg, and 1 mg/kg) demonstrated decreased iNKT cells below the lower limit of quantification within 6 hours after infusion, the earliest time point at which they were measured. In those subjects who received the two highest doses of NKTT120 (0.3, 1 mg/kg), iNKT cells were not detectable in the peripheral blood for a range of 2 to 5 months. There were no serious adverse events in the study deemed to be related to NKTT120. In adults with SCD, NKTT120 produced rapid, specific and sustained iNKT cell depletion without any infusional toxicity or attributed serious adverse events. The next step is a trial to determine NKTT120’s ability to decrease rate of vaso-occlusive pain episodes. Trial Registration: clinicaltrials.gov NCT01783691.
Collapse
Affiliation(s)
- Joshua J. Field
- Medical Sciences Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| | - Elaine Majerus
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Kenneth I. Ataga
- University of North Carolina, Chapel Hill, North Carolina, United States of America
| | | | - Robert Schaub
- NKT Therapeutics, Waltham, Massachusetts, United States of America
| | - Robert Mashal
- NKT Therapeutics, Waltham, Massachusetts, United States of America
| | - David G. Nathan
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
146
|
Maitra P, Caughey M, Robinson L, Desai PC, Jones S, Nouraie M, Gladwin MT, Hinderliter A, Cai J, Ataga KI. Risk factors for mortality in adult patients with sickle cell disease: a meta-analysis of studies in North America and Europe. Haematologica 2017; 102:626-636. [PMID: 28104703 PMCID: PMC5395103 DOI: 10.3324/haematol.2016.153791] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/12/2017] [Indexed: 02/02/2023] Open
Abstract
Although recent studies show an improved survival of children with sickle cell disease in the US and Europe, for adult patients mortality remains high. This study was conducted to evaluate the factors associated with mortality in adult patients following the approval of hydroxyurea. We first evaluated the association between selected variables and mortality at an academic center (University of North Carolina). Data sources were then searched for publications from 1998 to June 2016, with meta-analysis of eligible studies conducted in North America and Europe to evaluate the associations of selected variables with mortality in adult patients. Nine studies, combined with the UNC cohort (total n=3257 patients) met the eligibility criteria. Mortality was significantly associated with age (per 10-year increase in age) [7 studies, 2306 participants; hazard ratio (HR): 1.28; 95% confidence interval (CI): 1.10-1.50], tricuspid regurgitant jet velocity 2.5 m/s or more (5 studies, 1577 participants; HR: 3.03; 95%CI: 2.0-4.60), reticulocyte count (3 studies, 1050 participants; HR: 1.05; 95%CI: 1.01-1.10), log(N-terminal-pro-brain natriuretic peptide) (3 studies, 800 participants; HR: 1.68; 95%CI: 1.48-1.90), and fetal hemoglobin (7 studies, 2477 participants; HR: 0.97; 95%CI: 0.94-1.0). This study identifies variables associated with mortality in adult patients with sickle cell disease in the hydroxyurea era.
Collapse
Affiliation(s)
- Poulami Maitra
- Department of Biostatistics, University of North Carolina, Chapel Hill
| | - Melissa Caughey
- Division of Cardiology, University of North Carolina, Chapel Hill
| | | | - Payal C Desai
- Division of Hematology, The Ohio State University, Columbus
| | - Susan Jones
- Division of Hematology/Oncology, University of North Carolina, Chapel Hill
| | - Mehdi Nouraie
- Department of Medicine, Howard University, Washington, DC, USA
| | - Mark T Gladwin
- Department of Medicine, University of Pittsburgh, PA, USA
| | | | - Jianwen Cai
- Department of Biostatistics, University of North Carolina, Chapel Hill
| | - Kenneth I Ataga
- Division of Hematology/Oncology, University of North Carolina, Chapel Hill
| |
Collapse
|
147
|
Kinetic assay shows that increasing red cell volume could be a treatment for sickle cell disease. Proc Natl Acad Sci U S A 2017; 114:E689-E696. [PMID: 28096387 DOI: 10.1073/pnas.1619054114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although it has been known for more than 60 years that the cause of sickle cell disease is polymerization of a hemoglobin mutant, hydroxyurea is the only drug approved for treatment by the US Food and Drug Administration. This drug, however, is only partially successful, and the discovery of additional drugs that inhibit fiber formation has been hampered by the lack of a sensitive and quantitative cellular assay. Here, we describe such a method in a 96-well plate format that is based on laser-induced polymerization in sickle trait cells and robust, automated image analysis to detect the precise time at which fibers distort ("sickle") the cells. With this kinetic method, we show that small increases in cell volume to reduce the hemoglobin concentration can result in therapeutic increases in the delay time prior to fiber formation. We also show that, of the two drugs (AES103 and GBT440) in clinical trials that inhibit polymerization by increasing oxygen affinity, one of them (GBT440) also inhibits sickling in the absence of oxygen by two additional mechanisms.
