101
|
Pasricha TS, Guerrero-Lopez IL, Kuo B. Management of Gastrointestinal Symptoms in Parkinson's Disease: A Comprehensive Review of Clinical Presentation, Workup, and Treatment. J Clin Gastroenterol 2024; 58:211-220. [PMID: 38260966 PMCID: PMC10855995 DOI: 10.1097/mcg.0000000000001961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024]
Abstract
Gastrointestinal symptoms in Parkinson's disease (PD) are among the most prevalent and debilitating of complications and present unique diagnostic and management challenges. Patients with PD commonly experience dysphagia, nausea, bloating, and constipation related to pathologic involvement of the enteric nervous system. In turn, gastrointestinal complications may impact motor fluctuations and the efficacy of levodopa therapy. This review will explore the common gastrointestinal manifestations of PD with an emphasis on clinical presentation, workup, and treatment strategies.
Collapse
Affiliation(s)
- Trisha S. Pasricha
- Division of Gastroenterology, Massachusetts General Hospital
- Harvard Medical School, Boston, MA
| | | | - Braden Kuo
- Division of Gastroenterology, Massachusetts General Hospital
- Harvard Medical School, Boston, MA
| |
Collapse
|
102
|
Bayram E, Reho P, Litvan I, Ding J, Gibbs JR, Dalgard CL, Traynor BJ, Scholz SW, Chia R. Genetic analysis of the X chromosome in people with Lewy body dementia nominates new risk loci. NPJ Parkinsons Dis 2024; 10:39. [PMID: 38378815 PMCID: PMC10879525 DOI: 10.1038/s41531-024-00649-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Sex influences the prevalence and symptoms of Lewy body dementia (LBD). However, genome-wide association studies typically focus on autosomal variants and exclude sex-specific risk factors. We addressed this gap by performing an X chromosome-wide association study using whole-genome sequence data from 2591 LBD cases and 4391 controls. We identified a significant risk locus within intron 1 of MAP3K15 (rs141773145, odds ratio = 2.42, 95% confidence interval = 1.65-3.56, p-value = 7.0 × 10-6) in female LBD cases conditioned for APOE ε4 dosage. The locus includes an enhancer region that regulates MAP3K15 expression in ganglionic eminence cells derived from primary cultured neurospheres. Rare variant burden testing showed differential enrichment of missense mutations in TEX13A in female LBD cases, that did not reach significance (p-value = 1.34 × 10-4). These findings support the sex-specific effects of genetic factors and a potential role of Alzheimer's-related risk for females with LBD.
Collapse
Affiliation(s)
- Ece Bayram
- Department of Neurosciences, Parkinson and Other Movement Disorders Center, University of California San Diego, La Jolla, CA, USA
| | - Paolo Reho
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Irene Litvan
- Department of Neurosciences, Parkinson and Other Movement Disorders Center, University of California San Diego, La Jolla, CA, USA
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - J Raphael Gibbs
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Bryan J Traynor
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
- Neuromuscular Diseases Research Section, National Institute on Aging, Bethesda, MD, USA
- Therapeutics Development Laboratory, National Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Ruth Chia
- Neuromuscular Diseases Research Section, National Institute on Aging, Bethesda, MD, USA.
| |
Collapse
|
103
|
Fang S, Lee PAH, Wang Z, Zhao B. The Impact of 90 Parkinson's Disease-Risk Single Nucleotide Polymorphisms on Urinary Bis(monoacylglycerol)phosphate Levels in the Prodromal and PD Cohorts. Int J Mol Sci 2024; 25:2286. [PMID: 38396963 PMCID: PMC10889274 DOI: 10.3390/ijms25042286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with a prolonged prodromal phase. Higher urinary bis(monoacylglycerol)phosphate (BMP) levels associate with LRRK2 (leucine-rich repeat kinase 2) and GBA1 (glucocerebrosidase) mutations, and are considered as potential noninvasive biomarkers for predicting those mutations and PD progression. However, their reliability has been questioned, with inadequately investigated genetics, cohorts, and population. In this study, multiple statistical hypothesis tests were employed on urinary BMP levels and sequences of 90 PD-risk single nucleotide polymorphisms (SNPs) from Parkinson's Progression Markers Institution (PPMI) participants. Those SNPs were categorized into four groups based on their impact on BMP levels in various cohorts. Variants rs34637584 G/A and rs34637584 A/A (LRRK2 G2019S) were identified as the most relevant on increasing urinary BMP levels in the PD cohort. Meanwhile, rs76763715 T/T (GBA1) was the primary factor elevating BMP levels in the prodromal cohort compared to its T/C and C/C variants (N370S) and the PD cohort. Proteomics analysis indicated the changed transport pathways may be the reasons for elevated BMP levels in prodromal patients. Our findings demonstrated that higher urinary BMP levels alone were not reliable biomarkers for PD progression or gene mutations but might serve as supplementary indicators for early diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - Zejian Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (S.F.); (P.A.H.L.)
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (S.F.); (P.A.H.L.)
| |
Collapse
|
104
|
Mills KA, Du Y, Coughlin JM, Foss CA, Horti AG, Jenkins K, Skorobogatova Y, Spiro E, Motley CS, Dannals RF, Song JJ, Choi YR, Redding-Ochoa J, Troncoso J, Dawson VL, Kam TI, Pomper MG, Dawson TM. Exploring [ 11C]CPPC as a CSF1R-targeted PET Imaging Marker for Early Parkinson's Disease Severity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.28.23290647. [PMID: 37398476 PMCID: PMC10312881 DOI: 10.1101/2023.05.28.23290647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Neuroinflammation through enhanced innate immunity is thought play a role in the pathogenesis of Parkinson's disease (PD). Methods for monitoring neuroinflammation in living patients with PD are currently limited to positron emission tomography (PET) ligands that lack specificity in labeling immune cells in the nervous system. The colony stimulating factor 1 receptor (CSF1R) plays a crucial role in microglial function, an important cellular contributor to the nervous system's innate immune response. Using immunologic methods, we show that CSF1R in human brain is colocalized with the microglial marker, ionized calcium binding adaptor molecule 1 (Iba1). In PD, CSF1R immunoreactivity is significantly increased in PD across multiple brain regions, with the largest differences in the midbrain versus controls. Autoradiography revealed significantly increased [3H]JHU11761 binding in the inferior parietal cortex of PD patients. PET imaging demonstrated that higher [11C]CPPC binding in the striatum was associated with greater motor disability in PD. Furthermore, increased [11C]CPPC binding in various regions correlated with more severe motor disability and poorer verbal fluency. This study finds that CSF1R expression is elevated in PD and that [11C]CPPC-PET imaging of CSF1R is indicative of motor and cognitive impairments in the early stages of the disease. Moreover, the study underscores the significance of CSF1R as a promising biomarker for neuroinflammation in Parkinson's disease, suggesting its potential use for non-invasive assessment of disease progression and severity, leading to earlier diagnosis and targeted interventions.
Collapse
Affiliation(s)
- Kelly A Mills
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yong Du
- Johns Hopkins University School of Medicine, Russell H. Morgan Dept. of Radiology and Radiologic Science, Baltimore, MD, USA
| | - Jennifer M Coughlin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Catherine A Foss
- Johns Hopkins University School of Medicine, Russell H. Morgan Dept. of Radiology and Radiologic Science, Baltimore, MD, USA
| | - Andrew G Horti
- Johns Hopkins University School of Medicine, Russell H. Morgan Dept. of Radiology and Radiologic Science, Baltimore, MD, USA
| | - Katelyn Jenkins
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yana Skorobogatova
- Johns Hopkins University School of Medicine, Russell H. Morgan Dept. of Radiology and Radiologic Science, Baltimore, MD, USA
| | - Ergi Spiro
- Johns Hopkins University School of Medicine, Russell H. Morgan Dept. of Radiology and Radiologic Science, Baltimore, MD, USA
| | - Chelsie S Motley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert F Dannals
- Johns Hopkins University School of Medicine, Russell H. Morgan Dept. of Radiology and Radiologic Science, Baltimore, MD, USA
| | - Jae-Jin Song
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yu Ree Choi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Javier Redding-Ochoa
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juan Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tae-In Kam
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Martin G Pomper
- Johns Hopkins University School of Medicine, Russell H. Morgan Dept. of Radiology and Radiologic Science, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, US
- Department of Radiology, University of Texas Southwestern School of Medicine, Dallas, TX, USA (current)
| | - Ted M Dawson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, US
| |
Collapse
|
105
|
Watanabe H, Dijkstra JM, Nagatsu T. Parkinson's Disease: Cells Succumbing to Lifelong Dopamine-Related Oxidative Stress and Other Bioenergetic Challenges. Int J Mol Sci 2024; 25:2009. [PMID: 38396687 PMCID: PMC10888576 DOI: 10.3390/ijms25042009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The core pathological event in Parkinson's disease (PD) is the specific dying of dopamine (DA) neurons of the substantia nigra pars compacta (SNc). The reasons why SNc DA neurons are especially vulnerable and why idiopathic PD has only been found in humans are still puzzling. The two main underlying factors of SNc DA neuron vulnerability appear related to high DA production, namely (i) the toxic effects of cytoplasmic DA metabolism and (ii) continuous cytosolic Ca2+ oscillations in the absence of the Ca2+-buffer protein calbindin. Both factors cause oxidative stress by producing highly reactive quinones and increasing intra-mitochondrial Ca2+ concentrations, respectively. High DA expression in human SNc DA neuron cell bodies is suggested by the abundant presence of the DA-derived pigment neuromelanin, which is not found in such abundance in other species and has been associated with toxicity at higher levels. The oxidative stress created by their DA production system, despite the fact that the SN does not use unusually high amounts of energy, explains why SNc DA neurons are sensitive to various genetic and environmental factors that create mitochondrial damage and thereby promote PD. Aging increases multiple risk factors for PD, and, to a large extent, PD is accelerated aging. To prevent PD neurodegeneration, possible approaches that are discussed here are (1) reducing cytoplasmic DA accumulation, (2) blocking cytoplasmic Ca2+ oscillations, and (3) providing bioenergetic support.
Collapse
Affiliation(s)
- Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Johannes M. Dijkstra
- Center for Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Toshiharu Nagatsu
- Center for Research Promotion and Support, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| |
Collapse
|
106
|
Ahn JH, Kang MC, Youn J, Park KA, Han KD, Jung JH. Nonarteritic anterior ischemic optic neuropathy and incidence of Parkinson's disease based on a nationwide population based study. Sci Rep 2024; 14:2930. [PMID: 38316950 PMCID: PMC10844599 DOI: 10.1038/s41598-024-53196-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024] Open
Abstract
This study aimed to investigate the association between nonarteritic anterior ischemic optic neuropathy (NAION) and Parkinson's disease (PD) using a retrospective, nationwide, population-based cohort in South Korea. This study utilized data from the Korean National Health Insurance database, including 43,960 NAION patients and 219,800 age- and sex-matched controls. Cox proportional hazards regression models were used to assess the risk of developing PD in the NAION group compared to the control group after adjusting for various confounding factors. Subgroup analyses were conducted based on sex, age, and comorbidities. The incidence rate of PD was higher in the NAION group (1.326 per 1000 person-years) than in the control group (0.859 per 1000 person-years). After adjusting for confounding factors, the risk of developing PD was significantly higher in the NAION group (adjusted hazard ratio [aHR] 1.516, 95% confidence interval [CI] 1.300-1.769). Subgroup analyses did not reveal a significant difference in the risk of PD development based on sex, age, or comorbidities. This retrospective, nationwide, population-based cohort study revealed a significant association between NAION and an increased risk of developing PD in a South Korean population. The incidence rate of PD was observed to be higher in individuals diagnosed with NAION than in age- and sex-matched controls even after adjusting for potential confounding variables, with the risk being approximately 51.6% higher in the NAION group. Further research is necessary to elucidate the underlying pathophysiological mechanisms linking NAION to PD and to determine whether similar associations exist in other ethnic and geographical populations.
Collapse
Affiliation(s)
- Jong Hyeon Ahn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Min Chae Kang
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea.
| | - Kyung-Ah Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| | - Kyung-Do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Jin-Hyung Jung
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
107
|
Blokhin V, Pavlova EN, Katunina EA, Nodel MR, Kataeva GV, Moskalets ER, Pronina TS, Ugrumov MV. Dopamine Synthesis in the Nigrostriatal Dopaminergic System in Patients at Risk of Developing Parkinson's Disease at the Prodromal Stage. J Clin Med 2024; 13:875. [PMID: 38337569 PMCID: PMC10856030 DOI: 10.3390/jcm13030875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Parkinson's disease (PD) is diagnosed by the onset of motor symptoms and treated long after its onset. Therefore, the development of the early diagnosis of PD is a priority for neurology. Advanced methodologies for this include (1) searching for patients at risk of developing prodromal PD based on premotor symptoms; (2) searching for changes in the body fluids in these patients as diagnostic biomarkers; (3) verifying the diagnosis of prodromal PD and diagnostic-value biomarkers using positron emission tomography (PET); (4) anticipating the development of motor symptoms. According to our data, the majority of patients (n = 14) at risk of developing PD selected in our previous study show pronounced interhemispheric asymmetry in the incorporation of 18F-DOPA into dopamine synthesis in the striatum. This was assessed for the caudate nucleus and putamen separately using the specific binding coefficient, asymmetry index, and putamen/caudate nucleus ratio. Interhemispheric asymmetry in the incorporation of 18F-DOPA into the striatum provides strong evidence for its dopaminergic denervation and the diagnostic value of previously identified blood biomarkers. Of the 17 patients at risk of developing prodromal PD studied using PET, 3 patients developed motor symptoms within a year. Thus, our study shows the promise of using the described methodology for the development of early diagnosis of PD.
