101
|
Voigt S, Koemans EA, Rasing I, van Etten ES, Terwindt GM, Baas F, Kaushik K, van Es ACGM, van Buchem MA, van Osch MJP, van Walderveen MAA, Klijn CJM, Verbeek MM, van der Weerd L, Wermer MJH. Minocycline for sporadic and hereditary cerebral amyloid angiopathy (BATMAN): study protocol for a placebo-controlled randomized double-blind trial. Trials 2023; 24:378. [PMID: 37277877 DOI: 10.1186/s13063-023-07371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/11/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is a disease caused by the accumulation of the amyloid-beta protein and is a major cause of intracerebral hemorrhage (ICH) and vascular dementia in the elderly. The presence of the amyloid-beta protein in the vessel wall may induce a chronic state of cerebral inflammation by activating astrocytes, microglia, and pro-inflammatory substances. Minocycline, an antibiotic of the tetracycline family, is known to modulate inflammation, gelatinase activity, and angiogenesis. These processes are suggested to be key mechanisms in CAA pathology. Our aim is to show the target engagement of minocycline and investigate in a double-blind placebo-controlled randomized clinical trial whether treatment with minocycline for 3 months can decrease markers of neuroinflammation and of the gelatinase pathway in cerebrospinal fluid (CSF) in CAA patients. METHODS The BATMAN study population consists of 60 persons: 30 persons with hereditary Dutch type CAA (D-CAA) and 30 persons with sporadic CAA. They will be randomized for either placebo or minocycline (15 sporadic CAA/15 D-CAA minocycline, 15 sporadic CAA/15 D-CAA placebo). At t = 0 and t = 3 months, we will collect CSF and blood samples, perform a 7-T MRI, and collect demographic characteristics. DISCUSSION The results of this proof-of-principle study will be used to assess the potential of target engagement of minocycline for CAA. Therefore, our primary outcome measures are markers of neuroinflammation (IL-6, MCP-1, and IBA-1) and of the gelatinase pathway (MMP2/9 and VEGF) in CSF. Secondly, we will look at the progression of hemorrhagic markers on 7-T MRI before and after treatment and investigate serum biomarkers. TRIAL REGISTRATION ClinicalTrials.gov NCT05680389. Registered on January 11, 2023.
Collapse
Affiliation(s)
- S Voigt
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - E A Koemans
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - I Rasing
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - E S van Etten
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - G M Terwindt
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - F Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - K Kaushik
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - A C G M van Es
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - M A van Buchem
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - M J P van Osch
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - M A A van Walderveen
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - C J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L van der Weerd
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - M J H Wermer
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
102
|
de Kort AM, Kuiperij HB, Jäkel L, Kersten I, Rasing I, van Etten ES, van Rooden S, van Osch MJP, Wermer MJH, Terwindt GM, Schreuder FHBM, Klijn CJM, Verbeek MM. Plasma amyloid beta 42 is a biomarker for patients with hereditary, but not sporadic, cerebral amyloid angiopathy. Alzheimers Res Ther 2023; 15:102. [PMID: 37270536 PMCID: PMC10239174 DOI: 10.1186/s13195-023-01245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND The diagnosis of probable cerebral amyloid angiopathy (CAA) is currently mostly based on characteristics of brain MRI. Blood biomarkers would be a cost-effective, easily accessible diagnostic method that may complement diagnosis by MRI and aid in monitoring disease progression. We studied the diagnostic potential of plasma Aβ38, Aβ40, and Aβ42 in patients with hereditary Dutch-type CAA (D-CAA) and sporadic CAA (sCAA). METHODS All Aβ peptides were quantified in the plasma by immunoassays in a discovery cohort (11 patients with presymptomatic D-CAA and 24 patients with symptomatic D-CAA, and 16 and 24 matched controls, respectively) and an independent validation cohort (54 patients with D-CAA, 26 presymptomatic and 28 symptomatic, and 39 and 46 matched controls, respectively). In addition, peptides were quantified in the plasma in a group of 61 patients with sCAA and 42 matched controls. We compared Aβ peptide levels between patients and controls using linear regression adjusting for age and sex. RESULTS In the discovery cohort, we found significantly decreased levels of all Aβ peptides in patients with presymptomatic D-CAA (Aβ38: p < 0.001; Aβ40: p = 0.009; Aβ42: p < 0.001) and patients with symptomatic D-CAA (Aβ38: p < 0.001; Aβ40: p = 0.01; Aβ42: p < 0.001) compared with controls. In contrast, in the validation cohort, plasma Aβ38, Aβ40, and Aβ42 were similar in patients with presymptomatic D-CAA and controls (Aβ38: p = 0.18; Aβ40: p = 0.28; Aβ42: p = 0.63). In patients with symptomatic D-CAA and controls, plasma Aβ38 and Aβ40 were similar (Aβ38: p = 0.14; Aβ40: p = 0.38), whereas plasma Aβ42 was significantly decreased in patients with symptomatic D-CAA (p = 0.033). Plasma Aβ38, Aβ40, and Aβ42 levels were similar in patients with sCAA and controls (Aβ38: p = 0.092; Aβ40: p = 0.64. Aβ42: p = 0.68). CONCLUSIONS Plasma Aβ42 levels, but not plasma Aβ38 and Aβ40, may be used as a biomarker for patients with symptomatic D-CAA. In contrast, plasma Aβ38, Aβ40, and Aβ42 levels do not appear to be applicable as a biomarker in patients with sCAA.
Collapse
Affiliation(s)
- Anna M de Kort
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - H Bea Kuiperij
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Lieke Jäkel
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Iris Kersten
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Ingeborg Rasing
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ellis S van Etten
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sanneke van Rooden
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Floris H B M Schreuder
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands.
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
103
|
van Harten TW, Koemans EA, Voigt S, Rasing I, van Osch MJP, van Walderveen MAA, Wermer MJH. Quantitative measurement of cortical superficial siderosis in cerebral amyloid angiopathy. Neuroimage Clin 2023; 38:103447. [PMID: 37270873 PMCID: PMC10258504 DOI: 10.1016/j.nicl.2023.103447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/28/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
Cerebral amyloid angiopathy (CAA) is a cerebrovascular disease affecting the small arteries in the brain with hallmark depositions of amyloid-β in the vessel wall, leading to cognitive decline and intracerebral hemorrhage (ICH). An emerging MRI marker for CAA is cortical superficial siderosis (cSS) as it is strongly related to the risk of (recurrent) ICH. Current assessment of cSS is mainly done on T2*- weighted MRI using a qualitative score consisting of 5 categories of severity which is hampered by ceiling effects. Therefore, the need for a more quantitative measurement is warranted to better map disease progression for prognosis and future therapeutic trials. We propose a semi-automated method to quantify cSS burden on MRI and investigated it in 20 patients with CAA and cSS. The method showed excellent inter-observer (Pearson's 0.991, P < 0.001) and intra-observer reproducibility (ICC 0.995, P < 0.001). Furthermore, in the highest category of the multifocality scale a large spread in the quantitative score is observed, demonstrating the ceiling effect in the traditional score. We observed a quantitative increase in cSS volume in two of the 5 patients who had a 1 year follow up, while the traditional qualitative method failed to identify an increase because these patients were already in the highest category. The proposed method could therefore potentially be a better way of tracking progression. In conclusion, semi-automated segmenting and quantifying cSS is feasible and repeatable and may be used for further studies in CAA cohorts.
Collapse
Affiliation(s)
- T W van Harten
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - E A Koemans
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - S Voigt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - I Rasing
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - M J P van Osch
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - M A A van Walderveen
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - M J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
104
|
De Kort AM, Kuiperij HB, Marques TM, Jäkel L, van den Berg E, Kersten I, van Berckel-Smit HE, Duering M, Stoops E, Abdo WF, Rasing I, Voigt S, Koemans EA, Kaushik K, Warren AD, Greenberg SM, Brinkmalm G, Terwindt GM, Wermer MJ, Schreuder FH, Klijn CJ, Verbeek MM. Decreased Cerebrospinal Fluid Amyloid β 38, 40, 42, and 43 Levels in Sporadic and Hereditary Cerebral Amyloid Angiopathy. Ann Neurol 2023; 93:1173-1186. [PMID: 36707720 PMCID: PMC10238617 DOI: 10.1002/ana.26610] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Vascular amyloid β (Aβ) accumulation is the hallmark of cerebral amyloid angiopathy (CAA). The composition of cerebrospinal fluid (CSF) of CAA patients may serve as a diagnostic biomarker of CAA. We studied the diagnostic potential of the peptides Aβ38, Aβ40, Aβ42, and Aβ43 in patients with sporadic CAA (sCAA), hereditary Dutch-type CAA (D-CAA), and Alzheimer disease (AD). METHODS Aβ peptides were quantified by immunoassays in a discovery group (26 patients with sCAA and 40 controls), a validation group (40 patients with sCAA, 40 patients with AD, and 37 controls), and a group of 22 patients with D-CAA and 54 controls. To determine the diagnostic accuracy, the area under the curve (AUC) was calculated using a receiver operating characteristic curve with 95% confidence interval (CI). RESULTS We found decreased levels of all Aβ peptides in sCAA patients and D-CAA patients compared to controls. The difference was most prominent for Aβ42 (AUC of sCAA vs controls for discovery: 0.90, 95% CI = 0.82-0.99; for validation: 0.94, 95% CI = 0.89-0.99) and Aβ43 (AUC of sCAA vs controls for discovery: 0.95, 95% CI = 0.88-1.00; for validation: 0.91, 95% CI = 0.83-1.0). All Aβ peptides except Aβ43 were also decreased in sCAA compared to AD (CSF Aβ38: AUC = 0.82, 95% CI = 0.71-0.93; CSF Aβ40: AUC = 0.88, 95% CI = 0.80-0.96; CSF Aβ42: AUC = 0.79, 95% CI = 0.66-0.92). INTERPRETATION A combined biomarker panel of CSF Aβ38, Aβ40, Aβ42, and Aβ43 has potential to differentiate sCAA from AD and controls, and D-CAA from controls. ANN NEUROL 2023;93:1173-1186.
Collapse
Affiliation(s)
- Anna M. De Kort
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - H. Bea Kuiperij
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Tainá M. Marques
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Lieke Jäkel
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Emma van den Berg
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Iris Kersten
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Hugo E.P. van Berckel-Smit
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Marco Duering
- Medical Image Analysis Center (MIAC AG) and Qbig, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | | | - Wilson F. Abdo
- Department of Intensive Care, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ingeborg Rasing
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Sabine Voigt
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Emma A. Koemans
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Kanishk Kaushik
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | - Andrew Davock Warren
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven M. Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, and Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gisela M. Terwindt
- Department of Neurology, Leiden University Medical Center, the Netherlands
| | | | - Floris H.B.M. Schreuder
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Catharina J.M. Klijn
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
| | - Marcel M. Verbeek
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
105
|
Nagaraja N, DeKosky S, Duara R, Kong L, Wang WE, Vaillancourt D, Albayram M. Imaging features of small vessel disease in cerebral amyloid angiopathy among patients with Alzheimer's disease. Neuroimage Clin 2023; 38:103437. [PMID: 37245492 PMCID: PMC10236212 DOI: 10.1016/j.nicl.2023.103437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/07/2023] [Accepted: 05/14/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND PURPOSE Cerebral small vessel disease biomarkers including white matter hyperintensities (WMH), lacunes, and enlarged perivascular spaces (ePVS) are under investigation to identify those specific to cerebral amyloid angiopathy (CAA). In subjects with Alzheimer's disease (AD), we assessed characteristic features and amounts of WMH, lacunes, and ePVS in four CAA categories (no, mild, moderate and severe CAA) and correlated these with Clinical Dementia Rating sum of boxes (CDRsb) score, ApoE genotype, and neuropathological changes at autopsy. METHODS The study included patients with a clinical diagnosis of dementia due to AD and neuropathological confirmation of AD and CAA in the National Alzheimer's Coordinating Center (NACC) database. The WMH, lacunes, and ePVS were evaluated using semi-quantitative scales. Statistical analyses compared the WMH, lacunes, and ePVS values in the four CAA groups with vascular risk factors and AD severity treated as covariates, and to correlate the imaging features with CDRsb score, ApoE genotype, and neuropathological findings. RESULTS The study consisted of 232 patients, of which 222 patients had FLAIR data available and 105 patients had T2-MRI. Occipital predominant WMH were significantly associated with the presence of CAA (p = 0.007). Among the CAA groups, occipital predominant WMH was associated with severe CAA (β = 1.22, p = 0.0001) compared with no CAA. Occipital predominant WMH were not associated with the CDRsb score performed at baseline (p = 0.68) or at follow-up 2-4 years after the MRI (p = 0.92). There was no significant difference in high grade ePVS in the basal ganglia (p = 0.63) and centrum semiovale (p = 0.95) among the four CAA groups. The WMH and ePVS on imaging did not correlate with the number of ApoE ε4 alleles but the WMH (periventricular and deep) correlated with the presence of infarcts, lacunes and microinfarcts on neuropathology. CONCLUSION Among patients with AD, occipital predominant WMH is more likely to be found in patients with severe CAA than in those without CAA. The high-grade ePVS in centrum semiovale were common in all AD patients regardless of CAA severity.
