101
|
Bhat SA, Farooq Z, Ismail H, Corona-Avila I, Khan MW. Unraveling the Sweet Secrets of HCC: Glucometabolic Rewiring in Hepatocellular Carcinoma. Technol Cancer Res Treat 2023; 22:15330338231219434. [PMID: 38083797 PMCID: PMC10718058 DOI: 10.1177/15330338231219434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/13/2017] [Indexed: 12/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the primary form of liver cancer. It causes ∼ 800 000 deaths per year, which is expected to increase due to increasing rates of obesity and metabolic dysfunction associated steatotic liver disease (MASLD). Current therapies include immune checkpoint inhibitors, tyrosine kinase inhibitors, and monoclonal antibodies, but these therapies are not satisfactorily effective and often come with multiple side effects and recurrences. Metabolic reprogramming plays a significant role in HCC progression and is often conserved between tumor types. Thus, targeting rewired metabolic pathways could provide an attractive option for targeting tumor cells alone or in conjunction with existing treatments. Therefore, there is an urgent need to identify novel targets involved in cancer-mediated metabolic reprogramming in HCC. In this review, we provide an overview of molecular rewiring and metabolic reprogramming of glucose metabolism in HCC to understand better the concepts that might widen the therapeutic window against this deadly cancer.
Collapse
Affiliation(s)
- Sheraz Ahmad Bhat
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
- Sri Pratap College, Cluster University Srinagar, Srinagar, Jammu & Kashmir, India
| | - Zeenat Farooq
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Hagar Ismail
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Irene Corona-Avila
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Md. Wasim Khan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
102
|
Petrella G, Corsi F, Ciufolini G, Germini S, Capradossi F, Pelliccia A, Torino F, Ghibelli L, Cicero DO. Metabolic Reprogramming of Castration-Resistant Prostate Cancer Cells as a Response to Chemotherapy. Metabolites 2022; 13:metabo13010065. [PMID: 36676990 PMCID: PMC9865398 DOI: 10.3390/metabo13010065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Prostate cancer at the castration-resistant stage (CRPC) is a leading cause of death among men due to resistance to anticancer treatments, including chemotherapy. We set up an in vitro model of therapy-induced cancer repopulation and acquired cell resistance (CRAC) on etoposide-treated CRPC PC3 cells, witnessing therapy-induced epithelial-to-mesenchymal-transition (EMT) and chemoresistance among repopulating cells. Here, we explore the metabolic changes leading to chemo-induced CRAC, measuring the exchange rates cell/culture medium of 36 metabolites via Nuclear Magnetic Resonance spectroscopy. We studied the evolution of PC3 metabolism throughout recovery from etoposide, encompassing the degenerative, quiescent, and repopulating phases. We found that glycolysis is immediately shut off by etoposide, gradually recovering together with induction of EMT and repopulation. Instead, OXPHOS, already high in untreated PC3, is boosted by etoposide to decline afterward, though stably maintaining values higher than control. Notably, high levels of EMT, crucial in the acquisition of chemoresistance, coincide with a strong acceleration of metabolism, especially in the exchange of principal nutrients and their end products. These results provide novel information on the energy metabolism of cancer cells repopulating from cytotoxic drug treatment, paving the way for uncovering metabolic vulnerabilities to be possibly pharmacologically targeted and providing novel clinical options for CRPC.
Collapse
Affiliation(s)
- Greta Petrella
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-06-7259-4835
| | - Francesca Corsi
- Dipartimento di Biologia, Università di Roma “Tor Vergata”, 00133 Rome, Italy
| | - Giorgia Ciufolini
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, 00133 Rome, Italy
| | - Sveva Germini
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, 00133 Rome, Italy
| | | | - Andrea Pelliccia
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, 00133 Rome, Italy
- Dipartimento di Biologia, Università di Roma “Tor Vergata”, 00133 Rome, Italy
| | - Francesco Torino
- Dipartimento di Medicina dei Sistemi, Oncologia Medica, Università di Roma “Tor Vergata”, 00133 Rome, Italy
| | - Lina Ghibelli
- Dipartimento di Biologia, Università di Roma “Tor Vergata”, 00133 Rome, Italy
| | - Daniel Oscar Cicero
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
103
|
Salem K, Reese RM, Alarid ET, Fowler AM. Progesterone Receptor-Mediated Regulation of Cellular Glucose and 18F-Fluorodeoxyglucose Uptake in Breast Cancer. J Endocr Soc 2022; 7:bvac186. [PMID: 36601022 PMCID: PMC9795483 DOI: 10.1210/jendso/bvac186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 12/05/2022] Open
Abstract
Context Positron emission tomography imaging with 2-deoxy-2-[18F]-fluoro-D-glucose (FDG) is used clinically for initial staging, restaging, and assessing therapy response in breast cancer. Tumor FDG uptake in steroid hormone receptor-positive breast cancer and physiologic FDG uptake in normal breast tissue can be affected by hormonal factors such as menstrual cycle phase, menopausal status, and hormone replacement therapy. Objective The purpose of this study was to determine the role of the progesterone receptor (PR) in regulating glucose and FDG uptake in breast cancer cells. Methods and Results PR-positive T47D breast cancer cells treated with PR agonists had increased FDG uptake compared with ethanol control. There was no significant change in FDG uptake in response to PR agonists in PR-negative MDA-MB-231 cells, MDA-MB-468 cells, or T47D PR knockout cells. Treatment of T47D cells with PR antagonists inhibited the effect of R5020 on FDG uptake. Using T47D cell lines that only express either the PR-A or the PR-B isoform, PR agonists increased FDG uptake in both cell types. Experiments using actinomycin D and cycloheximide demonstrated the requirement for both transcription and translation in PR regulation of FDG uptake. GLUT1 and PFKFB3 mRNA expression and the enzymatic activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were increased after progestin treatment of T47D cells. Conclusion Thus, progesterone and progestins increase FDG uptake in T47D breast cancer cells through the classical action of PR as a ligand-activated transcription factor. Ligand-activated PR ultimately increases expression and activity of proteins involved in glucose uptake, glycolysis, and the pentose phosphate pathway.
Collapse
Affiliation(s)
- Kelley Salem
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Rebecca M Reese
- McArdle Laboratory for Cancer Research, Department of Oncology and Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elaine T Alarid
- McArdle Laboratory for Cancer Research, Department of Oncology and Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA
| | - Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA.,Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
104
|
The anti-proliferative effect of β-carotene against a triple-negative breast cancer cell line is cancer cell-specific and JNK-dependent. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
105
|
Kesharwani P, Chadar R, Shukla R, Jain GK, Aggarwal G, Abourehab MAS, Sahebkar A. Recent advances in multifunctional dendrimer-based nanoprobes for breast cancer theranostics. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2433-2471. [PMID: 35848467 DOI: 10.1080/09205063.2022.2103627] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Breast cancer (BC) undoubtedly is one of the most common type of cancers amongst women, which causes about 5 million deaths annually. The treatments and diagnostic therapy choices currently available for Breast Cancer is very much limited . Advancements in novel nanocarrier could be a promising strategy for diagnosis and treatments of this deadly disease. Dendrimer nanoformulation could be functionalized and explored for efficient targeting of overexpressed receptors on Breast Cancer cells to achieve targeted drug delivery, for diagnostics and to overcome the resistance of the cells towards particular chemotherapeutic. Additionally, the dendrimer have shown promising potential in the improvement of therapeutic value for Breast Cancer therapy by achieving synergistic co-delivery of chemotherapeutics and genetic materials for multidirectional treatment. In this review, we have highlighted the application of dendrimer as novel multifunctional nanoplatforms for the treatment and diagnosis of Breast Cancer.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Rahul Chadar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P, India
| | - Gaurav K Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
| | - Geeta Aggarwal
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
106
|
Beylerli O, Sufianova G, Shumadalova A, Zhang D, Gareev I. MicroRNAs-mediated regulation of glucose transporter (GLUT) expression in glioblastoma. Noncoding RNA Res 2022; 7:205-211. [PMID: 36157351 PMCID: PMC9467858 DOI: 10.1016/j.ncrna.2022.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022] Open
Abstract
Current knowledge about the role of microRNAs (miRNAs) in tumor glucose metabolism is growing, and a number of studies regularly confirm the impact miRNAs can have on glucose metabolism reprogramming in tumors. However, there remains a lack of understanding of the broader perspective on the role of miRNAs in energy reprogramming in glioblastoma. An important role in the metabolism of glucose is played by carrier proteins that ensure its transmembrane movement. Carrier proteins in mammalian cells are glucose transporters (GLUTs). In total, 12 types of GLUTs are distinguished, differing in localization, affinity for glucose and ability to regulate. The fact of increased consumption of glucose in tumors compared to non-proliferating normal tissues is known. Tumor cells need glucose to ensure their survival and growth, so the type of transport proteins like GLUT are critical for them. Previous studies have shown that GLUT-1 and GLUT-3 may play an important role in the development of some types of malignant tumors, including glioblastoma. In addition, there is evidence of how GLUT-1 and GLUT-3 expression is regulated by miRNAs in glioblastoma. Thus, the aim of this study is to highlight the role of specific miRNAs in modulating GLUT levels in order to take into account the use of miRNAs expression modulators as a useful strategy to increase the sensitivity of glioblastoma to current therapies.
Collapse
Affiliation(s)
- Ozal Beylerli
- Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Alina Shumadalova
- Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Daming Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ilgiz Gareev
- Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| |
Collapse
|
107
|
Khamaru P, Chakraborty S, Bhattacharyya A. AMPK activator AICAR in combination with anti-mouse IL10 mAb restores the functionality of intra-tumoral Tfh cells in the 4T1 mouse model. Cell Immunol 2022; 382:104639. [PMID: 36375313 DOI: 10.1016/j.cellimm.2022.104639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
4T1 cell-mediated TNBC breast cell carcinoma is a highly malignant mice tumor model which resembles an advanced stage of breast cancer in humans. Tumor progression occurs depending on the intra-tumoral balance of pro- and anti- tumorigenic immune cells. Enhancement of T-cell-mediated anti-tumor immunity will be advantageous for inhibiting tumor progression and improving the efficacy of cancer therapy. This study is focused on alleviating suppressed anti-tumor immune response by improving CD4+ T follicular helper cell (Tfh) response in 4T1 mice. We employed anti-IL10 mAb along with metabolic drugs 2-deoxy-D-glucose (2DG) which inhibits the glycolytic pathway and Cpt1a inhibitor Etomoxir which inhibits FAO. AMPK activator AICAR with or without anti-IL10 mAb was also used to ameliorate metabolic stress and exhaustion faced by immune cells. Our results demonstrate that synergistic treatment with 2DG/Etomoxir + anti-IL10 mAb induced Tfh cell, memory B, and GC B cell response more potently compared to treatment with 2DG or Etomoxir treatment alone as observed in several LNs and tumor tissue of 4T1 mouse. However, AICAR + anti-IL10 mAb increased the frequency of intratumoral Tfh cells, simultaneously downregulated Tfr cells; and improved humoral response by stimulating upregulation of memory B, GC B, and plasmablasts in tumor-draining, axillary, and mesenteric LNs of 4T1 mouse.
