101
|
Dysregulated expression of cell surface glycoprotein CDCP1 in prostate cancer. Oncotarget 2016; 6:43743-58. [PMID: 26497208 PMCID: PMC4791263 DOI: 10.18632/oncotarget.6193] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/06/2015] [Indexed: 12/05/2022] Open
Abstract
CUB-domain-containing protein 1 (CDCP1) is a trans-membrane protein regulator of cell adhesion with a potent pro-migratory function in tumors. Given that proteolytic cleavage of the ectodomain correlates with outside-in oncogenic signaling, we characterized glycosylation in the context of cellular processing and expression of CDCP1 in prostate cancer. We detected 135 kDa full-length and proteolytic processed 70 kDa species in a panel of PCa cell models. The relative expression of full-length CDCP1 correlated with the metastatic potential of syngeneic cell models and an increase in surface membrane expression of CDCP1 was observed in tumor compared to adjacent normal prostate tissues. We demonstrated that glycosylation of CDCP1 is a prerequisite for protein stability and plasma membrane localization, and that the expression level and extent of N-glycosylation of CDCP1 correlated with metastatic status. Interestingly, complex N-linked glycans with sialic acid chains were restricted to the N-terminal half of the ectodomain and absent in the truncated species. Characterization of the extracellular expression of CDCP1 identified novel circulating forms and revealed that extracellular vesicles provide additional processing pathways. Employing immunoaffinity mass spectrometry, we detected elevated levels of circulating CDCP1 in patient urine with high-risk disease. Our results establish that differential glycosylation, cell surface presentation and extracellular expression of CDCP1 are hallmarks of PCa progression.
Collapse
|
102
|
Wadosky KM, Koochekpour S. Molecular mechanisms underlying resistance to androgen deprivation therapy in prostate cancer. Oncotarget 2016; 7:64447-64470. [PMID: 27487144 PMCID: PMC5325456 DOI: 10.18632/oncotarget.10901] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/19/2016] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is the most widely diagnosed male cancer in the Western World and while low- and intermediate-risk PCa patients have a variety of treatment options, metastatic patients are limited to androgen deprivation therapy (ADT). This treatment paradigm has been in place for 75 years due to the unique role of androgens in promoting growth of prostatic epithelial cells via the transcription factor androgen receptor (AR) and downstream signaling pathways. Within 2 to 3 years of ADT, disease recurs-at which time, patients are considered to have castration-recurrent PCa (CR-PCa). A universal mechanism by which PCa becomes resistant to ADT has yet to be discovered. In this review article, we discuss underlying molecular mechanisms by which PCa evades ADT. Several major resistance pathways center on androgen signaling, including intratumoral and adrenal androgen production, AR-overexpression and amplification, expression of AR mutants, and constitutively-active AR splice variants. Other ADT resistance mechanisms, including activation of glucocorticoid receptor and impairment of DNA repair pathways are also discussed. New therapies have been approved for treatment of CR-PCa, but increase median survival by only 2-8 months. We discuss possible mechanisms of resistance to these new ADT agents. Finally, the practicality of the application of "precision oncology" to this continuing challenge of therapy resistance in metastatic or CR-PCa is examined. Empirical validation and clinical-based evidence are definitely needed to prove the superiority of "precision" treatment in providing a more targeted approach and curative therapies over the existing practices that are based on biological "cause-and-effect" relationship.
Collapse
MESH Headings
- Androgen Antagonists/adverse effects
- Androgen Antagonists/therapeutic use
- Animals
- Antineoplastic Agents, Hormonal/adverse effects
- Antineoplastic Agents, Hormonal/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Humans
- Kallikreins/blood
- Male
- Mutation
- Neoplasm Staging
- Phosphorylation
- Prostate-Specific Antigen/blood
- Prostatic Neoplasms, Castration-Resistant/blood
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Receptors, Androgen/drug effects
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Risk Factors
- Signal Transduction/drug effects
- Treatment Outcome
Collapse
Affiliation(s)
- Kristine M. Wadosky
- Department of Cancer Genetics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Shahriar Koochekpour
- Department of Cancer Genetics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo, NY, USA
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
103
|
Khurana N, Talwar S, Chandra PK, Sharma P, Abdel-Mageed AB, Mondal D, Sikka SC. Sulforaphane increases the efficacy of anti-androgens by rapidly decreasing androgen receptor levels in prostate cancer cells. Int J Oncol 2016; 49:1609-19. [PMID: 27499349 DOI: 10.3892/ijo.2016.3641] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/11/2016] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer (PCa) cells utilize androgen for their growth. Hence, androgen deprivation therapy (ADT) using anti-androgens, e.g. bicalutamide (BIC) and enzalutamide (ENZ), is a mainstay of treatment. However, the outgrowth of castration resistant PCa (CRPC) cells remains a significant problem. These CRPC cells express androgen receptor (AR) and utilize the intratumoral androgen towards their continued growth and invasion. Sulforaphane (SFN), a naturally occurring isothiocyanate found in cruciferous vegetables, can decrease AR protein levels. In the present study, we tested the combined efficacy of anti-androgens and SFN in suppressing PCa cell growth, motility and clonogenic ability. Both androgen-dependent (LNCaP) and androgen-independent (C4-2B) cells were used to monitor the effects of BIC and ENZ, alone and in combination with SFN. Co-exposure to SFN significantly (p<0.005) enhanced the anti-proliferative effects of anti-androgens and downregulated expression of the AR-responsive gene, prostate specific antigen (PSA) (p<0.05). Exposure to SFN decreased AR protein levels in a time- and dose-dependent manner with almost no AR detected at 24 h with 15 µM SFN (p<0.005). This rapid and potent AR suppression by SFN occurred by both AR protein degradation, as suggested by cycloheximide (CHX) co-exposure studies, and by suppression of AR gene expression, as evident from quantitative RT-PCR experiments. Pre-exposure to SFN also reduced R1881-stimulated nuclear localization of AR, and combined treatment with SFN and anti-androgens abrogated the mitogenic effects of this AR-agonist (p<0.005). Wound-healing assays revealed that co-exposure to SFN and anti-androgens can significantly (p<0.005) reduce PCa cell migration. In addition, long-term exposures (14 days) to much lower concentrations of these agents, SFN (0.2 µM), BIC (1 µM) and/or ENZ (0.4 µM) significantly (p<0.005) decreased the number of colony forming units (CFUs). These findings clearly suggest that SFN may be used as a promising adjunct agent to augment the efficacy of anti-androgens against aggressive PCa cells.
Collapse
Affiliation(s)
- Namrata Khurana
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Sudha Talwar
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Pankaj Sharma
- Amity Institute of Biotechnology, Amity University, Noida, U.P. 201313, India
| | - Asim B Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Debasis Mondal
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Suresh C Sikka
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
104
|
Abstract
Bone metastatic disease remains a significant and frequent problem for cancer patients that can lead to increased morbidity and mortality. Unfortunately, despite decades of research, bone metastases remain incurable. Current studies have demonstrated that many properties and cell types within the bone and bone marrow microenvironment contribute to tumor-induced bone disease. Furthermore, they have pointed to the importance of understanding how tumor cells interact with their microenvironment in order to help improve both the development of new therapeutics and the prediction of response to therapy.
Collapse
Affiliation(s)
- Denise Buenrostro
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
- Center for Bone Biology, Vanderbilt University, 2215B Garland Avenue, 1235 MRBIV, Nashville, TN 37232, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Patrick L. Mulcrone
- Center for Bone Biology, Vanderbilt University, 2215B Garland Avenue, 1235 MRBIV, Nashville, TN 37232, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Philip Owens
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Julie A. Sterling
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
- Center for Bone Biology, Vanderbilt University, 2215B Garland Avenue, 1235 MRBIV, Nashville, TN 37232, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, 2215B Garland Avenue, 1235 MRBIV, Nashville, TN 37232, USA
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
105
|
Purushottamachar P, Kwegyir-Afful AK, Martin M, Ramamurthy V, Ramalingam S, Njar VCO. Identification of Novel Steroidal Androgen Receptor Degrading Agents Inspired by Galeterone 3β-Imidazole Carbamate. ACS Med Chem Lett 2016; 7:708-13. [PMID: 27437082 PMCID: PMC4948004 DOI: 10.1021/acsmedchemlett.6b00137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/23/2016] [Indexed: 01/03/2023] Open
Abstract
Degradation of all forms of androgen receptors (ARs) is emerging as an advantageous therapeutic paradigm for the effective treatment of prostate cancer. In continuation of our program to identify and develop improved efficacious novel small-molecule agents designed to disrupt AR signaling through enhanced AR degradation, we have designed, synthesized, and evaluated novel C-3 modified analogues of our phase 3 clinical agent, galeterone (5). Concerns of potential in vivo stability of our recently discovered more efficacious galeterone 3β-imidazole carbamate (6) led to the design and synthesis of new steroidal compounds. Two of the 11 compounds, 3β-pyridyl ether (8) and 3β-imidazole (17) with antiproliferative GI50 values of 3.24 and 2.54 μM against CWR22Rv1 prostate cancer cell, are 2.75- and 3.5-fold superior to 5. In addition, compounds 8 and 17 possess improved (∼4-fold) AR-V7 degrading activities. Importantly, these two compounds are expected to be metabolically stable, making them suitable for further development as new therapeutics against all forms of prostate cancer.
Collapse
Affiliation(s)
- Puranik Purushottamachar
- Department of Pharmacology, Center for Biomolecular Therapeutics, and Marlene Stewart
Greenbaum Cancer Center, University of Maryland
School of Medicine, 685
West Baltimore Street, Baltimore, Maryland 21201-1559, United States
| | - Andrew K. Kwegyir-Afful
- Department of Pharmacology, Center for Biomolecular Therapeutics, and Marlene Stewart
Greenbaum Cancer Center, University of Maryland
School of Medicine, 685
West Baltimore Street, Baltimore, Maryland 21201-1559, United States
| | - Marlena
S. Martin
- Department of Pharmacology, Center for Biomolecular Therapeutics, and Marlene Stewart
Greenbaum Cancer Center, University of Maryland
School of Medicine, 685
West Baltimore Street, Baltimore, Maryland 21201-1559, United States
| | - Vidya
P. Ramamurthy
- Department of Pharmacology, Center for Biomolecular Therapeutics, and Marlene Stewart
Greenbaum Cancer Center, University of Maryland
School of Medicine, 685
West Baltimore Street, Baltimore, Maryland 21201-1559, United States
| | - Senthilmurugan Ramalingam
- Department of Pharmacology, Center for Biomolecular Therapeutics, and Marlene Stewart
Greenbaum Cancer Center, University of Maryland
School of Medicine, 685
West Baltimore Street, Baltimore, Maryland 21201-1559, United States
| | - Vincent C. O. Njar
- Department of Pharmacology, Center for Biomolecular Therapeutics, and Marlene Stewart
Greenbaum Cancer Center, University of Maryland
School of Medicine, 685
West Baltimore Street, Baltimore, Maryland 21201-1559, United States
| |
Collapse
|
106
|
Yu L, Shang ZF, Wang J, Wang H, Huang F, Zhang Z, Wang Y, Zhou J, Li S. PC-1/PrLZ confers resistance to rapamycin in prostate cancer cells through increased 4E-BP1 stability. Oncotarget 2016; 6:20356-69. [PMID: 26011939 PMCID: PMC4653010 DOI: 10.18632/oncotarget.3931] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/29/2015] [Indexed: 01/12/2023] Open
Abstract
An important strategy for improving advanced PCa treatment is targeted therapies combined with chemotherapy. PC-1, a prostate Leucine Zipper gene (PrLZ), is specifically expressed in prostate tissue as an androgen-induced gene and is up-regulated in advanced PCa. Recent work confirmed that PC-1 expression promotes PCa growth and androgen-independent progression. However, how this occurs and whether this can be used as a biomarker is uncertain. Here, we report that PC-1 overexpression confers PCa cells resistance to rapamycin treatment by antagonizing rapamycin-induced cytostasis and autophagy (rapamycin-sensitivity was observed in PC-1-deficient (shPC-1) C4-2 cells). Analysis of the mTOR pathway in PCa cells with PC-1 overexpressed and depressed revealed that eukaryotic initiation factor 4E-binding protein 1(4E-BP1) was highly regulated by PC-1. Immunohistochemistry assays indicated that 4E-BP1 up-regulation correlates with increased PC-1 expression in human prostate tumors and in PCa cells. Furthermore, PC-1 interacts directly with 4E-BP1 and stabilizes 4E-BP1 protein via inhibition of its ubiquitination and proteasomal degradation. Thus, PC-1 is a novel regulator of 4E-BP1 and our work suggests a potential mechanism through which PC-1 enhances PCa cell survival and malignant progression and increases chemoresistance. Thus, the PC-1-4E-BP1 interaction may represent a therapeutic target for treating advanced PCa.
Collapse
Affiliation(s)
- Lan Yu
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, PR China
| | - Zeng-Fu Shang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, PR China
| | - Jian Wang
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, PR China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300200, PR China
| | - Fang Huang
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, PR China
| | - Zhe Zhang
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, PR China
| | - Ying Wang
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, PR China
| | - Jianguang Zhou
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, PR China
| | - Shanhu Li
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, PR China
| |
Collapse
|
107
|
Leach DA, Need EF, Toivanen R, Trotta AP, Palethorpe HM, Palenthorpe HM, Tamblyn DJ, Kopsaftis T, England GM, Smith E, Drew PA, Pinnock CB, Lee P, Holst J, Risbridger GP, Chopra S, DeFranco DB, Taylor RA, Buchanan G. Stromal androgen receptor regulates the composition of the microenvironment to influence prostate cancer outcome. Oncotarget 2016; 6:16135-50. [PMID: 25965833 PMCID: PMC4599261 DOI: 10.18632/oncotarget.3873] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/02/2015] [Indexed: 12/21/2022] Open
Abstract
Androgen receptor (AR) signaling in stromal cells is important in prostate cancer, yet the mechanisms underpinning stromal AR contribution to disease development and progression remain unclear. Using patient-matched benign and malignant prostate samples, we show a significant association between low AR levels in cancer associated stroma and increased prostate cancer-related death at one, three and five years post-diganosis, and in tissue recombination models with primary prostate cancer cells that low stromal AR decreases castration-induced apoptosis. AR-regulation was found to be different in primary human fibroblasts isolated from adjacent to cancerous and non-cancerous prostate epithelia, and to represent altered activation of myofibroblast pathways involved in cell cycle, adhesion, migration, and the extracellular matrix (ECM). Without AR signaling, the fibroblast-derived ECM loses the capacity to promote attachment of both myofibroblasts and cancer cells, is less able to prevent cell-matrix disruption, and is less likely to impede cancer cell invasion. AR signaling in prostate cancer stroma appears therefore to alter patient outcome by maintaining an ECM microenvironment inhibitory to cancer cell invasion. This paper provides comprehensive insight into AR signaling in the non-epithelial prostate microenvironment, and a resource from which the prognostic and therapeutic implications of stromal AR levels can be further explored.
