101
|
Zhu Y, Sun F, Li C, Chow DHK. Acute Effects of Brief Mindfulness Intervention Coupled with Carbohydrate Ingestion to Re-Energize Soccer Players: A Randomized Crossover Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9037. [PMID: 33291535 PMCID: PMC7731386 DOI: 10.3390/ijerph17239037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022]
Abstract
Background: This field experiment investigated the acute effects of brief mindfulness-based intervention (MBI) coupled with carbohydrate (CHO) intake on players' recovery from half-time break in a simulated soccer competition. Methods: In a single-blinded randomized crossover experiment, 14 male players received 3 treatments (Control: non-carbohydrate solution + travelling introduction audio; CHO: CHO-electrolyte solution + travelling introduction audio; and CHO_M: CHO-electrolyte solution + MBI) during simulated half-time breaks. Vertical jump, sprint performance, mindfulness level, rate of perceived exertion, muscle pain, mental fatigue, blood glucose, and lactate were measured immediately before, during, and after the exercise. Results: (1) MBI significantly increased participants' mindfulness level (Control vs. CHO_M, p < 0.01; CHO vs. CHO_M, p < 0.01) and decreased mental fatigue for CHO_M condition (pre vs. post, p < 0.01); (2) participants in the CHO_M condition performed better in the repeated sprint tests than in the Control and CHO condition (Control vs. CHO_M, p = 0.02; CHO vs. CHO_M, p = 0.02). Conclusion: Findings of this study provide preliminary evidence of the positive effect of MBI coupled with CHO ingestion on athletes' recovery from fatigue in the early stage of the second half of a game.
Collapse
Affiliation(s)
- Yuxin Zhu
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong, China; (Y.Z.); (D.H.K.C.)
| | - Fenghua Sun
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong, China; (Y.Z.); (D.H.K.C.)
| | - Chunxiao Li
- School of Physical Education & Sports Science, South China Normal University, Guangzhou 510631, China;
| | - Daniel Hung Kay Chow
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong, China; (Y.Z.); (D.H.K.C.)
| |
Collapse
|
102
|
Iepsen UW, Ryrsø CK, Rugbjerg M, Secher NH, Barbosa TC, Lange P, Thaning P, Pedersen BK, Mortensen SP, Fadel PJ. Cardiorespiratory responses to high-intensity skeletal muscle metaboreflex activation in chronic obstructive pulmonary disease. Clin Physiol Funct Imaging 2020; 41:146-155. [PMID: 33159389 DOI: 10.1111/cpf.12678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/08/2020] [Accepted: 11/04/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Augmented skeletal muscle metaboreflex activation may accompany chronic obstructive pulmonary disease (COPD). The maintained metaboreflex control of mean arterial pressure (MAP) that has been reported may reflect limited evaluation using only one moderate bout of static handgrip (HG) and following postexercise ischaemia (PEI). OBJECTIVE We tested the hypothesis that cardiovascular and respiratory responses to high-intensity static HG and isolated metaboreflex activation during PEI are augmented in COPD patients. METHODS Ten patients with moderate to severe COPD and eight healthy age- and BMI-matched controls performed two-minute static HG at moderate (30% maximal voluntary contraction; MVC) and high (40% MVC) intensity followed by PEI. RESULTS Despite similar ratings of perceived exertion, arm muscle mass and strength, COPD patients demonstrated lower MAP responses during both HG intensities compared with controls (time × group interaction, p < .05). Indeed, during high-intensity HG at 40% MVC, peak MAP responses were significantly lower in COPD patients (ΔMAP: COPD 41 ± 9 mmHg vs. controls 56 ± 14 mmHg, p < .05). Notably, no group differences in MAP were observed during PEI (e.g. 40% MVC PEI: ΔMAP COPD 33 ± 9 mmHg vs. controls 33 ± 6 mmHg, p > .05). We found no between-group differences in heart rate, respiratory rate, or estimated minute ventilation during HG or PEI. CONCLUSION These results suggest that the pressor response to high-intensity HG is blunted in COPD patients. Moreover, despite inducing a strong cardiovascular and respiratory stimulus, skeletal muscle metaboreflex activation evoked similar responses in COPD patients and controls.
Collapse
Affiliation(s)
- Ulrik Winning Iepsen
- Centre of Inflammation and Metabolism and The Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Koch Ryrsø
- Centre of Inflammation and Metabolism and The Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mette Rugbjerg
- Centre of Inflammation and Metabolism and The Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Niels H Secher
- Department of Anaesthesiology, Institute of Clinical Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Peter Lange
- Centre of Inflammation and Metabolism and The Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Medical Department O, Respiratory Section, Herlev and Gentofte Hospital, Herlev, Denmark.,Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Pia Thaning
- Centre of Inflammation and Metabolism and The Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Respiratory Medicine, University Hospital Hvidovre, Hvidovre, Denmark
| | - Bente K Pedersen
- Centre of Inflammation and Metabolism and The Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sefan P Mortensen
- Centre of Inflammation and Metabolism and The Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
103
|
Fadel PJ. Editorial to accompany exchange of views: Role of exercise pressor reflex in control of ventilation during exercise. Exp Physiol 2020; 105:2258-2259. [PMID: 33217087 DOI: 10.1113/ep089124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
104
|
Peçanha T, Meireles K, Pinto AJ, Rezende DAN, Iraha AY, Mazzolani BC, Smaira FI, Sales ARK, Bonfiglioli K, Sá-Pinto ALD, Lima FR, Irigoyen MC, Gualano B, Roschel H. Increased sympathetic and haemodynamic responses to exercise and muscle metaboreflex activation in post-menopausal women with rheumatoid arthritis. J Physiol 2020; 599:927-941. [PMID: 33180998 DOI: 10.1113/jp280892] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Rheumatoid arthritis (RA) patients present exacerbated blood pressure responses to exercise, but little is known regarding the underlying mechanisms involved. This study assessed autonomic and haemodynamic responses to exercise and to the isolated activation of muscle metaboreflex in post-menopausal women with RA. Participants with RA showed augmented pressor and sympathetic responses to exercise and to the activation of muscle metaboreflex. These responses were associated with multiple pro- and anti-inflammatory cytokines and with pain. The results of the present study support the suggestion that an abnormal reflex control of circulation is an important mechanism underlying the exacerbated cardiovascular response to exercise and increased cardiovascular risk in RA. ABSTRACT Studies have reported abnormal cardiovascular responses to exercise in rheumatoid arthritis (RA) patients, but little is known regarding the underlying mechanisms involved. This study assessed haemodynamic and sympathetic responses to exercise and to the isolated activation of muscle metaboreflex in women diagnosed with RA. Thirty-three post-menopausal women diagnosed with RA and 10 matched controls (CON) participated in this study. Mean arterial pressure (MAP), heart rate (HR) and muscle sympathetic nerve activity (MSNA frequency and incidence) were measured during a protocol of isometric knee extension exercise (3 min, 30% of maximal voluntary contraction), followed by post-exercise ischaemia (PEI). Participants with RA showed greater increases in MAP and MSNA during exercise and PEI than CON (ΔMAPexercise = 16 ± 11 vs. 9 ± 6 mmHg, P = 0.03; ΔMAPPEI = 15 ± 10 vs. 5 ± 5 mmHg, P = 0.001; ΔMSNAexercise = 17 ± 14 vs. 7 ± 9 bursts min-1 , P = 0.04; ΔMSNAPEI = 14 ± 10 vs. 6 ± 4 bursts min-1 , P = 0.04). Autonomic responses to exercise showed significant (P < 0.05) association with pro- (i.e. IFN-γ, IL-8, MCP-1 and TNFα) and anti-inflammatory (i.e. IL-1ra and IL-10) cytokines and with pain. In conclusion, post-menopausal women with RA showed augmented pressor and sympathetic responses to exercise and to the activation of muscle metaboreflex. These findings provide mechanistic insights that may explain the abnormal cardiovascular responses to exercise in RA.
Collapse
Affiliation(s)
- Tiago Peçanha
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Kamila Meireles
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana Jéssica Pinto
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Diego Augusto Nunes Rezende
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Amanda Yuri Iraha
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruna Caruso Mazzolani
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Fabiana Infante Smaira
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Allan Robson Kluser Sales
- Heart Institute, Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| | - Karina Bonfiglioli
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana Lúcia de Sá-Pinto
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Fernanda Rodrigues Lima
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Maria Cláudia Irigoyen
- Heart Institute, Hospital das Clínicas, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.,Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport and Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil.,Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
105
|
Sanches A, Guzzoni V, Miranda VCDR, Peressim LB, Rocha S, de Lima PO, Marcondes FK, Tanno AP, Cunha TS. Recreational training improves cardiovascular adaptations, metabolic profile and mental health of elderly women with type-2 diabetes mellitus. Health Care Women Int 2020; 42:1279-1297. [PMID: 33085582 DOI: 10.1080/07399332.2020.1821689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Andrea Sanches
- Physiotherapy Course, Faculty of Americana, Santa Barbara d’Oeste, Sao Paulo, Brazil
| | - Vinicius Guzzoni
- Department of Cellular and Molecular Biology, Federal University of Paraíba, Paraíba, Brazil
| | | | | | - Suellen Rocha
- Physiotherapy Course, Faculty of Americana, Santa Barbara d’Oeste, Sao Paulo, Brazil
| | - Patrícia Oliveira de Lima
- Piracicaba Dental School, Department of Biosciences, University of Campinas, Piracicaba, Sao Paulo, Brazil
| | - Fernanda Klein Marcondes
- Piracicaba Dental School, Department of Biosciences, University of Campinas, Piracicaba, Sao Paulo, Brazil
| | - Ana Paula Tanno
- College of Health Sciences, Methodist University of Piracicaba, Piracicaba, Sao Paulo, Brazil
| | - Tatiana Sousa Cunha
- Science and Technology Institute, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
106
|
Mira PADC, Falci MFA, Moreira JB, Guerrero RVD, Ribeiro TCDR, Barbosa KVBD, Pace FHL, Martinez DG, Laterza MC. Blunted blood pressure response to exercise and isolated muscle metaboreflex activation in patients with cirrhosis. Appl Physiol Nutr Metab 2020; 46:273-279. [PMID: 32941782 DOI: 10.1139/apnm-2020-0407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We sought to test the hypothesis that the cardiovascular responses to isolated muscle metaboreflex activation would be blunted in patients with cirrhosis. Eleven patients with cirrhosis and 15 healthy controls were evaluated. Blood pressure (BP; oscillometric method), contralateral forearm blood flow (FBF; venous occlusion plethysmography), and heart rate (HR; electrocardiogram) were measured during baseline, isometric handgrip at 30% of maximal voluntary contraction followed by postexercise ischemia (PEI). Forearm vascular conductance (FVC) was calculated as follows: (FBF / mean BP) × 100. Changes in HR during handgrip were similar between groups but tended to be different during PEI (controls: Δ 0.5 ± 1.1 bpm vs. cirrhotic patients: Δ 3.6 ± 1.0 bpm, P = 0.057). Mean BP response to handgrip (controls: Δ 20.9 ± 2.7 mm Hg vs. cirrhotic patients: Δ 10.6 ± 1.5 mm Hg, P = 0.006) and PEI was attenuated in cirrhotic patients (controls: Δ 16.1 ± 1.9 mm Hg vs. cirrhotic patients: Δ 7.2 ± 1.4 mm Hg, P = 0.001). In contrast, FBF and FVC increased during handgrip and decreased during PEI similarly between groups. These results indicate that an abnormal muscle metaboreflex activation explained, at least partially, the blunted pressor response to exercise exhibited by cirrhotic patients. Novelty: Patients with cirrhosis present abnormal muscle metaboreflex activation. BP response was blunted but forearm vascular response was preserved. HR response was slightly elevated.
Collapse
Affiliation(s)
- Pedro Augusto de Carvalho Mira
- Cardiovascular Research Unit and Exercise Physiology, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil.,Faculty of Physical Education and Sports, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Maria Fernanda Almeida Falci
- Cardiovascular Research Unit and Exercise Physiology, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil.,Faculty of Physical Education and Sports, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Janaína Becari Moreira
- Cardiovascular Research Unit and Exercise Physiology, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil.,Faculty of Physical Education and Sports, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Rosa Virginia Diaz Guerrero
- Cardiovascular Research Unit and Exercise Physiology, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil.,Faculty of Physical Education and Sports, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | | | | | - Fábio Heleno Lima Pace
- Hepatology Unit of Gastroenterology, University Hospital of Federal University of Juiz de Fora, Juiz de Fora, MG 36038-330, Brazil
| | - Daniel Godoy Martinez
- Cardiovascular Research Unit and Exercise Physiology, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil.,Faculty of Physical Education and Sports, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Mateus Camaroti Laterza
- Cardiovascular Research Unit and Exercise Physiology, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil.,Faculty of Physical Education and Sports, Federal University of Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| |
Collapse
|
107
|
Chang CH, Hsu YJ, Li F, Tu YT, Jhang WL, Hsu CW, Huang CC, Ho CS. Reliability and validity of the physical activity monitor for assessing energy expenditures in sedentary, regularly exercising, non-endurance athlete, and endurance athlete adults. PeerJ 2020; 8:e9717. [PMID: 32904158 PMCID: PMC7450994 DOI: 10.7717/peerj.9717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
Background Inertial sensors, such as accelerometers, serve as convenient devices to predict the energy expenditures (EEs) during physical activities by a predictive equation. Although the accuracy of estimate EEs especially matter to athletes receive physical training, most EE predictive equations adopted in accelerometers are based on the general population, not athletes. This study included the heart rate reserve (HRR) as a compensatory parameter for physical intensity and derived new equations customized for sedentary, regularly exercising, non-endurance athlete, and endurance athlete adults. Methods With indirect calorimetry as the criterion measure (CM), the EEs of participants on a treadmill were measured, and vector magnitudes (VM), as well as HRR, were simultaneously recorded by a waist-worn accelerometer with a heart rate monitor. Participants comprised a sedentary group (SG), an exercise-habit group (EHG), a non-endurance group (NEG), and an endurance group (EG), with 30 adults in each group. Results EE predictive equations were revised using linear regression with cross-validation on VM, HRR, and body mass (BM). The modified model demonstrates valid and reliable predictions across four populations (Pearson correlation coefficient, r: 0.922 to 0.932; intraclass correlation coefficient, ICC: 0.919 to 0.930). Conclusion Using accelerometers with a heart rate monitorcan accurately predict EEs of athletes and non-athletes with an optimized predictive equation integrating the VM, HRR, and BM parameters.