Collapse
Affiliation(s)
- Poulomi Khamaru
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Sayan Chakraborty
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
108
|
Ciliary Neurotrophic Factor Modulates Multiple Downstream Signaling Pathways in Prostate Cancer Inhibiting Cell Invasiveness. Cancers (Basel) 2022; 14:cancers14235917. [PMID: 36497399 PMCID: PMC9739171 DOI: 10.3390/cancers14235917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) remains the most common diagnosed tumor and is the second-leading cause of cancer-related death in men. If the cancer is organ-confined it can be treated by various ablative therapies such as RP (radical prostatectomy), RT (radiation therapy), brachytherapy, cryosurgery or HIFU (High-Intensity Focused Ultrasound). However, advanced or metastatic PCa treatment requires systemic therapy involving androgen deprivation, but such patients typically progress to refractory disease designated as castration-resistant prostate cancer (CRPC). Interleukin-6 (IL-6) has been established as a driver of prostate carcinogenesis and tumor progression while less is known about the role of ciliary neurotrophic factor (CNTF), a member of the IL-6 cytokine family in prostate cancer. Moreover, MAPK/ERK, AKT/PI3K and Jak/STAT pathways that regulate proliferative, invasive and glucose-uptake processes in cancer progression are triggered by CNTF. METHODS We investigate CNTF and its receptor CNTFRα expressions in human androgen-responsive and castration-resistant prostate cancer (CRPC) by immunohistochemistry. Moreover, we investigated the role of CNTF in proliferative, invasive processes as well as glucose uptake using two cell models mimicking the PCa (LNCaP cell line) and CRPC (22Rv1 cell line). CONCLUSIONS Our results showed that CNTF and CNTFRa were expressed in PCa and CRPC tissues and that CNTF has a pivotal role in prostate cancer environment remodeling and as a negative modulator of invasion processes of CRPC cell models.
Collapse
|
109
|
Zhang Y, Qin H, Bian J, Ma Z, Yi H. SLC2As as diagnostic markers and therapeutic targets in LUAD patients through bioinformatic analysis. Front Pharmacol 2022; 13:1045179. [PMID: 36518662 PMCID: PMC9742449 DOI: 10.3389/fphar.2022.1045179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/14/2022] [Indexed: 11/05/2023] Open
Abstract
Facilitative glucose transporters (GLUTs), which are encoded by solute carrier 2A (SLC2A) genes, are responsible for mediating glucose absorption. In order to meet their higher energy demands, cancer cells are more likely than normal tissue cells to have elevated glucose transporters. Multiple pathogenic processes, such as cancer and immunological disorders, have been linked to GLUTs. Few studies, meanwhile, have been conducted on individuals with lung adenocarcinoma (LUAD) to evaluate all 14 SLC2A genes. We first identified increased protein levels of SLC2A1, SLC2A5, SLC2A6, and SLC2A9 via HPA database and downregulated mRNA levels of SLC2A3, SLC2A6, SLC2A9, and SLC2A14 by ONCOMINE and UALCAN databases in patients with LUAD. Additionally, lower levels of SLC2A3, SLC2A6, SLC2A9, SLC2A12, and SLC2A14 and higher levels of SLC2A1, SLC2A5, SLC2A10, and SLC2A11 had an association with advanced tumor stage. SLC2A1, SLC2A7, and SLC2A11 were identified as prognostic signatures for LUAD. Kaplan-Meier analysis, Univariate Cox regression, multivariate Cox regression and ROC analyses further revealed that these three genes signature was a novel and important prognostic factor. Mechanistically, the aberrant expression of these molecules was caused, in part, by the hypomethylation of SLC2A3, SLC2A10, and SLC2A14 and by the hypermethylation of SLC2A1, SLC2A2, SLC2A5, SLC2A6, SLC2A7, and SLC2A11. Additionally, SLC2A3, SLC2A5, SLC2A6, SLC2A9, and SLC2A14 contributed to LUAD by positively modulating M2 macrophage and T cell exhaustion. Finally, pathways involving SLC2A1/BUB1B/mitotic cell cycle, SLC2A5/CD86/negative regulation of immune system process, SLC2A6/PLEK/lymphocyte activation, SLC2A9/CD4/regulation of cytokine production might participate in the pathogenesis of LUAD. In summary, our results will provide the theoretical basis on SLC2As as diagnostic markers and therapeutic targets in LUAD.
Collapse
Affiliation(s)
- Yanli Zhang
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin, China
- Echocardiography Department, The First Hospital of Jilin University, Changchun, China
| | - Han Qin
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin, China
| | - Jing Bian
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin, China
| |
Collapse
|
110
|
Sahkulubey Kahveci EL, Kahveci MU, Celebi A, Avsar T, Derman S. Glycopolymer and Poly(β-amino ester)-Based Amphiphilic Block Copolymer as a Drug Carrier. Biomacromolecules 2022; 23:4896-4908. [PMID: 36317475 PMCID: PMC9667500 DOI: 10.1021/acs.biomac.2c01076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/20/2022] [Indexed: 11/16/2022]
Abstract
Glycopolymers are synthetic macromolecules having pendant sugar moieties and widely utilized to target cancer cells. They are usually considered as a hydrophilic segment of amphiphilic block copolymers to fabricate micelles as drug carriers. A novel amphiphilic block copolymer, namely, poly(2-deoxy-2-methacrylamido-d-glucose-co-2-hydroxyethyl methacrylate)-b-poly(β-amino ester) [P(MAG-co-HEMA)-b-PBAE], with active cancer cell targeting potential and pH responsivity was prepared. Tetrazine end functional P(MAG-co-HEMA) and norbornene end functional PBAE blocks were separately synthesized through reversible addition fragmentation chain transfer polymerization and Michael addition-based poly-condensation, respectively, and followed by end-group transformation. Then, inverse electron demand Diels Alder reaction between the tetrazine and the norbornene groups was performed by simply mixing to obtain the amphiphilic block copolymer. After characterization of the block copolymer in terms of chemical structure, pH responsivity, and drug loading/releasing, pH-responsive micelles were obtained with or without doxorubicin (DOX), a model anticancer drug. The micelles exhibited a sharp protonated/deprotonated transition on tertiary amine groups around pH 6.75 and the pH-specific release of DOX below this value. Eventually, the drug delivery potential was evaluated by cytotoxicity assays on both the noncancerous human umbilical vein endothelial cell (HUVEC) cell line and glioblastoma cell line, U87-MG. While the DOX-loaded polymeric micelles were not toxic in noncancerous HUVEC cells, being toxic only to the cancer cells indicates that it is a potential specific cell targeting strategy in the treatment of cancer.
Collapse
Affiliation(s)
- Elif L. Sahkulubey Kahveci
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa Campus, Esenler, 34210Istanbul, Turkey
| | - Muhammet U. Kahveci
- Faculty
of Science and Letters, Department of Chemistry, Istanbul Technical University, Maslak, Sariyer, 34467Istanbul, Turkey
| | - Asuman Celebi
- Department
of Medical Biology, School of Medicine, Bahcesehir University, Goztepe, 34734Istanbul, Turkey
| | - Timucin Avsar
- Department
of Medical Biology, School of Medicine, Bahcesehir University, Goztepe, 34734Istanbul, Turkey
| | - Serap Derman
- Faculty
of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa Campus, Esenler, 34210Istanbul, Turkey
| |
Collapse
|
111
|
Temre MK, Kumar A, Singh SM. An appraisal of the current status of inhibition of glucose transporters as an emerging antineoplastic approach: Promising potential of new pan-GLUT inhibitors. Front Pharmacol 2022; 13:1035510. [PMID: 36386187 PMCID: PMC9663470 DOI: 10.3389/fphar.2022.1035510] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 07/23/2023] Open
Abstract
Neoplastic cells displayed altered metabolism with accelerated glycolysis. Therefore, these cells need a mammoth supply of glucose for which they display an upregulated expression of various glucose transporters (GLUT). Thus, novel antineoplastic strategies focus on inhibiting GLUT to intersect the glycolytic lifeline of cancer cells. This review focuses on the current status of various GLUT inhibition scenarios. The GLUT inhibitors belong to both natural and synthetic small inhibitory molecules category. As neoplastic cells express multiple GLUT isoforms, it is necessary to use pan-GLUT inhibitors. Nevertheless, it is also necessary that such pan-GLUT inhibitors exert their action at a low concentration so that normal healthy cells are left unharmed and minimal injury is caused to the other vital organs and systems of the body. Moreover, approaches are also emerging from combining GLUT inhibitors with other chemotherapeutic agents to potentiate the antineoplastic action. A new pan-GLUT inhibitor named glutor, a piperazine-one derivative, has shown a potent antineoplastic action owing to its inhibitory action exerted at nanomolar concentrations. The review discusses the merits and limitations of the existing GLUT inhibitory approach with possible future outcomes.
Collapse
Affiliation(s)
- Mithlesh Kumar Temre
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ajay Kumar
- Deparment of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sukh Mahendra Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
112
|
Sonoda K, Ujike S, Katayama A, Suzuki N, Kawaguchi SI, Tsujita T. Improving lipophilicity of 5-(1-acetyl-5-phenylpyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid increases its efficacy to activate hypoxia-inducible factors. Bioorg Med Chem 2022; 73:117039. [PMID: 36198217 DOI: 10.1016/j.bmc.2022.117039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022]
Abstract
Hypoxia-inducible factor (HIF) activators aid the treatment of renal anemia and ischemia. Recently, PyrzA (5-(1-acetyl-5-phenylpyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid), a HIF activator by PHD inhibition without a 2-oxoglutarate moiety was reported. However, PyrzA has low lipophilicity, and it was necessary to improve its solubility by synthesizing derivatives. In this study, we synthesized and evaluated a higher lipophilic derivative of PyrzA and found that it exhibited higher HIF activity and stabilizing ability at low concentrations compared to Roxadustat, a commercially available HIF activator.