Collapse
Affiliation(s)
- Damien A Leach
- The Basil Hetzel Institute for Translational Health Research, University of Adelaide, SA, Australia
| | - Eleanor F Need
- The Basil Hetzel Institute for Translational Health Research, University of Adelaide, SA, Australia
| | - Roxanne Toivanen
- Department of Anatomy and Development, Monash University, VIC, Australia
| | - Andrew P Trotta
- The Basil Hetzel Institute for Translational Health Research, University of Adelaide, SA, Australia
| | - Helen M Palethorpe
- The Basil Hetzel Institute for Translational Health Research, University of Adelaide, SA, Australia
| | - Helen M Palenthorpe
- The Basil Hetzel Institute for Translational Health Research, University of Adelaide, SA, Australia
| | | | - Tina Kopsaftis
- Urology Unit, Repatriation General Hospital, SA, Australia
| | - Georgina M England
- Department of Surgical Pathology, SA Pathology at Flinders Medical Centre, SA, Australia
| | - Eric Smith
- The Basil Hetzel Institute for Translational Health Research, University of Adelaide, SA, Australia
| | - Paul A Drew
- The Basil Hetzel Institute for Translational Health Research, University of Adelaide, SA, Australia.,School of Nursing and Midwifery, Flinders University, Bedford Park, SA, Australia
| | | | - Peng Lee
- Department of Pathology and Urology, New York University, NY, USA
| | - Jeff Holst
- Origins of Cancer Laboratory, Centenary Institute, NSW, Australia.,Sydney Medical School, University of Sydney, NSW, Australia
| | - Gail P Risbridger
- Department of Anatomy and Development, Monash University, VIC, Australia
| | - Samarth Chopra
- Urology Unit, Repatriation General Hospital, SA, Australia.,Department of Urology, St Vincent's Hospital, Sydney and Garvan Institute, NSW, Australia
| | - Donald B DeFranco
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, PA, USA
| | - Renea A Taylor
- Department of Anatomy and Development, Monash University, VIC, Australia.,Department of Physiology, Monash University, VIC, Australia
| | - Grant Buchanan
- The Basil Hetzel Institute for Translational Health Research, University of Adelaide, SA, Australia
| |
Collapse
|
108
|
Strand DW, Aaron L, Henry G, Franco OE, Hayward SW. Isolation and analysis of discreet human prostate cellular populations. Differentiation 2016; 91:139-51. [PMID: 26546040 PMCID: PMC4854811 DOI: 10.1016/j.diff.2015.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 10/27/2015] [Indexed: 02/03/2023]
Abstract
The use of lineage tracing in transgenic mouse models has revealed an abundance of subcellular phenotypes responsible for maintaining prostate homeostasis. The ability to use fresh human tissues to examine the hypotheses generated by these mouse experiments has been greatly enhanced by technical advances in tissue processing, flow cytometry and cell culture. We describe in detail the optimization of protocols for each of these areas to facilitate research on solving human prostate diseases through the analysis of human tissue.
Collapse
Affiliation(s)
- Douglas W Strand
- Department of Urology, UT Southwestern University Medical Center, Dallas, TX, USA
| | - LaTayia Aaron
- Department of Cancer Biology, Meharry Medical College, Nashville, TN, USA
| | - Gervaise Henry
- Department of Urology, UT Southwestern University Medical Center, Dallas, TX, USA
| | - Omar E Franco
- Department of Surgery, NorthShore University Health System, Research Institute, Evanston, IL, USA
| | - Simon W Hayward
- Department of Surgery, NorthShore University Health System, Research Institute, Evanston, IL, USA.
| |
Collapse
|
109
|
Esmaeili M, Jennek S, Ludwig S, Klitzsch A, Kraft F, Melle C, Baniahmad A. The tumor suppressor ING1b is a novel corepressor for the androgen receptor and induces cellular senescence in prostate cancer cells. J Mol Cell Biol 2016; 8:207-20. [PMID: 26993046 DOI: 10.1093/jmcb/mjw007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/10/2015] [Indexed: 12/28/2022] Open
Abstract
The androgen receptor (AR) signaling is critical for prostate cancer (PCa) progression to the castration-resistant stage with poor clinical outcome. Altered function of AR-interacting factors may contribute to castration-resistant PCa (CRPCa). Inhibitor of growth 1 (ING1) is a tumor suppressor that regulates various cellular processes including cell proliferation. Interestingly, ING1 expression is upregulated in senescent primary human prostate cells; however, its role in AR signaling in PCa was unknown. Using a proteomic approach by surface-enhanced laser desorption ionization-mass spectrometry (SELDI-MS) combined with immunological techniques, we provide here evidence that ING1b interacts in vivo with the AR. The interaction was confirmed by co-immunoprecipitation, in vitro GST-pull-down, and quantitative intracellular colocalization analyses. Functionally, ING1b inhibits AR-responsive promoters and endogenous key AR target genes in the human PCa LNCaP cells. Conversely, ING1b knockout (KO) mouse embryonic fibroblasts (MEFs) exhibit enhanced AR activity, suggesting that the interaction with ING1b represses the AR-mediated transcription. Also, data suggest that ING1b expression is downregulated in CRPCa cells compared with androgen-dependent LNCaP cells. Interestingly, its ectopic expression induces cellular senescence and reduces cell migration in both androgen-dependent and CRPCa cells. Intriguingly, ING1b can also inhibit androgen-induced growth in LNCaP cells in a similar manner as AR antagonists. Moreover, ING1b upregulates different cell cycle inhibitors including p27(KIP1), which is a novel target for ING1b. Taken together, our findings reveal a novel corepressor function of ING1b on various AR functions, thereby inhibiting PCa cell growth.
Collapse
Affiliation(s)
- Mohsen Esmaeili
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Susanne Jennek
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Susann Ludwig
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | | | - Florian Kraft
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Christian Melle
- Biomolecular Photonics Group, Jena University Hospital, Jena, Germany
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
110
|
Shah ET, Upadhyaya A, Philp LK, Tang T, Skalamera D, Gunter J, Nelson CC, Williams ED, Hollier BG. Repositioning "old" drugs for new causes: identifying new inhibitors of prostate cancer cell migration and invasion. Clin Exp Metastasis 2016; 33:385-99. [PMID: 26932199 DOI: 10.1007/s10585-016-9785-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 02/23/2016] [Indexed: 01/29/2023]
Abstract
The majority of prostate cancer (PCa) deaths occur due to the metastatic spread of tumor cells to distant organs. Currently, there is a lack of effective therapies once tumor cells have spread outside the prostate. It is therefore imperative to rapidly develop therapeutics to inhibit the metastatic spread of tumor cells. Gain of cell motility and invasive properties is the first step of metastasis and by inhibiting motility one can potentially inhibit metastasis. Using the drug repositioning strategy, we developed a cell-based multi-parameter primary screening assay to identify drugs that inhibit the migratory and invasive properties of metastatic PC-3 PCa cells. Following the completion of the primary screening assay, 33 drugs were identified from an FDA approved drug library that either inhibited migration or were cytotoxic to the PC-3 cells. Based on the data obtained from the subsequent validation studies, mitoxantrone hydrochloride, simvastatin, fluvastatin and vandetanib were identified as strong candidates that can inhibit both the migration and invasion of PC-3 cells without significantly affecting cell viability. By employing the drug repositioning strategy instead of a de novo drug discovery and development strategy, the identified drug candidates have the potential to be rapidly translated into the clinic for the management of men with aggressive forms of PCa.
Collapse
Affiliation(s)
- Esha T Shah
- Australian Prostate Cancer Research Centre-Queensland, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Brisbane, Australia
| | - Akanksha Upadhyaya
- Australian Prostate Cancer Research Centre-Queensland, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Brisbane, Australia
| | - Lisa K Philp
- Australian Prostate Cancer Research Centre-Queensland, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Brisbane, Australia
| | - Tiffany Tang
- Australian Prostate Cancer Research Centre-Queensland, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Dubravka Skalamera
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
- Translational Research Institute, Brisbane, Australia
| | - Jennifer Gunter
- Australian Prostate Cancer Research Centre-Queensland, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Brisbane, Australia
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre-Queensland, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Brisbane, Australia
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre-Queensland, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Brisbane, Australia
| | - Brett G Hollier
- Australian Prostate Cancer Research Centre-Queensland, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
- Translational Research Institute, Brisbane, Australia.
| |
Collapse
|
111
|
Seedhouse SJ, Affronti HC, Karasik E, Gillard BM, Azabdaftari G, Smiraglia DJ, Foster BA. Metastatic phenotype in CWR22 prostate cancer xenograft following castration. Prostate 2016; 76:359-68. [PMID: 26642837 PMCID: PMC4745026 DOI: 10.1002/pros.23127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/13/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND CWR22 is a human xenograft model of primary prostate cancer (PCa) that is often utilized to study castration recurrent (CR) PCa. CWR22 recapitulates clinical response to androgen deprivation therapy (ADT), in that tumors regress in response to castration, but can recur after a period of time. METHODS Two cohorts of mice, totaling 117 mice were implanted with CWR22, allowed to develop tumors, castrated by pellet removal and followed for a period of 32 and 50 weeks. Mice presenting with tumors >2.0 cm(3) at the primary site, moribund appearance, or palpable masses other than the primary tumor were sacrificed prior to the endpoint of the study. Tumor tissue, serum, and abnormal lesions were collected upon necropsy and analyzed by IHC, H&E, and PCR for presence of metastatic lesions arising from CWR22. RESULTS Herein, we report that CWR22 progresses after castration from a primary, hormonal therapy-naïve tumor to metastatic disease in 20% of castrated nude mice. Histological examination of CWR22 primary tumors revealed distinct pathologies that correlated with metastatic outcome after castration. CONCLUSION This is the first report and characterization of spontaneous metastasis in the CWR22 model, thus, CWR22 is a bona-fide model of clinical PCa representing the full progression from androgen-sensitive, primary PCa to metastatic CR-PCa.
Collapse
Affiliation(s)
- Steven J. Seedhouse
- Department of Pharmacology and TherapeuticsRoswell Park Cancer InstituteBuffaloNew York
| | - Hayley C. Affronti
- Department of Cancer GeneticsRoswell Park Cancer InstituteBuffaloNew York
| | - Ellen Karasik
- Department of Pharmacology and TherapeuticsRoswell Park Cancer InstituteBuffaloNew York
| | - Bryan M. Gillard
- Department of Pharmacology and TherapeuticsRoswell Park Cancer InstituteBuffaloNew York
| | | | | | - Barbara A. Foster
- Department of Pharmacology and TherapeuticsRoswell Park Cancer InstituteBuffaloNew York
| |
Collapse
|
112
|
Diet-induced alteration of fatty acid synthase in prostate cancer progression. Oncogenesis 2016; 5:e195. [PMID: 26878389 PMCID: PMC5154344 DOI: 10.1038/oncsis.2015.42] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 02/01/2023] Open
Abstract
Fatty acid synthase (FASN) is a cytosolic metabolic enzyme that catalyzes de novo fatty acid synthesis. A high-fat diet (HFD) is attributed to prostate cancer (PCa) progression, but the role FASN on HFD-mediated PCa progression remains unclear. We investigated the role of FASN on PCa progression in LNCaP xenograft mice fed with HFD or low-fat diet (LFD), in PCa cells, and in clinical PCa. The HFD promoted tumour growth and FASN expression in the LNCaP xenograft mice. HFD resulted in AKT and extracellular signal-regulated kinase (ERK) activation and 5' adenosine monophosphate-activated protein kinase (AMPK) inactivation. Serum FASN levels were significantly lower in the HFD group (P=0.026) and correlated inversely with tumour volume (P=0.022). Extracellular FASN release was enhanced in the PCa cells with phosphatidylinositol 3-kinase (PI3K)/mitogen-activated protein kinase (MAPK) inhibition and AMPK signalling activation. FASN inhibition resulted in decrease of PCa cell proliferation through PI3K/MAPK downregulation and AMPK activation. Furthermore, AMPK activation was associated with FASN downregulation and PI3K/MAPK inactivation. Clinically, high FASN expression was significantly associated with high Gleason scores and advanced pathological T stage. Moreover, FASN expression was markedly decreased in the PCa response to androgen deprivation therapy and chemotherapy. HFD modulates FASN expression, which may be an important mechanism in HFD-associated PCa progression. Furthermore, a critical stimulatory loop exists between FASN and the PI3K/MAPK system, whereas AMPK signalling was associated with suppression. These may offer appropriate targets for chemoprevention and cancer therapy in HFD-induced PCa.
Collapse
|
113
|
Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer 2015; 15:701-11. [PMID: 26563462 PMCID: PMC4771416 DOI: 10.1038/nrc4016] [Citation(s) in RCA: 1055] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the past 10 years, preclinical studies implicating sustained androgen receptor (AR) signalling as the primary driver of castration-resistant prostate cancer (CRPC) have led to the development of novel agents targeting the AR pathway that are now in widespread clinical use. These drugs prolong the survival of patients with late-stage prostate cancer but are not curative. In this Review, we highlight emerging mechanisms of acquired resistance to these contemporary therapies, which fall into the three broad categories of restored AR signalling, AR bypass signalling and complete AR independence. This diverse range of resistance mechanisms presents new challenges for long-term disease control, which may be addressable through early use of combination therapies guided by recent insights from genomic landscape studies of CRPC.