Collapse
Affiliation(s)
- Chun-Hao Chang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Fang Li
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Yu-Tsai Tu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan.,Department of Physical Medicine and Rehabilitation, Taipei City Hospital, Zhongxiao Branch, Taipei, Taiwan
| | - Wei-Lun Jhang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Chih-Wen Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Chin-Shan Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| |
Collapse
|
108
|
Silva PF, Ricci-Vitor AL, Cruz MM, Borges GL, Garner DM, Marques Vanderlei LC. Comparison of acute response of cardiac autonomic modulation between virtual reality-based therapy and cardiovascular rehabilitation: a cluster-randomized crossover trial. Physiother Theory Pract 2020; 38:969-984. [PMID: 32880504 DOI: 10.1080/09593985.2020.1815261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To assess the acute response of cardiac autonomic modulation (ACAM) during and after a session of virtual reality-based therapy (VRBT) compared to a session of conventional cardiovascular rehabilitation (CR) and to evaluate the effects of 12 weeks of training on this response. METHODS We assessed 28 volunteers (63.4 ± 12.5 years). The ACAM was judged by linear indexes of heart rate variability (HRV) in VRBT and CR sessions. Later, patients completed 12 weeks of VRBT+CR and the assessment was repeated at the 12th week. RESULTS Throughout the 1st VRBT session vagal withdrawal occurred (RMSSD/HFnu); sympathetic nervous system stimulation (LFnu) and progressive decrease of global HRV (SDNN). During the recovery, the SDNN, HFnu, and LFnu improved from the 5thminute on both therapies. After 12 weeks, the LFnu, HFnu, and the LF/HF-ratio revealed no significant changes in Ex3-Ex4 equated to Rep during VRBT. In recovery, the HFnu and LFnu improved before the 5thminute on both therapies. CONCLUSIONS ACAM during and after the VRBT was comparable to CR, yet, the extents were greater in the VRBT. After 12 weeks of VRBT training, the subjects adapted to the exercises from the 15thminute and exhibited faster recovery of HFnu and LFnu indexes compared to the 1st week.
Collapse
Affiliation(s)
- Paula F Silva
- Department of Physiotherapy, São Paulo State University (UNESP), School of Technology and Sciences, Presidente Prudente, Brazil
| | - Ana Laura Ricci-Vitor
- Department of Physiotherapy, São Paulo State University (UNESP), School of Technology and Sciences, Presidente Prudente, Brazil
| | - Mayara M Cruz
- Department of Physiotherapy, São Paulo State University (UNESP), School of Technology and Sciences, Presidente Prudente, Brazil
| | - Giovanna L Borges
- Department of Physiotherapy, São Paulo State University (UNESP), School of Technology and Sciences, Presidente Prudente, Brazil
| | - David M Garner
- Cardiorespiratory Research Group, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Luiz C Marques Vanderlei
- Department of Physiotherapy, São Paulo State University (UNESP), School of Technology and Sciences, Presidente Prudente, Brazil
| |
Collapse
|
109
|
Barbosa TC, Young BE, Stephens BY, Nandadeva D, Kaur J, Keller DM, Fadel PJ. Functional sympatholysis is preserved in healthy young Black men during rhythmic handgrip exercise. Am J Physiol Regul Integr Comp Physiol 2020; 319:R323-R328. [PMID: 32783690 DOI: 10.1152/ajpregu.00105.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Black men have attenuated increases in forearm vascular conductance (FVC) and forearm blood flow (FBF) during moderate- and high-intensity rhythmic handgrip exercise compared with White men, but the underlying mechanisms are unclear. Here, we tested for the first time the hypothesis that functional sympatholysis (i.e., attenuation of sympathetic vasoconstriction in the exercising muscles) is impaired in Black men compared with White men. Thirteen White and 14 Black healthy young men were studied. FBF (duplex Doppler ultrasound) and mean arterial pressure (MAP; Finometer) were measured at rest and during rhythmic handgrip exercise at 30% maximal voluntary contraction. FVC was calculated as FBF/MAP. Sympathetic activation was induced via lower body negative pressure (LBNP) at -20 Torr for 2 min at rest and from the 3rd to the 5th min of handgrip. Sympathetic vasoconstriction was assessed as percent reductions in FVC during LBNP. The groups presented similar resting FVC, FBF, and MAP. During LBNP at rest, reductions in FVC were not different between White (-35 ± 10%) and Black men (-32 ± 14%, P = 0.616), indicating similar reflex-induced sympathetic vasoconstriction. During handgrip exercise, there were minimal reductions in FVC with LBNP in either group (White: -1 ± 7%; Black: +1 ± 8%; P = 0.523), indicating functional sympatholysis in both groups. Thus, contrary to our hypothesis, our findings indicate a preserved functional sympatholysis in healthy young Black men compared with White men, suggesting that this mechanism does not appear to contribute to reduced exercise hyperemia during moderate-intensity rhythmic handgrip in this population.
Collapse
Affiliation(s)
- Thales C Barbosa
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Benjamin E Young
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Brandi Y Stephens
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Damsara Nandadeva
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Jasdeep Kaur
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - David M Keller
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| | - Paul J Fadel
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
110
|
Samora M, Teixeira AL, Sabino-Carvalho JL, Vianna LC. Sex differences in cardiac vagal reactivation from the end of isometric handgrip exercise and at the onset of muscle metaboreflex isolation. Auton Neurosci 2020; 228:102714. [PMID: 32829151 DOI: 10.1016/j.autneu.2020.102714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/09/2020] [Accepted: 08/07/2020] [Indexed: 11/18/2022]
Abstract
A parasympathetic reactivation is an underlying mechanism mediating the rapid fall in heart rate (HR) at the onset of post-exercise ischemia (PEI) in humans. Herein, we tested the hypothesis that, compared to men, women present a slower HR recovery at the cessation of isometric handgrip exercise (i.e., onset of PEI) due to an attenuated cardiac vagal reactivation. Forty-seven (23 women) young and healthy volunteers were recruited. Subjects performed 90s of isometric handgrip exercise at 40% of maximal voluntary contraction followed by 3-min of PEI. The onset of PEI was analyzed over the first 30s in 10s windows. Cardiac vagal reactivation was indexed using the HR fall and by HR variability metrics (e.g., RMSSD and SDNN) immediately after the cessation of the exercise. HR was significantly increased from rest during exercise in men and women and increases were similar between sexes. However, following the cessation of exercise, the HR recovery was significantly slower in women compared to men regardless of the time point (women vs. men: ∆-14 ± 8 vs. ∆-18 ± 6 beats.min-1 at 10s; ∆-20 ± 9 vs. ∆-25 ± 8 beats.min-1 at 20s; ∆-22 ± 10 vs. ∆-27 ± 9 beats.min-1 at 30s; P = .027). RMSSD and SDNN increased at the cessation of exercise in greater magnitude in men compared to women. These findings demonstrate that women had a slower HR recovery at the cessation of isometric handgrip exercise and onset of PEI compared to men, suggesting a sex-related difference in cardiac vagal reactivation in healthy young humans.
Collapse
Affiliation(s)
- Milena Samora
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - André L Teixeira
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Jeann L Sabino-Carvalho
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Lauro C Vianna
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil; Graduate Program in Medical Sciences, Faculty of Medicine, University of Brasília, Brasília, DF, Brazil.
| |
Collapse
|
111
|
de Oliveira GL, Marques AH, da Fonseca VF, Pozzolo BA, Panacioni F, Santos TC, Guedes AA, Mocelin AG, Bertin RL, Ulbrich AZ. Handrail support interference in cardiac autonomic modulation adjustments in young adults during maximal exercise testing. Sci Rep 2020; 10:11196. [PMID: 32641857 PMCID: PMC7343795 DOI: 10.1038/s41598-020-68155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 06/18/2020] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to investigate whether the use of handrail support during maximal exercise treadmill testing (ETT) would interfere in cardiac autonomic modulation kinetics when compared to not using handrail support. The hypothesis of overestimation in cardiac autonomic dynamics when the ETT is performed using handrail was tested. Thirty-five undergraduates (21.08 ± 2.98 years old) of both sexes, volunteered to undertake two ETT under the Ellestad protocol, in non-consecutive days. The first test (T1) was performed with handrail support and, after 7 days, the second test was performed (T2) without the support. Autonomic function was measured by heart rate variability (HRV) during both tests and resting. Estimated value of peak oxygen uptake (VO2) was 22.4% (p < 0.0001) higher in T1 when compared to T2. Overall, parasympathetic pathway was deactivated earlier in T2 than in T1, with NNxx measures variating in T1 from 10.74 ± 14.59 (ms) and in T2 from 3.48 ± 3.79 (ms). In stage two, mean values of HF in T2 corresponded to 32% of values in T1. Stage three presented a difference of 60% (p < 0.014) in LF between means reached in T1 and T2. Lastly, the association of LF and VO2 persisted longer in T1 stages than in T2 and was verified in early stages (S2 and S3) of both ETTs. Our findings suggest that parasympathetic influences on HR were slightly prolonged during ETT when subjects hold onto the treadmill.
Collapse
Affiliation(s)
- Giovanna Lima de Oliveira
- Research Group of Exercise Medicine (MedEx), Federal University of Parana (UFPR), Padre Camargo Street, 280 - Alto da Gloria, Curitiba, PR, 80060-240, Brazil
| | - Adriana Hernandez Marques
- Research Group of Exercise Medicine (MedEx), Federal University of Parana (UFPR), Padre Camargo Street, 280 - Alto da Gloria, Curitiba, PR, 80060-240, Brazil
| | - Vanessa Ferrari da Fonseca
- Research Group of Exercise Medicine (MedEx), Federal University of Parana (UFPR), Padre Camargo Street, 280 - Alto da Gloria, Curitiba, PR, 80060-240, Brazil
| | - Beatriz Augusta Pozzolo
- Research Group of Exercise Medicine (MedEx), Federal University of Parana (UFPR), Padre Camargo Street, 280 - Alto da Gloria, Curitiba, PR, 80060-240, Brazil
| | - Fernanda Panacioni
- Research Group of Exercise Medicine (MedEx), Federal University of Parana (UFPR), Padre Camargo Street, 280 - Alto da Gloria, Curitiba, PR, 80060-240, Brazil
| | - Taís Capucho Santos
- Research Group of Exercise Medicine (MedEx), Federal University of Parana (UFPR), Padre Camargo Street, 280 - Alto da Gloria, Curitiba, PR, 80060-240, Brazil
| | - Amanda Archeleiga Guedes
- Research Group of Exercise Medicine (MedEx), Federal University of Parana (UFPR), Padre Camargo Street, 280 - Alto da Gloria, Curitiba, PR, 80060-240, Brazil
| | - Aurenzo Gonçalves Mocelin
- Research Group of Exercise Medicine (MedEx), Federal University of Parana (UFPR), Padre Camargo Street, 280 - Alto da Gloria, Curitiba, PR, 80060-240, Brazil
| | - Renata Labronici Bertin
- Research Group of Exercise Medicine (MedEx), Federal University of Parana (UFPR), Padre Camargo Street, 280 - Alto da Gloria, Curitiba, PR, 80060-240, Brazil.,Department of Nutrition, Center for Health Sciences, Federal University of Parana (UFPR), Curitiba, PR, Brazil
| | - Anderson Zampier Ulbrich
- Research Group of Exercise Medicine (MedEx), Federal University of Parana (UFPR), Padre Camargo Street, 280 - Alto da Gloria, Curitiba, PR, 80060-240, Brazil. .,Department of Integrative Medicine, Center for Health Sciences, Federal University of Parana (UFPR), Curitiba, PR, Brazil.
| |
Collapse
|
112
|
A short set configuration attenuates the cardiac parasympathetic withdrawal after a whole-body resistance training session. Eur J Appl Physiol 2020; 120:1905-1919. [PMID: 32583361 DOI: 10.1007/s00421-020-04424-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE We aimed to analyse the acute effects of set configuration on cardiac parasympathetic modulation and blood pressure (BP) after a whole-body resistance training (RT) session. METHODS Thirty-two participants (23 men and 9 women) performed one control (CON) and two RT sessions differing in the set configuration but with the same intensity (15RM load), volume (200 repetitions) and total resting time (360 s between sets for each exercise and 3 min between exercises): a long set configuration (LSC: 4 sets of 10 repetitions with 2 resting minutes) and a short set configuration session (SSC, 8 sets of 5 repetitions with 51 resting seconds). Heart rate variability, baroreflex sensitivity, the low frequency of systolic blood pressure oscillations (LFSBP), BP and lactatemia were evaluated before and after the sessions and mechanical performance was evaluated during exercise. RESULTS LSC induced greater reductions on cardiac parasympathetic modulation versus SSC after the session and the CON (p < 0.001 to p = 0.024). However, no LFSBP and BP significant changes were observed. Furthermore, LSC caused a higher lactate production (p < 0.001) and velocity loss (p ≤ 0.001) in comparison with SSC. CONCLUSION These findings suggest that SSC attenuates the reduction of cardiac parasympathetic modulation after a whole-body RT, improving the mechanical performance and decreasing the glycolytic involvement, without alterations regarding vascular tone and BP.
