101
|
Garcia-Alonso A, Sánchez-Paniagua López M, Manzanares-Palenzuela CL, Redondo-Cuenca A, López-Ruíz B. Edible plant by-products as source of polyphenols: prebiotic effect and analytical methods. Crit Rev Food Sci Nutr 2022; 63:10814-10835. [PMID: 35658778 DOI: 10.1080/10408398.2022.2084028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Polyphenols with high chemical diversity are present in vegetables both in the edible parts and by-products. A large proportion of them remains unabsorbed along the gastrointestinal tract, being accumulated in the colon, where they are metabolized by the intestinal microbiota. These polyphenols have been found to have "prebiotic-like" effects. The edible plant industry generates tons of residues called by-products, which consist of unutilized plant tissues (peels, husks, calyxes and seeds). Their disposal requires special and costly treatments to avoid environmental complications. Reintroducing these by-products into the value chain using technological and biotechnological practices is highly appealing since many of them contain nutrients and bioactive compounds, such as polyphenols, with many health-promoting properties. Edible plant by-products as a source of polyphenols highlights the need for analytical methods. Analytical methods are becoming increasingly selective, sensitive and precise, but the great breakthrough lies in the pretreatment of the sample and in particular in the extraction methods. This review shows the importance of edible plant by-products as a source of polyphenols, due to their prebiotic effect, and to compile the most appropriate analytical methods for the determination of the total content of phenolic compounds as well as the detection and quantification of individual polyphenols.
Collapse
Affiliation(s)
- Alejandra Garcia-Alonso
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| | - Marta Sánchez-Paniagua López
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| | | | - Araceli Redondo-Cuenca
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| | - Beatríz López-Ruíz
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| |
Collapse
|
102
|
Medicinal Plants and Their Impact on the Gut Microbiome in Mental Health: A Systematic Review. Nutrients 2022; 14:nu14102111. [PMID: 35631252 PMCID: PMC9144835 DOI: 10.3390/nu14102111] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Various neurocognitive and mental health-related conditions have been associated with the gut microbiome, implicating a microbiome–gut–brain axis (MGBA). The aim of this systematic review was to identify, categorize, and review clinical evidence supporting medicinal plants for the treatment of mental disorders and studies on their interactions with the gut microbiota. Methods: This review included medicinal plants for which clinical studies on depression, sleeping disorders, anxiety, or cognitive dysfunction as well as scientific evidence of interaction with the gut microbiome were available. The studies were reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Results: Eighty-five studies met the inclusion criteria and covered thirty mental health-related medicinal plants with data on interaction with the gut microbiome. Conclusion: Only a few studies have been specifically designed to assess how herbal preparations affect MGBA-related targets or pathways. However, many studies provide hints of a possible interaction with the MGBA, such as an increased abundance of health-beneficial microorganisms, anti-inflammatory effects, or MGBA-related pathway effects by gut microbial metabolites. Data for Panax ginseng, Schisandra chinensis, and Salvia rosmarinus indicate that the interaction of their constituents with the gut microbiota could mediate mental health benefits. Studies specifically assessing the effects on MGBA-related pathways are still required for most medicinal plants.
Collapse
|
103
|
Variability in the Beneficial Effects of Phenolic Compounds: A Review. Nutrients 2022; 14:nu14091925. [PMID: 35565892 PMCID: PMC9101290 DOI: 10.3390/nu14091925] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022] Open
Abstract
When analysing the beneficial effects of phenolic compounds, several factors that exert a clear influence should be taken into account. The content of phenolic compounds in foods is highly variable, directly affecting individual dietary intake. Once ingested, these compounds have a greater or lesser bioaccessibility, defined as the amount available for absorption in the intestine after digestion, and a certain bioavailability, defined as the proportion of the molecule that is available after digestion, absorption and metabolism. Among the external factors that modify the content of phenolic compounds in food are the variety, the cultivation technique and the climate. Regarding functional foods, it is important to take into account the role of the selected food matrix, such as dairy matrices, liquid or solid matrices. It is also essential to consider the interactions between phenolic compounds as well as the interplay that occurs between these and several other components of the diet (macro- and micronutrients) at absorption, metabolism and mechanism of action levels. Furthermore, there is a great inter-individual variability in terms of phase II metabolism of these compounds, composition of the microbiota, and metabolic state or metabotype to which the subject belongs. All these factors introduce variability in the responses observed after ingestion of foods or nutraceuticals containing phenolic compounds.
Collapse
|
104
|
Narduzzi L, Agulló V, Favari C, Tosi N, Mignogna C, Crozier A, Rio DD, Mena P. (Poly)phenolic compounds and gut microbiome: new opportunities for personalized nutrition. MICROBIOME RESEARCH REPORTS 2022; 1:16. [PMID: 38046361 PMCID: PMC10688808 DOI: 10.20517/mrr.2022.06] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/05/2023]
Abstract
For decades, (poly)phenols have been linked to cardiometabolic health, but population heterogeneity limits their apparent efficacy and the development of tailored, practical protocols in dietary interventions. This heterogeneity is likely determined by the existence of different metabotypes, sub-populations of individuals metabolizing some classes of (poly)phenols differently. The gut microbiota plays a major role in this process. The impact of microbiota-related phenolic metabotypes on cardiometabolic health is becoming evident, although the picture is still incomplete, and data are absent for some classes of (poly)phenols. The lack of a complete understanding of the main microbial actors involved in the process complicates the picture. Elucidation of the mechanisms behind phenolic metabotypes requires novel experimental designs that can dissect the inter-individual variability. This paper, in addition to providing an overview on the current state-of-the-art, proposes wider metabotyping approaches as a means of paving the way towards effective personalized nutrition with dietary (poly)phenols.
Collapse
Affiliation(s)
- Luca Narduzzi
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma 43125, Italy
| | - Vicente Agulló
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma 43125, Italy
- Phytochemistry and Healthy Foods Lab (LabFAS), Food Science and Technology Department (CEBAS-CSIC), University Campus of Espinardo, Murcia 30100, Spain
| | - Claudia Favari
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma 43125, Italy
| | - Nicole Tosi
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma 43125, Italy
| | - Cristiana Mignogna
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma 43125, Italy
| | - Alan Crozier
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma 43125, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/A, Parma 43124, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma 43125, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/A, Parma 43124, Italy
| |
Collapse
|
105
|
Huch M, Stoll DA, Kulling SE, Soukup ST. Metabolism of glyphosate by the human fecal microbiota. Toxicol Lett 2022; 358:1-5. [PMID: 34933076 DOI: 10.1016/j.toxlet.2021.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2022]
Abstract
Glyphosate is the most frequently used herbicide worldwide and its application is under discussion due to health concerns. As humans may be exposed to glyphosate, the present study investigated the metabolism of glyphosate by the human fecal microbiota in vitro. Human fecal samples were collected from 15 different volunteers and fecal suspensions were prepared. The human fecal suspension samples were incubated with glyphosate under strictly anaerobic conditions and glyphosate degradation was investigated. Neither a degradation of glyphosate, nor a formation of AMPA (aminomethylphosphonic acid), the known microbial metabolite in soil, was detected. In conclusion, the microbiota of human fecal suspensions did not metabolize glyphosate under the conditions used in our study which hints at the assumption that transformation of glyphosate by the gut microbiota seems to be negligible in humans.
Collapse
Affiliation(s)
- Melanie Huch
- Max Rubner-Institut (MRI) - Federal Research Institute of Food and Nutrition, Department of Safety and Quality of Fruit and Vegetables, Karlsruhe, Germany
| | - Dominic A Stoll
- Max Rubner-Institut (MRI) - Federal Research Institute of Food and Nutrition, Department of Safety and Quality of Fruit and Vegetables, Karlsruhe, Germany
| | - Sabine E Kulling
- Max Rubner-Institut (MRI) - Federal Research Institute of Food and Nutrition, Department of Safety and Quality of Fruit and Vegetables, Karlsruhe, Germany
| | - Sebastian T Soukup
- Max Rubner-Institut (MRI) - Federal Research Institute of Food and Nutrition, Department of Safety and Quality of Fruit and Vegetables, Karlsruhe, Germany.
| |
Collapse
|
106
|
Gut microbiome-modulating properties of a polyphenol-enriched dietary supplement comprised of hibiscus and lemon verbena extracts. Monitoring of phenolic metabolites. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
107
|
Sabahi S, Homayouni Rad A, Aghebati-Maleki L, Sangtarash N, Ozma MA, Karimi A, Hosseini H, Abbasi A. Postbiotics as the new frontier in food and pharmaceutical research. Crit Rev Food Sci Nutr 2022; 63:8375-8402. [PMID: 35348016 DOI: 10.1080/10408398.2022.2056727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food is the essential need of human life and has nutrients that support growth and health. Gastrointestinal tract microbiota involves valuable microorganisms that develop therapeutic effects and are characterized as probiotics. The investigations on appropriate probiotic strains have led to the characterization of specific metabolic byproducts of probiotics named postbiotics. The probiotics must maintain their survival against inappropriate lethal conditions of the processing, storage, distribution, preparation, and digestion system so that they can exhibit their most health effects. Conversely, probiotic metabolites (postbiotics) have successfully overcome these unfavorable conditions and may be an appropriate alternative to probiotics. Due to their specific chemical structure, safe profile, long shelf-life, and the fact that they contain various signaling molecules, postbiotics may have anti-inflammatory, immunomodulatory, antihypertensive properties, inhibiting abnormal cell proliferation and antioxidative activities. Consequently, present scientific literature approves that postbiotics can mimic the fundamental and clinical role of probiotics, and due to their unique characteristics, they can be applied in an oral delivery system (pharmaceutical/functional foods), as a preharvest food safety hurdle, to promote the shelf-life of food products and develop novel functional foods or/and for developing health benefits, and therapeutic aims. This review addresses the latest postbiotic applications with regard to pharmaceutical formulations and commercial food-based products. Potential postbiotic applications in the promotion of host health status, prevention of disease, and complementary treatment are also reviewed.
Collapse
Affiliation(s)
- Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Narges Sangtarash
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Asghari Ozma
- Department of Medical Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Karimi
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
108
|
Ticinesi A, Mancabelli L, Carnevali L, Nouvenne A, Meschi T, Del Rio D, Ventura M, Sgoifo A, Angelino D. Interaction Between Diet and Microbiota in the Pathophysiology of Alzheimer's Disease: Focus on Polyphenols and Dietary Fibers. J Alzheimers Dis 2022; 86:961-982. [PMID: 35147544 DOI: 10.3233/jad-215493] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal studies increasingly indicate that the gut microbiota composition and function can be involved in the pathophysiology and progression of Alzheimer's disease (AD) at multiple levels. However, few studies have investigated this putative gut-brain axis in human beings, and none of them considered diet as a determinant of intestinal microbiota composition. Epidemiological studies highlight that a high intake of fruit and vegetables, such as that typical of the Mediterranean diet, can modulate AD progression. Thus, nutritional interventions are being increasingly studied as a possible non-pharmacological strategy to slow down the progression of AD. In particular, polyphenols and fibers represent the nutritional compounds with the higher potential of counterbalancing the pathophysiological mechanisms of dementia due to their antioxidant, anti-inflammatory, and anti-apoptotic properties. These actions are mediated by the gut microbiota, that can transform polyphenols and fibers into biologically active compounds including, among others, phenyl-γ-valerolactones, urolithins, butyrate, and other short-chain fatty acids. In this review, the complex mechanisms linking nutrition, gut microbiota composition, and pathophysiology of cognitive decline in AD are discussed, with a particular focus on the role of polyphenols and fibers. The gaps between pre-clinical and clinical studies are particularly emphasized, as well as the urgent need for studies comprehensively evaluating the link between nutrition, microbiome, and clinical aspects of AD.
