101
|
Di Domenico F, Foppoli C, Coccia R, Perluigi M. Antioxidants in cervical cancer: Chemopreventive and chemotherapeutic effects of polyphenols. Biochim Biophys Acta Mol Basis Dis 2012; 1822:737-47. [DOI: 10.1016/j.bbadis.2011.10.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 01/09/2023]
|
102
|
Mahata S, Maru S, Shukla S, Pandey A, Mugesh G, Das BC, Bharti AC. Anticancer property of Bryophyllum pinnata (Lam.) Oken. leaf on human cervical cancer cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:15. [PMID: 22405256 PMCID: PMC3353166 DOI: 10.1186/1472-6882-12-15] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/10/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Bryophyllum pinnata (B. pinnata) is a common medicinal plant used in traditional medicine of India and of other countries for curing various infections, bowel diseases, healing wounds and other ailments. However, its anticancer properties are poorly defined. In view of broad spectrum therapeutic potential of B. pinnata we designed a study to examine anti-cancer and anti-Human Papillomavirus (HPV) activities in its leaf extracts and tried to isolate its active principle. METHODS A chloroform extract derived from a bulk of botanically well-characterized pulverized B. pinnata leaves was separated using column chromatography with step- gradient of petroleum ether and ethyl acetate. Fractions were characterized for phyto-chemical compounds by TLC, HPTLC and NMR and Biological activity of the fractions were examined by MTT-based cell viability assay, Electrophoretic Mobility Shift Assay, Northern blotting and assay of apoptosis related proteins by immunoblotting in human cervical cancer cells. RESULTS Results showed presence of growth inhibitory activity in the crude leaf extracts with IC50 at 552 μg/ml which resolved to fraction F4 (Petroleum Ether: Ethyl Acetate:: 50:50) and showed IC50 at 91 μg/ml. Investigations of anti-viral activity of the extract and its fraction revealed a specific anti-HPV activity on cervical cancer cells as evidenced by downregulation of constitutively active AP1 specific DNA binding activity and suppression of oncogenic c-Fos and c-Jun expression which was accompanied by inhibition of HPV18 transcription. In addition to inhibiting growth, fraction F4 strongly induced apoptosis as evidenced by an increased expression of the pro-apoptotic protein Bax, suppression of the anti-apoptotic molecules Bcl-2, and activation of caspase-3 and cleavage of PARP-1. Phytochemical analysis of fraction F4 by HPTLC and NMR indicated presence of activity that resembled Bryophyllin A. CONCLUSIONS Our study therefore demonstrates presence of anticancer and anti-HPV an activity in B. pinnata leaves that can be further exploited as a potential anticancer, anti-HPV therapeutic for treatment of HPV infection and cervical cancer.
Collapse
|
103
|
|
104
|
Marathe SA, Dasgupta I, Gnanadhas DP, Chakravortty D. Multifaceted roles of curcumin: two sides of a coin! Expert Opin Biol Ther 2011; 11:1485-99. [PMID: 21942554 DOI: 10.1517/14712598.2011.623124] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Curcumin has been a front-line topic of mainstream scientific research for a variety of diseases from cancer to Alzheimer's to infectious diseases. Curcumin suppresses the type 1 immune response, which might lead to alleviation of type 1 immune response disorders. However, the inhibition of type 1 immune response might invite infections with opportunistic pathogens. Considering its low bioavailability, several curcumin derivatives have been designed to improve its functionality. AREAS COVERED This is a consolidated review which aims to compare and contrast diverse aspects of curcumin in variety of diseases. The intricate underlying mechanisms and the functional determinants of curcumin are discussed. EXPERT OPINION Curcumin being considered as a spicy panacea, is not a remedy for all diseases. However, its ability to act differentially as an anti-oxidant or pro-oxidant akin to that of a double-edged sword/friend turning foe can be either beneficial or harmful for the host. It exhibits anti-oxidant properties at concentrations achievable in the body, making the host vulnerable to infections due to the suppression of innate immune responses. With the increase in knowledge of its functional groups, production of analogues of curcumin is underway to enhance its bioavailability and hence its therapeutic potency.
Collapse
Affiliation(s)
- Sandhya A Marathe
- Indian Institute of Science, Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Bangalore 560012, India
| | | | | | | |
Collapse
|
105
|
Ulbricht C, Basch E, Barrette EP, Boon H, Chao W, Costa D, Higdon ER, Isaac R, Lynch M, Papaliodis G, Grimes Serrano JM, Varghese M, Vora M, Windsor R, Woods J. Turmeric(Curcuma longa): An Evidence-Based Systematic Review by the Natural Standard Research Collaboration. ACTA ACUST UNITED AC 2011. [DOI: 10.1089/act.2011.17409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Catherine Ulbricht
- The Natural Standard Research Collaboration, in Somerville, Massachusetts, is a senior attending pharmacist at Massachusetts General Hospital, and is an adjunct/assistant clinical professor at many universities
| | - Ethan Basch
- The Natural Standard Research Collaboration, is a medical oncologist and professor at Memorial Sloan-Kettering Cancer Center in New York, New York, and is on the faculty at Weill Cornell Medical College in New York, New York
| | - Ernie-Paul Barrette
- The Division of Infectious Diseases at Washington University School of Medicine in St. Louis, Missouri
| | - Heather Boon
- The Leslie Dan Faculty of Pharmacy at the University of Toronto in Ontario, Canada, is a founding chair and principal investigator of the Canadian Interdisciplinary Network for CAM Research (IN-CAM) in Calgary, Alberta, Canada, and is co-chair of Health Canada’s Expert Advisory Committee for Natural Health Products in Ottawa, Ontario, Canada
| | | | | | | | | | | | - George Papaliodis
- The Immunology and Uveitis Service at Massachusetts Eye and Ear Infirmary in Boston, Massachusetts, and is on the faculty at Massachusetts General Hospital in Boston, Massachusetts
| | | | | | | | | | - Jen Woods
- A publications editor, all at the Natural Standard Research Collaboration
| |
Collapse
|
106
|
HPV16E6-dependent c-fos expression contributes to AP-1 complex formation in SiHa cells. Mediators Inflamm 2011; 2011:263216. [PMID: 21822357 PMCID: PMC3147133 DOI: 10.1155/2011/263216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/17/2011] [Accepted: 06/06/2011] [Indexed: 12/13/2022] Open
Abstract
To date, the major role of HPV16E6 in cancer has been considered to be its ability to inhibit the p53 tumor-suppressor protein, thereby thwarting p53-mediated cytotoxic responses to cellular stress signals. Here, we show that HPV16E6-dependent c-fos oncogenic protein expression contributes to AP-1 complex formation under oxidative stress in SiHa cells (HPV16-positive squamous cell carcinoma of the cervix). In addition, we examined the role of HPV16E6 in TGF-α-induced c-fos expression and found that the c-fos protein expression induced by TGF-α is HPV16E6 dependent. Thus, our results provide the first evidence that HPV16E6 contributes to AP-1 complex formation after both ligand-dependent and independent EGFR activation, suggesting a new therapeutic approach to the treatment of HPV-associated tumors.
Collapse
|
107
|
Maritz MF, van der Watt PJ, Holderness N, Birrer MJ, Leaner VD. Inhibition of AP-1 suppresses cervical cancer cell proliferation and is associated with p21 expression. Biol Chem 2011; 392:439-48. [DOI: 10.1515/bc.2011.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractAP-1, a transcription factor comprised primarily of Jun and Fos family proteins, regulates genes involved in proliferation, differentiation and oncogenesis. Previous studies demonstrated that elevated expression of Jun and Fos family member proteins is associated with numerous human cancers and in cancer-relevant biological processes. In this study we used a dominant-negative mutant of c-Jun, Tam67, which interferes with the functional activity of all AP-1 complexes, to investigate the requirement of AP-1 in the proliferation and cell cycle progression of cervical cancer cells. Transient and stable expression of Tam67 in CaSki cervical cancer cells resulted in decreased AP-1 activity that correlated with a significant inhibition of cell proliferation and anchorage-independent colony formation. Inhibiting AP-1 activity resulted in a two-fold increase in cells located in the G2/M phase of the cell cycle and an accompanying increase in the expression of the cell cycle regulatory protein, p21. The increase in p21 was associated with a decrease in HPV E6 expression and an increase in p53. Importantly, blocking the induction of p21 in CaSki-Tam67-expressing cells accelerated their proliferation rate to that of CaSki, implicating p21 as a key player in the growth arrest induced by Tam67. Our results suggest a role for AP-1 in the proliferation, G2/M progression and inhibition of p21 expression in cervical cancer.