Collapse
Affiliation(s)
- Victor Blokhin
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| | - Ekaterina N. Pavlova
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| | - Elena A. Katunina
- Federal Center of Brain Research and Neurotechnologies of the Russian Federal Medical and Biological Agency, Moscow 117513, Russia;
- Faculty of Medicine, Department of Neurology, Neurosurgery and Medical Genetics, N.I. Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, Moscow 117997, Russia
| | - Marina R. Nodel
- Department of Nervous Diseases and Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia;
| | - Galina V. Kataeva
- Federal State Budget Institution Granov Russian Research Center of Radiology and Surgical Technologies Ministry of Health of the Russian Federation (RRCRST) 70, Leningradskaya Street, Pesochny, St. Petersburg 197758, Russia;
| | | | - Tatiana S. Pronina
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| | - Michael V. Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| |
Collapse
|
108
|
Wang S, An N, Wang Y, Li Y, Li H, Bai Y. Knowledge mapping of prodromal Parkinson's disease: A bibliometric review and analysis (2000-2023). Medicine (Baltimore) 2024; 103:e36985. [PMID: 38306521 PMCID: PMC10843421 DOI: 10.1097/md.0000000000036985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/22/2023] [Indexed: 02/04/2024] Open
Abstract
The prodromal period of Parkinson's disease (PD) is currently a hot topic in PD research. However, no bibliometric analysis has been conducted in this research field. This study aimed to provide a comprehensive overview of the status, hotspots, and trends in the prodromal period of PD using bibliometrics. CiteSpace and visualization of similarities viewer were used to analyze articles and reviews on the prodromal period of PD in the Web of Science Core Collection (WoSCC) database. We analyzed the data on countries, institutions, journals, authors, keywords, and cited references. In total, 909 articles from 65 countries, including the United States (n = 265, 29.15%) and Germany (n = 174, 19.14%), were included. The number of articles and reviews related to the prodromal period of PD has increased yearly. The University of Tubingen (n = 45, 4.95%), McGill University (n = 33, 3.63%), and University of London (n = 33, 3.63%) were the research institutions with the most published studies. Movement Disorders is the journal with the largest number of published papers (n = 98, 10.8%) and the most cited publications (co-citation = 7035). These publications are from 4681 authors, with Berg (n = 49, 5.39%) and Postuma (n = 40, 4.40%) publishing the most publications, and Postuma's study (n = 1206) having the most citations. Studying the nonmotor symptoms of PD precursors is a major topic in this research field. This is the first bibliometric study to comprehensively summarize the research trends and developments in the prodromal period of PD. This information identifies recent research frontiers and hotspots and provides a reference for scholars studying the prodromal period of PD.
Collapse
Affiliation(s)
- Shun Wang
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Ning An
- Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Yulin Wang
- Department of Science and Technology, Heilongjiang University of Traditional Chinese Medicine, Heilongjiang, China
| | - Yuan Li
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Hailong Li
- Department of Acupuncture and Moxibustion, Heilongjiang Academy of Traditional Chinese Medicine, Heilongjiang, China
| | - Yan Bai
- Department of Acupuncture and Moxibustion, Heilongjiang Academy of Traditional Chinese Medicine, Institute of Acupuncture and Moxibustion, Heilongjiang, China
| |
Collapse
|
109
|
Kim S, Choi JH, Woo KA, Joo JY, Jeon B, Lee JY. Clinical correlates of pareidolias and color discrimination deficits in idiopathic REM sleep behavior disorder and Parkinson's disease. J Neural Transm (Vienna) 2024; 131:141-148. [PMID: 38110521 DOI: 10.1007/s00702-023-02724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/26/2023] [Indexed: 12/20/2023]
Abstract
Visuoperceptual dysfunction is common in Parkinson's disease (PD) and is also reported in its prodromal phase, isolated REM sleep behavior disorder (iRBD). We aimed to investigate color discrimination ability and complex visual illusions known as pareidolias in patients with iRBD and PD compared to healthy controls, and their associating clinical factors. 46 iRBD, 43 PD, and 64 healthy controls performed the Farnsworth-Munsell 100 hue test and noise pareidolia tests. Any relationship between those two visual functions and associations with prodromal motor and non-motor manifestations were evaluated, including MDS-UPDRS part I to III, Cross-Cultural Smell Identification Test, sleep questionnaires, and comprehensive neuropsychological assessment. iRBD and PD patients both performed worse on the Farnsworth-Munsell 100 hue test and had greater number of pareidolias compared to healthy controls. No correlations were found between the extent of impaired color discrimination and pareidolia scores in either group. In iRBD patients, pareidolias were associated with frontal executive dysfunction, while impaired color discrimination was associated with visuospatial dysfunction, hyposmia, and higher MDS-UPDRS-III scores. Pareidolias in PD patients correlated with worse global cognition, whereas color discrimination deficits were associated with frontal executive dysfunction. Color discrimination deficits and pareidolias are frequent but does not correlate with each other from prodromal to clinically established stage of PD. The different pattern of clinical associates with the two visual symptoms suggests that evaluation of both color and pareidolias may aid in revealing the course of neurodegeneration in iRBD and PD patients.
Collapse
Affiliation(s)
- Seoyeon Kim
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji-Hyun Choi
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Kyung Ah Woo
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Young Joo
- Department of Neurology, Uijeongbu Eulji Medical Center, Uijeongbu, Republic of Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
110
|
Milane T, Hansen C, Correno MB, Chardon M, Barbieri FA, Bianchini E, Vuillerme N. Comparison of sleep characteristics between Parkinson's disease with and without freezing of gait: A systematic review. Sleep Med 2024; 114:24-41. [PMID: 38150950 DOI: 10.1016/j.sleep.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/03/2023] [Accepted: 11/15/2023] [Indexed: 12/29/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a range of motor and non-motor symptoms. Among the motor complaints, freezing of gait (FOG) is a common and disabling phenomenon that episodically hinders patients' ability to produce efficient steps. Concurrently, sleep disorders are prevalent in PD and significantly impact the quality of life of affected individuals. Numerous studies have suggested a bidirectional relationship between FOG and sleep disorders. Therefore, our objective was to systematically review the literature and compare sleep outcomes in PD patients with FOG (PD + FOG) and those without FOG (PD-FOG). By conducting a comprehensive search of the PubMed and Web of Science databases, we identified 20 eligible studies for inclusion in our analysis. Our review revealed that compared to PD-FOG, PD + FOG patients exhibited more severe symptoms of rapid eye movement sleep behavior disorder in nine studies, increased daytime sleepiness in eight studies, decreased sleep quality in four studies, and more frequent and severe sleep disturbances in four studies. These findings indicate that PD + FOG patients generally experience worse sleep quality, higher levels of daytime sleepiness, and more disruptive sleep disturbances compared to those without FOG (PD-FOG). The association between sleep disturbances and FOG highlights the importance of evaluating and monitoring these symptoms in PD patients and open the possibility for future studies to assess the impact of managing sleep disturbances on the severity and occurrence of FOG, and vice versa.
Collapse
Affiliation(s)
- Tracy Milane
- AGEIS, Université Grenoble Alpes, 38000, Grenoble, France; Department of Neurology, UKSH Campus Kiel, Kiel University, Arnold-Heller-Str. 3, Haus D, 24105, Kiel, Germany
| | - Clint Hansen
- AGEIS, Université Grenoble Alpes, 38000, Grenoble, France; Department of Neurology, UKSH Campus Kiel, Kiel University, Arnold-Heller-Str. 3, Haus D, 24105, Kiel, Germany.
| | - Mathias Baptiste Correno
- AGEIS, Université Grenoble Alpes, 38000, Grenoble, France; Department of Neurology, UKSH Campus Kiel, Kiel University, Arnold-Heller-Str. 3, Haus D, 24105, Kiel, Germany
| | - Matthias Chardon
- AGEIS, Université Grenoble Alpes, 38000, Grenoble, France; São Paulo State University (Unesp), School of Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil
| | - Fabio A Barbieri
- São Paulo State University (Unesp), School of Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil
| | - Edoardo Bianchini
- AGEIS, Université Grenoble Alpes, 38000, Grenoble, France; Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, 00189, Rome, Italy
| | - Nicolas Vuillerme
- AGEIS, Université Grenoble Alpes, 38000, Grenoble, France; LabCom Telecom4Health, Orange Labs & Université Grenoble Alpes, CNRS, Inria, Grenoble INP-UGA, 38000, Grenoble, France; Institut Universitaire de France, 75005, Paris, France.
| |
Collapse
|
111
|
Park M, Lee YG. Association of Family History and Polygenic Risk Score With Longitudinal Prognosis in Parkinson Disease. Neurol Genet 2024; 10:e200115. [PMID: 38169864 PMCID: PMC10759146 DOI: 10.1212/nxg.0000000000200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/02/2023] [Indexed: 01/05/2024]
Abstract
Background and Objectives Evidence suggests that either family history or polygenic risk score (PRS) is associated with developing Parkinson disease (PD). However, little is known about the longitudinal prognosis of PD according to family history and higher PRS. Methods From the Parkinson's Progression Markers Initiative database, 395 patients with PD who followed up for more than 2 years were grouped into those with family history within first-degree, second-degree, and third-degree relatives (N = 127 [32.2%]) vs those without (N = 268 [67.8%]). The PRS of 386 patients was computed using whole-genome sequencing data. Longitudinal assessment of motor, cognition, and imaging based on dopaminergic degeneration was conducted during the regular follow-up period. Effects of family history, PRS, or both on longitudinal changes of cognition, motor severity, and nigrostriatal degeneration were tested using a linear mixed model. The risk of freezing of gait (FOG) according to family history was assessed using the Kaplan-Meier analysis and Cox regression models. Results During a median follow-up of 9.1 years, PD with positive family history showed a slower decline of caudate dopamine transporter uptake (β estimate of family history × time = 0.02, 95% CI = 0.002-0.036, p = 0.027). Family history of PD and higher PRS were independently associated with a slower decline of Montreal Cognitive Assessment (β estimate of family history × time = 0.12, 95% CI = 0.02-0.22, p = 0.017; β estimate of PRS × time = 0.09, 95% CI = 0.03-0.16, p = 0.006). In those 364 patients without FOG at baseline, PD with positive family history had a lower risk of FOG (hazard ratio of family history = 0.57, 95% CI = 0.38-0.84, p = 0.005). Discussion Having a family history of PD predicts slower progression of cognitive decline and caudate dopaminergic degeneration, and less FOG compared with those without a family history independent of PRS. Taken together, information on family history could be used as a proxy for the clinical heterogeneity of PD. Trial Registration Information The study was registered at clinicaltrials.gov (NCT01141023), and the enrollment began June 1, 2010.
Collapse
Affiliation(s)
- Mincheol Park
- From the Department of Neurology (M.P.), Gwangmyeong Hospital, Chung-Ang University College of Medicine; and Department of Neurology (Y.L.), Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| | - Young-Gun Lee
- From the Department of Neurology (M.P.), Gwangmyeong Hospital, Chung-Ang University College of Medicine; and Department of Neurology (Y.L.), Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
| |
Collapse
|
112
|
Höglinger GU, Adler CH, Berg D, Klein C, Outeiro TF, Poewe W, Postuma R, Stoessl AJ, Lang AE. A biological classification of Parkinson's disease: the SynNeurGe research diagnostic criteria. Lancet Neurol 2024; 23:191-204. [PMID: 38267191 DOI: 10.1016/s1474-4422(23)00404-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 01/26/2024]
Abstract
With the hope that disease-modifying treatments could target the molecular basis of Parkinson's disease, even before the onset of symptoms, we propose a biologically based classification. Our classification acknowledges the complexity and heterogeneity of the disease by use of a three-component system (SynNeurGe): presence or absence of pathological α-synuclein (S) in tissues or CSF; evidence of underlying neurodegeneration (N) defined by neuroimaging procedures; and documentation of pathogenic gene variants (G) that cause or strongly predispose to Parkinson's disease. These three components are linked to a clinical component (C), defined either by a single high-specificity clinical feature or by multiple lower-specificity clinical features. The use of a biological classification will enable advances in both basic and clinical research, and move the field closer to the precision medicine required to develop disease-modifying therapies. We emphasise the initial application of these criteria exclusively for research. We acknowledge its ethical implications, its limitations, and the need for prospective validation in future studies.
Collapse
Affiliation(s)
- Günter U Höglinger
- Department of Neurology, University Hospital, Ludwig-Maximilians-University (LMU) and German Center for Neurodegenerative Diseases, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Daniela Berg
- Christian Albrechts University and University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Lüebeck, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Werner Poewe
- Medical University Innsbruck, Innsbruck, Austria
| | - Ronald Postuma
- Department of Neurology, McGill University, Montreal Neurological Institute, Montreal, QC, Canada
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and Parkinson's Foundation Centre of Excellence, University of British Columbia, BC, Canada
| | - Anthony E Lang
- University Health Network's Krembil Brain Institute, Edmond J Safra Program in Parkinson's Disease and the Rossy PSP Centre, Toronto Western Hospital, Toronto, ON, Canada.
| |
Collapse
|
113
|
Simuni T, Chahine LM, Poston K, Brumm M, Buracchio T, Campbell M, Chowdhury S, Coffey C, Concha-Marambio L, Dam T, DiBiaso P, Foroud T, Frasier M, Gochanour C, Jennings D, Kieburtz K, Kopil CM, Merchant K, Mollenhauer B, Montine T, Nudelman K, Pagano G, Seibyl J, Sherer T, Singleton A, Stephenson D, Stern M, Soto C, Tanner CM, Tolosa E, Weintraub D, Xiao Y, Siderowf A, Dunn B, Marek K. A biological definition of neuronal α-synuclein disease: towards an integrated staging system for research. Lancet Neurol 2024; 23:178-190. [PMID: 38267190 DOI: 10.1016/s1474-4422(23)00405-2] [Citation(s) in RCA: 157] [Impact Index Per Article: 157.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 01/26/2024]
Abstract
Parkinson's disease and dementia with Lewy bodies are currently defined by their clinical features, with α-synuclein pathology as the gold standard to establish the definitive diagnosis. We propose that, given biomarker advances enabling accurate detection of pathological α-synuclein (ie, misfolded and aggregated) in CSF using the seed amplification assay, it is time to redefine Parkinson's disease and dementia with Lewy bodies as neuronal α-synuclein disease rather than as clinical syndromes. This major shift from a clinical to a biological definition of Parkinson's disease and dementia with Lewy bodies takes advantage of the availability of tools to assess the gold standard for diagnosis of neuronal α-synuclein (n-αsyn) in human beings during life. Neuronal α-synuclein disease is defined by the presence of pathological n-αsyn species detected in vivo (S; the first biological anchor) regardless of the presence of any specific clinical syndrome. On the basis of this definition, we propose that individuals with pathological n-αsyn aggregates are at risk for dopaminergic neuronal dysfunction (D; the second biological anchor). Our biological definition establishes a staging system, the neuronal α-synuclein disease integrated staging system (NSD-ISS), rooted in the biological anchors (S and D) and the degree of functional impairment caused by clinical signs or symptoms. Stages 0-1 occur without signs or symptoms and are defined by the presence of pathogenic variants in the SNCA gene (stage 0), S alone (stage 1A), or S and D (stage 1B). The presence of clinical manifestations marks the transition to stage 2 and beyond. Stage 2 is characterised by subtle signs or symptoms but without functional impairment. Stages 2B-6 require both S and D and stage-specific increases in functional impairment. A biological definition of neuronal α-synuclein disease and an NSD-ISS research framework are essential to enable interventional trials at early disease stages. The NSD-ISS will evolve to include the incorporation of data-driven definitions of stage-specific functional anchors and additional biomarkers as they emerge and are validated. Presently, the NSD-ISS is intended for research use only; its application in the clinical setting is premature and inappropriate.