Collapse
Affiliation(s)
- Andrea Ticinesi
- University of Parma, Microbiome Research Hub, Parma, Italy.,University of Parma, Department of Medicine and Surgery, Parma, Italy.,Parma University-Hospital, Geriatric-Rehabilitation Department, Parma, Italy
| | - Leonardo Mancabelli
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma, Italy
| | - Luca Carnevali
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma, Italy
| | - Antonio Nouvenne
- University of Parma, Microbiome Research Hub, Parma, Italy.,University of Parma, Department of Medicine and Surgery, Parma, Italy.,Parma University-Hospital, Geriatric-Rehabilitation Department, Parma, Italy
| | - Tiziana Meschi
- University of Parma, Microbiome Research Hub, Parma, Italy.,University of Parma, Department of Medicine and Surgery, Parma, Italy.,Parma University-Hospital, Geriatric-Rehabilitation Department, Parma, Italy
| | - Daniele Del Rio
- University of Parma, Microbiome Research Hub, Parma, Italy.,University of Parma, Department of Food and Drugs, Parma, Italy
| | - Marco Ventura
- University of Parma, Microbiome Research Hub, Parma, Italy.,University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma, Italy
| | - Andrea Sgoifo
- University of Parma, Microbiome Research Hub, Parma, Italy.,University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parma, Italy
| | - Donato Angelino
- University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, Teramo, Italy
| |
Collapse
|
109
|
Seguido MÁ, Tarradas RM, González-Rámila S, García-Cordero J, Sarriá B, Bravo-Clemente L, Mateos R. Influence of 8-week daily consumption of a new product combining green coffee hydroxycinnamates and beta-glucans on polyphenol bioavailability in subjects with overweight and obesity. Food Funct 2022; 13:1133-1152. [PMID: 35018954 DOI: 10.1039/d1fo03327a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nutraceuticals based on plant extracts rich in polyphenols, as well as dietary fibres, are new means to fight overweight/obesity and associated diseases. However, to understand the potential effects of polyphenols on health it is critical to study their bioavailability and metabolic fate. Consumption of a green coffee phenolic extract (GCPE) in combination with oat beta-glucan (BG) could affect the pharmacokinetic profile of the main polyphenols present in coffee (hydroxycinnamates). Moreover, the regular intake of the combination could also induce changes. Nine overweight men and women consumed a novel nutraceutical product containing 300 mg of green coffee hydroxycinnamic acids and 2.5 g of BG twice a day for 8 weeks. A pharmacokinetic study was carried out in blood and urine samples taken before (baseline) and at week 8 after the nutraceutical intervention, collecting samples at different times in a 0-24 h interval. Faecal samples were also obtained at 0 and 24 h after the intake of the nutraceutical at baseline and week 8. Phenolic metabolites were analysed by LC-MS-QToF. Results showed that polyphenols were differentially absorbed and extensively metabolized throughout the gastrointestinal tract. An apparent reduction in the excretion of small intestinal metabolites was accompanied by a tendency to increase colonic metabolites after sustained intake (p = 0.052). In conclusion, continued consumption of the GCPE/BG nutraceutical appears to enhance the absorption of hydroxycinnamates by increasing the colonic bioavailability of their derived metabolites compared to baseline, although the regular intake of the nutraceutical did not modify the metabolite profile in any of the biological samples.
Collapse
Affiliation(s)
- Miguel Ángel Seguido
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC). Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain.
| | - Rosa María Tarradas
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC). Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain.
| | - Susana González-Rámila
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC). Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain.
| | - Joaquín García-Cordero
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC). Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain.
| | - Beatriz Sarriá
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC). Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain.
| | - Laura Bravo-Clemente
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC). Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain.
| | - Raquel Mateos
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC). Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain.
| |
Collapse
|
110
|
Khani N, Abedi Soleimani R, Noorkhajavi G, Abedi Soleimani A, Abbasi A, Homayouni Rad A. Postbiotics as Potential Promising Tools for SARS‐COV‐2 Disease Adjuvant Therapy. J Appl Microbiol 2022; 132:4097-4111. [DOI: 10.1111/jam.15457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/02/2022] [Accepted: 01/15/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Nader Khani
- Student Research Committee Tabriz University of Medical Sciences Tabriz Iran
- Department of Food Science and Technology Faculty of Nutrition & Food Sciences Nutrition Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Roya Abedi Soleimani
- Department of Food Science and Technology Faculty of Nutrition & Food Sciences Nutrition Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Ghasem Noorkhajavi
- Department of Medical Nanotechnology Tabriz University of Medical Sciences Tabriz Iran
| | - Azar Abedi Soleimani
- Faculty of Nursing & Midwifery Isfahan University of Medical Sciences Isfahan Iran
| | - Amin Abbasi
- Student Research Committee Department of Food Science and Technology National Nutrition and Food Technology Research Institute Faculty of Nutrition Science and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology Faculty of Nutrition & Food Sciences Nutrition Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
111
|
Gui H, Sun L, Liu R, Si X, Li D, Wang Y, Shu C, Sun X, Jiang Q, Qiao Y, Li B, Tian J. Current knowledge of anthocyanin metabolism in the digestive tract: absorption, distribution, degradation, and interconversion. Crit Rev Food Sci Nutr 2022; 63:5953-5966. [PMID: 35057688 DOI: 10.1080/10408398.2022.2026291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Potential roles for anthocyanins in preventing various chronic diseases have been reported. These compounds are highly sensitive to external conditions and are susceptible to degradation, which increases the complexity of their metabolism in vivo. This review discusses anthocyanin metabolism in the digestive tract, phase I and II metabolism, and enterohepatic circulation (EHC), as well as their distribution of anthocyanins in blood, urine, and several organs. In the oral cavity, anthocyanins are partly hydrolyzed by microbiota into aglycones which are then conjugated by glucuronidase. In stomach, anthocyanins are absorbed without deglycosylation via specific transporters, such as sodium-dependent glucose co-transporter 1 and facilitative glucose transporters 1, while in small intestine, they are mainly absorbed as aglycones. High polymeric anthocyanins are easily degraded into low-polymeric forms or smaller phenolic acids by colonic microbiota, which improves their absorption. Anthocyanins and their derivatives are modified by phase I and II metabolic enzymes in cells and are released into the blood via the gastrovascular cavity into EHC. Notably, interconversion can be occurred under the action of enzymes such as catechol-O-methyltransferase. Taking together, differences in anthocyanin absorption, distribution, metabolism, and excretion largely depend on their glycoside and aglycone structures.
Collapse
Affiliation(s)
- Hailong Gui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Lijun Sun
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, China
| | - Ruihai Liu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Dongnan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Xiyun Sun
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Yanyan Qiao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| |
Collapse
|
112
|
Chen N, Li N, Jiang J, Yang X, Wu D. Urinary Phytoestrogen Metabolites Positively Correlate with Serum 25(OH)D Level Based on National Health and Nutrition Examination Survey 2009-2010. J Nutr Sci Vitaminol (Tokyo) 2022; 67:375-383. [PMID: 34980715 DOI: 10.3177/jnsv.67.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Studies showed that vitamin D (25-hydroxyvitamin D) level in the human blood circulation could be affected by exogenous estrogen exposure. This study aims to explore the relationships between urinary phytoestrogens metabolites and serum total 25(OH)D in general population, urinary phytoestrogens metabolites (daidzein, enterodiol, enterolactone, equol, genistein and o-desmethylangolensin). Totally 2,609 adults ≥6 y old from the 2009-2010 National Health and Nutrition Examination Surveys (NHANES) were recruited into the cross-sectional analyses and information including demographic, socioeconomic, examinations and laboratory test were collected. All analyses were performed using Stata13.0, one-way analysis of variance and multivariable regression were utilised according to data characteristics, respectively. It showed that age, race, education level, body mass index (BMI), and sampling season had significant effects on serum 25(OH)D level (all p<0.001). In the whole population, urinary enterodiol and equol were significantly positively associated with serum total 25(OH)D level (β=0.86, 95%CI=0.08-1.65, p<0.05; β=1.68, 95%CI=0.91-2.45, p<0.001). Equol was also found significantly positively correlated with total 25(OH)D in both female and male separately (β=1.69, 95%CI=0.51-2.87, p<0.05; β=1.66, 95%CI=0.63-2.69, p<0.05). Phytoestrogen concentrations in the urinary and 25(OH)D levels in the serum had proved a positive correlation in our study, which provide theoretical basis and reference for the dietary nutrient intake in the population.
Collapse
Affiliation(s)
- Na Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University
| | - Ningning Li
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University
| | - Jin Jiang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University
| | - Xiaona Yang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University
| | - Di Wu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University.,Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University
| |
Collapse
|
113
|
Microbiome-based therapeutics: Opportunity and challenges. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 191:229-262. [DOI: 10.1016/bs.pmbts.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
114
|
Lessard-Lord J, Plante PL, Desjardins Y. Purified recombinant enzymes efficiently hydrolyze conjugated urinary (poly)phenol metabolites. Food Funct 2022; 13:10895-10911. [PMID: 36239175 DOI: 10.1039/d2fo02229j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Purified recombinant enzymes are efficient at hydrolyzing microbial (poly)phenol metabolite phase II conjugates, and hence, can be used to accurately quantify them using unconjugated analytical standards.
Collapse
Affiliation(s)
- Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Pier-Luc Plante
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| |
Collapse
|
115
|
Scarpellini E, Rinninella E, Basilico M, Colomier E, Rasetti C, Larussa T, Santori P, Abenavoli L. From Pre- and Probiotics to Post-Biotics: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:37. [PMID: 35010297 PMCID: PMC8750841 DOI: 10.3390/ijerph19010037] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS gut microbiota (GM) is a complex ecosystem containing bacteria, viruses, fungi, and yeasts. It has several functions in the human body ranging from immunomodulation to metabolic. GM derangement is called dysbiosis and is involved in several host diseases. Pre-, probiotics, and symbiotics (PRE-PRO-SYMB) have been extensively developed and studied for GM re-modulation. Herein, we review the literature data regarding the new concept of postbiotics, starting from PRE-PRO-SYMB. METHODS we conducted a search on the main medical databases for original articles, reviews, meta-analyses, randomized clinical trials, and case series using the following keywords and acronyms and their associations: gut microbiota, prebiotics, probiotics, symbiotic, and postbiotics. RESULTS postbiotics account for PRO components and metabolic products able to beneficially affect host health and GM. The deeper the knowledge about them, the greater their possible uses: the prevention and treatment of atopic, respiratory tract, and inflammatory bowel diseases. CONCLUSIONS better knowledge about postbiotics can be useful for the prevention and treatment of several human body diseases, alone or as an add-on to PRE-PRO-SYMB.