Collapse
Affiliation(s)
- Kento Sonoda
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan; Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan
| | - Saki Ujike
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan; Graduate School of Advanced Health Sciences, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan
| | - Akito Katayama
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine; Applied Oxygen Physiology Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, 2-1 Seiryo-machi, Aobaku, Sendai, Miyagi 980-8575, Japan
| | - Shin-Ichi Kawaguchi
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan; Graduate School of Advanced Health Sciences, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan.
| | - Tadayuki Tsujita
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24, Korimoto, Kagoshima 890-0065, Japan; Graduate School of Advanced Health Sciences, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan.
| |
Collapse
|
113
|
Zhang C, Kang T, Wang X, Song J, Zhang J, Li G. Stimuli-responsive platinum and ruthenium complexes for lung cancer therapy. Front Pharmacol 2022; 13:1035217. [PMID: 36324675 PMCID: PMC9618881 DOI: 10.3389/fphar.2022.1035217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths worldwide. More efficient treatments are desperately needed. For decades, the success of platinum-based anticancer drugs has promoted the exploration of metal-based agents. Four ruthenium-based complexes have also entered clinical trials as candidates of anticancer metallodrugs. However, systemic toxicity, severe side effects and drug-resistance impeded their applications and efficacy. Stimuli-responsiveness of Pt- and Ru-based complexes provide a great chance to weaken the side effects and strengthen the clinical efficacy in drug design. This review provides an overview on the stimuli-responsive Pt- and Ru-based metallic anticancer drugs for lung cancer. They are categorized as endo-stimuli-responsive, exo-stimuli-responsive, and dual-stimuli-responsive prodrugs based on the nature of stimuli. We describe various representative examples of structure, response mechanism, and potential medical applications in lung cancer. In the end, we discuss the future opportunities and challenges in this field.
Collapse
Affiliation(s)
- Cheng Zhang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tong Kang
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xinyi Wang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiaqi Song
- Department of Biophysics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jia Zhang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Jia Zhang, ; Guanying Li,
| | - Guanying Li
- Department of Biophysics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Jia Zhang, ; Guanying Li,
| |
Collapse
|
114
|
Alsaeedi SM, Aggarwal S. The Holistic Review on Occurrence, Biology, Diagnosis, and Treatment of Oral Squamous Cell Carcinoma. Cureus 2022; 14:e30226. [PMID: 36381928 PMCID: PMC9651169 DOI: 10.7759/cureus.30226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
A prevalent head and neck cancer type is oral squamous cell carcinoma (OSCC). It is widespread and associated with a high death rate of around 50% in some regions of the world. We discuss the likelihood of developing OSCC and the impact of age in this review. Prior to examining the vast array of diagnostic indicators, a brief explanation of the biology of the disease is addressed. Finally, the therapeutic strategies for OSCC are listed. The complete literature for this study was compiled by searching Google Scholar and PubMed using the terms "OSCC," "oral squamous cell carcinoma," "diagnosis of OSCC," "oral cancer," and "biomarkers and OSCC." The research finds that OSCC has several critical parameters with a lot of room for additional in-depth study.
Collapse
|
115
|
Xin Y, Sun Z, Liu J, Li W, Wang M, Chu Y, Sun Z, Deng G. Nanomaterial-mediated low-temperature photothermal therapy via heat shock protein inhibition. Front Bioeng Biotechnol 2022; 10:1027468. [PMID: 36304896 PMCID: PMC9595601 DOI: 10.3389/fbioe.2022.1027468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
With the continuous development of nanobiotechnology in recent years, combining photothermal materials with nanotechnology for tumor photothermal therapy (PTT) has drawn many attentions nanomedicine research. Although nanomaterial-mediated PTT is more specific and targeted than traditional treatment modalities, hyperthermia can also damage normal cells. Therefore, researchers have proposed the concept of low-temperature PTT, in which the expression of heat shock proteins (HSPs) is inhibited. In this article, the research strategies proposed in recent years based on the inhibition of HSPs expression to achieve low-temperature PTT was reviewed. Folowing this, the synthesis, properties, and applications of these nanomaterials were introduced. In addition, we also summarized the problems of nanomaterial-mediated low-temperature PTT at this stage and provided an outlook on future research directions.
Collapse
Affiliation(s)
- Yu Xin
- Yantai Yuhuangding Hospital, Yantai, China
| | - Zhuokai Sun
- Nanchang University Queen Mary School, Nanchang, China
| | - Jie Liu
- Yantai Yuhuangding Hospital, Yantai, China
| | - Wei Li
- Yantai Yuhuangding Hospital, Yantai, China
| | | | - Yongli Chu
- Yantai Yuhuangding Hospital, Yantai, China
| | - Zhihong Sun
- Yantai Yuhuangding Hospital, Yantai, China
- *Correspondence: Zhihong Sun, ; Guanjun Deng,
| | - Guanjun Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, China
- *Correspondence: Zhihong Sun, ; Guanjun Deng,
| |
Collapse
|
116
|
Oligo-Fucoidan supplementation enhances the effect of Olaparib on preventing metastasis and recurrence of triple-negative breast cancer in mice. J Biomed Sci 2022; 29:70. [PMID: 36109724 PMCID: PMC9479298 DOI: 10.1186/s12929-022-00855-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/08/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Seaweed polysaccharides have been recommended as anticancer supplements and for boosting human health; however, their benefits in the treatment of triple-negative breast cancers (TNBCs) and improving immune surveillance remain unclear. Olaparib is a first-in-class poly (ADP-ribose) polymerase inhibitor. Oligo-Fucoidan, a low-molecular-weight sulfated polysaccharide purified from brown seaweed (Laminaria japonica), exhibits significant bioactivities that may aid in disease management. METHODS Macrophage polarity, clonogenic assays, cancer stemness properties, cancer cell trajectory, glucose metabolism, the TNBC 4T1 cells and a 4T1 syngeneic mouse model were used to inspect the therapeutic effects of olaparib and Oligo-Fucoidan supplementation on TNBC aggressiveness and microenvironment. RESULTS Olaparib treatment increased sub-G1 cell death and G2/M arrest in TNBC cells, and these effects were enhanced when Oligo-Fucoidan was added to treat the TNBC cells. The levels of Rad51 and programmed death-ligand 1 (PD-L1) and the activation of epidermal growth factor receptor (EGFR) and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) facilitate drug resistance and TNBC metastasis. However, the combination of olaparib and Oligo-Fucoidan synergistically reduced Rad51 and PD-L1 levels, as well as the activity of EGFR and AMPK; consistently, TNBC cytotoxicity and stemness were inhibited. Oligo-Fucoidan plus olaparib better inhibited the formation of TNBC stem cell mammospheroids with decreased subpopulations of CD44high/CD24low and EpCAMhigh cells than monotherapy. Importantly, Oligo-Fucoidan plus olaparib repressed the oncogenic interleukin-6 (IL-6)/p-EGFR/PD-L1 pathway, glucose uptake and lactate production. Oligo-Fucoidan induced immunoactive and antitumoral M1 macrophages and attenuated the side effects of olaparib, such as the promotion on immunosuppressive and protumoral M2 macrophages. Furthermore, olaparib plus Oligo-Fucoidan dramatically suppressed M2 macrophage invasiveness and repolarized M2 to the M0-like (F4/80high) and M1-like (CD80high and CD86high) phenotypes. In addition, olaparib- and Oligo-Fucoidan-pretreated TNBC cells resulted in the polarization of M0 macrophages into CD80(+) M1 but not CD163(+) M2 macrophages. Importantly, olaparib supplemented with oral administration of Oligo-Fucoidan in mice inhibited postsurgical TNBC recurrence and metastasis with increased cytotoxic T cells in the lymphatic system and decreased regulatory T cells and M2 macrophages in tumors. CONCLUSION Olaparib supplemented with natural compound Oligo-Fucoidan is a novel therapeutic strategy for reprogramming cancer stemness, metabolism and the microenvironment to prevent local postsurgical recurrence and distant metastasis. The combination therapy may advance therapeutic efficacy that prevent metastasis, chemoresistance and mortality in TNBC patients.
Collapse
|
117
|
Wang C, Xu R, Song J, Chen Y, Yin X, Ruze R, Xu Q. Prognostic value of glycolysis markers in pancreatic cancer: A systematic review and meta-analysis. Front Oncol 2022; 12:1004850. [PMID: 36172154 PMCID: PMC9510923 DOI: 10.3389/fonc.2022.1004850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Previous studies have investigated the prognostic significance of glycolysis markers in pancreatic cancer; however, conclusions from these studies are still controversial. Methods PubMed, Embase, and Web of Science were systematically searched to investigate the prognostic role of glycolysis markers in pancreatic cancer up to May 2022. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) related to overall survival (OS), disease free survival (DFS), recurrence-free survival (RFS), and distant metastasis-free survival (DMFS) were calculated using the STATA 12.0 software. Results A total of 28 studies comprising 2010 patients were included in this meta-analysis. High expression of the five glycolysis markers was correlated with a poorer OS (HR = 1.72, 95% CI: 1.34-2.22), DFS (HR = 3.09, 95% CI: 1.91-5.01), RFS (HR = 1.73, 95% CI: 1.21-2.48) and DMFS (HR = 2.60, 95% CI: 1.09-6.20) in patients with pancreatic cancer. In subgroup analysis, it was shown that higher expression levels of the five glycolysis markers were related to a poorer OS in Asians (HR = 1.85, 95% CI: 1.46-2.35, P < 0.001) and Caucasians (HR = 1.97, 95% CI: 1.40-2.77, P < 0.001). Besides, analysis based on the expression levels of specific glycolysis markers demonstrated that higher expression levels of GLUT1 (HR = 2.11, 95% CI: 1.58-2.82, P < 0.001), MCT4 (HR = 2.26, 95% CI: 1.36-3.76, P = 0.002), and ENO1 (HR = 2.16, 95% CI: 1.28-3.66, P =0.004) were correlated with a poorer OS in patients with pancreatic cancer. Conclusions High expression of the five glycolysis markers are associated with poorer OS, DFS, RFS and DMFS in patients with pancreatic cancer, indicating that the glycolysis markers could be potential prognostic predictors and therapeutic targets in pancreatic cancer.
Collapse
|
118
|
Jiang X, Yan N, Deng D, Yan C. Structural aspects of the glucose and monocarboxylate transporters involved in the Warburg effect. IUBMB Life 2022; 74:1180-1199. [PMID: 36082803 DOI: 10.1002/iub.2668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022]
Abstract
Cancer cells shift their glucose catabolism from aerobic respiration to lactic fermentation even in the presence of oxygen, and this is known as the "Warburg effect". To accommodate the high glucose demands and to avoid lactate accumulation, the expression levels of human glucose transporters (GLUTs) and human monocarboxylate transporters (MCTs) are elevated to maintain metabolic homeostasis. Therefore, inhibition of GLUTs and/or MCTs provides potential therapeutic strategies for cancer treatment. Here, we summarize recent advances in the structural characterization of GLUTs and MCTs, providing a comprehensive understanding of their transport and inhibition mechanisms to facilitate further development of anticancer therapies.