Collapse
Affiliation(s)
- Nandakumar Nagaraja
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Steven DeKosky
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Ranjan Duara
- Department of Neurology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Lan Kong
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Wei-En Wang
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - David Vaillancourt
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Mehmet Albayram
- Department of Radiology, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
106
|
Judd JM, Jasbi P, Winslow W, Serrano GE, Beach TG, Klein-Seetharaman J, Velazquez R. Low circulating choline, a modifiable dietary factor, is associated with the pathological progression and metabolome dysfunction in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539713. [PMID: 37214864 PMCID: PMC10197582 DOI: 10.1101/2023.05.06.539713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Most Americans (∼90%) are deficient in dietary choline, an essential nutrient. Associations between circulating choline and pathological progression in Alzheimer's disease (AD) remain unknown. Here, we examined these associations and performed a metabolomic analysis in blood serum from severe AD, moderate AD, and healthy controls. Additionally, to gain mechanistic insight, we assessed the effects of dietary choline deficiency (Ch-) in 3xTg-AD mice and choline supplementation (Ch+) in APP/PS1 mice. In humans, we found AD-associated reductions in choline, it's derivative acetylcholine (ACh), and elevated pro-inflammatory cytokine TNFα. Choline and ACh were negatively correlated with Plaque density, Braak stage, and TNFα, but positively correlated with MMSE and brain weight. Metabolites L-Valine, 4-Hydroxyphenylpyruvic, Methylmalonic, and Ferulic acids were associated with choline levels. In mice, Ch-paralleled AD severe, but Ch+ was protective. In conclusion, low circulating choline is associated with AD-neuropathological progression, illustrating the importance of dietary choline consumption to offset disease.
Collapse
|
107
|
Heutz R, Claassen J, Feiner S, Davies A, Gurung D, Panerai RB, Heus RD, Beishon LC. Dynamic cerebral autoregulation in Alzheimer's disease and mild cognitive impairment: A systematic review. J Cereb Blood Flow Metab 2023:271678X231173449. [PMID: 37125762 PMCID: PMC10369144 DOI: 10.1177/0271678x231173449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Dynamic cerebral autoregulation (dCA) is a key mechanism that regulates cerebral blood flow (CBF) in response to transient changes in blood pressure (BP). Impairment of dCA could increase vulnerability to hypertensive vascular damage, but also to BP lowering effects of antihypertensive treatment. The literature remains conflicted on whether dCA is altered in Alzheimer's disease (AD) and mild cognitive impairment (MCI). We summarized available data on dCA in AD and MCI, by searching PubMed, Embase, PsycINFO and Web of Science databases (inception-January 2022). Eight studies (total n = 443) were included in the qualitative synthesis of which seven were eligible for meta-analysis. All studies used Transcranial Doppler (TCD) ultrasonography and transfer function analysis or the autoregulatory index to assess dCA during spontaneous or induced BP fluctuations. Meta-analysis indicated no significant difference between AD, MCI and healthy controls in dCA parameters for spontaneous fluctuations. For induced fluctuations, the available data were limited, but indicative of at least preserved and possibly better autoregulatory functioning in AD and MCI compared to controls. In summary, current evidence does not suggest poorer dCA efficiency in AD or MCI. Further work is needed to investigate dCA in dementia with induced fluctuations controlling for changes in end-tidal carbon dioxide.
Collapse
Affiliation(s)
- Rachel Heutz
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Geriatric Medicine, Radboudumc Alzheimer Center, Nijmegen, The Netherlands
| | - Jurgen Claassen
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Geriatric Medicine, Radboudumc Alzheimer Center, Nijmegen, The Netherlands
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Sanne Feiner
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Geriatric Medicine, Radboudumc Alzheimer Center, Nijmegen, The Netherlands
| | - Aaron Davies
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Dewakar Gurung
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Rianne de Heus
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Geriatric Medicine, Radboudumc Alzheimer Center, Nijmegen, The Netherlands
| | - Lucy C Beishon
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
108
|
Perosa V, Rotta J, Yakupov R, Kuijf HJ, Schreiber F, Oltmer JT, Mattern H, Heinze HJ, Düzel E, Schreiber S. Implications of quantitative susceptibility mapping at 7 Tesla MRI for microbleeds detection in cerebral small vessel disease. Front Neurol 2023; 14:1112312. [PMID: 37006483 PMCID: PMC10050564 DOI: 10.3389/fneur.2023.1112312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundCerebral microbleeds (MBs) are a hallmark of cerebral small vessel disease (CSVD) and can be found on T2*-weighted sequences on MRI. Quantitative susceptibility mapping (QSM) is a postprocessing method that also enables MBs identification and furthermore allows to differentiate them from calcifications.AimsWe explored the implications of using QSM at submillimeter resolution for MBs detection in CSVD.MethodsBoth 3 and 7 Tesla (T) MRI were performed in elderly participants without MBs and patients with CSVD. MBs were quantified on T2*-weighted imaging and QSM. Differences in the number of MBs were assessed, and subjects were classified in CSVD subgroups or controls both on 3T T2*-weighted imaging and 7T QSM.Results48 participants [mean age (SD) 70.9 (8.8) years, 48% females] were included: 31 were healthy controls, 6 probable cerebral amyloid angiopathy (CAA), 9 mixed CSVD, and 2 were hypertensive arteriopathy [HA] patients. After accounting for the higher number of MBs detected at 7T QSM (Median = Mdn; Mdn7T−QSM = 2.5; Mdn3T−T2 = 0; z = 4.90; p < 0.001) and false positive MBs (6.1% calcifications), most healthy controls (80.6%) demonstrated at least one MB and more MBs were discovered in the CSVD group.ConclusionsOur observations suggest that QSM at submillimeter resolution improves the detection of MBs in the elderly human brain. A higher prevalence of MBs than so far known in healthy elderly was revealed.
Collapse
Affiliation(s)
- Valentina Perosa
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, United States
- *Correspondence: Valentina Perosa
| | - Johanna Rotta
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Renat Yakupov
- Institute of Cognitive Neurology and Dementia Research (IKND), Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Hugo J. Kuijf
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Frank Schreiber
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Jan T. Oltmer
- Athinoula A. Martinos Center, Massachusetts General Hospital, Department of Radiology, Boston, MA, United States
| | - Hendrik Mattern
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Physics, Otto-von-Guericke University, Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research (IKND), Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
109
|
Sergi D, Zauli E, Tisato V, Secchiero P, Zauli G, Cervellati C. Lipids at the Nexus between Cerebrovascular Disease and Vascular Dementia: The Impact of HDL-Cholesterol and Ceramides. Int J Mol Sci 2023; 24:ijms24054403. [PMID: 36901834 PMCID: PMC10002119 DOI: 10.3390/ijms24054403] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Cerebrovascular diseases and the subsequent brain hypoperfusion are at the basis of vascular dementia. Dyslipidemia, marked by an increase in circulating levels of triglycerides and LDL-cholesterol and a parallel decrease in HDL-cholesterol, in turn, is pivotal in promoting atherosclerosis which represents a common feature of cardiovascular and cerebrovascular diseases. In this regard, HDL-cholesterol has traditionally been considered as being protective from a cardiovascular and a cerebrovascular prospective. However, emerging evidence suggests that their quality and functionality play a more prominent role than their circulating levels in shaping cardiovascular health and possibly cognitive function. Furthermore, the quality of lipids embedded in circulating lipoproteins represents another key discriminant in modulating cardiovascular disease, with ceramides being proposed as a novel risk factor for atherosclerosis. This review highlights the role of HDL lipoprotein and ceramides in cerebrovascular diseases and the repercussion on vascular dementia. Additionally, the manuscript provides an up-to-date picture of the impact of saturated and omega-3 fatty acids on HDL circulating levels, functionality and ceramide metabolism.
Collapse
Affiliation(s)
- Domenico Sergi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica Tisato
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- King Khaled Eye Specialistic Hospital, Riyadh 11462, Saudi Arabia
| | - Carlo Cervellati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
110
|
Ohashi SN, DeLong JH, Kozberg MG, Mazur-Hart DJ, van Veluw SJ, Alkayed NJ, Sansing LH. Role of Inflammatory Processes in Hemorrhagic Stroke. Stroke 2023; 54:605-619. [PMID: 36601948 DOI: 10.1161/strokeaha.122.037155] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hemorrhagic stroke is the deadliest form of stroke and includes the subtypes of intracerebral hemorrhage and subarachnoid hemorrhage. A common cause of hemorrhagic stroke in older individuals is cerebral amyloid angiopathy. Intracerebral hemorrhage and subarachnoid hemorrhage both lead to the rapid collection of blood in the central nervous system and generate inflammatory immune responses that involve both brain resident and infiltrating immune cells. These responses are complex and can contribute to both tissue recovery and tissue injury. Despite the interconnectedness of these major subtypes of hemorrhagic stroke, few reviews have discussed them collectively. The present review provides an update on inflammatory processes that occur in response to intracerebral hemorrhage and subarachnoid hemorrhage, and the role of inflammation in the pathophysiology of cerebral amyloid angiopathy-related hemorrhage. The goal is to highlight inflammatory processes that underlie disease pathology and recovery. We aim to discuss recent advances in our understanding of these conditions and identify gaps in knowledge with the potential to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Sarah N Ohashi
- Department of Neurology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
- Department of Immunobiology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
| | - Jonathan H DeLong
- Department of Neurology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
- Department of Immunobiology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
| | - Mariel G Kozberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital/ Harvard Medical School, Boston (M.G.K., S.J.v.V.)
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown (M.G.K., S.J.v.V.)
| | - David J Mazur-Hart
- Department of Neurological Surgery (D.J.M.-H.), Oregon Health and Science University (OHSU), Portland
| | - Susanne J van Veluw
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital/ Harvard Medical School, Boston (M.G.K., S.J.v.V.)
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown (M.G.K., S.J.v.V.)
| | - Nabil J Alkayed
- Department of Anesthesiology & Perioperative Medicine and Knight Cardiovascular Institute (N.J.A.), Oregon Health and Science University (OHSU), Portland
| | - Lauren H Sansing
- Department of Neurology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
- Department of Immunobiology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
| |
Collapse
|
111
|
Koemans EA, Castello JP, Rasing I, Abramson JR, Voigt S, Perosa V, van Harten TW, van Zwet EW, Terwindt GM, Gurol ME, Rosand J, Greenberg SM, van Walderveen MA, Biffi A, Viswanathan A, Wermer MJ. Sex Differences in Onset and Progression of Cerebral Amyloid Angiopathy. Stroke 2023; 54:306-314. [PMID: 36689586 PMCID: PMC9855754 DOI: 10.1161/strokeaha.122.040823] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/02/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Cerebral Amyloid Angiopathy (CAA) disease course is highly variable even in hereditary forms. Sex may be a possible modifying factor. We investigated biological sex differences in clinical disease course and magnetic resonance imaging-markers in sporadic (sCAA) and Dutch-type hereditary CAA (D-CAA). METHODS Patients with D-CAA and sCAA were included from hospital and research databases of the Leiden University Medical Center (2012-2020) and Massachusetts General Hospital (1994-2012). Key outcomes were: sex differences in symptomatic intracerebral hemorrhage (sICH) onset, recurrence and survival (analyzed using Kaplan Meier survival and regression analyses), and sex differences in magnetic resonance imaging-markers in D-CAA (explored using scatterplots), and in sCAA (investigated using regression analysis). RESULTS We included 136 patients with D-CAA (mean age 57 years, 56% women, 64% with previous sICH) and 370 patients with sCAA (mean age 76 years, 51% women, all with previous sICH). Men and women with D-CAA did not differ for sICH onset (median age 54 in men and 56 in women [P=0.13]). Men with D-CAA had a slightly higher number of sICH compared with women (median 2 versus 1; adjusted RR, 1.5 [95% CI, 1.1-1.9]) and a shorter interval between the first and second sICH (median 1.8 years for men and 3.1 years for women, P=0.02). Men with sCAA had their first sICH at an earlier age (median 75 versus 78 years, respectively, P=0.003) and more lobar microbleeds (median 1 versus 0, P=0.022) compared with women with sCAA. No substantial differences were found in the other magnetic resonance imaging markers. Survival after first sICH was comparable between sexes for D-CAA (P=0.12) and sCAA (P=0.23). CONCLUSIONS Men with CAA seem to have an earlier onset (sCAA) and more hemorrhagic disease course (sCAA and D-CAA) compared with women. Future studies are necessary to confirm these findings and determine the underlying role of sex-related factors.