Collapse
Affiliation(s)
- Emidio Scarpellini
- Internal Medicine Unit, "Madonna del Soccorso" General Hospital, 63074 San Benedetto del Tronto, Italy
- TARGID, KU Leuven, 3000 Leuven, Belgium
| | - Emanuele Rinninella
- UOC di Nutrizione Clinica, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Martina Basilico
- Internal Medicine Unit, "Madonna del Soccorso" General Hospital, 63074 San Benedetto del Tronto, Italy
| | | | - Carlo Rasetti
- Internal Medicine Unit, "Madonna del Soccorso" General Hospital, 63074 San Benedetto del Tronto, Italy
| | - Tiziana Larussa
- Department of Health Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| | - Pierangelo Santori
- Internal Medicine Unit, "Madonna del Soccorso" General Hospital, 63074 San Benedetto del Tronto, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| |
Collapse
|
116
|
Mediterranean Diet a Potential Strategy against SARS-CoV-2 Infection: A Narrative Review. Medicina (B Aires) 2021; 57:medicina57121389. [PMID: 34946334 PMCID: PMC8704657 DOI: 10.3390/medicina57121389] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 01/08/2023] Open
Abstract
Mediterranean Diet represents the traditional eating habits of populations living around the Mediterranean Sea, and it is associated with a lower risk of overall mortality and cancer incidence and cardiovascular diseases. Severe acute respiratory syndrome coronavirus 2 is a new pandemic, and represents a significant and critical threat to global human health. In this study, we aimed to review the possible effects of Mediterranean Diet against the risk of the coronavirus disease 2019. Several vitamins, minerals, fatty acids, and phytochemicals with their potential anti-COVID-19 activity are presented. Different risk factors may increase or reduce the probability of contracting the disease. Mediterranean Diet has also a positive action on inflammation and immune system and could have a protective effect against severe acute respiratory syndrome coronavirus 2. Further studies are needed to corroborate the benefits of the Mediterranean Diet protective role on infection with SARS-CoV-2.
Collapse
|
117
|
Ma W, Shi Y, Yang G, Shi J, Ji J, Zhang Y, Wang J, Peng Q, Lin Z, Lv H. Hypolipidaemic and antioxidant effects of various Chinese dark tea extracts obtained from the same raw material and their main chemical components. Food Chem 2021; 375:131877. [PMID: 34953244 DOI: 10.1016/j.foodchem.2021.131877] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/28/2022]
Abstract
In order to investigate the hypolipidaemic and antioxidant effects of various dark teas produced from different post-fermentation using the same raw material, a hyperlipidaemia zebrafish model combined with binding bile salts assay and antioxidant assays were performed in this study. Results showed that the hypolipidaemic effect of dark tea extracts increased significantly (p < 0.05) while the antioxidant ability decreased sharply compared with raw material. Particularly, Liupao tea (50%) and Pu-erh tea (48%) showed promising hypolipidaemic potential; however, the antioxidant capacity of Pu-erh tea decreased (31-49%) most dramatically. Besides, the levels of total polyphenols and catechins decreased sharply, but theabrownin, gallic acid, and caffeine increased significantly after post-fermentation. Moreover, the potential mechanisms of regulating hyperlipidaemia by dark tea extracts were discussed. These results suggest that microbial fermentation significantly affects the bioactivity of dark teas, and provide theoretical basis for processing and improving of dark tea products for hyperlipidaemia therapy.
Collapse
Affiliation(s)
- Wanjun Ma
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yali Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Gaozhong Yang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Junpeng Ji
- Hunter Biotechnology, Inc, Hangzhou 310051, China
| | - Yue Zhang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiatong Wang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qunhua Peng
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
118
|
Jastrząb R, Graczyk D, Siedlecki P. Molecular and Cellular Mechanisms Influenced by Postbiotics. Int J Mol Sci 2021; 22:ijms222413475. [PMID: 34948270 PMCID: PMC8707144 DOI: 10.3390/ijms222413475] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, commensal bacteria colonizing the human body have been recognized as important determinants of health and multiple pathologic conditions. Among the most extensively studied commensal bacteria are the gut microbiota, which perform a plethora of functions, including the synthesis of bioactive products, metabolism of dietary compounds, and immunomodulation, both through attenuation and immunostimulation. An imbalance in the microbiota population, i.e., dysbiosis, has been linked to many human pathologies, including various cancer types and neurodegenerative diseases. Targeting gut microbiota and microbiome-host interactions resulting from probiotics, prebiotics, and postbiotics is a growing opportunity for the effective treatment of various diseases. As more research is being conducted, the microbiome field is shifting from simple descriptive analysis of commensal compositions to more molecular, cellular, and functional studies. Insight into these mechanisms is of paramount importance for understanding and modulating the effects that microbiota, probiotics, and their derivatives exert on host health.
Collapse
|
119
|
Fraga LN, Coutinho CP, Rozenbaum AC, Tobaruela EDC, Lajolo FM, Hassimotto NMA. Blood pressure and body fat % reduction is mainly related to flavanone phase II conjugates and minor extension by phenolic acid after long-term intake of orange juice. Food Funct 2021; 12:11278-11289. [PMID: 34713884 DOI: 10.1039/d1fo02664j] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hesperidin and narirutin are the major flavanones present in orange juice, and they are associated with a reduction in risk of cardiometabolic disease. However, there is heterogeneity in their biological responses, which is partly due to the large interindividual variation in these flavonoids' bioavailability. We investigated the relation between interindividual variability in the excretion of phase II conjugates and gut-derived phenolic acids, and cardiometabolic biomarkers response. Seventy-four subjects, both men and women, were included in a single-arm study. Over the 60 days, volunteers consumed 500 mL of orange juice daily. All measurements and blood collections were performed before and after the intervention period. Moreover, 24 h urine collection was performed after first consumption. Individuals were stratified according to the excretion of phase II conjugates and, for the first time, according to phenolic acids in high, medium, and low excretors. Furthermore, for the first time, the ratio between phenolic acids and flavanones-phase II conjugates has shown groups with different metabolization patterns. Groups with a low or intermediate ratio, corresponding to a higher amount of phase II conjugates excreted, showed a significant reduction in body fat % and blood pressure. This finding suggests that these improvements could be associated in a major way to flavanones-phase II conjugates, as well as to phenolic acids and stratification of volunteers according to metabolite excretions could be a good strategy to better understand the effects of orange juice on metabolism and health.
Collapse
Affiliation(s)
- Layanne Nascimento Fraga
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000, São Paulo, Brazil.
| | - Camille Perella Coutinho
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000, São Paulo, Brazil.
| | - Adriana Campos Rozenbaum
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000, São Paulo, Brazil.
| | - Eric de Castro Tobaruela
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000, São Paulo, Brazil.
| | - Franco Maria Lajolo
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000, São Paulo, Brazil.
| | - Neuza Mariko Aymoto Hassimotto
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, 05508-000, São Paulo, Brazil.
| |
Collapse
|
120
|
Zhang R, Wang L, Shi C, Shi Q, Ma F, Zhang X, Yu W, Yu H. Structural Characterization of Lignin-Carbohydrate Complexes (LCCs) and Their Biotransformation by Intestinal Microbiota In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12880-12890. [PMID: 34634902 DOI: 10.1021/acs.jafc.1c03519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lignin-carbohydrate complexes (LCCs) have recently emerged as natural products with pharmaceutical and nutraceutical potential. Here, we compared the structure of LCCs from ginkgo (GK, gymnosperms), wheat straw (WST, monocotyledons), and aspen white poplar (AW, dicotyledons). We also investigated the biotransformation of LCCs by intestinal microbiota in vitro. We found that human intestinal microbiota could use LCCs as a carbon source for growth, breaking resistant cross-linkages in LCCs to generate a plethora of short-chain fatty acids (SCFAs) and aromatic compounds with putative beneficial effects on human health. The yield of SCFAs reached 1837.8 ± 44.1 μmol/g using AW LCCs as a carbon source. The biomass of intestinal microbiota increased the fastest using GK LCCs. The greatest amounts of phenolics were present at 4 h in a WST LCCs fermentation system. Many phenolic acids with potential bioactivity were obtained after 24 h fermentation using each LCCs, such as ferulic acid.
Collapse
Affiliation(s)
- Ran Zhang
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Lei Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Chengcheng Shi
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qipeng Shi
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fuying Ma
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wen Yu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongbo Yu
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
121
|
Iglesias-Aguirre CE, Cortés-Martín A, Ávila-Gálvez MÁ, Giménez-Bastida JA, Selma MV, González-Sarrías A, Espín JC. Main drivers of (poly)phenol effects on human health: metabolite production and/or gut microbiota-associated metabotypes? Food Funct 2021; 12:10324-10355. [PMID: 34558584 DOI: 10.1039/d1fo02033a] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite the high human interindividual variability in response to (poly)phenol consumption, the cause-and-effect relationship between some dietary (poly)phenols (flavanols and olive oil phenolics) and health effects (endothelial function and prevention of LDL oxidation, respectively) has been well established. Most of the variables affecting this interindividual variability have been identified (food matrix, gut microbiota, single-nucleotide-polymorphisms, etc.). However, the final drivers for the health effects of (poly)phenol consumption have not been fully identified. At least partially, these drivers could be (i) the (poly)phenols ingested that exert their effect in the gastrointestinal tract, (ii) the bioavailable metabolites that exert their effects systemically and/or (iii) the gut microbial ecology associated with (poly)phenol metabolism (i.e., gut microbiota-associated metabotypes). However, statistical associations between health effects and the occurrence of circulating and/or excreted metabolites, as well as cross-sectional studies that correlate gut microbial ecologies and health, do not prove a causal role unequivocally. We provide a critical overview and perspective on the possible main drivers of the effects of (poly)phenols on human health and suggest possible actions to identify the putative actors responsible for the effects.