Collapse
Affiliation(s)
- Xin Jiang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Dong Deng
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
119
|
Sung YS, Kerimoglu B, Ooi A, Tomat E. Aroylhydrazone Glycoconjugate Prochelators Exploit Glucose Transporter 1 (GLUT1) to Target Iron in Cancer Cells. ACS Med Chem Lett 2022; 13:1452-1458. [PMID: 36105345 PMCID: PMC9465708 DOI: 10.1021/acsmedchemlett.2c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Glycoconjugation strategies in anticancer drug discovery exploit the high expression of glucose transporters in malignant cells to achieve preferential uptake and hence attractive pharmacological characteristics of increased therapeutic windows and decreased unwanted toxicity. Here we present the design of glycoconjugated prochelators of aroylhydrazone AH1, an antiproliferative scavenger that targets the increased iron demand of rapidly proliferating malignant cells. The constructs feature a monosaccharide (d-glucose, d-glucosamine, or glycolytic inhibitor 2-deoxy-d-glucose) connected at the C2 or C6 position via a short linker, which masks the chelator through a disulfide bond susceptible to intracellular reduction. Cellular assays showed that the glycoconjugates rely on the GLUT1 transporter for uptake, lead to intracellular iron deprivation, and present antiproliferative activity. Ectopic overexpression of GLUT1 in malignant and normal cells increased the uptake and toxicity of the glycoconjugated prochelators, demonstrating that these compounds are well suited for targeting cells overexpressing glucose transporters and therefore for selective iron sequestration in malignant cells.
Collapse
Affiliation(s)
- Yu-Shien Sung
- Department
of Chemistry and Biochemistry, The University
of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721-0041, United States
| | - Baris Kerimoglu
- Department
of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E. Mabel St., Tucson, Arizona 85721, United
States
| | - Aikseng Ooi
- Department
of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E. Mabel St., Tucson, Arizona 85721, United
States
| | - Elisa Tomat
- Department
of Chemistry and Biochemistry, The University
of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721-0041, United States
| |
Collapse
|
120
|
Abstract
The presence of diabetes mellitus (DM) has a critical influence on the occurrence and development of endometrial cancer (EC) and is associated with a poor prognosis. Patients with DM are twice as likely to progress to EC, probably because a high-glucose environment contributes to the growth and invasiveness of EC cells. In this review, we focus on the etiological links between DM and EC and provide an overview of potential biological mechanisms that may account for this relationship, including hyperglycemia, insulin resistance, hyperinsulinemia, glycolysis, chronic inflammation, obesity, and activation of signaling pathways involved in EC. Furthermore, we discuss the pharmacological management of EC associated with DM. Early treatment with metformin is expected to be an effective adjuvant alternative for EC in the future. This knowledge is important for further opening up preventive and therapeutic strategies for EC by targeting glucose metabolism.
Collapse
Affiliation(s)
- Ya Wang
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
- Department of Clinical Medical Research Center for Personalized Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
| | - Xinling Zeng
- Department of gynaecology and obstetrics,The First School of Clinical Medicine,Yangtze University, Jingzhou, Hubei, China
| | - Jie Tan
- Department of Hematology, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
- *Correspondence: Jie Tan, Department of Hematology, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China (e-mail: ); Cunjian Yi, Department of Clinical Medical Research Center for Personalized Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China (e-mail: )
| | - Yi Xu
- Department of gynaecology and obstetrics,The First School of Clinical Medicine,Yangtze University, Jingzhou, Hubei, China
| | - Cunjian Yi
- Department of Clinical Medical Research Center for Personalized Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
- *Correspondence: Jie Tan, Department of Hematology, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China (e-mail: ); Cunjian Yi, Department of Clinical Medical Research Center for Personalized Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China (e-mail: )
| |
Collapse
|
121
|
Zheng X, Pan Y, Yang G, Liu Y, Zou J, Zhao H, Yin G, Wu Y, Li X, Wei Z, Yu S, Zhao Y, Wang A, Chen W, Lu Y. Kaempferol impairs aerobic glycolysis against melanoma metastasis via inhibiting the mitochondrial binding of HK2 and VDAC1. Eur J Pharmacol 2022; 931:175226. [PMID: 36007607 DOI: 10.1016/j.ejphar.2022.175226] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 01/10/2023]
Abstract
Metastasis is the leading cause of death in melanoma patients. Aerobic glycolysis is a common metabolic feature in tumor and is closely related to cell growth and metastasis. Kaempferol (KAM) is one of the active ingredients in the total flavonoids of Chinese traditional medicine Sparganii Rhizoma. Studies have shown that it interferes with the cell cycle, apoptosis, angiogenesis and metastasis of tumor cells, but whether it can affect the aerobic glycolysis of melanoma is still unclear. Here, we explored the effects and mechanisms of KAM on melanoma metastasis and aerobic glycolysis. KAM inhibited the migration and invasion of A375 and B16F10 cells, and reduced the lung metastasis of melanoma cells. Extracellular acidification rates (ECAR) and glucose consumption were obviously suppressed by KAM, as well as the production of ATP, pyruvate and lactate. Mechanistically, the activity of hexokinase (HK), the first key kinase of aerobic glycolysis, was significantly inhibited by KAM. Although the total protein expression of HK2 was not significantly changed, the binding of HK2 and voltage-dependent anion channel 1 (VDAC1) on mitochondria was inhibited by KAM through AKT/GSK-3β signal pathway. In conclusion, KAM inhibits melanoma metastasis via blocking aerobic glycolysis of melanoma cells, in which the binding of HK2 and VDAC1 on mitochondria was broken.
Collapse
Affiliation(s)
- Xiuqin Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanhong Pan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Department of Pharmacy, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gejun Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jueyao Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Han Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gang Yin
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Suyun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China.
| |
Collapse
|
122
|
Suriya Muthukumaran N, Velusamy P, Akino Mercy CS, Langford D, Natarajaseenivasan K, Shanmughapriya S. MicroRNAs as Regulators of Cancer Cell Energy Metabolism. J Pers Med 2022; 12:1329. [PMID: 36013278 PMCID: PMC9410355 DOI: 10.3390/jpm12081329] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
To adapt to the tumor environment or to escape chemotherapy, cancer cells rapidly reprogram their metabolism. The hallmark biochemical phenotype of cancer cells is the shift in metabolic reprogramming towards aerobic glycolysis. It was thought that this metabolic shift to glycolysis alone was sufficient for cancer cells to meet their heightened energy and metabolic demands for proliferation and survival. Recent studies, however, show that cancer cells rely on glutamine, lipid, and mitochondrial metabolism for energy. Oncogenes and scavenging pathways control many of these metabolic changes, and several metabolic and tumorigenic pathways are post-transcriptionally regulated by microRNA (miRNAs). Genes that are directly or indirectly responsible for energy production in cells are either negatively or positively regulated by miRNAs. Therefore, some miRNAs play an oncogenic role by regulating the metabolic shift that occurs in cancer cells. Additionally, miRNAs can regulate mitochondrial calcium stores and energy metabolism, thus promoting cancer cell survival, cell growth, and metastasis. In the electron transport chain (ETC), miRNAs enhance the activity of apoptosis-inducing factor (AIF) and cytochrome c, and these apoptosome proteins are directed towards the ETC rather than to the apoptotic pathway. This review will highlight how miRNAs regulate the enzymes, signaling pathways, and transcription factors of cancer cell metabolism and mitochondrial calcium import/export pathways. The review will also focus on the metabolic reprogramming of cancer cells to promote survival, proliferation, growth, and metastasis with an emphasis on the therapeutic potential of miRNAs for cancer treatment.
Collapse
Affiliation(s)
| | - Prema Velusamy
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Dauphin, PA 17033, USA
| | - Charles Solomon Akino Mercy
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Dianne Langford
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Santhanam Shanmughapriya
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Dauphin, PA 17033, USA
| |
Collapse
|
123
|
Erturk E, Enes Onur O, Akgun O, Tuna G, Yildiz Y, Ari F. Mitochondrial miRNAs (MitomiRs): Their potential roles in breast and other cancers. Mitochondrion 2022; 66:74-81. [PMID: 35963496 DOI: 10.1016/j.mito.2022.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 11/15/2022]
Abstract
Breast cancer is the most common cancer in women worldwide. MicroRNAs (miRNAs) are non-coding RNAs that are involved in the post-transcriptional regulation of gene expression. Although miRNAs mainly act in the cytoplasm, they can be found in the mitochondrial compartment of the cell. These miRNAs called "MitomiR", they can change mitochondrial functions by regulating proteins at the mitochondrial level and cause cancer. In this review, we have aimed to explain miRNA biogenesis, transport pathways to mitochondria, and summarize mitomiRs that have been shown to play an important role in mitochondrial function, especially in the initiation and progression of breast cancer.
Collapse
Affiliation(s)
- Elif Erturk
- Bursa Uludag University, Vocational School of Health Services, 16059, Bursa, Turkey
| | - Omer Enes Onur
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Oguzhan Akgun
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Gonca Tuna
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Yaren Yildiz
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey
| | - Ferda Ari
- Bursa Uludag University, Department of Biology, Science and Art Faculty, 16059, Bursa, Turkey.