Collapse
Affiliation(s)
- Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathleen Poston
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael Brumm
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Teresa Buracchio
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Michelle Campbell
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Sohini Chowdhury
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Christopher Coffey
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | | | | | - Peter DiBiaso
- Patient Advisory Council, New York, NY, USA; Clinical Solutions and Strategic Partnerships, WCG Clinical, Princeton, NJ, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Mark Frasier
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Caroline Gochanour
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | | | - Karl Kieburtz
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Catherine M Kopil
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Kalpana Merchant
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen and Paracelsus-Elena-Klinik, Kassel, Germany
| | - Thomas Montine
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kelly Nudelman
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | | | - John Seibyl
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Todd Sherer
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Andrew Singleton
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Diane Stephenson
- Critical Path for Parkinson's, Critical Path Institute, Tucson, AZ, USA
| | - Matthew Stern
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudio Soto
- Amprion, San Diego, CA, USA; Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Caroline M Tanner
- Movement Disorders and Neuromodulation Center, Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, CA, USA; Parkinson's Disease Research Education and Clinical Center, San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Eduardo Tolosa
- Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Daniel Weintraub
- University of Pennsylvania and the Parkinson's Disease and Mental Illness Research, Education and Clinical Centers, Philadelphia Veterans Affairs Medical Center Philadelphia, PA, USA
| | - Yuge Xiao
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Andrew Siderowf
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Billy Dunn
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| |
Collapse
|
114
|
Casciano F, Zauli E, Celeghini C, Caruso L, Gonelli A, Zauli G, Pignatelli A. Retinal Alterations Predict Early Prodromal Signs of Neurodegenerative Disease. Int J Mol Sci 2024; 25:1689. [PMID: 38338966 PMCID: PMC10855697 DOI: 10.3390/ijms25031689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Neurodegenerative diseases are an increasingly common group of diseases that occur late in life with a significant impact on personal, family, and economic life. Among these, Alzheimer's disease (AD) and Parkinson's disease (PD) are the major disorders that lead to mild to severe cognitive and physical impairment and dementia. Interestingly, those diseases may show onset of prodromal symptoms early after middle age. Commonly, the evaluation of these neurodegenerative diseases is based on the detection of biomarkers, where functional and structural magnetic resonance imaging (MRI) have shown a central role in revealing early or prodromal phases, although it can be expensive, time-consuming, and not always available. The aforementioned diseases have a common impact on the visual system due to the pathophysiological mechanisms shared between the eye and the brain. In Parkinson's disease, α-synuclein deposition in the retinal cells, as well as in dopaminergic neurons of the substantia nigra, alters the visual cortex and retinal function, resulting in modifications to the visual field. Similarly, the visual cortex is modified by the neurofibrillary tangles and neuritic amyloid β plaques typically seen in the Alzheimer's disease brain, and this may reflect the accumulation of these biomarkers in the retina during the early stages of the disease, as seen in postmortem retinas of AD patients. In this light, the ophthalmic evaluation of retinal neurodegeneration could become a cost-effective method for the early diagnosis of those diseases, overcoming the limitations of functional and structural imaging of the deep brain. This analysis is commonly used in ophthalmic practice, and interest in it has risen in recent years. This review will discuss the relationship between Alzheimer's disease and Parkinson's disease with retinal degeneration, highlighting how retinal analysis may represent a noninvasive and straightforward method for the early diagnosis of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Claudio Celeghini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Lorenzo Caruso
- Department of Environment and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Arianna Gonelli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Angela Pignatelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy
| |
Collapse
|
115
|
Frank A, Bendig J, Schnalke N, Klingelhoefer L, Reichmann H, Akgün K, Ziemssen T, Falkenburger BH. Serum neurofilament indicates accelerated neurodegeneration and predicts mortality in late-stage Parkinson's disease. NPJ Parkinsons Dis 2024; 10:14. [PMID: 38195715 PMCID: PMC10776839 DOI: 10.1038/s41531-023-00605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 11/17/2023] [Indexed: 01/11/2024] Open
Abstract
Different stages of Parkinson's disease (PD) are defined by clinical criteria, while late-stage PD is marked by the onset of morbidity milestones and rapid clinical deterioration. Based on neuropathological evidence, degeneration in the dopaminergic system occurs primarily in the early stage of PD, raising the question of what drives disease progression in late-stage PD. This study aimed to investigate whether late-stage PD is associated with increased neurodegeneration dynamics rather than functional decompensation using the blood-based biomarker serum neurofilament light chain (sNfL) as a proxy for the rate of neurodegeneration. The study included 118 patients with PD in the transition and late-stage (minimum disease duration 5 years, mean (SD) disease duration 15 (±7) years). The presence of clinical milestones (hallucinations, dementia, recurrent falls, and admission to a nursing home) and mortality were determined based on chart review. We found that sNfL was higher in patients who presented with at least one clinical milestone and increased with a higher number of milestones (Spearman's ρ = 0.66, p < 0.001). Above a cutoff value of 26.9 pg/ml, death was 13.6 times more likely during the follow-up period (95% CI: 3.53-52.3, p < 0.001), corresponding to a sensitivity of 85.0% and a specificity of 85.7% (AUC 0.91, 95% CI: 0.85-0.97). Similar values were obtained when using an age-adjusted cutoff percentile of 90% for sNfL. Our findings suggest that the rate of ongoing neurodegeneration is higher in advanced PD (as defined by the presence of morbidity milestones) than in earlier disease stages. A better understanding of the biological basis of stage-dependent neurodegeneration may facilitate the development of neuroprotective means.
Collapse
Affiliation(s)
- Anika Frank
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.
| | - Jonas Bendig
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nils Schnalke
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lisa Klingelhoefer
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Heinz Reichmann
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Katja Akgün
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Center of Clinical Neuroscience, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Center of Clinical Neuroscience, Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Björn H Falkenburger
- Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| |
Collapse
|
116
|
Goldstein DS, Holmes C, Sullivan P, Lopez G, Gelsomino J, Moore S, Isonaka R, Wu T, Sharabi Y. Cardiac noradrenergic deficiency revealed by 18F-dopamine positron emission tomography identifies preclinical central Lewy body diseases. J Clin Invest 2024; 134:e172460. [PMID: 37883190 PMCID: PMC10760969 DOI: 10.1172/jci172460] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND In Lewy body diseases (LBDs) Parkinson disease (PD), and dementia with Lewy bodies (DLB), by the time parkinsonism or cognitive dysfunction manifests clinically, substantial neurodegeneration has already occurred. Biomarkers are needed to identify central LBDs in a preclinical phase, when neurorescue strategies might forestall symptomatic disease. This phase may involve catecholamine deficiency in the autonomic nervous system. We analyzed data from the prospective, observational, long-term PDRisk study to assess the predictive value of low versus normal cardiac 18F-dopamine positron emission tomography (PET), an index of myocardial content of the sympathetic neurotransmitter norepinephrine, in at-risk individuals. METHODS Participants self-reported risk factor information (genetics, olfactory dysfunction, dream enactment behavior, and orthostatic intolerance or hypotension) at a protocol-specific website. Thirty-four with 3 or more confirmed risk factors underwent serial cardiac 18F-dopamine PET at 1.5-year intervals for up to 7.5 years or until PD was diagnosed. RESULTS Nine participants had low initial myocardial 18F-dopamine-derived radioactivity (<6,000 nCi-kg/cc-mCi) and 25 had normal radioactivity. At 7 years of follow-up, 8 of 9 with low initial radioactivity and 1 of 11 with normal radioactivity were diagnosed with a central LBD (LBD+) (P = 0.0009 by Fisher's exact test). Conversely, all 9 LBD+ participants had low 18F-dopamine-derived radioactivity before or at the time of diagnosis of a central LBD, whereas among 25 participants without a central LBD only 1 (4%) had persistently low radioactivity (P < 0.0001 by Fisher's exact test). CONCLUSION Cardiac 18F-dopamine PET highly efficiently distinguishes at-risk individuals who are diagnosed subsequently with a central LBD from those who are not. TRIAL REGISTRATION CLINICALTRIALS gov NCT00775853. FUNDING Division of Intramural Research, NIH, NINDS.
Collapse
Affiliation(s)
- David S. Goldstein
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS)
| | - Courtney Holmes
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS)
| | - Patti Sullivan
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS)
| | - Grisel Lopez
- Molecular Neurogenetics Section, National Human Genome Research Institute, and
| | - Janna Gelsomino
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS)
| | - Sarah Moore
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS)
| | - Risa Isonaka
- Autonomic Medicine Section, Clinical Neurosciences Program, Division of Intramural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS)
| | - Tianxia Wu
- Clinical Trials Unit, Office of the Clinical Director, DIR, NINDS, NIH, Bethesda, Maryland, USA
| | - Yehonatan Sharabi
- Chaim Sheba Medical Center, Tel-Aviv University, Tel-Hashomer, Israel
| |
Collapse
|
117
|
Pauly L, Rauschenberger A, Pauly C, Schröder VE, Van Cutsem G, Leist AK, Krüger R. Cognition and Other Non-Motor Symptoms in an At-Risk Cohort for Parkinson's Disease Defined by REM-Sleep Behavior Disorder and Hyposmia. JOURNAL OF PARKINSON'S DISEASE 2024; 14:545-556. [PMID: 38669560 PMCID: PMC11091555 DOI: 10.3233/jpd-230285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
Background REM-sleep behavior disorder (RBD) and other non-motor symptoms such as hyposmia were proposed by the Movement Disorder Society as research criteria for prodromal Parkinson's disease (P-PD). Global cognitive deficit was later added. Objective To compare non-motor symptoms, focusing on cognition, between a P-PD group and a matched control group. Methods In this cross-sectional, case-control study, in a first set of analyses, we performed extensive cognitive testing on people with (n = 76) and a control group without (n = 195) probable RBD and hyposmia. Furthermore, we assessed motor and non-motor symptoms related to Parkinson's Disease (PD). After propensity score matching, we compared 62 P-PD with 62 age- and sex-matched controls. In addition, we performed regression analyses on the total sample (n = 271). In a second set of analyses, we used, a.o., the CUPRO to evaluate retrograde procedural memory and visuo-constructive functions. Results People with P-PD showed significantly poorer performances in global cognition, visuo-constructive and executive functions, mainly in mental flexibility (p < 0.001; p = 0.004; p = 0.003), despite similar educational levels (p = 0.415). We observed significantly more motor and non-motor symptoms (p < 0.001; p = 0.004), higher scores for depression (p = 0.004) and apathy (p < 0.001) as well as lower quality of life (p < 0.001) in P-PD. CONCLUSIONS Our findings confirm that global cognitive, executive, and visuo-constructive deficits define the P-PD group. In addition, depression, apathy, and lower quality of life were more prevalent in P-PD. If replicated in other samples, executive and visuo-constructive deficits should be considered in non-motor P-PD. Determining specific patterns will support early recognition of PD, secondary prevention of complications and the development of neuroprotective treatments.
Collapse
Affiliation(s)
- Laure Pauly
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Parkinson Research Clinic, Luxembourg, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - Armin Rauschenberger
- Competence Centre for Methodology and Statistics, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Claire Pauly
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Parkinson Research Clinic, Luxembourg, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - Valerie E. Schröder
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Parkinson Research Clinic, Luxembourg, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - Gilles Van Cutsem
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Parkinson Research Clinic, Luxembourg, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - Anja K. Leist
- Department of Social Sciences, Institute for Research on Socio-Economic Inequality, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rejko Krüger
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Parkinson Research Clinic, Luxembourg, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - on behalf of the NCER-PD Consortium
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Parkinson Research Clinic, Luxembourg, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Competence Centre for Methodology and Statistics, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Social Sciences, Institute for Research on Socio-Economic Inequality, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
118
|
Maetzler W, Mirelman A, Pilotto A, Bhidayasiri R. Identifying Subtle Motor Deficits Before Parkinson's Disease is Diagnosed: What to Look for? JOURNAL OF PARKINSON'S DISEASE 2024; 14:S287-S296. [PMID: 38363620 PMCID: PMC11492040 DOI: 10.3233/jpd-230350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/11/2024] [Indexed: 02/17/2024]
Abstract
Motor deficits typical of Parkinson's disease (PD), such as gait and balance disturbances, tremor, reduced arm swing and finger movement, and voice and breathing changes, are believed to manifest several years prior to clinical diagnosis. Here we describe the evidence for the presence and progression of motor deficits in this pre-diagnostic phase in order to provide suggestions for the design of future observational studies for an effective, quantitatively oriented investigation. On the one hand, these future studies must detect these motor deficits in as large (potentially, population-based) cohorts as possible with high sensitivity and specificity. On the other hand, they must describe the progression of these motor deficits in the pre-diagnostic phase as accurately as possible, to support the testing of the effect of pharmacological and non-pharmacological interventions. Digital technologies and artificial intelligence can substantially accelerate this process.