Collapse
Affiliation(s)
- Carlos E Iglesias-Aguirre
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| | - Adrián Cortés-Martín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| | - María Á Ávila-Gálvez
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Instituto de Biologia Experimental e Tecnológica (IBET), Apartado 12, 2781-901, Oeiras, Portugal
| | - Juan A Giménez-Bastida
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| | - María V Selma
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| | - Antonio González-Sarrías
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain.
| |
Collapse
|
122
|
Li H, Xu F, Liu C, Cai A, Dain JA, Li D, Seeram NP, Cho BP, Ma H. Inhibitory Effects and Surface Plasmon Resonance-Based Binding Affinities of Dietary Hydrolyzable Tannins and Their Gut Microbial Metabolites on SARS-CoV-2 Main Protease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12197-12208. [PMID: 34586788 PMCID: PMC8491554 DOI: 10.1021/acs.jafc.1c03521] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 05/16/2023]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) main protease (Mpro) inhibitors are considered as potential treatments for coronavirus disease 2019, and dietary polyphenols show promise in SARS-CoV-2 Mpro inhibition based on in silico studies. In the present study, we utilize a combination of biochemical-, surface plasmon resonance-, and docking-based assays to evaluate the inhibition and binding affinities of a series of tannins and their gut microbial metabolites on SARS-CoV-2 Mpro. The tested compounds (2-50 μM) were hydrolyzable tannins, including ellagitannins (punicalagin and ellagic acid) and gallotannins (tannic acid, pentagalloyl glucose, ginnalin A, and gallic acid), and their gut microbial metabolites, urolithins and pyrogallol, respectively. They inhibited SARS-CoV-2 Mpro (by 6.6-100.0% at 50 μM) and bound directly to the Mpro protein (with dissociation constants from 1.1 × 10-6 to 5.3 × 10-5 M). This study sheds light on the inhibitory effects of tannins and their metabolites on SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Huifang Li
- School of Biotechnology and Health Sciences, Wuyi University; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Feng Xu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Chang Liu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Ang Cai
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA
| | - Joel A. Dain
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA
| | - Dongli Li
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA
| | - Navindra P. Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Bongsup P. Cho
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Hang Ma
- School of Biotechnology and Health Sciences, Wuyi University; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
123
|
Mc Cormack BA, Olivares CN, Madanes D, Ricci AG, Bilotas MA, Barañao RI. Effect of urolithins A and B on ectopic endometrial growth in a murine model of endometriosis. Food Funct 2021; 12:9894-9903. [PMID: 34664592 DOI: 10.1039/d1fo01702k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Endometriosis is an often painful disease in reproductive-aged women, in which endometrial-like tissue grows outside the uterine cavity. Since the limited current therapeutic alternatives fail in alleviating the symptoms and based on our previous research in in vitro models using the same compounds as the ones used in the present study, we aimed to evaluate the effects of urolithins A (UA) and B (UB) on the growth and survival of endometriotic-like lesions in a murine model of endometriosis. Female BALB/C mice were surgically induced with endometriosis and treated with 2.5 mg kg-1 day-1 intraperitoneal UA or UB. The mice were monitored daily and weighed and the estrous stage was determined. After 28 days of treatment, lesions were counted, measured, excised, and fixed. Both urolithins proved not to affect the estrous cycle or body weight of the mice. UA completely prevented endometriotic-like lesions, while UB diminished the implant volume (p < 0.05). Treatment also reduced epithelial and stromal cell proliferation within the implants (p < 0.001 and p < 0.01, respectively) and apoptosis was enhanced (p < 0.05 and p < 0.01, respectively). These results are promising and reveal that urolithins A and B, separately, have a beneficial effect on the overall endometriotic growth without affecting the body weight or estrous cycle.
Collapse
Affiliation(s)
- Bárbara Andrea Mc Cormack
- Laboratorio de Inmunología de la Reproducción, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina.
| | - Carla Noemí Olivares
- Laboratorio de Fisiopatología Endometrial, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina
| | - Daniela Madanes
- Laboratorio de Inmunología de la Reproducción, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina.
| | - Analía Gabriela Ricci
- Laboratorio de Inmunología de la Reproducción, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina.
| | - Mariela Andrea Bilotas
- Laboratorio de Inmunología de la Reproducción, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina.
| | - Rosa Inés Barañao
- Laboratorio de Inmunología de la Reproducción, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina.
| |
Collapse
|
124
|
Piwowarski JP, Stanisławska I, Granica S. Dietary polyphenol and microbiota interactions in the context of prostate health. Ann N Y Acad Sci 2021; 1508:54-77. [PMID: 34636052 DOI: 10.1111/nyas.14701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/14/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
Recent data strongly indicate a relationship between prostate health and gut microbiota, in which composition and physiological function strictly depend on dietary patterns. The bidirectional interplay of foods containing polyphenols, such as ellagitannins, condensed tannins, lignans, isoflavones, and prenylated flavonoids with human gut microbiota, has been proven to contribute to their impact on prostate health. Considering the attributed role of dietary polyphenols in the prevention of prostate diseases, this paper aims to critically review the studies concerning the influence of polyphenols' postbiotic metabolites on processes associated with the pathophysiology of prostate diseases. Clinical, in vivo, and in vitro studies on polyphenols have been juxtaposed with the current knowledge regarding their pharmacokinetics, microbial metabolism, and potential interactions with microbiota harboring different niches of the human organism. Directions of future research on dietary polyphenols regarding their interaction with microbiota and prostate health have been indicated.
Collapse
Affiliation(s)
- Jakub P Piwowarski
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Stanisławska
- Faculty of Pharmacy, Department of Bromatology, Medical University of Warsaw, Warsaw, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
125
|
Sharma JK, Sihmar M, Santal AR, Prager L, Carbonero F, Singh NP. Barley Melanoidins: Key Dietary Compounds With Potential Health Benefits. Front Nutr 2021; 8:708194. [PMID: 34651008 PMCID: PMC8505744 DOI: 10.3389/fnut.2021.708194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/30/2021] [Indexed: 01/01/2023] Open
Abstract
This paper is a review of the potential health benefits of barley melanoidins. Food melanoidins are still rather understudied, despite their potential antioxidant, antimicrobial, and prebiotic properties. Free radicals are villainous substances in humans produced as metabolic byproducts and causing cancers and cardiovascular diseases, and the melanoidins alleviate the effects of these free radicals. Malt is produced from cereal grains such as barley, wheat, and maize, and barley is predominantly used in beer production. Beer (alcoholic and non-alcoholic) is a widely consumed beverage worldwide and a good source of dietary melanoidins, which enhance the beers' flavor, texture, and sensorial properties. Melanoidins, the final products of the Maillard reaction, are produced at different stages during the brewing process. Beer melanoidins protect the cells from oxidative damage of DNA. The high reducing capacity of melanoidins can induce hydroxyl radicals from H2O2 in the presence of ferric ion (Fe3+). Melanoidins inhibit lipid peroxidation during digestion due to their chelating metal property. However, lower digestibility of melanoidins leads to less availability to the organisms but is considered to function as dietary fiber that can be metabolized by the lower gut microbiota and possibly incur prebiotic properties. Melanoidins promote the growth of Lactobacilli and Bifidobacteria in the gastrointestinal tract, preventing the colonization of potential pathogens. Barley is already popular through beer production and increasingly as a functional food. Considering this economic and industrial importance, more research to explore the chemical properties of barley melanoidins and corresponding health benefits as barley is warranted.
Collapse
Affiliation(s)
| | - Monika Sihmar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Anita Rani Santal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Louis Prager
- Department of Crop and Soil Science, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA, United States
| | - Franck Carbonero
- Department of Nutrition and Exercise Physiology, Elson Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Nater Pal Singh
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
126
|
Suo H, Shishir MRI, Xiao J, Wang M, Chen F, Cheng KW. Red Wine High-Molecular-Weight Polyphenolic Complex: An Emerging Modulator of Human Metabolic Disease Risk and Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10907-10919. [PMID: 34461020 DOI: 10.1021/acs.jafc.1c03158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Moderate red wine consumption has been linked to reduced chronic disease risk. Thus far, little has been known about the physicochemical properties and potential biological effects of high-molecular-weight polyphenolic complexes (HPPCs), a major fraction of red wine polyphenols. In this work, the stability and biochemical properties of HPPCs under simulated gastrointestinal conditions in vitro were studied. The results showed that HPPCs were resistant to simulated gastric digestion (SGD) and simulated intestinal digestion (SID). They exhibited significant inhibitory activity against key metabolic syndrome-associated digestive enzymes, achieving 17.1-90.9% inhibition of pancreatic α-amylase, lipase, and cholesterol esterase at 0.02-0.45 mg/mL. HPPCs were metabolized by gut microbiota (GM), leading to significantly enhanced antioxidant capacity when compared with the original, SGD, and SID samples. Furthermore, they favorably modulated GM profiles, which was accompanied by significantly increased short-chain fatty acid generation during the early colonic fermentation phase. These findings suggest that HPPCs are a promising modulator of human metabolic disease risk.
Collapse
Affiliation(s)
- Hao Suo
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Mohammad Rezaul Islam Shishir
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jiangsu University, Zhenjiang 212013, China.,Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo 36310, Spain
| | - Mingfu Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
127
|
Modifications in the Intestinal Functionality, Morphology and Microbiome Following Intra-Amniotic Administration ( Gallus gallus) of Grape ( Vitis vinifera) Stilbenes (Resveratrol and Pterostilbene). Nutrients 2021; 13:nu13093247. [PMID: 34579124 PMCID: PMC8466538 DOI: 10.3390/nu13093247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
This efficacy trial evaluated the effects of two polyphenolic stilbenes, resveratrol and pterostilbene, mostly found in grapes, on the brush border membrane functionality, morphology and gut microbiome. This study applied the validated Gallus gallus intra-amniotic approach to investigate the effects of stilbene administration versus the controls. Three treatment groups (5% resveratrol; 5% pterostilbene; and synergistic: 4.75% resveratrol and 0.25% pterostilbene) and three controls (18 MΩ H2O; no injection; 5% inulin) were employed. We observed beneficial morphological changes, specifically an increase in the villus length, diameter, depth of crypts and goblet cell diameter in the pterostilbene and synergistic groups, with concomitant increases in the serum iron and zinc concentrations. Further, the alterations in gene expression of the mineral metabolism proteins and pro-inflammatory cytokines indicate a potential improvement in gut health and mineral bioavailability. The cecal microbiota was analyzed using 16S rRNA sequencing. A lower α-diversity was observed in the synergistic group compared with the other treatment groups. However, beneficial compositional and functional alterations in the gut microbiome were detected. Several key microbial metabolic pathways were differentially enriched in the pterostilbene treatment group. These observations demonstrate a significant bacterial–host interaction that contributed to enhancements in intestinal functionality, morphology and physiological status. Our data demonstrate a novel understanding of the nutritional benefits of dietary stilbenes and their effects on intestinal functionality, morphology and gut microbiota in vivo.
Collapse
|
128
|
Vázquez-Rodríguez B, Santos-Zea L, Heredia-Olea E, Acevedo-Pacheco L, Santacruz A, Gutiérrez-Uribe JA, Cruz-Suárez LE. Effects of phlorotannin and polysaccharide fractions of brown seaweed Silvetia compressa on human gut microbiota composition using an in vitro colonic model. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
129
|
Boronat A, Rodriguez-Morató J, Serreli G, Fitó M, Tyndale RF, Deiana M, de la Torre R. Contribution of Biotransformations Carried Out by the Microbiota, Drug-Metabolizing Enzymes, and Transport Proteins to the Biological Activities of Phytochemicals Found in the Diet. Adv Nutr 2021; 12:2172-2189. [PMID: 34388248 PMCID: PMC8634308 DOI: 10.1093/advances/nmab085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022] Open
Abstract
The consumption of dietary phytochemicals has been associated with several health benefits and relevant biological activities. It is postulated that biotransformations of these compounds regulated by the microbiota, Phase I/II reactions, transport proteins, and deconjugating enzymes contribute not only to their metabolic clearance but also, in some cases, to their bioactivation. A number of factors (age, genetics, sex, physiopathological conditions, and the interplay with other dietary phytochemicals) modulating metabolic activities are important sources and contributors to the interindividual variability observed in clinical studies evaluating the biological activities of phytochemicals. In this review, we discuss all the processes that can affect the bioaccessibility and beneficial effects of these bioactive compounds. Herein, we argue that the role of these factors must be further studied to correctly understand and predict the effects observed following the intake of phytochemicals. This is, in particular, with regard to in vitro investigations, which have shown great inconsistency with preclinical and clinical studies. The complexity of in vivo metabolic activity and biotransformation should therefore be considered in the interpretation of results in vitro and their translation to human physiopathology.