Collapse
Affiliation(s)
- Philip A Watson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Vivek K Arora
- Division of Medical Oncology, Washington University School of Medicine, St Louis, Missouri 63130, USA
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
114
|
Mehraein-Ghomi F, Church DR, Schreiber CL, Weichmann AM, Basu HS, Wilding G. Inhibitor of p52 NF-κB subunit and androgen receptor (AR) interaction reduces growth of human prostate cancer cells by abrogating nuclear translocation of p52 and phosphorylated AR(ser81). Genes Cancer 2015; 6:428-44. [PMID: 26622945 PMCID: PMC4633170 DOI: 10.18632/genesandcancer.77] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Accumulating evidence shows that androgen receptor (AR) activation and signaling plays a key role in growth and progression in all stages of prostate cancer, even under low androgen levels or in the absence of androgen in the castration-resistant prostate cancer. Sustained activation of AR under androgen-deprived conditions may be due to its interaction with co-activators, such as p52 NF-κB subunit, and/or an increase in its stability by phosphorylation that delays its degradation. Here we identified a specific inhibitor of AR/p52 interaction, AR/p52-02, via a high throughput screen based on the reconstitution of Gaussia Luciferase. We found that AR/p52-02 markedly inhibited growth of both castration-resistant C4-2 (IC50 ∼6 μM) and parental androgen-dependent LNCaP (IC50 ∼4 μM) human prostate cancer cells under low androgen conditions. Growth inhibition was associated with significantly reduced nuclear p52 levels and DNA binding activity, as well as decreased phosphorylation of AR at serine 81, increased AR ubiquitination, and decreased AR transcriptional activity as indicated by decreased prostate-specific antigen (PSA) mRNA levels in both cell lines. AR/p52-02 also caused a reduction in levels of p21(WAF/CIP1), which is a direct AR targeted gene in that its expression correlates with androgen stimulation and mitogenic proliferation in prostate cancer under physiologic levels of androgen, likely by disrupting the AR signaling axis. The reduced level of cyclinD1 reported previously for this compound may be due to the reduction in nuclear presence and activity of p52, which directly regulates cyclinD1 expression, as well as the reduction in p21(WAF/CIP1), since p21(WAF/CIP1) is reported to stabilize nuclear cyclinD1 in prostate cancer. Overall, the data suggest that specifically inhibiting the interaction of AR with p52 and blocking activity of p52 and pARser81 may be an effective means of reducing castration-resistant prostate cancer cell growth.
Collapse
Affiliation(s)
| | - Dawn R Church
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | | | | | - Hirak S Basu
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - George Wilding
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
115
|
Miles FL, Kurtoglu S, Ahmer C, Soori M, Favate JS, Sikes RA. Transforming growth factor-β signaling induced during prostate cancer cell death and neuroendocrine differentiation is mediated by bone marrow stromal cells. Prostate 2015; 75:1802-13. [PMID: 26392321 DOI: 10.1002/pros.23060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/22/2015] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Prostate cancer that has metastasized to bone undergoes critical interactions with bone marrow stromal cells (BMSCs), ultimately promoting tumor survival. Previous studies have shown that BMSCs secrete factors that promote prostate cancer apoptosis or neuroendocrine differentiation. Because of the significance of transforming growth factor-β (TGF-β) family cytokines in cytostasis and bone metastasis, the role of TGF-β signaling in the context of prostate cancer-BMSC interactions was investigated. METHODS The role of TGF-β family signaling in BMSC-induced apoptosis of lineage-related prostate cancer cells was investigated in live/dead assays. SMAD phosphorylation or activity during apoptosis and neuroendocrine differentiation was investigated using immunofluorescence, Western blotting, and luciferase reporter assays, along with the ALK-4, -5, -7 kinase inhibitor, SB-431542. RESULTS Treatment of castration-resistant prostate cancer cells with SB-431542 resulted in significant reduction of apoptosis mediated by HS-5 BMSCs, supporting the involvement of TGF-β/SMAD signaling during this event. Interestingly, however, pre-treatment of BMSCs with TGF-β1 (5 ng/mL) yielded a conditioned medium that elicited a marked reduction in prostate cancer death. Phosphorylated-SMAD2 (P-SMAD2) was activated in BMSC-triggered transdifferentiated prostate cancer cells, as demonstrated through immunoblotting and luciferase reporter assays. However, SB-431542 did not restore androgen receptor and prostate specific antigen levels down-regulated by BMSC-secreted factors. Prostate cancer cells induced to undergo neuroendocrine differentiation in a BMSC-independent mechanism also showed elevated levels of P-SMAD2. DISCUSSION Collectively, our findings indicate that: (1) TGF-β family cytokines or regulated factors secreted from BMSCs are involved in prostate cancer apoptosis; (2) TGF-β signaling in prostate cancer cells is induced during neuroendocrine differentiation; and (3) TGF-β1 stimulation of BMSCs alters paracrine signaling to create a permissive environment for prostate cancer survival, suggesting a mechanism for prostate cancer-mediated colonization of bone. CONCLUSIONS TGF-β signaling resulting in activation of SMAD2 in prostate cancer may be an indicator of cellular stress in the presence of toxic paracrine factors released from the bone marrow stroma, ultimately fostering prostate cancer colonization of bone.
Collapse
Affiliation(s)
- Fayth L Miles
- Laboratory for Cancer Ontogeny and Therapeutics, University of Delaware, Newark, Delaware
- Department of Biological Sciences, Center for Translational Cancer Research, University of Delaware, Newark, Delaware
- Department of Epidemiology, Fielding School of Public Health, University of California-Los Angeles, Los Angeles, California
| | - Senem Kurtoglu
- Laboratory for Cancer Ontogeny and Therapeutics, University of Delaware, Newark, Delaware
- Department of Biological Sciences, Center for Translational Cancer Research, University of Delaware, Newark, Delaware
| | - Chris Ahmer
- Laboratory for Cancer Ontogeny and Therapeutics, University of Delaware, Newark, Delaware
| | - Mehrnoosh Soori
- Laboratory for Cancer Ontogeny and Therapeutics, University of Delaware, Newark, Delaware
| | - John S Favate
- Laboratory for Cancer Ontogeny and Therapeutics, University of Delaware, Newark, Delaware
| | - Robert A Sikes
- Laboratory for Cancer Ontogeny and Therapeutics, University of Delaware, Newark, Delaware
- Department of Biological Sciences, Center for Translational Cancer Research, University of Delaware, Newark, Delaware
| |
Collapse
|
116
|
Sha K, Yeh S, Chang C, Nastiuk KL, Krolewski JJ. TNF signaling mediates an enzalutamide-induced metastatic phenotype of prostate cancer and microenvironment cell co-cultures. Oncotarget 2015; 6:25726-40. [PMID: 26327448 PMCID: PMC4694862 DOI: 10.18632/oncotarget.4535] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/17/2015] [Indexed: 12/25/2022] Open
Abstract
The dramatic responses tumors display to targeted therapies are limited by acquired or pre-existing mechanisms of therapy resistance. We recently discovered that androgen receptor blockade by the anti-androgen enzalutamide paradoxically enhanced metastasis and that these pro-metastatic effects were mediated by the chemoattractant CCL2. CCL2 is regulated by TNF, which is negatively regulated by androgen signaling. Thus, we asked if TNF mediates the pro-metastatic effects of enzalutamide. We found that androgen withdrawal or enzalutamide induced TNF mRNA and protein secretion in castration resistant prostate cancer (C4-2) cells, but not in macrophage-like (THP1) or myofibroblast-like (WPMY1) cells. Androgen deprivation therapy (ADT) induced autocrine CCL2 expression in C4-2 (as well as a murine CRPC cell line), while exogenous TNF induced CCL2 in THP1 and WPMY1. TNF was most potent in myofibroblast cultures, suggesting ADT induces CCL2 via paracrine interactions within the tumor microenvironment. A soluble TNF receptor (etanercept) blocked enzalutamide-induced CCL2 protein secretion and mRNA, implying dependence on secreted TNF. A small molecule inhibitor of CCR2 (the CCL2 receptor) significantly reduced TNF induced migration, while etanercept inhibited enzalutamide-induced migration and invasion of C4-2. Analysis of human prostate cancers suggests that a TNF-CCL2 paracrine loop is induced in response to ADT and might account for some forms of prostate cancer therapy resistance.
Collapse
MESH Headings
- Androgen Antagonists/pharmacology
- Animals
- Antineoplastic Agents, Hormonal/pharmacology
- Benzamides
- Cell Line, Tumor
- Cell Movement/drug effects
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Coculture Techniques
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice
- Myofibroblasts/drug effects
- Myofibroblasts/metabolism
- Myofibroblasts/pathology
- Neoplasm Invasiveness
- Neoplasm Metastasis
- Nitriles
- Paracrine Communication/drug effects
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/pharmacology
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Receptors, CCR2/antagonists & inhibitors
- Receptors, CCR2/metabolism
- Signal Transduction/drug effects
- Time Factors
- Tumor Microenvironment/drug effects
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
- Up-Regulation
Collapse
Affiliation(s)
- Kai Sha
- Department of Pathology and Laboratory Medicine, University of Rochester, School of Medicine and Dentistry; Rochester, NY 14642, USA
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Shuyuan Yeh
- Department of Pathology and Laboratory Medicine, University of Rochester, School of Medicine and Dentistry; Rochester, NY 14642, USA
- Department of Urology, University of Rochester, School of Medicine and Dentistry; Rochester, NY 14642, USA
| | - Chawnshang Chang
- Department of Pathology and Laboratory Medicine, University of Rochester, School of Medicine and Dentistry; Rochester, NY 14642, USA
- Department of Urology, University of Rochester, School of Medicine and Dentistry; Rochester, NY 14642, USA
- Department of Radiation Oncology, University of Rochester, School of Medicine and Dentistry; Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester, School of Medicine and Dentistry; Rochester, NY 14642, USA
| | - Kent L. Nastiuk
- Department of Pathology and Laboratory Medicine, University of Rochester, School of Medicine and Dentistry; Rochester, NY 14642, USA
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - John J. Krolewski
- Department of Pathology and Laboratory Medicine, University of Rochester, School of Medicine and Dentistry; Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester, School of Medicine and Dentistry; Rochester, NY 14642, USA
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
| |
Collapse
|
117
|
Bernardo MM, Kaplun A, Dzinic SH, Li X, Irish J, Mujagic A, Jakupovic B, Back JB, Van Buren E, Han X, Dean I, Chen YQ, Heath E, Sakr W, Sheng S. Maspin Expression in Prostate Tumor Cells Averts Stemness and Stratifies Drug Sensitivity. Cancer Res 2015. [PMID: 26208903 DOI: 10.1158/0008-5472.can-15-0234] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Future curative cancer chemotherapies have to overcome tumor cell heterogeneity and plasticity. To test the hypothesis that the tumor suppressor maspin may reduce microenvironment-dependent prostate tumor cell plasticity and thereby modulate drug sensitivity, we established a new schematic combination of two-dimensional (2D), three-dimensional (3D), and suspension cultures to enrich prostate cancer cell subpopulations with distinct differentiation potentials. We report here that depending on the level of maspin expression, tumor cells in suspension and 3D collagen I manifest the phenotypes of stem-like and dormant tumor cell populations, respectively. In suspension, the surviving maspin-expressing tumor cells lost the self-renewal capacity, underwent senescence, lost the ability to dedifferentiate in vitro, and failed to generate tumors in vivo. Maspin-nonexpressing tumor cells that survived the suspension culture in compact tumorspheres displayed a higher level of stem cell marker expression, maintained the self-renewal capacity, formed tumorspheres in 3D matrices in vitro, and were tumorigenic in vivo. The drug sensitivities of the distinct cell subpopulations depend on the drug target and the differentiation state of the cells. In 2D, docetaxel, MS275, and salinomycin were all cytotoxic. In suspension, while MS275 and salinomycin were toxic, docetaxel showed no effect. Interestingly, cells adapted to 3D collagen I were only responsive to salinomycin. Maspin expression correlated with higher sensitivity to MS275 in both 2D and suspension and to salinomycin in 2D and 3D collagen I. Our data suggest that maspin reduces prostate tumor cell plasticity and enhances tumor sensitivity to salinomycin, which may hold promise in overcoming tumor cell heterogeneity and plasticity.
Collapse
Affiliation(s)
- M Margarida Bernardo
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Alexander Kaplun
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Sijana H Dzinic
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Xiaohua Li
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Jonathan Irish
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan. Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Adelina Mujagic
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Benjamin Jakupovic
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Jessica B Back
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan. Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. Department of Microscopy, Imaging and Cytometry Resources Core, Wayne State University School of Medicine, Detroit, Michigan
| | - Eric Van Buren
- Department of Microscopy, Imaging and Cytometry Resources Core, Wayne State University School of Medicine, Detroit, Michigan
| | - Xiang Han
- Peking University Health Science Center, Beijing, China
| | - Ivory Dean
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Yong Q Chen
- Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Elisabeth Heath
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Wael Sakr
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Shijie Sheng
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan. Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan. Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.
| |
Collapse
|
118
|
Santha S, Viswakarma N, Das S, Rana A, Rana B. Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-Troglitazone-induced Apoptosis in Prostate Cancer Cells Involve AMP-activated Protein Kinase. J Biol Chem 2015. [PMID: 26198640 DOI: 10.1074/jbc.m115.663526] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer (PCa) is one of the most frequently diagnosed cancers in men with limited treatment options for the hormone-resistant forms. Development of novel therapeutic options is critically needed to target advanced forms. Here we demonstrate that combinatorial treatment with the thiazolidinedione troglitazone (TZD) and TNF-related apoptosis-inducing ligand (TRAIL) can induce significant apoptosis in various PCa cells independent of androgen receptor status. Because TZD is known to activate AMP-activated protein kinase (AMPK), we determined whether AMPK is a molecular target mediating this apoptotic cascade by utilizing PCa cell lines stably overexpressing AMPKα1 dominant negative (C4-2-DN) or empty vector (C4-2-EV). Our results indicated a significantly higher degree of apoptosis with TRAIL-TZD combination in C4-2-EV cells compared with C4-2-DN cells. Similarly, results from a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed a larger reduction of viability of C4-2-EV cells compared with C4-2-DN cells when treated with TRAIL-TZD, thus suggesting that C4-2-DN cells were more apoptosis-resistant. Additionally, siRNA-mediated knockdown of endogenous AMPKα1 expression showed a reduction of TRAIL-TZD-induced apoptosis, further confirming the participation of AMPK in mediating this apoptosis. Apoptosis induction by this combinatorial treatment was also associated with a cleavage of β-catenin that was inhibited in both C4-2-DN cells and those cells in which AMPKα1 was knocked down. In addition, time course studies showed an increase in pACC(S79) (AMPK target) levels coinciding with the time of apoptosis. These studies indicate the involvement of AMPK in TRAIL-TZD-mediated apoptosis and β-catenin cleavage and suggest the possibility of utilizing AMPK as a therapeutic target in apoptosis-resistant prostate cancer.
Collapse
Affiliation(s)
- Sreevidya Santha
- From the Department of Medicine, Division of Gastroenterology & Nutrition and
| | - Navin Viswakarma
- the Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, Illinois 60153 and
| | - Subhasis Das
- the Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, Illinois 60153 and
| | - Ajay Rana
- the Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Maywood, Illinois 60153 and the Hines VA Medical Center, Hines, Illinois 60141
| | - Basabi Rana
- From the Department of Medicine, Division of Gastroenterology & Nutrition and the Hines VA Medical Center, Hines, Illinois 60141
| |
Collapse
|
119
|
Abstract
New incidence of prostate cancer is a major public health issue in the Western world, and has been rising in other areas of the globe in recent years. In an effort to understanding the molecular pathogenesis of this disease, numerous cell models have been developed, arising mostly from patient biopsies. The introduction of the genetically engineered mouse in biomedical research has allowed the development of murine models that allow for the investigation of tumorigenic and metastatic processes. Current challenges to the field include lack of an animal model that faithfully recapitulates bone metastasis of prostate cancer.