Collapse
|
113
|
Fernandez-Rubio H, Becerro-de-Bengoa-Vallejo R, Rodríguez-Sanz D, Calvo-Lobo C, Vicente-Campos D, Chicharro JL. Inspiratory Muscle Training in Patients with Heart Failure. J Clin Med 2020; 9:jcm9061710. [PMID: 32498445 PMCID: PMC7356942 DOI: 10.3390/jcm9061710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Prior systematic reviews and meta-analysis addressed that inspiratory muscle training (IMT) improved inspiratory muscle weakness, cardiorespiratory fitness and quality of life similar to conventional exercise training as a first alternative in deconditioned patients with heart failure (HF) lead to a better adaptation to posterior exercise training. The heterogeneity and variability in a wide range of new studies about this topic led to the necessity of an updated and comprehensive narrative review. The present review aimed to analyze and update the most relevant studies about IMT in patients who suffer from HF. Methods: A narrative review was carried out about IMT in HF patients including 26 experimental studies divided into 21 clinical trials and 5 quasi-experimental studies identified through database searching in PubMed, Cochrane and PEDro. Results: There is enough evidence to state that IMT produces improvements in functional capacity of patients with HF. Nevertheless, there is not enough evidence to support that IMT could improve cardiovascular parameters, blood biomarkers or quality of life in these patients. Conclusions: Thus, IMT may be recommended to improve functional capacity in patients who suffer from HF; nevertheless, more evidence is needed regarding cardiovascular parameters, biomarkers and quality of life. Furthermore, mortality or HF hospitalization was not evaluated and most studies were not longer than 3 months. According to IMT protocols and study designs heterogeneity and mid-term follow-up, further investigations through high-quality long-term randomized clinical trials should be performed to achieve systematic reviews and meta-analysis to support strong evidence for IMT in HF patients.
Collapse
Affiliation(s)
- Hugo Fernandez-Rubio
- Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (H.F.-R.); (R.B.-d.-B.-V.); (D.R.-S.)
| | - Ricardo Becerro-de-Bengoa-Vallejo
- Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (H.F.-R.); (R.B.-d.-B.-V.); (D.R.-S.)
| | - David Rodríguez-Sanz
- Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (H.F.-R.); (R.B.-d.-B.-V.); (D.R.-S.)
| | - César Calvo-Lobo
- Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense de Madrid, 28040 Madrid, Spain; (H.F.-R.); (R.B.-d.-B.-V.); (D.R.-S.)
- Correspondence: ; Tel.: +34-913-941-532
| | - Davinia Vicente-Campos
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - J. L. Chicharro
- Grupo FEBIO, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| |
Collapse
|
114
|
Sabino-Carvalho JL, Vianna LC. Altered cardiorespiratory regulation during exercise in patients with Parkinson's disease: A challenging non-motor feature. SAGE Open Med 2020; 8:2050312120921603. [PMID: 32435491 PMCID: PMC7222646 DOI: 10.1177/2050312120921603] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/03/2020] [Indexed: 01/27/2023] Open
Abstract
The incidence of Parkinson’s disease is increasing worldwide. The motor dysfunctions are the hallmark of the disease, but patients also experience non-motor impairments, and over 40% of the patients experience coexistent abnormalities, such as orthostatic hypotension. Exercise training has been suggested as a coping resource to alleviate Parkinson’s disease symptoms and delay disease progression. However, the body of knowledge is showing that the cardiovascular response to exercise in patients with Parkinson’s disease is altered. Adequate cardiovascular and hemodynamic adjustments to exercise are necessary to meet the metabolic demands of working skeletal muscle properly. Therefore, since Parkinson’s disease affects parasympathetic and sympathetic branches of the autonomic nervous system and the latter are crucial in ensuring these adjustments are adequately made, the understanding of these responses during exercise in this population is necessary. Several neural control mechanisms are responsible for the autonomic changes in the cardiovascular and hemodynamic systems seen during exercise. In this sense, the purpose of the present work is to review the current knowledge regarding the cardiovascular responses to dynamic and isometric/resistance exercise as well as the mechanisms by which the body maintains appropriate perfusion pressure to all organs during exercise in patients with Parkinson’s disease. Results from patients with Parkinson’s disease and animal models of Parkinson’s disease provide the reader with a well-rounded knowledge base. Through this, we will highlight what is known and not known about how the neural control of circulation is responding during exercise and the adaptations that occur when individuals exercise regularly.
Collapse
Affiliation(s)
- Jeann L Sabino-Carvalho
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil
| | - Lauro C Vianna
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Brazil.,Graduate Program in Medical Sciences, Faculty of Medicine, University of Brasília, Brasília, Brazil
| |
Collapse
|
115
|
Smith JR, Bruhn EJ, Berg JD, Nur AA, Villarraga N, Olson TP. Combined influence of inspiratory loading and locomotor subsystolic cuff inflation on cardiovascular responses during submaximal exercise. J Appl Physiol (1985) 2020; 128:1338-1345. [PMID: 32240016 DOI: 10.1152/japplphysiol.00781.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is unknown if simultaneous stimulation of the respiratory and locomotor muscle afferents via inspiratory loading (IL) and locomotor subsystolic cuff inflation (CUFF) influences the cardiovascular responses during exercise. We hypothesized that combined IL and CUFF (IL + CUFF) will result in greater increases in blood pressure (MAP) and systemic vascular resistance (SVR) than IL and CUFF alone during exercise. Eight adults (6 males/2 females) were enrolled and performed four 10-min bouts of constant-load cycling eliciting 40% maximal oxygen uptake on a single day. For each exercise bout, the first 5 min consisted of spontaneous breathing. The second 5 min consisted of voluntary hyperventilation (i.e., breathing frequency of 40 breaths/min) with IL (30% maximum inspiratory pressure), CUFF (80 mmHg), IL + CUFF, or no intervention (CTL) in randomized order. During exercise, cardiac output and MAP were determined via open-circuit acetylene wash-in and manual sphygmomanometry, respectively, and SVR was calculated. Across CTL, IL, CUFF, and IL + CUFF, MAP was greater with each condition (CTL: 97 ± 14; IL: 106 ± 13; CUFF: 114 ± 14; IL + CUFF: 119 ± 15 mmHg, all P < 0.02). Furthermore, SVR was greater with IL + CUFF compared with IL, CUFF, and CTL (CTL: 6.6 ± 1.1; IL: 7.5 ± 1.4; CUFF: 7.5 ± 1.3; IL + CUFF: 8.2 ± 1.4 mmHg·L-1·min-1, all P < 0.02). Cardiac output was not different across conditions (CTL: 15.2 ± 3.8; IL: 14.8 ± 3.7; CUFF: 15.6 ± 3.5; IL + CUFF: 14.7 ± 4.3 L/min, all P > 0.05). These data demonstrate that simultaneous stimulation of respiratory and locomotor muscle afferent feedback results in additive MAP and SVR responses than IL and CUFF alone during submaximal exercise. These findings have important clinical implications for populations with exaggerated locomotor and respiratory muscle reflex feedbacks.NEW & NOTEWORTHY Reflexes arising from the respiratory and locomotor muscles influence cardiovascular regulation during exercise. However, it is unclear how the respiratory and locomotor muscle reflexes interact when simultaneously stimulated. Herein, we demonstrate that stimulation of the respiratory and locomotor muscle reflexes yielded additive cardiovascular responses during submaximal exercise.
Collapse
Affiliation(s)
- Joshua R Smith
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester Minnesota
| | - Eric J Bruhn
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester Minnesota
| | - Jessica D Berg
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester Minnesota
| | - Amran A Nur
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester Minnesota
| | | | - Thomas P Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester Minnesota
| |
Collapse
|
116
|
Yin X, Cui S, Li X, Li W, Lu QJ, Jiang XH, Wang H, Chen X, Ma JZ. Regulation of Circulatory Muscle-specific MicroRNA during 8 km Run. Int J Sports Med 2020; 41:582-588. [PMID: 32353882 DOI: 10.1055/a-1145-3595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Acute prolonged endurance running has been shown to alter muscle-specific circulating microRNA (miRNA) levels. Here, eighteen participants completed an 8 km run. We assessed the levels of hsa-miR-1-3p, -133a-3p, -133b, and -206 and their correlation with conventional biomarkers following exercise. Compared to before exercise (Pre), 8 km run significantly increased the lactate level immediately after exercise (0 h). Myoglobin (Mb) level increased at 0 h while creatine kinase (CK) level increased 24 h after exercise (24 h). The levels of creatine kinase MB isoenzyme (CK-MB) and cardiac troponin I (cTnI) were all elevated at 24 h and within the normal physiological range; The levels of hsa-miR-1-3p, -133a-3p, -133b significantly increased at 0 h but only hsa-miR-133a-3p still elevated at 24 h. Only hsa-miR-206 level decreased at 24 h; Additionally, the changes of hsa-miR-1-3p and hsa-miR-133a-3p were correlated with Mb at 24 h. These findings suggest that muscle-specific miRNA elevation in plasma is likely physiological and that these miRNA may be used as potential biomarkers for load monitoring in individuals.
Collapse
Affiliation(s)
- Xin Yin
- School of life sciences, Nanjing University, Nanjing, China
| | - Shufang Cui
- School of life sciences, Nanjing University, Nanjing, China
| | - Xin Li
- School of life sciences, Nanjing University, Nanjing, China
| | - Wei Li
- The Research Center of Military Exercise Science, The Army Engineering University of PLA, Nanjing, China
| | - Qiu Ju Lu
- The Research Center of Military Exercise Science, The Army Engineering University of PLA, Nanjing, China
| | | | - Hui Wang
- Department of Ultrasound Diagnosis, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xi Chen
- School of life sciences, Nanjing University, Nanjing, China
| | - Ji Zheng Ma
- The Research Center of Military Exercise Science, The Army Engineering University of PLA, Nanjing, China
| |
Collapse
|
117
|
Wan HY, Weavil JC, Thurston TS, Georgescu VP, Hureau TJ, Bledsoe AD, Buys MJ, Jessop JE, Richardson RS, Amann M. The exercise pressor reflex and chemoreflex interaction: cardiovascular implications for the exercising human. J Physiol 2020; 598:2311-2321. [PMID: 32170732 DOI: 10.1113/jp279456] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/10/2020] [Indexed: 01/11/2023] Open
Abstract
KEY POINTS Although the exercise pressor reflex (EPR) and the chemoreflex (CR) are recognized for their sympathoexcitatory effect, the cardiovascular implication of their interaction remains elusive. We quantified the individual and interactive cardiovascular consequences of these reflexes during exercise and revealed various modes of interaction. The EPR and hypoxia-induced CR interaction is hyper-additive for blood pressure and heart rate (responses during co-activation of the two reflexes are greater than the summation of the responses evoked by each reflex) and hypo-additive for peripheral haemodynamics (responses during co-activation of the reflexes are smaller than the summated responses). The EPR and hypercapnia-induced CR interaction results in a simple addition of the individual responses to each reflex (i.e. additive interaction). Collectively, EPR:CR co-activation results in significant cardiovascular interactions with restriction in peripheral haemodynamics, resulting from the EPR:CR interaction in hypoxia, likely having the most crucial impact on the functional capacity of an exercising human. ABSTRACT We investigated the interactive effect of the exercise pressor reflex (EPR) and the chemoreflex (CR) on the cardiovascular response to exercise. Eleven healthy participants (5 females) completed a total of six bouts of single-leg knee-extension exercise (60% peak work rate, 4 min each) either with or without lumbar intrathecal fentanyl to attenuate group III/IV afferent feedback from lower limbs to modify the EPR, while breathing either ambient air, normocapnic hypoxia (Sa O2 ∼79%, Pa O2 ∼43 mmHg, Pa CO2 ∼33 mmHg, pH ∼7.39), or normoxic hypercapnia (Sa O2 ∼98%, Pa O2 ∼105 mmHg, Pa CO2 ∼50 mmHg, pH ∼7.26) to modify the CR. During co-activation of the EPR and the hypoxia-induced CR (O2 -CR), mean arterial pressure and heart rate were significantly greater, whereas leg blood flow and leg vascular conductance were significantly lower than the summation of the responses evoked by each reflex alone. During co-activation of the EPR and the hypercapnia-induced CR (CO2 -CR), the haemodynamic responses were not different from the summated responses to each reflex response alone (P ≥ 0.1). Therefore, while the interaction resulting from the EPR:O2 -CR co-activation is hyper-additive for blood pressure and heart rate, and hypo-additive for peripheral haemodynamics, the interaction resulting from the EPR:CO2 -CR co-activation is simply additive for all cardiovascular parameters. Thus, EPR:CR co-activation results in significant interactions between cardiovascular reflexes, with the impact differing when the CR activation is achieved by hypoxia or hypercapnia. Since the EPR:CR co-activation with hypoxia potentiates the pressor response and restricts blood flow to contracting muscles, this interaction entails the most functional impact on an exercising human.
