101
|
Origel Marmolejo CA, Bachhav B, Patibandla SD, Yang AL, Segatori L. A gene signal amplifier platform for monitoring the unfolded protein response. Nat Chem Biol 2020; 16:520-528. [DOI: 10.1038/s41589-020-0497-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
|
102
|
Patiño Vargas MI, Mesa Cadavid M, Arenas Gómez CM, Diosa Arango J, Restrepo Múnera LM, Becerra Colorado NY. Polyplexes System to Enhance the LL-37 Antimicrobial Peptide Expression in Human Skin Cells. Tissue Eng Part A 2020; 26:400-410. [PMID: 31805827 DOI: 10.1089/ten.tea.2019.0196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inefficient autologous tissue recovery in diverse skin injuries increases the susceptibility of patients to infections caused by multiresistant microorganisms, resulting in a high mortality rate. Nonviral transfection is an attractive alternative for these patients, where genetically modified cells incorporated into skin substitutes could release additional antimicrobial agents into the native skin. In this work, we have modulated the conditions of using a nonviral system for transfection of primary human keratinocytes and fibroblasts, consisting of a polymer/plasmid DNA (pDNA) complex called polyplex and its effects on the expression of LL-37 antimicrobial peptide. Linear and branched polyethylenimine (PEI) polymers in different weight concentrations were varied for evaluating the formation and colloidal characteristics of the polyplexes. The PEI/pDNA polyplexes with 19 nitrogen/phosphate ratio are nanometric particles (400 and 250 nm with linear and branched PEI, respectively) exhibiting positive surface (+30 ± 2 mV). Both kinds of polyplexes allowed the expression of a reporter gene and increased the human cathelicidin antimicrobial peptide gene expression in transfected keratinocytes and fibroblasts; however, greater cytotoxicity was observed when polyplexes formed with branched PEI were used. Moreover, cell culture supernatants from transfected cells with linear PEI/pDNA polyplexes showed enhanced antimicrobial activity (decrease of bacterial growth in 95.8%) against a Staphylococcus aureus strain in vitro. The study of the PEI/pDNA polyplexes formation allowed us to develop an improved transfection strategy of skin cells, promoting the production of LL-37 antimicrobial peptide. In the future, this strategy could be used for the construction of skin substitutes to prevent, reduce, or eliminate bacterial infections. Impact statement The results of this study contribute to the understanding of the polyplexes system in the genetic modification of skin cells and its effects on the expression of the LL-37 antimicrobial peptide. In the future, three-dimensional skin substitutes built with these cells could be an efficient way to decrease bacterial growth and prevent the infections in skin wounds.
Collapse
Affiliation(s)
- Maria Isabel Patiño Vargas
- Tissue Engineering and Cell Therapy Group, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Mónica Mesa Cadavid
- Materials Science Group, Faculty of Exact and Natural Sciences, The University Research Headquarters (SIU), University of Antioquia, Medellín, Colombia
| | - Claudia Marcela Arenas Gómez
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, Massachusetts
| | - Johnatan Diosa Arango
- Materials Science Group, Faculty of Exact and Natural Sciences, The University Research Headquarters (SIU), University of Antioquia, Medellín, Colombia
| | - Luz Marina Restrepo Múnera
- Tissue Engineering and Cell Therapy Group, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | | |
Collapse
|
103
|
Generation of a ChAT Cre mouse line without the early onset hearing loss typical of the C57BL/6J strain. Hear Res 2020; 388:107896. [PMID: 31982642 DOI: 10.1016/j.heares.2020.107896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/16/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
Abstract
The development of knockin mice with Cre recombinase expressed under the control of the promoter for choline acetyltransferase (ChAT) has allowed experimental manipulation of cholinergic circuits. However, currently available ChATCre mouse lines are on the C57BL/6J strain background, which shows early onset age-related hearing loss attributed to the Cdh23753A mutation (a.k.a., the ahl mutation). To develop ChATCre mice without accelerated hearing loss, we backcrossed ChATIRES-Cre mice with CBA/CaJ mice that have normal hearing. We used genotyping to obtain mice homozygous for ChATIRES-Cre and the wild-type allele at the Cdh23 locus (ChATCre,Cdh23WT). In the new line, auditory brainstem response thresholds were ∼20 dB lower than those in 9 month old ChATIRES-Cre mice at all frequencies tested (4-31.5 kHz). These thresholds were stable throughout the period of testing (3-12 months of age). We then bred ChATCre,Cdh23WT animals with Ai14 reporter mice to confirm the expression pattern of ChATCre. In these mice, tdTomato-labeled cells were observed in all brainstem regions known to contain cholinergic cells. We then stained the tissue with a neuron-specific marker, NeuN, to determine whether Cre expression was limited to neurons. Across several brainstem nuclei (pontomesencephalic tegmentum, motor trigeminal and facial nuclei), 100% of the tdTomato-labeled cells were double-labeled with anti-NeuN (n = 1896 cells), indicating Cre-recombinase was limited to neurons. Almost all of these cells (1867/1896 = 98.5%) also stained with antibodies against ChAT, indicating that reporter label was expressed almost exclusively in cholinergic neurons. Finally, an average 88.7% of the ChAT+ cells in these nuclei were labeled with tdTomato, indicating that the Cre is expressed in a large proportion of the cholinergic cells in these nuclei. We conclude that the backcrossed ChATCre,Cdh23WT mouse line has normal hearing and expresses Cre recombinase almost exclusively in cholinergic neurons. This ChATCre,Cdh23WT mouse line may provide an opportunity to manipulate cholinergic circuits without the confound of accelerated hearing loss associated with the C57BL/6J background. Furthermore, comparison with lines that do show early hearing loss may provide insight into possible cholinergic roles in age-related hearing loss.
Collapse
|
104
|
Tan YQ, Yang Y, Zhang A, Fei CF, Gu LL, Sun SJ, Xu W, Wang L, Liu H, Wang YF. Three CNGC Family Members, CNGC5, CNGC6, and CNGC9, Are Required for Constitutive Growth of Arabidopsis Root Hairs as Ca 2+-Permeable Channels. PLANT COMMUNICATIONS 2020; 1:100001. [PMID: 33404548 PMCID: PMC7748020 DOI: 10.1016/j.xplc.2019.100001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/06/2019] [Accepted: 08/23/2019] [Indexed: 05/03/2023]
Abstract
The genetic identities of Ca2+ channels in root hair (RH) tips essential for constitutive RH growth have remained elusive for decades. Here, we report the identification and characterization of three cyclic nucleotide-gated channel (CNGC) family members, CNGC5, CNGC6, and CNGC9, as Ca2+ channels essential for constitutive RH growth in Arabidopsis. We found that the cngc5-1cngc6-2cngc9-1 triple mutant (designated shrh1) showed significantly shorter and branching RH phenotypes as compared with the wild type. The defective RH growth phenotype of shrh1 could be rescued by either the expression of CNGC5, CNGC6, or CNGC9 single gene or by the supply of high external Ca2+, but could not be rescued by external K+ supply. Cytosolic Ca2+ imaging and patch-clamp data in HEK293T cells showed that these three CNGCs all function as Ca2+-permeable channels. Cytosolic Ca2+ imaging in growing RHs further showed that the Ca2+ gradients and their oscillation in RH tips were dramatically attenuated in shrh1 compared with those in the wild type. Phenotypic analysis revealed that these three CNGCs are Ca2+ channels essential for constitutive RH growth, with different roles in RHs from the conditional player CNGC14. Moreover, we found that these three CNGCs are involved in auxin signaling in RHs. Taken together, our study identified CNGC5, CNGC6, and CNGC9 as three key Ca2+ channels essential for constitutive RH growth and auxin signaling in Arabidopsis.
Collapse
Affiliation(s)
- Yan-Qiu Tan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - An Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Cui-Fang Fei
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Li-Li Gu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Shu-Jing Sun
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lingling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Corresponding author
| |
Collapse
|
105
|
Suzuki T, Morimoto N, Akaike A, Osakada F. Multiplex Neural Circuit Tracing With G-Deleted Rabies Viral Vectors. Front Neural Circuits 2020; 13:77. [PMID: 31998081 PMCID: PMC6967742 DOI: 10.3389/fncir.2019.00077] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/14/2019] [Indexed: 12/26/2022] Open
Abstract
Neural circuits interconnect to organize large-scale networks that generate perception, cognition, memory, and behavior. Information in the nervous system is processed both through parallel, independent circuits and through intermixing circuits. Analyzing the interaction between circuits is particularly indispensable for elucidating how the brain functions. Monosynaptic circuit tracing with glycoprotein (G) gene-deleted rabies viral vectors (RVΔG) comprises a powerful approach for studying the structure and function of neural circuits. Pseudotyping of RVΔG with the foreign envelope EnvA permits expression of transgenes such as fluorescent proteins, genetically-encoded sensors, or optogenetic tools in cells expressing TVA, a cognate receptor for EnvA. Trans-complementation with rabies virus glycoproteins (RV-G) enables trans-synaptic labeling of input neurons directly connected to the starter neurons expressing both TVA and RV-G. However, it remains challenging to simultaneously map neuronal connections from multiple cell populations and their interactions between intermixing circuits solely with the EnvA/TVA-mediated RV tracing system in a single animal. To overcome this limitation, here, we multiplexed RVΔG circuit tracing by optimizing distinct viral envelopes (oEnvX) and their corresponding receptors (oTVX). Based on the EnvB/TVB and EnvE/DR46-TVB systems derived from the avian sarcoma leukosis virus (ASLV), we developed optimized TVB receptors with lower or higher affinity (oTVB-L or oTVB-H) and the chimeric envelope oEnvB, as well as an optimized TVE receptor with higher affinity (oTVE-H) and its chimeric envelope oEnvE. We demonstrated independence of RVΔG infection between the oEnvA/oTVA, oEnvB/oTVB, and oEnvE/oTVE systems and in vivo proof-of-concept for multiplex circuit tracing from two distinct classes of layer 5 neurons targeting either other cortical or subcortical areas. We also successfully labeled common input of the lateral geniculate nucleus to both cortico-cortical layer 5 neurons and inhibitory neurons of the mouse V1 with multiplex RVΔG tracing. These oEnvA/oTVA, oEnvB/oTVB, and oEnvE/oTVE systems allow for differential labeling of distinct circuits to uncover the mechanisms underlying parallel processing through independent circuits and integrated processing through interaction between circuits in the brain.
Collapse
Affiliation(s)
- Toshiaki Suzuki
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Nao Morimoto
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan.,Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Akinori Akaike
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Fumitaka Osakada
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan.,Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan.,PRESTO/CREST, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
106
|
Chiha W, Bartlett CA, Petratos S, Fitzgerald M, Harvey AR. Intravitreal application of AAV-BDNF or mutant AAV-CRMP2 protects retinal ganglion cells and stabilizes axons and myelin after partial optic nerve injury. Exp Neurol 2020; 326:113167. [PMID: 31904385 DOI: 10.1016/j.expneurol.2019.113167] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 12/29/2022]
Abstract
Secondary degeneration following an initial injury to the central nervous system (CNS) results in increased tissue loss and is associated with increasing functional impairment. Unilateral partial dorsal transection of the adult rat optic nerve (ON) has proved to be a useful experimental model in which to study factors that contribute to secondary degenerative events. Using this injury model, we here quantified the protective effects of intravitreally administered bi-cistronic adeno-associated viral (AAV2) vectors encoding either brain derived neurotrophic factor (BDNF) or a mutant, phospho-resistant, version of collapsin response mediator protein 2 (CRMP2T555A) on retinal ganglion cells (RGCs), their axons, and associated myelin. To test for potential synergistic interactions, some animals received combined injections of both vectors. Three months post-injury, all treatments maintained RGC numbers in central retina, but only AAV2-BDNF significantly protected ventrally located RGCs exclusively vulnerable to secondary degeneration. Behaviourally, treatments that involved AAV2-BDNF significantly restored the number of smooth-pursuit phases of optokinetic nystagmus. While all therapeutic regimens preserved axonal density and proportions of typical complexes, including heminodes and single nodes, BDNF treatments were generally more effective in maintaining the length of the node of Ranvier in myelin surrounding ventral ON axons after injury. Both AAV2-BDNF and AAV2-CRMP2T555A prevented injury-induced changes in G-ratio and overall myelin thickness, but only AAV2-BDNF administration protected against large-scale myelin decompaction in ventral ON. In summary, in a model of secondary CNS degeneration, both BDNF and CRMP2T555A vectors were neuroprotective, however different efficacies were observed for these overexpressed proteins in the retina and ON, suggesting disparate cellular and molecular targets driving responses for neural repair. The potential use of these vectors to treat other CNS injuries and pathologies is discussed.