Collapse
Affiliation(s)
- David Cunningham
- Department of Structural & Cellular Biology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Zongbing You
- Department of Structural & Cellular Biology, Tulane University Health Sciences Center, New Orleans, LA, USA
- Department of Orthopaedic Surgery, Tulane University Health Sciences Center, New Orleans, LA, USA
- Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane University Health Sciences Center, New Orleans, LA, USA
- Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
- Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
120
|
Ghotbaddini M, Powell JB. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:7506-18. [PMID: 26154658 PMCID: PMC4515671 DOI: 10.3390/ijerph120707506] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/03/2015] [Accepted: 03/11/2015] [Indexed: 01/01/2023]
Abstract
The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR). TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR) expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models.
Collapse
Affiliation(s)
- Maryam Ghotbaddini
- Department of Biological Sciences, Clark Atlanta University, 223 James P. Brawley Drive, S.W. Atlanta, GA 30314, USA.
- Center for Cancer Research and Therapeutic Development (CCRTD), Clark Atlanta University, 223 James P. Brawley Drive, S.W., Atlanta, GA 30314, USA.
| | - Joann B Powell
- Department of Biological Sciences, Clark Atlanta University, 223 James P. Brawley Drive, S.W. Atlanta, GA 30314, USA.
- Center for Cancer Research and Therapeutic Development (CCRTD), Clark Atlanta University, 223 James P. Brawley Drive, S.W., Atlanta, GA 30314, USA.
| |
Collapse
|
121
|
Savoy RM, Chen L, Siddiqui S, Melgoza FU, Durbin-Johnson B, Drake C, Jathal MK, Bose S, Steele TM, Mooso BA, D'Abronzo LS, Fry WH, Carraway KL, Mudryj M, Ghosh PM. Transcription of Nrdp1 by the androgen receptor is regulated by nuclear filamin A in prostate cancer. Endocr Relat Cancer 2015; 22:369-86. [PMID: 25759396 PMCID: PMC4433410 DOI: 10.1530/erc-15-0021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2015] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) progression is regulated by the androgen receptor (AR); however, patients undergoing androgen-deprivation therapy (ADT) for disseminated PCa eventually develop castration-resistant PCa (CRPC). Results of previous studies indicated that AR, a transcription factor, occupies distinct genomic loci in CRPC compared with hormone-naïve PCa; however, the cause of this distinction was unknown. The E3 ubiquitin ligase Nrdp1 is a model AR target modulated by androgens in hormone-naïve PCa but not in CRPC. Using Nrdp1, we investigated how AR switches transcription programs during CRPC progression. The proximal Nrdp1 promoter contains an androgen response element (ARE); we demonstrated AR binding to this ARE in androgen-sensitive PCa. Analysis of hormone-naive human prostatectomy specimens revealed correlation between Nrdp1 and AR expression, supporting AR regulation of NRDP1 levels in androgen-sensitive tissue. However, despite sustained AR levels, AR binding to the Nrdp1 promoter and Nrdp1 expression were suppressed in CRPC. Elucidation of the suppression mechanism demonstrated correlation of NRDP1 levels with nuclear localization of the scaffolding protein filamin A (FLNA) which, as we previously showed, is itself repressed following ADT in many CRPC tumors. Restoration of nuclear FLNA in CRPC stimulated AR binding to Nrdp1 ARE, increased its transcription, and augmented NRDP1 protein expression and responsiveness to ADT, indicating that nuclear FLNA controls AR-mediated androgen-sensitive Nrdp1 transcription. Expression of other AR-regulated genes lost in CRPC was also re-established by nuclear FLNA. Thus, our results indicate that nuclear FLNA promotes androgen-dependent AR-regulated transcription in PCa, while loss of nuclear FLNA in CRPC alters the AR-regulated transcription program.
Collapse
Affiliation(s)
- Rosalinda M Savoy
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Liqun Chen
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Salma Siddiqui
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Frank U Melgoza
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Blythe Durbin-Johnson
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Christiana Drake
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Maitreyee K Jathal
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Swagata Bose
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Thomas M Steele
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Benjamin A Mooso
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Leandro S D'Abronzo
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - William H Fry
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Kermit L Carraway
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Maria Mudryj
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| | - Paramita M Ghosh
- VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA VA Northern California Health Care SystemMather, California, USADepartment of UrologySchool of Medicine, University of California Davis, 4860 Y Street, Suite 3500, Sacramento, California 95817, USADivision of BiostatisticsDepartment of Public Health Sciences, University of California Davis, Davis, California, USADepartment of StatisticsUniversity of California Davis, Davis, California, USADepartment of Biochemistry and Molecular MedicineUniversity of California Davis, Sacramento, California, USADepartment of Medical Microbiology and ImmunologyUniversity of California Davis, Davis, California, USA
| |
Collapse
|
122
|
Awasthi S, Ezelle H, Hassel BA, Hamburger AW. The ErbB3-binding protein EBP1 modulates lapatinib sensitivity in prostate cancer cells. Mol Cell Biochem 2015; 405:177-86. [PMID: 25876877 DOI: 10.1007/s11010-015-2409-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/09/2015] [Indexed: 11/28/2022]
Abstract
Although ErbB receptors have been implicated in prostate cancer progression, ErbB-directed drugs have not proven effective for prostate cancer treatment. The ErbB3-binding protein EBP1 affects both ErbB2 and androgen receptor signaling, two components of the response to ErbB-targeted therapies. We therefore examined the effects of EBP1 expression on the response to the ErbB1/2 tyrosine kinase inhibitor lapatinib. We found a negative correlation between endogenous EBP1 levels and lapatinib sensitivity in prostate cancer cell lines. We then overexpressed or inhibited expression of EBP1. Silencing EBP1 expression increased lapatinib sensitivity and overexpression of EBP1 increased resistance in androgen-containing media. Androgen depletion resulted in an increased sensitivity of androgen-dependent EBP1 expressing cells to lapatinib, but did not affect the lapatinib sensitivity of hormone resistant cells. However, EBP1 silenced cells were still more sensitive to lapatinib than EBP1-expressing cells in the absence of androgens. The increase in sensitivity to lapatinib following EBP1 silencing was associated with increased ErbB2 levels. In addition, lapatinib treatment increased ErbB2 levels in sensitive cells that express low levels of EBP1, but decreased ErbB2 levels in resistant EBP1-expressing cells. In contrast, ErbB3 and phospho ErbB3 levels were not affected by either changes in EBP1 levels or lapatinib treatment. The production of the ErbB3/4 ligand heregulin was increased in EBP1-silenced cells. EBP1-induced changes in AR levels were not associated with changes in lapatinib sensitivity. These studies suggest that the ability of EBP1 to activate ErbB2 signaling pathways results in increased lapatinib sensitivity.
Collapse
Affiliation(s)
- Smita Awasthi
- Greenebaum Cancer Center, University of Maryland School of Medicine, BRB 9-029, 655 W. Baltimore Street, Baltimore, MD, 21201, USA
| | | | | | | |
Collapse
|
123
|
Brooke GN, Powell SM, Lavery DN, Waxman J, Buluwela L, Ali S, Bevan CL. Engineered repressors are potent inhibitors of androgen receptor activity. Oncotarget 2015; 5:959-69. [PMID: 24659630 PMCID: PMC4011597 DOI: 10.18632/oncotarget.1360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Prostate cancer growth is dependent upon the Androgen Receptor (AR) pathway, hence therapies for this disease often target this signalling axis. Such therapies are successful in the majority of patients but invariably fail after a median of 2 years and tumours progress to a castrate resistant stage (CRPC). Much evidence exists to suggest that the AR remains key to CRPC growth and hence remains a valid therapeutic target. Here we describe a novel method to inhibit AR activity, consisting of an interaction motif, that binds to the AR ligand-binding domain, fused to repression domains. These ‘engineered repressors’ are potent inhibitors of AR activity and prostate cancer cell growth and importantly inhibit the AR under circumstances in which conventional therapies would be predicted to fail, such as AR mutation and altered cofactor levels.
Collapse
Affiliation(s)
- Greg N Brooke
- Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, W12 0NN, UK
| | | | | | | | | | | | | |
Collapse
|
124
|
Expression and functional role of orphan receptor GPR158 in prostate cancer growth and progression. PLoS One 2015; 10:e0117758. [PMID: 25693195 PMCID: PMC4333349 DOI: 10.1371/journal.pone.0117758] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/23/2014] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the second-leading cause of cancer-related mortality, after lung cancer, in men from developed countries. In its early stages, primary tumor growth is dependent on androgens, thus generally can be controlled by androgen deprivation therapy (ADT). Eventually however, the disease progresses to castration-resistant prostate cancer (CRPC), a lethal form in need of more effective treatments. G-protein coupled receptors (GPCRs) comprise a large clan of cell surface proteins that have been implicated as therapeutic targets in PCa growth and progression. The findings reported here provide intriguing evidence of a role for the newly characterized glutamate family member GPR158 in PCa growth and progression. We found that GPR158 promotes PCa cell proliferation independent of androgen receptor (AR) functionality and that this requires its localization in the nucleus of the cell. This suggests that GPR158 acts by mechanisms different from other GPCRs. GPR158 expression is stimulated by androgens and GPR158 stimulates AR expression, implying a potential to sensitize tumors to low androgen conditions during ADT via a positive feedback loop. Further, we found GPR158 expression correlates with a neuroendocrine (NE) differentiation phenotype and promotes anchorage-independent colony formation implying a role for GPR158 in therapeutic progression and tumor formation. GPR158 expression was increased at the invading front of prostate tumors that formed in the genetically defined conditional Pten knockout mouse model, and co-localized with elevated AR expression in the cell nucleus. Kaplan-Meier analysis on a dataset from the Memorial Sloan Kettering cancer genome portal showed that increased GPR158 expression in tumors is associated with lower disease-free survival. Our findings strongly suggest that pharmaceuticals targeting GPR158 activities could represent a novel and innovative approach to the prevention and management of CRPC.
Collapse
|
125
|
Murga JD, Moorji SM, Han AQ, Magargal WW, DiPippo VA, Olson WC. Synergistic co-targeting of prostate-specific membrane antigen and androgen receptor in prostate cancer. Prostate 2015; 75:242-54. [PMID: 25327687 DOI: 10.1002/pros.22910] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/27/2014] [Indexed: 01/29/2023]
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) are an emerging class of cancer therapies that have demonstrated favorable activity both as single agents and as components of combination regimens. Phase 2 testing of an ADC targeting prostate-specific membrane antigen (PSMA) in advanced prostate cancer has shown antitumor activity. The present study examined PSMA ADC used in combination with potent antiandrogens (enzalutamide and abiraterone) and other compounds. METHODS Antiproliferative activity and expression of PSMA, prostate-specific antigen and androgen receptor were evaluated in the prostate cancer cell lines LNCaP and C4-2. Cells were tested for susceptibility to antiandrogens or other inhibitors, used alone and in combination with PSMA ADC. Potential drug synergy or antagonism was evaluated using the Bliss independence method. RESULTS Enzalutamide and abiraterone demonstrated robust, statistically significant synergy when combined with PSMA ADC. Largely additive activity was observed between the antiandrogens and the individual components of the ADC (free drug and unmodified antibody). Rapamycin also synergized with PSMA ADC in certain settings. Synergy was linked in part to upregulation of PSMA expression. In androgen-dependent LNCaP cells, enzalutamide and abiraterone each inhibited proliferation, upregulated PSMA expression, and synergized with PSMA ADC. In androgen-independent C4-2 cells, enzalutamide and abiraterone showed no measurable antiproliferative activity on their own but increased PSMA expression and synergized with PSMA ADC nonetheless. PSMA expression increased progressively over 3 weeks with enzalutamide and returned to baseline levels 1 week after enzalutamide removal. CONCLUSIONS The findings support exploration of clinical treatment regimens that combine potent antiandrogens and PSMA-targeted therapies for prostate cancer.
Collapse
Affiliation(s)
- Jose D Murga
- Progenics Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | | | | | | |
Collapse
|
126
|
Crea F, Watahiki A, Quagliata L, Xue H, Pikor L, Parolia A, Wang Y, Lin D, Lam WL, Farrar WL, Isogai T, Morant R, Castori-Eppenberger S, Chi KN, Wang Y, Helgason CD. Identification of a long non-coding RNA as a novel biomarker and potential therapeutic target for metastatic prostate cancer. Oncotarget 2015; 5:764-74. [PMID: 24519926 PMCID: PMC3996663 DOI: 10.18632/oncotarget.1769] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Metastatic prostate cancer (PCa) is still an incurable disease. Long non-coding RNAs (lncRNAs) may be an overlooked source of cancer biomarkers and therapeutic targets. We therefore performed RNA sequencing on paired metastatic/non-metastatic PCa xenografts derived from clinical specimens. The most highly up-regulated transcript was LOC728606, a lncRNA now designated PCAT18. PCAT18 is specifically expressed in the prostate compared to 11 other normal tissues (p<0.05) and up-regulated in PCa compared to 15 other neoplasms (p<0.001). Cancer-specific up-regulation of PCAT18 was confirmed on an independent dataset of PCa and benign prostatic hyperplasia samples (p<0.001). PCAT18 was detectable in plasma samples and increased incrementally from healthy individuals to those with localized and metastatic PCa (p<0.01). We identified a PCAT18-associated expression signature (PES), which is highly PCa-specific and activated in metastatic vs. primary PCa samples (p<1E-4, odds ratio>2). The PES was significantly associated with androgen receptor (AR) signalling. Accordingly, AR activation dramatically up-regulated PCAT18 expression in vitro and in vivo. PCAT18 silencing significantly (p<0.001) inhibited PCa cell proliferation and triggered caspase 3/7 activation, with no effect on non-neoplastic cells. PCAT18 silencing also inhibited PCa cell migration (p<0.01) and invasion (p<0.01). These results position PCAT18 as a potential therapeutic target and biomarker for metastatic PCa.