Collapse
Affiliation(s)
- Hsuan-Yu Wan
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Joshua C Weavil
- Geriatric Research, Education, and Clinical Center, Salt Lake City, UT, VAMC, USA
| | - Taylor S Thurston
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Vincent P Georgescu
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Thomas J Hureau
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Amber D Bledsoe
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Michael J Buys
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Jacob E Jessop
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, Salt Lake City, UT, VAMC, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Markus Amann
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, Salt Lake City, UT, VAMC, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
118
|
Asahara R, Ishii K, Okamoto I, Sunami Y, Hamada H, Kataoka T, Ohshita W, Watanabe T, Matsukawa K. Increased oxygenation in the non‐contracting forearm muscle during contralateral skilful hand movement. Exp Physiol 2020; 105:950-965. [DOI: 10.1113/ep088194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/16/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Ryota Asahara
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
- Automotive Human Factors Research Center National Institute of Advanced Industrial Science and Technology Ibaraki Japan
| | - Kei Ishii
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
- Automotive Human Factors Research Center National Institute of Advanced Industrial Science and Technology Ibaraki Japan
| | - Izumi Okamoto
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Yuki Sunami
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Tsuyoshi Kataoka
- Department of Health Care for Adults, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Wakana Ohshita
- Department of Health Care for Adults, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Tae Watanabe
- Department of Health Care for Adults, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Kanji Matsukawa
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| |
Collapse
|
119
|
Cardiac Autonomic Control in Women with Rheumatoid Arthritis During the Glittre Activities of Daily Living Test. Asian J Sports Med 2020. [DOI: 10.5812/asjsm.101400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: Cardiovascular autonomic dysfunction is one of the most common complications in rheumatoid arthritis (RA), which can be assessed by heart rate variability (HRV) analysis. Because the autonomic nervous system plays an important role in orchestrating the cardiovascular response to stressors, assessing HRV during exercise is critical. The Glittre Activities of Daily Living test (GA-T) was recently proposed as a multitask field test that requires the performance of the upper and lower limbs, both of which are affected in individuals with RA. Objectives: This study was conducted to evaluate autonomic impairment by HRV in women with RA using the GA-T and to correlate these changes with physical functioning and muscle strength. Methods: This cross-sectional study enrolled 20 women (median [interquartile range]: age 55 [47.5 - 68.8] years) with RA (time since diagnosis: 15 [6.50 - 23.5] years) who underwent HRV assessment during GA-T. They also underwent physical functioning assessment through the Health Assessment Questionnaire Disability Index (HAQ-DI) and handgrip strength (HGS) and quadriceps strength (QS) measures. Results: The GA-T time exhibited significant correlations with the following HRV indices: root mean square of successive differences (RMSSD, rs = -0.451, P = 0.041), proportion of iRR differing by > 50 ms from previous intervals (pNN50, rs = -0.697, P = 0.0006), high frequency (HF, rs = -0.693, P = 0.0007), standard deviation of the points perpendicular to the line-of-identity (SD1, rs = -0.476, P = 0.034), and approximate entropy (ApEn, rs = 0.545, P = 0.013). In addition, the HAQ-DI exhibited significant correlations with the following HRV indices: pNN50 (rs = -0.467, P = 0.038) and HF (rs = -0.444, P = 0.049). We did not observe significant correlation between the HRV indices during the GA-T and the muscle strength measures (HGS and QS). Conclusions: In women with RA, the longer the required to perform the GA-T the worse their parasympathetic modulation, sympathetic-vagal imbalance, and complexity of the autonomic nervous system (i.e., increased index of ApEn) were. Physical functioning level was also related to vagal modulation.
Collapse
|
120
|
Smith JR, Hart CR, Ramos PA, Akinsanya JG, Lanza IR, Joyner MJ, Curry TB, Olson TP. Metabo- and mechanoreceptor expression in human heart failure: Relationships with the locomotor muscle afferent influence on exercise responses. Exp Physiol 2020; 105:809-818. [PMID: 32105387 DOI: 10.1113/ep088353] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? How do locomotor muscle metabo- and mechanoreceptor expression compare in heart failure patients and controls? Do relationships exist between the protein expression and cardiopulmonary responses during exercise with locomotor muscle neural afferent feedback inhibition? What is the main finding and its importance? Heart failure patients exhibited greater protein expression of transient receptor potential vanilloid type 1 and cyclooxygenase-2 than controls. These findings are important as they identify receptors that may underlie the augmented locomotor muscle neural afferent feedback in heart failure. ABSTRACT Heart failure patients with reduced ejection fraction (HFrEF) exhibit abnormal locomotor group III/IV afferent feedback during exercise; however, the underlying mechanisms are unclear. Therefore, the purpose of this study was to determine (1) metabo- and mechanoreceptor expression in HFrEF and controls and (2) relationships between receptor expression and changes in cardiopulmonary responses with afferent inhibition. Ten controls and six HFrEF performed 5 min of cycling exercise at 65% peak workload with lumbar intrathecal fentanyl (FENT) or placebo (PLA). Arterial blood pressure and catecholamines were measured via radial artery catheter. A vastus lateralis muscle biopsy was performed to quantify cyclooxygenase-2 (COX-2), purinergic 2X3 (P2X3 ), transient receptor potential vanilloid type 1 (TRPV 1), acid-sensing ion channel 3 (ASIC3 ), Piezo 1 and Piezo 2 protein expression. TRPV 1 and COX-2 protein expression was greater in HFrEF than controls (both P < 0.04), while P2X3 , ASIC3 , and Piezo 1 and 2 were not different between groups (all P > 0.16). In all participants, COX-2 protein expression was related to the percentage change in ventilation (r = -0.66) and mean arterial pressure (MAP) (r = -0.82) (both P < 0.01) with FENT (relative to PLA) during exercise. In controls, TRPV 1 protein expression was related to the percentage change in systolic blood pressure (r = -0.77, P = 0.02) and MAP (r = -0.72, P = 0.03) with FENT (relative to PLA) during exercise. TRPV 1 and COX-2 protein levels are elevated in HFrEF compared to controls. These findings suggest that the elevated TRPV 1 and COX-2 expression may contribute to the exaggerated locomotor muscle afferent feedback during cycling exercise in HFrEF.
Collapse
Affiliation(s)
- Joshua R Smith
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Corey R Hart
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Paola A Ramos
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | | | - Ian R Lanza
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | | | - Timothy B Curry
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Thomas P Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
121
|
Chapman CL, Grigoryan T, Vargas NT, Reed EL, Kueck PJ, Pietrafesa LD, Bloomfield AC, Johnson BD, Schlader ZJ. High-fructose corn syrup-sweetened soft drink consumption increases vascular resistance in the kidneys at rest and during sympathetic activation. Am J Physiol Renal Physiol 2020; 318:F1053-F1065. [PMID: 32174139 DOI: 10.1152/ajprenal.00374.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We first tested the hypothesis that consuming a high-fructose corn syrup (HFCS)-sweetened soft drink augments kidney vasoconstriction to sympathetic stimulation compared with water (study 1). In a second study, we examined the mechanisms underlying these observations (study 2). In study 1, 13 healthy adults completed a cold pressor test, a sympathoexcitatory maneuver, before (preconsumption) and 30 min after drinking 500 mL of decarbonated HFCS-sweetened soft drink or water (postconsumption). In study 2, venous blood samples were obtained in 12 healthy adults before and 30 min after consumption of 500 mL water or soft drinks matched for caffeine content and taste, which were either artificially sweetened (Diet trial), sucrose-sweetened (Sucrose trial), or sweetened with HFCS (HFCS trial). In both study 1 and study 2, vascular resistance was calculated as mean arterial pressure divided by blood velocity, which was measured via Doppler ultrasound in renal and segmental arteries. In study 1, HFCS consumption increased vascular resistance in the segmental artery at rest (by 0.5 ± 0.6 mmHg·cm-1·s-1, P = 0.01) and during the cold pressor test (average change: 0.5 ± 1.0 mmHg·cm-1·s-1, main effect: P = 0.05). In study 2, segmental artery vascular resistance increased in the HFCS trial (by 0.8 ± 0.7 mmHg·cm-1·s-1, P = 0.02) but not in the other trials. Increases in serum uric acid were greater in the HFCS trial (0.3 ± 0.4 mg/dL, P ≤ 0.04) compared with the Water and Diet trials, and serum copeptin increased in the HFCS trial (by 0.8 ± 1.0 pmol/L, P = 0.06). These findings indicate that HFCS acutely increases vascular resistance in the kidneys, independent of caffeine content and beverage osmolality, which likely occurs via simultaneous elevations in circulating uric acid and vasopressin.
Collapse
Affiliation(s)
- Christopher L Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Tigran Grigoryan
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Nicole T Vargas
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Emma L Reed
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Paul J Kueck
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Leonard D Pietrafesa
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Adam C Bloomfield
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Blair D Johnson
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Zachary J Schlader
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York.,Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| |
Collapse
|
122
|
Oliveira-Dantas FF, Brasileiro-Santos MDS, Thomas SG, Silva AS, Silva DC, Browne RAV, Farias-Junior LF, Costa EC, Santos ADC. Short-Term Resistance Training Improves Cardiac Autonomic Modulation and Blood Pressure in Hypertensive Older Women: A Randomized Controlled Trial. J Strength Cond Res 2020; 34:37-45. [PMID: 31877119 DOI: 10.1519/jsc.0000000000003182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oliveira-Dantas, FF, Brasileiro-Santos, MdS, Thomas, SG, Silva, AS, Silva, DC, Browne, RAV, Farias-Junior, LF, Costa, EC, and Santos, AdC. Short-term resistance training improves cardiac autonomic modulation and blood pressure in hypertensive older women: a randomized controlled trial. J Strength Cond Res 34(1): 37-45, 2020-This randomized controlled trial investigated the efficacy of short-term resistance training (RT) on cardiac autonomic modulation and peripheral hemodynamic parameters in hypertensive older women. Twenty-five hypertensive older women who were insufficiently active (64.7 ± 4.7 years) participated in this study. Subjects were randomly allocated to a 10-week RT program (2 d·wk in the first 5 weeks; 3 d·wk in the last 5 weeks) or a nonexercise control group. Linear reverse periodization was used for the RT program. Cardiac autonomic modulation, mean blood pressure (MBP), peripheral vascular resistance (PVR), and resting heart rate (RHR) were measured before and after 10 weeks. The RT group reduced cardiac sympathetic modulation (0V%; B = -6.6; 95% confidence interval [CI]: -12.9 to -0.2; p = 0.045; Cohen's d = 0.88) and showed a trend for increased parasympathetic modulation (2V%; B = 12.5; 95% CI: 0-25; p = 0.050; Cohen's d = 0.87) compared with the control group. The RT group reduced MBP (B = -8.5 mm Hg; 95% CI: -13.6 to -3.4; p = 0.001; Cohen's d = 1.27), PVR (B = -14.1 units; 95% CI: -19.9 to -8.4; p < 0.001; Cohen's d = 1.86), and RHR (B = -8.8 b·min; 95% CI: -14.3 to -3.3; p = 0.002; Cohen's d = 1.20) compared with the control group. In the RT group, the changes in 2V% patterns and low-frequency components showed a correlation with changes in MBP (r = -0.60; p = 0.032) and RHR (r = 0.75; p = 0.0003). In conclusion, 10 weeks of RT improved cardiac autonomic modulation and reduced MBP and PVR in hypertensive older women. These results reinforce the importance of RT for this population.
Collapse
Affiliation(s)
- Filipe F Oliveira-Dantas
- Graduate Associate Program in Physical Education, Federal University of Paraiba/University of Pernambuco, João Pessoa, Paraiba, Brazil.,Research Laboratory for Physical Training Applied to Health, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Maria do Socorro Brasileiro-Santos
- Graduate Associate Program in Physical Education, Federal University of Paraiba/University of Pernambuco, João Pessoa, Paraiba, Brazil.,Research Laboratory for Physical Training Applied to Health, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Scott G Thomas
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; and
| | - Alexandre S Silva
- Graduate Associate Program in Physical Education, Federal University of Paraiba/University of Pernambuco, João Pessoa, Paraiba, Brazil
| | - Douglas C Silva
- Graduate Associate Program in Physical Education, Federal University of Paraiba/University of Pernambuco, João Pessoa, Paraiba, Brazil
| | - Rodrigo A V Browne
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Luiz F Farias-Junior
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Eduardo C Costa
- Graduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Amilton da Cruz Santos
- Graduate Associate Program in Physical Education, Federal University of Paraiba/University of Pernambuco, João Pessoa, Paraiba, Brazil.,Research Laboratory for Physical Training Applied to Health, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| |
Collapse
|
123
|
Miller DM, Joshi A, Kambouroglos ET, Engstrom IC, Bielanin JP, Wittman SR, McCall AA, Barman SM, Yates BJ. Responses of neurons in the rostral ventrolateral medulla of conscious cats to anticipated and passive movements. Am J Physiol Regul Integr Comp Physiol 2020; 318:R481-R492. [PMID: 31940234 PMCID: PMC7099461 DOI: 10.1152/ajpregu.00205.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/04/2019] [Accepted: 01/02/2020] [Indexed: 11/22/2022]
Abstract
The vestibular system contributes to regulating sympathetic nerve activity and blood pressure. Initial studies in decerebrate animals showed that neurons in the rostral ventrolateral medulla (RVLM) respond to small-amplitude (<10°) rotations of the body, as in other brain areas that process vestibular signals, although such movements do not affect blood distribution in the body. However, a subsequent experiment in conscious animals showed that few RVLM neurons respond to small-amplitude movements. This study tested the hypothesis that RVLM neurons in conscious animals respond to signals from the vestibular otolith organs elicited by large-amplitude static tilts. The activity of approximately one-third of RVLM neurons whose firing rate was related to the cardiac cycle, and thus likely received baroreceptor inputs, was modulated by vestibular inputs elicited by 40° head-up tilts in conscious cats, but not during 10° sinusoidal rotations in the pitch plane that affected the activity of neurons in brain regions providing inputs to the RVLM. These data suggest the existence of brain circuitry that suppresses vestibular influences on the activity of RVLM neurons and the sympathetic nervous system unless these inputs are physiologically warranted. We also determined that RVLM neurons failed to respond to a light cue signaling the movement, suggesting that feedforward cardiovascular responses do not occur before passive movements that require cardiovascular adjustments.