Collapse
Affiliation(s)
- Emma A. Koemans
- Department of Neurology, Leiden University Medical Center, the Netherlands (E.A.K., I.R., S.V., G.M.T., M.J.H.W.)
| | - Juan Pablo Castello
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., J.R., A.B.)
- Department of Neurology, J Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., V.P., M.E.G., J.R., S.M.G., A.B., A.V.)
- Department of Neurology, University of Miami Miller School of Medicine, FL (J.P.C.)
| | - Ingeborg Rasing
- Department of Neurology, Leiden University Medical Center, the Netherlands (E.A.K., I.R., S.V., G.M.T., M.J.H.W.)
| | - Jessica R. Abramson
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., J.R., A.B.)
- Department of Neurology, J Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., V.P., M.E.G., J.R., S.M.G., A.B., A.V.)
| | - Sabine Voigt
- Department of Neurology, Leiden University Medical Center, the Netherlands (E.A.K., I.R., S.V., G.M.T., M.J.H.W.)
- Department of Radiology, Leiden University Medical Center, the Netherlands (S.V., T.W.v.H., M.A.A.v.W.)
| | - Valentina Perosa
- Department of Neurology, J Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., V.P., M.E.G., J.R., S.M.G., A.B., A.V.)
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany (V.P.)
| | - Thijs W. van Harten
- Department of Radiology, Leiden University Medical Center, the Netherlands (S.V., T.W.v.H., M.A.A.v.W.)
| | - Erik W. van Zwet
- Department of Biomedical Data Sciences, Leiden University Medical Center, the Netherlands (E.W.v.Z.)
| | - Gisela M. Terwindt
- Department of Neurology, Leiden University Medical Center, the Netherlands (E.A.K., I.R., S.V., G.M.T., M.J.H.W.)
| | - M. Edip Gurol
- Department of Neurology, J Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., V.P., M.E.G., J.R., S.M.G., A.B., A.V.)
| | - Jonathan Rosand
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., J.R., A.B.)
- Department of Neurology, J Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., V.P., M.E.G., J.R., S.M.G., A.B., A.V.)
| | - Steven M. Greenberg
- Department of Neurology, J Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., V.P., M.E.G., J.R., S.M.G., A.B., A.V.)
| | | | - Alessandro Biffi
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., J.R., A.B.)
- Department of Neurology, J Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., V.P., M.E.G., J.R., S.M.G., A.B., A.V.)
| | - Anand Viswanathan
- Department of Neurology, J Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (J.P.C., J.R.A., V.P., M.E.G., J.R., S.M.G., A.B., A.V.)
| | - Marieke J.H. Wermer
- Department of Neurology, Leiden University Medical Center, the Netherlands (E.A.K., I.R., S.V., G.M.T., M.J.H.W.)
| |
Collapse
|
112
|
Ambi A, Stanisavljevic A, Victor TW, Lowery AW, Davis J, Van Nostrand WE, Miller LM. Evaluation of Copper Chelation Therapy in a Transgenic Rat Model of Cerebral Amyloid Angiopathy. ACS Chem Neurosci 2023; 14:378-388. [PMID: 36651175 DOI: 10.1021/acschemneuro.2c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the accumulation of the amyloid β (Aβ) protein in blood vessels and leads to hemorrhages, strokes, and dementia in elderly individuals. Recent reports have shown elevated copper levels colocalized with vascular amyloid in human CAA and Alzheimer's disease patients, which have been suggested to contribute to cytotoxicity through the formation of reactive oxygen species. Here, we treated a transgenic rat model of CAA (rTg-DI) with the copper-specific chelator, tetrathiomolybdate (TTM), via intraperitoneal (IP) administration for 6 months to determine if it could lower copper content in vascular amyloid deposits and modify CAA pathology. Results showed that TTM treatment led to elevated Aβ load in the hippocampus of the rTg-DI rats and increased microbleeds in the wild type (WT) animals. X-ray fluorescence microscopy was performed to image the distribution of copper and revealed a surprising increase in copper colocalized with Aβ aggregates in TTM-treated rTg-DI rats. Unexpectedly, we also found an increase in the copper content in unaffected vessels of both rTg-DI and WT animals. These results show that IP administration of TTM was ineffective in removing copper from vascular Aβ aggregates in vivo and increased the development of disease pathology in CAA.
Collapse
Affiliation(s)
- Ashwin Ambi
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States.,National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Aleksandra Stanisavljevic
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island 02881, United States.,Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Tiffany W Victor
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Adam W Lowery
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States.,Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Judianne Davis
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island 02881, United States.,Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - William E Van Nostrand
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island 02881, United States.,Department of Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Lisa M Miller
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States.,National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
113
|
Vervuurt M, de Kort AM, Jäkel L, Kersten I, Abdo WF, Schreuder FHBM, Rasing I, Terwindt GM, Wermer MJH, Greenberg SM, Klijn CJM, Kuiperij HB, Verbeek MM. Decreased ratios of matrix metalloproteinases to tissue-type inhibitors in cerebrospinal fluid in sporadic and hereditary cerebral amyloid angiopathy. Alzheimers Res Ther 2023; 15:26. [PMID: 36717932 PMCID: PMC9885599 DOI: 10.1186/s13195-023-01171-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND To evaluate the potential of cerebrospinal fluid (CSF) levels of matrix metalloproteinases and tissue-type inhibitors (MMP; TIMP), and ratios of MMPs to TIMPs, to function as biomarkers for sporadic or hereditary cerebral amyloid angiopathy (CAA). METHODS CSF concentrations of the matrix metalloproteinases MMP-2, MMP-9 and MMP-14, as well as the tissue inhibitors of metalloproteinases TIMP-1, TIMP-2 and TIMP-3, were determined using immunoassays. These assays were applied to two, independent study groups of sporadic CAA (sCAA) (n = 28/43) and control subjects (n = 40/40), as well as to groups of pre-symptomatic (n = 11) and symptomatic hereditary Dutch-CAA (D-CAA) patients (n = 12), and age-matched controls (n = 22/28, respectively). RESULTS In the sCAA/control cohorts, inconsistent differences were found for individual MMPs and TIMPs, but MMP-2/TIMP-2 (discovery/validation: p = 0.004; p = 0.02) and MMP-14/TIMP-2 ratios (discovery/validation: p < 0.001; p = 0.04) were consistently decreased in sCAA, compared to controls. Moreover, MMP-14 was decreased in symptomatic D-CAA (p = 0.03), compared to controls. The MMP-14/TIMP-1 (p = 0.03) and MMP-14/TIMP-2 (p = 0.04) ratios were decreased in symptomatic D-CAA compared to controls and also compared to pre-symptomatic D-CAA (p = 0.004; p = 0.005, respectively). CONCLUSION CSF MMP-2/TIMP-2 and MMP-14/TIMP-2 were consistently decreased in sCAA, compared to controls. Additionally, MMP-14/TIMP-2 levels were also decreased in symptomatic D-CAA, compared to both pre-symptomatic D-CAA and controls, and can therefore be considered a biomarker for sporadic and late-stage hereditary forms of CAA.
Collapse
Affiliation(s)
- Marc Vervuurt
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Anna M de Kort
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Lieke Jäkel
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Iris Kersten
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Wilson F Abdo
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris H B M Schreuder
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Ingeborg Rasing
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Catharina J M Klijn
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - H Bea Kuiperij
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands.
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
114
|
Nagaraja N, Wang WE, Duara R, DeKosky ST, Vaillancourt D. Mediation of Reduced Hippocampal Volume by Cerebral Amyloid Angiopathy in Pathologically Confirmed Patients with Alzheimer's Disease. J Alzheimers Dis 2023; 93:495-507. [PMID: 37038809 PMCID: PMC11952816 DOI: 10.3233/jad-220624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
BACKGROUND Hippocampal atrophy in cerebral amyloid angiopathy (CAA) has been reported to be similar to that in Alzheimer's disease (AD). OBJECTIVE To evaluate if CAA pathology partly mediates reduced hippocampal volume in patients with AD. METHODS Patients with a clinical diagnosis of AD and neuropathological confirmation of AD+/-CAA in the National Alzheimer's Coordinating Center database were included in the study. The volumes of temporal lobe structures were calculated on T1-weighted imaging (T1-MRI) using automated FreeSurfer software, from images acquired on average 5 years prior to death. Multivariate regression analysis was performed to compare brain volumes in four CAA groups. The hippocampal volume on T1-MRI was correlated with Clinical Dementia Rating sum of boxes (CDRsb) score, apolipoprotein E (APOE) genotype, and hippocampal atrophy at autopsy. RESULTS The study included 231 patients with no (n = 45), mild (n = 70), moderate (n = 67), and severe (n = 49) CAA. Among the four CAA groups, patients with severe CAA had a smaller mean left hippocampal volume (p = 0.023) but this was not significant when adjusted for APOE ɛ4 (p = 0.07). The left hippocampal volume on MRI correlated significantly with the hippocampal atrophy grading on neuropathology (p = 0.0003). Among patients with severe CAA, the left hippocampal volume on T1-MRI: (a) decreased with an increase in the number of APOE ɛ4 alleles (p = 0.04); but (b) had no evidence of correlation with CDRsb score (p = 0.57). CONCLUSION Severe CAA was associated with smaller left hippocampal volume on T1-MRI up to five years prior to death among patients with neuropathologically confirmed AD. This relationship was dependent on APOE ɛ4 genotype.
Collapse
Affiliation(s)
- Nandakumar Nagaraja
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Wei-en Wang
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Ranjan Duara
- Department of Neurology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Steven T. DeKosky
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - David Vaillancourt
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
115
|
van den Berg E, Nilsson J, Kersten I, Brinkmalm G, de Kort AM, Klijn CJ, Schreuder FH, Jäkel L, Gobom J, Portelius E, Zetterberg H, Brinkmalm A, Blennow K, Kuiperij HB, Verbeek MM. Cerebrospinal Fluid Panel of Synaptic Proteins in Cerebral Amyloid Angiopathy and Alzheimer's Disease. J Alzheimers Dis 2023; 92:467-475. [PMID: 36776062 PMCID: PMC10041443 DOI: 10.3233/jad-220977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA) share pathogenic pathways related to amyloid-β deposition. Whereas AD is known to affect synaptic function, such an association for CAA remains yet unknown. OBJECTIVE We therefore aimed to investigate synaptic dysfunction in CAA. METHODS Multiple reaction monitoring mass spectrometry was used to quantify cerebrospinal fluid (CSF) concentrations of 15 synaptic proteins in CAA and AD patients, and age- and sex-matched cognitively unimpaired controls. RESULTS We included 25 patients with CAA, 49 patients with AD, and 25 controls. Only neuronal pentraxin-2 levels were decreased in the CSF of CAA patients compared with controls (p = 0.04). CSF concentrations of 12 other synaptic proteins were all increased in AD compared with CAA or controls (all p≤0.01) and were unchanged between CAA and controls. Synaptic protein concentrations in the subgroup of CAA patients positive for AD biomarkers (CAA/ATN+; n = 6) were similar to AD patients, while levels in CAA/ATN- (n = 19) were comparable with those in controls. A regression model including all synaptic proteins differentiated CAA from AD at high accuracy levels (area under the curve 0.987). CONCLUSION In contrast to AD, synaptic CSF biomarkers were found to be largely unchanged in CAA. Moreover, concomitant AD pathology in CAA is associated with abnormal synaptic protein levels. Impaired synaptic function in AD was confirmed in this independent cohort. Our findings support an apparent differential involvement of synaptic dysfunction in CAA and AD and may reflect distinct pathological mechanisms.