| |
Collapse
|
124
|
Zhang Z, Yu Y, Li P, Wang M, Jiao W, Liang Y, Niu H. Identification and validation of an immune signature associated with EMT and metabolic reprogramming for predicting prognosis and drug response in bladder cancer. Front Immunol 2022; 13:954616. [PMID: 35958586 PMCID: PMC9359097 DOI: 10.3389/fimmu.2022.954616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Epithelial-mesenchymal transition (EMT), one leading reason of the dismal prognosis of bladder cancer (BLCA), is closely associated with tumor invasion and metastasis. We aimed to develop a novel immune−related gene signature based on different EMT and metabolic status to predict the prognosis of BLCA. Methods Gene expression and clinical data were obtained from TCGA and GEO databases. Patients were clustered based on EMT and metabolism scores calculated by ssGSEA. The immune-related differentially expressed genes (DEGs) between the two clusters with the most obvious differences were used to construct the signature by LASSO and Cox analysis. Time-dependent receiver operating characteristic (ROC) curves and Kaplan–Meier curves were utilized to evaluate the gene signature in training and validation cohorts. Finally, the function of the signature genes AHNAK and NFATC1 in BLCA cell lines were explored by cytological experiments. Results Based on the results of ssGSEA, TCGA patients were divided into three clusters, among which cluster 1 and cluster 3 had completely opposite EMT and metabolic status. Patients in cluster 3 had a significantly worse clinical prognosis than cluster 1. Immune-related DEGs were selected between the two clusters to construct the predictive signature based on 14 genes. High-risk patients had poorer prognosis, lower proportions of CD8+ T cells, higher EMT and carbohydrate metabolism, and less sensitivity to chemotherapy and immunotherapy. Overexpression of AHNAK or NFATC1 promoted the proliferation, migration and invasion of T24 and UMUC3 cells. Silencing ANHAK or NFATC1 could effectively inhibit EMT and metabolism in T24 and UMUC3 cells. Conclusion The established immune signature may act as a promising model for generating accurate prognosis for patients and predicting their EMT and metabolic status, thus guiding the treatment of BLCA patients.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yongbo Yu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Li
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meilan Wang
- Nursing department, Shandong Institute of Petroleum and Chemical Technology, Dongying, China
| | - Wei Jiao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ye Liang
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Haitao Niu, ; Ye Liang,
| | - Haitao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Haitao Niu, ; Ye Liang,
| |
Collapse
|
125
|
Targeting metabolic reprogramming in chronic lymphocytic leukemia. Exp Hematol Oncol 2022; 11:39. [PMID: 35761419 PMCID: PMC9235173 DOI: 10.1186/s40164-022-00292-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022] Open
Abstract
Metabolic reprogramming, fundamentally pivotal in carcinogenesis and progression of cancer, is considered as a promising therapeutic target against tumors. In chronic lymphocytic leukemia (CLL) cells, metabolic abnormalities mediate alternations in proliferation and survival compared with normal B cells. However, the role of metabolic reprogramming is still under investigation in CLL. In this review, the critical metabolic processes of CLL were summarized, particularly glycolysis, lipid metabolism and oxidative phosphorylation. The effects of T cells and stromal cells in the microenvironment on metabolism of CLL were also elucidated. Besides, the metabolic alternation is regulated by some oncogenes and tumor suppressor regulators, especially TP53, MYC and ATM. Thus, the agents targeting metabolic enzymes or signal pathways may impede the progression of CLL. Both the inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) statins and the lipoprotein lipase inhibitor orlistat induce the apoptosis of CLL cells. In addition, a series of oxidative phosphorylation inhibitors play important roles in decreasing the proliferation of CLL cells. We epitomized recent advancements in metabolic reprogramming in CLL and discussed their clinical potentiality for innovative therapy options. Metabolic reprogramming plays a vital role in the initiation and progression of CLL. Therapeutic approaches targeting metabolism have their advantages in improving the survival of CLL patients. This review may shed novel light on the metabolism of CLL, leading to the development of targeted agents based on the reshaping metabolism of CLL cells.
Collapse
|
126
|
Impact of hyperglycemia on the expression of GLUT1 during oral carcinogenesis in rats. Mol Biol Rep 2022; 49:8369-8380. [PMID: 35713797 DOI: 10.1007/s11033-022-07653-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND On the background of the epidemiological link between diabetes and oral cancer, the present study aimed to analyze the potential involvement of selected glucose transporters (GLUT1/GLUT3/GLUT4), if any, in such putative association. METHODS AND RESULTS Oral carcinogenesis was induced by 4-nitroquinoline N-oxide in 10 non-diabetic and 10 diabetic rats; 8 non-diabetic and 7 diabetic rats served as controls. Expressions of selected GLUTs at mRNA and protein levels were analyzed in oral tissue (normal/lesion) by quantitative real-time PCR and immunohistochemistry respectively. Premalignant lesions (hyperplasia/dysplasia/carcinoma-in-situ) appeared on tongues of carcinogen-treated animals. Significant increase of GLUT1mRNA level was seen from normal to lesion tongues, along increasing lesion grades (from hyperplasia/mild dysplasia to moderate/severe dysplasia) and in lesions induced under hyperglycemic condition than that induced under normoglycemic one; a similar trend was found in transcript variant-1 of GLUT1, but not in variant-2. GLUT3 and GLUT4 mRNA levels were comparable among lesions irrespective of grades and glycemic status. Concordant to mRNA level, overall expression of GLUT1 protein was higher in tongue lesions in presence of hyperglycemia than in absence of such condition; non-lesion portions of tongues exposed to carcinogen showed a similar trend. Moreover in carcinogen-treated groups, non-lesion and lesion portions of tongues under hyperglycemic condition showed predominantly membranous expression for GLUT1 which was again significantly higher than equivalent portions of tongue under normoglycemic condition. CONCLUSION Hyperglycemia seemed to favor GLUT1 over-expression and membrane localization of the protein during oral carcinogenesis. GLUT1 transcript variant-1 appeared to be more important than variant-2 in disease pathogenesis.
Collapse
|
127
|
Gang W, Hao H, Yong H, Ruibing F, Chaowen L, Yizheng H, Chao L, Haitao Z. Therapeutic Potential of Triptolide in Treating Bone-Related Disorders. Front Pharmacol 2022; 13:905576. [PMID: 35784734 PMCID: PMC9240268 DOI: 10.3389/fphar.2022.905576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
Triptolide, a diterpene triepoxide, is a pharmacologically active compound isolated from a Chinese medicinal herb Tripterygium wilfordii Hook F (TwHF). Triptolide has attracted considerable attention in recent times due to its multiple biological and pharmaceutical activities, with an emphasis on therapeutic importance in the treatment of diverse disorders. With essential medicinal implications, TwHF's extracts have been used as anti-inflammatory, antiproliferative, antioxidative, and immunosuppressive agents for centuries, with continuous and relevant modifications to date to enhance its utility in several diseases and pathophysiology. Here, in this review, we accentuate the studies, highlighting the effects of triptolide on treating bone-related disorders, both inflammatory and cancerous, particularly osteosarcoma, and their manifestations. Based on this review, future avenues could be estimated for potential research strategies, molecular mechanisms, and outcomes that might contribute toward reinforcing new dimensions in the clinical application of triptolide in treating bone-related disorders.
Collapse
Affiliation(s)
- Wu Gang
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Hu Hao
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Huang Yong
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Feng Ruibing
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | | | - Huang Yizheng
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Li Chao
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Zhang Haitao
- Department of Spinal Surgery, Hubei Provincial Hospital of TCM, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
128
|
Huttunen J, Adla SK, Markowicz-Piasecka M, Huttunen KM. Increased/Targeted Brain (Pro)Drug Delivery via Utilization of Solute Carriers (SLCs). Pharmaceutics 2022; 14:pharmaceutics14061234. [PMID: 35745806 PMCID: PMC9228667 DOI: 10.3390/pharmaceutics14061234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Membrane transporters have a crucial role in compounds’ brain drug delivery. They allow not only the penetration of a wide variety of different compounds to cross the endothelial cells of the blood–brain barrier (BBB), but also the accumulation of them into the brain parenchymal cells. Solute carriers (SLCs), with nearly 500 family members, are the largest group of membrane transporters. Unfortunately, not all SLCs are fully characterized and used in rational drug design. However, if the structural features for transporter interactions (binding and translocation) are known, a prodrug approach can be utilized to temporarily change the pharmacokinetics and brain delivery properties of almost any compound. In this review, main transporter subtypes that are participating in brain drug disposition or have been used to improve brain drug delivery across the BBB via the prodrug approach, are introduced. Moreover, the ability of selected transporters to be utilized in intrabrain drug delivery is discussed. Thus, this comprehensive review will give insights into the methods, such as computational drug design, that should be utilized more effectively to understand the detailed transport mechanisms. Moreover, factors, such as transporter expression modulation pathways in diseases that should be taken into account in rational (pro)drug development, are considered to achieve successful clinical applications in the future.
Collapse
Affiliation(s)
- Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
| | - Santosh Kumar Adla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Institute of Organic Chemistry and Biochemistry (IOCB), Czech Academy of Sciences, Flemingovo Namesti 542/2, 160 00 Prague, Czech Republic
| | - Magdalena Markowicz-Piasecka
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland;
| | - Kristiina M. Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Correspondence:
| |
Collapse
|
129
|
Li Y, Yang S, Liu Y, Yang S. Deletion of Trp53 and Rb1 in Ctsk-expressing cells drives osteosarcoma progression by activating glucose metabolism and YAP signaling. MedComm (Beijing) 2022; 3:e131. [PMID: 35615117 PMCID: PMC9026232 DOI: 10.1002/mco2.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/23/2022] Open
Abstract
Glucose metabolism reprogramming is a critical factor in the progression of multiple cancers and is directly regulated by many tumor suppressors. However, how glucose metabolism regulates osteosarcoma development and progression is largely unknown. Cathepsin K (Ctsk) has been reported to express in chondroprogenitor cells and stem cells besides osteoclasts. Moreover, mutations in the tumor suppressors transformation-related protein 53 (Trp53) and retinoblastoma protein (Rb1) are evident in approximately 50%-70% of human osteosarcoma. To understand how deletion of Trp53 and Rb1 in Ctsk-expressing cells drives tumorigenesis, we generated the Ctsk-Cre;Trp53f/f/Rb1f/f mouse model. Our data revealed that those mice developed osteosarcoma without formation of tumor in osteoclast lineage. The level of cortical bone destruction was gradually increased in parallel to the osteosarcoma progression rate. Through mechanistic studies, we found that loss of Trp53/Rb1 in Ctsk-expressing cells significantly elevated Yes-associated protein (YAP) expression and activity. YAP/TEAD1 complex binds to the glucose transporter 1 (Glut1) promoter to upregulate Glut1 expression. Upregulated Glut1 expression led to overactive glucose metabolism, increasing osteosarcoma progression. Ablation of YAP signaling inhibited energy metabolism and delayed osteosarcoma progression in Ctsk-Cre;Trp53f/f/Rb1f/f mice. Collectively, these findings provide proof of principle that inhibition of YAP activity may be a potential strategy for osteosarcoma treatment.
Collapse
Affiliation(s)
- Yang Li
- Department of Basic & Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shuting Yang
- Department of Basic & Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Yang Liu
- College of Fisheries and Life ScienceDalian Ocean UniversityDalianChina
| | - Shuying Yang
- Department of Basic & Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Innovation & Precision DentistrySchool of Dental MedicineSchool of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- The Penn Center for Musculoskeletal DisordersSchool of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
130
|
Liang Z, Pang H, Zeng G, Chen T. Bioorthogonal Light-Up Fluorescent Probe Enables Wash-Free Real-Time Dynamic Monitoring of Cellular Glucose Uptake. Anal Chem 2022; 94:8293-8301. [PMID: 35639666 DOI: 10.1021/acs.analchem.2c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As a significant energy source for living systems, the aberrant cellular glucose uptake is seriously implicated in numerous metabolic diseases. Unfortunately, current shortage of robust tools leaves the limitation to understand its precise biology. Herein we presented a bioorthogonal light-up fluorescent probe consist of two reagents, Glu-HT-Me+AzGlu2, for rapidly responsive (within 25 min), highly specific and sensitive (20-folds enhancement) detection of live-cell glucose uptake based on arylphosphine-induced a-PET effect and Staudinger ligation. Especially, taking the advantage of wash-free characteristic, the probe displayed the real-time dynamic monitoring of cellular glucose uptake. Furthermore, it was successfully capable of not only differentiating cancer cells from normal cells, but also allowing evaluation of anticancer/glycolysis/transport mediated glucose flux. Importantly, it was employed to monitor the fluctuations of glucose uptake in a doxycycline-inducible K-rasG12 V expression oncogenic cell system, implying its potential as a valuable tool to explore glucose uptake biology.