Collapse
Affiliation(s)
- Walter Maetzler
- Department of Neurology, University Hospital Schleswig-Holstein and Kiel University, Kiel, Germany
| | - Anat Mirelman
- Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia Hospital, Brescia, Italy
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson’s Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
119
|
Kulcsarova K, Skorvanek M, Postuma RB, Berg D. Defining Parkinson's Disease: Past and Future. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S257-S271. [PMID: 38489197 PMCID: PMC11492139 DOI: 10.3233/jpd-230411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Parkinson's disease (PD) is the second most common still relentlessly progressive neurodegenerative disorder with a long period in which the pathophysiological process is already spreading but cardinal motor symptoms are not present. This review outlines the major developments and milestones in our understanding of PD that have shaped the way we define this disorder. Past criteria and definitions of PD have been based on clinical motor manifestations enabling diagnosis of the disease only in later symptomatic stages. Nevertheless, with advancing knowledge of disease pathophysiology and aim of early disease detection, a major shift of the diagnostic paradigm is being advocated towards a biological definition similar to other neurodegenerative disorders including Alzheimer's disease and Huntington's disease, with the ultimate goal of an earlier, disease course modifying therapy. We summarize the major pillars of this possible approach including in vivo detection of neuronal α-synuclein aggregation, neurodegeneration and genetics and outline their possible application in different contexts of use in the frame of biological PD definition.
Collapse
Affiliation(s)
- Kristina Kulcsarova
- Department of Neurology, P. J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, L. Pasteur University Hospital, Kosice, Slovak Republic
- Department of Clinical Neurosciences, University Scientific Park MEDIPARK, P. J. Safarik University, Kosice, Slovak Republic
| | - Matej Skorvanek
- Department of Neurology, P. J. Safarik University, Kosice, Slovak Republic
- Department of Neurology, L. Pasteur University Hospital, Kosice, Slovak Republic
| | - Ronald B. Postuma
- Department of Neurology, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Daniela Berg
- Department of Neurology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
120
|
van Wegen EEH, van Balkom TD, Hirsch MA, Rutten S, van den Heuvel OA. Non-Pharmacological Interventions for Depression and Anxiety in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S135-S146. [PMID: 38607762 PMCID: PMC11380297 DOI: 10.3233/jpd-230228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Non-pharmacological interventions, including cognitive-behavioral therapy (CBT), non-invasive brain stimulation (NIBS), electroconvulsive therapy (ECT), light therapy (LT), and physical rehabilitation/exercise, have shown promise as effective approaches to treat symptoms of depression and anxiety in individuals with Parkinson's disease (PD). In this narrative literature overview, we discuss the state-of-the-art regarding these treatment options and address future perspectives for clinical practice and research. Non-pharmacological interventions hold promise to treat depression and anxiety in PD. There is meta-analytic evidence for the efficacy of CBT, NIBS, ECT, LT, and exercise on improving depressive symptoms. For the treatment of anxiety symptoms, CBT shows large effects but scientific evidence of other non-pharmacological interventions is limited. Importantly, these treatments are safe interventions with no or mild side-effects. More research is needed to tailor treatment to the individuals' needs and combined interventions may provide synergistic effects.We conclude that non-pharmacological interventions should be considered as alternative or augmentative treatments to pharmacological and neurosurgical approaches for the treatment of depression and anxiety in individuals with PD.
Collapse
Affiliation(s)
- Erwin E H van Wegen
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Rehabilitation & Development, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Ageing & Vitality, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- i
| | - Tim D van Balkom
- Department of Anatomy & Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention, Neurodegeneration, Amsterdam, The Netherlands
| | - Mark A Hirsch
- Department of Physical Medicine and Rehabilitation, Carolinas Medical Center, Atrium Health Carolinas Rehabilitation, Charlotte, NC, USA
- Department of Orthopedic Surgery and Rehabilitation, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sonja Rutten
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention, Neurodegeneration, Amsterdam, The Netherlands
| | - Odile A van den Heuvel
- Department of Anatomy & Neurosciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention, Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
121
|
Yusuf FLA, Zhu F, Evans C, Fisk JD, Zhao Y, Marrie RA, Tremlett H. Gastrointestinal conditions in the multiple sclerosis prodrome. Ann Clin Transl Neurol 2024; 11:185-193. [PMID: 38115680 PMCID: PMC10791028 DOI: 10.1002/acn3.51945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 12/21/2023] Open
Abstract
OBJECTIVE To investigate gastrointestinal (GI)-related physician visits and drug dispensations in the 5 years preceding a first recorded demyelinating event or multiple sclerosis (MS) onset. METHODS Using linked administrative and clinical data from British Columbia (1996-2013), Canada, we identified an administrative cohort via a validated algorithm (n = 6863), a clinical cohort diagnosed at a MS clinic (n = 966), and matched controls (administrative cohort: n = 31,865; clinical cohort: n = 4534). In each cohort, the 5 years before a first demyelinating event or MS symptom onset (i.e., index date) were examined. We compared rates of GI-related physician visits and risk of ≥1 GI-related dispensation between MS cases and controls using negative binomial and robust Poisson models. Sex differences were tested using interaction terms. RESULTS The administrative cohort MS cases had higher rates of physician visits related to gastritis and duodenitis (adjusted rate/risk ratio (aRR):1.42, 95% CI: 1.10-1.83) and diseases of the esophagus (aRR: 1.46, 95% CI: 1.06-2.02) prior to the index date. MS cases also had greater risk of at least one dispensation for several drug classes, including constipation-related (aRR: 1.82, 95% CI: 1.50-2.22), antiemetics/antinauseants (aRR: 1.64, 95% CI: 1.43-1.89), and propulsives (promotility drugs; aRR: 1.62, 95% CI: 1.47-1.79). Men had a disproportionally higher relative risk for propulsives than women (aRR: men = 2.32, 95% CI: 1.79-3.00; women = 1.54, 95% CI: 1.36-1.72). Several findings were similar in the smaller clinical cohort though none reached statistical significance. INTERPRETATION GI-related physician visits and drug dispensations were more common in the 5 years before the first demyelinating event versus matched controls. GI symptoms are a measurable feature of the prodromal or early phase of MS, with a sex difference evident.
Collapse
Affiliation(s)
- Fardowsa L. A. Yusuf
- Medicine (Neurology), the Djavad Mowafaghian Centre for Brain HealthUniversity of British Columbia2211 Wesbrook MallVancouverBritish ColumbiaV6T 2B5Canada
- School of Population and Public Health, University of British Columbia2206 East MallVancouverBritish ColumbiaV6T 1Z3Canada
| | - Feng Zhu
- Medicine (Neurology), the Djavad Mowafaghian Centre for Brain HealthUniversity of British Columbia2211 Wesbrook MallVancouverBritish ColumbiaV6T 2B5Canada
| | - Charity Evans
- College of Pharmacy and Nutrition, University of Saskatchewan2A20.4 Health Sciences Bldg, 107 Wiggins AveSaskatoonSaskatchewanS7N 5E5Canada
| | - John D. Fisk
- Nova Scotia Health and the Departments of Psychiatry, Psychology & Neuroscience, and MedicineDalhousie University4066 A.J. Lane Memorial Building, 5909 Veterans' Memorial LaneHalifaxNova ScotiaB3H 2E2Canada
| | - Yinshan Zhao
- Medicine (Neurology), the Djavad Mowafaghian Centre for Brain HealthUniversity of British Columbia2211 Wesbrook MallVancouverBritish ColumbiaV6T 2B5Canada
| | - Ruth A. Marrie
- Departments of Internal Medicine and Community Health Sciences, Rady Faculty of Health Sciences, Health Sciences CentreMax Rady College of Medicine, University of ManitobaGF543, 820 Sherbrook StreetWinnipegManitobaR3A 1R9Canada
| | - Helen Tremlett
- Medicine (Neurology), the Djavad Mowafaghian Centre for Brain HealthUniversity of British Columbia2211 Wesbrook MallVancouverBritish ColumbiaV6T 2B5Canada
| |
Collapse
|
122
|
Citro S, Lazzaro GD, Cimmino AT, Giuffrè GM, Marra C, Calabresi P. A multiple hits hypothesis for memory dysfunction in Parkinson disease. Nat Rev Neurol 2024; 20:50-61. [PMID: 38052985 DOI: 10.1038/s41582-023-00905-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
Cognitive disorders are increasingly recognized in Parkinson disease (PD), even in early disease stages, and memory is one of the most affected cognitive domains. Classically, hippocampal cholinergic system dysfunction was associated with memory disorders, whereas nigrostriatal dopaminergic system impairment was considered responsible for executive deficits. Evidence from PD studies now supports involvement of the amygdala, which modulates emotional attribution to experiences. Here, we propose a tripartite model including the hippocampus, striatum and amygdala as key structures for cognitive disorders in PD. First, the anatomo-functional relationships of these structures are explored and experimental evidence supporting their role in cognitive dysfunction in PD is summarized. We then discuss the potential role of α-synuclein, a pathological hallmark of PD, in the tripartite memory system as a key mechanism in the pathogenesis of memory disorders in the disease.
Collapse
Affiliation(s)
- Salvatore Citro
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Di Lazzaro
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Angelo Tiziano Cimmino
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Guido Maria Giuffrè
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Camillo Marra
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Paolo Calabresi
- Neurology Section, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
123
|
Holmes S, Tinaz S. Neuroimaging Biomarkers in Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2024; 40:617-663. [PMID: 39562459 DOI: 10.1007/978-3-031-69491-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Idiopathic Parkinson's disease (PD) is a neurodegenerative disorder that affects multiple systems in the body and is characterized by a variety of motor and non-motor (e.g., psychiatric, autonomic) symptoms. As the fastest growing neurological disorder expected to affect over 12 million people globally by 2040 (Dorsey, Bloem JAMA Neurol 75(1):9-10. https://doi.org/10.1001/jamaneurol.2017.3299 . PMID: 29131880, 2018), PD poses an enormous individual and public health burden. Currently, there are no therapies that can slow down the disease progression in PD, and existing therapies are limited to symptomatic treatment. Importantly, people in the prodromal phase who are at high risk of developing PD can now be identified, which makes disease prevention an achievable goal. An in-depth understanding of the pathological processes in PD is crucial for prevention and treatment development. Advanced multimodal neuroimaging techniques provide unique biomarkers that can further our understanding of PD at multiple levels ranging from neurotransmitters to neural networks. These neuroimaging biomarkers also have value in clinical application, for example, in the differential diagnosis of PD. As the field continues to advance, neuroimaging biomarkers are expected to become more specific, more widely accessible, and can be readily incorporated into translational research for treatment development in PD.
Collapse
Affiliation(s)
- Sophie Holmes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Sule Tinaz
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
124
|
Crotty GF, Ayer SJ, Schwarzschild MA. Designing the First Trials for Parkinson's Prevention. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S381-S393. [PMID: 39302381 PMCID: PMC11491995 DOI: 10.3233/jpd-240164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 09/22/2024]
Abstract
For decades the greatest goal of Parkinson's disease (PD) research has often been distilled to the discovery of treatments that prevent the disease or its progression. However, until recently only the latter has been realistically pursued through randomized clinical trials of candidate disease-modifying therapy (DMT) conducted on individuals after they received traditional clinical diagnosis of PD (i.e., tertiary prevention trials). Now, in light of major advances in our understanding of the prodromal stages of PD, as well as its genetics and biomarkers, the first secondary prevention trials for PD are beginning. In this review, we take stock of DMT trials to date, summarize the breakthroughs that allow the identification of cohorts at high risk of developing a traditional diagnosis of PD, and describe key design elements of secondary prevention trials and how they depend on the prodromal stage being targeted. These elements address whom to enroll, what interventions to test, and how to measure secondary prevention (i.e., slowed progression during the prodromal stages of PD). Although these design strategies, along with the biological definition, subtype classification, and staging of the disease are evolving, all are driven by continued progress in the underlying science and integrated by a broad motivated community of stakeholders. While considerable methodological challenges remain, opportunities to move clinical trials of DMT to earlier points in the disease process than ever before have begun to unfold, and the prospects for PD prevention are nowtangible.
Collapse
Affiliation(s)
- Grace F. Crotty
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Present address: Department of Neurology, Cork University Hospital, Cork, Ireland
| | - Samuel J. Ayer
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Michael A. Schwarzschild
- Molecular Neurobiology Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
125
|
Mahlknecht P, Poewe W. Pharmacotherapy for Disease Modification in Early Parkinson's Disease: How Early Should We Be? JOURNAL OF PARKINSON'S DISEASE 2024; 14:S407-S421. [PMID: 38427503 PMCID: PMC11492107 DOI: 10.3233/jpd-230354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 03/03/2024]
Abstract
Slowing or halting progression continues to be a major unmet medical need in Parkinson's disease (PD). Numerous trials over the past decades have tested a broad range of interventions without ultimate success. There are many potential reasons for this failure and much debate has focused on the need to test 'disease-modifying' candidate drugs in the earliest stages of disease. While generally accepted as a rational approach, it is also associated with significant challenges around the selection of trial populations as well as trial outcomes and durations. From a health care perspective, intervening even earlier and before at-risk subjects have gone on to develop overt clinical disease is at the heart of preventive medicine. Recent attempts to develop a framework for a biological definition of PD are aiming to enable 'preclinical' and subtype-specific diagnostic approaches. The present review addresses past efforts towards disease-modification, including drug targets and reasons for failure, as well as novel targets that are currently being explored in disease-modification trials in early established PD. The new biological definitions of PD may offer new opportunities to intervene even earlier. We critically discuss the potential and challenges around planning 'disease-prevention' trials in subjects with biologically defined 'preclinical' or prodromal PD.