Collapse
Affiliation(s)
- Emma van den Berg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johanna Nilsson
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Iris Kersten
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Anna M. de Kort
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Catharina J.M. Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris H.B.M. Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lieke Jäkel
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johan Gobom
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Erik Portelius
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Ann Brinkmalm
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - H. Bea Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel M. Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, TheNetherlands
| |
Collapse
|
116
|
Lui F, Alcaide J, Knowlton S, Ysit M, Zhong N. Pathogenesis of cerebral amyloid angiopathy caused by chaotic glymphatics-Mini-review. Front Neurosci 2023; 17:1180237. [PMID: 37113157 PMCID: PMC10126375 DOI: 10.3389/fnins.2023.1180237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a common cause of lobar intracerebral hemorrhage in the elderly. It is also associated pathologically with Alzheimer's disease (AD). Both CAA and AD share similar pathology of deposition amyloid beta fibrils (Aβ). Aβ is deposited mainly in the neurites in AD and vascular walls in CAA. Aβ is formed inside the brain parenchyma from the amyloid precursor protein. It is easier to understand how Aβ is deposited in the cerebral neurites in AD. However, the pathogenesis of CAA is still largely unknown. It is difficult to understand or visualize how Aβ fibrils formed inside the brain can be deposited against the cerebral perfusion pressure to be deposited in the cerebral and meningeal arterial walls. We encountered an unusual clinical case of acute aneurysmal subarachnoid hemorrhage which was followed after a few years with localized CAA involving mainly the sites of the subarachnoid hemorrhage. We reviewed the formation of Aβ and postulated how the Aβ fibrils are transported retrogradely toward the cerebral arteries and deposited in the arterial walls resulting in the final pathology of CAA. There is a clear disturbance of the glymphatic system, the aquaporin-4 channel, and the parenchymal border macrophages.
Collapse
Affiliation(s)
- Forshing Lui
- Department of Clinical Sciences, California Northstate University College of Medicine, Elk Grove, CA, United States
- *Correspondence: Forshing Lui,
| | - Jessa Alcaide
- Department of Clinical Sciences, California Northstate University College of Medicine, Elk Grove, CA, United States
| | - Stella Knowlton
- Department of Clinical Sciences, California Northstate University College of Medicine, Elk Grove, CA, United States
| | - Michael Ysit
- Department of Clinical Sciences, California Northstate University College of Medicine, Elk Grove, CA, United States
| | - Ning Zhong
- Department of Neurology, Kaiser Permanente Sacramento Medical Center, Sacramento, CA, United States
| |
Collapse
|
117
|
Swarup O, Barker JL, Watson R, Davis SM, Campbell BCV, Yassi N. Cerebral amyloid angiopathy: clinical presentations and management challenges in the Australian context. Intern Med J 2022. [PMID: 36565446 DOI: 10.1111/imj.15999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is a disease with several clinical manifestations. It is characterised by amyloid-beta deposition in cerebral blood vessels, making them prone to bleeding. The incidence of CAA increases with age and may be associated or co-exist with intraparenchymal neurodegenerative proteinopathies, which makes it an increasingly relevant condition for adult physicians in all areas of medical practice. The vast majority of cases of CAA are sporadic with a small minority of familial cases. CAA is asymptomatic in many older adults but increases the risk of fatal intracerebral or subarachnoid haemorrhage. We review the existing literature on CAA and summarise the key findings. We specifically explore clinical challenges relevant to CAA, particularly in diagnosis, management of intracranial haemorrhage and management of concurrent medical conditions.
Collapse
Affiliation(s)
- Oshi Swarup
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - James L Barker
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Rosie Watson
- Department of Geriatrics, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia.,Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Stephen M Davis
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Bruce C V Campbell
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Nawaf Yassi
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia.,Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| |
Collapse
|
118
|
Wilting FNH, Sondag L, Schreuder FHBM, Vinke RS, Dammers R, Klijn CJM, Boogaarts HD. Surgery for spontaneous supratentorial intracerebral haemorrhage. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2022; 2022:CD015387. [PMCID: PMC9743082 DOI: 10.1002/14651858.cd015387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To assess the efficacy and safety of surgery plus standard medical management, compared to standard medical management alone, in people with spontaneous supratentorial ICH, and to assess whether the effect of surgery differs according to the surgical technique.
Collapse
Affiliation(s)
| | - Floor NH Wilting
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenNetherlands
| | - Lotte Sondag
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenNetherlands
| | - Floris HBM Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenNetherlands
| | - R Saman Vinke
- Department of NeurosurgeryRadboud University Medical CentreNijmegenNetherlands
| | - Ruben Dammers
- Department of Neurosurgery, Erasmus Medical CentreErasmus MC Stroke CentreRotterdamNetherlands
| | - Catharina JM Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenNetherlands
| | | |
Collapse
|
119
|
Zhang Q, Yang P, Pang X, Guo W, Sun Y, Wei Y, Pang C. Preliminary exploration of the co-regulation of Alzheimer's disease pathogenic genes by microRNAs and transcription factors. Front Aging Neurosci 2022; 14:1069606. [PMID: 36561136 PMCID: PMC9764863 DOI: 10.3389/fnagi.2022.1069606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background Alzheimer's disease (AD) is the most common form of age-related neurodegenerative disease. Unfortunately, due to the complexity of pathological types and clinical heterogeneity of AD, there is a lack of satisfactory treatment for AD. Previous studies have shown that microRNAs and transcription factors can modulate genes associated with AD, but the underlying pathophysiology remains unclear. Methods The datasets GSE1297 and GSE5281 were downloaded from the gene expression omnibus (GEO) database and analyzed to obtain the differentially expressed genes (DEGs) through the "R" language "limma" package. The GSE1297 dataset was analyzed by weighted correlation network analysis (WGCNA), and the key gene modules were selected. Next, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis for the key gene modules were performed. Then, the protein-protein interaction (PPI) network was constructed and the hub genes were identified using the STRING database and Cytoscape software. Finally, for the GSE150693 dataset, the "R" package "survivation" was used to integrate the data of survival time, AD transformation status and 35 characteristics, and the key microRNAs (miRNAs) were selected by Cox method. We also performed regression analysis using least absolute shrinkage and selection operator (Lasso)-Cox to construct and validate prognostic features associated with the four key genes using different databases. We also tried to find drugs targeting key genes through DrugBank database. Results GO and KEGG enrichment analysis showed that DEGs were mainly enriched in pathways regulating chemical synaptic transmission, glutamatergic synapses and Huntington's disease. In addition, 10 hub genes were selected from the PPI network by using the algorithm Between Centrality. Then, four core genes (TBP, CDK7, GRM5, and GRIA1) were selected by correlation with clinical information, and the established model had very good prognosis in different databases. Finally, hsa-miR-425-5p and hsa-miR-186-5p were determined by COX regression, AD transformation status and aberrant miRNAs. Conclusion In conclusion, we tried to construct a network in which miRNAs and transcription factors jointly regulate pathogenic genes, and described the process that abnormal miRNAs and abnormal transcription factors TBP and CDK7 jointly regulate the transcription of AD central genes GRM5 and GRIA1. The insights gained from this study offer the potential AD biomarkers, which may be of assistance to the diagnose and therapy of AD.
Collapse
Affiliation(s)
- Qi Zhang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Ping Yang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Xinping Pang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Wenbo Guo
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Yue Sun
- School of Computer Science, Sichuan Normal University, Chengdu, China
| | - Yanyu Wei
- National Key Laboratory of Science and Technology on Vacuum Electronics, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Chaoyang Pang
- School of Computer Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
120
|
Vargas-Soria M, Ramos-Rodriguez JJ, Del Marco A, Hierro-Bujalance C, Carranza-Naval MJ, Calvo-Rodriguez M, van Veluw SJ, Stitt AW, Simó R, Bacskai BJ, Infante-Garcia C, Garcia-Alloza M. Accelerated amyloid angiopathy and related vascular alterations in a mixed murine model of Alzheimer´s disease and type two diabetes. Fluids Barriers CNS 2022; 19:88. [PMID: 36345028 PMCID: PMC9639294 DOI: 10.1186/s12987-022-00380-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND While aging is the main risk factor for Alzheimer´s disease (AD), emerging evidence suggests that metabolic alterations such as type 2 diabetes (T2D) are also major contributors. Indeed, several studies have described a close relationship between AD and T2D with clinical evidence showing that both diseases coexist. A hallmark pathological event in AD is amyloid-β (Aβ) deposition in the brain as either amyloid plaques or around leptomeningeal and cortical arterioles, thus constituting cerebral amyloid angiopathy (CAA). CAA is observed in 85-95% of autopsy cases with AD and it contributes to AD pathology by limiting perivascular drainage of Aβ. METHODS To further explore these alterations when AD and T2D coexist, we have used in vivo multiphoton microscopy to analyze over time the Aβ deposition in the form of plaques and CAA in a relevant model of AD (APPswe/PS1dE9) combined with T2D (db/db). We have simultaneously assessed the effects of high-fat diet-induced prediabetes in AD mice. Since both plaques and CAA are implicated in oxidative-stress mediated vascular damage in the brain, as well as in the activation of matrix metalloproteinases (MMP), we have also analyzed oxidative stress by Amplex Red oxidation, MMP activity by DQ™ Gelatin, and vascular functionality. RESULTS We found that prediabetes accelerates amyloid plaque and CAA deposition, suggesting that initial metabolic alterations may directly affect AD pathology. T2D significantly affects vascular pathology and CAA deposition, which is increased in AD-T2D mice, suggesting that T2D favors vascular accumulation of Aβ. Moreover, T2D synergistically contributes to increase CAA mediated oxidative stress and MMP activation, affecting red blood cell velocity. CONCLUSIONS Our data support the cross-talk between metabolic disease and Aβ deposition that affects vascular integrity, ultimately contributing to AD pathology and related functional changes in the brain microvasculature.
Collapse
Affiliation(s)
- Maria Vargas-Soria
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Juan Jose Ramos-Rodriguez
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Currently at Department of Physiology, School of Health Sciences, University of Granada, Granada, Spain
| | - Angel Del Marco
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Carmen Hierro-Bujalance
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Maria Jose Carranza-Naval
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
- Salus-Infirmorum, University of Cadiz, Cadiz, Spain
| | - Maria Calvo-Rodriguez
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Susanne J van Veluw
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autonoma de Barcelona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Brian J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Carmen Infante-Garcia
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain.
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain.
| | - Monica Garcia-Alloza
- Division of Physiology. School of Medicine, University of Cadiz, Cadiz, Spain.
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain.
| |
Collapse
|
121
|
The Impact of Cerebral Amyloid Angiopathy on Functional Outcome of Patients Affected by Spontaneous Intracerebral Hemorrhage Discharged from Intensive Inpatient Rehabilitation: A Cohort Study. Diagnostics (Basel) 2022; 12:diagnostics12102458. [PMID: 36292146 PMCID: PMC9600668 DOI: 10.3390/diagnostics12102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Background: Sporadic CAA is recognized as a major cause of sICH and sABI. Even if intensive rehabilitation is recommended to maximize functional recovery after sICH, no data are available on whether CAA may affect rehabilitation outcomes. In this observational prospective study, to explore the impact of CAA on rehabilitation results, functional outcomes after intensive rehabilitation have been compared between patients affected by sICH with and without a diagnosis of CAA. Methods: All adults affected by sABI due to sICH and admitted to the IRU of IRCCS-Don-Gnocchi-Foundation were consecutively enrolled for 12 months. Demographic and clinical data were recorded upon admission and discharge. Results: Among 102 sICH patients (age: 66 (IQR = 16), 53% female), 13% were diagnosed as probable/possible-CAA. TPO and functional assessment were comparable upon admission, but CAA patients were significantly older (p = 0.001). After a comparable LOS, CAA patients presented higher care burden (ERBI: p = 0.025), poorer functional recovery (FIM: p = 0.02) and lower levels of global independence (GOSE > 4: p = 0.03). In multivariate analysis, CAA was significantly correlated with a lower FIM (p = 0.019) and a lower likelihood of reaching GOS-E > 4, (p = 0.041) at discharge, independently from age. Conclusions: CAA seems to be independently associated with poorer rehabilitation outcomes, suggesting the importance of improving knowledge about CAA to better predict rehabilitation outcomes.
Collapse
|
122
|
van Harten T, Heijmans A, van Rooden S, Wermer MJ, van Osch MJ, Kuijf HJ, van Veluw SJ, Greenberg SM, van Buchem MA, van der Grond J, van Walderveen MA. Brain Deep Medullary Veins on 7T MRI in Dutch-Type Hereditary Cerebral Amyloid Angiopathy. J Alzheimers Dis 2022; 90:381-388. [DOI: 10.3233/jad-220354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Deep medullary vein (DMV) changes occur in cerebral small vessel diseases (SVD) and in Alzheimer’s disease. Cerebral amyloid angiopathy (CAA) is a common SVD that has a high co-morbidity with Alzheimer’s disease. So far, DMVs have not been evaluated in CAA. Objective: To evaluate DMVs in Dutch-type hereditary CAA (D-CAA) mutation carriers and controls, in relation to MRI markers associated with D-CAA. Methods: Quantitative DMV parameters length, tortuosity, inhomogeneity, and density were quantified on 7 Tesla 3D susceptibility weighted MRI in pre-symptomatic D-CAA mutation carriers (n = 8), symptomatic D-CAA mutation carriers (n = 8), and controls (n = 25). Hemorrhagic MRI markers (cerebral microbleeds, intracerebral hemorrhages, cortical superficial siderosis, convexity subarachnoid hemorrhage), non-hemorrhagic MRI markers (white matter hyperintensities, enlarged perivascular spaces, lacunar infarcts, cortical microinfarcts), cortical grey matter perfusion, and diffusion tensor imaging parameters were assessed in D-CAA mutation carriers. Univariate general linear analysis was used to determine associations between DMV parameters and MRI markers. Results: Quantitative DMV parameters length, tortuosity, inhomogeneity, and density did not differ between pre-symptomatic D-CAA mutation carriers, symptomatic D-CAA mutation carriers, and controls. No associations were found between DMV parameters and MRI markers associated with D-CAA. Conclusion: This study indicates that vascular amyloid-β deposition does not affect DMV parameters. In patients with CAA, DMVs do not seem to play a role in the pathogenesis of MRI markers associated with CAA.