Collapse
Affiliation(s)
- Derek M Miller
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Asmita Joshi
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Isaiah C Engstrom
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John P Bielanin
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Samuel R Wittman
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew A McCall
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Susan M Barman
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Bill J Yates
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
124
|
Sheel AW, Taylor JL, Katayama K. The hyperpnoea of exercise in health: Respiratory influences on neurovascular control. Exp Physiol 2020; 105:1984-1989. [PMID: 32034952 DOI: 10.1113/ep088103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/03/2020] [Indexed: 12/29/2022]
Abstract
NEW FINDINGS What is the topic of this review? Elevated demand is placed on the respiratory muscles during whole-body exercise-induced hyperpnoea. What is the role of elevated demand in neural modulation of cardiovascular control in respiratory and locomotor skeletal muscle, and what are the mechanisms involved? What advances does it highlight? There is a sympathetic restraint of blood flow to locomotor muscles during near-maximal exercise, which might function to maintain blood pressure. During submaximal exercise, respiratory muscle blood flow might be also be reduced if ventilatory load is sufficiently high. Methodological advances (near-infrared spectroscopy with indocyanine green) confirm that blood flow is diverted away from respiratory muscles when the work of breathing is alleviated. ABSTRACT It is known that the respiratory muscles have a significant increasing oxygen demand in line with hyperpnoea during whole-body endurance exercise and are susceptible to fatigue, in much the same way as locomotor muscles. The act of ventilation can itself be considered a form of exercise. The manipulation of respiratory load at near-maximal exercise alters leg blood flow significantly, demonstrating a competitive relationship between different skeletal muscle vascular beds to perfuse both sets of muscles adequately with a finite cardiac output. In recent years, the question has moved towards whether this effect exists during submaximal exercise, and the use of more direct measurements of respiratory muscle blood flow itself to confirm assumptions that uphold the concept. Evidence thus far has shown that there is a reciprocal effect on blood flow redistribution during ventilatory load manipulation observed at the respiratory muscles themselves and that the effect is observable during submaximal exercise, where active limb blood flow was reduced in conditions that simulated a high work of breathing. This has clinical applications for populations with respiratory disease and heart failure, where the work of breathing is remarkably high, even during submaximal efforts.
Collapse
Affiliation(s)
- A William Sheel
- School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, BC, Canada
| | - Joshua Landen Taylor
- School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, BC, Canada
| | - Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan.,Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
125
|
Katayama K, Barbosa TC, Kaur J, Young BE, Nandadeva D, Ogoh S, Fadel PJ. Muscle pump-induced inhibition of sympathetic vasomotor outflow during low-intensity leg cycling is attenuated by muscle metaboreflex activation. J Appl Physiol (1985) 2020; 128:1-7. [DOI: 10.1152/japplphysiol.00639.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle sympathetic nerve activity (MSNA) decreases during leg cycling at low intensity because of muscle pump-induced increases in venous return and loading of the cardiopulmonary baroreceptors. However, MSNA increases during leg cycling when exercise is above moderate intensity or for a long duration, suggesting that the sympathoinhibitory effect of the cardiopulmonary baroreflex can be overridden by a powerful sympathoexcitatory drive, such as the skeletal muscle metaboreflex. Therefore, we tested the hypothesis that high-intensity muscle metaboreflex activation attenuates muscle pump-induced inhibition of MSNA during leg cycling. MSNA (left radial nerve) was recorded during graded isolation of the muscle metaboreflex in the forearm with postexercise ischemia (PEI) after low (PEI-L)- and high (PEI-H)-intensity isometric handgrip exercise (20% and 40% maximum voluntary contraction, respectively). Leg cycling (15–20 W) was performed alone and during each PEI trial (PEI-L+Cycling, PEI-H+Cycling). Cycling alone induced a significant decrease in MSNA burst frequency (BF) and total activity (TA). MSNA BF and TA also decreased when cycling was performed during PEI-L. However, the magnitude of decrease in MSNA during PEI-L+Cycling [∆BF: –19 ± 2% ( P < 0.001), ∆TA: –25 ± 4% ( P < 0.001); mean ± SE] was less than that during cycling alone [∆BF: –39 ± 5% ( P = 0.003), ∆TA: –45 ± 5% ( P = 0.002)]. More importantly, MSNA did not decrease during cycling with PEI-H [∆BF: –1 ± 2% ( P = 0.845), ∆TA: +2 ± 3% ( P = 0.959)]. These results suggest that muscle pump-induced inhibition of sympathetic vasomotor outflow during low-intensity leg cycling is attenuated by muscle metaboreflex activation in an intensity-dependent manner. NEW & NOTEWORTHY There are no available data concerning the interaction between the sympathoinhibitory effect of muscle pump-induced cardiopulmonary baroreflex loading during leg cycling and the sympathoexcitatory influence of the muscle metaboreflex. In this study, muscle metaboreflex activation attenuated the inhibition of muscle sympathetic nerve activity (MSNA) during leg cycling. This may explain, in part, the response of MSNA to graded-intensity dynamic exercise in which low-intensity leg cycling inhibits MSNA whereas high-intensity exercise elicits graded sympathoexcitation.
Collapse
Affiliation(s)
- Keisho Katayama
- Research Center of Health, Physical Fitness, and Sports, Nagoya University, Nagoya, Japan
| | - Thales C. Barbosa
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Jasdeep Kaur
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Benjamin E. Young
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Damsara Nandadeva
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe, Japan
| | - Paul J. Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|
126
|
Nicolò A, Montini M, Girardi M, Felici F, Bazzucchi I, Sacchetti M. Respiratory Frequency as a Marker of Physical Effort During High-Intensity Interval Training in Soccer Players. Int J Sports Physiol Perform 2020; 15:73-80. [PMID: 31034294 DOI: 10.1123/ijspp.2019-0028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE Variables currently used in soccer training monitoring fail to represent the physiological demand of the player during movements like accelerations, decelerations, and directional changes performed at high intensity. We tested the hypothesis that respiratory frequency (fR) is a marker of physical effort during soccer-related high-intensity exercise. METHODS A total of 12 male soccer players performed a preliminary intermittent incremental test and 2 shuttle-run high-intensity interval training (HIIT) protocols, in separate visits. The 2 HIIT protocols consisted of 12 repetitions over 9 minutes and differed in the work-to-recovery ratio (15:30 vs 30:15 s). Work rate was self-paced by participants to achieve the longest possible total distance in each HIIT protocol. RESULTS Work-phase average metabolic power was higher (P < .001) in the 15:30-second protocol (31.7 [3.0] W·kg-1) compared with the 30:15-second protocol (22.8 [2.0] W·kg-1). Unlike heart rate and oxygen uptake, fR showed a fast response to the work-recovery alternation during both HIIT protocols, resembling changes in metabolic power even at supramaximal intensities. Large correlations (P < .001) were observed between fR and rating of perceived exertion during both 15:30-second (r = .87) and 30:15-second protocols (r = .85). CONCLUSIONS Our findings suggest that fR is a good marker of physical effort during shuttle-run HIIT in soccer players. These findings have implications for monitoring training in soccer and other team sports.
Collapse
|
127
|
Drew RC, Charkoudian N, Park J. Neural control of cardiovascular function in black adults: implications for racial differences in autonomic regulation. Am J Physiol Regul Integr Comp Physiol 2019; 318:R234-R244. [PMID: 31823675 DOI: 10.1152/ajpregu.00091.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Black adults are at increased risk for developing hypertension and cardiovascular and chronic kidney disease and have greater associated morbidity/mortality than white adults who are otherwise demographically similar. Despite the key role of the autonomic nervous system in the regulation of cardiovascular function, the mechanistic contributions of sympathetic nerves to racial differences in cardiovascular dysfunction and disease remain poorly understood. In this review, we present an update and synthesis of current understanding regarding the roles of autonomic neural mechanisms in normal and pathophysiological cardiovascular control in black and white adults. At rest, many hemodynamic and autonomic variables, including blood pressure, cardiac output, and sympathetic nerve activity, are similar in healthy black and white adults. However, resting sympathetic vascular transduction and carotid baroreflex responses are altered in ways that tend to promote increased vasoconstriction and higher blood pressure, even in healthy, normotensive black adults. Acute sympathoexcitatory maneuvers, including exercise and cold pressor test, often result in augmented sympathetic and hemodynamic responses in healthy black adults. Clinically, although mechanistic evidence is scarce in this area, existing data support the idea that excessive sympathetic activation and/or transduction into peripheral vasoconstriction contribute importantly to the pathophysiology of hypertension and chronic kidney disease in black compared with white adults. Important areas for future work include more detailed study of sympathetic and hemodynamic reactivity to exercise and other stressors in male and female black adults and, particularly, sympathetic control of renal function, an important area of clinical concern in black patients.
Collapse
Affiliation(s)
- Rachel C Drew
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, Massachusetts
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Jeanie Park
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Atlanta Veterans Affairs Health Care System, Decatur, Georgia
| |
Collapse
|
128
|
Acute low- compared to high-load resistance training to failure results in greater energy expenditure during exercise in healthy young men. PLoS One 2019; 14:e0224801. [PMID: 31710635 PMCID: PMC6844472 DOI: 10.1371/journal.pone.0224801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/22/2019] [Indexed: 11/30/2022] Open
Abstract
The objective of the present study was to verify the energy expenditure (EE), energy system contributions and autonomic control during and after an acute low-load or high-load resistance training (RT) protocol to momentary failure (MF) in young adults. Eleven young men (22 ± 3 yrs, 71.8 ± 7.7 kg; 1.75 ± 0.06 m) underwent a randomized crossover design of three knee extension acute protocols: a low-load RT [30% of their maximal strength (1RM); RT30] or a high-load RT (80% of 1RM; RT80) protocol, with all sets being performed to MF; or a control session (Control) without exercise. Participants were measured for EE, energy system contributions, and cardiac autonomic control before, during, and after each exercise session. Exercise EE was significantly higher for RT30 as compared to RT80. Furthermore, post measurements of blood lactate levels and the anaerobic lactic system contribution were significantly greater for RT30 as compared to RT80. In addition, parasympathetic restoration was lower for RT30 as compared to RT80. In conclusion, a low-load (30% 1RM) RT session produced higher EE during exercise than a high-load (80% 1RM) RT session to MF, and may be a good option for fitness professionals, exercise physiologists, and practitioners when choosing the optimal RT protocol that provides more EE, especially for those who want or need to lose weight.
Collapse
|
129
|
Smith JR, Koepp KE, Berg JD, Akinsanya JG, Olson TP. Influence of Sex, Menstrual Cycle, and Menopause Status on the Exercise Pressor Reflex. Med Sci Sports Exerc 2019; 51:874-881. [PMID: 30986812 DOI: 10.1249/mss.0000000000001877] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this review, we highlight the underlying mechanisms responsible for the sex differences in the exercise pressor reflex (EPR), and, importantly, the impact of sex hormones and menopausal status. The EPR is attenuated in premenopausal women compared with age-matched men. Specifically, activation of the metaboreflex (a component of the EPR) results in attenuated increases in blood pressure and sympathetic vasomotor outflow compared with age-matched men. In addition, premenopausal women exhibit less transduction of sympathetic outflow to the peripheral vasculature than men. In stark contrast, postmenopausal women exhibit an augmented EPR arising from exaggerated metaboreflex-induced autonomic and cardiovascular reflexes. We propose that metaboreflex-induced autonomic and cardiovascular changes associated with menopause majorly contribute to the elevated blood pressure response during dynamic exercise in postmenopausal women. In addition, we discuss the potential mechanisms by which sex hormones in premenopausal women may impact the EPR as well as metaboreflex.
Collapse
Affiliation(s)
- Joshua R Smith
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | | | | | | | | |
Collapse
|
130
|
Gianaros PJ, Jennings JR. Host in the machine: A neurobiological perspective on psychological stress and cardiovascular disease. ACTA ACUST UNITED AC 2019; 73:1031-1044. [PMID: 30394781 DOI: 10.1037/amp0000232] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Psychological stress still attracts scientific, clinical, and public interest because of its suspected connection to health, particularly cardiovascular health. Psychological stress is thought to arise from appraisal processes that imbue events and contexts with personal significance and threat-related meaning. These appraisal processes are also thought to be instantiated in brain systems that generate and control peripheral physiological stress reactions through visceral motor (brain-to-body) and visceral sensory (body-to-brain) mechanisms. In the short term, physiological stress reactions may enable coping and adaptive action. Among some individuals, however, the patterning of these reactions may predict or contribute to pathology in multiple organ systems, including the cardiovascular system. At present, however, we lack a precise understanding of the brain systems and visceral control processes that link psychological appraisals to patterns of stress physiology and physical health. This understanding is important: A mechanistic account of how the brain connects stressful experiences to bodily changes and health could help refine biomarkers of risk and targets for cardiovascular disease prevention and intervention. We review research contributing to this understanding, focusing on the neurobiology of cardiovascular stress reactivity and cardiovascular health. We suggest that a dysregulation of visceral motor and visceral sensory processes during stressful experiences may confer risk for poor cardiovascular health among vulnerable individuals. We further describe a need for new interpretive frameworks and markers of this brain-body dysregulation in cardiovascular behavioral medicine. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Collapse
Affiliation(s)
- Peter J Gianaros
- Department of Psychology, Center for the Neural Basis of Cognition, University of Pittsburgh
| | | |
Collapse
|
131
|
Cristina-Oliveira M, Meireles K, Spranger MD, O'Leary DS, Roschel H, Peçanha T. Clinical safety of blood flow-restricted training? A comprehensive review of altered muscle metaboreflex in cardiovascular disease during ischemic exercise. Am J Physiol Heart Circ Physiol 2019; 318:H90-H109. [PMID: 31702969 DOI: 10.1152/ajpheart.00468.2019] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Blood flow restriction training (BFRT) is an increasingly widespread method of exercise that involves imposed restriction of blood flow to the exercising muscle. Blood flow restriction is achieved by inflating a pneumatic pressure cuff (or a tourniquet) positioned proximal to the exercising muscle before, and during, the bout of exercise (i.e., ischemic exercise). Low-intensity BFRT with resistance training promotes comparable increases in muscle mass and strength observed during high-intensity exercise without blood flow restriction. BFRT has expanded into the clinical research setting as a potential therapeutic approach to treat functionally impaired individuals, such as the elderly, and patients with orthopedic and cardiovascular disease/conditions. However, questions regarding the safety of BFRT must be fully examined and addressed before the implementation of this exercise methodology in the clinical setting. In this respect, there is a general concern that BFRT may generate abnormal reflex-mediated cardiovascular responses. Indeed, the muscle metaboreflex is an ischemia-induced, sympathoexcitatory pressor reflex originating in skeletal muscle, and the present review synthesizes evidence that BFRT may elicit abnormal cardiovascular responses resulting from increased metaboreflex activation. Importantly, abnormal cardiovascular responses are more clearly evidenced in populations with increased cardiovascular risk (e.g., elderly and individuals with cardiovascular disease). The evidence provided in the present review draws into question the cardiovascular safety of BFRT, which clearly needs to be further investigated in future studies. This information will be paramount for the consideration of BFRT exercise implementation in clinical populations.