Collapse
Affiliation(s)
- Anna Boronat
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Jose Rodriguez-Morató
- Integrative Pharmacology and Systems Neurosciences Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain,Physiopathology of Obesity and Nutrition Networking Biomedical Research Centre (CIBEROBN), Madrid, Spain,Department of Experimental and Health Sciences (UPF-CEXS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Gabriele Serreli
- Department of Biomedical Science, Pathology Section, Experimental Pathology Unit, University of Cagliari, Montserrato, Italy
| | - Montserrat Fitó
- Physiopathology of Obesity and Nutrition Networking Biomedical Research Centre (CIBEROBN), Madrid, Spain,Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute (CAMH), Toronto, Canada,Department of Pharmacology, Toxicology, and Psychiatry, University of Toronto, Toronto, Canada
| | - Monica Deiana
- Department of Biomedical Science, Pathology Section, Experimental Pathology Unit, University of Cagliari, Montserrato, Italy
| | | |
Collapse
|
130
|
Giménez-Bastida JA, Ávila-Gálvez MÁ, Espín JC, González-Sarrías A. Evidence for health properties of pomegranate juices and extracts beyond nutrition: A critical systematic review of human studies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
131
|
Giménez-Bastida JA, González-Sarrías A, Laparra-Llopis JM, Schneider C, Espín JC. Targeting Mammalian 5-Lipoxygenase by Dietary Phenolics as an Anti-Inflammatory Mechanism: A Systematic Review. Int J Mol Sci 2021; 22:7937. [PMID: 34360703 PMCID: PMC8348464 DOI: 10.3390/ijms22157937] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
5-Lipoxygenase (5-LOX) plays a key role in inflammation through the biosynthesis of leukotrienes and other lipid mediators. Current evidence suggests that dietary (poly)phenols exert a beneficial impact on human health through anti-inflammatory activities. Their mechanisms of action have mostly been associated with the modulation of pro-inflammatory cytokines (TNF-α, IL-1β), prostaglandins (PGE2), and the interaction with NF-κB and cyclooxygenase 2 (COX-2) pathways. Much less is known about the 5-lipoxygenase (5-LOX) pathway as a target of dietary (poly)phenols. This systematic review aimed to summarize how dietary (poly)phenols target the 5-LOX pathway in preclinical and human studies. The number of studies identified is low (5, 24, and 127 human, animal, and cellular studies, respectively) compared to the thousands of studies focusing on the COX-2 pathway. Some (poly)phenolics such as caffeic acid, hydroxytyrosol, resveratrol, curcumin, nordihydroguaiaretic acid (NDGA), and quercetin have been reported to reduce the formation of 5-LOX eicosanoids in vitro. However, the in vivo evidence is inconclusive because of the low number of studies and the difficulty of attributing effects to (poly)phenols. Therefore, increasing the number of studies targeting the 5-LOX pathway would largely expand our knowledge on the anti-inflammatory mechanisms of (poly)phenols.
Collapse
Affiliation(s)
- Juan Antonio Giménez-Bastida
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department Food Science and Technology, CEBAS-CSIC, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain;
| | - Antonio González-Sarrías
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department Food Science and Technology, CEBAS-CSIC, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain;
| | - José Moisés Laparra-Llopis
- Group of Molecular Immunonutrition in Cancer, Madrid Institute for Advanced Studies in Food (IMDEA-Food), 28049 Madrid, Spain;
| | - Claus Schneider
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical School, Nashville, TN 37232, USA;
| | - Juan Carlos Espín
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department Food Science and Technology, CEBAS-CSIC, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain;
| |
Collapse
|
132
|
Rodríguez-Daza MC, Pulido-Mateos EC, Lupien-Meilleur J, Guyonnet D, Desjardins Y, Roy D. Polyphenol-Mediated Gut Microbiota Modulation: Toward Prebiotics and Further. Front Nutr 2021; 8:689456. [PMID: 34268328 PMCID: PMC8276758 DOI: 10.3389/fnut.2021.689456] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The genome of gut microbes encodes a collection of enzymes whose metabolic functions contribute to the bioavailability and bioactivity of unabsorbed (poly)phenols. Datasets from high throughput sequencing, metabolome measurements, and other omics have expanded the understanding of the different modes of actions by which (poly)phenols modulate the microbiome conferring health benefits to the host. Progress have been made to identify direct prebiotic effects of (poly)phenols; albeit up to date, these compounds are not recognized as prebiotics sensu stricto. Interestingly, certain probiotics strains have an enzymatic repertoire, such as tannase, α-L-rhamnosidase, and phenolic acid reductase, involved in the transformation of different (poly)phenols into bioactive phenolic metabolites. In vivo studies have demonstrated that these (poly)phenol-transforming bacteria thrive when provided with phenolic substrates. However, other taxonomically distinct gut symbionts of which a phenolic-metabolizing activity has not been demonstrated are still significantly promoted by (poly)phenols. This is the case of Akkermansia muciniphila, a so-called antiobesity bacterium, which responds positively to (poly)phenols and may be partially responsible for the health benefits formerly attributed to these molecules. We surmise that (poly)phenols broad antimicrobial action free ecological niches occupied by competing bacteria, thereby allowing the bloom of beneficial gut bacteria. This review explores the capacity of (poly)phenols to promote beneficial gut bacteria through their direct and collaborative bacterial utilization and their inhibitory action on potential pathogenic species. We propose the term duplibiotic, to describe an unabsorbed substrate modulating the gut microbiota by both antimicrobial and prebiotic modes of action. (Poly)phenol duplibiotic effect could participate in blunting metabolic disturbance and gut dysbiosis, positioning these compounds as dietary strategies with therapeutic potential.
Collapse
Affiliation(s)
- Maria Carolina Rodríguez-Daza
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Elena C Pulido-Mateos
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Joseph Lupien-Meilleur
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Denis Guyonnet
- Diana Nova, Symrise Nutrition, Clichy-la-Garenne, France
| | - Yves Desjardins
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Denis Roy
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| |
Collapse
|
133
|
Inada KOP, Leite IB, Martins ABN, Fialho E, Tomás-Barberán FA, Perrone D, Monteiro M. Jaboticaba berry: A comprehensive review on its polyphenol composition, health effects, metabolism, and the development of food products. Food Res Int 2021; 147:110518. [PMID: 34399496 DOI: 10.1016/j.foodres.2021.110518] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Jaboticaba, a popular Brazilian berry, has been studied due to its relevant polyphenol composition, health benefits and potential use for the development of derived food products. Considering that around 200 articles have been published in recent years, this review aims to provide comprehensive and updated information, as well as a critical discussion on: (i) jaboticaba polyphenolic composition and extraction methods for their accurate determination; (ii) jaboticaba polyphenol's metabolism; (iii) biological effects of the fruit and the relationship with its polyphenols and their metabolites; (iv) challenges in the development of jaboticaba derived products. The determination of jaboticaba polyphenols should employ hydrolysis procedures during extraction, followed by liquid chromatographic analysis. Jaboticaba polyphenols, mainly anthocyanins and ellagitannins, are extensively metabolized, and their metabolites are probably the most important contributors to the relevant health effects associated with the fruit, such as antioxidant, anti-inflammatory, antidiabetic, hepatoprotective and hypolipidemic. Most of the technological processing of jaboticaba fruit and its residues is related to their application as a colorant, antioxidant, antimicrobial and source of polyphenols. The scientific literature still lacks studies on the metabolism and bioactivity of polyphenols from jaboticaba in humans, as well as the effect of technological processes on these issues.
Collapse
Affiliation(s)
- Kim Ohanna Pimenta Inada
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil; Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil; Instituto de Nutrição, Universidade Estadual do Rio de Janeiro, R. São Francisco Xavier, 524, Pavilhão João Lyra Filho, 12° andar, Bloco D, sala 12.002, 20550-900 Rio de Janeiro, Brazil.
| | - Iris Batista Leite
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil
| | - Ana Beatriz Neves Martins
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil
| | - Eliane Fialho
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil.
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain.
| | - Daniel Perrone
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil.
| | - Mariana Monteiro
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
134
|
Augusti PR, Conterato GMM, Denardin CC, Prazeres ID, Serra AT, Bronze MR, Emanuelli T. Bioactivity, bioavailability, and gut microbiota transformations of dietary phenolic compounds: implications for COVID-19. J Nutr Biochem 2021; 97:108787. [PMID: 34089819 PMCID: PMC8169570 DOI: 10.1016/j.jnutbio.2021.108787] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
The outbreak of mysterious pneumonia at the end of 2019 is associated with widespread research interest worldwide. The coronavirus disease-19 (COVID-19) targets multiple organs through inflammatory, immune, and redox mechanisms, and no effective drug for its prophylaxis or treatment has been identified until now. The use of dietary bioactive compounds, such as phenolic compounds (PC), has emerged as a putative nutritional or therapeutic adjunct approach for COVID-19. In the present study, scientific data on the mechanisms underlying the bioactivity of PC and their usefulness in COVID-19 mitigation are reviewed. In addition, antioxidant, antiviral, anti-inflammatory, and immunomodulatory effects of dietary PC are studied. Moreover, the implications of digestion on the putative benefits of dietary PC against COVID-19 are presented by addressing the bioavailability and biotransformation of PC by the gut microbiota. Lastly, safety issues and possible drug interactions of PC and their implications in COVID-19 therapeutics are discussed.
Collapse
Affiliation(s)
- Paula R Augusti
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Greicy M M Conterato
- Laboratório de Fisiologia da Reprodução Animal, Departamento de Agricultura, Biodiversidade e Floresta, Centro de Ciências Rurais, Universidade Federal de Santa Catarina, Campus de Curitibanos, Curitibanos, SC, Brazil
| | | | - Inês D Prazeres
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Maria R Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal; iMED, Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| | - Tatiana Emanuelli
- Núcleo Integrado de Desenvolvimento em Análises Laboratoriais (NIDAL), Departamento de Tecnologia e Ciência dos Alimentos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
135
|
D'Amico D, Andreux PA, Valdés P, Singh A, Rinsch C, Auwerx J. Impact of the Natural Compound Urolithin A on Health, Disease, and Aging. Trends Mol Med 2021; 27:687-699. [PMID: 34030963 DOI: 10.1016/j.molmed.2021.04.009] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Urolithin A (UA) is a natural compound produced by gut bacteria from ingested ellagitannins (ETs) and ellagic acid (EA), complex polyphenols abundant in foods such as pomegranate, berries, and nuts. UA was discovered 40 years ago, but only recently has its impact on aging and disease been explored. UA enhances cellular health by increasing mitophagy and mitochondrial function and reducing detrimental inflammation. Several preclinical studies show how UA protects against aging and age-related conditions affecting muscle, brain, joints, and other organs. In humans, benefits of UA supplementation in the muscle are supported by recent clinical trials in elderly people. Here, we review the state of the art of UA's biology and its translational potential as a nutritional intervention in humans.