Collapse
Affiliation(s)
- Wissam Chiha
- School of Biological Sciences, The University of Western Australia, WA 6009, Australia; Curtin Health Innovation Research Institute, Curtin University, Belmont, WA 6102, Australia
| | - Carole A Bartlett
- School of Biological Sciences, The University of Western Australia, WA 6009, Australia
| | - Steven Petratos
- Department of Neuroscience, Monash University, VIC 3004, Australia
| | - Melinda Fitzgerald
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia; Curtin Health Innovation Research Institute, Curtin University, Belmont, WA 6102, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, WA 6009, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia.
| |
Collapse
|
107
|
Elmer BM, Swanson KA, Bangari DS, Piepenhagen PA, Roberts E, Taksir T, Guo L, Obinu MC, Barneoud P, Ryan S, Zhang B, Pradier L, Yang ZY, Nabel GJ. Gene delivery of a modified antibody to Aβ reduces progression of murine Alzheimer's disease. PLoS One 2019; 14:e0226245. [PMID: 31887144 PMCID: PMC6936806 DOI: 10.1371/journal.pone.0226245] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/24/2019] [Indexed: 12/30/2022] Open
Abstract
Antibody therapies for Alzheimer’s Disease (AD) hold promise but have been limited by the inability of these proteins to migrate efficiently across the blood brain barrier (BBB). Central nervous system (CNS) gene transfer by vectors like adeno-associated virus (AAV) overcome this barrier by allowing the bodies’ own cells to produce the therapeutic protein, but previous studies using this method to target amyloid-β have shown success only with truncated single chain antibodies (Abs) lacking an Fc domain. The Fc region mediates effector function and enhances antigen clearance from the brain by neonatal Fc receptor (FcRn)-mediated reverse transcytosis and is therefore desirable to include for such treatments. Here, we show that single chain Abs fused to an Fc domain retaining FcRn binding, but lacking Fc gamma receptor (FcγR) binding, termed a silent scFv-IgG, can be expressed and released into the CNS following gene transfer with AAV. While expression of canonical IgG in the brain led to signs of neurotoxicity, this modified Ab was efficiently secreted from neuronal cells and retained target specificity. Steady state levels in the brain exceeded peak levels obtained by intravenous injection of IgG. AAV-mediated expression of this scFv-IgG reduced cortical and hippocampal plaque load in a transgenic mouse model of progressive β-amyloid plaque accumulation. These findings suggest that CNS gene delivery of a silent anti-Aβ scFv-IgG was well-tolerated, durably expressed and functional in a relevant disease model, demonstrating the potential of this modality for the treatment of Alzheimer’s disease.
Collapse
Affiliation(s)
- Bradford M. Elmer
- Breakthrough Lab, Sanofi, Cambridge, Massachusetts, United States of America
| | - Kurt A. Swanson
- Breakthrough Lab, Sanofi, Cambridge, Massachusetts, United States of America
| | - Dinesh S. Bangari
- Global Discovery Pathology, Sanofi, Framingham, Massachusetts, United States of America
| | - Peter A. Piepenhagen
- Global Discovery Pathology, Sanofi, Framingham, Massachusetts, United States of America
| | - Errin Roberts
- Global Discovery Pathology, Sanofi, Framingham, Massachusetts, United States of America
| | - Tatyana Taksir
- Global Discovery Pathology, Sanofi, Framingham, Massachusetts, United States of America
| | - Lei Guo
- Translational Sciences, Sanofi, Cambridge, Massachusetts, United States of America
| | | | | | - Susan Ryan
- Global Discovery Pathology, Sanofi, Framingham, Massachusetts, United States of America
| | - Bailin Zhang
- Translational Sciences, Sanofi, Cambridge, Massachusetts, United States of America
| | | | - Zhi-Yong Yang
- Breakthrough Lab, Sanofi, Cambridge, Massachusetts, United States of America
| | - Gary J. Nabel
- Breakthrough Lab, Sanofi, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
108
|
Meador K, Wysoczynski CL, Norris AJ, Aoto J, Bruchas MR, Tucker CL. Achieving tight control of a photoactivatable Cre recombinase gene switch: new design strategies and functional characterization in mammalian cells and rodent. Nucleic Acids Res 2019; 47:e97. [PMID: 31287871 PMCID: PMC6753482 DOI: 10.1093/nar/gkz585] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/05/2019] [Accepted: 06/24/2019] [Indexed: 01/31/2023] Open
Abstract
A common mechanism for inducibly controlling protein function relies on reconstitution of split protein fragments using chemical or light-induced dimerization domains. A protein is split into fragments that are inactive on their own, but can be reconstituted after dimerization. As many split proteins retain affinity for their complementary half, maintaining low activity in the absence of an inducer remains a challenge. Here, we systematically explore methods to achieve tight regulation of inducible proteins that are effective despite variation in protein expression level. We characterize a previously developed split Cre recombinase (PA-Cre2.0) that is reconstituted upon light-induced CRY2-CIB1 dimerization, in cultured cells and in vivo in rodent brain. In culture, PA-Cre2.0 shows low background and high induced activity over a wide range of expression levels, while in vivo the system also shows low background and sensitive response to brief light inputs. The consistent activity stems from fragment compartmentalization that shifts localization toward the cytosol. Extending this work, we exploit nuclear compartmentalization to generate light-and-chemical regulated versions of Cre recombinase. This work demonstrates in vivo functionality of PA-Cre2.0, describes new approaches to achieve tight inducible control of Cre DNA recombinase, and provides general guidelines for further engineering and application of split protein fragments.
Collapse
Affiliation(s)
- Kyle Meador
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Christina L Wysoczynski
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Aaron J Norris
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jason Aoto
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Chandra L Tucker
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
109
|
Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 2019; 17:147-167. [PMID: 31848460 PMCID: PMC7223338 DOI: 10.1038/s41571-019-0297-y] [Citation(s) in RCA: 918] [Impact Index Per Article: 153.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
T cells genetically engineered to express chimeric antigen receptors (CARs) have proven — and impressive — therapeutic activity in patients with certain subtypes of B cell leukaemia or lymphoma, with promising efficacy also demonstrated in patients with multiple myeloma. Nevertheless, various barriers restrict the efficacy and/or prevent the widespread use of CAR T cell therapies in these patients as well as in those with other cancers, particularly solid tumours. Key challenges relating to CAR T cells include severe toxicities, restricted trafficking to, infiltration into and activation within tumours, suboptimal persistence in vivo, antigen escape and heterogeneity, and manufacturing issues. The evolution of CAR designs beyond the conventional structures will be necessary to address these limitations and to expand the use of CAR T cells to a wider range of malignancies. Investigators are addressing the current obstacles with a wide range of engineering strategies in order to improve the safety, efficacy and applicability of this therapeutic modality. In this Review, we discuss the innovative designs of novel CAR T cell products that are being developed to increase and expand the clinical benefits of these treatments in patients with diverse cancers. Chimeric antigen receptor (CAR) T cell therapy, the first approved therapeutic approach with a genetic engineering component, holds substantial promise in the treatment of a range of cancers but is nevertheless limited by various challenges, including toxicities, intrinsic and acquired resistance mechanisms, and manufacturing issues. In this Review, the authors describe the innovative approaches to the engineering of CAR T cell products that are providing solutions to these challenges and therefore have the potential to considerably improve the safety and effectiveness of treatment. Chimeric antigen receptor (CAR) T cells have induced remarkable responses in patients with certain haematological malignancies, yet various barriers restrict the efficacy and/or prevent the widespread use of this treatment. Investigators are addressing these challenges with engineering strategies designed to improve the safety, efficacy and applicability of CAR T cell therapy. CARs have modular components, and therefore the optimal molecular design of the CAR can be achieved through many variations of the constituent protein domains. Toxicities currently associated with CAR T cell therapy can be mitigated using engineering strategies to make CAR T cells safer and that potentially broaden the range of tumour-associated antigens that can be targeted by overcoming on-target, off-tumour toxicities. CAR T cell efficacy can be enhanced by using engineering strategies to address the various challenges relating to the unique biology of diverse haematological and solid malignancies. Strategies to address the manufacturing challenges can lead to an improved CAR T cell product for all patients.
Collapse
|
110
|
|
111
|
Gupta K, Parasnis M, Jain R, Dandekar P. Vector-related stratagems for enhanced monoclonal antibody production in mammalian cells. Biotechnol Adv 2019; 37:107415. [DOI: 10.1016/j.biotechadv.2019.107415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
|
112
|
Production and Application of Multicistronic Constructs for Various Human Disease Therapies. Pharmaceutics 2019; 11:pharmaceutics11110580. [PMID: 31698727 PMCID: PMC6920891 DOI: 10.3390/pharmaceutics11110580] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 01/09/2023] Open
Abstract
The development of multicistronic vectors has opened up new opportunities to address the fundamental issues of molecular and cellular biology related to the need for the simultaneous delivery and joint expression of several genes. To date, the examples of the successful use of multicistronic vectors have been described for the development of new methods of treatment of various human diseases, including cardiovascular, oncological, metabolic, autoimmune, and neurodegenerative disorders. The safety and effectiveness of the joint delivery of therapeutic genes in multicistronic vectors based on the internal ribosome entry site (IRES) and self-cleaving 2A peptides have been shown in both in vitro and in vivo experiments as well as in clinical trials. Co-expression of several genes in one vector has also been used to create animal models of various inherited diseases which are caused by mutations in several genes. Multicistronic vectors provide expression of all mutant genes, which allows the most complete mimicking disease pathogenesis. This review comprehensively discusses multicistronic vectors based on IRES nucleotide sequence and self-cleaving 2A peptides, including its features and possible application for the treatment and modeling of various human diseases.
Collapse
|
113
|
Zheng Q, Zhang X, Yang H, Xie J, Xie Y, Chen J, Yu C, Zhong C. Internal Ribosome Entry Site Dramatically Reduces Transgene Expression in Hematopoietic Cells in a Position-Dependent Manner. Viruses 2019; 11:v11100920. [PMID: 31597367 PMCID: PMC6833044 DOI: 10.3390/v11100920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/21/2019] [Accepted: 10/06/2019] [Indexed: 12/20/2022] Open
Abstract
Bicistronic transgene expression mediated by internal ribosome entry site (IRES) elements has been widely used. It co-expresses heterologous transgene products from a message RNA driven by a single promoter. Hematologic gene delivery is a promising treatment for both inherited and acquired diseases. A combined strategy was recently documented for potential genome editing in hematopoietic cells. A transduction efficiency exceeding ~90% can be achieved by capsid-optimized recombinant adeno-associated virus serotype 6 (rAAV6) vectors. In this study, to deliver an encephalomyocarditis virus (EMCV) IRES-containing rAAV6 genome into hematopoietic cells, we observed that EMCV IRES almost completely shut down the transgene expression during the process of mRNA–protein transition. In addition, position-dependent behavior was observed, in which only the EMCV IRES element located between a promoter and the transgenes had an inhibitory effect. Although further studies are warranted to evaluate the involvement of cellular translation machinery, our results propose the use of specific IRES elements or an alternative strategy, such as the 2A system, to achieve bicistronic transgene expression in hematopoietic cells.
Collapse
Affiliation(s)
- Qingyun Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Xueyan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | - Hua Yang
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA.