Collapse
Affiliation(s)
- Michelle Cristina-Oliveira
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Kamila Meireles
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Marty D Spranger
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Hamilton Roschel
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Tiago Peçanha
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
132
|
Ho CS, Chang CH, Lin KC, Huang CC, Hsu YJ. Correction of estimation bias of predictive equations of energy expenditure based on wrist/waist-mounted accelerometers. PeerJ 2019; 7:e7973. [PMID: 31720110 PMCID: PMC6836751 DOI: 10.7717/peerj.7973] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 10/02/2019] [Indexed: 12/01/2022] Open
Abstract
Background Using wearable inertial sensors to accurately estimate energy expenditure (EE) during an athletic training process is important. Due to the characteristics of inertial sensors, however, the positions in which they are worn can produce signals of different natures. To understand and solve this issue, this study used the heart rate reserve (HRR) as a compensation factor to modify the traditional empirical equation of the accelerometer EE sensor and examine the possibility of improving the estimation of energy expenditure for sensors worn in different positions. Methods Indirect calorimetry was used as the criterion measure (CM) to measure the EE of 90 healthy adults on a treadmill (five speeds: 4.8, 6.4, 8.0, 9.7, and 11.3 km/h). The measurement was simultaneously performed with the ActiGraph GT9X-Link (placed on the wrist and waist) with the Polar H10 Heart Rate Monitor. Results At the same exercise intensity, the EE measurements of the GT9X on the wrist and waist had significant differences from those of the CM (p < 0.05). By using multiple regression analysis—utilizing values from vector magnitudes (VM), body weight (BW) and HRR parameters—accuracy of EE estimation was greatly improved compared to traditional equation. Modified models explained a greater proportion of variance (R2) (wrist: 0.802; waist: 0.805) and demonstrated a good ICC (wrist: 0.863, waist: 0.889) compared to Freedson’s VM3 Combination equation (R2: wrist: 0.384, waist: 0.783; ICC: wrist: 0.073, waist: 0.868). Conclusions The EE estimation equation combining the VM of accelerometer measurements, BW and HRR greatly enhanced the accuracy of EE estimation based on data from accelerometers worn in different positions, particularly from those on the wrist.
Collapse
Affiliation(s)
- Chin-Shan Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Chun-Hao Chang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Kuo-Chuan Lin
- Office of Physical Education, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
| |
Collapse
|
133
|
Bruce RM, Jolley C, White MJ. Control of exercise hyperpnoea: Contributions from thin-fibre skeletal muscle afferents. Exp Physiol 2019; 104:1605-1621. [PMID: 31429500 DOI: 10.1113/ep087649] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the topic of this review? In this review, we examine the evidence for control mechanisms underlying exercise hyperpnoea, giving attention to the feedback from thin-fibre skeletal muscle afferents, and highlight the frequently conflicting findings and difficulties encountered by researchers using a variety of experimental models. What advances does it highlight? There has been a recent resurgence of interest in the role of skeletal muscle afferent involvement, not only as a mechanism of healthy exercise hyperpnoea but also in the manifestation of breathlessness and exercise intolerance in chronic disease. ABSTRACT The ventilatory response to dynamic submaximal exercise is immediate and proportional to metabolic rate, which maintains isocapnia. How these respiratory responses are controlled remains poorly understood, given that the most tightly controlled variable (arterial partial pressure of CO2 /H+ ) provides no error signal for arterial chemoreceptors to trigger reflex increases in ventilation. This review discusses evidence for different postulated control mechanisms, with a focus on the feedback from group III/IV skeletal muscle mechanosensitive and metabosensitive afferents. This concept is attractive, because the stimulation of muscle mechanoreceptors might account for the immediate increase in ventilation at the onset of exercise, and signals from metaboreceptors might be proportional to metabolic rate. A variety of experimental models have been used to establish the contribution of thin-fibre muscle afferents in ventilatory control during exercise, with equivocal results. The inhibition of afferent feedback via the application of lumbar intrathecal fentanyl during exercise suppresses ventilation, which provides the most compelling supportive evidence to date. However, stimulation of afferent feedback at rest has no consistent effect on respiratory output. However, evidence is emerging for synergistic interactions between muscle afferent feedback and other stimulatory inputs to the central respiratory neuronal pool. These seemingly hyperadditive effects might explain the conflicting findings encountered when using different experimental models. We also discuss the increasing evidence that patients with certain chronic diseases exhibit exaggerated muscle afferent activation during exercise, resulting in enhanced cardiorespiratory responses. This might provide a neural link between the well-established limb muscle dysfunction and the associated exercise intolerance and exertional dyspnoea, which might offer therapeutic targets for these patients.
Collapse
Affiliation(s)
- Richard M Bruce
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Sciences, King's College London, London, UK
| | - Caroline Jolley
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Sciences, King's College London, London, UK
| | - Michael J White
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
134
|
Vianna LC, Fisher JP. Reflex control of the cardiovascular system during exercise in disease. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
135
|
Teixeira AL, Fernandes IA, Vianna LC. GABA A receptors modulate sympathetic vasomotor outflow and the pressor response to skeletal muscle metaboreflex activation in humans. J Physiol 2019; 597:4139-4150. [PMID: 31247674 DOI: 10.1113/jp277929] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/24/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The activation of the group III/IV skeletal muscle afferents is one of the principal mediators of cardiovascular responses to exercise; however, the neuronal circuitry mechanisms that are involved during the activation of group III/IV muscle afferents in humans remain unknown. Recently, we showed that GABAergic mechanisms are involved in the cardiac vagal withdrawal during the activation of mechanically sensitive (predominantly mediated by group III fibres) skeletal muscle afferents in humans. In the present study, we found that increases in muscle sympathetic nerve activity and mean blood pressure during isometric handgrip exercise and postexercise ischaemia were significantly greater after the oral administration of diazepam, a benzodiazepine that increases GABAA activity, but not after placebo administration in young healthy subjects. These findings indicate for the first time that GABAA receptors modulate sympathetic vasomotor outflow and the pressor responses to activation of metabolically sensitive (predominantly mediated by group IV fibres) skeletal muscle afferents in humans. ABSTRACT Animal studies have indicated that GABAA receptors are involved in the neuronal circuitry of the group III/IV skeletal muscle afferent activation-induced neurocardiovascular responses to exercise. In the present study, we aimed to determine whether GABAA receptors modulate the neurocardiovascular responses to activation of metabolically sensitive (predominantly mediated by group IV fibres) skeletal muscle afferents in humans. In a randomized, double-blinded, placebo-controlled and cross-over design, 17 healthy subjects (eight women) performed 2 min of ischaemic isometric handgrip exercise at 30% of the maximal voluntary contraction followed by 2 min of postexercise ischaemia (PEI). Muscle sympathetic nerve activity (MSNA), blood pressure (BP) and heart rate (HR) were continuously measured and trials were conducted before and 60 min after the oral administration of either placebo or diazepam (10 mg), a benzodiazepine that enhances GABAA activity. At rest, MSNA was reduced, whereas HR and BP did not change after diazepam administration. During ischaemic isometric handgrip, greater MSNA (pre: ∆13 ± 9 bursts min-1 vs. post: ∆29 ± 15 bursts min-1 , P < 0.001), HR (pre: ∆23 ± 11 beats min-1 vs. post: ∆31 ± 17 beats min-1 , P < 0.01) and mean BP (pre: ∆33 ± 12 mmHg vs. post: ∆37 ± 12 mmHg, P < 0.01) responses were observed after diazepam. During PEI, MSNA and mean BP remained elevated from baseline before diazepam (∆10 ± 8 bursts min-1 and ∆25 ± 14 mmHg, respectively) and these elevations were increased after diazepam (∆17 ± 12 bursts min-1 and ∆28 ± 13 mmHg, respectively) (P ≤ 0.05). Importantly, placebo pill had no effect on neural, cardiac and pressor responses. These findings demonstrate for the first time that GABAA receptors modulate MSNA and the pressor responses to skeletal muscle metaboreflex activation in humans.
Collapse
Affiliation(s)
- André L Teixeira
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Igor A Fernandes
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Lauro C Vianna
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
136
|
Grotle AK, Crawford CK, Huo Y, Ybarbo KM, Harrison ML, Graham J, Stanhope KL, Havel PJ, Fadel PJ, Stone AJ. Exaggerated cardiovascular responses to muscle contraction and tendon stretch in UCD type-2 diabetes mellitus rats. Am J Physiol Heart Circ Physiol 2019; 317:H479-H486. [PMID: 31274351 DOI: 10.1152/ajpheart.00229.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Patients with type-2 diabetes mellitus (T2DM) have exaggerated sympathetic activity and blood pressure responses to exercise. However, the underlying mechanisms for these responses, as well as how these responses change throughout disease progression, are not completely understood. For this study, we examined the effect of the progression of T2DM on the exercise pressor reflex, a critical neurocardiovascular mechanism that functions to increase sympathetic activity and blood pressure during exercise. We also aimed to examine the effect of T2DM on reflexive cardiovascular responses to static contraction, as well as those responses to tendon stretch when an exaggerated exercise pressor reflex was present. We evoked the exercise pressor reflex and mechanoreflex by statically contracting the hindlimb muscles and stretching the Achilles tendon, respectively, for 30 s. We then compared pressor and cardioaccelerator responses in unanesthetized, decerebrated University of California Davis (UCD)-T2DM rats at 21 and 31 wk following the onset of T2DM to responses in healthy nondiabetic rats. We found that the pressor response to static contraction was greater in the 31-wk T2DM [change in mean arterial pressure (∆MAP) = 39 ± 5 mmHg] but not in the 21-wk T2DM (∆MAP = 24 ± 5 mmHg) rats compared with nondiabetic rats (∆MAP = 18 ± 2 mmHg; P < 0.05). Similarly, the pressor and the cardioaccelerator responses to tendon stretch were significantly greater in the 31-wk T2DM rats [∆MAP = 69 ± 6 mmHg; change in heart rate (∆HR) = 28 ± 4 beats/min] compared with nondiabetic rats (∆MAP = 14 ± 2 mmHg; ∆HR = 5 ± 3 beats/min; P < 0.05). These findings suggest that the exercise pressor reflex changes as T2DM progresses and that a sensitized mechanoreflex may play a role in exaggerating these cardiovascular responses.NEW & NOTEWORTHY This is the first study to provide evidence that as type-2 diabetes mellitus (T2DM) progresses, the exercise pressor reflex becomes exaggerated, an effect that may be due to a sensitized mechanoreflex. Moreover, these findings provide compelling evidence suggesting that impairments in the reflexive control of circulation contribute to exaggerated blood pressure responses to exercise in T2DM.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Charles K Crawford
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Yu Huo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Kai M Ybarbo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - Michelle L Harrison
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| | - James Graham
- Department of Molecular Biosciences School of Veterinary Medicine and Department of Nutrition; University of California Davis, Davis, California
| | - Kimber L Stanhope
- Department of Molecular Biosciences School of Veterinary Medicine and Department of Nutrition; University of California Davis, Davis, California
| | - Peter J Havel
- Department of Molecular Biosciences School of Veterinary Medicine and Department of Nutrition; University of California Davis, Davis, California
| | - Paul J Fadel
- Department of Kinesiology; The University of Texas at Arlington, Arlington, Texas
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
137
|
Katayama K, Saito M. Muscle sympathetic nerve activity during exercise. J Physiol Sci 2019; 69:589-598. [PMID: 31054082 PMCID: PMC10717921 DOI: 10.1007/s12576-019-00669-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/22/2019] [Indexed: 11/25/2022]
Abstract
Appropriate cardiovascular adjustment is necessary to meet the metabolic demands of working skeletal muscle during exercise. The sympathetic nervous system plays a crucial role in the regulation of arterial blood pressure and blood flow during exercise, and several important neural mechanisms are responsible for changes in sympathetic vasomotor outflow. Changes in sympathetic vasomotor outflow (i.e., muscle sympathetic nerve activity: MSNA) in inactive muscles during exercise differ depending on the exercise mode (static or dynamic), intensity, duration, and various environmental conditions (e.g., hot and cold environments or hypoxic). In 1991, Seals and Victor [6] reviewed MSNA responses to static and dynamic exercise with small muscle mass. This review provides an updated comprehensive overview on the MSNA response to exercise including large-muscle, dynamic leg exercise, e.g., two-legged cycling, and its regulatory mechanisms in healthy humans.
Collapse
Affiliation(s)
- Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, 464-8601, Japan.