Collapse
|
148
|
Long-Term Engraftment and Fetal Globin Induction upon BCL11A Gene Editing in Bone-Marrow-Derived CD34 + Hematopoietic Stem and Progenitor Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 4:137-148. [PMID: 28344999 PMCID: PMC5363298 DOI: 10.1016/j.omtm.2016.12.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/28/2016] [Indexed: 12/28/2022]
Abstract
To develop an effective and sustainable cell therapy for sickle cell disease (SCD), we investigated the feasibility of targeted disruption of the BCL11A gene, either within exon 2 or at the GATAA motif in the intronic erythroid-specific enhancer, using zinc finger nucleases in human bone marrow (BM) CD34+ hematopoietic stem and progenitor cells (HSPCs). Both targeting strategies upregulated fetal globin expression in erythroid cells to levels predicted to inhibit hemoglobin S polymerization. However, complete inactivation of BCL11A resulting from bi-allelic frameshift mutations in BCL11A exon 2 adversely affected erythroid enucleation. In contrast, bi-allelic disruption of the GATAA motif in the erythroid enhancer of BCL11A did not negatively impact enucleation. Furthermore, BCL11A exon 2-edited BM-CD34+ cells demonstrated a significantly reduced engraftment potential in immunodeficient mice. Such an adverse effect on HSPC function was not observed upon BCL11A erythroid-enhancer GATAA motif editing, because enhancer-edited CD34+ cells achieved robust long-term engraftment and gave rise to erythroid cells with elevated levels of fetal globin expression when chimeric BM was cultured ex vivo. Altogether, our results support further clinical development of the BCL11A erythroid-specific enhancer editing in BM-CD34+ HSPCs as an autologous stem cell therapy in SCD patients.
Collapse
|
149
|
Dai Y, Sangerman J, Nouraie M, Faller AD, Oneal P, Rock A, Owoyemi O, Niu X, Nekhai S, Maharaj D, Cui S, Taylor R, Steinberg M, Perrine S. Effects of hydroxyurea on F-cells in sickle cell disease and potential impact of a second fetal globin inducer. Am J Hematol 2017; 92:E10-E11. [PMID: 27766663 DOI: 10.1002/ajh.24590] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Yan Dai
- Cancer Center, Department of Medicine; Boston University School of Medicine; Boston Massachusetts
- Cancer Center, Department of Pharmacology and Experimental Therapeutics; Boston University School of Medicine; Boston Massachusetts
| | - Jose Sangerman
- Hemoglobinopathy Thalassemia Research Unit; Boston University School of Medicine; Boston Massachusetts
| | - Mehdi Nouraie
- Department of Medicine; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| | - Aidan D. Faller
- Hemoglobinopathy Thalassemia Research Unit; Boston University School of Medicine; Boston Massachusetts
| | - Patricia Oneal
- Center for Hemoglobin Research in Minorities (CHaRM); Howard University; Washington District of Columbia
| | - Angela Rock
- Center for Hemoglobin Research in Minorities (CHaRM); Howard University; Washington District of Columbia
| | - Oluwakemi Owoyemi
- Center for Hemoglobin Research in Minorities (CHaRM); Howard University; Washington District of Columbia
| | - Xiaomei Niu
- Center for Hemoglobin Research in Minorities (CHaRM); Howard University; Washington District of Columbia
| | - Sergei Nekhai
- Center for Hemoglobin Research in Minorities (CHaRM); Howard University; Washington District of Columbia
| | - Dashmeet Maharaj
- Hemoglobinopathy Thalassemia Research Unit; Boston University School of Medicine; Boston Massachusetts
| | - Shauiying Cui
- Hematology Oncology, Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Robert Taylor
- Center for Hemoglobin Research in Minorities (CHaRM); Howard University; Washington District of Columbia
| | - Martin Steinberg
- Hematology Oncology, Department of Medicine; Boston University School of Medicine; Boston Massachusetts
- Medicine, Pathology and Laboratory Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Susan Perrine
- Cancer Center, Department of Medicine; Boston University School of Medicine; Boston Massachusetts
- Cancer Center, Department of Pharmacology and Experimental Therapeutics; Boston University School of Medicine; Boston Massachusetts
- Hemoglobinopathy Thalassemia Research Unit; Boston University School of Medicine; Boston Massachusetts
- Center for Hemoglobin Research in Minorities (CHaRM); Howard University; Washington District of Columbia
- Phoenicia Biosciences; Weston Massachusetts
| |
Collapse
|
150
|
Maron BA, Machado RF, Shimoda L. Pulmonary vascular and ventricular dysfunction in the susceptible patient (2015 Grover Conference series). Pulm Circ 2016; 6:426-438. [PMID: 28090285 PMCID: PMC5210067 DOI: 10.1086/688315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/21/2016] [Indexed: 12/14/2022] Open
Abstract
Pulmonary blood vessel structure and tone are maintained by a complex interplay between endogenous vasoactive factors and oxygen-sensing intermediaries. Under physiological conditions, these signaling networks function as an adaptive interface between the pulmonary circulation and environmental or acquired perturbations to preserve oxygenation and maintain systemic delivery of oxygen-rich hemoglobin. Chronic exposure to hypoxia, however, triggers a range of pathogenetic mechanisms that include hypoxia-inducible factor 1α (HIF-1α)-dependent upregulation of the vasoconstrictor peptide endothelin 1 in pulmonary endothelial cells. In pulmonary arterial smooth muscle cells, chronic hypoxia induces HIF-1α-mediated upregulation of canonical transient receptor potential proteins, as well as increased Rho kinase-Ca2+ signaling and pulmonary arteriole synthesis of the profibrotic hormone aldosterone. Collectively, these mechanisms contribute to a contractile or hypertrophic pulmonary vascular phenotype. Genetically inherited disorders in hemoglobin structure are also an important etiology of abnormal pulmonary vasoreactivity. In sickle cell anemia, for example, consumption of the vasodilator and antimitogenic molecule nitric oxide by cell-free hemoglobin is an important mechanism underpinning pulmonary hypertension. Contemporary genomic and transcriptomic analytic methods have also allowed for the discovery of novel risk factors relevant to sickle cell disease, including GALNT13 gene variants. In this report, we review cutting-edge observations characterizing these and other pathobiological mechanisms that contribute to pulmonary vascular and right ventricular vulnerability.
Collapse
Affiliation(s)
- Bradley A. Maron
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA; and Department of Cardiology, Boston Veterans Affairs Healthcare System, Boston, Massachusetts, USA
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Larissa Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|