- Department of Radiology, Central South University, Changsha, Hunan 410013, China.
| | - Jinyan Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Yilin Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Jinzhong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
- Yeda Research Institute of Gene and Cell Therapy, Taizhou, Zhejiang 318000, China.
| | - Chenghui Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA.
- Yeda Research Institute of Gene and Cell Therapy, Taizhou, Zhejiang 318000, China.
| | - Chen Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
114
|
Sii-Felice K, Castillo Padilla J, Relouzat F, Cheuzeville J, Tantawet S, Maouche L, Le Grand R, Leboulch P, Payen E. Enhanced Transduction of Macaca fascicularis Hematopoietic Cells with Chimeric Lentiviral Vectors. Hum Gene Ther 2019; 30:1306-1323. [DOI: 10.1089/hum.2018.179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Karine Sii-Felice
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Javier Castillo Padilla
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Francis Relouzat
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Joëlle Cheuzeville
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- bluebird bio France, Fontenay aux Roses, France
| | - Siriporn Tantawet
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Leïla Maouche
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- INSERM, Paris, France
| | - Roger Le Grand
- Immunology of Viral Infections and Autoimmune Diseases, UMR 1184, IDMIT Department, Institute of Biology François Jacob, INSERM, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
| | - Philippe Leboulch
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- Ramathibodi Hospital and Mahidol University, Bangkok, Thailand
- Harvard Medical School and Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston Massachusetts
| | - Emmanuel Payen
- Division of Innovative Therapies, UMR E007, Institute of Biology François Jacob, CEA, Paris-Sud University, Paris-Saclay University, Fontenay aux Roses, France
- INSERM, Paris, France
| |
Collapse
|
115
|
Schwarz Y, Oleinikov K, Schindeldecker B, Wyatt A, Weißgerber P, Flockerzi V, Boehm U, Freichel M, Bruns D. TRPC channels regulate Ca2+-signaling and short-term plasticity of fast glutamatergic synapses. PLoS Biol 2019; 17:e3000445. [PMID: 31536487 PMCID: PMC6773422 DOI: 10.1371/journal.pbio.3000445] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 10/01/2019] [Accepted: 08/29/2019] [Indexed: 11/18/2022] Open
Abstract
Transient receptor potential (TRP) proteins form Ca2+-permeable, nonselective cation channels, but their role in neuronal Ca2+ homeostasis is elusive. In the present paper, we show that TRPC channels potently regulate synaptic plasticity by changing the presynaptic Ca2+-homeostasis of hippocampal neurons. Specifically, loss of TRPC1/C4/C5 channels decreases basal-evoked secretion, reduces the pool size of readily releasable vesicles, and accelerates synaptic depression during high-frequency stimulation (HFS). In contrast, primary TRPC5 channel-expressing neurons, identified by a novel TRPC5–τ-green fluorescent protein (τGFP) knockin mouse line, show strong short-term enhancement (STE) of synaptic signaling during HFS, indicating a key role of TRPC5 in short-term plasticity. Lentiviral expression of either TRPC1 or TRPC5 turns classic synaptic depression of wild-type neurons into STE, demonstrating that TRPCs are instrumental in regulating synaptic plasticity. Presynaptic Ca2+ imaging shows that TRPC activity strongly boosts synaptic Ca2+ dynamics, showing that TRPC channels provide an additional presynaptic Ca2+ entry pathway, which efficiently regulates synaptic strength and plasticity. Transient receptor potential (TRP) proteins can form non-selective cation channels, but their role in synaptic transmission is poorly understood. This study shows that calcium-permeable TRPC channels provide an additional calcium entry pathway at presynaptic sites and are efficient regulators of synaptic strength and plasticity.
Collapse
Affiliation(s)
- Yvonne Schwarz
- Institute for Physiology, Saarland University, CIPMM, Homburg/Saar, Germany
| | | | | | - Amanda Wyatt
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, Homburg/Saar, Germany
| | - Petra Weißgerber
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, Homburg/Saar, Germany
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, Homburg/Saar, Germany
| | - Ulrich Boehm
- Experimental and Clinical Pharmacology and Toxicology, PZMS, Saarland University, Homburg/Saar, Germany
| | - Marc Freichel
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Dieter Bruns
- Institute for Physiology, Saarland University, CIPMM, Homburg/Saar, Germany
| |
Collapse
|
116
|
Wu KZL, Jones RA, Tachie-Menson T, Macartney TJ, Wood NT, Varghese J, Gourlay R, Soares RF, Smith JC, Sapkota GP. Pathogenic FAM83G palmoplantar keratoderma mutations inhibit the PAWS1:CK1α association and attenuate Wnt signalling. Wellcome Open Res 2019. [PMID: 31656861 DOI: 10.12688/wellcomeopenres.15403.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background: Two recessive mutations in the FAM83G gene, causing A34E and R52P amino acid substitutions in the DUF1669 domain of the PAWS1 protein, are associated with palmoplantar keratoderma (PPK) in humans and dogs respectively. We have previously reported that PAWS1 associates with the Ser/Thr protein kinase CK1α through the DUF1669 domain to mediate canonical Wnt signalling. Methods: Co-immunoprecipitation was used to investigate possible changes to PAWS1 interactors caused by the mutations. We also compared the stability of wild-type and mutant PAWS1 in cycloheximide-treated cells. Effects on Wnt signalling were determined using the TOPflash luciferase reporter assay in U2OS cells expressing PAWS1 mutant proteins. The ability of PAWS1 to induce axis duplication in Xenopus embryos was also tested. Finally, we knocked-in the A34E mutation at the native gene locus and measured Wnt-induced AXIN2 gene expression by RT-qPCR. Results: We show that these PAWS1 A34E and PAWS1 R52P mutants fail to interact with CK1α but, like the wild-type protein, do interact with CD2AP and SMAD1. Like cells carrying a PAWS1 F296A mutation, which also abolishes CK1α binding, cells carrying the A34E and R52P mutants respond poorly to Wnt signalling to an extent resembling that observed in FAM83G gene knockout cells. Consistent with this observation, these mutants, in contrast to the wild-type protein, fail to induce axis duplication in Xenopus embryos. We also found that the A34E and R52P mutant proteins are less abundant than the native protein and appear to be less stable, both when overexpressed in FAM83G-knockout cells and when knocked-in at the native FAM83G locus. Ala 34 of PAWS1 is conserved in all FAM83 proteins and mutating the equivalent residue in FAM83H (A31E) also abolishes interaction with CK1 isoforms. Conclusions: We propose that mutations in PAWS1 cause PPK pathogenesis through disruption of the CK1α interaction and attenuation of Wnt signalling.
Collapse
Affiliation(s)
- Kevin Z L Wu
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | | | - Theresa Tachie-Menson
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Thomas J Macartney
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Nicola T Wood
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Joby Varghese
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Robert Gourlay
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Renata F Soares
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | | | - Gopal P Sapkota
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| |
Collapse
|
117
|
Kaczmarczyk L, Bansal V, Rajput A, Rahman RU, Krzyżak W, Degen J, Poll S, Fuhrmann M, Bonn S, Jackson WS. Tagger-A Swiss army knife for multiomics to dissect cell type-specific mechanisms of gene expression in mice. PLoS Biol 2019; 17:e3000374. [PMID: 31393866 PMCID: PMC6701817 DOI: 10.1371/journal.pbio.3000374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/20/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022] Open
Abstract
A deep understanding of how regulation of the multiple levels of gene expression in mammalian tissues give rise to complex phenotypes has been impeded by cellular diversity. A handful of techniques were developed to tag-select nucleic acids of interest in specific cell types, thereby enabling their capture. We expanded this strategy by developing the Tagger knock-in mouse line bearing a quad-cistronic transgene combining enrichment tools for nuclei, nascent RNA, translating mRNA, and mature microRNA (miRNA). We demonstrate that Tagger can capture the desired nucleic acids, enabling multiple omics approaches to be applied to specific cell types in vivo using a single transgenic mouse line. This Methods and Resources paper describes Tagger, a knock-in mouse line bearing a quad-cistronic transgene that enables the capture of translating mRNAs, mature miRNAs, pulse-labeled total RNA, and the nucleus, all from specific cells of complex tissues.
Collapse
Affiliation(s)
- Lech Kaczmarczyk
- Wallenberg Center for Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Vikas Bansal
- Institute for Medical Systems Biology, Center for Molecular Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ashish Rajput
- Institute for Medical Systems Biology, Center for Molecular Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Raza-ur Rahman
- Institute for Medical Systems Biology, Center for Molecular Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wiesław Krzyżak
- Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Joachim Degen
- Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Stefanie Poll
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | | | - Stefan Bonn
- Institute for Medical Systems Biology, Center for Molecular Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Neurodegenerative Diseases, Tübingen, Germany
- * E-mail: (SB); (WSJ)
| | - Walker Scot Jackson
- Wallenberg Center for Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- German Center for Neurodegenerative Diseases, Bonn, Germany
- * E-mail: (SB); (WSJ)
| |
Collapse
|
118
|
Yoshinaga N, Cho E, Koji K, Mochida Y, Naito M, Osada K, Kataoka K, Cabral H, Uchida S. Bundling mRNA Strands to Prepare Nano-Assemblies with Enhanced Stability Towards RNase for In Vivo Delivery. Angew Chem Int Ed Engl 2019; 58:11360-11363. [PMID: 31187576 DOI: 10.1002/anie.201905203] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/28/2019] [Indexed: 11/11/2022]
Abstract
Ribonuclease (RNase)-mediated degradation of messenger RNA (mRNA) poses a huge obstruction to in vivo mRNA delivery. Herein, we propose a novel strategy to protect mRNA by structuring mRNA to prevent RNase attack through steric hinderance. Bundling of mRNA strands through hybridization of RNA oligonucleotide linkers allowed the preparation of mRNA nano-assemblies (R-NAs) comprised of 7.7 mRNA strands on average, mostly below 100 nm in diameter. R-NA formation boosted RNase stability by around 100-fold compared to naïve mRNA and preserved translational activity, allowing protein production. A mechanistic analysis suggests that an endogenous mRNA unwinding mechanism triggered by 5'-cap-dependent translation may induce selective R-NA dissociation intracellularly, leading to smooth translation. R-NAs showed efficient mRNA transfection in mouse brain, demonstrating the feasibility for in vivo administration.