Collapse
Affiliation(s)
- Zhenhao Liang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Huaiting Pang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Guanling Zeng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan 511517, China
| |
Collapse
|
131
|
Tidwell TR, Røsland GV, Tronstad KJ, Søreide K, Hagland HR. Metabolic flux analysis of 3D spheroids reveals significant differences in glucose metabolism from matched 2D cultures of colorectal cancer and pancreatic ductal adenocarcinoma cell lines. Cancer Metab 2022; 10:9. [PMID: 35578327 PMCID: PMC9109327 DOI: 10.1186/s40170-022-00285-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Most in vitro cancer cell experiments have been performed using 2D models. However, 3D spheroid cultures are increasingly favored for being more representative of in vivo tumor conditions. To overcome the translational challenges with 2D cell cultures, 3D systems better model more complex cell-to-cell contact and nutrient levels present in a tumor, improving our understanding of cancer complexity. Despite this need, there are few reports on how 3D cultures differ metabolically from 2D cultures. METHODS Well-described cell lines from colorectal cancer (HCT116 and SW948) and pancreatic ductal adenocarcinoma (Panc-1 and MIA-Pa-Ca-2) were used to investigate metabolism in 3D spheroid models. The metabolic variation under normal glucose conditions were investigated comparing 2D and 3D cultures by metabolic flux analysis and expression of key metabolic proteins. RESULTS We find significant differences in glucose metabolism of 3D cultures compared to 2D cultures, both related to glycolysis and oxidative phosphorylation. Spheroids have higher ATP-linked respiration in standard nutrient conditions and higher non-aerobic ATP production in the absence of supplemented glucose. In addition, ATP-linked respiration is significantly inversely correlated with OCR/ECAR (p = 0.0096). Mitochondrial transport protein, TOMM20, expression decreases in all spheroid models compared to 2D, and monocarboxylate transporter (MCT) expression increases in 3 of the 4 spheroid models. CONCLUSIONS In this study of CRC and PDAC cell lines, we demonstrate that glucose metabolism in 3D spheroids differs significantly from 2D cultures, both in terms of glycolytic and oxidative phosphorylation metrics. The metabolic phenotype shift from 2D to 3D culture in one cell line is greater than the phenotypic differences between each cell line and tumor source. The results herein emphasize the need to use 3D cell models for investigating nutrient utilization and metabolic flux for a better understanding of tumor metabolism and potential metabolic therapeutic targets.
Collapse
Affiliation(s)
- Tia R Tidwell
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Gro V Røsland
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | | - Kjetil Søreide
- Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway
| | - Hanne R Hagland
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway.
| |
Collapse
|
132
|
Sonoda K, Bogahawatta S, Katayama A, Ujike S, Kuroki S, Kitagawa N, Hirotsuru K, Suzuki N, Miyata T, Kawaguchi SI, Tsujita T. Prolyl Hydroxylase Domain Protein Inhibitor Not Harboring a 2-Oxoglutarate Scaffold Protects against Hypoxic Stress. ACS Pharmacol Transl Sci 2022; 5:362-372. [PMID: 35592438 PMCID: PMC9112412 DOI: 10.1021/acsptsci.2c00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 02/07/2023]
Abstract
Hypoxia-inducible factor-α (HIF-α) activation has shown promising results in the treatment of ischemia, such as stroke, myocardial infarction, and chronic kidney disease. A number of HIF-α activators have been developed to improve the symptoms of these diseases. Many feature 2-oxoglutarate (2-OG) scaffolds that interact with the active centers of prolyl hydroxylase domain-containing proteins (PHDs), displacing the coenzyme 2-OG. This stabilizes HIF-α. Therefore, the specificity of the 2-OG analogs is not high. Here, we identified 5-(1-acetyl-5-phenylpyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid (PyrzA) among over 10 000 compounds as a novel HIF activator that does not contain a 2-OG scaffold. In cultured cells, PyrzA enhanced HIF-α stability and upregulated the expression of HIF target genes. Interestingly, PyrzA decreased HIF-1α prolyl hydroxylation, suggesting that PyrzA may activate HIF to prevent the degradation of HIF-α. These results indicate that PyrzA stabilizes HIF via a novel mechanism and could be a potential HIF activator candidate.
Collapse
Affiliation(s)
- Kento Sonoda
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan.,Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Sudarma Bogahawatta
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan.,Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Akito Katayama
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan
| | - Saki Ujike
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan
| | - Sae Kuroki
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan
| | - Naho Kitagawa
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Kohichi Hirotsuru
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aobaku, Sendai, Miyagi 980-8575, Japan
| | - Toshio Miyata
- Department of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Shin-Ichi Kawaguchi
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, 152-1 Shonan-cho, Karatsu, Saga 847-0021, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Tadayuki Tsujita
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
133
|
Molecular basis for inhibiting human glucose transporters by exofacial inhibitors. Nat Commun 2022; 13:2632. [PMID: 35552392 PMCID: PMC9098912 DOI: 10.1038/s41467-022-30326-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/26/2022] [Indexed: 12/27/2022] Open
Abstract
Human glucose transporters (GLUTs) are responsible for cellular uptake of hexoses. Elevated expression of GLUTs, particularly GLUT1 and GLUT3, is required to fuel the hyperproliferation of cancer cells, making GLUT inhibitors potential anticancer therapeutics. Meanwhile, GLUT inhibitor-conjugated insulin is being explored to mitigate the hypoglycemia side effect of insulin therapy in type 1 diabetes. Reasoning that exofacial inhibitors of GLUT1/3 may be favored for therapeutic applications, we report here the engineering of a GLUT3 variant, designated GLUT3exo, that can be probed for screening and validating exofacial inhibitors. We identify an exofacial GLUT3 inhibitor SA47 and elucidate its mode of action by a 2.3 Å resolution crystal structure of SA47-bound GLUT3. Our studies serve as a framework for the discovery of GLUTs exofacial inhibitors for therapeutic development. Human glucose transporters (GLUTs), particularly GLUT1 and GLUT3, are potential anticancer therapy targets. Here, Nan Wang et al. use an engineered GLUT 3 variant to identify an exofacial GLUT3 inhibitor, SA47, and elucidate the drug’s inhibitory mechanism.
Collapse
|
134
|
Guo L, Zhang W, Xie Y, Chen X, Olmstead EE, Lian M, Zhang B, Zaytseva YY, Evers BM, Spielmann HP, Liu X, Watt DS, Liu C. Diaminobutoxy-substituted Isoflavonoid (DBI-1) Enhances the Therapeutic Efficacy of GLUT1 Inhibitor BAY-876 by Modulating Metabolic Pathways in Colon Cancer Cells. Mol Cancer Ther 2022; 21:740-750. [PMID: 35247917 PMCID: PMC9081236 DOI: 10.1158/1535-7163.mct-21-0925] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/18/2022] [Accepted: 02/15/2022] [Indexed: 01/28/2023]
Abstract
Cancer cells undergo significant "metabolic remodeling" to provide sufficient ATP to maintain cell survival and to promote rapid growth. In colorectal cancer cells, ATP is produced by mitochondrial oxidative phosphorylation and by substantially elevated cytoplasmic glucose fermentation (i.e., the Warburg effect). Glucose transporter 1 (GLUT1) expression is significantly increased in colorectal cancer cells, and GLUT1 inhibitors block glucose uptake and hence glycolysis crucial for cancer cell growth. In addition to ATP, these metabolic pathways also provide macromolecule building blocks and signaling molecules required for tumor growth. In this study, we identify a diaminobutoxy-substituted isoflavonoid (DBI-1) that inhibits mitochondrial complex I and deprives rapidly growing cancer cells of energy needed for growth. DBI-1 and the GLUT1 inhibitor, BAY-876, synergistically inhibit colorectal cancer cell growth in vitro and in vivo. This study suggests that an electron transport chain inhibitor (i.e., DBI-1) and a glucose transport inhibitor, (i.e., BAY-876) are potentially effective combination for colorectal cancer treatment.
Collapse
Affiliation(s)
- Lichao Guo
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory and Center for Drug Innovation and Discovery, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China
| | - Wen Zhang
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Yanqi Xie
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Xi Chen
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory and Center for Drug Innovation and Discovery, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China
| | - Emma E. Olmstead
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Mengqiang Lian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory and Center for Drug Innovation and Discovery, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China
| | - Baochen Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory and Center for Drug Innovation and Discovery, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China
| | - Yekaterina Y. Zaytseva
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - B. Mark Evers
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - H. Peter Spielmann
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory and Center for Drug Innovation and Discovery, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China
| | - David S. Watt
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Chunming Liu
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
135
|
α-Arrestins and Their Functions: From Yeast to Human Health. Int J Mol Sci 2022; 23:ijms23094988. [PMID: 35563378 PMCID: PMC9105457 DOI: 10.3390/ijms23094988] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
α-Arrestins, also called arrestin-related trafficking adaptors (ARTs), constitute a large family of proteins conserved from yeast to humans. Despite their evolutionary precedence over their extensively studied relatives of the β-arrestin family, α-arrestins have been discovered relatively recently, and thus their properties are mostly unexplored. The predominant function of α-arrestins is the selective identification of membrane proteins for ubiquitination and degradation, which is an important element in maintaining membrane protein homeostasis as well as global cellular metabolisms. Among members of the arrestin clan, only α-arrestins possess PY motifs that allow canonical binding to WW domains of Rsp5/NEDD4 ubiquitin ligases and the subsequent ubiquitination of membrane proteins leading to their vacuolar/lysosomal degradation. The molecular mechanisms of the selective substrate’s targeting, function, and regulation of α-arrestins in response to different stimuli remain incompletely understood. Several functions of α-arrestins in animal models have been recently characterized, including redox homeostasis regulation, innate immune response regulation, and tumor suppression. However, the molecular mechanisms of α-arrestin regulation and substrate interactions are mainly based on observations from the yeast Saccharomyces cerevisiae model. Nonetheless, α-arrestins have been implicated in health disorders such as diabetes, cardiovascular diseases, neurodegenerative disorders, and tumor progression, placing them in the group of potential therapeutic targets.