Collapse
Affiliation(s)
- Philipp Mahlknecht
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
126
|
Hossain MA, Amenta F. Machine Learning-Based Classification of Parkinson's Disease Patients Using Speech Biomarkers. JOURNAL OF PARKINSON'S DISEASE 2024; 14:95-109. [PMID: 38160364 PMCID: PMC10836572 DOI: 10.3233/jpd-230002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is the most prevalent neurodegenerative movement disorder and a growing health concern in demographically aging societies. The prevalence of PD among individuals over the age of 60 and 80 years has been reported to range between 1% and 4%. A timely diagnosis of PD is desirable, even though it poses challenges to medical systems. OBJECTIVE This study aimed to classify PD and healthy controls based on the analysis of voice records at different frequencies using machine learning (ML) algorithms. METHODS The voices of 252 individuals aged 33 to 87 years were recorded. Based on the voice record data, ML algorithms can distinguish PD patients and healthy controls. One binary decision variable was associated with 756 instances and 754 attributes. Voice records data were analyzed through supervised ML algorithms and pipelines. A 10-fold cross-validation method was used to validate models. RESULTS In the classification of PD patients, ML models were performed with 84.21 accuracy, 93 precision, 89 Sensitivity, 89 F1-scores, and 87 AUC. The pipeline performance improved to accuracy: 85.09, precision: 92, Sensitivity:91, F1-score: 89, and AUC: 90. The Pipeline methods improved the performance of classifying PD from voice record. CONCLUSIONS Our study demonstrated that ML classifiers and pipelines can classify PD patients based on speech biomarkers. It was found that pipelines were more effective at selecting the most relevant features from high-dimensional data and at accurately classifying PD patients and healthy controls. This approach can therefore be used for early diagnosis of initial forms of PD.
Collapse
Affiliation(s)
- Mohammad Amran Hossain
- Telemedicine and Telepharmacy Centre, School of Medicinal and Health Products Sciences, University of Camerino, Camerino, Italy
| | - Francesco Amenta
- Telemedicine and Telepharmacy Centre, School of Medicinal and Health Products Sciences, University of Camerino, Camerino, Italy
| |
Collapse
|
127
|
Savoie FA, Arpin DJ, Vaillancourt DE. Magnetic Resonance Imaging and Nuclear Imaging of Parkinsonian Disorders: Where do we go from here? Curr Neuropharmacol 2024; 22:1583-1605. [PMID: 37533246 PMCID: PMC11284713 DOI: 10.2174/1570159x21666230801140648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 08/04/2023] Open
Abstract
Parkinsonian disorders are a heterogeneous group of incurable neurodegenerative diseases that significantly reduce quality of life and constitute a substantial economic burden. Nuclear imaging (NI) and magnetic resonance imaging (MRI) have played and continue to play a key role in research aimed at understanding and monitoring these disorders. MRI is cheaper, more accessible, nonirradiating, and better at measuring biological structures and hemodynamics than NI. NI, on the other hand, can track molecular processes, which may be crucial for the development of efficient diseasemodifying therapies. Given the strengths and weaknesses of NI and MRI, how can they best be applied to Parkinsonism research going forward? This review aims to examine the effectiveness of NI and MRI in three areas of Parkinsonism research (differential diagnosis, prodromal disease identification, and disease monitoring) to highlight where they can be most impactful. Based on the available literature, MRI can assist with differential diagnosis, prodromal disease identification, and disease monitoring as well as NI. However, more work is needed, to confirm the value of MRI for monitoring prodromal disease and predicting phenoconversion. Although NI can complement or be a substitute for MRI in all the areas covered in this review, we believe that its most meaningful impact will emerge once reliable Parkinsonian proteinopathy tracers become available. Future work in tracer development and high-field imaging will continue to influence the landscape for NI and MRI.
Collapse
Affiliation(s)
- Félix-Antoine Savoie
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
| | - David J. Arpin
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
| | - David E. Vaillancourt
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
128
|
Yamakado H, Takahashi R. Experimental Animal Models of Prodromal Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S369-S379. [PMID: 38427504 PMCID: PMC11492006 DOI: 10.3233/jpd-230393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 03/03/2024]
Abstract
There is an estimated 35-45% loss of striatal dopamine at the time of diagnosis of Parkinson's disease (PD), and cases clinically diagnosed in the early stages may already be pathologically in advanced stages. Recent large-scale clinical trials of disease-modifying therapies (DMT) also suggest the necessity of targeting patients at earlier stages of the disease. From this perspective, the prodromal phase of PD is currently the focus of attention, emphasizing the need for a prodromal mouse model that accurately reflects the pathophysiology, along with early biomarkers. To establish prodromal animal model of PD with high face validity that reflects the disease state, the model must possess high construct validity that accurately incorporates clinical and pathological features in the prodromal phase. Furthermore, as a preclinical model of DMT, the model must possess high predictive validity to accurately evaluate the response to intervention. This review provides an overview of animal models which reflect the characteristics of prodromal PD, including alpha-synuclein (aS) accumulation and associated early non-motor symptoms, with a focus on the aS propagation model and genetic model. In addition, we discuss the challenges associated with these models. The genetic model often fails to induce motor symptoms, while aS propagation models skip the crucial step of initial aS aggregate formation, thereby not fully replicating the entire natural course of the disease. Identifying factors that induce the transition from prodromal to symptomatic phase is important as a preclinical model for DMT to prevent or delay the onset of the disease.
Collapse
Affiliation(s)
- Hodaka Yamakado
- Department of Therapeutics for Multiple System Atrophy, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
129
|
Palma JA, Thijs RD. Non-Pharmacological Treatment of Autonomic Dysfunction in Parkinson's Disease and Other Synucleinopathies. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S81-S92. [PMID: 37694308 PMCID: PMC11380254 DOI: 10.3233/jpd-230173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Symptoms of autonomic dysfunction are prevalent and can be very debilitating, reducing the quality of life in patients with Parkinson's disease (PD) and other synucleinopathies such as dementia with Lewy bodies and multiple system atrophy. Non-pharmacological therapies are key to effective management and are frequently used alone in patients with mild autonomic symptoms, or in combination with pharmacological therapies in patients with moderate and severe symptoms. This article focuses on non-pharmacological approaches. Our objective was to review the non-drug and non-surgical approaches to treating autonomic symptoms in patients with PD and other synucleinopathies, focusing on cardiovascular, gastrointestinal, and genitourinary autonomic dysfunction. Evidence supporting the effectiveness of non-pharmacological treatment for the management of neurogenic orthostatic hypotension, supine hypertension, constipation, and bladder and sexual dysfunction is available. High-quality prospective trials are scarce, yet some non-pharmacological interventions (e.g., physical counter maneuvers) can be evaluated relatively quickly on an individual basis and often seem effective. The emerging variety of clinical presentations advocates for a stepwise, individualized, and non-pharmacological approach for the management of autonomic symptoms. Often, the first step is to reduce or discontinue drugs that cause or aggravate autonomic symptoms followed by lifestyle measures. While non-pharmacological and non-surgical treatments are available and, in many cases, effective to improve symptoms of autonomic dysfunction in PD and other synucleinopathies, they are often overlooked. Large randomized trials testing and comparing non-pharmacological approaches are warranted.
Collapse
Affiliation(s)
- Jose-Alberto Palma
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Roland D Thijs
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
130
|
Chen X, Zhang Z, Tong L, Wang H, Xu X, Sun L, Li Y, Gao X. Prospective Study of Lung Function with Prodromal, Clinical Parkinson's Disease, and Mortality. JOURNAL OF PARKINSON'S DISEASE 2024; 14:1427-1439. [PMID: 39269854 PMCID: PMC11492123 DOI: 10.3233/jpd-240097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/15/2024]
Abstract
Background The association of lung function with the risk of developing prodromal and clinical-diagnosed Parkinson's disease (PD) and with the risk of mortality among individuals with PD remains unknown. Objective To prospectively examine the associations of lung function with the risk of prodromal, clinical-diagnosed PD, and PD-related mortality in participants of the UK Biobank. Methods Included were 452,518 participants free of PD at baseline. Baseline lung function, including forced expiratory volume in 1-s (FEV1), forced vital capacity (FVC), peak expiratory flow (PEF), and FEV1/FVC ratio, was assessed. Eight prodromal features were measured using self-reported diagnoses, hospital admission, and primary care data. Incident PD cases were identified using linkages with hospital admission, death register, and self-report. Vital status and date of death were provided by the UK National Health Service (NHS) and the NHS Central Register. We used Cox proportional hazard models to evaluate these associations. Results Poor lung function was associated with higher risk of PD in a dose-response relationship: the adjusted hazard ratio comparing the lowest vs. the highest lung function quintile was 1.18 (95% CI, 1.02- 1.37) for FEV1, 1.14 (95% CI, 0.99- 1.29) for FVC, and 1.23 (95% CI, 1.08- 1.41) for PEF (p-trend <0.05 for all). Similar results were obtained for risk of prodromal PD and mortality among individuals with PD. Conclusions The current study showed that individuals with poor lung function had a high future risk of prodromal and clinical PD and a higher rate of PD-related mortality.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhicheng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Tong
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Han Wang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinming Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liang Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yaqi Li
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiang Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
131
|
Katunina EA, Parusova AV, Golovanova IV, Zavadtseva NV. [Cognitive impairment in patients with Parkinson's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:81-90. [PMID: 39690555 DOI: 10.17116/jnevro202412411181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Parkinson's disease manifests itself in both motor and non-motor symptoms, that occupies an important place among non-motor symptoms. The article provides an overview of the spectrum of cognitive disorders in this disease, examines their pathomorphological and neurotransmitter basis. Risk factors, diagnostic criteria, as well as complex therapy, including both neurotransmitter and neurotrophic drugs, methods of physical and cognitive rehabilitation, are discussed.
Collapse
Affiliation(s)
- E A Katunina
- Pirogov Russian National Research Medical University (Pirogovsky University), Moscow, Russia
- Federal Center for Brain and Neurotechnology, Moscow, Russia
| | - A V Parusova
- Federal Center for Brain and Neurotechnology, Moscow, Russia
| | | | | |
Collapse
|
132
|
Pilotto A, Zanusso G, Antelmi E, Okuzumi A, Zatti C, Lupini A, Bongianni M, Padovani A, Hattori N. Biofluid Markers and Tissue Biopsies Analyses for the Prodromal and Earliest Phase of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S333-S344. [PMID: 39331105 PMCID: PMC11494635 DOI: 10.3233/jpd-240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/28/2024]
Abstract
The recent development of new methods to detect misfolded α-synuclein (αSyn) aggregates in biofluids and tissue biopsies in the earliest Parkinson's disease (PD) phases is dramatically challenging the biological definition of PD. The αSyn seed amplification methods in cerebrospinal fluid (CSF) showed high sensitivity and specificity for early diagnosis of PD and Lewy bodies disorders. Several studies in isolated REM sleep behavior disorders and other at-risk populations also demonstrated a high prevalence of CSF αSyn positivity and its potential value in predicting the phenoconversion to clinically manifested diseases. Growing evidence exists for αSyn aggregates in olfactory mucosa, skin, and other tissues in subjects with PD or at-risk subjects. DOPA decarboxylase and numerous other candidates have been additionally proposed for either diagnostic or prognostic purposes in earliest PD phases. The newly described αSyn detection in blood, through its quantification in neuronally-derived exosome vesicles, represents a technical challenge that could open a new scenario for the biological diagnosis of PD. Despite this growing evidence in the field, most of method of αSyn detection and markers still need to be validated in ongoing longitudinal studies through an accurate assessment of different prodromal disease subtypes and scenarios before being definitively implemented in clinical settings.
Collapse
Affiliation(s)
- Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia Hospital, Brescia, Italy
- Neurobiorepository and Laboratory of Advanced Biological Markers, University of Brescia and ASST Spedali Civili of Brescia, Brescia, Italy
| | - Gianluigi Zanusso
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Elena Antelmi
- Neurology Unit, Parkinson Disease and Movement Disorders Division, Department of Engineering and Medicine of Innovation, University of Verona, Verona, Italy
| | - Ayami Okuzumi
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Cinzia Zatti
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia Hospital, Brescia, Italy
| | - Alessandro Lupini
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia Hospital, Brescia, Italy
| | - Matilde Bongianni
- Neurobiorepository and Laboratory of Advanced Biological Markers, University of Brescia and ASST Spedali Civili of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Laboratory of Digital Neurology and Biosensors, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia Hospital, Brescia, Italy
- Neurobiorepository and Laboratory of Advanced Biological Markers, University of Brescia and ASST Spedali Civili of Brescia, Brescia, Italy
- Brain Health Center, University of Brescia, Brescia, Italy
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Neurodegenerative Disorders Collaboration Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
133
|
Oosterhof TH, Darweesh SK, Bloem BR, de Vries NM. Considerations on How to Prevent Parkinson's Disease Through Exercise. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S395-S406. [PMID: 39031383 PMCID: PMC11492051 DOI: 10.3233/jpd-240091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 07/22/2024]
Abstract
The increasing prevalence of people with Parkinson's disease (PD) necessitates a high priority for finding interventions to delay or even prevent the onset of PD. There is converging evidence that exercise may exert disease-modifying effects in people with clinically manifest PD, but whether exercise also has a preventive effect or is able to modify the progression of the pathology in the prodromal phase of PD is unclear. Here we provide some considerations on the design of trials that aim to prevent PD through exercise. First, we discuss the who could benefit from exercise, and potential exercise-related risks. Second, we discuss what specific components of exercise mediate the putative disease-modifying effects. Third, we address how methodological challenges such as blinding, adherence and remote monitoring could be handled and how we can measure the efficacy of exercise as modifier of the course of prodromal PD. We hope that these considerations help in designing exercise prevention trials for persons at risk of developing PD.