Collapse
Affiliation(s)
- Davide D'Amico
- Amazentis SA, EPFL Innovation Park, Bâtiment C, CH-1015 Lausanne, Switzerland.
| | - Pénélope A Andreux
- Amazentis SA, EPFL Innovation Park, Bâtiment C, CH-1015 Lausanne, Switzerland
| | - Pamela Valdés
- Amazentis SA, EPFL Innovation Park, Bâtiment C, CH-1015 Lausanne, Switzerland
| | - Anurag Singh
- Amazentis SA, EPFL Innovation Park, Bâtiment C, CH-1015 Lausanne, Switzerland
| | - Chris Rinsch
- Amazentis SA, EPFL Innovation Park, Bâtiment C, CH-1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
136
|
Ávila-Gálvez MÁ, González-Sarrías A, Martínez-Díaz F, Abellán B, Martínez-Torrano AJ, Fernández-López AJ, Giménez-Bastida JA, Espín JC. Disposition of Dietary Polyphenols in Breast Cancer Patients' Tumors, and Their Associated Anticancer Activity: The Particular Case of Curcumin. Mol Nutr Food Res 2021; 65:e2100163. [PMID: 33939887 DOI: 10.1002/mnfr.202100163] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/20/2021] [Indexed: 02/06/2023]
Abstract
SCOPE Some polyphenol-derived metabolites reach human breast cancer (BC) tissues at concentrations that induce cell senescence. However, this is unknown for isoflavones, curcuminoids, and lignans. Here, their metabolic profiling in normal (NT) and malignant (MT) mammary tissues of newly-diagnosed BC patients and the tissue-occurring metabolites' anticancer activity are evaluated. METHODS AND RESULTS Patients (n = 26) consumed 3 capsules/day (turmeric, red clover, and flaxseed extracts plus resveratrol; 296.4 mg phenolics/capsule) from biopsy-confirmed diagnosis to surgery (5 ± 2 days) or did not consume capsules (n = 13). NT and MT, blood, and urine are analyzed by UPLC-QTOF-MS using targeted metabolomics. Anticancer activity was tested in MCF-7 and MDA-MB-231 BC cells. Mainly phase-II metabolites were detected (108, 84, 49, and 47 in urine, plasma, NT, and MT, respectively). Total metabolite concentrations reached 10.7 ± 11.1 and 2.5 ± 2.4 µmol L-1 in NT and MT, respectively. Free curcumin, but not its glucuronide, was detected in the tissues (1.1 ± 1.8 and 0.2 ± 0.2 µmol L-1 in NT and MT, respectively). Breast tissue-occurring metabolites' antiproliferation was mainly exerted in p53-wild-type MCF-7 cells by curcuminoids through cell cycle arrest, senescence, and apoptosis induction via p53/p21 induction, while isoflavone-derived metabolites exerted estrogenic-like activity. CONCLUSION Curcuminoids could be coadjuvants that might help fight BC upon regular consumption.
Collapse
Affiliation(s)
- María Ángeles Ávila-Gálvez
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Antonio González-Sarrías
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Francisco Martínez-Díaz
- Anatomical Pathology Service, Reina Sofía University Hospital, Avda. Intendente Jorge Palacios s/n, Murcia, 30003, Spain
| | - Beatriz Abellán
- Surgery Service, Reina Sofía University Hospital, Avda. Intendente Jorge Palacios, Murcia, 30003, Spain
| | | | | | - Juan Antonio Giménez-Bastida
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| |
Collapse
|
137
|
Low DY, Hejndorf S, Tharmabalan RT, Poppema S, Pettersson S. Regional Diets Targeting Gut Microbial Dynamics to Support Prolonged Healthspan. Front Microbiol 2021; 12:659465. [PMID: 33995322 PMCID: PMC8116520 DOI: 10.3389/fmicb.2021.659465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/29/2021] [Indexed: 01/16/2023] Open
Abstract
In the last 150 years, we have seen a significant increase in average life expectancy, associated with a shift from infectious to non-communicable diseases. The rising incidence of these diseases, for which age is often the largest risk factor, highlights the need for contemporary societies to improve healthy ageing for their growing silver generations. As ageing is an inevitable, non-reversing and highly individualised process, we need to better understand how non-genetic factors like diet choices and commensal gut microbes can modulate the biology of ageing. In this review, we discuss how geographical and ethnic variations influence habitual dietary patterns, nutrient structure, and gut microbial profiles with potential impact on the human healthspan. Several gut microbial genera have been associated with healthy elderly populations but are highly variable across populations. It seems unlikely that a universal pro-longevity gut microbiome exists. Rather, the optimal microbiome appears to be conditional on the microbial functionality acting on regional- and ethnicity-specific trends driven by cultural food context. We also highlight dietary and microbial factors that have been observed to elicit individual and clustered biological responses. Finally, we identify next generation avenues to modify otherwise fixed host functions and the individual ageing trajectory by manipulating the malleable gut microbiome with regionally adapted, personalised food intervention regimens targeted at prolonging human healthspan.
Collapse
Affiliation(s)
- Dorrain Yanwen Low
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Sophia Hejndorf
- Department of Odontology, Karolinska Institutet, Solna, Sweden
| | | | - Sibrandes Poppema
- School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Sven Pettersson
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Odontology, Karolinska Institutet, Solna, Sweden
- School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
- National Neuroscience Institute, Singapore, Singapore
| |
Collapse
|
138
|
Ávila-Gálvez MÁ, Giménez-Bastida JA, González-Sarrías A, Espín JC. New Insights into the Metabolism of the Flavanones Eriocitrin and Hesperidin: A Comparative Human Pharmacokinetic Study. Antioxidants (Basel) 2021; 10:435. [PMID: 33799874 PMCID: PMC8000041 DOI: 10.3390/antiox10030435] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
The intake of hesperidin-rich sources, mostly found in orange juice, can decrease cardiometabolic risk, potentially linked to the gut microbial phase-II hesperetin derivatives. However, the low hesperidin solubility hampers its bioavailability and microbial metabolism, yielding a high inter-individual variability (high vs. low-producers) that prevents consistent health-related evidence. Contrarily, the human metabolism of (lemon) eriocitrin is hardly known. We hypothesize that the higher solubility of (lemon) eriocitrin vs. (orange) hesperidin might yield more bioavailable metabolites than hesperidin. A randomized-crossover human pharmacokinetic study (n = 16) compared the bioavailability and metabolism of flavanones from lemon and orange extracts and postprandial changes in oxidative, inflammatory, and metabolic markers after a high-fat-high-sugars meal. A total of 17 phase-II flavanone-derived metabolites were identified. No significant biomarker changes were observed. Plasma and urinary concentrations of all metabolites, including hesperetin metabolites, were higher after lemon extract intake. Total plasma metabolites showed significantly mean lower Tmax (6.0 ± 0.4 vs. 8.0 ± 0.5 h) and higher Cmax and AUC values after lemon extract intake. We provide new insights on hesperetin-eriodictyol interconversion and naringenin formation from hesperidin in humans. Our results suggest that regular consumption of a soluble and eco-friendly eriocitrin-rich lemon extract could provide a circulating concentration metabolites threshold to exert health benefits, even in the so-called low-producers.
Collapse
Affiliation(s)
| | | | | | - Juan Carlos Espín
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, Department Food Science and Technology, Campus de Espinardo, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (M.Á.Á.-G.); (J.A.G.-B.); (A.G.-S.)
| |
Collapse
|
139
|
Liu Z, de Bruijn WJ, Sanders MG, Wang S, Bruins ME, Vincken JP. Insights in the Recalcitrance of Theasinensin A to Human Gut Microbial Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2477-2484. [PMID: 33619960 PMCID: PMC8028050 DOI: 10.1021/acs.jafc.1c00727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Due to low bioavailability of dietary phenolic compounds in small intestine, their metabolism by gut microbiota is gaining increasing attention. The microbial metabolism of theasinensin A (TSA), a bioactive catechin dimer found in black tea, has not been studied yet. Here, TSA was extracted and purified for in vitro fermentation by human fecal microbiota, and epigallocatechin gallate (EGCG) and procyanidin B2 (PCB2) were used for comparison. Despite the similarity in their flavan-3-ol skeletons, metabolic fate of TSA was distinctively different. After degalloylation, its core biphenyl-2,2',3,3',4,4'-hexaol structure remained intact during fermentation. Conversely, EGCG and PCB2 were promptly degraded into a series of hydroxylated phenylcarboxylic acids. Computational analyses comparing TSA and PCB2 revealed that TSA's stronger interflavanic bond and more compact stereo-configuration might underlie its lower fermentability. These insights in the recalcitrance of theasinensins to degradation by human gut microbiota are of key importance for a comprehensive understanding of its health benefits.
Collapse
Affiliation(s)
- Zhibin Liu
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, Wageningen 6700 AA , The Netherlands
- Institute
of Food Science & Technology, Fuzhou
University, Fuzhou 350108, P.R. China
| | - Wouter J.C. de Bruijn
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, Wageningen 6700 AA , The Netherlands
| | - Mark G. Sanders
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, Wageningen 6700 AA , The Netherlands
| | - Sisi Wang
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, Wageningen 6700 AA , The Netherlands
| | - Marieke E. Bruins
- Food
& Biobased Research, Wageningen University
& Research, P.O. Box 17, Wageningen 6700 AA, The
Netherlands
| | - Jean-Paul Vincken
- Laboratory
of Food Chemistry, Wageningen University, P.O. Box 17, Wageningen 6700 AA , The Netherlands
| |
Collapse
|
140
|
Cortés-Martín A, Iglesias-Aguirre CE, Meoro A, Selma MV, Espín JC. Pharmacological Therapy Determines the Gut Microbiota Modulation by a Pomegranate Extract Nutraceutical in Metabolic Syndrome: A Randomized Clinical Trial. Mol Nutr Food Res 2021; 65:e2001048. [PMID: 33458928 DOI: 10.1002/mnfr.202001048] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/04/2020] [Indexed: 12/13/2022]
Abstract
SCOPE Poly-pharmacological therapy shapes the gut microbiota (GM) in metabolic syndrome (MetS) patients. The effects of polyphenols in poly-medicated MetS patients are unknown. METHODS AND RESULTS A randomized, placebo-controlled, double-blinded, and crossover trial in poly-medicated MetS patients (n=50) explored whether the effects of a pomegranate extract nutraceutical (PE, 320 mg phenolics/day for 1 month) are affected by the drug therapy. Considering the lipid-lowering (LL-), anti-hypertensive (HP-) and(or) anti-diabetic (AD-) treatments: GM (16S rRNA sequencing), short-chain fatty acids, 40 inflammatory-metabolic and endotoxemia-related biomarkers, associations between biomarkers and GM with 53 cardiometabolic dysfunctions-related single-nucleotide polymorphisms (SNPs), and urolithin metabotypes (UMs) influence are evaluated. Representative SNPs-GM associations after PE include Lactococcus and ClostridiumXIVa with rs5443-GNB3 (G-protein-β-polypeptide-3) and ClostridiumXIVa with rs7903146-TCF7L2 (transcription-factor-7-like-2) and rs1137101-LEPR (leptin-receptor). PE decreases sICAM-1 in LL-patients and the lipopolysaccharide-binding protein in all the patients. PE does not affect the other patients' markers as a group or stratifying by UMs. After PE, Lactococcus increases in AD-, LL-, and HP-patients, Bifidobacterium increases in LL- and AD-, while Clostridium XIVa decreases in non-LL- and non-HP-patients. CONCLUSION The prebiotic effect of PE depends on the medication, mainly on HP-treatments. Targeting GM can complement MetS therapy, but the patients' drug therapy should be considered individually.