Collapse
Affiliation(s)
- Francesco Crea
- Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Sowalsky AG, Xia Z, Wang L, Zhao H, Chen S, Bubley GJ, Balk SP, Li W. Whole transcriptome sequencing reveals extensive unspliced mRNA in metastatic castration-resistant prostate cancer. Mol Cancer Res 2014; 13:98-106. [PMID: 25189356 DOI: 10.1158/1541-7786.mcr-14-0273] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
UNLABELLED Men with metastatic prostate cancer who are treated with androgen deprivation therapies (ADT) usually relapse within 2 to 3 years with disease that is termed castration-resistant prostate cancer (CRPC). To identify the mechanism that drives these advanced tumors, paired-end RNA-sequencing (RNA-seq) was performed on a panel of CRPC bone marrow biopsy specimens. From this genome-wide approach, mutations were found in a series of genes with prostate cancer relevance, including AR, NCOR1, KDM3A, KDM4A, CHD1, SETD5, SETD7, INPP4B, RASGRP3, RASA1, TP53BP1, and CDH1, and a novel SND1:BRAF gene fusion. Among the most highly expressed transcripts were 10 noncoding RNAs (ncRNAs), including MALAT1 and PABPC1, which are involved in RNA processing. Notably, a high percentage of sequence reads mapped to introns, which were determined to be the result of incomplete splicing at canonical splice junctions. Using quantitative PCR (qPCR), a series of genes (AR, KLK2, KLK3, STEAP2, CPSF6, and CDK19) were confirmed to have a greater proportion of unspliced RNA in CRPC specimens than in normal prostate epithelium, untreated primary prostate cancer, and cultured prostate cancer cells. This inefficient coupling of transcription and mRNA splicing suggests an overall increase in transcription or defect in splicing. IMPLICATIONS Inefficient splicing in advanced prostate cancer provides a selective advantage through effects on microRNA networks but may render tumors vulnerable to agents that suppress rate-limiting steps in splicing.
Collapse
Affiliation(s)
- Adam G Sowalsky
- Division of Hematology and Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Zheng Xia
- Division of Biostatistics, Dan L Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Liguo Wang
- Division of Biostatistics, Dan L Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Hao Zhao
- Division of Biostatistics, Dan L Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Shaoyong Chen
- Division of Hematology and Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Glenn J Bubley
- Division of Hematology and Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Steven P Balk
- Division of Hematology and Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.
| | - Wei Li
- Division of Biostatistics, Dan L Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
128
|
Dar JA, Masoodi KZ, Eisermann K, Isharwal S, Ai J, Pascal LE, Nelson JB, Wang Z. The N-terminal domain of the androgen receptor drives its nuclear localization in castration-resistant prostate cancer cells. J Steroid Biochem Mol Biol 2014; 143:473-80. [PMID: 24662325 PMCID: PMC4127361 DOI: 10.1016/j.jsbmb.2014.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/14/2014] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
Abstract
Androgen-independent nuclear localization is required for androgen receptor (AR) transactivation in castration-resistant prostate cancer (CRPC) and should be a key step leading to castration resistance. However, mechanism(s) leading to androgen-independent AR nuclear localization are poorly understood. Since the N-terminal domain (NTD) of AR plays a role in transactivation under androgen-depleted conditions, we investigated the role of the NTD in AR nuclear localization in CRPC. Deletion mutagenesis was used to identify amino acid sequences in the NTD essential for its androgen-independent nuclear localization in C4-2, a widely used CRPC cell line. Deletion mutants of AR tagged with green fluorescent protein (GFP) at the 5'-end were generated and their signal distribution was investigated in C4-2 cells by fluorescent microscopy. Our results showed that the region of a.a. 294-556 was required for androgen-independent AR nuclear localization whereas a.a. 1-293 mediates Hsp90 regulation of AR nuclear localization in CRPC cells. Although the region of a.a. 294-556 does not contain a nuclear import signal, it was able to enhance DHT-induced import of the ligand binding domain (LBD). Also, transactivation of the NTD could be uncoupled from its modulation of AR nuclear localization in C4-2 cells. These observations suggest an important role of the NTD in AR intracellular trafficking and androgen-independent AR nuclear localization in CRPC cells.
Collapse
Affiliation(s)
- Javid A Dar
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, United States; Central Laboratory College of Science, King Saud University, Riyadh KSA-11451, Saudi Arabia
| | - Khalid Z Masoodi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, United States
| | - Kurtis Eisermann
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, United States
| | - Sudhir Isharwal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, United States
| | - Junkui Ai
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, United States
| | - Laura E Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, United States
| | - Joel B Nelson
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, United States; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, United States
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, United States; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, United States.
| |
Collapse
|
129
|
González-Chavarría I, Cerro RP, Parra NP, Sandoval FA, Zuñiga FA, Omazábal VA, Lamperti LI, Jiménez SP, Fernandez EA, Gutiérrez NA, Rodriguez FS, Onate SA, Sánchez O, Vera JC, Toledo JR. Lectin-like oxidized LDL receptor-1 is an enhancer of tumor angiogenesis in human prostate cancer cells. PLoS One 2014; 9:e106219. [PMID: 25170920 PMCID: PMC4149537 DOI: 10.1371/journal.pone.0106219] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/29/2014] [Indexed: 11/22/2022] Open
Abstract
Altered expression and function of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) has been associated with several diseases such as endothelial dysfunction, atherosclerosis and obesity. In these pathologies, oxLDL/LOX-1 activates signaling pathways that promote cell proliferation, cell motility and angiogenesis. Recent studies have indicated that olr1 mRNA is over-expressed in stage III and IV of human prostatic adenocarcinomas. However, the function of LOX-1 in prostate cancer angiogenesis remains to be determined. Our aim was to analyze the contribution of oxLDL and LOX-1 to tumor angiogenesis using C4-2 prostate cancer cells. We analyzed the expression of pro-angiogenic molecules and angiogenesis on prostate cancer tumor xenografts, using prostate cancer cell models with overexpression or knockdown of LOX-1 receptor. Our results demonstrate that the activation of LOX-1 using oxLDL increases cell proliferation, and the expression of the pro-angiogenic molecules VEGF, MMP-2, and MMP-9 in a dose-dependent manner. Noticeably, these effects were prevented in the C4-2 prostate cancer model when LOX-1 expression was knocked down. The angiogenic effect of LOX-1 activated with oxLDL was further demonstrated using the aortic ring assay and the xenograft model of tumor growth on chorioallantoic membrane of chicken embryos. Consequently, we propose that LOX-1 activation by oxLDL is an important event that enhances tumor angiogenesis in human prostate cancer cells.
Collapse
Affiliation(s)
- Iván González-Chavarría
- Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Rita P. Cerro
- Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Natalie P. Parra
- Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Felipe A. Sandoval
- Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Felipe A. Zuñiga
- Department of Clinical Biochemistry and Immunology, School of Pharmacy, Universidad de Concepción, Concepción, Chile
| | - Valeska A. Omazábal
- Department of Basic Sciences, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Liliana I. Lamperti
- Department of Clinical Biochemistry and Immunology, School of Pharmacy, Universidad de Concepción, Concepción, Chile
| | - Silvana P. Jiménez
- Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Edelmira A. Fernandez
- Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Nicolas A. Gutiérrez
- Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Federico S. Rodriguez
- Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Sergio A. Onate
- Translational Research Unit, School of Medicine, Universidad de Concepción, Concepción, Chile
| | - Oliberto Sánchez
- Department of Pharmacology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Juan C. Vera
- Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Jorge R. Toledo
- Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
- * E-mail:
| |
Collapse
|
130
|
Mooso BA, Vinall RL, Mudryj M, Yap SA, deVere White RW, Ghosh PM. The role of EGFR family inhibitors in muscle invasive bladder cancer: a review of clinical data and molecular evidence. J Urol 2014; 193:19-29. [PMID: 25158272 DOI: 10.1016/j.juro.2014.07.121] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Conventional platinum based chemotherapy for advanced urothelial carcinoma is plagued by common resistance to this regimen. Several studies implicate the EGFR family of RTKs in urothelial carcinoma progression and chemoresistance. Many groups have investigated the effects of inhibitors of this family in patients with urothelial carcinoma. This review focuses on the underlying molecular pathways that lead to urothelial carcinoma resistance to EGFR family inhibitors. MATERIALS AND METHODS We performed a PubMed® search for peer reviewed literature on bladder cancer development, EGFR family expression, clinical trials of EGFR family inhibitors and molecular bypass pathways. Research articles deemed to be relevant were examined and a summary of original data was created. Meta-analysis of expression profiles was also performed for each EGFR family member based on data sets accessible via Oncomine®. RESULTS Many clinical trials using inhibitors of EGFR family RTKs have been done or are under way. Those that have concluded with results published to date do not show an added benefit over standard of care chemotherapy in an adjuvant or second line setting. However, a neoadjuvant study using erlotinib before radical cystectomy demonstrated promising results. CONCLUSIONS Clinical and preclinical studies show that for reasons not currently clear prior treatment with chemotherapeutic agents rendered patients with urothelial carcinoma with muscle invasive bladder cancer resistant to EGFR family inhibitors as well. However, EGFR family inhibitors may be of use in patients with no prior chemotherapy in whom EGFR or ERBB2 is over expressed.
Collapse
Affiliation(s)
- Benjamin A Mooso
- Research Service, Veterans Affairs Northern California Health Care System, Sacramento, California
| | - Ruth L Vinall
- California Northstate College of Pharmacy, Rancho Cordova, California
| | - Maria Mudryj
- Research Service, Veterans Affairs Northern California Health Care System, Sacramento, California; Department of Medical Microbiology and Immunology, University of California-Davis, Sacramento, California
| | - Stanley A Yap
- Research Service, Veterans Affairs Northern California Health Care System, Sacramento, California; Department of Urology, University of California-Davis, Sacramento, California
| | | | - Paramita M Ghosh
- Research Service, Veterans Affairs Northern California Health Care System, Sacramento, California; Department of Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, California; Department of Urology, University of California-Davis, Sacramento, California
| |
Collapse
|
131
|
Tsai YS, Lai CL, Lai CH, Chang KH, Wu K, Tseng SF, Fazli L, Gleave M, Xiao G, Gandee L, Sharifi N, Moro L, Tzai TS, Hsieh JT. The role of homeostatic regulation between tumor suppressor DAB2IP and oncogenic Skp2 in prostate cancer growth. Oncotarget 2014; 5:6425-36. [PMID: 25115390 PMCID: PMC4171641 DOI: 10.18632/oncotarget.2228] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Altered DAB2IP gene expression often detected in prostate cancer (PCa) is due to epigenetic silencing. In this study, we unveil a new mechanism leading to the loss of DAB2IP protein; an oncogenic S-phase kinase-associated protein-2 (Skp2) as E3 ubiquitin ligase plays a key regulator in DAB2IP degradation. In order to unveil the role of Skp2 in the turnover of DAB2IP protein, both prostate cell lines and prostate cancer specimens with a variety of molecular and cell biologic techniques were employed. We demonstrated that DAB2IP is regulated by Skp2-mediated proteasome degradation in the prostate cell lines. Further analyses identified the N-terminal DAB2IP containing the ubiquitination site. Immunohistochemical study exhibited an inverse correlation between DAB2IP and Skp2 protein expression in the prostate cancer tissue microarray. In contrast, DAB2IP can suppressSkp2 protein expression is mediated through Akt signaling. The reciprocal regulation between DAB2IP and Skp2 can impact on the growth of PCa cells. This reciprocal regulation between DAB2IP and Skp2 protein represents a unique homeostatic balance between tumor suppressor and oncoprotein in normal prostate epithelia, which is apparently altered in cancer cells. The outcome of this study has identified new potential targets for developing new therapeutic strategy for PCa.
Collapse
Affiliation(s)
- Yuh-Shyan Tsai
- Department of Urology, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan; Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chen-Li Lai
- Department of Urology, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Ho Lai
- School of Medicine and Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Kai-Hsiung Chang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kaijie Wu
- Department of Urology, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, China
| | - Shu-Fen Tseng
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Ladan Fazli
- VancouverProstate Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Gleave
- VancouverProstate Center, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guanghua Xiao
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leah Gandee
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nima Sharifi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Loredana Moro
- Institute of Biomembranes and Bioenergetics, National Research Council (C.N.R.), Bari, Italy
| | - Tzong-Shin Tzai
- Department of Urology, Medical College and Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan
| |
Collapse
|
132
|
Mathur A, Abd Elmageed ZY, Liu X, Kostochka ML, Zhang H, Abdel-Mageed AB, Mondal D. Subverting ER-stress towards apoptosis by nelfinavir and curcumin coexposure augments docetaxel efficacy in castration resistant prostate cancer cells. PLoS One 2014; 9:e103109. [PMID: 25121735 PMCID: PMC4133210 DOI: 10.1371/journal.pone.0103109] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/12/2014] [Indexed: 01/07/2023] Open
Abstract
Despite its side-effects, docetaxel (DTX) remains a first-line treatment against castration resistant prostate cancer (CRPC). Therefore, strategies to increase its anti-tumor efficacy and decrease its side effects are critically needed. Targeting of the constitutive endoplasmic reticulum (ER) stress in cancer cells is being investigated as a chemosensitization approach. We hypothesized that the simultaneous induction of ER-stress and suppression of PI3K/AKT survival pathway will be a more effective approach. In a CRPC cell line, C4-2B, we observed significant (p<0.005) enhancement of DTX-induced cytotoxicity following coexposure to thapsigargin and an AKT-inhibitor. However, since these two agents are not clinically approved, we investigated whether a combination of nelfinavir (NFR) and curcumin (CUR), known to target both these metabolic pathways, can similarly increase DTX cytotoxicity in CRPC cells. Within 24 hrs post-exposure to physiologic concentrations of NFR (5 µM) and CUR (5 µM) a significantly (p<0.005) enhanced cytotoxicity was evident with low concentration of DTX (10 nM). This 3-drug combination rapidly increased apoptosis in aggressive C4-2B cells, but not in RWPE-1 cells or in primary prostate epithelial cells (PrEC). Comparative molecular studies revealed that this 3-drug combination caused a more pronounced suppression of phosphorylated-AKT and higher induction in phosphorylated-eIF2α in C4-2B cells, as compared to RWPE-1 cells. Acute exposure (3–9 hrs) to this 3-drug combination intensified ER-stress induced pro-apoptotic markers, i.e. ATF4, CHOP, and TRIB3. At much lower concentrations, chronic (3 wks) exposures to these three agents drastically reduced colony forming units (CFU) by C4-2B cells. In vivo studies using mice containing C4-2B tumor xenografts showed significant (p<0.05) enhancement of DTX’s (10 mg/kg) anti-tumor efficacy following coexposure to NFR (20 mg/kg) & CUR (100 mg/kg). Immunohistochemical (IHC) analyses of tumor sections indicated decreased Ki-67 staining and increased TUNEL intensity in mice exposed to the 3-drug combination. Therefore, subverting ER-stress towards apoptosis using adjuvant therapy with NFR and CUR can chemosensitize the CRPC cells to DTX therapy.