Collapse
Affiliation(s)
- Thomas H. Oosterhof
- Department of Neurology, Centre of Expertise for Parkinson and Movement Disorders, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Sirwan K.L. Darweesh
- Department of Neurology, Centre of Expertise for Parkinson and Movement Disorders, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Bastiaan R. Bloem
- Department of Neurology, Centre of Expertise for Parkinson and Movement Disorders, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Nienke M. de Vries
- Department of Neurology, Centre of Expertise for Parkinson and Movement Disorders, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| |
Collapse
|
134
|
Kluge A, Iranzo A. Biofluid Detection of Pathological α-Synuclein in the Prodromal Phase of Synucleinopathies. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S323-S331. [PMID: 38995801 PMCID: PMC11494638 DOI: 10.3233/jpd-230429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 07/14/2024]
Abstract
Synucleinopathies are disorders characterized by the aggregation and deposition of pathological α-synuclein conformers. The underlying neurodegenerative processes begin years or decades before the onset of cardinal motor symptoms. This prodromal phase may manifest with various signs or symptoms. However, there are no current standardized laboratory tests to ascertain the progression and conversion of prodromal conditions such as mild cognitive impairment, isolated REM sleep behavior disorder or pure autonomic failure. The aim of this systematic review was to evaluate the diagnostic possibilities using human biofluids as source material to detect pathological α-synuclein in the prodromal phase of synucleinopathies. Our review identified eight eligible studies, that investigated pathological α-synuclein conformers using cerebrospinal fluid from patients with prodromal signs of synulceinopathies to differentiate this patient group from non-synucleinopathies, while only one study investigated this aspect using blood as medium. While previous studies clearly demonstrated a high diagnostic performance of α-synuclein seed amplification assays for differentiating synucleinopathies with Lewy bodies from healthy controls, only few analyses were performed focussing on individuals with prodromal disease. Nevertheless, results for the early detection of α-synuclein seeds using α-synuclein seed amplification assays were promising and may be of particular relevance for future clinical trials and clinical practice.
Collapse
Affiliation(s)
- Annika Kluge
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel and Kiel University, Kiel, Germany
| | - Alex Iranzo
- Sleep Unit, Neurology Service, Hospital Clínic Barcelona, Barcelona University, IDIBAPS, CIBERNED, Barcelona, Spain
| |
Collapse
|
135
|
Schaeffer E, Yilmaz R, St. Louis EK, Noyce AJ. Ethical Considerations for Identifying Individuals in the Prodromal/Early Phase of Parkinson's Disease: A Narrative Review. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S307-S319. [PMID: 38995800 PMCID: PMC11492008 DOI: 10.3233/jpd-230428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
The ability to identify individuals in the prodromal phase of Parkinson's disease has improved in recent years, raising the question of whether and how those affected should be informed about the risk of future disease. Several studies investigated prognostic counselling for individuals with isolated REM sleep behavior disorder and have shown that most patients want to receive information about prognosis, but autonomy and individual preferences must be respected. However, there are still many unanswered questions about risk disclosure or early diagnosis of PD, including the impact on personal circumstances, cultural preferences and specific challenges associated with different profiles of prodromal symptoms, genetic testing or biomarker assessments. This narrative review aims to summarize the current literature on prognostic counselling and risk disclosure in PD, as well as highlight future perspectives that may emerge with the development of new biomarkers and their anticipated impact on the definition of PD.
Collapse
Affiliation(s)
- Eva Schaeffer
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel and Kiel University, Kiel, Germany
| | - Rezzak Yilmaz
- Department of Neurology, Ankara University School of Medicine, Ankara, Turkey
- Ankara University Brain Research Center, Ankara, Turkey
| | - Erik K. St. Louis
- Mayo Center for Sleep Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Health System Southwest Wisconsin, La Crosse, WI, USA
| | - Alastair J. Noyce
- Centre for Preventive Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
136
|
Marrie RA, Palladino R. Deciphering a Prodrome: Looking for a Disease in a Haystack. Neurology 2023; 101:1083-1084. [PMID: 38052494 DOI: 10.1212/wnl.0000000000208070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 12/07/2023] Open
Abstract
In many chronic diseases, the underlying biological processes begin long before the condition is clinically recognized and diagnosed. After biologic onset of the disease an early, often nonspecific, set of symptoms, or prodrome, may develop before more characteristic symptoms of the disease present. For instance, in Parkinson disease (PD), some of the earliest manifestations, such as smell or taste dysfunction, may occur 2 decades before typical symptoms, such as tremor, appear.1 Generally, the combination of long prodromal phases and nonspecific symptoms hampers early recognition of disease. Recognizing the prodromal phase of a disease in an individual has 2 potential benefits. First, accurate identification of etiologic factors for disease depends on ensuring that the putative exposure preceded biologic onset of the disease and that the identified symptoms are not related to a delay in diagnosis. Therefore, recognition of a prodromal phase may enhance the ability to identify etiologic factors. Second, accurate prediction that an individual is in the prodromal phase of the disease offers the tantalizing possibility that intervention in this phase could prevent or delay evolution of more typical clinical manifestations.2.
Collapse
Affiliation(s)
- Ruth Ann Marrie
- From the Internal Medicine and Community Health Sciences (R.A.M.), University of Manitoba, Winnipeg, Canada; and Public Health (R.P.), University "Federico II" of Naples, Italy
| | - Raffaele Palladino
- From the Internal Medicine and Community Health Sciences (R.A.M.), University of Manitoba, Winnipeg, Canada; and Public Health (R.P.), University "Federico II" of Naples, Italy
| |
Collapse
|
137
|
Xin G, Niu J, Tian Q, Fu Y, Chen L, Yi T, Tian K, Sun X, Wang N, Wang J, Zhang H, Wang L. Identification of potential immune-related hub genes in Parkinson's disease based on machine learning and development and validation of a diagnostic classification model. PLoS One 2023; 18:e0294984. [PMID: 38051734 DOI: 10.1371/journal.pone.0294984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Parkinson's disease is the second most common neurodegenerative disease in the world. However, current diagnostic methods are still limited, and available treatments can only mitigate the symptoms of the disease, not reverse it at the root. The immune function has been identified as playing a role in PD, but the exact mechanism is unknown. This study aimed to search for potential immune-related hub genes in Parkinson's disease, find relevant immune infiltration patterns, and develop a categorical diagnostic model. METHODS We downloaded the GSE8397 dataset from the GEO database, which contains gene expression microarray data for 15 healthy human SN samples and 24 PD patient SN samples. Screening for PD-related DEGs using WGCNA and differential expression analysis. These PD-related DEGs were analyzed for GO and KEGG enrichment. Subsequently, hub genes (dld, dlk1, iars and ttd19) were screened by LASSO and mSVM-RFE machine learning algorithms. We used the ssGSEA algorithm to calculate and evaluate the differences in nigrostriatal immune cell types in the GSE8397 dataset. The association between dld, dlk1, iars and ttc19 and 28 immune cells was investigated. Using the GSEA and GSVA algorithms, we analyzed the biological functions associated with immune-related hub genes. Establishment of a ceRNA regulatory network for immune-related hub genes. Finally, a logistic regression model was used to develop a PD classification diagnostic model, and the accuracy of the model was verified in three independent data sets. The three independent datasets are GES49036 (containing 8 healthy human nigrostriatal tissue samples and 15 PD patient nigrostriatal tissue samples), GSE20292 (containing 18 healthy human nigrostriatal tissue samples and 11 PD patient nigrostriatal tissue samples) and GSE7621 (containing 9 healthy human nigrostriatal tissue samples and 16 PD patient nigrostriatal tissue samples). RESULTS Ultimately, we screened for four immune-related Parkinson's disease hub genes. Among them, the AUC values of dlk1, dld and ttc19 in GSE8397 and three other independent external datasets were all greater than 0.7, indicating that these three genes have a certain level of accuracy. The iars gene had an AUC value greater than 0.7 in GES8397 and one independent external data while the AUC values in the other two independent external data sets ranged between 0.5 and 0.7. These results suggest that iars also has some research value. We successfully constructed a categorical diagnostic model based on these four immune-related Parkinson's disease hub genes, and the AUC values of the joint diagnostic model were greater than 0.9 in both GSE8397 and three independent external datasets. These results indicate that the categorical diagnostic model has a good ability to distinguish between healthy individuals and Parkinson's disease patients. In addition, ceRNA networks reveal complex regulatory relationships based on immune-related hub genes. CONCLUSION In this study, four immune-related PD hub genes (dld, dlk1, iars and ttd19) were obtained. A reliable diagnostic model for PD classification was developed. This study provides algorithmic-level support to explore the immune-related mechanisms of PD and the prediction of immune-related drug targets.
Collapse
Affiliation(s)
- Guanghao Xin
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, City Harbin, Province Heilongjiang, China
| | - Jingyan Niu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, City Harbin, Province Heilongjiang, China
| | - Qinghua Tian
- Department of Neurology, The 962 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, City Harbin, Province Heilongjiang, China
| | - Yanchi Fu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, City Harbin, Province Heilongjiang, China
| | - Lixia Chen
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, City Harbin, Province Heilongjiang, China
| | - Tingting Yi
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, City Harbin, Province Heilongjiang, China
| | - Kuo Tian
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, City Harbin, Province Heilongjiang, China
| | - Xuesong Sun
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, City Harbin, Province Heilongjiang, China
| | - Na Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, City Harbin, Province Heilongjiang, China
| | - Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, City Harbin, Province Heilongjiang, China
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, City Harbin, Province Heilongjiang, China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, City Harbin, Province Heilongjiang, China
| |
Collapse
|
138
|
Gkotzamanis V, Panagiotakos DB, Yannakoulia M, Maraki M, Kosmidis M, Dardiotis E, Hadjigeorgiou G, Sakka P, Ntanasi E, Mamalaki E, Scarmeas N. Trajectories of healthy aging and their association with prodromal parkinson disease: The HELIAD study. APPLIED NEUROPSYCHOLOGY. ADULT 2023:1-8. [PMID: 38048313 DOI: 10.1080/23279095.2023.2289548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Background: The aim of the present study was to investigate the association of prodromal PD (pPD) with trajectories of healthy aging, according to its latest definition by the WHO.Methods: In a sample of 1,226 older adults (704 women), PD diagnosis was reached through standard clinical research procedures. Probability of pPD was calculated according to the International Parkinson and Movement Disorder Society's research criteria for PD-free participants. A healthy aging metric was introduced using an item response theory approach (IRT) based on information from validated questionnaires assessing functionality. Four trajectories of healthy aging were created based on whether the healthy aging status of participants was above or below the median at baseline and follow up: High-High, High-Low, Low-High and Low-Low.Results: 34.3% belonged to the High-High group, 15.7% to the High-Low, 18.6% to the Low-High and 31.4% to the Low-Low group. Participants with possible/probable pPD were 78% less likely to belong in High-High trajectory of healthy aging as compared to those without pPD (OR = 0.22, 95%CI 0.06-0.79, p-value = 0,02).Conclusion: Our findings suggest an inverse association of pPD probability with healthy aging among older adults; Further research is needed to investigate the clinical implications of this association.
Collapse
Affiliation(s)
- Viktor Gkotzamanis
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| | - Demosthenes B Panagiotakos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| | - Maria Maraki
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| | - Mary Kosmidis
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Paraskevi Sakka
- Athens Association of Alzheimer's Disease and Related Disorders, Athens, Greece
| | - Eva Ntanasi
- 1st Department of Neurology, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eirini Mamalaki
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, Columbia University, New York, NY, USA
| |
Collapse
|
139
|
Santos‐García D, de Deus Fonticoba T, Cores Bartolomé C, Feal Painceiras MJ, García Díaz I, Alvarado MCÍ, Paz JM, Jesús S, Cosgaya M, Caldentey JG, Caballol N, Legarda I, Hernández Vara J, Cabo I, López Manzanares L, González Aramburu I, Ávila Rivera MA, Gómez Mayordomo V, Nogueira V, Dotor García‐Soto J, Borrué C, Solano Vila B, Álvarez Sauco M, Vela L, Escalante S, Cubo E, Mendoza Z, Martínez Castrillo JC, Sánchez Alonso P, Alonso Losada MG, López Ariztegui N, Gastón I, Kulisevsky J, Seijo M, Valero C, Alonso Redondo R, Buongiorno MT, Ordás C, Menéndez‐González M, McAfee D, Martinez‐Martin P, Mir P. Staging Parkinson's disease according to the MNCD classification correlates with caregiver burden. Brain Behav 2023; 13:e3295. [PMID: 37939322 PMCID: PMC10726881 DOI: 10.1002/brb3.3295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Recently, we demonstrated that staging Parkinson's disease (PD) with a novel simple classification called MNCD, based on four axes (motor, non-motor, cognition, and dependency) and five stages, correlated with disease severity and patients' quality of life. Here, we analyzed the correlation of MNCD staging with PD caregiver's status. PATIENTS AND METHODS Data from the baseline visit of PD patients and their principal caregiver recruited from 35 centers in Spain from the COPPADIS cohort from January 2016 to November 2017 were used to apply the MNCD total score (from 0 to 12) and MNCD stages (from 1 to 5) in this cross-sectional analysis. Caregivers completed the Zarit Caregiver Burden Inventory (ZCBI), Caregiver Strain Index (CSI), Beck Depression Inventory-II (BDI-II), PQ-10, and EUROHIS-QOL 8-item index (EUROHIS-QOL8). RESULTS Two hundred and twenty-four PD patients (63 ± 9.6 years old; 61.2% males) and their caregivers (58.5 ± 12.1 years old; 67.9% females) were included. The frequency of MNCD stages was 1, 7.6%; 2, 58.9%; 3, 31.3%; and 4-5, 2.2%. A more advanced MNCD stage was associated with a higher score on the ZCBI (p < .0001) and CSI (p < .0001), and a lower score on the PQ-10 (p = .001), but no significant differences were observed in the BDI-II (p = .310) and EUROHIS-QOL8 (p = .133). Moderate correlations were observed between the MNCD total score and the ZCBI (r = .496; p < .0001), CSI (r = .433; p < .0001), and BDI-II (r = .306; p < .0001) in caregivers. CONCLUSION Staging PD according to the MNCD classification is correlated with caregivers' strain and burden.