Collapse
|
108
|
Colin L, Vandenhoudt N, de Walque S, Van Driessche B, Bergamaschi A, Martinelli V, Cherrier T, Vanhulle C, Guiguen A, David A, Burny A, Herbein G, Pancino G, Rohr O, Van Lint C. The AP-1 binding sites located in the pol gene intragenic regulatory region of HIV-1 are important for viral replication. PLoS One 2011; 6:e19084. [PMID: 21526160 PMCID: PMC3079759 DOI: 10.1371/journal.pone.0019084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 03/15/2011] [Indexed: 01/06/2023] Open
Abstract
Our laboratory has previously identified an important intragenic region in the human immunodeficiency virus type 1 (HIV-1) genome, whose complete functional unit is composed of the 5103 fragment, the DNaseI-hypersensitive site HS7 and the 5105 fragment. These fragments (5103 and 5105) both exhibit a phorbol 12-myristate 13-acetate (PMA)-inducible enhancer activity on the herpes simplex virus thymidine kinase promoter. Here, we characterized the three previously identified AP-1 binding sites of fragment 5103 by showing the PMA-inducible in vitro binding and in vivo recruitment of c-Fos, JunB and JunD to this fragment located at the end of the pol gene. Functional analyses demonstrated that the intragenic AP-1 binding sites are fully responsible for the PMA-dependent enhancer activity of fragment 5103. Moreover, infection of T-lymphoid Jurkat and promonocytic U937 cells with wild-type and mutant viruses demonstrated that mutations of the intragenic AP-1 sites individually or in combination altered HIV-1 replication. Importantly, mutations of the three intragenic AP-1 sites led to a decreased in vivo recruitment of RNA polymerase II to the viral promoter, strongly supporting that the deleterious effect of these mutations on viral replication occurs, at least partly, at the transcriptional level. Single-round infections of monocyte-derived macrophages confirmed the importance of intragenic AP-1 sites for HIV-1 infectivity.
Collapse
Affiliation(s)
- Laurence Colin
- Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Nathalie Vandenhoudt
- Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Stéphane de Walque
- Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Benoît Van Driessche
- Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Anna Bergamaschi
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France
| | - Valérie Martinelli
- Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Thomas Cherrier
- IUT Louis Pasteur de Schiltigheim, University of Strasbourg, Schiltigheim, France
| | - Caroline Vanhulle
- Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Allan Guiguen
- Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Annie David
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France
| | - Arsène Burny
- Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Georges Herbein
- Department of Virology, EA3186, IFR133, Franche-Comte University, Hôpital Saint-Jacques, Besançon, France
| | - Gianfranco Pancino
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France
| | - Olivier Rohr
- IUT Louis Pasteur de Schiltigheim, University of Strasbourg, Schiltigheim, France
| | - Carine Van Lint
- Laboratoire de Virologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
109
|
Mahata S, Bharti AC, Shukla S, Tyagi A, Husain SA, Das BC. Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells. Mol Cancer 2011; 10:39. [PMID: 21496227 PMCID: PMC3098825 DOI: 10.1186/1476-4598-10-39] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 04/15/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Specific types of high risk Human papillomaviruses (HR-HPVs) particularly, HPV types 16 and 18 cause cervical cancer and while the two recently developed vaccines against these HPV types are prophylactic in nature, therapeutic options for treatment and management of already existing HPV infection are not available as yet. Because transcription factor, Activator Protein-1 (AP-1) plays a central role in HPV-mediated cervical carcinogenesis, we explored the possibility of its therapeutic targeting by berberine, a natural alkaloid derived from a medicinal plant species, Berberis which has been shown to possess anti-inflammatory and anti-cancer properties with no known toxicity; however, the effect of berberine against HPV has not been elucidated. RESULTS We studied the effect of berberine on HPV16-positive cervical cancer cell line, SiHa and HPV18-positive cervical cancer cell line, HeLa using electrophoretic mobility gel shift assays, western and northern blotting which showed that berberine could selectively inhibit constitutively activated AP-1 in a dose- and time-dependent manner and downregulates HPV oncogenes expression. Inhibition of AP-1 was also accompanied by changes in the composition of their DNA-binding complex. Berberine specifically downregulated expression of oncogenic c-Fos which was also absent in the AP-1 binding complex. Treatment with berberine resulted in repression of E6 and E7 levels and concomitant increase in p53 and Rb expression in both cell types. Berberine also suppressed expression of telomerase protein, hTERT, which translated into growth inhibition of cervical cancer cells. Interestingly, a higher concentration of berberine was found to reduce the cell viability through mitochondria-mediated pathway and induce apoptosis by activating caspase-3. CONCLUSION These results indicate that berberine can effectively target both the host and viral factors responsible for development of cervical cancer through inhibition of AP-1 and blocking viral oncoproteins E6 and E7 expression. Inhibition of AP-1 activity by berberine may be one of the mechanisms responsible for the anti-HPV effect of berberine. We propose that berberine is a potentially promising compound for the treatment of cervical cancer infected with HPV.
Collapse
Affiliation(s)
- Sutapa Mahata
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology (Indian Council of Medical Research), I-7, Sector-39, Noida, Gautam Budh Nagar - 201301 India
| | | | | | | | | | | |
Collapse
|
110
|
Maher DM, Bell MC, O'Donnell EA, Gupta BK, Jaggi M, Chauhan SC. Curcumin suppresses human papillomavirus oncoproteins, restores p53, rb, and ptpn13 proteins and inhibits benzo[a]pyrene-induced upregulation of HPV E7. Mol Carcinog 2010; 50:47-57. [DOI: 10.1002/mc.20695] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
111
|
Shukla S, Shishodia G, Mahata S, Hedau S, Pandey A, Bhambhani S, Batra S, Basir SF, Das BC, Bharti AC. Aberrant expression and constitutive activation of STAT3 in cervical carcinogenesis: implications in high-risk human papillomavirus infection. Mol Cancer 2010; 9:282. [PMID: 20977777 PMCID: PMC2984472 DOI: 10.1186/1476-4598-9-282] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 10/27/2010] [Indexed: 12/31/2022] Open
Abstract
Background Recent observations indicate potential role of transcription factor STAT3 in cervical cancer development but its role specifically with respect to HPV infection is not known. Present study has been designed to investigate expression and activation of STAT3 in cervical precancer and cancer in relation to HPV infection during cervical carcinogenesis. Established cervical cancer cell lines and prospectively-collected cervical precancer and cancer tissues were analyzed for the HPV positivity and evaluated for STAT3 expression and its phosphorylation by immunoblotting and immunohistochemistry whereas STAT3-specific DNA binding activity was examined by gel-shift assays. Results Analysis of 120 tissues from cervical precancer and cancer lesions or from normal cervix revealed differentially high levels of constitutively active STAT3 in cervical precancer and cancer lesions, whereas it was absent in normal controls. Similarly, a high level of constitutively active STAT3 expression was observed in HPV-positive cervical cancer cell lines when compared to that of HPV-negative cells. Expression and activity of STAT3 were found to change as a function of severity of cervical lesions from precancer to cancer. Expression of active pSTAT3 was specifically high in cervical precancer and cancer lesions found positive for HPV16. Interestingly, site-specific accumulation of STAT3 was observed in basal and suprabasal layers of HPV16-positive early precancer lesions which is indicative of possible involvement of STAT3 in establishment of HPV infection. In HPV16-positive cases, STAT3 expression and activity were distinctively higher in poorly-differentiated lesions with advanced histopathological grades. Conclusion We demonstrate that in the presence of HPV16, STAT3 is aberrantly-expressed and constitutively-activated in cervical cancer which increases as the lesion progresses thus indicating its potential role in progression of HPV16-mediated cervical carcinogenesis.
Collapse
Affiliation(s)
- Shirish Shukla
- Division of Molecular Oncology, Institute of Cytology & Preventive Oncology, I-7, Sector-39, NOIDA, U.P., India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Chaudhary AK, Pandya S, Mehrotra R, Bharti AC, Singh M, Singh M. Comparative study between the Hybrid Capture II test and PCR based assay for the detection of human papillomavirus DNA in oral submucous fibrosis and oral squamous cell carcinoma. Virol J 2010; 7:253. [PMID: 20863370 PMCID: PMC2956722 DOI: 10.1186/1743-422x-7-253] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 09/23/2010] [Indexed: 11/22/2022] Open
Abstract
Background Oral malignancy is a major global health problem. Besides the main risk factors of tobacco, smoking and alcohol, infection by human papillomavirus (HPV) and genetic alterations are likely to play an important role in these lesions. The purpose of this study was to compare the efficacy of HC-II assay and PCR for the detection of specific HPV type (HPV 16 E6) in OSMF and OSCC cases as well as find out the prevalence of the high risk HPV (HR-HPV) in these lesions. Methods and materials Four hundred and thirty patients of the potentially malignant and malignant oral lesions were taken from the Department of Otorhinolaryngology, Moti Lal Nehru Medical College, Allahabad, India from Sept 2007-March 2010. Of which 208 cases were oral submucous fibrosis (OSMF) and 222 cases were oral squamous cell carcinoma (OSCC). The HC-II assay and PCR were used for the detection of HR-HPV DNA. Result The overall prevalence of HR-HPV 16 E6 DNA positivity was nearly 26% by PCR and 27.4% by the HC-II assay in case of potentially malignant disorder of the oral lesions such as OSMF. However, in case of malignant oral lesions such as OSCC, 32.4% HPV 16 E6 positive by PCR and 31.4% by the HC-II assay. In case of OSMF, the two test gave concordant result for 42 positive samples and 154 negative samples, with an overall level of agreement of 85.4% (Cohen's kappa = 66.83%, 95% CI 0.553-0.783). The sensitivity and specificity of the test were 73.7% and 92.05% (p < 0.00). In case of OSCC, the two test gave concordant result for 61 positive samples and 152 negative samples, with an overall level of agreement of 88.3% (Cohen's kappa = 79.29, 95% CI 0.769-0.939) and the sensitivity and specificity of the test were 87.14% and 92.76% (p < 0.00). Conclusion This study concluded that slight difference was found between the positivity rate of HR-HPV infection detected by the HC-II and PCR assay in OSMF and OSCC cases and the HC II assay seemed to have better sensitivity in case of OSCC.