Collapse
Affiliation(s)
- Thijs van Harten
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anne Heijmans
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sanneke van Rooden
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke J.H. Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias J.P. van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hugo J. Kuijf
- Image Science Institute, University Medical Center Utrecht, The Netherlands
| | - Susanne J. van Veluw
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, J.P.K. Stroke Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Steven M. Greenberg
- Department of Neurology, J.P.K. Stroke Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Mark A. van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
123
|
Morató X, Pytel V, Jofresa S, Ruiz A, Boada M. Symptomatic and Disease-Modifying Therapy Pipeline for Alzheimer's Disease: Towards a Personalized Polypharmacology Patient-Centered Approach. Int J Mol Sci 2022; 23:9305. [PMID: 36012569 PMCID: PMC9409252 DOI: 10.3390/ijms23169305] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Since 1906, when Dr. Alois Alzheimer first described in a patient "a peculiar severe disease process of the cerebral cortex", people suffering from this pathology have been waiting for a breakthrough therapy. Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative brain disorder and the most common form of dementia in the elderly with a long presymptomatic phase. Worldwide, approximately 50 million people are living with dementia, with AD comprising 60-70% of cases. Pathologically, AD is characterized by the deposition of amyloid β-peptide (Aβ) in the neuropil (neuritic plaques) and blood vessels (amyloid angiopathy), and by the accumulation of hyperphosphorylated tau in neurons (neurofibrillary tangles) in the brain, with associated loss of synapses and neurons, together with glial activation, and neuroinflammation, resulting in cognitive deficits and eventually dementia. The current competitive landscape in AD consists of symptomatic treatments, of which there are currently six approved medications: three AChEIs (donepezil, rivastigmine, and galantamine), one NMDA-R antagonist (memantine), one combination therapy (memantine/donepezil), and GV-971 (sodium oligomannate, a mixture of oligosaccharides derived from algae) only approved in China. Improvements to the approved therapies, such as easier routes of administration and reduced dosing frequencies, along with the developments of new strategies and combined treatments are expected to occur within the next decade and will positively impact the way the disease is managed. Recently, Aducanumab, the first disease-modifying therapy (DMT) has been approved for AD, and several DMTs are in advanced stages of clinical development or regulatory review. Small molecules, mAbs, or multimodal strategies showing promise in animal studies have not confirmed that promise in the clinic (where small to moderate changes in clinical efficacy have been observed), and therefore, there is a significant unmet need for a better understanding of the AD pathogenesis and the exploration of alternative etiologies and therapeutic effective disease-modifying therapies strategies for AD. Therefore, a critical review of the disease-modifying therapy pipeline for Alzheimer's disease is needed.
Collapse
Affiliation(s)
- Xavier Morató
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Vanesa Pytel
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Sara Jofresa
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Agustín Ruiz
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
124
|
Schrader JM, Stanisavljevic A, Xu F, Van Nostrand WE. Distinct Brain Proteomic Signatures in Cerebral Small Vessel Disease Rat Models of Hypertension and Cerebral Amyloid Angiopathy. J Neuropathol Exp Neurol 2022; 81:731-745. [PMID: 35856898 PMCID: PMC9803909 DOI: 10.1093/jnen/nlac057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cerebral small vessel diseases (CSVDs) are prominent contributors to vascular cognitive impairment and dementia and can arise from a range of etiologies. Cerebral amyloid angiopathy (CAA) and hypertension (HTN), both prevalent in the elderly population, lead to cerebral microhemorrhages, macrohemorrhages, and white matter damage. However, their respective underlying mechanisms and molecular events are poorly understood. Here, we show that the transgenic rat model of CAA type 1 (rTg-DI) exhibits perivascular inflammation that is lacking in the spontaneously hypertensive stroke-prone (SHR-SP) rat model of HTN. Alternatively, SHR-SP rats display notable dilation of arteriolar perivascular spaces. Comparative proteomics analysis revealed few shared altered proteins, with key proteins such as ANXA3, H2A, and HTRA1 unique to rTg-DI rats, and Nt5e, Flot-1 and Flot-2 unique to SHR-SP rats. Immunolabeling confirmed that upregulation of ANXA3, HTRA1, and neutrophil extracellular trap proteins were distinctly associated with rTg-DI rats. Pathway analysis predicted activation of TGF-β1 and TNFα in rTg-DI rat brain, while insulin signaling was reduced in the SHR-SP rat brain. Thus, we report divergent protein signatures associated with distinct cerebral vessel pathologies in the SHR-SP and rTg-DI rat models and provide new mechanistic insight into these different forms of CSVD.
Collapse
Affiliation(s)
- Joseph M Schrader
- From the George and Anne Ryan Institute for Neuroscience,Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Aleksandra Stanisavljevic
- From the George and Anne Ryan Institute for Neuroscience,Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Feng Xu
- From the George and Anne Ryan Institute for Neuroscience,Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - William E Van Nostrand
- Send correspondence to: William E. Van Nostrand, PhD, George and Anne Ryan Institute for Neuroscience, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 130 Flagg Road, Kingston, RI 02881, USA; E-mail:
| |
Collapse
|
125
|
Martini AC, Gross TJ, Head E, Mapstone M. Beyond amyloid: Immune, cerebrovascular, and metabolic contributions to Alzheimer disease in people with Down syndrome. Neuron 2022; 110:2063-2079. [PMID: 35472307 PMCID: PMC9262826 DOI: 10.1016/j.neuron.2022.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 12/16/2022]
Abstract
People with Down syndrome (DS) have increased risk of Alzheimer disease (AD), presumably conferred through genetic predispositions arising from trisomy 21. These predispositions necessarily include triplication of the amyloid precursor protein (APP), but also other Ch21 genes that confer risk directly or through interactions with genes on other chromosomes. We discuss evidence that multiple genes on chromosome 21 are associated with metabolic dysfunction in DS. The resulting dysregulated pathways involve the immune system, leading to chronic inflammation; the cerebrovascular system, leading to disruption of the blood brain barrier (BBB); and cellular energy metabolism, promoting increased oxidative stress. In combination, these disruptions may produce a precarious biological milieu that, in the presence of accumulating amyloid, drives the pathophysiological cascade of AD in people with DS. Critically, mechanistic drivers of this dysfunction may be targetable in future clinical trials of pharmaceutical and/or lifestyle interventions.
Collapse
Affiliation(s)
- Alessandra C Martini
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Thomas J Gross
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
126
|
McCorkindale AN, Mundell HD, Guennewig B, Sutherland GT. Vascular Dysfunction Is Central to Alzheimer's Disease Pathogenesis in APOE e4 Carriers. Int J Mol Sci 2022; 23:7106. [PMID: 35806110 PMCID: PMC9266739 DOI: 10.3390/ijms23137106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and the leading risk factor, after age, is possession of the apolipoprotein E epsilon 4 allele (APOE4). Approximately 50% of AD patients carry one or two copies of APOE4 but the mechanisms by which it confers risk are still unknown. APOE4 carriers are reported to demonstrate changes in brain structure, cognition, and neuropathology, but findings have been inconsistent across studies. In the present study, we used multi-modal data to characterise the effects of APOE4 on the brain, to investigate whether AD pathology manifests differently in APOE4 carriers, and to determine if AD pathomechanisms are different between carriers and non-carriers. Brain structural differences in APOE4 carriers were characterised by applying machine learning to over 2000 brain MRI measurements from 33,384 non-demented UK biobank study participants. APOE4 carriers showed brain changes consistent with vascular dysfunction, such as reduced white matter integrity in posterior brain regions. The relationship between APOE4 and AD pathology was explored among the 1260 individuals from the Religious Orders Study and Memory and Aging Project (ROSMAP). APOE4 status had a greater effect on amyloid than tau load, particularly amyloid in the posterior cortical regions. APOE status was also highly correlated with cerebral amyloid angiopathy (CAA). Bulk tissue brain transcriptomic data from ROSMAP and a similar dataset from the Mount Sinai Brain Bank showed that differentially expressed genes between the dementia and non-dementia groups were enriched for vascular-related processes (e.g., "angiogenesis") in APOE4 carriers only. Immune-related transcripts were more strongly correlated with AD pathology in APOE4 carriers with some transcripts such as TREM2 and positively correlated with pathology severity in APOE4 carriers, but negatively in non-carriers. Overall, cumulative evidence from the largest neuroimaging, pathology, and transcriptomic studies available suggests that vascular dysfunction is key to the development of AD in APOE4 carriers. However, further studies are required to tease out non-APOE4-specific mechanisms.
Collapse
Affiliation(s)
- Andrew N. McCorkindale
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; (A.N.M.); (H.D.M.)
| | - Hamish D. Mundell
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; (A.N.M.); (H.D.M.)
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Boris Guennewig
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
| | - Greg T. Sutherland
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia; (A.N.M.); (H.D.M.)
| |
Collapse
|
127
|
Kiani Shabestari S, Morabito S, Danhash EP, McQuade A, Sanchez JR, Miyoshi E, Chadarevian JP, Claes C, Coburn MA, Hasselmann J, Hidalgo J, Tran KN, Martini AC, Chang Rothermich W, Pascual J, Head E, Hume DA, Pridans C, Davtyan H, Swarup V, Blurton-Jones M. Absence of microglia promotes diverse pathologies and early lethality in Alzheimer's disease mice. Cell Rep 2022; 39:110961. [PMID: 35705056 PMCID: PMC9285116 DOI: 10.1016/j.celrep.2022.110961] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 11/03/2022] Open
Abstract
Microglia are strongly implicated in the development and progression of Alzheimer's disease (AD), yet their impact on pathology and lifespan remains unclear. Here we utilize a CSF1R hypomorphic mouse to generate a model of AD that genetically lacks microglia. The resulting microglial-deficient mice exhibit a profound shift from parenchymal amyloid plaques to cerebral amyloid angiopathy (CAA), which is accompanied by numerous transcriptional changes, greatly increased brain calcification and hemorrhages, and premature lethality. Remarkably, a single injection of wild-type microglia into adult mice repopulates the microglial niche and prevents each of these pathological changes. Taken together, these results indicate the protective functions of microglia in reducing CAA, blood-brain barrier dysfunction, and brain calcification. To further understand the clinical implications of these findings, human AD tissue and iPSC-microglia were examined, providing evidence that microglia phagocytose calcium crystals, and this process is impaired by loss of the AD risk gene, TREM2.
Collapse
Affiliation(s)
- Sepideh Kiani Shabestari
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA
| | - Samuel Morabito
- Mathematical, Computational and System Biology (MCSB) Program, UC Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA
| | - Emma Pascal Danhash
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA
| | - Amanda McQuade
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA
| | - Jessica Ramirez Sanchez
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA
| | - Emily Miyoshi
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697, USA
| | - Jean Paul Chadarevian
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA
| | - Christel Claes
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA
| | - Morgan Alexandra Coburn
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA
| | - Jonathan Hasselmann
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA
| | - Jorge Hidalgo
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA
| | - Kayla Nhi Tran
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA
| | - Alessandra C Martini
- Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA; Department of Pathology & Laboratory Medicine, UC Irvine, Irvine, CA 92697, USA
| | | | - Jesse Pascual
- Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA; Department of Pathology & Laboratory Medicine, UC Irvine, Irvine, CA 92697, USA
| | - Elizabeth Head
- Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA; Department of Pathology & Laboratory Medicine, UC Irvine, Irvine, CA 92697, USA
| | - David A Hume
- Mater Research Institute-University of Queensland, Brisbane, Australia
| | - Clare Pridans
- University of Edinburgh Centre for Inflammation Research, Edinburgh, UK; Simons Initiative for the Developing Brain Centre, University of Edinburgh, Edinburgh, UK; The Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
| | - Hayk Davtyan
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA
| | - Vivek Swarup
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
128
|
Shenoy A, Banerjee M, Upadhya A, Bagwe-Parab S, Kaur G. The Brilliance of the Zebrafish Model: Perception on Behavior and Alzheimer's Disease. Front Behav Neurosci 2022; 16:861155. [PMID: 35769627 PMCID: PMC9234549 DOI: 10.3389/fnbeh.2022.861155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) has become increasingly prevalent in the elderly population across the world. It's pathophysiological markers such as overproduction along with the accumulation of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFT) are posing a serious challenge to novel drug development processes. A model which simulates the human neurodegenerative mechanism will be beneficial for rapid screening of potential drug candidates. Due to the comparable neurological network with humans, zebrafish has emerged as a promising AD model. This model has been thoroughly validated through research in aspects of neuronal pathways analogous to the human brain. The cholinergic, glutamatergic, and GABAergic pathways, which play a role in the manifested behavior of the zebrafish, are well defined. There are several behavioral models in both adult zebrafish and larvae to establish various aspects of cognitive impairment including spatial memory, associative memory, anxiety, and other such features that are manifested in AD. The zebrafish model eliminates the shortcomings of previously recognized mammalian models, in terms of expense, extensive assessment durations, and the complexity of imaging the brain to test the efficacy of therapeutic interventions. This review highlights the various models that analyze the changes in the normal behavioral patterns of the zebrafish when exposed to AD inducing agents. The mechanistic pathway adopted by drugs and novel therapeutic strategies can be explored via these behavioral models and their efficacy to slow the progression of AD can be evaluated.