Collapse
Affiliation(s)
- Aditi Mathur
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Zakaria Y. Abd Elmageed
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Xichun Liu
- Department of Pathology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Mikhail L. Kostochka
- Peptide Research Laboratories, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Haitao Zhang
- Department of Pathology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Asim B. Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Debasis Mondal
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
133
|
Wu JB, Shao C, Li X, Shi C, Li Q, Hu P, Chen YT, Dou X, Sahu D, Li W, Harada H, Zhang Y, Wang R, Zhau HE, Chung LWK. Near-infrared fluorescence imaging of cancer mediated by tumor hypoxia and HIF1α/OATPs signaling axis. Biomaterials 2014; 35:8175-85. [PMID: 24957295 DOI: 10.1016/j.biomaterials.2014.05.073] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/24/2014] [Indexed: 11/26/2022]
Abstract
Near-infrared fluorescence (NIRF) imaging agents are promising tools for noninvasive cancer imaging. Here, we explored the mechanistic properties of a specific group of NIR heptamethine carbocyanines including MHI-148 dye we identified and synthesized, and demonstrated these dyes to achieve cancer-specific imaging and targeting via a hypoxia-mediated mechanism. We found that cancer cells and tumor xenografts exhibited hypoxia-dependent MHI-148 dye uptake in vitro and in vivo, which was directly mediated by hypoxia-inducible factor 1α (HIF1α). Microarray analysis and dye uptake assay further revealed a group of hypoxia-inducible organic anion-transporting polypeptides (OATPs) responsible for dye uptake, and the correlation between OATPs and HIF1α was manifested in progressive clinical cancer specimens. Finally, we demonstrated increased uptake of MHI-148 dye in situ in perfused clinical tumor samples with activated HIF1α/OATPs signaling. Our results establish these NIRF dyes as potential tumor hypoxia-dependent cancer-targeting agents and provide a mechanistic rationale for continued development of NIRF imaging agents for improved cancer detection, prognosis and therapy.
Collapse
Affiliation(s)
- Jason Boyang Wu
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chen Shao
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiangyan Li
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Changhong Shi
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qinlong Li
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Peizhen Hu
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yi-Ting Chen
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiaoliang Dou
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Divya Sahu
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Wei Li
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Hiroshi Harada
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yi Zhang
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ruoxiang Wang
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Haiyen E Zhau
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leland W K Chung
- Uro-Oncology Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
134
|
Knuuttila M, Yatkin E, Kallio J, Savolainen S, Laajala TD, Aittokallio T, Oksala R, Häkkinen M, Keski-Rahkonen P, Auriola S, Poutanen M, Mäkelä S. Castration induces up-regulation of intratumoral androgen biosynthesis and androgen receptor expression in an orthotopic VCaP human prostate cancer xenograft model. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2163-73. [PMID: 24949550 DOI: 10.1016/j.ajpath.2014.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/03/2014] [Accepted: 04/16/2014] [Indexed: 11/17/2022]
Abstract
Androgens are key factors involved in the development and progression of prostate cancer (PCa), and PCa growth can be suppressed by androgen deprivation therapy. In a considerable proportion of men receiving androgen deprivation therapy, however, PCa progresses to castration-resistant PCa (CRPC), making the development of efficient therapies challenging. We used an orthotopic VCaP human PCa xenograft model to study cellular and molecular changes in tumors after androgen deprivation therapy (castration). Tumor growth was monitored through weekly serum prostate-specific antigen measurements, and mice with recurrent tumors after castration were randomized to treatment groups. Serum prostate-specific antigen concentrations showed significant correlation with tumor volume. Castration-resistant tumors retained concentrations of intratumoral androgen (androstenedione, testosterone, and 5α-dihydrotestosterone) at levels similar to tumors growing in intact hosts. Accordingly, castration induced up-regulation of enzymes involved in androgen synthesis (CYP17A1, AKR1C3, and HSD17B6), as well as expression of full-length androgen receptor (AR) and AR splice variants (AR-V1 and AR-V7). Furthermore, AR target gene expression was maintained in castration-resistant xenografts. The AR antagonists enzalutamide (MDV3100) and ARN-509 suppressed PSA production of castration-resistant tumors, confirming the androgen dependency of these tumors. Taken together, the findings demonstrate that our VCaP xenograft model exhibits the key characteristics of clinical CRPC and thus provides a valuable tool for identifying druggable targets and for testing therapeutic strategies targeting AR signaling in CRPC.
Collapse
Affiliation(s)
- Matias Knuuttila
- Department of Physiology, University of Turku, Turku, Finland; Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Emrah Yatkin
- Department of Physiology, University of Turku, Turku, Finland; Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland; Functional Foods Forum, University of Turku, Turku, Finland
| | - Jenny Kallio
- Department of Physiology, University of Turku, Turku, Finland; Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Saija Savolainen
- Department of Physiology, University of Turku, Turku, Finland; Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Teemu D Laajala
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Tero Aittokallio
- Department of Mathematics and Statistics, University of Turku, Turku, Finland; Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Riikka Oksala
- Department of Oncology and Critical Care Research, Orion Pharma, Turku, Finland
| | - Merja Häkkinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Matti Poutanen
- Department of Physiology, University of Turku, Turku, Finland; Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland; Institute of Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Sari Mäkelä
- Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland; Functional Foods Forum, University of Turku, Turku, Finland.
| |
Collapse
|
135
|
Stilbene induced inhibition of androgen receptor dimerization: implications for AR and ARΔLBD-signalling in human prostate cancer cells. PLoS One 2014; 9:e98566. [PMID: 24887556 PMCID: PMC4041728 DOI: 10.1371/journal.pone.0098566] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/05/2014] [Indexed: 12/25/2022] Open
Abstract
Background Advanced castration resistant prostate cancer (CRPC) is often characterized by an increase of C-terminally truncated, constitutively active androgen receptor (AR) variants. Due to the absence of a ligand binding domain located in the AR-C-terminus, these receptor variants (also termed ARΔLBD) are unable to respond to all classical forms of endocrine treatments like surgical/chemical castration and/or application of anti-androgens. Methodology In this study we tested the effects of the naturally occurring stilbene resveratrol (RSV) and (E)-4-(2, 6-Difluorostyryl)-N, N-dimethylaniline, a fluorinated dialkylaminostilbene (FIDAS) on AR- and ARΔLBD in prostate cancer cells. The ability of the compounds to modulate transcriptional activity of AR and the ARΔLBD-variant Q640X was shown by reporter gene assays. Expression of endogenous AR and ARΔLBD mRNA and protein levels were determined by qRT-PCR and Western Blot. Nuclear translocation of AR-molecules was analyzed by fluorescence microscopy. AR and ARΔLBD/Q640X homo-/heterodimer formation was assessed by mammalian two hybrid assays. Biological activity of both compounds in vivo was demonstrated using a chick chorioallantoic membrane xenograft assay. Results The stilbenes RSV and FIDAS were able to significantly diminish AR and Q640X-signalling. Successful inhibition of the Q640X suggests that RSV and FIDAS are not interfering with the AR-ligand binding domain like all currently available anti-hormonal drugs. Repression of AR and Q640X-signalling by RSV and FIDAS in prostate cancer cells was caused by an inhibition of the AR and/or Q640X-dimerization. Although systemic bioavailability of both stilbenes is very low, both compounds were also able to downregulate tumor growth and AR-signalling in vivo. Conclusion RSV and FIDAS are able to inhibit the dimerization of AR and ARΔLBD molecules suggesting that stilbenes might serve as lead compounds for a novel generation of AR-inhibitors.
Collapse
|
136
|
Shiota M, Yokomizo A, Takeuchi A, Itsumi M, Imada K, Kashiwagi E, Inokuchi J, Tatsugami K, Uchiumi T, Naito S. Inhibition of RSK/YB-1 signaling enhances the anti-cancer effect of enzalutamide in prostate cancer. Prostate 2014; 74:959-69. [PMID: 24740858 DOI: 10.1002/pros.22813] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/26/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Previously, we have shown that Y-box binding protein-1 (YB-1) regulates androgen receptor (AR) expression and contributes to castration resistance. However, the mechanism of YB-1 activation remains unknown. In this study, we aimed to elucidate the mechanism and role of YB-1 activation in relation to castration resistance as well as enzalutamide resistance, with a view to developing a novel therapeutic concept for castration-resistant prostate cancer (CRPC) treatment. METHODS The expression and phosphorylation levels of ribosomal S6 kinase 1 (RSK1), YB-1 and AR were examined by quantitative PCR and Western blotting using prostate cancer cells. In addition, the effects of YB-1 inhibition using specific siRNA and small molecule inhibitor SL0101 on AR expression as well as combination treatment with enzalutamide and SL0101 were examined. RESULTS We found that androgen deprivation, as well as treatment with the next-generation anti-androgen enzalutamide, induced RSK1 and YB-1 activation followed by AR induction, which could be reversed by YB-1 shutdown and RSK inhibitor SL0101. SL0101 and enzalutamide exerted a synergistic tumor-suppressive effect on cell proliferation in androgen-dependent prostate cancer LNCaP cells, as well as castration-resistant C4-2 cells. Furthermore, the phosphorylation levels of RSK1 and YB-1 were elevated in castration- and enzalutamide-resistant cells, compared with their parental cells. CONCLUSIONS Taken together, these findings indicate that RSK1/YB-1 signaling contributes to castration as well as enzalutamide resistance, and that the therapeutic targeting of RSK1/YB-1 signaling would be a promising novel therapy against prostate cancer, especially CRPC when combined with enzalutamide.
Collapse
MESH Headings
- Benzamides
- Benzopyrans/pharmacology
- Blotting, Western
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/physiology
- Drug Synergism
- Drug Therapy, Combination
- Humans
- Male
- Monosaccharides/pharmacology
- Nitriles
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/pharmacology
- Phosphorylation
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/metabolism
- RNA, Neoplasm/chemistry
- RNA, Neoplasm/genetics
- RNA, Small Interfering/pharmacology
- Real-Time Polymerase Chain Reaction
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors
- Ribosomal Protein S6 Kinases, 90-kDa/genetics
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Signal Transduction/drug effects
- Y-Box-Binding Protein 1/antagonists & inhibitors
- Y-Box-Binding Protein 1/genetics
- Y-Box-Binding Protein 1/metabolism
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Bachmann SB, Frommel SC, Camicia R, Winkler HC, Santoro R, Hassa PO. DTX3L and ARTD9 inhibit IRF1 expression and mediate in cooperation with ARTD8 survival and proliferation of metastatic prostate cancer cells. Mol Cancer 2014; 13:125. [PMID: 24886089 PMCID: PMC4070648 DOI: 10.1186/1476-4598-13-125] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/07/2014] [Indexed: 12/31/2022] Open
Abstract
Background Prostate cancer (PCa) is one of the leading causes of cancer-related mortality and morbidity in the aging male population and represents the most frequently diagnosed malignancy in men around the world. The Deltex (DTX)-3-like E3 ubiquitin ligase (DTX3L), also known as B-lymphoma and BAL-associated protein (BBAP), was originally identified as a binding partner of the diphtheria-toxin-like macrodomain containing ADP-ribosyltransferase-9 (ARTD9), also known as BAL1 and PARP9. We have previously demonstrated that ARTD9 acts as a novel oncogenic survival factor in high-risk, chemo-resistant, diffuse large B cell lymphoma (DLBCL). The mono-ADP-ribosyltransferase ARTD8, also known as PARP14 functions as a STAT6-specific co-regulator of IL4-mediated proliferation and survival in B cells. Methods Co-expression of DTX3L, ARTD8, ARTD9 and STAT1 was analyzed in the metastatic PCa (mPCa) cell lines PC3, DU145, LNCaP and in the normal prostate luminal epithelial cell lines HPE and RWPE1. Effects on cell proliferation, survival and cell migration were determined in PC3, DU145 and/or LNCaP cells depleted of DTX3L, ARTD8, ARTD9, STAT1 and/or IRF1 compared to their proficient control cells, respectively. In further experiments, real-time RT-PCR, Western blot, immunofluorescence and co-immunoprecipitations were conducted to evaluate the physical and functional interactions between DTX3L, ARTD8 and ARTD9. Results Here we could identify DTX3L, ARTD9 and ARTD8 as novel oncogenic survival factors in mPCa cells. Our studies revealed that DTX3L forms a complex with ARTD8 and mediates together with ARTD8 and ARTD9 proliferation, chemo-resistance and survival of mPCa cells. In addition, DTX3L, ARTD8 and ARTD9 form complexes with each other. Our study provides first evidence that the enzymatic activity of ARTD8 is required for survival of mPCa cells. DTX3L and ARTD9 act together as repressors of the tumor suppressor IRF1 in mPCa cells. Furthermore, the present study shows that DTX3L together with STAT1 and STAT3 is implicated in cell migration of mPCa cells. Conclusions Our data strongly indicate that a crosstalk between STAT1, DTX3L and ARTD-like mono-ADP-ribosyltransferases mediates proliferation and survival of mPCa cells. The present study further suggests that the combined targeted inhibition of STAT1, ARTD8, ARTD9 and/or DTX3L could increase the efficacy of chemotherapy or radiation treatment in prostate and other high-risk tumor types with an increased STAT1 signaling.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul O Hassa
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
138
|
Pernicová Z, Slabáková E, Fedr R, Šimečková Š, Jaroš J, Suchánková T, Bouchal J, Kharaishvili G, Král M, Kozubík A, Souček K. The role of high cell density in the promotion of neuroendocrine transdifferentiation of prostate cancer cells. Mol Cancer 2014; 13:113. [PMID: 24884804 PMCID: PMC4229954 DOI: 10.1186/1476-4598-13-113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 05/13/2014] [Indexed: 11/13/2022] Open
Abstract
Background Tumor heterogeneity and the plasticity of cancer cells present challenges for effective clinical diagnosis and therapy. Such challenges are epitomized by neuroendocrine transdifferentiation (NED) and the emergence of neuroendocrine-like cancer cells in prostate tumors. This phenomenon frequently arises from androgen-depleted prostate adenocarcinoma and is associated with the development of castration-resistant prostate cancer and poor prognosis. Results In this study, we showed that NED was evoked in both androgen receptor (AR)-positive and AR-negative prostate epithelial cell lines by growing the cells to a high density. Androgen depletion and high-density cultivation were both associated with cell cycle arrest and deregulated expression of several cell cycle regulators, such as p27Kip1, members of the cyclin D protein family, and Cdk2. Dual inhibition of Cdk1 and Cdk2 using pharmacological inhibitor or RNAi led to modulation of the cell cycle and promotion of NED. We further demonstrated that the cyclic adenosine 3′, 5′-monophosphate (cAMP)-mediated pathway is activated in the high-density conditions. Importantly, inhibition of cAMP signaling using a specific inhibitor of adenylate cyclase, MDL-12330A, abolished the promotion of NED by high cell density. Conclusions Taken together, our results imply a new relationship between cell cycle attenuation and promotion of NED and suggest high cell density as a trigger for cAMP signaling that can mediate reversible NED in prostate cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v,v,i, Královopolská 135, CZ-612 65 Brno, Czech Republic.
| |
Collapse
|
139
|
Grindel BJ, Martinez JR, Pennington CL, Muldoon M, Stave J, Chung LW, Farach-Carson MC. Matrilysin/matrix metalloproteinase-7(MMP7) cleavage of perlecan/HSPG2 creates a molecular switch to alter prostate cancer cell behavior. Matrix Biol 2014; 36:64-76. [PMID: 24833109 DOI: 10.1016/j.matbio.2014.04.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 01/17/2023]
Abstract
Perlecan/HSPG2, a large heparan sulfate (HS) proteoglycan, normally is expressed in the basement membrane (BM) underlying epithelial and endothelial cells. During prostate cancer (PCa) cell invasion, a variety of proteolytic enzymes are expressed that digest BM components including perlecan. An enzyme upregulated in invasive PCa cells, matrilysin/matrix metalloproteinase-7 (MMP-7), was examined as a candidate for perlecan proteolysis both in silico and in vitro. Purified perlecan showed high sensitivity to MMP-7 digestion even when fully decorated with HS or when presented in native context connected with other BM proteins. In both conditions, MMP-7 produced discrete perlecan fragments corresponding to an origin in immunoglobulin (Ig) repeat region domain IV. While not predicted by in silico analysis, MMP-7 cleaved every subpart of recombinantly generated perlecan domain IV. Other enzymes relevant to PCa that were tested had limited ability to cleave perlecan including prostate specific antigen, hepsin, or fibroblast activation protein α. A long C-terminal portion of perlecan domain IV, Dm IV-3, induced a strong clustering phenotype in the metastatic PCa cell lines, PC-3 and C4-2. MMP-7 digestion of Dm IV-3 reverses the clustering effect into one favoring cell dispersion. In a C4-2 Transwell® invasion assay, perlecan-rich human BM extract that was pre-digested with MMP-7 showed loss of barrier function and permitted a greater level of cell penetration than untreated BM extract. We conclude that enzymatic processing of perlecan in the BM or territorial matrix by MMP-7 as occurs in the invasive tumor microenvironment acts as a molecular switch to alter PCa cell behavior and favor cell dispersion and invasiveness.