- Graduate School of Medicine, Nagoya University, Nagoya, Japan.
| | - Mitsuru Saito
- Applied Physiology Laboratory, Toyota Technological Institute, Nagoya, Japan
| |
Collapse
|
138
|
Samora M, Incognito AV, Vianna LC. Sex differences in blood pressure regulation during ischemic isometric exercise: the role of the β-adrenergic receptors. J Appl Physiol (1985) 2019; 127:408-414. [PMID: 31219771 DOI: 10.1152/japplphysiol.00270.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We sought to investigate whether the β-adrenergic receptors play a pivotal role in sex-related differences in arterial blood pressure (BP) regulation during isometric exercise. Sixteen volunteers (8 women) performed 2 min of ischemic isometric handgrip exercise (IHE) and 2 min of postexercise circulatory occlusion (PECO). Heart rate (HR) and beat-to-beat arterial BP were continuously measured. Beat-to-beat estimates of stroke volume (ModelFlow) were obtained and matched with HR to calculate cardiac output (Q̇) and total peripheral resistance (TPR). Two trials were randomly conducted between placebo and nonselective β-adrenergic blockade (40 mg propranolol). Under the placebo condition, the magnitude of the BP response in IHE was lower in women compared with men. During PECO, the BP remained elevated and the sex differences persisted. The β-blockade attenuated the BP response during IHE in men (∆57 ± 4 vs. ∆45 ± 7 mmHg, P = 0.025) due to a reduction in Q̇ (∆3.7 ± 0.5 vs. ∆1.8 ± 0.2 L/min, P = 0.012) while TPR was not affected. In women, however, the BP response during IHE was unchanged (∆27 ± 3 vs. ∆28 ± 3 mmHg, P = 0.889), despite attenuated Q̇ (∆2.7 ± 0.4 vs. ∆1.3 ± 0.2 L/min, P = 0.012). These responses were mediated by a robust increase in TPR under β-blockade (∆-0.2 ± 0.4 vs. ∆2.2 ± 0.7 mmHg·L-1·min, P = 0.012). These findings demonstrate that the sex differences in arterial BP regulation during ischemic IHE are mediated by β-adrenergic receptors.NEW & NOTEWORTHY We found that the blood pressure response during isometric exercise in women is mediated by increases in cardiac output, whereas in men it is mediated by increases in both cardiac output and total peripheral resistance. In addition, women showed a robust increase in total peripheral resistance under β-blockade during isometric exercise and muscle metaboreflex activation. These findings demonstrate that sex differences in blood pressure regulation during isometric exercise are mediated by β-adrenergic receptors.
Collapse
Affiliation(s)
- Milena Samora
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasilia, Distrito Federal, Brazil
| | - Anthony V Incognito
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasilia, Distrito Federal, Brazil.,Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lauro C Vianna
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasilia, Distrito Federal, Brazil
| |
Collapse
|
139
|
Sprick JD, Morison DL, Fonkoue IT, Li Y, DaCosta D, Rapista D, Choi H, Park J. Metabolic acidosis augments exercise pressor responses in chronic kidney disease. Am J Physiol Regul Integr Comp Physiol 2019; 317:R312-R318. [PMID: 31141417 DOI: 10.1152/ajpregu.00076.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chronic kidney disease (CKD) patients experience augmented blood pressure (BP) reactivity during exercise that is associated with an increased risk of cardiovascular mortality. Exaggerated exercise pressor responses in CKD are in part mediated by augmented sympathetic nerve activation due to heightened muscle mechanoreflex. One mechanism that may lead to sensitization of the muscle mechanoreflex in CKD is metabolic acidosis. We hypothesized that CKD patients with low serum [bicarbonate] would exhibit exaggerated increases in arterial BP, greater reductions in muscle interstitial pH, and fatigue earlier during exercise compared with CKD patients with normal serum bicarbonate concentration ([bicarbonate]). Eighteen CKD participants with normal serum [bicarbonate] (≥24 mmol/l, normal-bicarb) and 9 CKD participants with mild metabolic acidosis ([bicarbonate] range 20-22 mmol/l, low-bicarb) performed rhythmic handgrip (RHG) exercise to volitional fatigue at 40% of maximal voluntary contraction. BP, heart rate, and muscle interstitial pH using near infrared spectroscopy were measured continuously. While mean arterial pressure (MAP) increased with exercise in both groups (P ≤ 0.002), CKD with low-bicarb had an exaggerated MAP response compared with CKD with normal-bicarb (+5.9 ± 1.3 mmHg/30 s vs. +2.6 ± 0.5 mmHg/30 s, P = 0.01). The low-bicarb group reached exhaustion earlier than the normal-bicarb group (179 ± 21 vs. 279 ± 19 s, P = 0.003). There were no differences in the change in muscle interstitial pH during exercise between groups (P = 0.31). CKD patients with metabolic acidosis have augmented exercise-induced increases in BP and poorer exercise tolerance. There was no difference in change in muscle interstitial pH between groups, however, suggesting that augmented exercise BP responses in metabolic acidosis are not due to impaired muscle-buffering capacity.
Collapse
Affiliation(s)
- Justin D Sprick
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Doree Lynn Morison
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Ida T Fonkoue
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Yunxiao Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Dana DaCosta
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - Derick Rapista
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| | - HyunKyu Choi
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jeanie Park
- Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Veterans Affairs Health Care System, Decatur, Georgia
| |
Collapse
|
140
|
Zareba W, Thurston SW, Zareba G, Couderc JP, Evans K, Xia J, Watson GE, Strain JJ, McSorley E, Yeates A, Mulhern M, Shamlaye CF, Bovet P, van Wijngaarden E, Davidson PW, Myers GJ. Prenatal and recent methylmercury exposure and heart rate variability in young adults: the Seychelles Child Development Study. Neurotoxicol Teratol 2019; 74:106810. [PMID: 31128243 DOI: 10.1016/j.ntt.2019.106810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/22/2019] [Accepted: 05/21/2019] [Indexed: 12/19/2022]
Abstract
Epidemiologic evidence of an adverse association between exposure to methylmercury (MeHg) from consuming fish and heart rate variability (HRV) is inconclusive. We aimed to evaluate MeHg exposure in relation to HRV parameters in a large cohort of young adults from a high fish consuming population in the Republic of Seychelles. Main Cohort participants in the Seychelles Child Development Study were evaluated at a mean age of 19 years. Prenatal MeHg exposure was determined in maternal hair growing during pregnancy and recent exposure in participant's hair taken at the evaluation. The evaluation consisted of short (~2 h) and long (overnight) Holter recordings obtained in 514 and 203 participants, respectively. Multivariable analyses examined the association of prenatal and recent MeHg exposure (in separate models) with time-domain and frequency-domain HRV parameters in different physiologic circumstances: supine position, standing position, mental stress when undergoing a mathematics test, sleep, and long recording. Prenatal MeHg exposure was not associated with any of the 23 HRV parameters studied after adjustment for multiplicity. The recent MeHg showed a trend toward significance only for few variables in the primary model. However, after additional adjustment for activity levels, polyunsaturated fatty acids, and multiplicity none were significant after a Bonferroni adjustment. In conclusion, prenatal and recent MeHg exposure had no consistent pattern of associations to support the hypothesis that they are adversely associated with heart rate variability in this study population that consumes large amounts of fish.
Collapse
Affiliation(s)
- Wojciech Zareba
- Heart Research, Cardiology Division, University of Rochester Medical Center, Rochester, NY, United States of America.
| | - Sally W Thurston
- Department of Biostatistics and Computational Biology; University of Rochester Medical Center, Rochester, NY, United States of America
| | - Grazyna Zareba
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Jean Philippe Couderc
- Heart Research, Cardiology Division, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Katie Evans
- Department of Biostatistics and Computational Biology; University of Rochester Medical Center, Rochester, NY, United States of America
| | - Jean Xia
- Heart Research, Cardiology Division, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Gene E Watson
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America; Eastman Institute for Oral Health, University of Rochester, Rochester, NY, United States of America
| | - J J Strain
- University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Emeir McSorley
- University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Alison Yeates
- University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Maria Mulhern
- University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | | | - Pascal Bovet
- University Institute of Social and Preventive Medicine, Lausanne, Switzerland
| | - Edwin van Wijngaarden
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America; Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States of America; Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States of America; Eastman Institute for Oral Health, University of Rochester, Rochester, NY, United States of America
| | - Philip W Davidson
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America; Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Gary J Myers
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States of America; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America; Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States of America
| |
Collapse
|
141
|
Lundqvist MH, Almby K, Abrahamsson N, Eriksson JW. Is the Brain a Key Player in Glucose Regulation and Development of Type 2 Diabetes? Front Physiol 2019; 10:457. [PMID: 31133864 PMCID: PMC6524713 DOI: 10.3389/fphys.2019.00457] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/01/2019] [Indexed: 01/08/2023] Open
Abstract
Ever since Claude Bernards discovery in the mid 19th-century that a lesion in the floor of the third ventricle in dogs led to altered systemic glucose levels, a role of the CNS in whole-body glucose regulation has been acknowledged. However, this finding was later overshadowed by the isolation of pancreatic hormones in the 20th century. Since then, the understanding of glucose homeostasis and pathology has primarily evolved around peripheral mechanism. Due to scientific advances over these last few decades, however, increasing attention has been given to the possibility of the brain as a key player in glucose regulation and the pathogenesis of metabolic disorders such as type 2 diabetes. Studies of animals have enabled detailed neuroanatomical mapping of CNS structures involved in glucose regulation and key neuronal circuits and intracellular pathways have been identified. Furthermore, the development of neuroimaging techniques has provided methods to measure changes of activity in specific CNS regions upon diverse metabolic challenges in humans. In this narrative review, we discuss the available evidence on the topic. We conclude that there is much evidence in favor of active CNS involvement in glucose homeostasis but the relative importance of central vs. peripheral mechanisms remains to be elucidated. An increased understanding of this field may lead to new CNS-focusing pharmacologic strategies in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
| | - Kristina Almby
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Jan W Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
142
|
Sabino-Carvalho JL, Samora M, Teixeira AL, Daher M, Vianna LC. Circulatory responses at the onset of handgrip exercise in patients with Parkinson's disease. Exp Physiol 2019; 104:793-799. [PMID: 30861251 DOI: 10.1113/ep087620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/08/2019] [Indexed: 02/03/2023]
Abstract
NEW FINDINGS What is the central question of this study? The initial circulatory response to isometric exercise in young healthy subjects is thought to be cholinergically mediated. Do patients with Parkinson's disease, a specific population known to present cholinergic dysfunction, present impairment in these initial circulatory responses? What is the main finding and its importance? The initial reduction in total peripheral resistance was absent in patients with Parkinson's disease and in older subjects, which augmented the pressor response at the onset of isometric handgrip exercise. Given that cholinergic mechanisms play an important role in the circulatory responses at the onset of isometric exercise in humans, our data suggest that cholinergic mechanisms might be compromised with ageing. ABSTRACT Physical exercise has been used as coping strategy for Parkinson's disease (PD). Thus, a better understanding of circulatory responses to exercise in this population is warranted. During the onset of isometric handgrip (IHG) exercise there is an increase in blood pressure (BP) and a reduction in the total peripheral resistance (TPR) in young subjects. This immediate reduction of TPR is thought to be mediated by a cholinergic mechanism. Given that PD also affects cholinergic neurons, we hypothesized that patients with PD would present blunted circulatory responses at the onset of IHG exercise. Mean BP, stroke volume, heart rate, cardiac output and TPR were measured during performance of 20 s of IHG at 40% maximal voluntary contraction in 12 patients with PD (66 ± 2 years old, 171 ± 7 cm, 74 ± 7 kg), 11 older subjects (65 ± 9 years old, 171 ± 7 cm, 74 ± 10 kg) and 10 young subjects (21 ± 1 years old, 178 ± 6 cm, 79 ± 9 kg). Isometric handgrip elicited an augmented BP increase in patients with PD and older subjects at 10 and 20 s compared with young subjects. However, the BP augmentation was lower at 20 s in patients with PD. The IHG-induced reduction in TPR was attenuated in patients with PD and older subjects compared with young subjects. Our results show that the circulatory responses at the onset of IHG are impaired in patients with PD and older subjects. Overall, these findings suggest that the cholinergic mechanism might be compromised with ageing.
Collapse
Affiliation(s)
- Jeann L Sabino-Carvalho
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Milena Samora
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - André L Teixeira
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Mauricio Daher
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | - Lauro C Vianna
- NeuroV̇ASQ̇ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
143
|
Teixeira AL, Samora M, Vianna LC. Muscle metaboreflex activation via postexercise ischemia as a tool for teaching cardiovascular physiology for undergraduate students. ADVANCES IN PHYSIOLOGY EDUCATION 2019; 43:34-41. [PMID: 30540204 DOI: 10.1152/advan.00174.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The cardiovascular responses to exercise are mediated by several interactive neural mechanisms, including central command, arterial baroreflex, and skeletal muscle mechano- and metaboreflex. In humans, muscle metaboreflex activation can be isolated via postexercise ischemia (PEI), which increases sympathetic nerve activity and partially maintains the exercise-induced increase in arterial blood pressure. Here, we describe a practical laboratory class using PEI as a simple and useful technique to teach cardiovascular physiology. In an undergraduate exercise physiology class ( n = 47), a traditional 4-h lecture was conducted discussing the neural control mechanisms of cardiovascular regulation during exercise. Thereafter, eight students (4 men and 4 women) were selected to participate as a volunteer of a practical laboratory class. Each participant performed 90 s of isometric handgrip exercise at 40% of maximal voluntary contraction, followed by 3 min of PEI. Arterial blood pressure and heart rate were measured by digital monitors at rest and during isometric handgrip, PEI, and recovery. In addition, blood samples were collected from the tip of the exercising finger for blood lactate analyses. After the laboratory class, a survey was given to determine the perceptions of the students. The findings demonstrate that this laboratory class has proved to be highly popular with students, who self-reported a significant improvement in their understanding of several aspects of cardiovascular regulation during exercise.