Collapse
|
113
|
Sobti RC, Singh N, Hussain S, Suri V, Bharadwaj M, Das BC. Deregulation of STAT-5 isoforms in the development of HPV-mediated cervical carcinogenesis. J Recept Signal Transduct Res 2010; 30:178-88. [DOI: 10.3109/10799891003786218] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
114
|
Gariglio P, Gutiérrez J, Cortés E, Vázquez J. The role of retinoid deficiency and estrogens as cofactors in cervical cancer. Arch Med Res 2010; 40:449-65. [PMID: PMID: 19853185 DOI: 10.1016/j.arcmed.2009.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/09/2009] [Indexed: 12/18/2022]
Abstract
Persistent infection with high-risk human papillomaviruses (HR-HPVs) is involved in cervical cancer (CC), a major cause of cancer mortality worldwide. Infection occurs primarily at the transformation zone (TZ), the most estrogen- and retinoid-sensitive region of the cervix. Development of CC affects a small percentage of HR-HPV-infected women and often takes decades after infection, suggesting that HR-HPV is a necessary but not sufficient cause of CC. Thus, other cofactors are necessary for progression from cervical HR-HPV infection to cancer such as long-term use of hormonal contraceptives, multiparity, smoking, as well as micronutrient depletion and in particular retinoid deficiency, which alters epithelial differentiation, cellular growth and apoptosis of malignant cells. Therefore, early detection of HR-HPV and management of precancerous lesions together with a profound understanding of additional risk factors could be a strategy to avoid this disease. In this review we focus on the synergic effect of estrogens, retinoid deficiency and HR-HPVs in the development of CC. These risk factors may act in concert to induce neoplastic transformation in squamous epithelium of the cervix, setting the stage for secondary genetic or epigenetic events leading to cervical cancer.
Collapse
Affiliation(s)
- Patricio Gariglio
- Departamento de Genética y Biología Molecular, Cinvestav-IPN, México D.F., México.
| | | | | | | |
Collapse
|
115
|
Mishra A, Bharti AC, Saluja D, Das BC. Transactivation and expression patterns of Jun and Fos/AP-1 super-family proteins in human oral cancer. Int J Cancer 2010; 126:819-29. [PMID: 19653276 DOI: 10.1002/ijc.24807] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transcription factor activator protein-1 (AP-1) super-family is known to modulate expression of array of genes during development of many cancers and considered as an important target for modern therapeutics. But the role of AP-1 during development of human oral cancers is still poorly understood. Because oral cancer is one of the most common cancers in India and south-east Asia, we studied the activation and expression pattern of AP-1 family of proteins and mRNA in different stages of oral carcinogenesis. Gel-shift assay, western blotting, immunohistochemistry and northern blotting have been used to assess the binding activity and expression pattern of AP-1 family (c-Jun, JunB, JunD, c-Fos, FosB, Fra-1 and Fra-2) proteins and mRNA transcripts in a total of 100 fresh oral tissue specimens comprising precancer (n = 40), cancer (n = 50) and healthy control (n = 10). Constitutive activation of AP-1 with concomitant upregulated expression of majority of AP-1 family of proteins and mRNA was observed in cancer cases. Interestingly, almost all precancerous cases showed JunD homodimers, whereas c-Fos/JunD was the most prevalent complex found in cancer tissues. The overexpression of EGFR mRNA, p50:p50/NF-kappaB homodimer formation, together with overexpression of pERK and c-Fos proteins in this study suggests an interesting cross talk between AP-1 and NF-kappaB pathways in oral cancers. Thus, this study demonstrates differential expression and activation of AP-1 super-family proteins in relation to severity of lesion and their crucial role in human oral carcinogenesis.
Collapse
Affiliation(s)
- Alok Mishra
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
116
|
Singh RK, Rai D, Yadav D, Bhargava A, Balzarini J, De Clercq E. Synthesis, antibacterial and antiviral properties of curcumin bioconjugates bearing dipeptide, fatty acids and folic acid. Eur J Med Chem 2010; 45:1078-86. [PMID: 20034711 PMCID: PMC7115498 DOI: 10.1016/j.ejmech.2009.12.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 12/01/2009] [Accepted: 12/04/2009] [Indexed: 12/25/2022]
Abstract
Curcumin bioconjugates, viz. di-O-tryptophanylphenylalanine curcumin (2), di-O-decanoyl curcumin (3), di-O-pamitoyl curcumin (4), di-O-bis-(γ,γ)folyl curcumin (6), C4-ethyl-O-γ-folyl curcumin (8) and 4-O-ethyl-O-γ-folyl curcumin (10) have been synthesized and tested for their antibacterial and antiviral activities. The conjugates 2, 3, 4, 6 and 8 have shown very promising antibacterial activity with MIC ranging between 0.09 and 0.67 μM against Gram-positive cocci and Gram-negative bacilli. Further, the conjugates 2, 3, 6, 8 and 10 have been screened for their antiviral activities against HSV, VSV, FIPV, PIV-3, RSV and FHV and the molecules 2 and 3 have shown good results with EC50 0.011 μM and 0.029 μM against VSV and FIPV/FHV, respectively. However, the molecules did not show expected results against HIV-1 IIIB and ROD strains in MTT assay.
Collapse
Affiliation(s)
- Ramendra K. Singh
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad 211002, India
- Corresponding author. Tel./fax: +91 0532 2461005.
| | - Diwakar Rai
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad 211002, India
| | - Dipti Yadav
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad 211002, India
| | - A. Bhargava
- Department of Microbiology, MLN Medical College, Allahabad, India
| | - J. Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium
| | - E. De Clercq
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium
| |
Collapse
|
117
|
Abstract
Cooperation among transcription factors is central for their ability to execute specific transcriptional programmes. The AP1 complex exemplifies a network of transcription factors that function in unison under normal circumstances and during the course of tumour development and progression. This Perspective summarizes our current understanding of the changes in members of the AP1 complex and the role of ATF2 as part of this complex in tumorigenesis.
Collapse
Affiliation(s)
- Pablo Lopez-Bergami
- Instituto de Biologia y Medicina Experimental, Vuelta de Obligado 2490, Buenos Aires1428, Argentina,
| | - Eric Lau
- Signal Transduction Program, Burnham Institute for Medical Research, La Jolla, CA 92037, USA,
| | - Ze'ev Ronai
- Signal Transduction Program, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| |
Collapse
|
118
|
Hussain S, Bharti AC, Salam I, Bhat MA, Mir MM, Hedau S, Siddiqi MA, Basir SF, Das BC. Transcription factor AP-1 in esophageal squamous cell carcinoma: alterations in activity and expression during human Papillomavirus infection. BMC Cancer 2009; 9:329. [PMID: 19758438 PMCID: PMC2758900 DOI: 10.1186/1471-2407-9-329] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 09/16/2009] [Indexed: 01/01/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a leading cause of cancer-related deaths in Jammu and Kashmir (J&K) region of India. A substantial proportion of esophageal carcinoma is associated with infection of high-risk HPV type 16 and HPV18, the oncogenic expression of which is controlled by host cell transcription factor Activator Protein-1 (AP-1). We, therefore, have investigated the role of DNA binding and expression pattern of AP-1 in esophageal cancer with or without HPV infection. Methods Seventy five histopathologically-confirmed esophageal cancer and an equal number of corresponding adjacent normal tissue biopsies from Kashmir were analyzed for HPV infection, DNA binding activity and expression of AP-1 family of proteins by PCR, gel shift assay and immunoblotting respectively. Results A high DNA binding activity and elevated expression of AP-1 proteins were observed in esophageal cancer, which differed between HPV positive (19%) and HPV negative (81%) carcinomas. While JunB, c-Fos and Fra-1 were the major contributors to AP-1 binding activity in HPV negative cases, Fra-1 was completely absent in HPV16 positive cancers. Comparison of AP-1 family proteins demonstrated high expression of JunD and c-Fos in HPV positive tumors, but interestingly, Fra-1 expression was extremely low or nil in these tumor tissues. Conclusion Differential AP-1 binding activity and expression of its specific proteins between HPV - positive and HPV - negative cases indicate that AP-1 may play an important role during HPV-induced esophageal carcinogenesis.
Collapse
Affiliation(s)
- Showket Hussain
- Division of Molecular Oncology, Institute of Cytology & Preventive Oncology (ICMR), Noida, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Qu J, Lin J, Zhang S, Zhu Z, Ni C, Zhang S, Gao H, Zhu M. HBV DNA can bind to P53 protein and influence p53 transactivation in hepatoma cells. Biochem Biophys Res Commun 2009; 386:504-9. [DOI: 10.1016/j.bbrc.2009.06.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 06/15/2009] [Indexed: 11/28/2022]
|
120
|
The EVER proteins as a natural barrier against papillomaviruses: a new insight into the pathogenesis of human papillomavirus infections. Microbiol Mol Biol Rev 2009; 73:348-70. [PMID: 19487731 DOI: 10.1128/mmbr.00033-08] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Infections by human papillomaviruses (HPVs) are the most frequently occurring sexually transmitted diseases. The crucial role of genital oncogenic HPV in cervical carcinoma development is now well established. In contrast, the role of cutaneous HPV in skin cancer development remains a matter of debate. Cutaneous beta-HPV strains show an amazing ubiquity. The fact that a few oncogenic genotypes cause cancers in patients suffering from epidermodysplasia verruciformis is in sharp contrast to the unapparent course of infection in the general population. Our recent investigations revealed that a natural barrier exists in humans, which protects them against infection with these papillomaviruses. A central role in the function of this HPV-specific barrier is played by a complex of the zinc-transporting proteins EVER1, EVER2, and ZnT-1, which maintain cellular zinc homeostasis. Apparently, the deregulation of the cellular zinc balance emerges as an important step in the life cycles not only of cutaneous but also of genital HPVs, although the latter viruses have developed a mechanism by which they can break the barrier and impose a zinc imbalance. Herein, we present a previously unpublished list of the cellular partners of EVER proteins, which points to future directions concerning investigations of the mechanisms of action of the EVER/ZnT-1 complex. We also present a general overview of the pathogenesis of HPV infections, taking into account the latest discoveries regarding the role of cellular zinc homeostasis in the HPV life cycle. We propose a potential model for the mechanism of function of the anti-HPV barrier.