Collapse
Affiliation(s)
- Diego Santos‐García
- Department of Neurology, CHUACComplejo Hospitalario Universitario de A CoruñaA CoruñaSpain
| | | | - Carlos Cores Bartolomé
- Department of Neurology, CHUACComplejo Hospitalario Universitario de A CoruñaA CoruñaSpain
| | | | - Iago García Díaz
- Department of Neurology, CHUACComplejo Hospitalario Universitario de A CoruñaA CoruñaSpain
| | | | - Jose Manuel Paz
- Department of Neurology, CHUACComplejo Hospitalario Universitario de A CoruñaA CoruñaSpain
| | - Silvia Jesús
- Department of Neurology, Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de SevillaHospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevilleSpain
- CIBERNED (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas)MadridSpain
| | - Marina Cosgaya
- Department of NeurologyHospital Clínic de BarcelonaBarcelonaSpain
| | | | - Nuria Caballol
- Department of Neurology, Consorci Sanitari IntegralHospital Moisés BroggiSant Joan DespíBarcelonaSpain
| | - Ines Legarda
- Department of NeurologyHospital Universitario Son EspasesPalma de MallorcaSpain
| | - Jorge Hernández Vara
- CIBERNED (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas)MadridSpain
- Department of NeurologyHospital Universitario Vall d´HebronBarcelonaSpain
| | - Iria Cabo
- Department of NeurologyComplejo Hospitalario Universitario de Pontevedra (CHOP)PontevedraSpain
| | | | - Isabel González Aramburu
- CIBERNED (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas)MadridSpain
- Department of NeurologyHospital Universitario Marqués de Valdecilla – IDIVALSantanderSpain
| | - Maria A. Ávila Rivera
- Department of Neurology, Consorci Sanitari IntegralHospital General de L´Hospitalet, L´Hospitalet de LlobregatBarcelonaSpain
| | - Víctor Gómez Mayordomo
- Department of Neurology, Institute of NeuroscienceVithas Madrid La Milagrosa University Hospital, Vithas Hospital GroupMadridSpain
| | - Víctor Nogueira
- Department of NeurologyHospital Universitario Lucus AugustiLugoSpain
| | | | - Carmen Borrué
- Department of NeurologyHospital Infanta SofíaMadridSpain
| | - Berta Solano Vila
- Department of NeurologyInstitut d'Assistència Sanitària (IAS) – Institut Català de la SalutGironaSpain
| | | | - Lydia Vela
- Department of NeurologyFundación Hospital de AlcorcónMadridSpain
| | - Sonia Escalante
- Department of NeurologyHospital de Tortosa Verge de la Cinta (HTVC)TortosaTarragonaSpain
| | - Esther Cubo
- Department of NeurologyComplejo Asistencial Universitario de BurgosBurgosSpain
| | - Zebenzui Mendoza
- Department of NeurologyHospital Universitario de CanariasSan Cristóbal de la LagunaSanta Cruz de TenerifeSpain
| | | | | | - Maria G. Alonso Losada
- Department of NeurologyHospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo (CHUVI)VigoSpain
| | | | - Itziar Gastón
- Department of NeurologyComplejo Hospitalario de NavarraPamplonaSpain
| | - Jaime Kulisevsky
- CIBERNED (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas)MadridSpain
- Department of NeurologyHospital de Sant PauBarcelonaSpain
| | - Manuel Seijo
- Department of NeurologyComplejo Hospitalario Universitario de Pontevedra (CHOP)PontevedraSpain
| | - Caridad Valero
- Department of NeurologyHospital Arnau de VilanovaValenciaSpain
| | | | | | - Carlos Ordás
- Department of NeurologyHospital Rey Juan CarlosMadridSpain
| | | | - Darrian McAfee
- University of Maryland School of MedicineBaltimoreMarylandUSA
| | - Pablo Martinez‐Martin
- CIBERNED (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas)MadridSpain
| | - Pablo Mir
- Department of Neurology, Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de SevillaHospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevilleSpain
- CIBERNED (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas)MadridSpain
| | | |
Collapse
|
140
|
Seger A, Ophey A, Doppler CEJ, Kickartz J, Lindner MS, Hommelsen M, Fink GR, Sommerauer M. Clinical subtypes in patients with isolated REM sleep behaviour disorder. NPJ Parkinsons Dis 2023; 9:155. [PMID: 37978183 PMCID: PMC10656506 DOI: 10.1038/s41531-023-00598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Patients with Parkinson's disease (PD) show a broad heterogeneity in clinical presentation, and subtypes may already arise in prodromal disease stages. Isolated REM sleep behaviour disorder (iRBD) is the most specific marker of prodromal PD, but data on clinical subtyping of patients with iRBD remain scarce. Therefore, this study aimed to identify iRBD subtypes. We conducted comprehensive clinical assessments in 66 patients with polysomnography-proven iRBD, including motor and non-motor evaluations, and applied a two-step cluster analysis. Besides, we compared iRBD clusters to matched healthy controls and related the resulting cluster solution to cortical and subcortical grey matter volumes by voxel-based morphometry analysis. We identified two distinct subtypes of patients based on olfactory function, dominant electroencephalography frequency, amount of REM sleep without atonia, depressive symptoms, disease duration, and motor functions. One iRBD cluster (Cluster I, late onset-aggressive) was characterised by higher non-motor symptom burden despite shorter disease duration than the more benign subtype (Cluster II, early onset-benign). Motor functions were comparable between the clusters. Patients from Cluster I were significantly older at iRBD onset and exhibited a widespread reduction of cortical grey matter volume compared to patients from Cluster II. In conclusion, our findings suggest the existence of clinical subtypes already in the prodromal stage of PD. Future longitudinal studies are warranted that replicate these findings and investigate the risk of the more aggressive phenotype for earlier phenoconversion and dementia development.
Collapse
Grants
- M. Sommerauer received grants from the Else Kröner-Fresenius-Stiftung (grant number 2019_EKES.02), and the Koeln Fortune Program, Faculty of Medicine, University of Cologne (grant number 453/2018, 343/2020, and 466/2020). MS is receiving funding from the program " Netzwerke 2021", an initiative of the Ministry of Culture and Science of the State of Northrhine Westphalia.
- A. Ophey received a grant from the Koeln Fortune Program (grant-no. 329/2021), Faculty of Medicine, University of Cologne, and the “Novartis-Stiftung für therapeutische Forschung”, both outside the submitted work.
- C. E. J. Doppler received grants from the Clinician Scientist Program (CCSP), funded by the German Research Foundation (DFG, FI 773/15-1).
- G. R. Fink receives royalties from the publication of the books Funktionelle MRT in Psychiatrie und Neurologie, Neurologische Differentialdiagnose, and SOP Neurologie and received honoraria for speaking engagements from Forum für medizinische Fortbildung FomF GmbH as well as grants from Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Project-ID 431549029, SFB 1451.
Collapse
Affiliation(s)
- Aline Seger
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Anja Ophey
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Medical Psychology | Neuropsychology and Gender Studies & Center for Neuropsychological Diagnostics and Interventions (CeNDI), Cologne, Germany
| | - Christopher E J Doppler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Johanna Kickartz
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Marie-Sophie Lindner
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Maximilian Hommelsen
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Gereon R Fink
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Michael Sommerauer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany.
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
141
|
Ogaki K, Fujita H, Nozawa N, Shiina T, Sakuramoto H, Suzuki K. Impact of diabetes and glycated hemoglobin level on the clinical manifestations of Parkinson's disease. J Neurol Sci 2023; 454:120851. [PMID: 37931442 DOI: 10.1016/j.jns.2023.120851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND The coexistence of diabetes mellitus (DM) has been suggested to accelerate the progression of Parkinson's disease (PD) and make the phenotype more severe. In this study, we investigated whether DM or glycated hemoglobin (HbA1c) levels affect the differences in motor and nonmotor symptoms. METHODS We conducted a cross-sectional study including 140 consecutive Japanese patients with PD for whom medical history and serum HbA1c records were available. The PD patients with a DM diagnosis were classified into the diabetes-complicated group (PD-DM) and the nondiabetes-complicated group (PD-no DM). Next, patients were classified based on a median HbA1c value of 5.7, and clinical parameters were compared. The correlations between HbA1c levels and other clinical variables were analyzed. RESULTS Of 140 patients, 23 patients (16%) had DM. Compared to PD-no DM patients, PD-DM patients showed lower MMSE scores. Compared to the lower HbA1c group, the higher HbA1c group showed a higher MDS-UPDRS part III score and a lower metaiodobenzylguanidine (MIBG) scintigraphy heart-to-mediastinum (H/M) ratio. HbA1c levels were positively correlated with age and the MDS-UPDRS part III score and negatively correlated with the MMSE score and H/M ratio on cardiac MIBG scintigraphy. Binary logistic regression analysis, which included age, sex, disease duration, and MMSE and MDS-UPDRS part III scores as independent variables, revealed that a lower MMSE score was an independent contributor to PD-DM and PD with high HbA1c levels. CONCLUSIONS DM complications and high HbA1c levels may affect cognitive function in patients with PD.
Collapse
Affiliation(s)
- Keitaro Ogaki
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Hiroaki Fujita
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan.
| | - Narihiro Nozawa
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Tomohiko Shiina
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | | | - Keisuke Suzuki
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
142
|
Lai H, Li XY, Xu F, Zhu J, Li X, Song Y, Wang X, Wang Z, Wang C. Applications of Machine Learning to Diagnosis of Parkinson's Disease. Brain Sci 2023; 13:1546. [PMID: 38002506 PMCID: PMC10670005 DOI: 10.3390/brainsci13111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Accurate diagnosis of Parkinson's disease (PD) is challenging due to its diverse manifestations. Machine learning (ML) algorithms can improve diagnostic precision, but their generalizability across medical centers in China is underexplored. OBJECTIVE To assess the accuracy of an ML algorithm for PD diagnosis, trained and tested on data from different medical centers in China. METHODS A total of 1656 participants were included, with 1028 from Beijing (training set) and 628 from Fuzhou (external validation set). Models were trained using the least absolute shrinkage and selection operator-logistic regression (LASSO-LR), decision tree (DT), random forest (RF), eXtreme gradient boosting (XGboost), support vector machine (SVM), and k-nearest neighbor (KNN) techniques. Hyperparameters were optimized using five-fold cross-validation and grid search techniques. Model performance was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, accuracy, sensitivity (recall), specificity, precision, and F1 score. Variable importance was assessed for all models. RESULTS SVM demonstrated the best differentiation between healthy controls (HCs) and PD patients (AUC: 0.928, 95% CI: 0.908-0.947; accuracy: 0.844, 95% CI: 0.814-0.871; sensitivity: 0.826, 95% CI: 0.786-0.866; specificity: 0.861, 95% CI: 0.820-0.898; precision: 0.849, 95% CI: 0.807-0.891; F1 score: 0.837, 95% CI: 0.803-0.868) in the validation set. Constipation, olfactory decline, and daytime somnolence significantly influenced predictability. CONCLUSION We identified multiple pivotal variables and SVM as a precise and clinician-friendly ML algorithm for prediction of PD in Chinese patients.
Collapse
Affiliation(s)
- Hong Lai
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xu-Ying Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| | - Fanxi Xu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| | - Junge Zhu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| | - Xian Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| | - Yang Song
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| | - Xianlin Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| | - Zhanjun Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; (H.L.); (X.-Y.L.); (F.X.); (J.Z.); (X.L.); (Y.S.); (X.W.); (Z.W.)
| |
Collapse
|
143
|
Weintraub D. What's in a Name? The Time Has Come to Unify Parkinson's Disease and Dementia with Lewy Bodies. Mov Disord 2023; 38:1977-1981. [PMID: 37614069 DOI: 10.1002/mds.29590] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Affiliation(s)
- Daniel Weintraub
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
144
|
Garretti F, Monahan C, Sloan N, Bergen J, Shahriar S, Kim SW, Sette A, Cutforth T, Kanter E, Agalliu D, Sulzer D. Interaction of an α-synuclein epitope with HLA-DRB1 ∗15:01 triggers enteric features in mice reminiscent of prodromal Parkinson's disease. Neuron 2023; 111:3397-3413.e5. [PMID: 37597517 PMCID: PMC11068096 DOI: 10.1016/j.neuron.2023.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
Enteric symptoms are hallmarks of prodromal Parkinson's disease (PD) that appear decades before the onset of motor symptoms and diagnosis. PD patients possess circulating T cells that recognize specific α-synuclein (α-syn)-derived epitopes. One epitope, α-syn32-46, binds with strong affinity to the HLA-DRB1∗15:01 allele implicated in autoimmune diseases. We report that α-syn32-46 immunization in a mouse expressing human HLA-DRB1∗15:01 triggers intestinal inflammation, leading to loss of enteric neurons, damaged enteric dopaminergic neurons, constipation, and weight loss. α-Syn32-46 immunization activates innate and adaptive immune gene signatures in the gut and induces changes in the CD4+ TH1/TH17 transcriptome that resemble tissue-resident memory (TRM) cells found in mucosal barriers during inflammation. Depletion of CD4+, but not CD8+, T cells partially rescues enteric neurodegeneration. Therefore, interaction of α-syn32-46 and HLA-DRB1∗15:0 is critical for gut inflammation and CD4+ T cell-mediated loss of enteric neurons in humanized mice, suggesting mechanisms that may underlie prodromal enteric PD.