Collapse
Affiliation(s)
- Naoto Yoshinaga
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Eol Cho
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kyoko Koji
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuki Mochida
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Mitsuru Naito
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kensuke Osada
- National Institute of Radiological Science, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.,Policy Alternatives Research Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Horacio Cabral
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Satoshi Uchida
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| |
Collapse
|
119
|
Yoshinaga N, Cho E, Koji K, Mochida Y, Naito M, Osada K, Kataoka K, Cabral H, Uchida S. Bundling mRNA Strands to Prepare Nano‐Assemblies with Enhanced Stability Towards RNase for In Vivo Delivery. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Naoto Yoshinaga
- Graduate School of EngineeringThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Eol Cho
- Graduate School of EngineeringThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kyoko Koji
- Graduate School of EngineeringThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Yuki Mochida
- Innovation Center of NanoMedicine (iCONM)Kawasaki Institute of Industrial Promotion 3-25-14 Tonomachi, Kawasaki-ku Kawasaki 210-0821 Japan
| | - Mitsuru Naito
- Graduate School of MedicineThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Kensuke Osada
- National Institute of Radiological Science 4-9-1 Anagawa, Inage-ku Chiba-shi Chiba 263-8555 Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine (iCONM)Kawasaki Institute of Industrial Promotion 3-25-14 Tonomachi, Kawasaki-ku Kawasaki 210-0821 Japan
- Policy Alternatives Research InstituteThe University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Horacio Cabral
- Graduate School of EngineeringThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Satoshi Uchida
- Graduate School of EngineeringThe University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Innovation Center of NanoMedicine (iCONM)Kawasaki Institute of Industrial Promotion 3-25-14 Tonomachi, Kawasaki-ku Kawasaki 210-0821 Japan
| |
Collapse
|
120
|
Shibuta MK, Matsuoka M, Matsunaga S. 2A Peptides Contribute to the Co-Expression of Proteins for Imaging and Genome Editing. CYTOLOGIA 2019. [DOI: 10.1508/cytologia.84.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mio K. Shibuta
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science
| | - Megumi Matsuoka
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science
| |
Collapse
|
121
|
Albagli O, Maugein A, Huijbregts L, Bredel D, Carlier G, Martin P, Scharfmann R. New α- and SIN γ-retrovectors for safe transduction and specific transgene expression in pancreatic β cell lines. BMC Biotechnol 2019; 19:35. [PMID: 31208395 PMCID: PMC6580483 DOI: 10.1186/s12896-019-0531-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Viral vectors are invaluable tools to transfer genes and/or regulatory sequences into differentiated cells such as pancreatic cells. To date, several kinds of viral vectors have been used to transduce different pancreatic cell types, including insulin-producing β cells. However, few studies have used vectors derived from « simple » retroviruses, such as avian α- or mouse γ-retroviruses, despite their high experimental convenience. Moreover, such vectors were never designed to specifically target transgene expression into β cells. RESULTS We here describe two novel α- or SIN (Self-Inactivating) γ-retrovectors containing the RIP (Rat Insulin Promoter) as internal promoter. These two retrovectors are easily produced in standard BSL2 conditions, rapidly concentrated if needed, and harbor a large multiple cloning site. For the SIN γ-retrovector, either the VSV-G (pantropic) or the retroviral ecotropic (rodent specific) envelope was used. For the α-retrovector, we used the A type envelope, as its receptor, termed TVA, is only naturally present in avian cells and can efficiently be provided to mammalian β cells through either exogenous expression upon cDNA transfer or gesicle-mediated delivery of the protein. As expected, the transgenes cloned into the two RIP-containing retrovectors displayed a strong preferential expression in β over non-β cells compared to transgenes cloned in their non-RIP (CMV- or LTR-) regulated counterparts. We further show that RIP activity of both retrovectors mirrored fluctuations affecting endogenous INSULIN gene expression in human β cells. Finally, both α- and SIN γ-retrovectors were extremely poorly mobilized by the BXV1 xenotropic retrovirus, a common invader of human cells grown in immunodeficient mice, and, most notably, of human β cell lines. CONCLUSION Our novel α- and SIN γ-retrovectors are safe and convenient tools to stably and specifically express transgene(s) in mammalian β cells. Moreover, they both reproduce some regulatory patterns affecting INSULIN gene expression. Thus, they provide a helpful tool to both study the genetic control of β cell function and monitor changes in their differentiation status.
Collapse
Affiliation(s)
- Olivier Albagli
- INSERM U1016, CNRS UMR8104, Institut Cochin, Université Paris Descartes, 123 Boulevard de Port-Royal, 75014, Paris, France.
| | - Alicia Maugein
- INSERM U1016, CNRS UMR8104, Institut Cochin, Université Paris Descartes, 123 Boulevard de Port-Royal, 75014, Paris, France
| | - Lukas Huijbregts
- INSERM U1016, CNRS UMR8104, Institut Cochin, Université Paris Descartes, 123 Boulevard de Port-Royal, 75014, Paris, France
| | - Delphine Bredel
- INSERM U1016, CNRS UMR8104, Institut Cochin, Université Paris Descartes, 123 Boulevard de Port-Royal, 75014, Paris, France.,Present Address: Laboratoire de Recherche Translationnelle en Immunothérapie, Institut Gustave Roussy, 114 Rue Edouard Vaillant, 94800, Villejuif, France
| | - Géraldine Carlier
- INSERM U1016, CNRS UMR8104, Institut Cochin, Université Paris Descartes, 123 Boulevard de Port-Royal, 75014, Paris, France
| | - Patrick Martin
- Université Côte d'Azur, CNRS UMR7277 INSERM U1099, iBV (Institut de Biologie Valrose), Université Nice Sophia Antipolis, Bâtiment Sciences Naturelles; UFR Sciences, Parc Valrose, 28, avenue Valrose, 06108, Nice Cedex 2, France
| | - Raphaël Scharfmann
- INSERM U1016, CNRS UMR8104, Institut Cochin, Université Paris Descartes, 123 Boulevard de Port-Royal, 75014, Paris, France
| |
Collapse
|
122
|
Lee S, Kim JA, Kim HD, Chung S, Kim K, Choe HK. Real-Time Temporal Dynamics of Bicistronic Expression Mediated by Internal Ribosome Entry Site and 2A Cleaving Sequence. Mol Cells 2019; 42:418-425. [PMID: 31085809 PMCID: PMC6537651 DOI: 10.14348/molcells.2019.2427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/30/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022] Open
Abstract
Multicistronic elements, such as the internal ribosome entry site (IRES) and 2A-like cleavage sequence, serve crucial roles in the eukaryotic ectopic expression of exogenous genes. For utilization of multicistronic elements, the cleavage efficiency and order of elements in multicistronic vectors have been investigated; however, the dynamics of multicistronic element-mediated expression remains unclear. Here, we investigated the dynamics of encephalomyocarditis virus (EMCV) IRES- and porcine teschovirus-1 2A (p2A)-mediated expression. By utilizing real-time fluorescent imaging at a minute-level resolution, we monitored the expression of fluorescent reporters bridged by either EMCV IRES or p2A in two independent cultured cell lines, HEK293 and Neuro2a. We observed significant correlations for the two fluorescent reporters in both multicistronic elements, with a higher correlation coefficient for p2A in HEK293 but similar coefficients for IRES-mediated expression and p2A-mediated expression in Neuro2a. We further analyzed the causal relationship of multicistronic elements by convergent cross mapping (CCM). CCM revealed that in all four conditions examined, the expression of the preceding gene causally affected the dynamics of the subsequent gene. As with the cross correlation, the predictive skill of p2A was higher than that of IRES in HEK293, while the predictive skills of the two multicistronic elements were indistinguishable in Neuro2a. To summarize, we report a significant temporal correlation in both EMCV IRES- and p2A-mediated expression based on the simple bicistronic vector and real-time fluorescent monitoring. The current system also provides a valuable platform to examine the dynamic aspects of expression mediated by diverse multicistronic elements under various physiological conditions.
Collapse
Affiliation(s)
- Soomin Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988,
Korea
| | - Jeong-Ah Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988,
Korea
- Department of Biological Sciences, Seoul National University, Seoul 08826,
Korea
| | - Hee-Dae Kim
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004,
USA
| | - Sooyoung Chung
- Department of Brain and Cognitive Sciences, Scranton College, Ehwa Womans University, Seoul 03760,
Korea
| | - Kyungjin Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988,
Korea
| | - Han Kyoung Choe
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988,
Korea
- Korea Brain Research Institute (KBRI), Daegu 41062,
Korea
| |
Collapse
|
123
|
Brown RSE, Khant Aung Z, Phillipps HR, Barad Z, Lein HJ, Boehm U, Szawka RE, Grattan DR. Acute Suppression of LH Secretion by Prolactin in Female Mice Is Mediated by Kisspeptin Neurons in the Arcuate Nucleus. Endocrinology 2019; 160:1323-1332. [PMID: 30901026 DOI: 10.1210/en.2019-00038] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/17/2019] [Indexed: 12/21/2022]
Abstract
Hyperprolactinemia causes infertility, but the specific mechanism is unknown. It is clear that elevated prolactin levels suppress pulsatile release of GnRH from the hypothalamus, with a consequent reduction in pulsatile LH secretion from the pituitary. Only a few GnRH neurons express prolactin receptors (Prlrs), however, and thus prolactin must act indirectly in the underlying neural circuitry. Here, we have tested the hypothesis that prolactin-induced inhibition of LH secretion is mediated by kisspeptin neurons, which provide major excitatory inputs to GnRH neurons. To evaluate pulsatile LH secretion, we collected serial blood samples from diestrous mice and measured LH levels by ultrasensitive ELISA. Acute prolactin administration decreased LH pulses in wild-type mice. Kisspeptin neurons in the arcuate nucleus and in the rostral periventricular area of the third ventricle (RP3V) acutely responded to prolactin, but prolactin-induced signaling in kisspeptin neurons was up to fourfold higher in the arcuate nucleus when compared with the RP3V. Consistent with this, conditional knockout of Prlr specifically in arcuate nucleus kisspeptin neurons prevented prolactin-induced suppression of LH secretion. Our data establish that during hyperprolactinemia, suppression of pulsatile LH secretion is mediated by Prlr on arcuate kisspeptin neurons.
Collapse
Affiliation(s)
- Rosemary S E Brown
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Zin Khant Aung
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Hollian R Phillipps
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Zsuzsanna Barad
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Hsin-Jui Lein
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Raphael E Szawka
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
124
|
Van der Weken H, Cox E, Devriendt B. Rapid production of a chimeric antibody-antigen fusion protein based on 2A-peptide cleavage and green fluorescent protein expression in CHO cells. MAbs 2019; 11:559-568. [PMID: 30694096 PMCID: PMC6512901 DOI: 10.1080/19420862.2019.1574531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/04/2019] [Accepted: 01/21/2019] [Indexed: 01/22/2023] Open
Abstract
To enable large-scale antibody production, the creation of a stable, high producer cell line is essential. This process often takes longer than 6 months using standard limited dilution techniques and is very labor intensive. The use of a tri-cistronic vector expressing green fluorescent protein (GFP) and both antibody chains, separated by a GT2A peptide sequence, allows expression of all proteins under a single promotor in equimolar ratios. By combining the advantages of 2A peptide cleavage and single cell sorting, a chimeric antibody-antigen fusion protein that contained the variable domains of mouse IgG with a porcine IgA constant domain fused to the FedF antigen could be produced in CHO-K1 cells. After transfection, a strong correlation was found between antibody production and GFP expression (r = 0.69) using image analysis of formed monolayer patches. This enables the rapid selection of GFP-positive clones using automated image analysis for the selection of high producer clones. This vector design allowed the rapid selection of high producer clones within a time-frame of 4 weeks after transfection. The highest producing clone had a specific antibody productivity of 2.32 pg/cell/day. Concentrations of 34 mg/L were obtained using shake-flask batch culture. The produced recombinant antibody showed stable expression, binding and minimal degradation. In the future, this antibody will be assessed for its effectiveness as an oral vaccine antigen.
Collapse
Affiliation(s)
- Hans Van der Weken
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ughent, Ghent, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ughent, Ghent, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ughent, Ghent, Belgium
| |
Collapse
|
125
|
Long MJC, Liu X, Aye Y. Chemical Biology Gateways to Mapping Location, Association, and Pathway Responsivity. Front Chem 2019; 7:125. [PMID: 30949469 PMCID: PMC6437114 DOI: 10.3389/fchem.2019.00125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/18/2019] [Indexed: 12/14/2022] Open
Abstract
Here we discuss, how by applying chemical concepts to biological problems, methods have been developed to map spatiotemporal regulation of proteins and small-molecule modulation of proteome signaling responses. We outline why chemical-biology platforms are ideal for such purposes. We further discuss strengths and weaknesses of chemical-biology protocols, contrasting them against classical genetic and biochemical approaches. We make these evaluations based on three parameters: occupancy; functional information; and spatial restriction. We demonstrate how the specific choice of chemical reagent and experimental set-up unite to resolve biological problems. Potential improvements/extensions as well as specific controls that in our opinion are often overlooked or employed incorrectly are also considered. Finally, we discuss some of the latest emerging methods to illuminate how chemical-biology innovations provide a gateway toward information hitherto inaccessible by conventional genetic/biochemical means. Finally, we also caution against solely relying on chemical-biology strategies and urge the field to undertake orthogonal validations to ensure robustness of results.