Collapse
|
136
|
Hunyady J. The Result of Vitamin C Treatment of Patients with Cancer: Conditions Influencing the Effectiveness. Int J Mol Sci 2022; 23:ijms23084380. [PMID: 35457200 PMCID: PMC9030840 DOI: 10.3390/ijms23084380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin C (ascorbic acid, AA) is a weak sugar acid structurally related to glucose. All known physiological and biochemical functions of AA are due to its action as an electron donor. Ascorbate readily undergoes pH-dependent autoxidation creating hydrogen peroxide (H2O2). In vitro evidence suggests that vitamin C functions at low concentrations as an antioxidant while high concentration is pro-oxidant. Thus, both characters of AA might be translated into clinical benefits. In vitro obtained results and murine experiments consequently prove the cytotoxic effect of AA on cancer cells, but current clinical evidence for high-dose intravenous (i.v.) vitamin C's therapeutic effect is ambiguous. The difference might be caused by the missing knowledge of AA's actions. In the literature, there are many publications regarding vitamin C and cancer. Review papers of systematic analysis of human interventional and observational studies assessing i.v. AA for cancer patients' use helps the overview of the extensive literature. Based on the results of four review articles and the Cancer Information Summary of the National Cancer Institute's results, we analyzed 20 publications related to high-dose intravenous vitamin C therapy (HAAT). The analyzed results indicate that HAAT might be a useful cancer-treating tool in certain circumstances. The AA's cytotoxic effect is hypoxia-induced factor dependent. It impacts only the anoxic cells, using the Warburg metabolism. It prevents tumor growth. Accordingly, discontinuation of treatment leads to repeated expansion of the tumor. We believe that the clinical use of HAAT in cancer treatment should be reassessed. The accumulation of more study results on HAAT is desperately needed.
Collapse
Affiliation(s)
- János Hunyady
- Department of Dermatology, Medical Faculty, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
137
|
Nava GM, Madrigal Perez LA. Metabolic profile of the Warburg effect as a tool for molecular prognosis and diagnosis of cancer. Expert Rev Mol Diagn 2022; 22:439-447. [PMID: 35395916 DOI: 10.1080/14737159.2022.2065196] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Adaptations of eukaryotic cells to environmental changes are important for their survival. However, under some circumstances, microenvironmental changes promote that eukaryotic cells utilize a metabolic signature resembling a unicellular organism named the Warburg effect. Most cancer cells share the Warburg effect displaying lactic fermentation and high glucose uptake. The Warburg effect also induces a metabolic rewiring stimulating glutamine consumption and lipid synthesis, also considered cancer hallmarks. Amino acid metabolism alteration due to the Warburg effect increases plasma levels of proline and branched-chain amino acids in several cancer types. Proline and lipids are probably used as electron transfer molecules in carcinogenic cells. In addition, branched-chain amino acids fuel the Krebs cycle, protein synthesis, and signaling in cancer cells. AREAS COVERED This review covers how metabolomics studies describe changes in some metabolites and proteins associated with the Warburg effect and related metabolic pathways. EXPERT OPINION In this review, we analyze the metabolic signature of the Warburg effect and related phenotypes and propose some Warburg effect-related metabolites and proteins (lactate, glucose uptake, glucose transporters, glutamine, branched-chain amino acids, proline, and some lipogenic enzymes) as promising cancer biomarkers.
Collapse
Affiliation(s)
- Gerardo M Nava
- Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Querétaro, Qro, 76010, México
| | - Luis Alberto Madrigal Perez
- Tecnológico Nacional de México/ Instituto Tecnológico Superior de Ciudad Hidalgo, Av. Ing. Carlos Rojas Gutiérrez #2120, Ciudad Hidalgo, Michoacán, 61100, México
| |
Collapse
|
138
|
Yang F, Zhang J, Li J, Ye W, Li A, He W. Synthesis of a glucose conjugate of pristimerin and evaluation of its anticancer activity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
139
|
Wang Y, Li J, Chen Z, Pu L, Pei Z, Pei Y. A GLUTs/GSH cascade targeting-responsive bioprobe for the detection of circulating tumor cells. Chem Commun (Camb) 2022; 58:3945-3948. [PMID: 35244637 DOI: 10.1039/d2cc00566b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A GLUTs/GSH cascade targeting-responsive bioprobe, GluCC, was rationally designed and synthesized for the first time via the coordination of copper ions with a glucose-modified coumarin derivative ligand (GluC). GluCC can specifically detect circulating tumor cells (CTCs) in lung metastatic mice models by targeting the Warburg effect and responding to overexpressed glutathione in the tumor microenvironment. This bioprobe with a simple detection procedure has significant advantages for CTC detection.
Collapse
Affiliation(s)
- Yi Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Jiahui Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Zelong Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Liang Pu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| |
Collapse
|
140
|
Transcriptome Analysis of the Marine Nematode Litoditis marina in a Chemically Defined Food Environment with Stearic Acid Supplementation. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stearic acid represents one of the most abundant fatty acids in the Western diet and profoundly regulates health and diseases of animals and human beings. We previously showed that stearic acid supplementation promoted development of the terrestrial model nematode Caenorhabditis elegans in chemically defined CeMM food environment. However, whether stearic acid regulates development of other nematodes remains unknown. Here, we found that dietary supplementation with stearic acid could promote the development of the marine nematode Litoditis marina, belonging to the same family as C. elegans, indicating the conserved roles of stearic acid in developmental regulation. We further employed transcriptome analysis to analyze genome-wide transcriptional signatures of L. marina with dietary stearic acid supplementation. We found that stearic acid might promote development of L. marina via upregulation of the expression of genes involved in aminoacyl-tRNA biosynthesis, translation initiation and elongation, ribosome biogenesis, and transmembrane transport. In addition, we observed that the expression of neuronal signaling-related genes was decreased. This study provided important insights into how a single fatty acid stearic acid regulates development of marine nematode, and further studies with CRISPR genome editing will facilitate demonstrating the molecular mechanisms underlying how a single metabolite regulates animal development and health.
Collapse
|
141
|
Ryniawec JM, Coope MR, Loertscher E, Bageerathan V, de Oliveira Pessoa D, Warfel NA, Cress AE, Padi M, Rogers GC. GLUT3/SLC2A3 Is an Endogenous Marker of Hypoxia in Prostate Cancer Cell Lines and Patient-Derived Xenograft Tumors. Diagnostics (Basel) 2022; 12:diagnostics12030676. [PMID: 35328229 PMCID: PMC8946944 DOI: 10.3390/diagnostics12030676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 01/17/2023] Open
Abstract
The microenvironment of solid tumors is dynamic and frequently contains pockets of low oxygen levels (hypoxia) surrounded by oxygenated tissue. Indeed, a compromised vasculature is a hallmark of the tumor microenvironment, creating both spatial gradients and temporal variability in oxygen availability. Notably, hypoxia associates with increased metastasis and poor survival in patients. Therefore, to aid therapeutic decisions and better understand hypoxia’s role in cancer progression, it is critical to identify endogenous biomarkers of hypoxia to spatially phenotype oncogenic lesions in human tissue, whether precancerous, benign, or malignant. Here, we characterize the glucose transporter GLUT3/SLC2A3 as a biomarker of hypoxic prostate epithelial cells and prostate tumors. Transcriptomic analyses of non-tumorigenic, immortalized prostate epithelial cells revealed a highly significant increase in GLUT3 expression under hypoxia. Additionally, GLUT3 protein increased 2.4-fold in cultured hypoxic prostate cell lines and was upregulated within hypoxic regions of xenograft tumors, including two patient-derived xenografts (PDX). Finally, GLUT3 out-performs other established hypoxia markers; GLUT3 staining in PDX specimens detects 2.6–8.3 times more tumor area compared to a mixture of GLUT1 and CA9 antibodies. Therefore, given the heterogeneous nature of tumors, we propose adding GLUT3 to immunostaining panels when trying to detect hypoxic regions in prostate samples.
Collapse
Affiliation(s)
- John M. Ryniawec
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA; (J.M.R.); (M.R.C.); (E.L.); (N.A.W.)
| | - Matthew R. Coope
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA; (J.M.R.); (M.R.C.); (E.L.); (N.A.W.)
| | - Emily Loertscher
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA; (J.M.R.); (M.R.C.); (E.L.); (N.A.W.)
| | - Vignesh Bageerathan
- Biostatistics and Bioinformatics Shared Resource, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (V.B.); (D.d.O.P.)
| | - Diogo de Oliveira Pessoa
- Biostatistics and Bioinformatics Shared Resource, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (V.B.); (D.d.O.P.)
| | - Noel A. Warfel
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA; (J.M.R.); (M.R.C.); (E.L.); (N.A.W.)
| | - Anne E. Cress
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA; (J.M.R.); (M.R.C.); (E.L.); (N.A.W.)
- Correspondence: (A.E.C.); (M.P.); (G.C.R.)
| | - Megha Padi
- Department of Molecular and Cellular Biology, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
- Correspondence: (A.E.C.); (M.P.); (G.C.R.)
| | - Gregory C. Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA; (J.M.R.); (M.R.C.); (E.L.); (N.A.W.)
- Correspondence: (A.E.C.); (M.P.); (G.C.R.)
| |
Collapse
|
142
|
Kołodziej M, Kaznowska E, Paszek S, Cebulski J, Barnaś E, Cholewa M, Vongsvivut J, Zawlik I. Characterisation of breast cancer molecular signature and treatment assessment with vibrational spectroscopy and chemometric approach. PLoS One 2022; 17:e0264347. [PMID: 35263369 PMCID: PMC8906614 DOI: 10.1371/journal.pone.0264347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Triple negative breast cancer (TNBC) is regarded as the most aggressive breast cancer subtype with poor overall survival and lack of targeted therapies, resulting in many patients with recurrent. The insight into the detailed biochemical composition of TNBC would help develop dedicated treatments. Thus, in this study Fourier Transform Infrared microspectroscopy combined with chemometrics and absorbance ratios investigation was employed to compare healthy controls with TNBC tissue before and after chemotherapy within the same patient. The primary spectral differences between control and cancer tissues were found in proteins, polysaccharides, and nucleic acids. Amide I/Amide II ratio decrease before and increase after chemotherapy, whereas DNA, RNA, and glycogen contents increase before and decrease after the treatment. The chemometric results revealed discriminatory features reflecting a clinical response scheme and proved the chemotherapy efficacy assessment with infrared spectroscopy is possible.