Collapse
Affiliation(s)
- André L Teixeira
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília , Brasília , Brazil
| | - Milena Samora
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília , Brasília , Brazil
| | - Lauro C Vianna
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília , Brasília , Brazil
| |
Collapse
|
144
|
Ogoh S, Sato K, Hirasawa A, Sadamoto T. The effect of muscle metaboreflex on the distribution of blood flow in cerebral arteries during isometric exercise. J Physiol Sci 2019; 69:375-385. [PMID: 30604287 PMCID: PMC10717543 DOI: 10.1007/s12576-018-0653-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022]
Abstract
The present study examined the effect of muscle metaboreflex on blood flow in different cerebral arteries. Eleven healthy participants performed isometric, one-leg knee extension at 30% maximal voluntary contraction for 2 min. Activated muscle metaboreflex was isolated for 2 min by post-exercise muscle ischemia (PEMI). The contralateral internal carotid (ICA), vertebral (VA), and ipsilateral external carotid arteries (ECA) blood flows were evaluated using Doppler ultrasound. The ICA blood flow increased at the beginning of exercise (P = 0.004) but returned to the baseline level at the end of exercise (P = 0.055). In contrast, the VA blood flow increased and it was maintained until the end of the exercise (P = 0.011), while the ECA blood flow gradually increased throughout the exercise (P = 0.001). These findings indicate that isometric exercise causes a heterogeneous cerebral blood flow response in different cerebral arteries. During PEMI, the conductance of the VA as well as that of the ICA was significantly lower compared with the baseline value (P = 0.020 and P = 0.032, at PEMI90), while the conductance of the ECA was not different from the baseline (P = 0.587), suggesting that the posterior and anterior cerebral vasculature were similarly affected during exercise by activation of muscle metaboreceptors, but not in the non-cerebral artery. Since ECA branches from ICA, the balance in the different influence of muscle metaboreflex on ECA (vasodilation via exercise-induced hypertension) and ICA (vasoconstriction) may contribute to the decrease in ICA blood flow at the end of isometric exercise.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama, 350-8585, Japan.
| | | | | | | |
Collapse
|
145
|
Chang CH, Lin KC, Ho CS, Huang CC. Accuracy of the energy expenditure during uphill exercise measured by the Waist-worn ActiGraph. J Exerc Sci Fit 2019; 17:62-66. [PMID: 30792740 PMCID: PMC6370579 DOI: 10.1016/j.jesf.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/10/2018] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
Background/objective The application of Micro-Electro-Mechanical Sensors (MEMS) as measurements of energy expenditure (EE) has certain disadvantages. For example, the inertial sensors cannot easily distinguish changes in ground slope during walking/running conditions, so the accuracy of EE calculation is biased. To resolve this issue, heart rate (HR) and heart rate reserve (HRR) were used as compensatory factors respectively to correct the classical empirical formula of the accelerometer analyzer for EE in this study. Methods To explore the improvement of the accuracy of EE during uphill exercise and compare the correction levels between HR and HRR, oxygen uptake was used as a criterion measure (CM). Thirty healthy adult males wore an ActiGraph GT3X with the Polar HR monitor and Vmax indirect calorimeter during twelve treadmill activities (3 gradients and 4 speeds). Results When the slopes were increased by 0%, 3%, and 6%, the measurement accuracy of the accelerometers, calculated by intraclass correlation coefficient (ICC), decreased by 0.877, 0.755, and 0.504, respectively (p < 0.05). The HR and HRR parameters of linear regression were used to correct the classical formula. The results showed that HR had higher coefficients of determination (R2) (0.801, 0.700, and 0.642 respectively) and ICCs (0.887, 0.825, and 0.785 respectively) than did the accelerometer outputs. HRR showed the highest coefficients of determination (R2) (0.821, 0.728, and 0.656 respectively) and ICCs (0.901, 0.844, and 0.795 respectively). Conclusions Through adding HRR parameters, the accuracy of the classical prediction formula EE was significantly improved during walking/running on sloping ground.
Collapse
Affiliation(s)
- Chun-Hao Chang
- Graduate Institute of Sports Science, National Taiwan Sport University, No. 250, Wenhua 1st Rd., Guishan District, Taoyuan City, Taiwan
| | - Kuo-Chuan Lin
- Office of Physical Education, Chung Yuan Christian University, No. 200, Chung Pei Road, Chung Li District, Taoyuan City, Taiwan
| | - Chin-Shan Ho
- Graduate Institute of Sports Science, National Taiwan Sport University, No. 250, Wenhua 1st Rd., Guishan District, Taoyuan City, Taiwan
- Corresponding author. Tel.: 886 3328 3201.
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, No. 250, Wenhua 1st Rd., Guishan District, Taoyuan City, Taiwan
| |
Collapse
|
146
|
Fernando Prieto Peres M, Prieto Peres Mercante J, Belitardo de Oliveira A. Non-Pharmacological Treatment for Primary Headaches Prevention and Lifestyle Changes in a Low-Income Community of Brazil: A Randomized Clinical Trial. Headache 2018; 59:86-96. [PMID: 30485409 DOI: 10.1111/head.13457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Primary headaches can be reduced by lifestyle changes, such as stress management and physical activity. However, access to programs focused on behavioral interventions is limited in underserved, poor communities. OBJECTIVES We performed a randomized open-label clinical trial to test the therapeutic and behavioral effects of aerobic exercise, relaxation, or the combination of both, in individuals with primary headaches of a small, low-income community of the Brazilian Amazon. METHODS Participants were screened from the riverine/rural population, and individuals with primary headache were included. We assessed clinical characteristics and physical activity levels. Interventions were delivery 3 times/week for 6 months. The primary outcome variable was changes in days with headache, while changes in duration of attacks, pain intensity, and physical activity levels were secondary outcomes variables. RESULTS Seven hundred and ninety individuals were screened (15.3% of rural/riverine population). Seventy-four participants were randomly assigned to relaxation (n = 25), physical activity orientation program (n = 25), or both (n = 24) interventions. Intention to treat analyses showed all interventions as effective to reduce days with headaches and duration of attacks (both P < .01). Pain intensity was reduced only in relaxation and relaxation + physical activity groups (both P < .01). Physical activity levels increased only in the relaxation + physical activity group (P < .05). CONCLUSIONS Non-pharmacological interventions such as physical activity and relaxation are effective for reducing headaches, while combining such interventions promote health behavior toward higher physical activity levels in low-income populations with primary headaches. CLINICAL TRIAL REGISTRATION NUMBER SGPP 1544.
Collapse
Affiliation(s)
- Mario Fernando Prieto Peres
- Instituto do Cérebro, Hospital Israelita Albert Einstein, São Paulo, Brazil.,Faculdade de Medicina, Instituto de Psiquiatria, Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
147
|
Seed JD, St Peters B, Power GA, Millar PJ. Cardiovascular responses during isometric exercise following lengthening and shortening contractions. J Appl Physiol (1985) 2018; 126:278-285. [PMID: 30382808 DOI: 10.1152/japplphysiol.00601.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study investigated the effects of prior lengthening or shortening contractions on cardiovascular responses during isometric exercise. We utilized the history dependence of skeletal muscle, where active 2-s lengthening or shortening before an isometric contraction can increase [residual force enhancement (RFE)] or decrease [force depression (FD)] force production. Matching torque output between RFE and FD conditions yields lower and higher electromyography (EMG) values, respectively. In study 1, heart rate and perceived exertion (PE; Borg10) were measured in 20 participants during 20-s isometric plantar flexion contractions at low (16 ± 4% MVC)-, moderate (50 ± 5% MVC)-, and high (88 ± 7% MVC)-intensity. In study 2, heart rate and blood pressure were measured in 14 participants during 2-min isometric plantar flexion contractions (40% MVC). In both studies, torque output was held constant between FD and RFE conditions resulting in differences in soleus EMG activity ( P < 0.05). In study 1, PE was lower during the RFE condition ( P < 0.01), while increases in heart rate were similar between FD and RFE at low (∆2 ± 8 vs. 3 ± 6 beats/min, P > 0.99) and moderate (∆14 ± 9 vs. 14 ± 9 beats/min, P > 0.99) intensity but smaller during RFE at high intensity (∆35 ± 13 vs. 29 ± 13 beats/min, P = 0.004). In study 2, heart rate responses were smaller in the RFE condition following the initial 20-s period; diastolic blood pressure responses were smaller during the last 80 s. A 2-s active change in muscle length before an isometric contraction can influence heart rate and blood pressure responses; however, these differences appear to be modulated by both intensity and duration of the contraction. NEW & NOTEWORTHY Using the history dependence of isometric force to alter maximal torque production and motor unit activation between residual force enhancement and force depression conditions, we observed that heart rate responses were different between conditions during a subsequent 20-s high-, but not low- or moderate-, intensity isometric contraction. A 2-min moderate-intensity contraction revealed time-dependent effects on heart rate and diastolic blood pressure. Active 2-s shortening and lengthening before an isometric contraction can influence the cardiovascular responses.
Collapse
Affiliation(s)
- Jeremy D Seed
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Benjamin St Peters
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada.,Toronto General Research Institute, Toronto General Hospital , Toronto, Ontario , Canada
| |
Collapse
|
148
|
Spontaneous cardiac baroreflex sensitivity is enhanced during post-exercise ischemia in men but not in women. Eur J Appl Physiol 2018; 119:103-111. [DOI: 10.1007/s00421-018-4004-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 10/01/2018] [Indexed: 01/04/2023]
|
149
|
Sabino-Carvalho JL, Teixeira AL, Samora M, Daher M, Vianna LC. Blunted cardiovascular responses to exercise in Parkinson’s disease patients: role of the muscle metaboreflex. J Neurophysiol 2018; 120:1516-1524. [DOI: 10.1152/jn.00308.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Patients with Parkinson’s disease (PD) exhibit attenuated cardiovascular responses to exercise. The underlying mechanisms that are potentially contributing to these impairments are not fully understood. Therefore, we sought to test the hypothesis that patients with PD exhibit blunted cardiovascular responses to isolated muscle metaboreflex activation following exercise. For this, mean blood pressure, cardiac output, and total peripheral resistance were measured using finger photoplethysmography and the Modelflow method in 11 patients with PD [66 ± 2 yr; Hoehn and Yahr score: 2 ± 1 a.u.; time since diagnosis: 7 ± 1 yr; means ± SD) and 9 age-matched controls (66 ± 3 yr). Measurements were obtained at rest, during isometric handgrip exercise performed at 40% maximal voluntary contraction, and during postexercise ischemia. Also, a cold pressor test was assessed to confirm that blunted cardiovascular responses were specific to exercise and not representative of generalized sympathetic responsiveness. Changes in mean blood pressure were attenuated in patients with PD during handgrip (PD: ∆25 ± 2 mmHg vs. controls: ∆31 ± 3 mmHg; P < 0.05), and these group differences remained during postexercise ischemia (∆17 ± 1 mmHg vs. ∆26 ± 1 mmHg, respectively; P < 0.01). Additionally, changes in total peripheral resistance were attenuated during exercise and postexercise ischemia, indicating blunted reflex vasoconstriction in patients with PD. Responses to cold pressor test did not differ between groups, suggesting no group differences in generalized sympathetic responsiveness. Our results support the concept that attenuated cardiovascular responses to exercise observed in patients with PD are, at least in part, explained by an altered skeletal muscle metaboreflex. NEW & NOTEWORTHY Patients with Parkinson’s disease (PD) presented blunted cardiovascular responses to exercise. We showed that cardiovascular response evoked by the metabolic component of the exercise pressor reflex is blunted in patients with PD. Furthermore, patients with PD presented similar pressor response during the cold pressor test compared with age-matched controls. Altogether, our results support the hypothesis that attenuated cardiovascular responses to exercise observed in patients with PD are mediate by an altered skeletal muscle metaboreflex.
Collapse
Affiliation(s)
- Jeann L. Sabino-Carvalho
- NeuroVASQ-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Distrito Federal, Brazil
| | - André L. Teixeira
- NeuroVASQ-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Milena Samora
- NeuroVASQ-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Maurício Daher
- NeuroVASQ-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Lauro C. Vianna
- NeuroVASQ-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, Distrito Federal, Brazil
| |
Collapse
|
150
|
Hunter GR, Fisher G, Bryan DR, Borges JH, Carter SJ. Divergent Blood Pressure Response After High-Intensity Interval Exercise: A Signal of Delayed Recovery? J Strength Cond Res 2018; 32:3004-3010. [PMID: 30239453 DOI: 10.1519/jsc.0000000000002806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hunter, GR, Fisher, G, Bryan, DR, Borges, JH, and Carter, SJ. Divergent blood pressure response after high-intensity interval exercise: a signal of delayed recovery? J Strength Cond Res 32(11): 3004-3010, 2018-The objective of this commentary is to highlight potential factors influential to the adaptation of high-intensity exercise. Herein, we present a rationale supporting the contention that elevated systolic blood pressure, after a bout of high-intensity exercise, may be indicative of delayed/incomplete recovery. Relative to type I skeletal muscle fibers, the unique cellular/vascular characteristics of type II muscle fibers may necessitate longer recovery periods, especially when exposed to repeated high-intensity efforts (i.e., intervals). In addition to the noted race disparities in cardiometabolic disease risk, including higher mean blood pressures, African Americans may have a larger percentage of type II muscle fibers, thus possibly contributing to noted differences in recovery after high-intensity exercise. Given that optimal recovery is needed to maximize physiological adaptation, high-intensity training programs should be individually-tailored and consistent with recovery profile(s). In most instances, even among those susceptible, the risk to nonfunctional overreaching can be largely mitigated if sufficient recovery is integrated into training paradigms.
Collapse
Affiliation(s)
| | - Gordon Fisher
- Human Studies, University of Alabama at Birmingham, Birmingham, AL
| | | | - Juliano H Borges
- Departments of Nutrition Sciences, and.,Growth and Development Laboratory, Center for Investigation in Pediatrics, School of Medicine, University of Campinas, Campinas, São Paulo, Brazil
| | - Stephen J Carter
- Departments of Nutrition Sciences, and.,Department of Kinesiology, School of Public Health, Indiana University Bloomington, Bloomington, IN
| |
Collapse
|