Collapse
Affiliation(s)
| | - Xuyu Liu
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland
| | - Yimon Aye
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland
| |
Collapse
|
126
|
Kloess S, Oberschmidt O, Dahlke J, Vu XK, Neudoerfl C, Kloos A, Gardlowski T, Matthies N, Heuser M, Meyer J, Sauer M, Falk C, Koehl U, Schambach A, Morgan MA. Preclinical Assessment of Suitable Natural Killer Cell Sources for Chimeric Antigen Receptor Natural Killer-Based "Off-the-Shelf" Acute Myeloid Leukemia Immunotherapies. Hum Gene Ther 2019; 30:381-401. [PMID: 30734584 DOI: 10.1089/hum.2018.247] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The introduction of chimeric antigen receptors (CARs) to augment the anticancer activity of immune cells represents one of the major clinical advances in recent years. This work demonstrates that sorted CAR natural killer (NK) cells have improved antileukemia activity compared to control NK cells that lack a functional CAR. However, in terms of viability, effectiveness, risk of side effects, and clinical practicality and applicability, an important question is whether gene-modified NK cell lines represent better CAR effector cells than primary human donor CAR-NK (CAR-dNK) cells. Comparison of the functional activities of sorted CAR-NK cells generated using the NK-92 cell line with those generated from primary human dNK cells demonstrated that CAR-NK-92 cells had stronger cytotoxic activity against leukemia cells compared to CAR-dNK cells. CAR-NK-92 and CAR-dNK cells had similar CD107a surface expression upon co-incubation with leukemia cells. However, CAR-NK-92 cells secreted higher granzyme A and interleukin-17A levels, while CAR-dNK cells secreted more tumor necrosis factor alpha, interferon gamma, and granulysin. In addition, CAR-NK-92 cells revealed a significantly higher potential for adverse side effects against nonmalignant cells. In short, this work shows the feasibility for further development of CAR-NK strategies to treat leukemia.
Collapse
Affiliation(s)
- Stephan Kloess
- 1 Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany.,2 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Olaf Oberschmidt
- 1 Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Julia Dahlke
- 3 Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,4 REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Xuan-Khang Vu
- 3 Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Christine Neudoerfl
- 5 Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Arnold Kloos
- 6 Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Tanja Gardlowski
- 1 Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany.,2 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Nadine Matthies
- 1 Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Michael Heuser
- 6 Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Johann Meyer
- 3 Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Martin Sauer
- 8 Integrated Research and Treatment Center Transplantation, IFB-Tx, Hannover Medical School, Hannover, Germany.,7 Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Christine Falk
- 5 Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Ulrike Koehl
- 1 Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany.,2 Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,9 Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Axel Schambach
- 3 Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,4 REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,10 Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael A Morgan
- 3 Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,4 REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| |
Collapse
|
127
|
Benskey MJ, Sandoval IM, Miller K, Sellnow RL, Gezer A, Kuhn NC, Vashon R, Manfredsson FP. Basic Concepts in Viral Vector-Mediated Gene Therapy. Methods Mol Biol 2019; 1937:3-26. [PMID: 30706387 DOI: 10.1007/978-1-4939-9065-8_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Today any researcher with the desire can easily purchase a viral vector. However, despite the availability of viral vectors themselves, the requisite knowledge that is absolutely essential to conducting a gene therapy experiment remains somewhat obscure and esoteric. To utilize viral vectors to their full potential, a large number of decisions must be made, in some instances prior to even obtaining the vector itself. For example, critical decisions include selection of the proper virus, selection of the proper expression cassette, whether to produce or purchase a viral vector, proper viral handling and storage, the most appropriate delivery method, selecting the proper controls, how to ensure your virus is expressing properly, and many other complex decisions that are essential to performing a successful gene therapy experiment. The need to make so many important decisions can be overwhelming and potentially prohibitive, especially to the novice gene therapist. In order to aid in this challenging process, here we provide an overview of basic gene therapy modalities and a decision tree that can be used to make oneself aware of the options available to the beginning gene therapist. This information can be used as a road map to help navigate the complex and perhaps confusing process of designing a successful gene therapy experiment.
Collapse
Affiliation(s)
- Matthew J Benskey
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Ivette M Sandoval
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Mercy Health Saint Mary's, Grand Rapids, MI, USA
| | - Kathryn Miller
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Rhyomi L Sellnow
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Aysegul Gezer
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Nathan C Kuhn
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Roslyn Vashon
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Fredric P Manfredsson
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA.
- Mercy Health Saint Mary's, Grand Rapids, MI, USA.
| |
Collapse
|
128
|
Lampasona AA, Czaplinski K. Hnrnpab regulates neural cell motility through transcription of Eps8. RNA (NEW YORK, N.Y.) 2019; 25:45-59. [PMID: 30314980 PMCID: PMC6298563 DOI: 10.1261/rna.067413.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/01/2018] [Indexed: 05/05/2023]
Abstract
Cell migration requires a complicated network of structural and regulatory proteins. Changes in cellular motility can impact migration as a result of cell-type or developmental stage regulated expression of critical motility genes. Hnrnpab is a conserved RNA-binding protein found as two isoforms produced by alternative splicing. Its expression is enriched in the subventricular zone (SVZ) and the rostral migratory stream within the brain, suggesting possible support of the migration of neural progenitor cells in this region. Here we show that the migration of cells from the SVZ of developing Hnrnpab-/- mouse brains is impaired. An RNA-seq analysis to identify Hnrnpab-dependent cell motility genes led us to Eps8, and in agreement with the change in cell motility, we show that Eps8 is decreased in Hnrnpab-/- SVZ tissue. We scrutinized the motility of Hnrnpab-/- cells and confirmed that the decreases in both cell motility and Eps8 are restored by ectopically coexpressing both alternatively spliced Hnrnpab isoforms, therefore these variants are surprisingly nonredundant for cell motility. Our results support a model where both Hnrnpab isoforms work in concert to regulate Eps8 transcription in the mouse SVZ to promote the normal migration of neural cells during CNS development.
Collapse
Affiliation(s)
- Alexa A Lampasona
- Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York 11749, USA
- Centers for Molecular Medicine, Stony Brook University, Stony Brook, New York 11749, USA
| | - Kevin Czaplinski
- Centers for Molecular Medicine, Stony Brook University, Stony Brook, New York 11749, USA
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York 11749, USA
| |
Collapse
|
129
|
Wu KZL, Jones RA, Tachie-Menson T, Macartney TJ, Wood NT, Varghese J, Gourlay R, Soares RF, Smith JC, Sapkota GP. Pathogenic FAM83G palmoplantar keratoderma mutations inhibit the PAWS1:CK1α association and attenuate Wnt signalling. Wellcome Open Res 2019; 4:133. [PMID: 31656861 PMCID: PMC6798324 DOI: 10.12688/wellcomeopenres.15403.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2019] [Indexed: 02/02/2023] Open
Abstract
Background: Two recessive mutations in the FAM83G gene, causing A34E and R52P amino acid substitutions in the DUF1669 domain of the PAWS1 protein, are associated with palmoplantar keratoderma (PPK) in humans and dogs respectively. We have previously reported that PAWS1 associates with the Ser/Thr protein kinase CK1α through the DUF1669 domain to mediate canonical Wnt signalling. Methods: Co-immunoprecipitation was used to investigate possible changes to PAWS1 interactors caused by the mutations. We also compared the stability of wild-type and mutant PAWS1 in cycloheximide-treated cells. Effects on Wnt signalling were determined using the TOPflash luciferase reporter assay in U2OS cells expressing PAWS1 mutant proteins. The ability of PAWS1 to induce axis duplication in Xenopus embryos was also tested. Finally, we knocked-in the A34E mutation at the native gene locus and measured Wnt-induced AXIN2 gene expression by RT-qPCR. Results: We show that these PAWS1 A34E and PAWS1 R52P mutants fail to interact with CK1α but, like the wild-type protein, do interact with CD2AP and SMAD1. Like cells carrying a PAWS1 F296A mutation, which also abolishes CK1α binding, cells carrying the A34E and R52P mutants respond poorly to Wnt signalling to an extent resembling that observed in FAM83G gene knockout cells. Consistent with this observation, these mutants, in contrast to the wild-type protein, fail to induce axis duplication in Xenopus embryos. We also found that the A34E and R52P mutant proteins are less abundant than the native protein and appear to be less stable, both when overexpressed in FAM83G-knockout cells and when knocked-in at the native FAM83G locus. Ala 34 of PAWS1 is conserved in all FAM83 proteins and mutating the equivalent residue in FAM83H (A31E) also abolishes interaction with CK1 isoforms. Conclusions: We propose that mutations in PAWS1 cause PPK pathogenesis through disruption of the CK1α interaction and attenuation of Wnt signalling.
Collapse
Affiliation(s)
- Kevin Z L Wu
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | | | - Theresa Tachie-Menson
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Thomas J Macartney
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Nicola T Wood
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Joby Varghese
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Robert Gourlay
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Renata F Soares
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | | | - Gopal P Sapkota
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| |
Collapse
|
130
|
Al-Allaf FA, Abduljaleel Z, Athar M, Taher MM, Khan W, Mehmet H, Colakogullari M, Apostolidou S, Bigger B, Waddington S, Coutelle C, Themis M, Al-Ahdal MN, Al-Mohanna FA, Al-Hassnan ZN, Bouazzaoui A. Modifying inter-cistronic sequence significantly enhances IRES dependent second gene expression in bicistronic vector: Construction of optimised cassette for gene therapy of familial hypercholesterolemia. Noncoding RNA Res 2018; 4:1-14. [PMID: 30891532 PMCID: PMC6404380 DOI: 10.1016/j.ncrna.2018.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 01/23/2023] Open
Abstract
Internal ribosome entry site (IRES) sequences have become a valuable tool in the construction of gene transfer and therapeutic vectors for multi-cistronic gene expression from a single mRNA transcript. The optimal conditions for effective use of this sequence to construct a functional expression vector are not precisely defined but it is generally assumed that the internal ribosome entry site dependent expression of the second gene in such as cassette is less efficient than the cap-dependent expression of the first gene. Mainly tailoring inter-cistronic sequence significantly enhances IRES dependent second gene expression in bicistronic vector further in construction of optimised cassette for gene therapy of familial hypercholesterolemia. We tailored the size of the inter-cistronic spacer sequence at the 5′ region of the internal ribosome entry site sequence using sequential deletions and demonstrated that the expression of the 3′ gene can be significantly increased to similar levels as the cap-dependent expression of the 5’ gene. Maximum expression efficiency of the downstream gene was obtained when the spacer is composed of 18–141 base pairs. In this case a single mRNA transcriptional unit containing both the first and the second Cistron was detected. Whilst constructs with spacer sequences of 216 bp or longer generate a single transcriptional unit containing only the first Cistron. This suggests that long spacers may affect transcription termination. When the spacer is 188 bp, both transcripts were produced simultaneously in most transfected cells, while a fraction of them expressed only the first but not the second gene. Expression analyses of vectors containing optimised cassettes clearly confirm that efficiency of gene transfer and biological activity of the expressed transgenic proteins in the transduced cells can be achieved. Furthermore, Computational analysis was carried out by molecular dynamics (MD) simulation to determine the most emerges as viable containing specific binding site and bridging of 5′ and 3′ ends involving direct RNA-RNA contacts and RNA-protein interactions. These results provide a mechanistic basis for translation stimulation and RNA resembling for the synergistic stimulation of cap-dependent translation.