Collapse
Affiliation(s)
- Francesca Garretti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA; Departments of Psychiatry and Pharmacology, Columbia University Irving Medical Center, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Connor Monahan
- Departments of Psychiatry and Pharmacology, Columbia University Irving Medical Center, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Nicholas Sloan
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Jamie Bergen
- Department of Neuroscience, Columbia University, New York, NY, USA; Department of Computer Science, Columbia University, New York, NY, USA
| | - Sanjid Shahriar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Seon Woo Kim
- Weill Cornell Medicine - Qatar, Education City, Doha, Qatar
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Medicine, University of California in San Diego, San Diego, CA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Tyler Cutforth
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Ellen Kanter
- Departments of Psychiatry and Pharmacology, Columbia University Irving Medical Center, New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Dritan Agalliu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - David Sulzer
- Departments of Psychiatry and Pharmacology, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
145
|
Jones MB, Gates R, Gibson L, Broadway D, Bhatti G, Tea J, Guerra A, Li R, Varman B, Elammari M, Jorge RE, Marsh L. Post-Traumatic Stress Disorder and Risk of Degenerative Synucleinopathies: Systematic Review and Meta-Analysis. Am J Geriatr Psychiatry 2023; 31:978-990. [PMID: 37236879 PMCID: PMC11388697 DOI: 10.1016/j.jagp.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVE A systematic review was conducted to answer whether adult-onset post-traumatic stress disorder (PTSD) is associated with increased risk of Parkinson's disease (PD) and related synucleinopathies. DESIGN A systematic search of Medline (Ovid), Embase (Elsevier), PsycInfo (Ovid), Cochrane Library (Wiley), and Web of Science (Clarivate) was performed using MeSH headings and equivalent terms for PTSD, PD, DLB, and related disorders. SETTING No restrictions. PARTICIPANTS Eligible articles were published in peer-reviewed journals, sampled adult human populations, and treated PTSD and degenerative synucleinopathies as exposures and outcomes, respectively. MEASUREMENTS Extracted data included diagnostic methods, sample characteristics, matching procedures, covariates, and effect estimates. Bias assessment was performed with the Newcastle-Ottawa scale. Hazard ratios were pooled using the random effects model, and the Hartung-Knapp adjustment was applied due to the small number of studies. RESULTS A total of six articles comprising seven unique samples (total n = 1,747,378) met eligibility criteria. The risk of PD was reported in three retrospective cohort studies and one case-control study. Risk of DLB was reported in one retrospective cohort, one case-control, and one prospective cohort study. No studies addressed potential relationships with multiple system atrophy or pure autonomic failure. Meta-analysis of hazard ratios from four retrospective cohort studies supported the hypothesis that incident PTSD was associated with PD and DLB risk (pooled HR 1.88, 95% C.I. 1.08-3.24; p = 0.035). CONCLUSIONS The sparse literature to-date supports further investigations on the association of mid- to late-life PTSD with Parkinson's and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Melissa B Jones
- Michael E. DeBakey VA Medical Center (MBJ, AG, REJ, LM), Houston, TX; Baylor College of Medicine (MBJ, DB, GB, ME, REJ, LM), Houston, TX.
| | - Rachel Gates
- UCHealth University of Colorado Hospital (RG), Aurora, CO
| | | | - Dakota Broadway
- Baylor College of Medicine (MBJ, DB, GB, ME, REJ, LM), Houston, TX
| | - Gursimrat Bhatti
- Baylor College of Medicine (MBJ, DB, GB, ME, REJ, LM), Houston, TX
| | - Juliann Tea
- UT Southwestern Medical Center (JT), Dallas, TX
| | - Ana Guerra
- Michael E. DeBakey VA Medical Center (MBJ, AG, REJ, LM), Houston, TX
| | - Ruosha Li
- University of Texas Health Science Center at Houston (RL), Houston TX
| | | | - Mohamed Elammari
- Baylor College of Medicine (MBJ, DB, GB, ME, REJ, LM), Houston, TX
| | - Ricardo E Jorge
- Michael E. DeBakey VA Medical Center (MBJ, AG, REJ, LM), Houston, TX; Baylor College of Medicine (MBJ, DB, GB, ME, REJ, LM), Houston, TX
| | - Laura Marsh
- Michael E. DeBakey VA Medical Center (MBJ, AG, REJ, LM), Houston, TX; Baylor College of Medicine (MBJ, DB, GB, ME, REJ, LM), Houston, TX
| |
Collapse
|
146
|
Vafaeimastanabad M, Salemi MH, Jodki T, Sabri V, Talab EK, Babaei FN, Manesh SE, Emami D. Sexual dysfunction among patients with Parkinson's disease: A systematic review and meta-analysis. J Clin Neurosci 2023; 117:1-10. [PMID: 37717275 DOI: 10.1016/j.jocn.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Previous studies have reported a higher prevalence of sexual dysfunction (SD) in patients with Parkinson's disease (PD). In the current study, we aimed to conduct a systematic review and meta-analysis to investigate the role of PD as a potential risk factor for SD in both genders. METHODS We performed a comprehensive search on PubMed, Embase, Scopus, and Web of Science. All observational studies comparing the prevalence of SD in PD with the general population were included. RESULTS After screening 22 studies were included in our qualitative and statistical analysis. We included 13 studies that reported odds ratio (OR) and found a significant association between PD and SD (pooled OR = 3.5, 95% CI = 2.19-5.58). Five studies included only male patients and reported an OR of 3.34 (95% CI = 1.34-8.35; heterogeneity I2 = 81%, Tau2 = 0.79, p < 0.00), while seven studies included both sexes and reported an OR of 3.55 (95% CI = 1.89-6.66; heterogeneity I2 = 78%, Tau2 = 0.53, p < 0.00). CONCLUSION In conclusion, our study suggests a strong association between PD and SD in both men and women. Our analysis of 22 observational studies reveals that the prevalence of sexual dysfunction is significantly higher in patients with PD compared to the general population. These findings highlight the importance of addressing SD as part of the comprehensive management of patients with PD.
Collapse
Affiliation(s)
- Mahsa Vafaeimastanabad
- Neurosurgery Department, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | | | - Tahereh Jodki
- Department of Clinical Psychology, Sirjan Branch, Islamic Azad University, Sirjan, Iran
| | - Vahid Sabri
- Department of Nursing, Khoy University of Medical Science, Khoy, Iran
| | | | | | | | - Delaram Emami
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
147
|
Skibińska J, Hosek J. Computerized analysis of hypomimia and hypokinetic dysarthria for improved diagnosis of Parkinson's disease. Heliyon 2023; 9:e21175. [PMID: 37908703 PMCID: PMC10613914 DOI: 10.1016/j.heliyon.2023.e21175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Background and Objective An aging society requires easy-to-use approaches for diagnosis and monitoring of neurodegenerative disorders, such as Parkinson's disease (PD), so that clinicians can effectively adjust a treatment policy and improve patients' quality of life. Current methods of PD diagnosis and monitoring usually require the patients to come to a hospital, where they undergo several neurological and neuropsychological examinations. These examinations are usually time-consuming, expensive, and performed just a few times per year. Hence, this study explores the possibility of fusing computerized analysis of hypomimia and hypokinetic dysarthria (two motor symptoms manifested in the majority of PD patients) with the goal of proposing a new methodology of PD diagnosis that could be easily integrated into mHealth systems. Methods We enrolled 73 PD patients and 46 age- and gender-matched healthy controls, who performed several speech/voice tasks while recorded by a microphone and a camera. Acoustic signals were parametrized in the fields of phonation, articulation and prosody. Video recordings of a face were analyzed in terms of facial landmarks movement. Both modalities were consequently modeled by the XGBoost algorithm. Results The acoustic analysis enabled diagnosis of PD with 77% balanced accuracy, while in the case of the facial analysis, we observed 81% balanced accuracy. The fusion of both modalities increased the balanced accuracy to 83% (88% sensitivity and 78% specificity). The most informative speech exercise in the multimodality system turned out to be a tongue twister. Additionally, we identified muscle movements that are characteristic of hypomimia. Conclusions The introduced methodology, which is based on the myriad of speech exercises likewise audio and video modality, allows for the detection of PD with an accuracy of up to 83%. The speech exercise - tongue twisters occurred to be the most valuable from the clinical point of view. Additionally, the clinical interpretation of the created models is illustrated. The presented computer-supported methodology could serve as an extra tool for neurologists in PD detection and the proposed potential solution of mHealth will facilitate the patient's and doctor's life.
Collapse
Affiliation(s)
- Justyna Skibińska
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, Brno, 61600, Czechia
- Unit of Electrical Engineering, Tampere University, Kalevantie 4, Tampere, 33100, Finland
| | - Jiri Hosek
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 12, Brno, 61600, Czechia
| |
Collapse
|
148
|
Wang J, Lam SP, Huang B, Liu Y, Zhang J, Yu MWM, Tsang JCC, Zhou L, Chau SWH, Chan NY, Chan JWY, Schenck CH, Li SX, Mok VCT, Ma KKY, Chan AYY, Wing YK. Familial α-synucleinopathy spectrum features in patients with psychiatric REM sleep behaviour disorder. J Neurol Neurosurg Psychiatry 2023; 94:893-903. [PMID: 37399287 DOI: 10.1136/jnnp-2022-330922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/28/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Rapid eye movement (REM) sleep behaviour disorder (RBD) is one of the earliest and most specific prodromes of the α-synucleinopathies including Parkinson's disease (PD). It remains uncertain whether RBD occurring in the context of psychiatric disorders (psy-RBD), although very common, is merely a benign epiphenomenon of antidepressant treatment, or whether it harbours an underlying α-synucleinopathy. We hypothesised that patients with psy-RBD demonstrate a familial predisposition to an α-synucleinopathy. METHODS In this case-control-family study, a combination of family history and family study method was used to measure the α-synucleinopathy spectrum features, which included RBD, neurodegenerative prodromal markers and clinical diagnoses of neurodegenerative disorders. We compared the risk of α-synucleinopathy spectrum features in the first-degree relatives (FDRs) of patients with psy-RBD, psychiatric controls and healthy controls. RESULTS There was an increase of α-synucleinopathy spectrum features in the psy-RBD-FDRs, including possible and provisional RBD (adjusted HR (aHR)=2.02 and 6.05, respectively), definite RBD (adjusted OR=11.53) and REM-related phasic electromyographic activities, prodromal markers including depression (aHR=4.74) and probable subtle parkinsonism, risk of prodromal PD and clinical diagnosis of PD/dementia (aHR=5.50), as compared with healthy-control-FDRs. When compared with psychiatric-control-FDRs, psy-RBD-FDRs consistently presented with a higher risk for the diagnosis and electromyographic features of RBD, diagnosis of PD/dementia (aHR=3.91) and risk of prodromal PD. In contrast, psychiatric controls only presented with a familial aggregation of depression. CONCLUSION Patients with psy-RBD are familially predisposed to α-synucleinopathy. The occurrence of RBD with major depression may signify a subtype of major depressive disorders with underlying α-synucleinopathy neurodegeneration. TRIAL REGISTRATION NUMBER NCT03595475.
Collapse
Affiliation(s)
- Jing Wang
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Siu Ping Lam
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bei Huang
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yaping Liu
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jihui Zhang
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mandy W M Yu
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jessie C C Tsang
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Li Zhou
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Steven W H Chau
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ngan Yin Chan
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joey W Y Chan
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Carlos H Schenck
- Minnesota Regional Sleep Disorders Center, and Departments of Psychiatry, Hennepin County Medical Center and University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Shirley X Li
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Vincent C T Mok
- Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Karen Ka Yan Ma
- Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anne Yin Yan Chan
- Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yun Kwok Wing
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
149
|
de Fàbregues O, Sellés M, Ramos-Vicente D, Roch G, Vila M, Bové J. Relevance of tissue-resident memory CD8 T cells in the onset of Parkinson's disease and examination of its possible etiologies: infectious or autoimmune? Neurobiol Dis 2023; 187:106308. [PMID: 37741513 DOI: 10.1016/j.nbd.2023.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/05/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023] Open
Abstract
Tissue-resident memory CD8 T cells are responsible for local immune surveillance in different tissues, including the brain. They constitute the first line of defense against pathogens and cancer cells and play a role in autoimmunity. A recently published study demonstrated that CD8 T cells with markers of residency containing distinct granzymes and interferon-γ infiltrate the parenchyma of the substantia nigra and contact dopaminergic neurons in an early premotor stage of Parkinson's disease. This infiltration precedes α-synuclein aggregation and neuronal loss in the substantia nigra, suggesting a relevant role for CD8 T cells in the onset of the disease. To date, the nature of the antigen that initiates the adaptive immune response remains unknown. This review will discuss the role of tissue-resident memory CD8 T cells in brain immune homeostasis and in the onset of Parkinson's disease and other neurological diseases. We also discuss how aging and genetic factors can affect the CD8 T cell immune response and how animal models can be misleading when studying human-related immune response. Finally, we speculate about a possible infectious or autoimmune origin of Parkinson's disease.
Collapse
Affiliation(s)
- Oriol de Fàbregues
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Movement Disorders Unit, Neurology Department, Vall d'Hebron University Hospital
| | - Maria Sellés
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - David Ramos-Vicente
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Gerard Roch
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Catalonia, Spain; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain.
| |
Collapse
|
150
|
Marini K, Seppi K, Kiechl S, Stockner H, Willeit P, Willeit J, Djamshidian A, Rungger G, Poewe W, Mahlknecht P. Comparison of different risk scores for Parkinson disease in a population-based 10-year study. Eur J Neurol 2023; 30:3347-3352. [PMID: 37422903 DOI: 10.1111/ene.15971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND AND PURPOSE Different algorithms aiming to identify individuals at risk of Parkinson disease (PD) have been proposed. Comparative studies of these scores and their recent updates in the general elder population are needed. METHODS We have previously applied the "basic" PREDICT-PD algorithm, designed for remote screening, and the original and updated Movement Disorder Society (MDS) criteria for prodromal PD to the longitudinal population-based Bruneck study cohort. We have now additionally employed the "enhanced" PREDICT-PD algorithm (which includes motor assessment, olfaction, probable rapid eye movement sleep behaviour disorder status, pesticide exposure, and diabetes as additional factors). Risk scores were calculated based on comprehensive baseline assessments (2005) in 574 subjects aged 55-94 years (290 females), and cases of incident PD were identified at 5-year (n = 11) and 10-year follow-up (n = 9). We analysed the association of the different log-transformed risk scores with incident PD at follow-up (calculated per 1-SD unit change). RESULTS The enhanced PREDICT-PD algorithm was associated with incident PD over 10-years of follow-up, yielding higher odds for incident PD (odds ratio [OR] = 4.61, 95% confidence interval [CI] = 2.68-7.93, p < 0.001) compared with the basic PREDICT-PD score (OR = 2.38, 95% CI = 1.49-3.79, p < 0.001). The updated MDS prodromal criteria yielded a numerically higher OR of 7.13 (95% CI = 3.49-14.54, p < 0.001) in comparison with the original criteria as well as the enhanced PREDICT-PD algorithm, with overlapping 95% CIs. CONCLUSIONS The enhanced PREDICT-PD algorithm was significantly associated with incident PD. The consistent performance of both the enhanced PREDICT-PD algorithm and the updated MDS prodromal criteria compared to their original versions supports their use in PD risk screening.
Collapse
Affiliation(s)
- Kathrin Marini
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Klaus Seppi
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Stefan Kiechl
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
- VASCage, Research Centre on Vascular Ageing and Stroke, Innsbruck, Austria
| | - Heike Stockner
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Peter Willeit
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Johann Willeit
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Atbin Djamshidian
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | | | - Werner Poewe
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Philipp Mahlknecht
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|