Collapse
Affiliation(s)
- B J Grindel
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX, 77005, USA
| | - J R Martinez
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX, 77005, USA
| | - C L Pennington
- Shared Equipment Authority, Rice University, Houston, TX 77005
| | - M Muldoon
- Strategic Diagnostics Inc, Newark, DE, 19702, USA
| | - J Stave
- Strategic Diagnostics Inc, Newark, DE, 19702, USA
| | - L W Chung
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - M C Farach-Carson
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX, 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
140
|
Miller L, Winter G, Baur B, Witulla B, Solbach C, Reske S, Lindén M. Synthesis, characterization, and biodistribution of multiple 89Zr-labeled pore-expanded mesoporous silica nanoparticles for PET. NANOSCALE 2014; 6:4928-4935. [PMID: 24675844 DOI: 10.1039/c3nr06800e] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Functional nanoparticles are highly interesting imaging agents for positron emission tomography (PET) due to the possibility of multiple incorporation of positron emitting radionuclides thus increasing the signal strength. Furthermore, long-term nanoparticle biodistribution tests with increased signal-to-noise ratio can be achieved with nanoparticles carrying long-lived isotopes. Mesoporous silica nanoparticles, MSNs, have recently attracted a lot of interest as both imaging agents and carriers for drugs in vitro and in vivo. Here we present results related to the synthesis of PET imageable MSNs carrying the long-lived (89)Zr isotope (half-life of 78.4 hours). Here, (89)Zr(4+) was immobilized through covalent attachment of the complexing agent p-isothiocyanatobenzyldesferrioxamine (DFO-NCS) to large-pore MSNs. Due to the presence of the high DFO content on the MSNs, quantitative (89)Zr(4+) labeling was achieved within just a few minutes, and no subsequent purification step was needed in order to remove non-complexed (89)Zr(4+). The stability of the (89)Zr-labeled MSNs against leaching of (89)Zr(4+) was verified for 24 hours. The high signal strength of the (89)Zr-DFO-MSNs was evidenced by successful PET imaging using a mouse model at particle loadings one order of magnitude lower than those previously applied in PET-MSN studies. The biodistribution followed the same trends as previously observed for MSNs of different sizes and surface functionalities. Taken together, our results suggest that (89)Zr-DFO-MSNs are promising PET imaging agents for long-term in vivo imaging.
Collapse
Affiliation(s)
- Larissa Miller
- Department of Inorganic Chemistry II, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany.
| | | | | | | | | | | | | |
Collapse
|
141
|
Mehraein-Ghomi F, Kegel SJ, Church DR, Schmidt JS, Reuter QR, Saphner EL, Basu HS, Wilding G. Targeting androgen receptor and JunD interaction for prevention of prostate cancer progression. Prostate 2014; 74:792-803. [PMID: 24647988 PMCID: PMC4224142 DOI: 10.1002/pros.22800] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/18/2014] [Indexed: 01/19/2023]
Abstract
BACKGROUND Multiple studies show that reactive oxygen species (ROS) play a major role in prostate cancer (PCa) development and progression. Previously, we reported an induction of Spermidine/Spermine N(1) -Acetyl Transferase (SSAT) by androgen-activated androgen receptor (AR)-JunD protein complex that leads to over-production of ROS in PCa cells. In our current research, we identify small molecules that specifically block AR-JunD in this ROS-generating metabolic pathway. METHODS A high throughput assay based on Gaussia Luciferase reconstitution was used to identify inhibitors of the AR-JunD interaction. Selected hits were further screened using a fluorescence polarization competitor assay to eliminate those that bind to the AR Ligand Binding Domain (LBD), in order to identify molecules that specifically target events downstream to androgen activation of AR. Eleven molecules were selected for studies on their efficacy against ROS generation and growth of cultured human PCa cells by DCFH dye-oxidation assay and DNA fluorescence assay, respectively. In situ Proximity Ligation Assay (PLA), SSAT promoter-luciferase reporter assay, and western blotting of apoptosis and cell cycle markers were used to study mechanism of action of the lead compound. RESULTS Selected lead compound GWARJD10 with EC(50) 10 μM against ROS production was shown to block AR-JunD interaction in situ as well as block androgen-induced SSAT gene expression at IC(50) 5 μM. This compound had no effect on apoptosis markers, but reduced cyclin D1 protein level. CONCLUSIONS Inhibitor of AR-JunD interaction, GWARJD10 shows promise for prevention of progression of PCa at an early stage of the disease by blocking growth and ROS production.
Collapse
Affiliation(s)
| | - Stacy J. Kegel
- Universityof Wisconsin Carbone Cancer Center, Madison, Wisconsin
| | - Dawn R. Church
- Universityof Wisconsin Carbone Cancer Center, Madison, Wisconsin
| | | | | | | | - Hirak S. Basu
- Universityof Wisconsin Carbone Cancer Center, Madison, Wisconsin
| | - George Wilding
- Universityof Wisconsin Carbone Cancer Center, Madison, Wisconsin
- Departmentof Medicine, University of Wisconsin-Madison, Madison, Wisconsin
- Correspondence to: Geroge Wilding, MD, UW Carbone Cancer Center, 1111 Highland Avenue, Rm 7159 Wisconsin Institutes for Medical Research, Madison, WI 53705-2275.,
| |
Collapse
|
142
|
Wilton JH, Titus MA, Efstathiou E, Fetterly GJ, Mohler JL. Androgenic biomarker prof|ling in human matrices and cell culture samples using high throughput, electrospray tandem mass spectrometry. Prostate 2014; 74:722-31. [PMID: 24847527 PMCID: PMC4335642 DOI: 10.1002/pros.22792] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
UNLABELLED BACKGROUND. A high throughput, high pressure liquid chromatographic (HPLC) method with triple quadrupole mass spectral detection (LC/MS/MS) was validated for the measurement of 5 endogenous androgens in human plasma and serum and applied to various in vivo and in vitro study samples to pursue a better understanding of the interrelationship of the androgen axis, intracrine metabolism, and castration-recurrent prostate cancer (CaP). METHODS A Shimadzu HPLC system interfaced with a Sciex QTRAP 5500 mass spectrometer with electrospray ionization was used with in line column-switching. Samples were liquid/liquid extracted and chromatographed on a Luna C18(2) column at 60°C with a biphasic gradient using a 15-min run time. RESULTS The method was validated for five androgens in human plasma and serum, and applied to four sets of samples. Plasma (n=188) and bone marrow aspirate (n=129) samples from patients with CaP, who received abiraterone acetate plus prednisone for up to 945 days(135 weeks), had undetectable androgens after 8 weeks of treatment. Plasma dehydroepiandrosterone(DHEA) concentrations were higher in African Americans than Caucasian Americans with newly diagnosed CaP. Analysis of prostate tumor tissue homogenates demonstrated reproducible testosterone (T) and dihydrotestosterone (DHT) concentrations with a minimal sample size of 1.0–2.0 mg of tissue. Finally, cell pellet and media samples from the LNCaP C4-2 cell line showed conversion of T to DHT. CONCLUSION The proposed LC/MS/MS method was validated for quantitation of five endogenous androgens in human plasma and serum, and effectively profiles androgens in clinical specimens and cell culture samples.
Collapse
Affiliation(s)
- John H. Wilton
- PK/PD Core Resource, Roswell Park Cancer Institute, Buffalo, New York
- Correspondence to: John H. Wilton, PhD, PK/PD Core Resource, CGP L1-140, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY.
| | - Mark A. Titus
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York
| | - Eleni Efstathiou
- David H. Koch Center, M.D. Anderson Cancer Center, University of Texas, Houston, Texas
| | | | - James L. Mohler
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
143
|
Kim JH, Cox ME, Wasan KM. Effect of simvastatin on castration-resistant prostate cancer cells. Lipids Health Dis 2014; 13:56. [PMID: 24666612 PMCID: PMC3987159 DOI: 10.1186/1476-511x-13-56] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 03/11/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In castration-resistant prostate cancer (CRPC), recent evidence has demonstrated the persistence of the intratumoral androgens. The multi-step androgen synthesis pathway originates from cholesterol, which can be obtained by cells from several major sources including intracellular synthesis through an enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR). The inhibition of this enzyme by the use of statins has been investigated in prostate cancer as a possible therapeutic target for blocking the de novo androgen synthesis resulting in decreased tumor growth. However, the effectiveness of statins in CRPC has not been investigated. METHODS Castration-resistant C4-2 and androgen-sensitive LNCaP cells were treated with Simvastatin for 48 hours. Dose-dependent responses to Simvastatin were analyzed using cell proliferation and cytotoxicity assays. Cellular growth curve was generated using haemocytometer. HMGCR activity was assessed using 14C-acetic acid detected by thin layer chromatography, and the protein expression was quantified using western blot analysis. Intracellular cholesterol and prostate specific antigen (PSA) levels were quantified using enzyme-linked immunosorbent assays (ELISA). RESULTS Significant decrease in cell viability and growth curve observed at 75 μM of Simvastatin compared to no treatment group in the castration-resistant C4-2 cells. HMGCR activity was significantly decreased up to 50% and 70% at 50 μM and 75 μM of Simvastatin respectively compared to the vehicle control in C4-2 cells. Simvastatin did not affect the protein expression. 80% decrease in the amount of total intracellular cholesterol levels was observed in 75 μM Simvastatin treatment group compared to vehicle control. PSA secretion levels were significantly reduced in the C4-2 cell line at 50 μM and 75 μM of Simvastatin compared to vehicle control. CONCLUSION The inhibition of HMGCR via Simvastatin lowered the viability of castration-resistant C4-2 cells. Simvastatin's ability to limit the endogenous supply of cholesterol contributes to the effects seen in cell viability.
Collapse
Affiliation(s)
| | | | - Kishor M Wasan
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia, Canada.
| |
Collapse
|
144
|
Leach DA, Need EF, Trotta AP, Grubisha MJ, DeFranco DB, Buchanan G. Hic-5 influences genomic and non-genomic actions of the androgen receptor in prostate myofibroblasts. Mol Cell Endocrinol 2014; 384:185-99. [PMID: 24440747 DOI: 10.1016/j.mce.2014.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/27/2013] [Accepted: 01/03/2014] [Indexed: 01/31/2023]
Abstract
There is extensive knowledge of androgen receptor (AR) signaling in cancer cells, but less regarding androgen action in stromal cells of the tumor microenvironment. We report here the genome-wide effects of a stromal cell specific molecular adapter and AR coregulator, hydrogen peroxide-inducible gene 5 (Hic-5/TGFB1I1), on AR function in prostate myofibroblasts. Following androgen stimulation, Hic-5 rapidly translocates to the nucleus, coincident with increased phosphorylation of focal adhesion kinase. As a coregulator, Hic-5 acted to amplify or inhibit regulation of approximately 50% of AR target genes, affected androgen regulation of growth, cell adhesion, motility and invasion. These data suggest Hic-5 as a transferable adaptor between focal adhesions and the nucleus of prostate myofibroblasts, where it acts a key mediator of the specificity and sensitivity of AR signaling. We propose a model in which Hic-5 coordinates AR signaling with adhesion and extracellular matrix contacts to regulate cell behavior in the tumor microenvironment.
Collapse
Affiliation(s)
- Damien A Leach
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, University of Adelaide, SA, Australia
| | - Eleanor F Need
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, University of Adelaide, SA, Australia
| | - Andrew P Trotta
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, University of Adelaide, SA, Australia
| | - Melanie J Grubisha
- School of Medicine, Department of Pharmacology and Chemical Biology, University of Pittsburgh, PA, USA
| | - Donald B DeFranco
- School of Medicine, Department of Pharmacology and Chemical Biology, University of Pittsburgh, PA, USA
| | - Grant Buchanan
- Cancer Biology Group, The Basil Hetzel Institute for Translational Health Research, School of Medicine, University of Adelaide, SA, Australia.
| |
Collapse
|
145
|
Hamid SM, Cicek S, Karamil S, Ozturk MB, Debelec-Butuner B, Erbaykent-Tepedelen B, Varisli L, Gonen-Korkmaz C, Yorukoglu K, Korkmaz KS. HOXB13 contributes to G1/S and G2/M checkpoint controls in prostate. Mol Cell Endocrinol 2014; 383:38-47. [PMID: 24325868 DOI: 10.1016/j.mce.2013.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 11/24/2013] [Accepted: 12/02/2013] [Indexed: 01/14/2023]
Abstract
HOXB13 is a homeobox protein that is expressed in normal adult prostate and colon tissues; however, its deregulated expression was evidenced in various malignancies. To characterize the putative role of HOXB13 in cell cycle progression, we performed overexpression and siRNA-mediated knockdown studies in PC-3 and LNCaP cells. Immunohistochemistry (IHC) analyses were also performed using formalin-fixed, paraffin-embedded tissues containing normal, H-PIN and PCa sections from 20 radical prostatectomy specimens. Furthermore, when the role of HOXB13 during cell cycle progression, association with cyclins, cell growth and colony formation using real-time cell proliferation were assessed, we observed that ectopic expression of HOXB13 accumulated cells at G1 through decreasing the cyclin D1 level by promoting its ubiquitination and degradation. This loss slowed S phase entry in both cell lines examined, with an associated decrease in pRb((S780) and (S795)) phosphorylations. Contrary, siRNA-mediated depletion of HOXB13 expression noticeably increased cyclin levels, stabilized E2F1 and CDC25C, subsequent to increased pRb phosphorylations. This increase in Cyclin B1 and CDC25C both together facilitated activation of cyclin B complex via dephosphorylating CDK1((T14Y15)), and resumed the G2/M transition after nocodazole synchronization. Despite an increase in the total expression level and cytoplasmic retention of HOXB13 in H-PIN and PCa samples that were observed via IHC evaluation of prostate tissues, HOXB13 depletion facilitated to an increase in PC-3 and LNCaP cell proliferation. Thus, we suggest that HOXB13 expression is required for cell cycle regulation, and increases by an unknown mechanism consequent to its functional loss in cancer.