Collapse
|
121
|
Shukla S, Bharti AC, Hussain S, Mahata S, Hedau S, Kailash U, Kashyap V, Bhambhani S, Roy M, Batra S, Talwar GP, Das BC. Elimination of high-risk human papillomavirus type HPV16 infection by 'Praneem' polyherbal tablet in women with early cervical intraepithelial lesions. J Cancer Res Clin Oncol 2009; 135:1701-9. [PMID: 19526249 DOI: 10.1007/s00432-009-0617-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 05/27/2009] [Indexed: 01/17/2023]
Abstract
PURPOSE 'Praneem', a polyherbal formulation developed by us, has successfully completed Phase II efficacy study for treatment of abnormal vaginal discharge due to reproductive tract infections that act as co-factors for HPV persistence. In the present study we evaluated potential anti-HPV activity of Praneem in women infected with high risk HPV type 16. METHODS Twenty women molecularly diagnosed positive for HPV16 infection without or with low grade squamous intraepithelial lesion (LSIL) or inflammation were assigned to receive intra-vaginal, topical application of either Praneem tablet or placebo for 30 days excluding the days of menstrual period and were evaluated for persistence of HPV infection using HPV L1 consensus and HPV type 16-specific PCR as primary outcome. RESULTS One course of Praneem treatment resulted in elimination of HPV in 6 out of 10 (60%) cases. A repeat treatment of four patients with persisting HPV infection resulted in clearance of HPV in two additional cases resulting in an overall 80% clearance of HPV 16 as against a spontaneous clearance of 10% (1/10) seen in the placebo arm. The elimination of HPV DNA was found to be accompanied by marked improvement in clinical symptoms and cytological abnormalities of Praneem-treated patients. CONCLUSION Our results showed for the first time that a 30-day intra-vaginal application of the Praneem can result in elimination of HPV infection from the uterine cervix.
Collapse
Affiliation(s)
- Shirish Shukla
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology (ICMR), Noida, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Ma K, Chang D, Gong M, Ding F, Luo A, Tian F, Liu Z, Wang T. Expression and significance of FRA-1 in non-small-cell lung cancer. Cancer Invest 2009; 27:353-9. [PMID: 19160107 DOI: 10.1080/07357900802254008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fra-1 is thought to play an important role in tumorigenesis and progression. This study aimed to investigate the expression and significance of Fra-1 in non-small-cell lung cancer (NSCLC). By analyzing with Western blot and immunohistochemistry, we found that Fra-1 is downregulated in NSCLC, compared with normal bronchial epithelium. Further, the low expression of Fra-1 correlates with advanced tumor stage and poor survival. Meanwhile, the distinct cytoplasmic location of Fra-1 was found in almost all immunoreactive cells. These findings reveal a potential nontranscriptional function of Fra-1, and indicate that Fra-1 might play a role in the progression and prognosis of NSCLC.
Collapse
Affiliation(s)
- Kai Ma
- Department of Thoracic and Cardiovascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Abstract
Transforming growth factor-? (TGF-?), an extensively investigated cytokine, plays a very important role in promoting the spread of cancers in the body, and can play a direct role in facilitating metastasis. Consequently, TGF-? is currently explored as a prognostic candidate biomarker of tumor invasiveness and metastasis. Therefore, in clinical scenarios involving increased TGF-? activity, attempts to decrease or abrogate TGF-? signaling could be used as a therapy for advanced or metastatic disease. It follows that TGF-? signaling offers an attractive target for cancer therapy. Several anti-TGF-? approaches, such as TGF-? antibodies, antisense oligonucleotides and small molecules inhibitors of TGF-? type 1 receptor kinase, have shown great promise in the preclinical studies. These studies, coupled with progressing clinical trials indicate that inhibition of TGF-? signaling may be indeed a viable option to cancer therapy. This review summarizes the TGF-? biology, screening cancer patients for anti-TGF-? therapy, and several strategies targeted against TGF-? signaling for cancer therapy. The next several years promise to improve our understanding of approaching cancer therapy by further evaluation of TGF-? signaling inhibitors for clinical efficacy. The complexity of TGF-? biology guarantees that many surprises lie ahead.
Collapse
|
124
|
C-Fos expression is a molecular predictor of progression and survival in epithelial ovarian carcinoma. Br J Cancer 2008; 99:1269-75. [PMID: 18854825 PMCID: PMC2570515 DOI: 10.1038/sj.bjc.6604650] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Members of the Fos protein family dimerise with Jun proteins to form the AP-1 transcription factor complex. They have a central function in proliferation and differentiation of normal tissue as well as in oncogenic transformation and tumour progression. We analysed the expression of c-Fos, FosB, Fra-1 and Fra-2 to investigate the function of Fos transcription factors in ovarian cancer. A total of 101 patients were included in the study. Expression of Fos proteins was determined by western blot analysis, quantified by densitometry and verified by immunohistochemistry. Reduced c-Fos expression was independently associated with unfavourable progression-free survival (20.6, 31.6 and 51.2 months for patients with low, moderate and high c-Fos expression; P=0.003) as well as overall survival (23.8, 46.0 and 55.5 months for low, moderate and high c-Fos levels; P=0.003). No correlations were observed for FosB, Fra-1 and Fra-2. We conclude that loss of c-Fos expression is associated with tumour progression in ovarian carcinoma and that c-Fos may be a prognostic factor. These results are in contrast to the classic concept of c-Fos as an oncogene, but are supported by the recently discovered tumour-suppressing and proapoptotic function of c-Fos in various cancer types.
Collapse
|
125
|
López-Lázaro M. Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res 2008; 52 Suppl 1:S103-27. [PMID: 18496811 DOI: 10.1002/mnfr.200700238] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A growing body of research suggests that curcumin, the major active constituent of the dietary spice turmeric, has potential for the prevention and therapy of cancer. Preclinical data have shown that curcumin can both inhibit the formation of tumors in animal models of carcinogenesis and act on a variety of molecular targets involved in cancer development. In vitro studies have demonstrated that curcumin is an efficient inducer of apoptosis and some degree of selectivity for cancer cells has been observed. Clinical trials have revealed that curcumin is well tolerated and may produce antitumor effects in people with precancerous lesions or who are at a high risk for developing cancer. This seems to indicate that curcumin is a pharmacologically safe agent that may be used in cancer chemoprevention and therapy. Both in vitro and in vivo studies have shown, however, that curcumin may produce toxic and carcinogenic effects under specific conditions. Curcumin may also alter the effectiveness of radiotherapy and chemotherapy. This review article analyzes the in vitro and in vivo cancer-related activities of curcumin and discusses that they are linked to its known antioxidant and pro-oxidant properties. Several considerations that may help develop curcumin as an anticancer agent are also discussed.
Collapse
Affiliation(s)
- Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Sevilla, Spain.
| |
Collapse
|
126
|
Zhang M, Bian F, Wen C, Hao N. Inhibitory effect of curcumin on proliferation of human pterygium fibroblasts. ACTA ACUST UNITED AC 2008; 27:339-42. [PMID: 17641858 DOI: 10.1007/s11596-007-0332-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Indexed: 01/28/2023]
Abstract
In order to investigate the effect of curcumin on proliferation and apoptosis of human pterygium fibroblasts (HPF) in culture and search for a new method to prevent the recurrence after pterygium surgery, HPF was incubated with 0-160 micromol/L curcumin for 24-96 h. The MTT method was used to assay the biologic activities of curcumin at different time points and different doses. The expression of proliferating cell nuclear antigen (PCNA) in each group was detected by immunohistochemistry. The cell cycle distribution was detected by flow cytometry (FCM). Administration of 20-80 micromol/L curcumin for 24-72 h could significantly inhibit HPF proliferation in a dose-and time-dependent manner (P<0.05). After treatment with curcumin at different concentrations of 20, 40, 80 and 160 micromol/L for 24 h, FCM revealed there was a significant sub-G1 peak at each concentration. The number of HPF in G0/G1 phase was increased, while in S phase, it was decreased (P<0.05). At the concentration of 20-80 micromol/L, curcumin, in a dose-dependent manner (P<0.05), could inhibit the expression of PCNA in HPF. It was suggested that curcumin could significantly inhibit the proliferation of HPF, make HPF arrest in G0/G1 phase and induce the apoptosis of HPF in a dose-and time-dependent manner.
Collapse
Affiliation(s)
- Mingchang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | | | | | | |
Collapse
|
127
|
Sinha S, Srivastava R, Prusty B, Das BC, Singh RK. Some novel adenosine mimics: synthesis and anticancer potential against cervical cancer caused by human papilloma virus. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 26:773-7. [PMID: 18066899 DOI: 10.1080/15257770701501195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Two novel adenosine analogs, viz. 9-(1'-beta-D-arabinofuranosyl)-6-nitro-1,3-dideazapurine or Ara-NDDP (1) and 9-(5'-deoxy-5'-S-(propionic acid) (1'-beta-D-ribofuranosyl) adenine or SAH analog (2), indigenously synthesized, have been found to be potential anticancer agents against cervical cancer caused by human papilloma virus.