Collapse
Affiliation(s)
- Adrián Cortés-Martín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Carlos Eduardo Iglesias-Aguirre
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Amparo Meoro
- Service of Endocrinology, Reina Sofía University Hospital, Avda. Intendente Jorge Palacios s/n, Murcia, 30003, Spain
| | - María Victoria Selma
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| |
Collapse
|
141
|
Postprandial glucose-lowering effect of cagaita (Eugenia dysenterica DC) fruit juice in dysglycemic subjects with metabolic syndrome: An exploratory study. Food Res Int 2021; 142:110209. [PMID: 33773684 DOI: 10.1016/j.foodres.2021.110209] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 01/29/2023]
Abstract
Cagaita (Eugenia dysenterica DC) is an ellagitannin-containing Myrtaceae fruit from Cerrado biome. This fruit seems to be a promising candidate for an adjuvant in glucose regulation in healthy subjects. However, it is not known whether cagaita juice would have the same effect on dysglycemic subjects with metabolic syndrome (MetS). Therefore, the present work aimed to evaluate the effect of cagaita fruit juice on postprandial glycemia in dysglycemic subjects with MetS, and whether cagaita ellagitannins could be metabolized to urolithins. To evaluate glycemic effects, two different meals were consumed by volunteers (n = 12) with a 1-week interval among them. The first one consisted of white bread (50 g) plus water (300 mL) as a control; the second one, white bread (50 g) plus clarified cagaita juice (300 mL). Bioavailability was assessed in 24 h urine, after the consumption of a single amount of 300 mL of cagaita juice by healthy (n = 16) and MetS subjects (n = 7). The results showed that dysglycemic subjects with MetS presented a 53% reduction of incremental area under the curve (iAUC) of glucose, 38% reduction of insulin, 78% reduction of GIP (glucose-dependent insulinotropic polypeptide), and 58% reduction of C-peptide (p < 0.05), after the consumption of cagaita juice along with bread, in comparison to control water. However, both GLP-1 (glucagon-like peptide-1) and glucagon were not affected by cagaita juice ingestion. Concerning bioavailability, it was observed, for the first time, the metabolization of cagaita ellagitannins to urolithins by healthy and dysglycemic individuals with MetS, with a prevalence of metabotype B in both groups (44% and 42%, respectively), followed by metabotype A (37% and 29%, respectively), and metabotype 0 (19% and 29%, respectively).
Collapse
|
142
|
Caffeic Acid Modulates Processes Associated with Intestinal Inflammation. Nutrients 2021; 13:nu13020554. [PMID: 33567596 PMCID: PMC7914463 DOI: 10.3390/nu13020554] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
Caffeic acid is one of the most abundant hydroxycinnamic acids in fruits, vegetables, and beverages. This phenolic compound reaches relevant concentrations in the colon (up to 126 µM) where it could come into contact with the intestinal cells and exert its anti-inflammatory effects. The aim of this investigation was to study the capacity of caffeic acid, at plausible concentrations from an in vivo point of view, to modulate mechanisms related to intestinal inflammation. Consequently, we tested the effects of caffeic acid (50–10 µM) on cyclooxygenase (COX)-2 expression and prostaglandin (PG)E2, cytokines, and chemokines (IL-8, monocyte chemoattractant protein-1 -MCP-1-, and IL-6) biosynthesis in IL-1β-treated human myofibroblasts of the colon, CCD-18Co. Furthermore, the capacity of caffeic acid to inhibit the angiotensin-converting enzyme (ACE) activity, to hinder advanced glycation end product (AGE) formation, as well as its antioxidant, reducing, and chelating activity were also investigated. Our results showed that (i) caffeic acid targets COX-2 and its product PGE2 as well as the biosynthesis of IL-8 in the IL-1β-treated cells and (ii) inhibits AGE formation, which could be related to (iii) the high chelating activity exerted. Low anti-ACE, antioxidant, and reducing capacity of caffeic acid was also observed. These effects of caffeic acid expands our knowledge on anti-inflammatory mechanisms against intestinal inflammation.
Collapse
|
143
|
Cunningham M, Azcarate-Peril MA, Barnard A, Benoit V, Grimaldi R, Guyonnet D, Holscher HD, Hunter K, Manurung S, Obis D, Petrova MI, Steinert RE, Swanson KS, van Sinderen D, Vulevic J, Gibson GR. Shaping the Future of Probiotics and Prebiotics. Trends Microbiol 2021; 29:667-685. [PMID: 33551269 DOI: 10.1016/j.tim.2021.01.003] [Citation(s) in RCA: 231] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/15/2022]
Abstract
Recent and ongoing developments in microbiome science are enabling new frontiers of research for probiotics and prebiotics. Novel types, mechanisms, and applications currently under study have the potential to change scientific understanding as well as nutritional and healthcare applications of these interventions. The expansion of related fields of microbiome-targeted interventions, and an evolving landscape for implementation across regulatory, policy, prescriber, and consumer spheres, portends an era of significant change. In this review we examine recent, emerging, and anticipated trends in probiotic and prebiotic science, and create a vision for broad areas of developing influence in the field.
Collapse
Affiliation(s)
- Marla Cunningham
- Department of Science and Innovation, Metagenics, PO Box 675, Virginia BC, QLD, 4014, Australia.
| | - M Andrea Azcarate-Peril
- UNC Departments of Medicine and Nutrition, Microbiome Core Facility, University of North Carolina, Chapel Hill, NC, USA
| | | | - Valerie Benoit
- Bell Institute of Health and Nutrition, General Mills, Minneapolis, MN, USA
| | | | - Denis Guyonnet
- Diana Nova, Symrise Nutrition, Clichy-la-Garenne, France
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition and Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Kirsty Hunter
- Department of Sport Science, Nottingham Trent University, UK
| | - Sarmauli Manurung
- Emerging Sciences Research, Reckitt Benckiser, Nijmegen, The Netherlands
| | - David Obis
- Danone Nutricia Research, Palaiseau Cedex, France
| | | | - Robert E Steinert
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd, Basel, Switzerland; Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zürich, Switzerland
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Douwe van Sinderen
- Microbiology BioSciences Institute, University College Cork, Cork, Ireland
| | - Jelena Vulevic
- veMico Ltd, Reading, UK; Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Glenn R Gibson
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| |
Collapse
|
144
|
Nishioka A, Tobaruela EDC, Fraga LN, Tomás-Barberán FA, Lajolo FM, Hassimotto NMA. Stratification of Volunteers According to Flavanone Metabolite Excretion and Phase II Metabolism Profile after Single Doses of 'Pera' Orange and 'Moro' Blood Orange Juices. Nutrients 2021; 13:nu13020473. [PMID: 33573276 PMCID: PMC7910827 DOI: 10.3390/nu13020473] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/16/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
Large interindividual variations in the biological response to citrus flavanones have been observed, and this could be associated with high variations in their bioavailability. The aim of this study was to identify the main determinants underlying interindividual differences in citrus flavanone metabolism and excretion. In a randomized cross-over study, non-obese and obese volunteers, aged 19-40 years, ingested single doses of Pera and Moro orange juices, and urine was collected for 24 h. A large difference in the recovery of the urinary flavanone phase II metabolites was observed, with hesperetin-sulfate and hesperetin-sulfo-O-glucuronide being the major metabolites. Subjects were stratified according to their total excretion of flavanone metabolites as high, medium, and low excretors, but the expected correlation with the microbiome was not observed at the genus level. A second stratification was proposed according to phase II flavanone metabolism, whereby participants were divided into two excretion groups: Profiles A and B. Profile B individuals showed greater biotransformation of hesperetin-sulfate to hesperetin-sulfo-O-glucuronide, as well as transformation of flavanone-monoglucuronide to the respective diglucuronides, suggestive of an influence of polymorphisms on UDP-glucuronosyltransferase. In conclusion, this study proposes a new stratification of volunteers based on their metabolic profiles. Gut microbiota composition and polymorphisms of phase II enzymes may be related to the interindividual variability of metabolism.
Collapse
Affiliation(s)
- Alessandra Nishioka
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.N.); (E.d.C.T.); (L.N.F.); (F.M.L.)
| | - Eric de Castro Tobaruela
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.N.); (E.d.C.T.); (L.N.F.); (F.M.L.)
| | - Layanne Nascimento Fraga
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.N.); (E.d.C.T.); (L.N.F.); (F.M.L.)
| | - Francisco A. Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, P.O. Box 164, Campus de Espinardo, 30100 Murcia, Spain;
| | - Franco Maria Lajolo
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.N.); (E.d.C.T.); (L.N.F.); (F.M.L.)
| | - Neuza Mariko Aymoto Hassimotto
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (A.N.); (E.d.C.T.); (L.N.F.); (F.M.L.)