Collapse
Affiliation(s)
| | | | | | | | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s Narsee Monjee Institute of Management Studies, Mumbai, India
| |
Collapse
|
129
|
Wang ZB, Wang ZT, Sun Y, Tan L, Yu JT. The future of stem cell therapies of Alzheimer's disease. Ageing Res Rev 2022; 80:101655. [PMID: 35660003 DOI: 10.1016/j.arr.2022.101655] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/04/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) places a heavy burden on the global economy. There is no effective disease-modifying treatment available at present. Since the advent of induced pluripotent stem cells (iPSCs) reprogrammed from human somatic cells, new approaches using iPSC-derived products provided novel insights into AD pathogenesis and drug candidates for the AD treatment. Multiple recent studies using animal models have increased the possibility of reducing pathology and improving cognitive function by cell replacement therapies. In this review, we summarized the advantages, limitations, and future directions of cell replacement therapy, discussed the safety and ethical concerns of this novel therapeutic approach and the possibility of translation to clinical practice.
Collapse
|
130
|
Charidimou A. Cerebrospinal Fluid Biomarkers for Cerebral Amyloid Angiopathy Diagnosis. J Alzheimers Dis 2022; 87:803-805. [PMID: 35527557 DOI: 10.3233/jad-220133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An accurate diagnosis of sporadic cerebral amyloid angiopathy (CAA) is critical for patient management and research (including clinical trials) for this common small vessel pathology of the brain. While the "big bang" of the CAA field has been the device and wide adoption of the clinico-radiological Boston criteria which allowed for CAA diagnosis during life, these criteria are not without major shortcoming. As it is now becoming evident that CAA is probably not a single disease, but rather represents divergent pathophysiological phenotypes and clinical trajectories, new biomarker-driven diagnostic approaches should be sought. One such complimentary approach for CAA diagnosis is the use of cerebrospinal fluid biomarkers (CSF), which could provide dynamic measures of the underlying disease process and is discussed in this commentary given exciting new advances. A hint on how the practicing clinician could apply the current CSF data for CAA diagnosis is also provided.
Collapse
Affiliation(s)
- Andreas Charidimou
- Department of Neurology, Boston University Medical Center and Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
131
|
Marazuela P, Paez-Montserrat B, Bonaterra-Pastra A, Solé M, Hernández-Guillamon M. Impact of Cerebral Amyloid Angiopathy in Two Transgenic Mouse Models of Cerebral β-Amyloidosis: A Neuropathological Study. Int J Mol Sci 2022; 23:ijms23094972. [PMID: 35563362 PMCID: PMC9103818 DOI: 10.3390/ijms23094972] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
The pathological accumulation of parenchymal and vascular amyloid-beta (Aβ) are the main hallmarks of Alzheimer’s disease (AD) and Cerebral Amyloid Angiopathy (CAA), respectively. Emerging evidence raises an important contribution of vascular dysfunction in AD pathology that could partially explain the failure of anti-Aβ therapies in this field. Transgenic mice models of cerebral β-amyloidosis are essential to a better understanding of the mechanisms underlying amyloid accumulation in the cerebrovasculature and its interactions with neuritic plaque deposition. Here, our main objective was to evaluate the progression of both parenchymal and vascular deposition in APP23 and 5xFAD transgenic mice in relation to age and sex. We first showed a significant age-dependent accumulation of extracellular Aβ deposits in both transgenic models, with a greater increase in APP23 females. We confirmed that CAA pathology was more prominent in the APP23 mice, demonstrating a higher progression of Aβ-positive vessels with age, but not linked to sex, and detecting a pronounced burden of cerebral microbleeds (cMBs) by magnetic resonance imaging (MRI). In contrast, 5xFAD mice did not present CAA, as shown by the negligible Aβ presence in cerebral vessels and the occurrence of occasional cMBs comparable to WT mice. In conclusion, the APP23 mouse model is an interesting tool to study the overlap between vascular and parenchymal Aβ deposition and to evaluate future disease-modifying therapy before its translation to the clinic.
Collapse
|
132
|
Alvarez-Mora MI, Blanco-Palmero VA, Quesada-Espinosa JF, Arteche-Lopez AR, Llamas-Velasco S, Palma Milla C, Lezana Rosales JM, Gomez-Manjon I, Hernandez-Lain A, Jimenez Almonacid J, Gil-Fournier B, Ramiro-León S, González-Sánchez M, Herrero-San Martín AO, Pérez-Martínez DA, Gómez-Tortosa E, Carro E, Bartolomé F, Gomez-Rodriguez MJ, Sanchez-Calvin MT, Villarejo-Galende A, Moreno-Garcia M. Heterozygous and Homozygous Variants in SORL1 Gene in Alzheimer's Disease Patients: Clinical, Neuroimaging and Neuropathological Findings. Int J Mol Sci 2022; 23:ijms23084230. [PMID: 35457051 PMCID: PMC9024679 DOI: 10.3390/ijms23084230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 02/05/2023] Open
Abstract
In the last few years, the SORL1 gene has been strongly implicated in the development of Alzheimer’s disease (AD). We performed whole-exome sequencing on 37 patients with early-onset dementia or family history suggestive of autosomal dominant dementia. Data analysis was based on a custom panel that included 46 genes related to AD and dementia. SORL1 variants were present in a high proportion of patients with candidate variants (15%, 3/20). We expand the clinical manifestations associated with the SORL1 gene by reporting detailed clinical and neuroimaging findings of six unrelated patients with AD and SORL1 mutations. We also present for the first time a patient with the homozygous truncating variant c.364C>T (p.R122*) in SORL1, who also had severe cerebral amyloid angiopathy. Furthermore, we report neuropathological findings and immunochemistry assays from one patient with the splicing variant c.4519+5G>A in the SORL1 gene, in which AD was confirmed by neuropathological examination. Our results highlight the heterogeneity of clinical presentation and familial dementia background of SORL1-associated AD and suggest that SORL1 might be contributing to AD development as a risk factor gene rather than as a major autosomal dominant gene.
Collapse
Affiliation(s)
- Maria Isabel Alvarez-Mora
- Genetic Service, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (J.F.Q.-E.); (A.R.A.-L.); (C.P.M.); (J.M.L.R.); (I.G.-M.); (M.J.G.-R.); (M.T.S.-C.); (M.M.-G.)
- Biochemistry and Molecular Genetic Service, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-932275400 (ext. 9940)
| | - Victor Antonio Blanco-Palmero
- Neurology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (V.A.B.-P.); (S.L.-V.); (M.G.-S.); (A.O.H.-S.M.); (D.A.P.-M.); (A.V.-G.)
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (E.C.); (F.B.)
- Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Juan Francisco Quesada-Espinosa
- Genetic Service, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (J.F.Q.-E.); (A.R.A.-L.); (C.P.M.); (J.M.L.R.); (I.G.-M.); (M.J.G.-R.); (M.T.S.-C.); (M.M.-G.)
- UdisGen—Unidad de Dismorfología y Genética, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Ana Rosa Arteche-Lopez
- Genetic Service, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (J.F.Q.-E.); (A.R.A.-L.); (C.P.M.); (J.M.L.R.); (I.G.-M.); (M.J.G.-R.); (M.T.S.-C.); (M.M.-G.)
- UdisGen—Unidad de Dismorfología y Genética, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Sara Llamas-Velasco
- Neurology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (V.A.B.-P.); (S.L.-V.); (M.G.-S.); (A.O.H.-S.M.); (D.A.P.-M.); (A.V.-G.)
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (E.C.); (F.B.)
- Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Carmen Palma Milla
- Genetic Service, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (J.F.Q.-E.); (A.R.A.-L.); (C.P.M.); (J.M.L.R.); (I.G.-M.); (M.J.G.-R.); (M.T.S.-C.); (M.M.-G.)
- UdisGen—Unidad de Dismorfología y Genética, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Jose Miguel Lezana Rosales
- Genetic Service, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (J.F.Q.-E.); (A.R.A.-L.); (C.P.M.); (J.M.L.R.); (I.G.-M.); (M.J.G.-R.); (M.T.S.-C.); (M.M.-G.)
- UdisGen—Unidad de Dismorfología y Genética, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Irene Gomez-Manjon
- Genetic Service, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (J.F.Q.-E.); (A.R.A.-L.); (C.P.M.); (J.M.L.R.); (I.G.-M.); (M.J.G.-R.); (M.T.S.-C.); (M.M.-G.)
- UdisGen—Unidad de Dismorfología y Genética, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Aurelio Hernandez-Lain
- Neuropathology Unit, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (A.H.-L.); (J.J.A.)
| | | | - Belén Gil-Fournier
- Genetic Service, Hospital Universitario de Getafe, 28905 Madrid, Spain; (B.G.-F.); (S.R.-L.)
| | - Soraya Ramiro-León
- Genetic Service, Hospital Universitario de Getafe, 28905 Madrid, Spain; (B.G.-F.); (S.R.-L.)
| | - Marta González-Sánchez
- Neurology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (V.A.B.-P.); (S.L.-V.); (M.G.-S.); (A.O.H.-S.M.); (D.A.P.-M.); (A.V.-G.)
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (E.C.); (F.B.)
- Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Alejandro Octavio Herrero-San Martín
- Neurology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (V.A.B.-P.); (S.L.-V.); (M.G.-S.); (A.O.H.-S.M.); (D.A.P.-M.); (A.V.-G.)
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (E.C.); (F.B.)
- Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - David Andrés Pérez-Martínez
- Neurology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (V.A.B.-P.); (S.L.-V.); (M.G.-S.); (A.O.H.-S.M.); (D.A.P.-M.); (A.V.-G.)
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (E.C.); (F.B.)
- Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | | | - Eva Carro
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (E.C.); (F.B.)
- Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Fernando Bartolomé
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (E.C.); (F.B.)
- Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Maria Jose Gomez-Rodriguez
- Genetic Service, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (J.F.Q.-E.); (A.R.A.-L.); (C.P.M.); (J.M.L.R.); (I.G.-M.); (M.J.G.-R.); (M.T.S.-C.); (M.M.-G.)
- UdisGen—Unidad de Dismorfología y Genética, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Network Center for Biomedical Research in Cancer (CIBERONC), 28029 Madrid, Spain
| | - María Teresa Sanchez-Calvin
- Genetic Service, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (J.F.Q.-E.); (A.R.A.-L.); (C.P.M.); (J.M.L.R.); (I.G.-M.); (M.J.G.-R.); (M.T.S.-C.); (M.M.-G.)
- UdisGen—Unidad de Dismorfología y Genética, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Alberto Villarejo-Galende
- Neurology Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (V.A.B.-P.); (S.L.-V.); (M.G.-S.); (A.O.H.-S.M.); (D.A.P.-M.); (A.V.-G.)
- Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Marta Moreno-Garcia
- Genetic Service, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (J.F.Q.-E.); (A.R.A.-L.); (C.P.M.); (J.M.L.R.); (I.G.-M.); (M.J.G.-R.); (M.T.S.-C.); (M.M.-G.)