Collapse
Affiliation(s)
- Sarika Sinha
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | | | | | | | | |
Collapse
|
128
|
Kutluay SB, Doroghazi J, Roemer ME, Triezenberg SJ. Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity. Virology 2008; 373:239-47. [PMID: 18191976 DOI: 10.1016/j.virol.2007.11.028] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/02/2007] [Accepted: 11/28/2007] [Indexed: 12/27/2022]
Abstract
Curcumin, a phenolic compound from the curry spice turmeric, exhibits a wide range of activities in eukaryotic cells, including antiviral effects that are at present incompletely characterized. Curcumin is known to inhibit the histone acetyltransferase activity of the transcriptional coactivator proteins p300 and CBP, which are recruited to the immediate early (IE) gene promoters of herpes simplex virus type 1 (HSV-1) by the viral transactivator protein VP16. We tested the hypothesis that curcumin, by inhibiting these coactivators, would block viral infection and gene expression. In cell culture assays, curcumin significantly decreased HSV-1 infectivity and IE gene expression. Entry of viral DNA to the host cell nucleus and binding of VP16 to IE gene promoters was not affected by curcumin, but recruitment of RNA polymerase II to those promoters was significantly diminished. However, these effects were observed using lower curcumin concentrations than those required to substantially inhibit global H3 acetylation. No changes were observed in histone H3 occupancy or acetylation at viral IE gene promoters. Furthermore, p300 and CBP recruitment to IE gene promoters was not affected by the presence of curcumin. Finally, disruption of p300 expression using a short hairpin RNA did not affect viral IE gene expression. These results suggest that curcumin affects VP16-mediated recruitment of RNA polymerase II to IE gene promoters by a mechanism independent of p300/CBP histone acetyltransferase activity.
Collapse
Affiliation(s)
- Sebla B Kutluay
- Graduate Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
129
|
Barh D, Viswanathan G. Syzygium cumini inhibits growth and induces apoptosis in cervical cancer cell lines: a primary study. Ecancermedicalscience 2008; 2:83. [PMID: 22275971 PMCID: PMC3234045 DOI: 10.3332/ecancer.2008.83] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Indexed: 01/12/2023] Open
Abstract
Cervical cancer is common among women in the Indian subcontinent and the incidences and death rates are gradually increasing over the years. Several dietary phytochemicals have been reported to have growth inhibitory and apoptotic effect on HeLa and other cervical cell lines. In this study, using Hoechst 33342 staining, MTT, Annexin V-FLUOS/PI and TUNEL assays we demonstrated that Syzygium cumini extract inhibits the growth and induces apoptosis in HeLa and SiHa cervical cancer cell lines in a dose- and time-dependent manner. The phytochemical, its mode of action and safety issues are yet to be determined.
Collapse
Affiliation(s)
- D Barh
- Cancer Research Group, IHMA, Tamil Nadu 613006, India.
| | | |
Collapse
|
130
|
Prognostic significance of loss of c-fos protein in gastric carcinoma. Pathol Oncol Res 2007; 13:284-9. [PMID: 18158562 DOI: 10.1007/bf02940306] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 10/12/2007] [Indexed: 12/13/2022]
Abstract
c-fos was first identified as a viral oncoprotein, and has been studied in terms of its oncogenic function in tumorigenesis. Many experimental and clinical data indicated that c-fos expression plays a role in the progression of several types of carcinomas. However, some recent studies challenge this view as they indicate that c-fos has tumor suppressor activity. In the present study, we assessed c-fos protein expression in 625 consecutive gastric cancers immunohistochemically, and analyzed its relationship with clinicopathologic factors and survival. We found that a loss of c-fos expression is correlated with a more advanced stage, lymph node metastasis, lymphatic invasion and shorter survival, indicating that c-fos expression in gastric cancer cells is lost during progression and that this loss is associated with a poor prognosis. The above findings suggest that loss of c-fos expression has tumor suppressor activity in gastric cancer and we suspect that this suppressor activity might be related to the pro-apoptotic function of c-fos.
Collapse
|
131
|
Prusty BK, Hedau S, Singh A, Kar P, Das BC. Selective suppression of NF-kBp65 in hepatitis virus-infected pregnant women manifesting severe liver damage and high mortality. Mol Med 2007; 13:518-26. [PMID: 17660862 PMCID: PMC1933259 DOI: 10.2119/2007-00055.prusty] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Accepted: 07/09/2007] [Indexed: 02/02/2023] Open
Abstract
Fulminant hepatitis in Asian pregnant women is generally caused by hepatitis E virus infection, and extremely high mortality is most common in them. Decreased cell-mediated immunity is considered a major cause of death in these cases, but what exactly influences decreased immunity and high mortality specifically during pregnancy is not known. We used electrophoretic mobility shift assays, immunoblotting, and immunohistochemical analysis to study the expression and DNA binding activity of NF-kB p50 and NF-kB p65 in pregnant fulminant hepatic failure (FHF) patients and compared them with their nonpregnant counterparts. In both PBMC and postmortem liver biopsy specimens the DNA-binding activity of NF-kB was very high in samples from pregnant FHF patients compared with those from nonpregnant women as well as pregnant women with acute viral hepatitis (AVH) without FHF. Further dissection of the NF-kB complex in supershift assays demonstrated complete absence of p65 in the NF-kB complex, which is formed by homodimerization of the p50 component in pregnant FHF patients. Western blotting and immunohistochemical analysis of the expression of p50 and p65 proteins both showed higher levels of p50 expression and a complete absence or a minimal expression of p65, indicating its nonparticipation in NF-kB-dependent transactivation in pregnant FHF patients. We suggest that the exclusion of p65 from the NF-kB transactivation complex seems to be a crucial step that may cause deregulated immunity and severe liver damage, leading to the death of the patient. Our findings provide a molecular basis, for developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Bhupesh K Prusty
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology, Noida, India
| | - Suresh Hedau
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology, Noida, India
| | - Ajay Singh
- Department of Medicine, Lok Nayak Hospital, Maulana Azad Medical College Campus, Bahadur Shah Zafar Marg, New Delhi, India
| | - Premasis Kar
- Department of Medicine, Lok Nayak Hospital, Maulana Azad Medical College Campus, Bahadur Shah Zafar Marg, New Delhi, India
| | - Bhudev C Das
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology, Noida, India
- Address correspondence and reprint requests to Bhudev C Das, Division of Molecular Oncology, Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector 39, Noida 201301, India. Tel: + 91-120-2575838; Fax: + 91-120-2579437; E-mail:
| |
Collapse
|
132
|
Saja K, Babu MS, Karunagaran D, Sudhakaran PR. Anti-inflammatory effect of curcumin involves downregulation of MMP-9 in blood mononuclear cells. Int Immunopharmacol 2007; 7:1659-67. [PMID: 17996675 DOI: 10.1016/j.intimp.2007.08.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 08/04/2007] [Accepted: 08/26/2007] [Indexed: 12/26/2022]
Abstract
Curcumin (1, 7-bis (4-hydroxyl-3-methoxyphenyl)-1, 6 heptadiene-3, 5-dione) is a potent natural anti oxidant and anti-inflammatory agent, which mediates its effects mainly by inhibiting the activity of enzymes like cyclooxygenase, lipooxygenases and phospholipase A2. Here we examined the possibility of curcumin affecting the production of matrix metalloproteinases (MMPs) by peripheral blood mononuclear cells (PBMCs), which play an important role in inflammation. Zymographic analysis and ELISA showed that curcumin significantly inhibited the activity and level of MMPs produced by PBMCs isolated from human and inflammation-induced rabbit in a concentration dependent manner. The administration of curcumin to inflammation-induced rabbits also caused downregulation of MMP-9. Kinetic analysis showed that the effect of curcumin was a delayed one indicating inhibition of de novo protein synthesis. RT-PCR and immunoblot analysis showed inhibition of the production of MMP-9 mRNA and protein respectively by human PBMCs, which were activated in vitro by Artocarpus Lakoocha agglutinin (ALA) lectin. EMSA and super shift showed activation of classical NFkappaB in in vitro activated PBMCs and treatment with curcumin inhibited activation of NFkappaB. Immunoblot analysis suggested that ALA-induced activation of NFkappaB leading to the upregulation of MMP-9 was due to the degradation of IkappaB-alpha. Curcumin inhibited the degradation of IkappaB-alpha, which inhibited the ALA mediated activation of NFkappaB and upregulation of MMP-9. These results indicated that anti-inflammatory effect of curcumin also involves inhibition of the production of MMP-9 in PBMCs.