Collapse
Affiliation(s)
| | - Ewa Kaznowska
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Rzeszow, Poland
- Department of Pathology, Medical College of Rzeszow University, Rzeszow, Poland
| | - Sylwia Paszek
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Rzeszow, Poland
- Department of Genetics, Institution of Experimental and Clinical Medicine, University of Rzeszow, Poland
| | - Józef Cebulski
- Centre for Innovation and Transfer of Natural Sciences and Engineering Knowledge, University of Rzeszow, Rzeszow, Poland
| | - Edyta Barnaś
- Institute of Obstetrics and Emergency Medicine, Medical College of Rzeszow University, Rzeszow, Poland
| | - Marian Cholewa
- Centre for Innovation and Transfer of Natural Sciences and Engineering Knowledge, University of Rzeszow, Rzeszow, Poland
| | | | - Izabela Zawlik
- Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Rzeszow, Poland
- Department of Genetics, Institution of Experimental and Clinical Medicine, University of Rzeszow, Poland
| |
Collapse
|
143
|
Design, synthesis and biological evaluation of colchicine glycoconjugates as tubulin polymerization inhibitors. Bioorg Med Chem 2022; 58:116671. [DOI: 10.1016/j.bmc.2022.116671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/29/2022] [Accepted: 02/13/2022] [Indexed: 11/30/2022]
|
144
|
Mobet Y, Liu X, Liu T, Yu J, Yi P. Interplay Between m6A RNA Methylation and Regulation of Metabolism in Cancer. Front Cell Dev Biol 2022; 10:813581. [PMID: 35186927 PMCID: PMC8851358 DOI: 10.3389/fcell.2022.813581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Methylation of adenosine in RNA to N6-methyladenosine (m6A) is widespread in eukaryotic cells with his integral RNA regulation. This dynamic process is regulated by methylases (editors/writers), demethylases (remover/erasers), and proteins that recognize methylation (effectors/readers). It is now evident that m6A is involved in the proliferation and metastasis of cancer cells, for instance, altering cancer cell metabolism. Thus, determining how m6A dysregulates metabolic pathways could provide potential targets for cancer therapy or early diagnosis. This review focuses on the link between the m6A modification and the reprogramming of metabolism in cancer. We hypothesize that m6A modification could dysregulate the expression of glucose, lipid, amino acid metabolism, and other metabolites or building blocks of cells by adaptation to the hypoxic tumor microenvironment, an increase in glycolysis, mitochondrial dysfunction, and abnormal expression of metabolic enzymes, metabolic receptors, transcription factors as well as oncogenic signaling pathways in both hematological malignancies and solid tumors. These metabolism abnormalities caused by m6A’s modification may affect the metabolic reprogramming of cancer cells and then increase cell proliferation, tumor initiation, and metastasis. We conclude that focusing on m6A could provide new directions in searching for novel therapeutic and diagnostic targets for the early detection and treatment of many cancers.
Collapse
Affiliation(s)
- Youchaou Mobet
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Laboratory of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Tao Liu, ; Jianhua Yu, ; Ping Yi,
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, CA, United States
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA, United States
- *Correspondence: Tao Liu, ; Jianhua Yu, ; Ping Yi,
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Tao Liu, ; Jianhua Yu, ; Ping Yi,
| |
Collapse
|
145
|
Gourdon L, Cariou K, Gasser G. Phototherapeutic anticancer strategies with first-row transition metal complexes: a critical review. Chem Soc Rev 2022; 51:1167-1195. [PMID: 35048929 DOI: 10.1039/d1cs00609f] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) are therapeutic techniques based on a photosensitizer (PS) and light. These techniques allow the spatial and temporal control of the activation of drugs with light. Transition metal complexes are attractive compounds as photoactivatable prodrugs since their excited states can be appropriately designed by subtle modifications of the ligands, the metal centre, or the oxidation state. However, most metal-based PSs contain heavy metals such as Ru, Os, Ir, Pt or Au, which are expensive and non-earth-abundant, contrary to first-row transition metals. In this context, the exploration of the photochemical properties of complexes based on first-row transition metals appears to be extremely promising. This did encourage several groups to develop promising PSs based on these metals. This review presents up-to-date state-of-the-art information on first-row-transition metal complexes, from titanium to zinc in regard to their application as PSs for phototherapeutic applications.
Collapse
Affiliation(s)
- Lisa Gourdon
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| |
Collapse
|
146
|
Razmaria AA, Schoder H, Morris MJ. Advances in Prostate Cancer Imaging. Urol Oncol 2022. [DOI: 10.1007/978-3-030-89891-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
147
|
Comparing 2 crystal structures and 12 AlphaFold2-predicted human membrane glucose transporters and their water-soluble glutamine, threonine and tyrosine variants. QRB DISCOVERY 2022. [PMID: 37529287 PMCID: PMC10392618 DOI: 10.1017/qrd.2022.6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Membrane transporters including glucose transporters (GLUTs) are involved in cellular energy supplies, cell metabolism and other vital biological activities. They have also been implicated in cancer proliferation and metastasis, thus they represent an important target in combatting cancer. However, membrane transporters are very difficult to study due to their multispan transmembrane properties. The new computational tool, AlphaFold2, offers highly accurate predictions of three-dimensional protein structures. The glutamine, threonine and tyrosine (QTY) code provides a systematic method of rendering hydrophobic sequences into hydrophilic ones. Here, we present computational studies of native integral membrane GLUTs with 12 transmembrane helical segments determined by X-ray crystallography and CryoEM, comparing the AlphaFold2-predicted native structure to their water-soluble QTY variants predicted by AlphaFold2. In the native structures of the transmembrane helices, there are hydrophobic amino acids leucine (L), isoleucine (I), valine (V) and phenylalanine (F). Applying the QTY code, these hydrophobic amino acids are systematically replaced by hydrophilic amino acids, glutamine (Q), threonine (T) and tyrosine (Y) rendering them water-soluble. We present the superposed structures of native GLUTs and their water-soluble QTY variants. The superposed structures show remarkable similar residue mean square distance values between 0.47 and 3.6 Å (most about 1–2 Å) despite >44% transmembrane amino acid differences. We also show the differences of hydrophobicity patches between the native membrane transporters and their QTY variants. We explain the rationale why the membrane protein QTY variants become water-soluble. Our study provides insight into the differences between the hydrophobic helices and hydrophilic helices, and offers confirmation of the QTY method for studying multispan transmembrane proteins and other aggregated proteins through their water-soluble variants.
Collapse
|
148
|
Lee LCC, Lo KKW. Strategic design of photofunctional transition metal complexes for cancer diagnosis and therapy. ADVANCES IN INORGANIC CHEMISTRY 2022. [DOI: 10.1016/bs.adioch.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
149
|
Kim Y, Kim S, Im G, Kim YH, Jeong G, Jeon HR, Kim D, Lee H, Park SY, Cho SM, Bhang SH. Area light source-triggered latent angiogenic molecular mechanisms intensify therapeutic efficacy of adult stem cells. Bioeng Transl Med 2022; 7:e10255. [PMID: 35079630 PMCID: PMC8780080 DOI: 10.1002/btm2.10255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/31/2022] Open
Abstract
Light-based therapy such as photobiomodulation (PBM) reportedly produces beneficial physiological effects in cells and tissues. However, most reports have focused on the immediate and instant effects of light. Considering the physiological effects of natural light exposure in living organisms, the latent reaction period after irradiation should be deliberated. In contrast to previous reports, we examined the latent reaction period after light exposure with optimized irradiating parameters and validated novel therapeutic molecular mechanisms for the first time. we demonstrated an organic light-emitting diode (OLED)-based PBM (OPBM) strategy that enhances the angiogenic efficacy of human adipose-derived stem cells (hADSCs) via direct irradiation with red OLEDs of optimized wavelength, voltage, current, luminance, and duration, and investigated the underlying molecular mechanisms. Our results revealed that the angiogenic paracrine effect, viability, and adhesion of hADSCs were significantly intensified by our OPBM strategy. Following OPBM treatment, significant changes were observed in HIF-1α expression, intracellular reactive oxygen species levels, activation of the receptor tyrosine kinase, and glycolytic pathways in hADSCs. In addition, transplantation of OLED-irradiated hADSCs resulted in significantly enhanced limb salvage ratio in a mouse model of hindlimb ischemia. Our OPBM might serve as a new paradigm for stem cell culture systems to develop cell-based therapies in the future.
Collapse
Affiliation(s)
- Yu‐Jin Kim
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Sung‐Won Kim
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Gwang‐Bum Im
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Yeong Hwan Kim
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Gun‐Jae Jeong
- Division of Vascular Surgery, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Hye Ran Jeon
- Department of Health Sciences and Technology, SAIHSTSungkyunkwan UniversitySeoulRepublic of Korea
| | - Dong‐Ik Kim
- Division of Vascular Surgery, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Haeshin Lee
- Department of Chemistry, Center for Nature‐Inspired Technology (CNiT)Korea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Sung Young Park
- Department of Chemical and Biological EngineeringKorea National University of TransportationChungjuRepublic of Korea
| | - Sung Min Cho
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Suk Ho Bhang
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
150
|
Choi H, Na KJ. Different Glucose Metabolic Features According to Cancer and Immune Cells in the Tumor Microenvironment. Front Oncol 2021; 11:769393. [PMID: 34966676 PMCID: PMC8710507 DOI: 10.3389/fonc.2021.769393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
Background A close metabolic interaction between cancer and immune cells in the tumor microenvironment (TME) plays a pivotal role in cancer immunity. Herein, we have comprehensively investigated the glucose metabolic features of the TME at the single-cell level to discover feasible metabolic targets for the tumor immune status. Methods We examined expression levels of glucose transporters (GLUTs) in various cancer types using The Cancer Genome Atlas (TCGA) data and single-cell RNA-seq (scRNA-seq) datasets of human cancer tissues including melanoma, head and neck, and breast cancer. In addition, scRNA-seq data of immune cells in the TME acquired from human melanoma after immune checkpoint inhibitors were analyzed to investigate the dynamics of glucose metabolic profiles of specific immune cells. Results Pan-cancer bulk RNA-seq showed that the GLUT3-to-GLUT1 ratio was positively associated with immune cell enrichment score. The scRNA-seq datasets of various human cancer tissues showed that GLUT1 was highly expressed in cancer cells, while GLUT3 was highly expressed in immune cells in TME. The scRNA-seq data obtained from human melanoma tissues pre- and post-immunotherapy showed that glucose metabolism features of myeloid cells, particularly including GLUTs expression, markedly differed according to treatment response. Conclusions Differently expressed GLUTs in TME suggest that GLUT could be a good candidate a surrogate of tumor immune metabolic profiles and a target for adjunctive treatments for immunotherapy.
Collapse
Affiliation(s)
- Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, South Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Kwon Joong Na
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul, South Korea.,Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|