- UdisGen—Unidad de Dismorfología y Genética, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| |
Collapse
|
133
|
Abdulrahman H, Smedinga M, Verbeek MM, Klijn CJM, Richard E, Perry M. Views on the Desirability of Diagnosing Sporadic Cerebral Amyloid Angiopathy with Biological Evidence. J Alzheimers Dis 2022; 87:807-816. [PMID: 35404283 PMCID: PMC9198748 DOI: 10.3233/jad-220052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Sporadic cerebral amyloid angiopathy (sCAA) research of the past decade has increasingly focused on developing biomarkers that allow for an earlier and more accurate sCAA-diagnosis. Considering that sCAA does not have treatment options available (yet), more fundamental questions concerning the desirability of using such early-sCAA biomarkers in clinical practice need to be addressed. OBJECTIVE In this qualitative interview study, we aim to explore the views of vascular neurologists on the purpose and possible consequences of an earlier and more accurate sCAA-diagnosis, using new biomarkers. METHODS Vascular neurologists from around the world were approached via email and interviewed via video call. Topics included views on current sCAA diagnostic practice, considerations on the use of new biomarkers, and expectations and hopes for the future. All interviews were transcribed ad verbatim using a transcription program (Otter.ai). Transcripts were analyzed using inductive content analysis. RESULTS We interviewed 14 vascular neurologists. Views regarding the desirability of new sCAA-biomarkers differed substantially between interviewees as to when and in whom these biomarkers could be of benefit in clinical practice. These differences were mainly reported with regards to prognosis, risk stratification, and biological precision, between general stroke neurologists and neurologists with specific sCAA-expertise. CONCLUSION Views on the use of sCAA-biomarkers in clinical practice differ substantially between vascular neurologists. There is particularly no consensus regarding when, and in whom sCAA biomarkers could be useful in clinical practice.
Collapse
Affiliation(s)
- Herrer Abdulrahman
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marthe Smedinga
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Laboratory Medicine, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Alzheimer Centre, Radboud University Medical Center, The Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Edo Richard
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Alzheimer Centre, Radboud University Medical Center, The Netherlands
| | - Marieke Perry
- Radboud Alzheimer Centre, Radboud University Medical Center, The Netherlands.,Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
134
|
Uchida K. Waste Clearance in the Brain and Neuroinflammation: A Novel Perspective on Biomarker and Drug Target Discovery in Alzheimer's Disease. Cells 2022; 11:cells11050919. [PMID: 35269541 PMCID: PMC8909773 DOI: 10.3390/cells11050919] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/26/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial disease with a heterogeneous etiology. The pathology of Alzheimer’s disease is characterized by amyloid-beta and hyperphosphorylated tau, which are necessary for disease progression. Many clinical trials on disease-modifying drugs for AD have failed to indicate their clinical benefits. Recent advances in fundamental research have indicated that neuroinflammation plays an important pathological role in AD. Damage- and pathogen-associated molecular patterns in the brain induce neuroinflammation and inflammasome activation, causing caspase-1-dependent glial and neuronal cell death. These waste products in the brain are eliminated by the glymphatic system via perivascular spaces, the blood-brain barrier, and the blood–cerebrospinal fluid barrier. Age-related vascular dysfunction is associated with an impairment of clearance and barrier functions, leading to neuroinflammation. The proteins involved in waste clearance in the brain and peripheral circulation may be potential biomarkers and drug targets in the early stages of cognitive impairment. This short review focuses on waste clearance dysfunction in AD pathobiology and discusses the improvement of waste clearance as an early intervention in prodromal AD and preclinical stages of dementia.
Collapse
Affiliation(s)
- Kazuhiko Uchida
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8575, Ibaraki, Japan; ; Tel.: +81-29-853-3210; Fax: +81-50-3730-7456
- Institute for Biomedical Research, MCBI, 4-9-29 Matsushiro, Tsukuba 305-0035, Ibaraki, Japan
| |
Collapse
|
135
|
Perosa V, Oltmer J, Munting LP, Freeze WM, Auger CA, Scherlek AA, van der Kouwe AJ, Iglesias JE, Atzeni A, Bacskai BJ, Viswanathan A, Frosch MP, Greenberg SM, van Veluw SJ. Perivascular space dilation is associated with vascular amyloid-β accumulation in the overlying cortex. Acta Neuropathol 2022; 143:331-348. [PMID: 34928427 PMCID: PMC9047512 DOI: 10.1007/s00401-021-02393-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/10/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022]
Abstract
Perivascular spaces (PVS) are compartments surrounding cerebral blood vessels that become visible on MRI when enlarged. Enlarged PVS (EPVS) are commonly seen in patients with cerebral small vessel disease (CSVD) and have been suggested to reflect dysfunctional perivascular clearance of soluble waste products from the brain. In this study, we investigated histopathological correlates of EPVS and how they relate to vascular amyloid-β (Aβ) in cerebral amyloid angiopathy (CAA), a form of CSVD that commonly co-exists with Alzheimer's disease (AD) pathology. We used ex vivo MRI, semi-automatic segmentation and validated deep-learning-based models to quantify EPVS and associated histopathological abnormalities. Severity of MRI-visible PVS during life was significantly associated with severity of MRI-visible PVS on ex vivo MRI in formalin fixed intact hemispheres and corresponded with PVS enlargement on histopathology in the same areas. EPVS were located mainly around the white matter portion of perforating cortical arterioles and their burden was associated with CAA severity in the overlying cortex. Furthermore, we observed markedly reduced smooth muscle cells and increased vascular Aβ accumulation, extending into the WM, in individually affected vessels with an EPVS. Overall, these findings are consistent with the notion that EPVS reflect impaired outward flow along arterioles and have implications for our understanding of perivascular clearance mechanisms, which play an important role in the pathophysiology of CAA and AD.
Collapse
Affiliation(s)
- Valentina Perosa
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, J. Philip Kistler Stroke Research Center, Cambridge Str. 175, Suite 300, Boston, MA, 02114, USA.
- Department of Neurology, Otto-Von-Guericke University, Magdeburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - Jan Oltmer
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Leon P Munting
- Massachusetts General Hospital, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, USA
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Whitney M Freeze
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neuropsychology and Psychiatry, Maastricht University, Maastricht, The Netherlands
| | - Corinne A Auger
- Massachusetts General Hospital, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Ashley A Scherlek
- Massachusetts General Hospital, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, USA
- Rush Alzheimer Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Andre J van der Kouwe
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Juan Eugenio Iglesias
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Centre for Medical Image Computing, University College London, London, UK
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alessia Atzeni
- Centre for Medical Image Computing, University College London, London, UK
| | - Brian J Bacskai
- Massachusetts General Hospital, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Anand Viswanathan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, J. Philip Kistler Stroke Research Center, Cambridge Str. 175, Suite 300, Boston, MA, 02114, USA
| | - Matthew P Frosch
- Massachusetts General Hospital, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, USA
- Neuropathology Service, C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, J. Philip Kistler Stroke Research Center, Cambridge Str. 175, Suite 300, Boston, MA, 02114, USA
| | - Susanne J van Veluw
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, J. Philip Kistler Stroke Research Center, Cambridge Str. 175, Suite 300, Boston, MA, 02114, USA
- Massachusetts General Hospital, MassGeneral Institute for Neurodegenerative Disease, Charlestown, MA, USA
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
136
|
Scherlek AA, Kozberg MG, Nicoll JAR, Perosa V, Freeze WM, van der Weerd L, Bacskai BJ, Greenberg SM, Frosch MP, Boche D, van Veluw SJ. Histopathological correlates of haemorrhagic lesions on ex vivo magnetic resonance imaging in immunized Alzheimer's disease cases. Brain Commun 2022; 4:fcac021. [PMID: 35224489 PMCID: PMC8870423 DOI: 10.1093/braincomms/fcac021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/31/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
Haemorrhagic amyloid-related imaging abnormalities on MRI are frequently observed adverse events in the context of amyloid β immunotherapy trials in patients with Alzheimer's disease. The underlying histopathology and pathophysiological mechanisms of haemorrhagic amyloid-related imaging abnormalities remain largely unknown, although coexisting cerebral amyloid angiopathy may play a key role. Here, we used ex vivo MRI in cases that underwent amyloid β immunotherapy during life to screen for haemorrhagic lesions and assess underlying tissue and vascular alterations. We hypothesized that these lesions would be associated with severe cerebral amyloid angiopathy. Ten cases were selected from the long-term follow-up study of patients who enrolled in the first clinical trial of active amyloid β immunization with AN1792 for Alzheimer's disease. Eleven matched non-immunized Alzheimer's disease cases from an independent brain brank were used as 'controls'. Formalin-fixed occipital brain slices were imaged at 7 T MRI to screen for haemorrhagic lesions (i.e. microbleeds and cortical superficial siderosis). Samples with and without haemorrhagic lesions were cut and stained. Artificial intelligence-assisted quantification of amyloid β plaque area, cortical and leptomeningeal cerebral amyloid angiopathy area, the density of iron and calcium positive cells and reactive astrocytes and activated microglia was performed. On ex vivo MRI, cortical superficial siderosis was observed in 5/10 immunized Alzheimer's disease cases compared with 1/11 control Alzheimer's disease cases (κ = 0.5). On histopathology, these areas revealed iron and calcium positive deposits in the cortex. Within the immunized Alzheimer's disease group, areas with siderosis on MRI revealed greater leptomeningeal cerebral amyloid angiopathy and concentric splitting of the vessel walls compared with areas without siderosis. Moreover, greater density of iron-positive cells in the cortex was associated with lower amyloid β plaque area and a trend towards increased post-vaccination antibody titres. This work highlights the use of ex vivo MRI to investigate the neuropathological correlates of haemorrhagic lesions observed in the context of amyloid β immunotherapy. These findings suggest a possible role for cerebral amyloid angiopathy in the formation of haemorrhagic amyloid-related imaging abnormalities, awaiting confirmation in future studies that include brain tissue of patients who received passive immunotherapy against amyloid β with available in vivo MRI during life.
Collapse
Affiliation(s)
- Ashley A. Scherlek
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Mariel G. Kozberg
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA,J. Philip Kistler Stroke Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - James A. R. Nicoll
- Clinical Neurosciences, Clinical and Experimental Sciences School, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Valentina Perosa
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Whitney M. Freeze
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands,Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Brian J. Bacskai
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Steven M. Greenberg
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Matthew P. Frosch
- Neuropathology Service, C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences School, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Susanne J. van Veluw
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA,J. Philip Kistler Stroke Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA,Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands,Correspondence to: Susanne J. van Veluw MassGeneral Institute for Neurodegenerative Disease Massachusetts General Hospital 114 16th Street Charlestown, 02129 MA, USA E-mail:
| |
Collapse
|
137
|
Ferrer I. Alzheimer's disease is an inherent, natural part of human brain aging: an integrated perspective. FREE NEUROPATHOLOGY 2022; 3:17. [PMID: 37284149 PMCID: PMC10209894 DOI: 10.17879/freeneuropathology-2022-3806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/21/2022] [Indexed: 06/08/2023]
Abstract
Alzheimer disease is one of the most challenging demons in our society due to its very high prevalence and its clinical manifestations which cause deterioration of cognition, intelligence, and emotions - the very capacities that distinguish Homo sapiens from other animal species. Besides the personal, social, and economical costs, late stages of AD are vivid experiences for the family, relatives, friends, and general observers of the progressive ruin of an individual who turns into a being with lower mental and physical capacities than less evolved species. A human brain with healthy cognition, conscience, and emotions can succeed in dealing with most difficulties that life may pose. Without these capacities, the same person probably cannot. Due, in part, to this emotional impact, the absorbing study of AD has generated, over the years, a fascinating and complex story of theories, hypotheses, controversies, fashion swings, and passionate clashes, together with tremendous efforts and achievements geared to improve understanding of the pathogenesis and treatment of the disorder. Familal AD is rare and linked to altered genetic information associated with three genes. Sporadic AD (sAD) is much more common and multifactorial. A major point of clinical discussion has been, and still is, establishing the differences between brain aging and sAD. This is not a trivial question, as the neuropathological and molecular characteristics of normal brain aging and the first appearance of early stages of sAD-related pathology are not easily distinguishable in most individuals. Another important point is confidence in assigning responsibility for the beginning of sAD to a few triggering molecules, without considering the wide number of alterations that converge in the pathogenesis of aging and sAD. Genetic risk factors covering multiple molecular signals are increasing in number. In the same line, molecular pathways are altered at early stages of sAD pathology, currently grouped under the aegis of normal brain aging, only to increase massively at advanced stages of the process. Sporadic AD is here considered an inherent, natural part of human brain aging, which is prevalent in all humans, and variably present or not in a few individuals in other species. The progression of the process has devastating effects in a relatively low percentage of human beings eventually evolving to dementia. The continuum of brain aging and sAD implies the search for a different approach in the study of human brain aging at the first stages of the biological process, and advances in the use of new technologies aimed at slowing down the molecular defects underlying human brain aging and sAD at the outset, and transfering information and tasks to AI and coordinated devices.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona; Emeritus Researcher of the Bellvitge Institute of Biomedical Research (IDIBELL); Biomedical Research Network of Neurodegenerative Diseases (CIBERNED); Institute of Neurosciences, University of Barcelona; Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
138
|
Park M, Hoang GM, Nguyen T, Lee E, Jung HJ, Choe Y, Lee MH, Hwang JY, Kim JG, Kim T. Effects of transcranial ultrasound stimulation pulsed at 40 Hz on Aβ plaques and brain rhythms in 5×FAD mice. Transl Neurodegener 2021; 10:48. [PMID: 34872618 PMCID: PMC8650290 DOI: 10.1186/s40035-021-00274-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia, and is characterized by amyloid-β (Aβ) plaques and tauopathy. Reducing Aβ has been considered a major AD treatment strategy in pharmacological and non-pharmacological approaches. Impairment of gamma oscillations, which play an important role in perception and cognitive function, has been shown in mouse AD models and human patients. Recently, the therapeutic effect of gamma entrainment in AD mouse models has been reported. Given that ultrasound is an emerging neuromodulation modality, we investigated the effect of ultrasound stimulation pulsed at gamma frequency (40 Hz) in an AD mouse model. METHODS We implanted electroencephalogram (EEG) electrodes and a piezo-ceramic disc ultrasound transducer on the skull surface of 6-month-old 5×FAD and wild-type control mice (n = 12 and 6, respectively). Six 5×FAD mice were treated with two-hour ultrasound stimulation at 40 Hz daily for two weeks, and the other six mice received sham treatment. Soluble and insoluble Aβ levels in the brain were measured by enzyme-linked immunosorbent assay. Spontaneous EEG gamma power was computed by wavelet analysis, and the brain connectivity was examined with phase-locking value and cross-frequency phase-amplitude coupling. RESULTS We found that the total Aβ42 levels, especially insoluble Aβ42, in the treatment group decreased in pre- and infra-limbic cortex (PIL) compared to that of the sham treatment group. A reduction in the number of Aβ plaques was also observed in the hippocampus. There was no increase in microbleeding in the transcranial ultrasound stimulation (tUS) group. In addition, the length and number of microglial processes decreased in PIL and hippocampus. Encelphalographic spontaneous gamma power was increased, and cross-frequency coupling was normalized, implying functional improvement after tUS stimulation. CONCLUSION These results suggest that the transcranial ultrasound-based gamma-band entrainment technique can be an effective therapy for AD by reducing the Aβ load and improving brain connectivity.