Collapse
Affiliation(s)
- K Saja
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala-695581, India
| | | | | | | |
Collapse
|
133
|
Gius D, Funk MC, Chuang EY, Feng S, Huettner PC, Nguyen L, Bradbury CM, Mishra M, Gao S, Buttin BM, Cohn DE, Powell MA, Horowitz NS, Whitcomb BP, Rader JS. Profiling microdissected epithelium and stroma to model genomic signatures for cervical carcinogenesis accommodating for covariates. Cancer Res 2007; 67:7113-23. [PMID: 17671178 DOI: 10.1158/0008-5472.can-07-0260] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study is the first comprehensive, integrated approach to examine grade-specific changes in gene expression along the entire neoplastic spectrum of cervical intraepithelial neoplasia (CIN) in the process of cervical carcinogenesis. This was accomplished by identifying gene expression signatures of disease progression using cDNA microarrays to analyze RNA from laser-captured microdissected epithelium and underlying stroma from normal cervix, graded CINs, cancer, and patient-matched normal cervical tissues. A separate set of samples were subsequently validated using a linear mixed model that is ideal to control for interpatient gene expression profile variation, such as age and race. These validated genes were ultimately used to propose a genomically based model of the early events in cervical neoplastic transformation. In this model, the CIN 1 transition coincides with a proproliferative/immunosuppression gene signature in the epithelium that probably represents the epithelial response to human papillomavirus infection. The CIN 2 transition coincides with a proangiogenic signature, suggesting a cooperative signaling interaction between stroma and tumor cells. Finally, the CIN 3 and squamous cell carcinoma antigen transition coincide with a proinvasive gene signature that may be a response to epithelial tumor cell overcrowding. This work strongly suggests that premalignant cells experience a series of microenvironmental stresses at the epithelium/stroma cell interface that must be overcome to progress into a transformed phenotype and identifies the order of these events in vivo and their association with specific CIN transitions.
Collapse
Affiliation(s)
- David Gius
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Aggarwal BB, Sundaram C, Malani N, Ichikawa H. CURCUMIN: THE INDIAN SOLID GOLD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 595:1-75. [PMID: 17569205 DOI: 10.1007/978-0-387-46401-5_1] [Citation(s) in RCA: 842] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Turmeric, derived from the plant Curcuma longa, is a gold-colored spice commonly used in the Indian subcontinent, not only for health care but also for the preservation of food and as a yellow dye for textiles. Curcumin, which gives the yellow color to turmeric, was first isolated almost two centuries ago, and its structure as diferuloylmethane was determined in 1910. Since the time of Ayurveda (1900 Bc) numerous therapeutic activities have been assigned to turmeric for a wide variety of diseases and conditions, including those of the skin, pulmonary, and gastrointestinal systems, aches, pains, wounds, sprains, and liver disorders. Extensive research within the last half century has proven that most of these activities, once associated with turmeric, are due to curcumin. Curcumin has been shown to exhibit antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, and anticancer activities and thus has a potential against various malignant diseases, diabetes, allergies, arthritis, Alzheimer's disease, and other chronic illnesses. These effects are mediated through the regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other enzymes. Curcumin exhibits activities similar to recently discovered tumor necrosis factor blockers (e.g., HUMIRA, REMICADE, and ENBREL), a vascular endothelial cell growth factor blocker (e.g., AVASTIN), human epidermal growth factor receptor blockers (e.g., ERBITUX, ERLOTINIB, and GEFTINIB), and a HER2 blocker (e.g., HERCEPTIN). Considering the recent scientific bandwagon that multitargeted therapy is better than monotargeted therapy for most diseases, curcumin can be considered an ideal "Spice for Life".
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/chemistry
- Anti-Bacterial Agents/pharmacology
- Anti-Bacterial Agents/therapeutic use
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antifungal Agents/chemistry
- Antifungal Agents/pharmacology
- Antifungal Agents/therapeutic use
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Antioxidants/chemistry
- Antioxidants/pharmacology
- Antioxidants/therapeutic use
- Antiviral Agents/chemistry
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Arthritis, Rheumatoid/drug therapy
- Curcuma/chemistry
- Curcumin/analogs & derivatives
- Curcumin/chemistry
- Curcumin/metabolism
- Curcumin/pharmacology
- Curcumin/therapeutic use
- Humans
- India
- Medicine, Ayurvedic
- Models, Biological
- Molecular Structure
- Neoplasms/drug therapy
- Phytotherapy
- Plants, Medicinal
- Spices
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
135
|
Shishodia S, Singh T, Chaturvedi MM. Modulation of transcription factors by curcumin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 595:127-48. [PMID: 17569208 DOI: 10.1007/978-0-387-46401-5_4] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Curcumin is the active ingredient of turmeric that has been consumed as a dietary spice for ages. Turmeric is widely used in traditional Indian medicine to cure biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. Extensive investigation over the last five decades has indicated that curcumin reduces blood cholesterol, prevents low-density lipoprotein oxidation, inhibits platelet aggregation, suppresses thrombosis and myocardial infarction, suppresses symptoms associated with type II diabetes, rheumatoid arthritis, multiple sclerosis, and Alzheimer's disease, inhibits HIV replication, enhances wound healing, protects from liver injury, increases bile secretion, protects from cataract formation, and protects from pulmonary toxicity and fibrosis. Evidence indicates that the divergent effects of curcumin are dependent on its pleiotropic molecular effects. These include the regulation of signal transduction pathways and direct modulation of several enzymatic activities. Most of these signaling cascades lead to the activation of transcription factors. Curcumin has been found to modulate the activity of several key transcription factors and, in turn, the cellular expression profiles. Curcumin has been shown to elicit vital cellular responses such as cell cycle arrest, apoptosis, and differentiation by activating a cascade of molecular events. In this chapter, we briefly review the effects of curcumin on transcription factors NF-KB, AP-1, Egr-1, STATs, PPAR-gamma, beta-catenin, nrf2, EpRE, p53, CBP, and androgen receptor (AR) and AR-related cofactors giving major emphasis to the molecular mechanisms of its action.
Collapse
Affiliation(s)
- Shishir Shishodia
- Department of Biology, Texas Southern University, Houston 77004, USA.
| | | | | |
Collapse
|
136
|
Affiliation(s)
- Shishir Shishodia
- Department of Biology, Texas Southern University, Houston, Texas, USA
| | | | | |
Collapse
|
137
|
Karamouzis MV, Konstantinopoulos PA, Papavassiliou AG. The activator protein-1 transcription factor in respiratory epithelium carcinogenesis. Mol Cancer Res 2007; 5:109-20. [PMID: 17314269 DOI: 10.1158/1541-7786.mcr-06-0311] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Respiratory epithelium cancers are the leading cause of cancer-related death worldwide. The multistep natural history of carcinogenesis can be considered as a gradual accumulation of genetic and epigenetic aberrations, resulting in the deregulation of cellular homeostasis. Growing evidence suggests that cross-talk between membrane and nuclear receptor signaling pathways along with the activator protein-1 (AP-1) cascade and its cofactor network represent a pivotal molecular circuitry participating directly or indirectly in respiratory epithelium carcinogenesis. The crucial role of AP-1 transcription factor renders it an appealing target of future nuclear-directed anticancer therapeutic and chemoprevention approaches. In the present review, we will summarize the current knowledge regarding the implication of AP-1 proteins in respiratory epithelium carcinogenesis, highlight the ongoing research, and consider the future perspectives of their potential therapeutic interest.
Collapse
Affiliation(s)
- Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| | | | | |
Collapse
|
138
|
Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol 2007; 72:29-39. [PMID: 17395690 DOI: 10.1124/mol.106.033167] [Citation(s) in RCA: 400] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a response of cancer cells to various anticancer therapies. It is designated as programmed cell death type II and characterized by the formation of autophagic vacuoles in the cytoplasm. The Akt/mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase (p70S6K) and the extracellular signal-regulated kinases 1/2 (ERK1/2) pathways are two major pathways that regulate autophagy induced by nutrient starvation. These pathways are also frequently associated with oncogenesis in a variety of cancer cell types, including malignant gliomas. However, few studies have examined both of these signal pathways in the context of anticancer therapy-induced autophagy in cancer cells, and the effect of autophagy on cell death remains unclear. Here, we examined the anticancer efficacy and mechanisms of curcumin, a natural compound with low toxicity in normal cells, in U87-MG and U373-MG malignant glioma cells. Curcumin induced G(2)/M arrest and nonapoptotic autophagic cell death in both cell types. It inhibited the Akt/mTOR/p70S6K pathway and activated the ERK1/2 pathway, resulting in induction of autophagy. It is interesting that activation of the Akt pathway inhibited curcumin-induced autophagy and cytotoxicity, whereas inhibition of the ERK1/2 pathway inhibited curcumin-induced autophagy and induced apoptosis, thus resulting in enhanced cytotoxicity. These results imply that the effect of autophagy on cell death may be pathway-specific. In the subcutaneous xenograft model of U87-MG cells, curcumin inhibited tumor growth significantly (P < 0.05) and induced autophagy. These results suggest that curcumin has high anticancer efficacy in vitro and in vivo by inducing autophagy and warrant further investigation toward possible clinical application in patients with malignant glioma.
Collapse
Affiliation(s)
- Hiroshi Aoki
- Department of Neurosurgery, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
139
|
Pucci D, Bloise R, Bellusci A, Bernardini S, Ghedini M, Pirillo S, Valentini A, Crispini A. Curcumin and cyclopalladated complexes: a recipe for bifunctional biomaterials. J Inorg Biochem 2007; 101:1013-22. [PMID: 17524485 DOI: 10.1016/j.jinorgbio.2007.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 03/06/2007] [Accepted: 03/14/2007] [Indexed: 11/27/2022]
Abstract
The first examples of binuclear and mononuclear ortho-palladated complexes based on a functionalized 2-phenylquinoline ligand have been synthesized and fully characterized. Conjugating cyclopalladated fragments to curcumin family biologically active beta-diketones gives in one single molecule two different functionalities. The structural variations based on the curcuminoid structure have been tested for their in vitro cytotoxic activity. The activity of complexes comprised of a cyclopalladated fragment conjugated to functionalized bioactive ligands, represents the potential of organometallic systems in generating new bifunctional biomaterials.