Collapse
Affiliation(s)
- Syed Muhammad Hamid
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey
| | - Seher Cicek
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey
| | - Selda Karamil
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey
| | - Mert Burak Ozturk
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey
| | - Bilge Debelec-Butuner
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey; Department of Biotechnology, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey
| | - Burcu Erbaykent-Tepedelen
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey
| | - Lokman Varisli
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey
| | | | - Kutsal Yorukoglu
- Dokuz Eylul University, Faculty of Medicine, Department of Pathology, Inciralti, Izmir, Turkey
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey.
| |
Collapse
|
146
|
Prior S, Kim A, Yoshihara T, Tobita S, Takeuchi T, Higuchi M. Mitochondrial respiratory function induces endogenous hypoxia. PLoS One 2014; 9:e88911. [PMID: 24586439 PMCID: PMC3931703 DOI: 10.1371/journal.pone.0088911] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/17/2014] [Indexed: 01/26/2023] Open
Abstract
Hypoxia influences many key biological functions. In cancer, it is generally believed that hypoxic condition is generated deep inside the tumor because of the lack of oxygen supply. However, consumption of oxygen by cancer should be one of the key means of regulating oxygen concentration to induce hypoxia but has not been well studied. Here, we provide direct evidence of the mitochondrial role in the induction of intracellular hypoxia. We used Acetylacetonatobis [2-(2′-benzothienyl) pyridinato-kN, kC3’] iridium (III) (BTP), a novel oxygen sensor, to detect intracellular hypoxia in living cells via microscopy. The well-differentiated cancer cell lines, LNCaP and MCF-7, showed intracellular hypoxia without exogenous hypoxia in an open environment. This may be caused by high oxygen consumption, low oxygen diffusion in water, and low oxygen incorporation to the cells. In contrast, the poorly-differentiated cancer cell lines: PC-3 and MDAMB231 exhibited intracellular normoxia by low oxygen consumption. The specific complex I inhibitor, rotenone, and the reduction of mitochondrial DNA (mtDNA) content reduced intracellular hypoxia, indicating that intracellular oxygen concentration is regulated by the consumption of oxygen by mitochondria. HIF-1α was activated in endogenously hypoxic LNCaP and the activation was dependent on mitochondrial respiratory function. Intracellular hypoxic status is regulated by glucose by parabolic dose response. The low concentration of glucose (0.045 mg/ml) induced strongest intracellular hypoxia possibly because of the Crabtree effect. Addition of FCS to the media induced intracellular hypoxia in LNCaP, and this effect was partially mimicked by an androgen analog, R1881, and inhibited by the anti-androgen, flutamide. These results indicate that mitochondrial respiratory function determines intracellular hypoxic status and may regulate oxygen-dependent biological functions.
Collapse
Affiliation(s)
- Sara Prior
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Ara Kim
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Toshitada Yoshihara
- Department of Chemistry and Chemical Biology, Graduate School of Engineering, University of Gunma, Kiryu, Gunma, Japan
| | - Seiji Tobita
- Department of Chemistry and Chemical Biology, Graduate School of Engineering, University of Gunma, Kiryu, Gunma, Japan
| | - Toshiyuki Takeuchi
- Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, University of Gunma, Maebashi, Gunma, Japan
| | - Masahiro Higuchi
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
147
|
Kaushik AK, Vareed SK, Basu S, Putluri V, Putluri N, Panzitt K, Brennan CA, Chinnaiyan AM, Vergara IA, Erho N, Weigel NL, Mitsiades N, Shojaie A, Palapattu G, Michailidis G, Sreekumar A. Metabolomic profiling identifies biochemical pathways associated with castration-resistant prostate cancer. J Proteome Res 2014; 13:1088-100. [PMID: 24359151 PMCID: PMC3975657 DOI: 10.1021/pr401106h] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite recent developments in treatment strategies, castration-resistant prostate cancer (CRPC) is still the second leading cause of cancer-associated mortality among American men, the biological underpinnings of which are not well understood. To this end, we measured levels of 150 metabolites and examined the rate of utilization of 184 metabolites in metastatic androgen-dependent prostate cancer (AD) and CRPC cell lines using a combination of targeted mass spectrometry and metabolic phenotyping. Metabolic data were used to derive biochemical pathways that were enriched in CRPC, using Oncomine concept maps (OCM). The enriched pathways were then examined in-silico for their association with treatment failure (i.e., prostate specific antigen (PSA) recurrence or biochemical recurrence) using published clinically annotated gene expression data sets. Our results indicate that a total of 19 metabolites were altered in CRPC compared to AD cell lines. These altered metabolites mapped to a highly interconnected network of biochemical pathways that describe UDP glucuronosyltransferase (UGT) activity. We observed an association with time to treatment failure in an analysis employing genes restricted to this pathway in three independent gene expression data sets. In summary, our studies highlight the value of employing metabolomic strategies in cell lines to derive potentially clinically useful predictive tools.
Collapse
Affiliation(s)
- Akash K Kaushik
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine
- Alkek Center for Molecular Discovery, Baylor College of Medicine
- Molecular and Cellular Biology, Baylor College of Medicine
| | - Shaiju K Vareed
- Alkek Center for Molecular Discovery, Baylor College of Medicine
- Molecular and Cellular Biology, Baylor College of Medicine
| | - Sumanta Basu
- Department of Statistics, University of Michigan Ann Arbor
| | - Vasanta Putluri
- Alkek Center for Molecular Discovery, Baylor College of Medicine
- Molecular and Cellular Biology, Baylor College of Medicine
| | - Nagireddy Putluri
- Alkek Center for Molecular Discovery, Baylor College of Medicine
- Molecular and Cellular Biology, Baylor College of Medicine
| | - Katrin Panzitt
- Alkek Center for Molecular Discovery, Baylor College of Medicine
- Molecular and Cellular Biology, Baylor College of Medicine
| | | | | | | | | | - Nancy L Weigel
- Molecular and Cellular Biology, Baylor College of Medicine
| | | | - Ali Shojaie
- Department of Biostatistics, University of Washington Seattle
| | | | | | - Arun Sreekumar
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine
- Alkek Center for Molecular Discovery, Baylor College of Medicine
- Molecular and Cellular Biology, Baylor College of Medicine
| |
Collapse
|
148
|
Huang M, Narita S, Inoue T, Tsuchiya N, Satoh S, Nanjo H, Sasaki T, Habuchi T. Diet-induced macrophage inhibitory cytokine 1 promotes prostate cancer progression. Endocr Relat Cancer 2014; 21:39-50. [PMID: 24344250 DOI: 10.1530/erc-13-0227] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent studies have indicated that a high-fat diet (HFD) plays an important role in prostate cancer (PCa) progression. Palmitic acid (PA) is one of the most abundant saturated free fatty acids (FAs) and is associated with carcinogenesis. In this study, we investigated the mechanism underlying the association of dietary fat, including PA, with PCa progression. In four PCa cell lines, in vitro PA administration stimulated the expression of macrophage inhibitory cytokine 1 (MIC1), which is a divergent member of the transforming growth factor-β family. In vivo, LNCaP xenograft tumor growth, serum MIC1 levels, and FA levels in xenograft tumors were significantly higher in mice receiving an HFD containing high amounts of PA than in those receiving a low-fat diet (LFD). In addition, tumor cells with high MIC1 expression invaded to venules and lymph vessels in the LNCaP xenograft. In vitro studies showed that proliferation and invasive capacity were significantly higher in PCa cells cultured with serum from HFD-fed mice than in those cultured with the serum from LFD-fed mice. This effect was attenuated by the addition of neutralizing antibodies against MIC1, but not by isotype control antibodies. Clinically, serum MIC1 levels were significantly higher in PCa patients than in healthy controls, and higher levels were associated with higher pathological grade and obesity. In conclusion, our results indicate that an HFD containing PA may promote growth and invasiveness of PCa cells through the upregulation of MIC1 expression.
Collapse
Affiliation(s)
- Mingguo Huang
- Department of Urology Research Center for Biosignal Department of Clinical Pathology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan CREST, Japan Science and Technology Agency (JST), Tokyo 102-0076, Japan
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Slavin S, Yeh CR, Da J, Yu S, Miyamoto H, Messing EM, Guancial E, Yeh S. Estrogen receptor α in cancer-associated fibroblasts suppresses prostate cancer invasion via modulation of thrombospondin 2 and matrix metalloproteinase 3. Carcinogenesis 2013; 35:1301-9. [PMID: 24374826 DOI: 10.1093/carcin/bgt488] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The prostate cancer (PCa) microenvironment contains active stromal cells known as cancer-associated fibroblasts (CAF) that may play important roles in influencing tumor progression. Here we studied the role of CAF estrogen receptor alpha (ERα) and found that it could protect against PCa invasion. Immunohistochemistry on prostatectomy specimens showed that PCa patients with ERα-positive stroma had a significantly lower risk for biochemical recurrence. In vitro invasion assays further confirmed that the stromal ERα was able to reduce PCa cell invasion. Dissection of the molecular mechanism revealed that the CAF ERα could function through a CAF-epithelial interaction via selectively upregulating thrombospondin 2 (Thbs2) and downregulating matrix metalloproteinase 3 (MMP3) at the protein and messenger RNA levels. Chromatin immunoprecipitation assays further showed that ERα could bind to an estrogen response element on the promoter of Thbs2. Importantly, knockdown of Thbs2 led to increased MMP3 expression and interruption of the ERα mediated invasion suppression, providing further evidence of an ERα-Thbs2-MMP3 axis in CAF. In vivo studies using athymic nude mice injected with CWR22Rv1 (22Rv1) PCa epithelial cells and CAF cells ± ERα also confirmed that mice coimplanted with PCa cells and CAF ERα+ cells had less tumor foci in the pelvic lymph nodes, less metastases, and tumors showed less angiogenesis, MMP3, and MMP9 (an MMP3 downstream target) positive staining. Together, these data suggest that CAF ERα could play protective roles in suppressing PCa metastasis. Our results may lead to developing new and alternative therapeutic approaches to battle PCa via controlling ERα signaling in CAF.
Collapse
Affiliation(s)
- Spencer Slavin
- Departments of Urology and Pathology, University of Rochester Medical Center Rochester, 601 Elmwood Avenue, NY 14642, USA
| | - Chiuan-Ren Yeh
- Departments of Urology and Pathology, University of Rochester Medical Center Rochester, 601 Elmwood Avenue, NY 14642, USA
| | - Jun Da
- Departments of Urology and Pathology, University of Rochester Medical Center Rochester, 601 Elmwood Avenue, NY 14642, USA, Department of Urology, Shanghai Jaotong University, Shanghai, China and
| | - Shengqiang Yu
- Departments of Urology and Pathology, University of Rochester Medical Center Rochester, 601 Elmwood Avenue, NY 14642, USA
| | - Hiroshi Miyamoto
- Departments of Urology and Pathology, University of Rochester Medical Center Rochester, 601 Elmwood Avenue, NY 14642, USA
| | - Edward M Messing
- Departments of Urology and Pathology, University of Rochester Medical Center Rochester, 601 Elmwood Avenue, NY 14642, USA
| | - Elizabeth Guancial
- Departments of Hematology and Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Shuyuan Yeh
- Departments of Urology and Pathology, University of Rochester Medical Center Rochester, 601 Elmwood Avenue, NY 14642, USA,
| |
Collapse
|
150
|
Shiota M, Yokomizo A, Takeuchi A, Imada K, Kashiwagi E, Song Y, Inokuchi J, Tatsugami K, Uchiumi T, Naito S. Inhibition of protein kinase C/Twist1 signaling augments anticancer effects of androgen deprivation and enzalutamide in prostate cancer. Clin Cancer Res 2013; 20:951-61. [PMID: 24352647 DOI: 10.1158/1078-0432.ccr-13-1809] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The progression of prostate cancer to metastatic and castration-resistant disease represents a critical step. We previously showed that the transcription factor Twist1, which promotes epithelial-mesenchymal transition, was involved in castration-resistant progression. Similarly, protein kinase C (PKC) has been implicated in both metastatic progression and castration resistance in prostate cancer. EXPERIMENTAL DESIGN In this study, we aimed to elucidate the role of PKC/Twist1 signaling in castration resistance, and to apply this information to the development of a novel therapeutic concept using PKC inhibitor Ro31-8220 against prostate cancer using various prostate cancer cell lines. RESULTS Androgen deprivation and the next-generation antiandrogen enzalutamide induced PKC activation and Twist1 expression, which were reversed by the PKC inhibitor Ro31-8220. Ro31-8220 suppressed cell proliferation in androgen-dependent prostate cancer LNCaP cells, which was augmented by its combination with androgen deprivation or enzalutamide. The favorable anticancer effects of the combination of Ro31-8220 and enzalutamide were also observed in castration-resistant C4-2 and 22Rv1 cells. Furthermore, PKC phosphorylation was elevated in castration-resistant and enzalutamide-resistant cells compared with their parental cells, leading to persistent sensitivity to Ro-31-8220 in castration- and enzalutamide-resistant cells. CONCLUSIONS Taken together, these findings indicate that PKC/Twist1 signaling contributes to castration resistance as well as enzalutamide resistance in prostate cancer, and suggest that therapeutics targeting PKC/Twist1 signaling, such as PKC inhibitors, represent a promising novel therapeutic strategy for prostate cancer, especially castration-resistant prostate cancer, when combined with enzalutamide.
Collapse
Affiliation(s)
- Masaki Shiota
- Authors' Affiliations: Departments of Urology and Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|