Collapse
Affiliation(s)
- Faisal A Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia.,Science and Technology Unit, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia.,Molecular Diagnostics Unit, Department of Laboratory and Blood Bank, King Abdullah Medical City, Makkah, 21955, Saudi Arabia.,Gene Therapy Research Group, Department of Molecular and Cell Medicine, Faculty of Medicine, Imperial College London, South Kensington, London, SW7 2AZ, UK.,Institute of Reproductive and Developmental Biology, Division of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Zainularifeen Abduljaleel
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia.,Science and Technology Unit, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia
| | - Mohammad Athar
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia.,Science and Technology Unit, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia
| | - Mohiuddin M Taher
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia.,Science and Technology Unit, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia
| | - Wajahatullah Khan
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, PO Box 3124, Riyadh, 11426, Saudi Arabia
| | - Huseyin Mehmet
- Institute of Reproductive and Developmental Biology, Division of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Mukaddes Colakogullari
- Institute of Reproductive and Developmental Biology, Division of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Sophia Apostolidou
- Institute of Reproductive and Developmental Biology, Division of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Brian Bigger
- Gene Therapy Research Group, Department of Molecular and Cell Medicine, Faculty of Medicine, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Simon Waddington
- Gene Therapy Research Group, Department of Molecular and Cell Medicine, Faculty of Medicine, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Charles Coutelle
- Gene Therapy Research Group, Department of Molecular and Cell Medicine, Faculty of Medicine, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Michael Themis
- Gene Therapy Research Group, Department of Molecular and Cell Medicine, Faculty of Medicine, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Mohammed N Al-Ahdal
- Department of Infection and Immunity, King Faisal Specialist Hospital & Research Center, Riyadh, 11211, Saudi Arabia
| | - Futwan A Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Zuhair N Al-Hassnan
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia.,Science and Technology Unit, Umm Al-Qura University, P.O. Box 715, Makkah, 21955, Saudi Arabia
| |
Collapse
|
131
|
Husa AM, Strobl MR, Strajeriu A, Wieser M, Strehl S, Fortschegger K. Generation of CD34 Fluorescent Reporter Human Induced Pluripotent Stem Cells for Monitoring Hematopoietic Differentiation. Stem Cells Dev 2018; 27:1376-1384. [DOI: 10.1089/scd.2018.0093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Anna-Maria Husa
- Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Maria Regina Strobl
- Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung, Vienna, Austria
| | | | | | - Sabine Strehl
- Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Klaus Fortschegger
- Children's Cancer Research Institute (CCRI), St. Anna Kinderkrebsforschung, Vienna, Austria
| |
Collapse
|
132
|
Aw R, McKay PF, Shattock RJ, Polizzi KM. A systematic analysis of the expression of the anti-HIV VRC01 antibody in Pichia pastoris through signal peptide optimization. Protein Expr Purif 2018; 149:43-50. [PMID: 29601964 PMCID: PMC5982643 DOI: 10.1016/j.pep.2018.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/27/2018] [Accepted: 03/26/2018] [Indexed: 01/10/2023]
Abstract
Pichia pastoris (Komagataella phaffi) has been used for recombinant protein production for over 30 years with over 5000 proteins reported to date. However, yields of antibody are generally low. We have evaluated the effect of secretion signal peptides on the production of a broadly neutralizing antibody (VRC01) to increase yield. Eleven different signal peptides, including the murine IgG1 signal peptide, were combinatorially evaluated for their effect on antibody titer. Strains using different combinations of signal peptides were identified that secreted approximately 2-7 fold higher levels of VRC01 than the previous best secretor, with the highest yield of 6.50 mg L-1 in shake flask expression. Interestingly it was determined that the highest yields were achieved when the murine IgG1 signal peptide was fused to the light chain, with several different signal peptides leading to high yield when fused to the heavy chain. Finally, we have evaluated the effect of using a 2A signal peptide to create a bicistronic vector in the attempt to reduce burden and increase transformation efficiency, but found it to give reduced yields compared to using two independent vectors.
Collapse
Affiliation(s)
- Rochelle Aw
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK; Centre for Synthetic Biology and Innovation, Imperial College London, SW7 2AZ, UK
| | - Paul F McKay
- Department of Infectious Diseases, Imperial College London, London, W2 1PG, UK
| | - Robin J Shattock
- Department of Infectious Diseases, Imperial College London, London, W2 1PG, UK
| | - Karen M Polizzi
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK; Centre for Synthetic Biology and Innovation, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
133
|
DiStasio N, Arts M, Lehoux S, Tabrizian M. IL-10 Gene Transfection in Primary Endothelial Cells via Linear and Branched Poly(β-amino ester) Nanoparticles Attenuates Inflammation in Stimulated Macrophages. ACS APPLIED BIO MATERIALS 2018; 1:917-927. [DOI: 10.1021/acsabm.8b00342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Nicholas DiStasio
- Lady Davis Institute, Department of Medicine, McGill University, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Marloes Arts
- Lady Davis Institute, Department of Medicine, McGill University, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Stephanie Lehoux
- Lady Davis Institute, Department of Medicine, McGill University, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | | |
Collapse
|
134
|
Fischer K, Kind A, Schnieke A. Assembling multiple xenoprotective transgenes in pigs. Xenotransplantation 2018; 25:e12431. [PMID: 30055014 DOI: 10.1111/xen.12431] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/24/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022]
Abstract
This review gives a brief overview of the genetic modifications necessary for grafted porcine tissues and organs to overcome rejection in human recipients. It then focuses on the problem of generating and breeding herds of donor pigs carrying modified endogenous genes and multiple xenoprotective transgenes. A xenodonor pig optimised for human clinical use could well require the addition of ten or more xenoprotective transgenes. It is impractical to produce the required combination of transgene by cross-breeding animals bearing individual transgenes at unlinked genetic loci, because independent segregation means that huge numbers of pigs would be required to produce relatively few donor animals. A better approach is to colocate groups of transgenes at a single genomic locus. We outline current methods to assemble transgene arrays and consider their pros and cons. These include polycistronic expression systems, in vitro recombination of large DNA fragments in PAC and BAC vectors, transposon vectors, classical gene targeting by homologous recombination at permissive loci such as ROSA26, targeted transgene placement aided by gene editing systems such as CRISPR/Cas9, and transgene placement by site-specific recombination such as Min-tagging using the Bxb1recombinase.
Collapse
Affiliation(s)
- Konrad Fischer
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Alexander Kind
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
135
|
Neutralizing Anti-Hemagglutinin Monoclonal Antibodies Induced by Gene-Based Transfer Have Prophylactic and Therapeutic Effects on Influenza Virus Infection. Vaccines (Basel) 2018; 6:vaccines6030035. [PMID: 29949942 PMCID: PMC6161145 DOI: 10.3390/vaccines6030035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
Hemagglutinin (HA) of influenza virus is a major target for vaccines. HA initiates the internalization of the virus into the host cell by binding to host sialic acid receptors; therefore, inhibition of HA can significantly prevent influenza virus infection. However, the high diversity of HA permits the influenza virus to escape from host immunity. Moreover, the vaccine efficacy is poor in some high-risk populations (e.g., elderly or immunocompromised patients). Passive immunization with anti-HA monoclonal antibodies (mAbs) is an attractive therapy; however, this method has high production costs and requires repeated inoculations. To address these issues, several methods for long-term expression of mAb against influenza virus have been developed. Here, we provide an overview of methods using plasmid and viral adeno-associated virus (AAV) vectors that have been modified for higher expression of neutralizing antibodies in the host. We also examine two methods of injection, electro-transfer and hydrodynamic injection. Our results show that antibody gene transfer is effective against influenza virus infection even in immunocompromised mice, and antibody expression was detected in the serum and upper respiratory tract. We also demonstrate this method to be effective following influenza virus infection. Finally, we discuss the perspective of passive immunization with antibody gene transfer for future clinical trials.
Collapse
|
136
|
Zheng H, Wang X, Ren F, Zou S, Feng M, Xu L, Yao L, Sun J. Construction of a highly efficient display system for baculovirus and its application on multigene co-display. Mol Genet Genomics 2018; 293:1265-1277. [DOI: 10.1007/s00438-018-1459-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 06/07/2018] [Indexed: 01/05/2023]
|
137
|
Zhou T, Xue Y, Ren F, Dong Y. Antioxidant activity of xylooligosaccharides prepared fromThermotoga maritimausing recombinant enzyme cocktail of β-xylanase and α-glucuronidase. J Carbohydr Chem 2018. [DOI: 10.1080/07328303.2018.1455843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Tao Zhou
- Department of Food Science and Nutrition, GinLing College, Nanjing Normal University, Nanjing, PR China
| | - Yemin Xue
- Department of Food Science and Nutrition, GinLing College, Nanjing Normal University, Nanjing, PR China
| | - Fengjiao Ren
- Department of Food Science and Nutrition, GinLing College, Nanjing Normal University, Nanjing, PR China
| | - Yuanyuan Dong
- Department of Food Science and Nutrition, GinLing College, Nanjing Normal University, Nanjing, PR China
| |
Collapse
|
138
|
Lu F, Luo C, Li N, Liu Q, Wei Y, Deng H, Wang X, Li X, Jiang J, Deng Y, Shi D. Efficient Generation of Transgenic Buffalos (Bubalus bubalis) by Nuclear Transfer of Fetal Fibroblasts Expressing Enhanced Green Fluorescent Protein. Sci Rep 2018; 8:6967. [PMID: 29725050 PMCID: PMC5934360 DOI: 10.1038/s41598-018-25120-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/11/2018] [Indexed: 01/01/2023] Open
Abstract
The possibility of producing transgenic cloned buffalos by nuclear transfer of fetal fibroblasts expressing enhanced green fluorescent protein (EGFP) was explored in this study. When buffalo fetal fibroblasts (BFFs) isolated from a male buffalo fetus were transfected with pEGFP-N1 (EGFP is driven by CMV and Neo is driven by SV-40) by means of electroporation, Lipofectamine-LTX and X-tremeGENE, the transfection efficiency of electroporation (35.5%) was higher than Lipofectamine-LTX (11.7%) and X-tremeGENE (25.4%, P < 0.05). When BFFs were transfected by means of electroporation, more embryos from BFFs transfected with pEGFP-IRES-Neo (EGFP and Neo are driven by promoter of human elongation factor) cleaved and developed to blastocysts (21.6%) compared to BFFs transfected with pEGFP-N1 (16.4%, P < 0.05). A total of 72 blastocysts were transferred into 36 recipients and six recipients became pregnant. In the end of gestation, the pregnant recipients delivered six healthy calves and one stillborn calf. These calves were confirmed to be derived from the transgenic cells by Southern blot and microsatellite analysis. These results indicate that electroporation is more efficient than lipofection in transfecting exogenous DNA into BFFs and transgenic buffalos can be produced effectively by nuclear transfer of BFFs transfected with pEGFP-IRES-Neo.
Collapse
Affiliation(s)
- Fenghua Lu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Chan Luo
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Nan Li
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China.,Reproductive Center of Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, 545001, China
| | - Qingyou Liu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Yingming Wei
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Haiying Deng
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Xiaoli Wang
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Xiangping Li
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Jianrong Jiang
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Yanfei Deng
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Deshun Shi
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
139
|
Human rhinovirus internal ribosome entry site element enhances transgene expression in transfected CHO-S cells. Sci Rep 2018; 8:6661. [PMID: 29703950 PMCID: PMC5923211 DOI: 10.1038/s41598-018-25049-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/13/2018] [Indexed: 01/27/2023] Open
Abstract
Chinese hamster ovary (CHO) cells are mainly used for recombinant protein production. However, the unstable transgene expression and lower transgene copy numbers are the major issues need to be resolved. Here, eleven internal ribosome entry site (IRES) elements from viral and cellular IRES were evaluated for foreign gene expression in CHO-S cells. We constructed eleven fusing plasmids containing different IRES sequences downstream of the enhanced green fluorescent protein (EGFP) gene. EGFP expression was detected by flow cytometry and the transgene copy number was evaluated by quantitative PCR. The erythropoietin (EPO) protein was also used to assess the stronger IRES. The results showed that IRES from human rhinovirus (HRV) exhibited the highest EGFP expression level under transient and stable transfections. The EGFP expression level of vector with IRES from HRV was related to the gene copy number in stably transfected CHO-S cells. Moreover, IRES from HRV induced higher expression level of EPO compared with one mutant IRES from EMCV in transfected cells. In conclusion, IRES from HRV can function as a strong IRES element for stable expression in CHO-S cells, which could potentially guide more effective foreign gene expression in CHO-S cells.