Collapse
Affiliation(s)
- Daniela Pucci
- Centro di Eccellenza CEMIF.CAL-LASCAMM, CR-INSTM Unità della Calabria, Dipartimento di Chimica, Università della Calabria, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Mistry N, Simonsson M, Evander M. Transcriptional activation of the human papillomavirus type 5 and 16 long control region in cells from cutaneous and mucosal origin. Virol J 2007; 4:27. [PMID: 17352804 PMCID: PMC1828153 DOI: 10.1186/1743-422x-4-27] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 03/12/2007] [Indexed: 12/26/2022] Open
Abstract
Human papillomavirus type-16 (HPV-16) infects mucosal epithelium and is the most common type found in cervical cancer. HPV-5 infects cornified epithelium and is the most common type found on normal skin and belongs to the types frequently associated with skin cancers of Epidermodysplasia verruciformis patients. One factor by which this anatomical tropism could be determined is the regulation of HPV gene expression in the host cell. The HPV long control region (LCR) contains cis-responsive elements that regulate HPV transcription and the epithelial tropism of HPV is determined by epithelial specific constitutive enhancers in the LCR. Since HPV-16 and other types infecting the mucosa differ in host cell from HPV types infecting skin, it has been hypothesized that it is the combination of ubiquitous transcription factors working in concert in the host cell that determines the cell-type-specific expression. To study if HPV tropism could be determined by differences in transcriptional regulation we have cloned the transcriptional regulating region, LCR, from HPV-16 and HPV-5 and studied the activation of a reporter gene in cell lines with different origin. To analyse promoter activity we transfected the plasmids into four different cell lines; HaCaT, C33A, NIKS and W12E and the efficiency of HPV-5 and HPV-16 LCR in the different cell lines was compared. In HaCaT cells, with a skin origin, the HPV-5 LCR was two-fold more efficient in transcriptional activation compared to the HPV-16 LCR. In cervical W12E cells the HPV-16 LCR was almost 2-fold more effective in activating transcription compared to the HPV-5 LCR. The ability to initiate transcription in the other cell lines was independent on cell origin and HPV-type.
Collapse
Affiliation(s)
- Nitesh Mistry
- Department of Virology, Umeå University, S-901 85 Umeå, Sweden
| | | | - Magnus Evander
- Department of Virology, Umeå University, S-901 85 Umeå, Sweden
| |
Collapse
|
141
|
Filomeni G, Cerchiaro G, Da Costa Ferreira AM, De Martino A, Pedersen JZ, Rotilio G, Ciriolo MR. Pro-apoptotic activity of novel Isatin-Schiff base copper(II) complexes depends on oxidative stress induction and organelle-selective damage. J Biol Chem 2007; 282:12010-21. [PMID: 17327230 DOI: 10.1074/jbc.m610927200] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We characterized the pro-apoptotic activity of two new synthesized isatin-Schiff base copper(II) complexes, obtained from isatin and 1,3-diaminopropane or 2-(2-aminoethyl)pyridine: (Cu(isapn)) and (Cu(isaepy)(2)), respectively. We demonstrated that these compounds trigger apoptosis via the mitochondrial pathway. The early induction of the p53/p21 system indicates a role for p53 in cell death, however, experiments carried out with small interfering RNA against p53, or with cells lacking p53, support that a p53-independent mechanism can also occur. The extent of apoptosis mirrors the kinetics of intracellular copper uptake. Particularly, Cu(isaepy)(2) enters the cells more efficiently and specifically damages nuclei and mitochondria, as evidenced by atomic absorption analysis of copper content and by the extent of nuclear and mitochondrial integrity. Conversely, Cu(isapn), although less permeable, induces a wide-spread oxidative stress, as demonstrated by analyses of reactive oxygen species concentration, and oxidation of proteins and lipids. The increase of the antioxidant defense, through the overexpression of Cu,Zn-SOD, partially counteracts cell death; whereas retinoic acid-mediated differentiation completely rescues cells from apoptosis induced by both compounds. The activation of JNK- and Akt-mediated phosphorylative pathways has been found to be not functional for apoptosis induction. On the contrary, apoptosis significantly decreased when the analogous zinc complex was used or when Cu(isaepy)(2) was incubated in the presence of a copper chelator. Altogether, our data provide evidence for a dual role of these copper(II) complexes: they are able to vehicle copper into the cell, thus producing reactive oxygen species, and could behave as delocalized lipophilic cation-like molecules, thus specifically targeting organelles.
Collapse
Affiliation(s)
- Giuseppe Filomeni
- Department of Biology, University of Rome "Tor Vergata," Via della Ricerca Scientifica, 00133 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
142
|
Ramdass B, Maliekal TT, Lakshmi S, Rehman M, Rema P, Nair P, Mukherjee G, Reddy BKM, Krishna S, Radhakrishna Pillai M. Coexpression of Notch1 and NF-κB signaling pathway components in human cervical cancer progression. Gynecol Oncol 2007; 104:352-61. [PMID: 17098279 DOI: 10.1016/j.ygyno.2006.08.054] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 08/17/2006] [Accepted: 08/24/2006] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Features of deregulated Notch1 signaling and NF-kappaB activation have independently been reported in cervical cancers. Here, we have extended these observations and examined both these pathways simultaneously in human cervical cancer tissue. Further, we have investigated the potential cross-talk between these pathways in a human cervical cancer derived cell line CaSki, which mirrors features of Notch activation as in the majority of human cervical cancers. METHODS Cervical tissue samples were analyzed for the expression of Notch1, Jagged 1, Hes1, pAKT, NF-kappaB p50, NF-kappaB p65, IkappaB-alpha, Bcl-2, CyclinD1, Cdk9, c-Fos, and p53 by immunohistochemistry. A total of 352 samples were analyzed which included 69 normal cervical tissue, 132 preinvasive lesions and 151 squamous cell carcinomas of the uterine cervix. Dual immunofluorescent analysis was performed to evaluate the coexpression of Notch1 and NF-kappaB. Transcriptional reporter assays and xenografts were undertaken with CaSki cells. RESULTS Features of Notch1 activation as measured by intracellular Notch1, high levels of Jagged1, Hes1 and Cdk9 were paralleled by nuclear translocation of both NF-kappaB p50 and p65 with target gene expression (IkappaB-alpha, Bcl-2, and CyclinD1) in human cervical cancer sections. Reporter assays in CaSki cells are consistent with Notch being an upstream regulator of NF-kappaB. Further, the xenografts recreate key aspects of human cancer tissue. CONCLUSIONS Results from this study suggest that there is a co-activation of Notch1 and NF-kappaB signaling pathways at the cellular level in the majority of human cervical cancers, with Notch as an upstream regulator.
Collapse
Affiliation(s)
- Bharathi Ramdass
- National Centre For Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bangalore-560 065, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Gnanamony M, Peedicayil A, Abraham P. AN OVERVIEW OF HUMAN PAPILLOMAVIRUSES AND CURRENT VACCINE STRATEGIES. Indian J Med Microbiol 2007. [DOI: 10.1016/s0255-0857(21)02227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
144
|
Mishra A, Bharti AC, Varghese P, Saluja D, Das BC. Differential expression and activation of NF-kappaB family proteins during oral carcinogenesis: Role of high risk human papillomavirus infection. Int J Cancer 2006; 119:2840-50. [PMID: 16998793 DOI: 10.1002/ijc.22262] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oral cancer is one of the most common cancers in India and south-east Asian region consisting of more than 50% of all malignant tumors. Along with many known risk factors, infection of Human Papillomavirus (HPV) has been associated with the development of oral cancer and is suggested to modulate host cell transcription. Reciprocally, cellular transcription factors, such as NF-kappaB and AP-1 are known to modulate the expression of viral and other genes involved in the development of cancer. In the absence of data on NF-kappaB in relation to HPV in oral cancer, we studied the DNA binding activity and expression pattern of NF-kappaB family of proteins in different stages of oral cancer and correlated with HPV infection that has been associated with better prognosis of the disease. A total of 110 fresh oral tissue biopsies were collected comprising 10 normal controls, 34 precancer and 66 oral cancer lesions prior to chemotherapy/radiotherapy. Diagnosis of HPV was done by both consensus and type-specific PCR. Electrophoretic mobility shift assays, western blots and immunohistochemical analysis were performed to assess the binding activity and expression pattern of NF-kappaB family of proteins (p50, p65, p52, c-Rel, RelB and Bcl-3) in oral tissue biopsies. Twenty seven percent (18/66) of the oral cancer biopsies showed the presence of HPV infection exclusively of high risk HPV type 16, which was primarily associated with the well differentiated squamous cell carcinomas (WDSCC). We observed a high constitutive activation of NF-kappaB with concomitant upregulated expression of all the NF-kappaB members in oral cancer tissues. Expression of NF-kappaB components gradually increased as the severity of lesion increased from precancer to invasive cancer. NF-kappaB p50 was found to be the major DNA binding component, which is indicative of homodimerization of p50 subunits. Interestingly, in HPV16 infected oral cancers although p50 showed high binding activity, p65 also showed a partial involvement as evidenced in supershift assay. Both by western blotting and immunohistochemistry, a differential overexpression and nuclear localization of p50, p65 and partially of Bcl-3 were observed in HPV16 positive oral cancer patients that also showed an over-expression of p21. We therefore, demonstrate a constitutive activation and differential expression of NF-kappaB proteins, which change as a function of severity of oral lesions during development of oral cancer. The NF-kappaB DNA binding is primarily due to homodimerization of p50 but infection of high risk HPV promotes participation of p65 in NF-kappaB complex formation, leading to heterodimerization of p50/p65. We propose that the involvement of p65 in HPV infected oral cancer may be linked to improved differentiation and better prognosis of the disease when treated.