- Correspondence:
| |
Collapse
|
145
|
Kikuchi H, Harata K, Madhyastha H, Kuribayashi F. Ellagic acid and its fermentative derivative urolithin A show reverse effects on the gp91-phox gene expression, resulting in opposite alterations in all- trans retinoic acid-induced superoxide generating activity of U937 cells. Biochem Biophys Rep 2021; 25:100891. [PMID: 33490645 PMCID: PMC7806786 DOI: 10.1016/j.bbrep.2020.100891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 11/30/2022] Open
Abstract
Ellagitannins (esters composed of glucose and ellagic acid) are hydrolyzed to generate ellagic acid in gut followed by conversion of ellagic acid to urolithins such as urolithin A by intestinal bacteria. Since urolithins are absorbed by gut easier than ellagitannins and ellagic acid, and show various physiological activities (e.g. anti-cancer, anti-cardiovascular disease, anti-diabetes mellitus, anti-obesity and anti-Alzheimer disease activities), they are expected as excellent health-promoting phytochemicals. Here, using human monoblast U937 cells, we investigated the effect of ellagic acid and urolithin A on the superoxide anion (O2−)-generating system of phagocytes, which is consisted of five specific protein factors (membrane proteins: p22-phox and gp91-phox, cytosolic proteins: p40-phox, p47-phox and p67-phox). Twenty micromolar of urolithin A enhanced the all-trans retinoic acid (ATRA)-induced O2−-generating activity (to ~175%) while 20 μM ellagic acid inhibited the ATRA-induced O2−-generating activity (to ~70%). Semiquantitative RT-PCR showed that transcription level of gp91-phox was certainly decreased (to ~70%) in ATRA plus ellagic acid-treated cells, while that of gp91-phox was significantly increased (to ~160%) in ATRA plus urolithin A-treated cells. Chromatin immunoprecipitation assay suggested that urolithin A enhanced acetylations of Lys-9 residues of histone H3 within chromatin surrounding the promoter region of gp91-phox gene, but ellagic acid suppressed the acetylations. Immunoblotting also revealed that ATRA plus urolithin A-treatment up-regulated protein levels of p22-phox (to ~160%) and gp91-phox (to ~170%) although ATRA plus ellagic acid-treatment down-regulated protein levels of p22-phox (to ~70%) and gp91-phox (to ~60%). These results suggested that conversion of ellagic acid to urolithin A in gut may bring about reverse effects on the gp91-phox gene expression, resulting in opposite alterations in O2−-generating activity of intestinal macrophages. Ellagic acid down-regulated the ATRA-induced O2−-generating activity. Ellagic acid significantly suppressed transcription of gp91-phox gene. Urolithin An up-regulated the ATRA-induced O2−-generating activity. Urolithin A significantly enhanced transcription of gp91-phox gene. Production of urolithin A by gut bacteria may affect the intestinal macrophages.
Collapse
Affiliation(s)
- Hidehiko Kikuchi
- Department of Food and Nutrition, Shokei University Junior College, 2-6-78 Kuhonji, Chuo-ku, Kumamoto, 862-8678, Japan
| | - Kaori Harata
- Department of Food and Nutrition, Shokei University Junior College, 2-6-78 Kuhonji, Chuo-ku, Kumamoto, 862-8678, Japan
| | - Harishkumar Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Futoshi Kuribayashi
- Department of Biochemistry, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| |
Collapse
|
146
|
Hsieh PS, Chen CW, Kuo YW, Ho HH. Lactobacillus spp. reduces ethanol-induced liver oxidative stress and inflammation in a mouse model of alcoholic steatohepatitis. Exp Ther Med 2021; 21:188. [PMID: 33488797 PMCID: PMC7812587 DOI: 10.3892/etm.2021.9619] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Alcoholic steatohepatitis (ASH) is a complex multifactorial disease that can lead to liver fibrosis and cirrhosis if not treated promptly. Alcohol-induced oxidative stress and inflammation are the main factors that cause steatohepatitis and liver injury; however, probiotic bacteria in the gastrointestinal tract have been revealed to regulate immune responses and reduce oxidative stress, suggesting that functional probiotics could help to prevent ASH and liver injury. Despite numerous reports on the interactions between ASH and probiotics, the mechanisms underlying probiotic-mediated liver protection remain unknown. Therefore, the aim of the present study was to screen probiotics with high antioxidant capacity and investigate the ability of different probiotic combinations to reduce alcoholic liver disease (ALD) in a mouse model. It was identified that Lactobacillus plantarum (TSP05), Lactobacillus fermentum (TSF331) and Lactobacillus reuteri (TSR332) neutralized free radicals and displayed high antioxidant activity in vitro. In addition, these three functional probiotic strains protected mice from alcohol-induced liver injury in vivo. Mice treated with the probiotics demonstrated significantly lower alanine aminotransferase, aspartate aminotransferase and triglyceride levels, which were associated with the downregulation of the proinflammatory cytokines TNF-α and IL-6. Furthermore, probiotic treatment upregulated glutathione and glutathione peroxidase activity, which are bioindicators of oxidative stress in the liver. Collectively, the present results indicated that Lactobacillus strains TSP05, TSF331 and TSR332 reduced oxidative stress and inflammatory responses, thus preventing ASH development and liver injury.
Collapse
Affiliation(s)
| | | | - Yi-Wei Kuo
- Glac Biotech Co., Ltd., Tainan 74442, Taiwan, R.O.C
| | | |
Collapse
|
147
|
Inter-individual variability in gut microbial metabolism and vascular response to lignans and isoflavones: the StratiPol study. Proc Nutr Soc 2021. [DOI: 10.1017/s0029665121000677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
148
|
Liu C, Vervoort J, van den Elzen J, Beekmann K, Baccaro M, de Haan L, Rietjens IMCM. Interindividual Differences in Human In Vitro Intestinal Microbial Conversion of Green Tea (‐)‐Epigallocatechin‐3‐
O
‐Gallate and Consequences for Activation of Nrf2 Mediated Gene Expression. Mol Nutr Food Res 2020. [PMCID: PMC7900971 DOI: 10.1002/mnfr.202000934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Scope An in vitro faecal incubation model combined with reporter gene assay based testing strategy is developed to characterize interindividual differences in the gut microbial conversion of (‐)‐epigallocatechin‐3‐O‐gallate (EGCG) and its consequences for potential activation of Nrf2‐mediated gene expression. Method & Results Anaerobic human faecal incubations are performed to characterize the microbial metabolism of EGCG including interindividual variability. EGCG derived intestinal microbial metabolite patterns show substantial interindividual differences that are correlated to relative microbial abundances determined by 16S rRNA sequencing. Results obtained show the time‐dependent formation of gallic acid, pyrogallol, phenylpropane‐2‐ols, phenyl‐γ‐valerolactones, and 5‐(3′,5′‐dihydroxyphenyl)valeric acid as the major metabolites, with substantial interindividual differences. The activity of the formed metabolites in the activation of EpRE‐mediated gene expression is tested by EpRE‐LUX reporter gene assay. In contrast to EGCG, at low micromolar concentrations, especially gallic acid, pyrogallol, and catechol induce significant activity in the EpRE‐LUX assay. Conclusions Given these results and taking the level of formation into account, it is concluded that especially gallic acid and pyrogallol contribute to the EpRE‐mediated beneficial effects of EGCG. The interindividual differences in the formation may result in interindividual differences in the beneficial effects of EGCG and green tea consumption.
Collapse
Affiliation(s)
- Chen Liu
- Division of Toxicology Wageningen University and Research Wageningen 6708 WE The Netherlands
| | - Jacques Vervoort
- Laboratory of Biochemistry Wageningen University and Research Wageningen 6708 WE The Netherlands
| | - Joris van den Elzen
- Division of Toxicology Wageningen University and Research Wageningen 6708 WE The Netherlands
| | - Karsten Beekmann
- Division of Toxicology Wageningen University and Research Wageningen 6708 WE The Netherlands
| | - Marta Baccaro
- Division of Toxicology Wageningen University and Research Wageningen 6708 WE The Netherlands
| | - Laura de Haan
- Division of Toxicology Wageningen University and Research Wageningen 6708 WE The Netherlands
| | | |
Collapse
|
149
|
Liu C, Vervoort J, Beekmann K, Baccaro M, Kamelia L, Wesseling S, Rietjens IMCM. Interindividual Differences in Human Intestinal Microbial Conversion of (-)-Epicatechin to Bioactive Phenolic Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14168-14181. [PMID: 33216536 PMCID: PMC7716348 DOI: 10.1021/acs.jafc.0c05890] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
To quantify interindividual differences in the human intestinal microbial metabolism of (-)-epicatechin (EC), in vitro anaerobic incubations with fecal inocula from 24 healthy donors were conducted. EC-derived colonic microbial metabolites were qualitatively and quantitively analyzed by liquid chromatography triple quadrupole mass spectrometry (LC-TQ-MS) and liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS). Quantitative microbiota characterization was achieved by 16S rRNA analysis. The results obtained show 1-(3',4'-dihydroxyphenyl)-3-(2″,4″,6″-dihydroxyphenyl)-2-propanol (3,4-diHPP-2-ol) and 5-(3',4'-dihydroxyphenyl)-γ-valerolactone (3,4-diHPV) to be key intermediate microbial metabolites of EC and also revealed the substantial interindividual differences in both the rate of EC conversion and the time-dependent EC metabolite pattern. Furthermore, substantial differences in microbiota composition among different individuals were detected. Correlations between specific microbial phylotypes and formation of certain metabolites were established. It is concluded that interindividual differences in the intestinal microbial metabolism of EC may contribute to interindividual differences in potential health effects of EC-abundant dietary foods or drinks.
Collapse
Affiliation(s)
- Chen Liu
- Division
of Toxicology, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | - Jacques Vervoort
- Laboratory
of Biochemistry, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | - Karsten Beekmann
- Division
of Toxicology, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | - Marta Baccaro
- Division
of Toxicology, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | - Lenny Kamelia
- Division
of Toxicology, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | - Sebas Wesseling
- Division
of Toxicology, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | | |
Collapse
|
150
|
Cortés-Martín A, García-Villalba R, García-Mantrana I, Rodríguez-Varela A, Romo-Vaquero M, Collado MC, Tomás-Barberán FA, Espín JC, Selma MV. Urolithins in Human Breast Milk after Walnut Intake and Kinetics of Gordonibacter Colonization in Newly Born: The Role of Mothers' Urolithin Metabotypes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12606-12616. [PMID: 33135412 DOI: 10.1021/acs.jafc.0c04821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The maternal-infant transmission of several urolithins through breast milk and the gut colonization of infants by the urolithin-producing bacterium Gordonibacter during their first year of life were explored. Two trials (proof-of-concept study: n = 11; validation study: n = 30) were conducted, where breastfeeding mothers consumed walnuts as a dietary source of urolithin precursors. An analytical method was developed and validated to characterize the urolithin profile in breast milk. Total urolithins ranged from 8.5 to 176.9 nM, while they were not detected in breast milk of three mothers. The mothers' urolithin metabotypes governed the urolithin profile in breast milk, which might have biological significance on infants. A specific quantitative polymerase chain reaction method allowed monitoring the gut colonization of infants by Gordonibacter during their first year of life, and neither breastfeeding nor vaginal delivery was essential for this. The pattern of Gordonibacter establishment in babies was conditioned by their mother's urolithin metabotype, probably because of mother-baby close contact.
Collapse
Affiliation(s)
- Adrián Cortés-Martín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia 30100, Spain
| | - Rocío García-Villalba
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia 30100, Spain
| | - Izaskun García-Mantrana
- Group of Lactic Bacteria and Probiotics, Department of Biotechnology, IATA-CSIC, Valencia 46980, Spain
| | | | - María Romo-Vaquero
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia 30100, Spain
| | - María Carmen Collado
- Group of Lactic Bacteria and Probiotics, Department of Biotechnology, IATA-CSIC, Valencia 46980, Spain
| | - Francisco A Tomás-Barberán
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia 30100, Spain
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia 30100, Spain
| | - María Victoria Selma
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia 30100, Spain
| |
Collapse
|