Collapse
|
140
|
Hofacre A, Yagiz K, Mendoza D, Lopez Espinoza F, Munday AW, Burrascano C, Singer O, Gruber HE, Jolly DJ, Lin AH. Efficient Therapeutic Protein Expression Using Retroviral Replicating Vector with 2A Peptide in Cancer Models. Hum Gene Ther 2018; 29:437-451. [PMID: 29216761 DOI: 10.1089/hum.2017.205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Toca 511, a retroviral replicating vector (RRV), uses an internal ribosomal entry site (IRES) to express an optimized yeast cytosine deaminase (yCD2), which converts 5-fluorocytosine to 5-fluorouracil. This configuration is genetically stable in both preclinical mouse models and human clinical trials. However, the use of IRES (∼600 bp) restricts choices of therapeutic transgenes due to limits in RRV genome size. This study replaced IRES with 2A peptides derived from picornaviruses with or without a GSG linker. The data show that GSG-linked 2A (g2A) peptide resulted in higher polyprotein separation efficiency than non-GSG linked 2A peptide. The study also shows that RRV can tolerate insertion of two separate 2A peptides to allow expression of two transgenes without compromising the assembly and function of the virus in addition to insertion of a single 2A peptide to confirm genetic stability with yCD2, green fluorescent protein, and HSV-1 thymidine kinase. In a parallel comparison of the RRV-IRES-yCD2 and RRV-g2A-yCD2 configurations, the study shows the yCD2 protein expressed from RRV-g2A-yCD2 has higher activity, resulting in a higher survival benefit in an intracranial tumor mouse model. These data enable a wider range of potential product candidates that could be developed using the RRV platform.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Amy H Lin
- Tocagen, Inc. , San Diego, California
| |
Collapse
|
141
|
Becerra Colorado NY, Arenas Gómez CM, Patiño Vargas MI, Delgado Charris JP, Muskus López CE, Restrepo Múnera LM. Polyplex System Versus Nucleofection for Human Skin Cell Transfection and Effect of Internal Ribosome Entry Site Sequence. Tissue Eng Part C Methods 2018; 24:233-241. [DOI: 10.1089/ten.tec.2017.0435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Natalia Yiset Becerra Colorado
- Tissue Engineering and Cell Therapy Group, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
- Biobank and Cell Therapy Laboratory, University IPS, Health Services, University of Antioquia, Medellín, Colombia
| | - Claudia Marcela Arenas Gómez
- Genetics, Regeneration and Cancer Group, University of Antioquia, Sede de Investigación Universitaria-SIU, Medellín, Colombia
| | - Maria Isabel Patiño Vargas
- Tissue Engineering and Cell Therapy Group, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Jean Paul Delgado Charris
- Genetics, Regeneration and Cancer Group, University of Antioquia, Sede de Investigación Universitaria-SIU, Medellín, Colombia
| | - Carlos Enrique Muskus López
- The Program for the Study and Control of Tropical Diseases-PECET, University of Antioquia, Sede de Investigación Universitaria-SIU, Medellín, Colombia
| | - Luz Marina Restrepo Múnera
- Tissue Engineering and Cell Therapy Group, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
142
|
Frazier HN, Anderson KL, Maimaiti S, Ghoweri AO, Kraner SD, Popa GJ, Hampton KK, Mendenhall MD, Norris CM, Craven RJ, Thibault O. Expression of a Constitutively Active Human Insulin Receptor in Hippocampal Neurons Does Not Alter VGCC Currents. Neurochem Res 2018; 44:269-280. [PMID: 29572644 DOI: 10.1007/s11064-018-2510-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 01/30/2023]
Abstract
Memory and cognitive decline are the product of numerous physiological changes within the aging brain. Multiple theories have focused on the oxidative, calcium, cholinergic, vascular, and inflammation hypotheses of brain aging, with recent evidence suggesting that reductions in insulin signaling may also contribute. Specifically, a reduction in insulin receptor density and mRNA levels has been implicated, however, overcoming these changes remains a challenge. While increasing insulin receptor occupation has been successful in offsetting cognitive decline, alternative molecular approaches should be considered as they could bypass the need for brain insulin delivery. Moreover, this approach may be favorable to test the impact of continued insulin receptor signaling on neuronal function. Here we used hippocampal cultures infected with lentivirus with or without IRβ, a constitutively active, truncated form of the human insulin receptor, to characterize the impact continued insulin receptor signaling on voltage-gated calcium channels. Infected cultures were harvested between DIV 13 and 17 (48 h after infection) for Western blot analysis on pAKT and AKT. These results were complemented with whole-cell patch-clamp recordings of individual pyramidal neurons starting 96 h post-infection. Results indicate that while a significant increase in neuronal pAKT/AKT ratio was seen at the time point tested, effects on voltage-gated calcium channels were not detected. These results suggest that there is a significant difference between constitutively active insulin receptors and the actions of insulin on an intact receptor, highlighting potential alternate mechanisms of neuronal insulin resistance and mode of activation.
Collapse
Affiliation(s)
- H N Frazier
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, 800 Rose Street, Lexington, KY, 40536, USA
| | - K L Anderson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, 800 Rose Street, Lexington, KY, 40536, USA
| | - S Maimaiti
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, 800 Rose Street, Lexington, KY, 40536, USA
| | - A O Ghoweri
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, 800 Rose Street, Lexington, KY, 40536, USA
| | - S D Kraner
- Sanders Brown Center on Aging, University of Kentucky Medical Center, UKMC, 800 S. Limestone, Lexington, KY, 40536, USA
| | - G J Popa
- Department of Molecular and Cellular Biochemistry, University of Kentucky Medical Center, UKMC, 741 S. Limestone, Lexington, KY, 40536, USA
| | - K K Hampton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, 800 Rose Street, Lexington, KY, 40536, USA
| | - M D Mendenhall
- Department of Molecular and Cellular Biochemistry, University of Kentucky Medical Center, UKMC, 741 S. Limestone, Lexington, KY, 40536, USA
| | - C M Norris
- Sanders Brown Center on Aging, University of Kentucky Medical Center, UKMC, 800 S. Limestone, Lexington, KY, 40536, USA
| | - R J Craven
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, 800 Rose Street, Lexington, KY, 40536, USA
| | - O Thibault
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, 800 Rose Street, Lexington, KY, 40536, USA.
| |
Collapse
|
143
|
Haran KP, Hajduczki A, Pampusch MS, Mwakalundwa G, Vargas-Inchaustegui DA, Rakasz EG, Connick E, Berger EA, Skinner PJ. Simian Immunodeficiency Virus (SIV)-Specific Chimeric Antigen Receptor-T Cells Engineered to Target B Cell Follicles and Suppress SIV Replication. Front Immunol 2018; 9:492. [PMID: 29616024 PMCID: PMC5869724 DOI: 10.3389/fimmu.2018.00492] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/26/2018] [Indexed: 11/13/2022] Open
Abstract
There is a need to develop improved methods to treat and potentially cure HIV infection. During chronic HIV infection, replication is concentrated within T follicular helper cells (Tfh) located within B cell follicles, where low levels of virus-specific CTL permit ongoing viral replication. We previously showed that elevated levels of simian immunodeficiency virus (SIV)-specific CTL in B cell follicles are linked to both decreased levels of viral replication in follicles and decreased plasma viral loads. These findings provide the rationale to develop a strategy for targeting follicular viral-producing (Tfh) cells using antiviral chimeric antigen receptor (CAR) T cells co-expressing the follicular homing chemokine receptor CXCR5. We hypothesize that antiviral CAR/CXCR5-expressing T cells, when infused into an SIV-infected animal or an HIV-infected individual, will home to B cell follicles, suppress viral replication, and lead to long-term durable remission of SIV and HIV. To begin to test this hypothesis, we engineered gammaretroviral transduction vectors for co-expression of a bispecific anti-SIV CAR and rhesus macaque CXCR5. Viral suppression by CAR/CXCR5-transduced T cells was measured in vitro, and CXCR5-mediated migration was evaluated using both an in vitro transwell migration assay, as well as a novel ex vivo tissue migration assay. The functionality of the CAR/CXCR5 T cells was demonstrated through their potent suppression of SIVmac239 and SIVE660 replication in in vitro and migration to the ligand CXCL13 in vitro, and concentration in B cell follicles in tissues ex vivo. These novel antiviral immunotherapy products have the potential to provide long-term durable remission (functional cure) of HIV and SIV infections.
Collapse
Affiliation(s)
- Kumudhini Preethi Haran
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Agnes Hajduczki
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mary S Pampusch
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Gwantwa Mwakalundwa
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Diego A Vargas-Inchaustegui
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Eva G Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Elizabeth Connick
- Division of Infectious Diseases, University of Arizona, Tucson, AZ, United States
| | - Edward A Berger
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Pamela J Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
144
|
Burkart C, Mukhopadhyay A, Shirley SA, Connolly RJ, Wright JH, Bahrami A, Campbell JS, Pierce RH, Canton DA. Improving therapeutic efficacy of IL-12 intratumoral gene electrotransfer through novel plasmid design and modified parameters. Gene Ther 2018. [DOI: 10.1038/s41434-018-0006-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
145
|
Roy G, Martin T, Barnes A, Wang J, Jimenez RB, Rice M, Li L, Feng H, Zhang S, Chaerkady R, Wu H, Marelli M, Hatton D, Zhu J, Bowen MA. A novel bicistronic gene design couples stable cell line selection with a fucose switch in a designer CHO host to produce native and afucosylated glycoform antibodies. MAbs 2018; 10:416-430. [PMID: 29400603 PMCID: PMC5916560 DOI: 10.1080/19420862.2018.1433975] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The conserved glycosylation site Asn297 of a monoclonal antibody (mAb) can be decorated with a variety of sugars that can alter mAb pharmacokinetics and recruitment of effector proteins. Antibodies lacking the core fucose at Asn297 (afucosylated mAbs) show enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) and increased efficacy. Here, we describe the development of a robust platform for the manufacture of afucosylated therapeutic mAbs by engineering a Chinese hamster ovary (CHO) host cell line to co-express a mAb with GDP-6-deoxy-D-lyxo-4-hexulose reductase (RMD), a prokaryotic enzyme that deflects an intermediate in the de novo synthesis of fucose to a dead-end product, resulting in the production of afucosylated mAb (GlymaxX™ Technology, ProBioGen). Expression of the mAb and RMD genes was coordinated by co-transfection of separate mAb and RMD vectors or use of an internal ribosome entry site (IRES) element to link the translation of RMD with either the glutamine synthase selection marker or the mAb light chain. The GS-IRES-RMD vector format was more suitable for the rapid generation of high yielding cell lines, secreting afucosylated mAb with titers exceeding 6.0 g/L. These cell lines maintained production of afucosylated mAb over 60 generations, ensuring their suitability for use in large-scale manufacturing. The afucosylated mAbs purified from these RMD-engineered cell lines showed increased binding in a CD16 cellular assay, demonstrating enhancement of ADCC compared to fucosylated control mAb. Furthermore, the afucosylation in these mAbs could be controlled by simple addition of L-fucose in the culture medium, thereby allowing the use of a single cell line for production of the same mAb in fucosylated and afucosylated formats for multiple therapeutic indications.