Collapse
Affiliation(s)
- Alok Mishra
- Division of Molecular Oncology, Institute of Cytology and Preventive Oncology (ICMR), I-7, Sector-39, Noida 201301, India
| | | | | | | | | |
Collapse
|
145
|
Balasubramanian S, Eckert RL. Curcumin suppresses AP1 transcription factor-dependent differentiation and activates apoptosis in human epidermal keratinocytes. J Biol Chem 2006; 282:6707-15. [PMID: 17148446 DOI: 10.1074/jbc.m606003200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The diet-derived cancer preventive agent, curcumin, inhibits skin cancer cell proliferation and tumor formation. However, its effect on normal human keratinocyte differentiation, proliferation, and apoptosis has not been adequately studied. Involucrin (hINV) is a marker of keratinocyte differentiation and a useful model for the study of chemopreventive agent action. We show that curcumin suppresses the differentiation agent-dependent activation of hINV gene expression and that an AP1 transcription factor DNA binding site in the hINV gene is required for this regulation. A protein kinase C, Ras, MEKK1, MEK3 signaling cascade controls hINV expression by regulating AP1 factor level. Curcumin treatment inhibits the novel protein kinase C-, Ras-, and MEKK1-dependent activation of hINV promoter activity and reduces the differentiation agent-dependent increase in AP1 factor level and DNA binding. This reduction requires proteasome function. In addition, curcumin treatment reduces cell number, which is associated with a reduced cyclin and cdk1 levels. Curcumin treatment also suppresses the Bcl-xL level, leading to reduced mitochondrial membrane potential and increased cleavage of procaspases and poly(ADP-ribose) polymerase. These studies provide important insights regarding the mechanism whereby curcumin acts as a chemopreventive agent in normal human epidermis.
Collapse
Affiliation(s)
- Sivaprakasam Balasubramanian
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | |
Collapse
|
146
|
Weber WM, Hunsaker LA, Gonzales AM, Heynekamp JJ, Orlando RA, Deck LM, Vander Jagt DL. TPA-induced up-regulation of activator protein-1 can be inhibited or enhanced by analogs of the natural product curcumin. Biochem Pharmacol 2006; 72:928-40. [PMID: 16934760 DOI: 10.1016/j.bcp.2006.07.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 07/13/2006] [Accepted: 07/14/2006] [Indexed: 12/16/2022]
Abstract
The activator protein-1 (AP-1) family of transcription factors, including the most common member c-Jun-c-Fos, participates in regulation of expression of numerous genes involved in proliferation, apoptosis, and tumorigenesis in response to a wide array of stimuli including pro-inflammatory cytokines, growth factors, stress, and tumor promoters. A number of plant polyphenols including curcumin, a yellow compound in the spice turmeric, have been shown to inhibit the activation of AP-1. Curcumin is a polyphenolic dienone that is potentially reactive as a Michael acceptor and also is a strong anti-oxidant. Multiple activities reported for curcumin, including inhibition of the stress-induced activation of AP-1, have been suggested to involve the anti-oxidant properties of curcumin. In the present study, a library of analogs of curcumin was screened for activity against the TPA-induced activation of AP-1 using the Panomics AP-1 Reporter 293 stable cell line which is designed for screening potential inhibitors. Numerous analogs were identified that were more active than curcumin, including analogs that were not anti-oxidants and analogs that were not Michael acceptors. Clearly, anti-oxidant activity or reactivity as a Michael acceptor is not an essential feature of active compounds. In addition, a number of analogs were identified that enhanced the TPA-induced activation of AP-1. The results from screening were confirmed using BV-2 microglial cells where curcumin and analogs were shown to inhibit LPS-induced COX-2 expression; analogs identified as more potent than curcumin in the screening assay were also more potent than curcumin in preventing COX-2 expression.
Collapse
Affiliation(s)
- Waylon M Weber
- Department of Chemistry, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | |
Collapse
|
147
|
Notoya M, Nishimura H, Woo JT, Nagai K, Ishihara Y, Hagiwara H. Curcumin inhibits the proliferation and mineralization of cultured osteoblasts. Eur J Pharmacol 2006; 534:55-62. [PMID: 16476424 DOI: 10.1016/j.ejphar.2006.01.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 01/16/2006] [Accepted: 01/18/2006] [Indexed: 12/28/2022]
Abstract
The effects of curcumin, which is an important constituent of rhizomes of the plant Curcuma longa Linn, on the metabolism of osteoblasts were examined in cultures of rat calvarial osteoblastic cells (ROB cells). The proliferation of cells was markedly inhibited upon exposure of cells to curcumin at 5x10(-6) to 1x10(-5) M. Curcumin at 1x10(-5) M did not induce apoptosis in ROB cells but arrested cells at the G1 phase of the cell cycle. In addition, curcumin stimulated the expression of mRNA for p21(WAF1/CIP1), which inhibits the activity of cyclin-dependent kinases, and inhibited the phosphorylation of histone H1. Furthermore, curcumin reduced the rate of deposition of calcium and the formation of mineralized nodules. Our results indicate that curcumin might inhibit the proliferation and mineralization of osteoblastic cells through the expression of p21(WAF1/CIP1).
Collapse
Affiliation(s)
- Michitaka Notoya
- Department of Biological Sciences, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
148
|
Powers HJ. Interaction among folate, riboflavin, genotype, and cancer, with reference to colorectal and cervical cancer. J Nutr 2005; 135:2960S-2966S. [PMID: 16317155 DOI: 10.1093/jn/135.12.2960s] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Epidemiological studies have linked low folate intake with an increased risk of epithelial cancers, including colorectal cancer and cervical cancer. Riboflavin has received much less attention, but there is increasing interest in the well-established role that flavins play in folate metabolism and the possible synergy of a protective effect between these 2 vitamins. Folate plays a key role in DNA synthesis, repair, and methylation, and this forms the basis of mechanistic explanations for a putative role for folate in cancer prevention. The role of folate in these processes may be modulated by genotype for the common C677T thermolabile variant of methylene tetrahydrofolate reductase (MTHFR), homozygosity for which is associated with lower enzyme activity, lower plasma and red blood cell folate, and elevated plasma homocysteine. Riboflavin, as FAD, is a cofactor for MTHFR and there is evidently some interaction among riboflavin status, folate status, and genotype in determining plasma homocysteine, a functional marker of folate status. The MTHFR C677T polymorphism appears to interact with folate and riboflavin in modulating cancer risk in a manner that varies according to cancer site. Most evidence points to a protective effect of this polymorphism for risk of colorectal cancer, but the effect on cervical cancer risk is not clear. The effect of this polymorphism on cancer risk seems to be further modulated by other factors, including alcohol and, in the case of cervical cancer, infection with the human papilloma virus. An additional factor determining the effect of diet and genotype interactions on cancer risk may be the stage of cancer development.
Collapse
|
149
|
Abstract
Members of the Fos family (c-Fos, FosB and its smaller splice variants, Fra-1 and Fra-2) dimerise with Jun proteins to form the AP-1 transcription factor complex. Based on the rapidly growing amount of data from experimental studies, animal models and investigations on clinical tumour samples, this review summarises the current knowledge about the role of these proteins in carcinogenesis. In addition to c-Fos, which has oncogenic activity and is frequently overexpressed in tumour cells, Fra-1 seems to play a role in the progression of many carcinomas. The results obtained from various studies show different implications for these transcription factors according to tumour type, i.e., Fra-1 overexpression enhances the motility and invasion of breast and colorectal cancer cells, but inhibits the tumourigenicity of cervical carcinoma cell lines. Knowledge about regulation of invasion and metastasis in different malignant tumours in vivo might open promising perspectives to targeted therapeutic approaches.
Collapse
Affiliation(s)
- Karin Milde-Langosch
- Institute of Pathology, University Clinics Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany.
| |
Collapse
|
150
|
Manson MM. Inhibition of survival signalling by dietary polyphenols and indole-3-carbinol. Eur J Cancer 2005; 41:1842-53. [PMID: 16087329 DOI: 10.1016/j.ejca.2005.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 05/03/2005] [Indexed: 12/21/2022]
Abstract
Epidemiological studies have long hinted at the possibility that what we eat greatly influences our state of health, in particular our relative risk of developing cancer. In recent years there has been an exponential increase in the number of studies investigating how individual components of the diet interact at the molecular level to determine the fate of a cell. It is now apparent that many such molecules can preferentially inhibit the growth of tumour cells, by inducing cell cycle arrest or apoptosis. The number of signalling pathways and molecular targets involved is continually expanding. Consequently, the picture is becoming ever more complicated, not least because results often appear to be cell-type specific, dose-response relationships are critical, and any one agent appears to have multiple mechanisms of action. In addition most studies have been conducted in cell culture, often with physiologically unachievable concentrations of single agents, making extrapolation to the clinical situation difficult. In this review the mechanisms of action of a few well-studied dietary polyphenols (curcumin, epigallocatechin gallate and resveratrol) and indole-3 carbinol are considered in the light of these issues.
Collapse
Affiliation(s)
- Margaret M Manson
- Cancer Biomarkers and Prevention Group, Department of Biochemistry, Biocentre, University of Leicester, University Road, Leicester LE1 7RH, UK.
| |
Collapse
|