Collapse
Affiliation(s)
- Mincheol Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gia Minh Hoang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Thien Nguyen
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Eunkyung Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyun Jin Jung
- Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Youngshik Choe
- Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Moon Hwan Lee
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, Republic of Korea
| | - Jae Youn Hwang
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, Republic of Korea
| | - Jae Gwan Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
139
|
Fishman PS, Fischell JM. Focused Ultrasound Mediated Opening of the Blood-Brain Barrier for Neurodegenerative Diseases. Front Neurol 2021; 12:749047. [PMID: 34803886 PMCID: PMC8599441 DOI: 10.3389/fneur.2021.749047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/27/2021] [Indexed: 01/31/2023] Open
Abstract
The blood brain barrier (BBB) is an obstacle for the delivery of potential molecular therapies for neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). Although there has been a proliferation of potential disease modifying therapies for these progressive conditions, strategies to deliver these large agents remain limited. High intensity MRI guided focused ultrasound has already been FDA approved to lesion brain targets to treat movement disorders, while lower intensity pulsed ultrasound coupled with microbubbles commonly used as contrast agents can create transient safe opening of the BBB. Pre-clinical studies have successfully delivered growth factors, antibodies, genes, viral vectors, and nanoparticles in rodent models of AD and PD. Recent small clinical trials support the safety and feasibility of this strategy in these vulnerable patients. Further study is needed to establish safety as MRI guided BBB opening is used to enhance the delivery of newly developed molecular therapies.
Collapse
|
140
|
Schreuder FHBM, van Nieuwenhuizen KM, Hofmeijer J, Vermeer SE, Kerkhoff H, Zock E, Luijckx GJ, Messchendorp GP, van Tuijl J, Bienfait HP, Booij SJ, van den Wijngaard IR, Remmers MJM, Schreuder AHCML, Dippel DW, Staals J, Brouwers PJAM, Wermer MJH, Coutinho JM, Kwa VIH, van Gelder IC, Schutgens REG, Zweedijk B, Algra A, van Dalen JW, Jaap Kappelle L, Rinkel GJE, van der Worp HB, Klijn CJM. Apixaban versus no anticoagulation after anticoagulation-associated intracerebral haemorrhage in patients with atrial fibrillation in the Netherlands (APACHE-AF): a randomised, open-label, phase 2 trial. Lancet Neurol 2021; 20:907-916. [PMID: 34687635 DOI: 10.1016/s1474-4422(21)00298-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND In patients with atrial fibrillation who survive an anticoagulation-associated intracerebral haemorrhage, a decision must be made as to whether restarting or permanently avoiding anticoagulation is the best long-term strategy to prevent recurrent stroke and other vascular events. In APACHE-AF, we aimed to estimate the rates of non-fatal stroke or vascular death in such patients when treated with apixaban compared with when anticoagulation was avoided, to inform the design of a larger trial. METHODS APACHE-AF was a prospective, randomised, open-label, phase 2 trial with masked endpoint assessment, done at 16 hospitals in the Netherlands. Patients who survived intracerebral haemorrhage while treated with anticoagulation for atrial fibrillation were eligible for inclusion 7-90 days after the haemorrhage. Participants also had a CHA2DS2-VASc score of at least 2 and a score on the modified Rankin scale (mRS) of 4 or less. Participants were randomly assigned (1:1) to receive oral apixaban (5 mg twice daily or a reduced dose of 2·5 mg twice daily) or to avoid anticoagulation (oral antiplatelet agents could be prescribed at the discretion of the treating physician) by a central computerised randomisation system, stratified by the intention to start or withhold antiplatelet therapy in participants randomised to avoiding anticoagulation, and minimised for age and intracerebral haemorrhage location. The primary outcome was a composite of non-fatal stroke or vascular death, whichever came first, during a minimum follow-up of 6 months, analysed using Cox proportional hazards modelling in the intention-to-treat population. APACHE-AF is registered with ClinicalTrials.gov (NCT02565693) and the Netherlands Trial Register (NL4395), and the trial is closed to enrolment at all participating sites. FINDINGS Between Jan 15, 2015, and July 6, 2020, we recruited 101 patients (median age 78 years [IQR 73-83]; 55 [54%] were men and 46 [46%] were women; 100 [99%] were White and one [1%] was Black) a median of 46 days (IQR 21-74) after intracerebral haemorrhage. 50 were assigned to apixaban and 51 to avoid anticoagulation (of whom 26 [51%] started antiplatelet therapy). None were lost to follow-up. Over a median follow-up of 1·9 years (IQR 1·0-3·1; 222 person-years), non-fatal stroke or vascular death occurred in 13 (26%) participants allocated to apixaban (annual event rate 12·6% [95% CI 6·7-21·5]) and in 12 (24%) allocated to avoid anticoagulation (11·9% [95% CI 6·2-20·8]; adjusted hazard ratio 1·05 [95% CI 0·48-2·31]; p=0·90). Serious adverse events that were not outcome events occurred in 29 (58%) of 50 participants assigned to apixaban and 29 (57%) of 51 assigned to avoid anticoagulation. INTERPRETATION Patients with atrial fibrillation who had an intracerebral haemorrhage while taking anticoagulants have a high subsequent annual risk of non-fatal stroke or vascular death, whether allocated to apixaban or to avoid anticoagulation. Our data underline the need for randomised controlled trials large enough to allow identification of subgroups in whom restarting anticoagulation might be either beneficial or hazardous. FUNDING Dutch Heart Foundation (grant 2012T077).
Collapse
Affiliation(s)
- Floris H B M Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Koen M van Nieuwenhuizen
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Sarah E Vermeer
- Department of Neurology, Rijnstate Hospital, Arnhem, Netherlands
| | - Henk Kerkhoff
- Department of Neurology, Albert Schweitzer Hospital, Dordrecht, Netherlands
| | - Elles Zock
- Department of Neurology, Albert Schweitzer Hospital, Dordrecht, Netherlands
| | - Gert-Jan Luijckx
- Department of Neurology, University Medical Centre Groningen, Groningen, Netherlands
| | - Gert P Messchendorp
- Department of Neurology, University Medical Centre Groningen, Groningen, Netherlands
| | - Julia van Tuijl
- Department of Neurology, Elisabeth-TweeSteden Hospital, Tilburg, Netherlands
| | - H Paul Bienfait
- Department of Neurology, Gelre Hospital, Apeldoorn, Netherlands
| | - Suzanne J Booij
- Department of Neurology, Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | - Ido R van den Wijngaard
- Department of Neurology, Haaglanden MC, The Hague, Netherlands; Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Diederik W Dippel
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Julie Staals
- Department of Neurology, Maastricht University Medical Center, Maastricht, Netherlands
| | | | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Isabelle C van Gelder
- Department of Cardiology, University Medical Centre Groningen, Groningen, Netherlands
| | | | - Berber Zweedijk
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ale Algra
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jan Willem van Dalen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - L Jaap Kappelle
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Gabriel J E Rinkel
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - H Bart van der Worp
- Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands; Department of Neurology and Neurosurgery, Brain Center, University Medical Center Utrecht, Utrecht, Netherlands.
| | | |
Collapse
|
141
|
Marazuela P, Solé M, Bonaterra-Pastra A, Pizarro J, Camacho J, Martínez-Sáez E, Kuiperij HB, Verbeek MM, de Kort AM, Schreuder FHBM, Klijn CJM, Castillo-Ribelles L, Pancorbo O, Rodríguez-Luna D, Pujadas F, Delgado P, Hernández-Guillamon M. MFG-E8 (LACTADHERIN): a novel marker associated with cerebral amyloid angiopathy. Acta Neuropathol Commun 2021; 9:154. [PMID: 34530925 PMCID: PMC8444498 DOI: 10.1186/s40478-021-01257-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 02/08/2023] Open
Abstract
Brain accumulation of amyloid-beta (Aβ) is a crucial feature in Alzheimer´s disease (AD) and cerebral amyloid angiopathy (CAA), although the pathophysiological relationship between these diseases remains unclear. Numerous proteins are associated with Aβ deposited in parenchymal plaques and/or cerebral vessels. We hypothesized that the study of these proteins would increase our understanding of the overlap and biological differences between these two pathologies and may yield new diagnostic tools and specific therapeutic targets. We used a laser capture microdissection approach combined with mass spectrometry in the APP23 transgenic mouse model of cerebral-β-amyloidosis to specifically identify vascular Aβ-associated proteins. We focused on one of the main proteins detected in the Aβ-affected cerebrovasculature: MFG-E8 (milk fat globule-EGF factor 8), also known as lactadherin. We first validated the presence of MFG-E8 in mouse and human brains. Immunofluorescence and immunoblotting studies revealed that MFG-E8 brain levels were higher in APP23 mice than in WT mice. Furthermore, MFG-E8 was strongly detected in Aβ-positive vessels in human postmortem CAA brains, whereas MFG-E8 was not present in parenchymal Aβ deposits. Levels of MFG-E8 were additionally analysed in serum and cerebrospinal fluid (CSF) from patients diagnosed with CAA, patients with AD and control subjects. Whereas no differences were found in MFG-E8 serum levels between groups, MFG-E8 concentration was significantly lower in the CSF of CAA patients compared to controls and AD patients. Finally, in human vascular smooth muscle cells MFG-E8 was protective against the toxic effects of the treatment with the Aβ40 peptide containing the Dutch mutation. In summary, our study shows that MFG-E8 is highly associated with CAA pathology and highlights MFG-E8 as a new CSF biomarker that could potentially be used to differentiate cerebrovascular Aβ pathology from parenchymal Aβ deposition.
Collapse
Affiliation(s)
- Paula Marazuela
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Montse Solé
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Anna Bonaterra-Pastra
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Jesús Pizarro
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Jessica Camacho
- Pathology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Martínez-Sáez
- Pathology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - H Bea Kuiperij
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anna M de Kort
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris H B M Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Catharina J M Klijn
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud Alzheimer Centre, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura Castillo-Ribelles
- Clinical Biochemistry Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olalla Pancorbo
- Stroke Unit, Department of Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - David Rodríguez-Luna
- Stroke Unit, Department of Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Francesc Pujadas
- Neurology Department, Dementia Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Hospital Universitari Vall d´Hebron, Universitat Autónoma de Barcelona, Pg. Vall d´Hebron, 119-129, 08035, Barcelona, Spain.
| |
Collapse
|