Collapse
Affiliation(s)
- Gargi Roy
- a Antibody Discovery and Protein Engineering , MedImmune LLC , Gaithersburg , Maryland , United States of America
| | - Tom Martin
- a Antibody Discovery and Protein Engineering , MedImmune LLC , Gaithersburg , Maryland , United States of America
| | - Arnita Barnes
- a Antibody Discovery and Protein Engineering , MedImmune LLC , Gaithersburg , Maryland , United States of America
| | - Jihong Wang
- b Analytical Biochemistry, MedImmune LLC , Gaithersburg , Maryland , United States of America
| | - Rod Brian Jimenez
- b Analytical Biochemistry, MedImmune LLC , Gaithersburg , Maryland , United States of America
| | - Megan Rice
- a Antibody Discovery and Protein Engineering , MedImmune LLC , Gaithersburg , Maryland , United States of America
| | - Lina Li
- c Cell Culture and Fermentation Sciences, MedImmune LLC , Gaithersburg , Maryland , United States of America
| | - Hui Feng
- a Antibody Discovery and Protein Engineering , MedImmune LLC , Gaithersburg , Maryland , United States of America
| | - Shu Zhang
- a Antibody Discovery and Protein Engineering , MedImmune LLC , Gaithersburg , Maryland , United States of America
| | - Raghothama Chaerkady
- a Antibody Discovery and Protein Engineering , MedImmune LLC , Gaithersburg , Maryland , United States of America
| | - Herren Wu
- a Antibody Discovery and Protein Engineering , MedImmune LLC , Gaithersburg , Maryland , United States of America
| | - Marcello Marelli
- a Antibody Discovery and Protein Engineering , MedImmune LLC , Gaithersburg , Maryland , United States of America
| | - Diane Hatton
- d Cell Culture and Fermentation Sciences, Biopharmaceutical Development, MedImmune , Cambridge , United Kingdom
| | - Jie Zhu
- c Cell Culture and Fermentation Sciences, MedImmune LLC , Gaithersburg , Maryland , United States of America
| | - Michael A Bowen
- a Antibody Discovery and Protein Engineering , MedImmune LLC , Gaithersburg , Maryland , United States of America
| |
Collapse
|
146
|
Kyriakakis P, Catanho M, Hoffner N, Thavarajah W, Hu VJ, Chao SS, Hsu A, Pham V, Naghavian L, Dozier LE, Patrick GN, Coleman TP. Biosynthesis of Orthogonal Molecules Using Ferredoxin and Ferredoxin-NADP + Reductase Systems Enables Genetically Encoded PhyB Optogenetics. ACS Synth Biol 2018; 7:706-717. [PMID: 29301067 PMCID: PMC5820651 DOI: 10.1021/acssynbio.7b00413] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transplanting metabolic reactions from one species into another has many uses as a research tool with applications ranging from optogenetics to crop production. Ferredoxin (Fd), the enzyme that most often supplies electrons to these reactions, is often overlooked when transplanting enzymes from one species to another because most cells already contain endogenous Fd. However, we have shown that the production of chromophores used in Phytochrome B (PhyB) optogenetics is greatly enhanced in mammalian cells by expressing bacterial and plant Fds with ferredoxin-NADP+ reductases (FNR). We delineated the rate limiting factors and found that the main metabolic precursor, heme, was not the primary limiting factor for producing either the cyanobacterial or plant chromophores, phycocyanobilin or phytochromobilin, respectively. In fact, Fd is limiting, followed by Fd+FNR and finally heme. Using these findings, we optimized the PCB production system and combined it with a tissue penetrating red/far-red sensing PhyB optogenetic gene switch in animal cells. We further characterized this system in several mammalian cell lines using red and far-red light. Importantly, we found that the light-switchable gene system remains active for several hours upon illumination, even with a short light pulse, and requires very small amounts of light for maximal activation. Boosting chromophore production by matching metabolic pathways with specific ferredoxin systems will enable the unparalleled use of the many PhyB optogenetic tools and has broader implications for optimizing synthetic metabolic pathways.
Collapse
Affiliation(s)
- Phillip Kyriakakis
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Marianne Catanho
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Nicole Hoffner
- Neurosciences
Graduate Program, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Walter Thavarajah
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Vincent J. Hu
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Syh-Shiuan Chao
- Frank
H. Better School of Medicine, Quinnipiac University, 370 Bassett Road, North Haven, Connecticut 06473, United States
| | - Athena Hsu
- School
of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0412, United States
| | - Vivian Pham
- Roy J. and
Lucille A. Carver College of Medicine, University of Iowa, 451 Newton Road, Iowa City, Iowa 52242, United States
| | - Ladan Naghavian
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| | - Lara E. Dozier
- Section
of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0347, United States
| | - Gentry N. Patrick
- Section
of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0347, United States
| | - Todd P. Coleman
- Department
of Bioengineering, University of California, San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0412, United States
| |
Collapse
|
147
|
Wang B, Zuo J, Kang W, Wei Q, Li J, Wang C, Liu Z, Lu Y, Zhuang Y, Dang B, Liu Q, Kang W, Sun Y. Generation of Hutat2:Fc Knockin Primary Human Monocytes Using CRISPR/Cas9. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:130-141. [PMID: 29858049 PMCID: PMC5992333 DOI: 10.1016/j.omtn.2018.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 10/28/2022]
Abstract
The ability of monocytes to travel through the bloodstream, traverse tissue barriers, and aggregate at disease sites endows these cells with the attractive potential to carry therapeutic genes into the nervous system. However, gene editing in primary human monocytes has long been a challenge. Here, we applied the CRISPR/Cas9 system to deliver the large functional Hutat2:Fc DNA fragment into the genome of primary monocytes to neutralize HIV-1 transactivator of transcription (Tat), an essential neurotoxic factor that causes HIV-associated neurocognitive disorder (HAND) in the nervous system. Following homology-directed repair (HDR), ∼10% of the primary human monocytes exhibited knockin of the Hutat2:Fc gene in the AAVS1 locus, the "safe harbor" locus of the human genome, without selection. Importantly, the release of Hutat2:Fc by these modified monocytes protected neurons from Tat-induced neurotoxicity, reduced HIV replication, and restored T cell homeostasis. Moreover, compared with lentiviral transfection, CRISPR-mediated knockin had the advantage of maintaining the migrating function of monocytes. These results establish CRISPR/Cas9-mediated Hutat2:Fc knockin monocytes and provide a potential method to cross the blood-brain barrier for HAND therapy.
Collapse
Affiliation(s)
- Bowen Wang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Jiahui Zuo
- Clinical Laboratory, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Wenzhen Kang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Qianqi Wei
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Jianhui Li
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Chunfu Wang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Zhihui Liu
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Yuanan Lu
- Department of Public Health Sciences, John A. Burns School of Medicine, University of Hawaii, 1960 East-west Road, Honolulu, HI 96822, USA
| | - Yan Zhuang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Bianli Dang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Qing Liu
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Wen Kang
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Xi'an, Shaanxi 710038, China; Department of Public Health Sciences, John A. Burns School of Medicine, University of Hawaii, 1960 East-west Road, Honolulu, HI 96822, USA.
| | - Yongtao Sun
- Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, 569 Xinsi Road, Xi'an, Shaanxi 710038, China.
| |
Collapse
|
148
|
Rieblinger B, Fischer K, Kind A, Saller BS, Baars W, Schuster M, Wolf-van Buerck L, Schäffler A, Flisikowska T, Kurome M, Zakhartchenko V, Kessler B, Flisikowski K, Wolf E, Seissler J, Schwinzer R, Schnieke A. Strong xenoprotective function by single-copy transgenes placed sequentially at a permissive locus. Xenotransplantation 2018; 25:e12382. [PMID: 29359453 DOI: 10.1111/xen.12382] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/22/2017] [Accepted: 01/02/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Multiple xenoprotective transgenes are best grouped at a single locus to avoid segregation during breeding and simplify production of donor animals. METHODS We used transgene stacking to place a human CD55 transgene adjacent to a human heme oxygenase 1 construct at the porcine ROSA26 locus. A transgenic pig was analyzed by PCR, RT-PCR, droplet digital PCR, immunohistochemistry, immunofluorescence, and flow cytometry. Resistance to complement-mediated cell lysis and caspase 3/7 activation were determined in vitro. RESULTS The ROSA26 locus was retargeted efficiently, and animals were generated by nuclear transfer. RNA and protein analyses revealed abundant expression in all organs analyzed, including pancreatic beta cells. Transgenic porcine kidney fibroblasts were almost completely protected against complement-mediated lysis and showed reduced caspase 3/7 activation. CONCLUSION Step-by-step placement enables highly expressed single-copy xenoprotective transgenes to be grouped at porcine ROSA26.
Collapse
Affiliation(s)
- Beate Rieblinger
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Konrad Fischer
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Alexander Kind
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Benedikt S Saller
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Wiebke Baars
- Transplant Laboratory, Department for General-, Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Marion Schuster
- Medizinische Klinik and Polyklinik IV, Diabetes Zentrum, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lelia Wolf-van Buerck
- Medizinische Klinik and Polyklinik IV, Diabetes Zentrum, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andrea Schäffler
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Tatiana Flisikowska
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Mayuko Kurome
- Chair of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Oberschleissheim, Germany
| | - Valeri Zakhartchenko
- Chair of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Oberschleissheim, Germany
| | - Barbara Kessler
- Chair of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Oberschleissheim, Germany
| | - Krzysztof Flisikowski
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Eckhard Wolf
- Chair of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Oberschleissheim, Germany
| | - Jochen Seissler
- Medizinische Klinik and Polyklinik IV, Diabetes Zentrum, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Reinhard Schwinzer
- Transplant Laboratory, Department for General-, Visceral- and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, School of Life Sciences Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
149
|
Deng Z, Zhang S, Gu S, Ni X, Zeng W, Li X. Useful Bicistronic Reporter System for Studying Poly(A) Site-Defining cis Elements and Regulation of Alternative Polyadenylation. Int J Mol Sci 2018; 19:E279. [PMID: 29342112 PMCID: PMC5796225 DOI: 10.3390/ijms19010279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/05/2018] [Accepted: 01/15/2018] [Indexed: 12/15/2022] Open
Abstract
The link between polyadenylation (pA) and various biological, behavioral, and pathological events of eukaryotes underlines the need to develop in vivo polyadenylation assay methods for characterization of the cis-acting elements, trans-acting factors and environmental stimuli that affect polyadenylation efficiency and/or relative usage of two alternative polyadenylation (APA) sites. The current protein-based CAT or luciferase reporter systems can measure the polyadenylation efficiency of a single pA site or candidate cis element but not the choice of two APA sites. To address this issue, we developed a set of four new bicistronic reporter vectors that harbor either two luciferase or fluorescence protein open reading frames connected with one Internal Ribosome Entry Site (IRES). Transfection of single or dual insertion constructs of these vectors into mammalian cells demonstrated that they could be utilized not only to quantify the strength of a single candidate pA site or cis element, but also to accurately measure the relative usage of two APA sites at both the mRNA (qRT-PCR) and protein levels. This represents the first reporter system that can study polyadenylation efficiency of a single pA site or element and regulation of two APA sites at both the mRNA and protein levels.
Collapse
Affiliation(s)
- Zhongyuan Deng
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shaohua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xinzhi Ni
- United States Department of Agriculture, Agricultural Research Service, Crop Genetics and Breeding Research Unit, Tifton, GA 31793, USA.
| | - Wenxian Zeng
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Xianchun Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
150
|
Introduction of Exogenous HSV-TK Suicide Gene Increases Safety of Keratinocyte-Derived Induced Pluripotent Stem Cells by Providing Genetic "Emergency Exit" Switch. Int J Mol Sci 2018; 19:ijms19010197. [PMID: 29315221 PMCID: PMC5796146 DOI: 10.3390/ijms19010197] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 11/18/2022] Open
Abstract
Since their invention in 2006, induced Pluripotent Stem (iPS) cells remain a great promise for regenerative medicine circumventing the ethical issues linked to Embryonic Stem (ES) cell research. iPS cells can be generated in a patient-specific manner as an unlimited source of various cell types for in vitro drug screening, developmental biology studies and regenerative use. Having the capacity of differentiating into the cells of all three primary germ layers, iPS cells have high potential to form teratoma tumors. This remains their main disadvantage and hazard which, until resolved, prevents utilization of iPS cells in clinic. Here, we present an approach for increasing iPS cells safety by introducing genetic modification—exogenous suicide gene Herpes Simplex Virus Thymidine Kinase (HSV-TK). Its expression results in specific vulnerability of genetically modified cells to prodrug—ganciclovir (GCV). We show that HSV-TK expressing cells can be eradicated both in vitro and in vivo with high specificity and efficiency with low doses of GCV. Described strategy increases iPS cells safety for future clinical applications by generating “emergency exit” switch allowing eradication of transplanted cells in case of their malfunction.
Collapse
|