101
|
Association between atherogenic risk-modulating proteins and endothelium-dependent flow-mediated dilation in coronary artery disease patients. Eur J Appl Physiol 2023; 123:367-380. [PMID: 36305972 PMCID: PMC9894982 DOI: 10.1007/s00421-022-05040-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/04/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Endothelial dysfunction is an early and integral event in the development of atherosclerosis and coronary artery disease (CAD). Reduced NO bioavailability, oxidative stress, vasoconstriction, inflammation and senescence are all implicated in endothelial dysfunction. However, there are limited data examining associations between these pathways and direct in vivo bioassay measures of endothelial function in CAD patients. This study aimed to examine the relationships between in vivo measures of vascular function and the expression of atherogenic risk-modulating proteins in endothelial cells (ECs) isolated from the radial artery of CAD patients. METHODS Fifty-six patients with established CAD underwent trans-radial catheterization. Prior to catheterization, radial artery vascular function was assessed using a) flow-mediated dilation (FMD), and b) exercise-induced dilation in response to handgrip (HE%). Freshly isolated ECs were obtained from the radial artery during catheterization and protein content of eNOS, NAD(P)H oxidase subunit NOX2, NFκB, ET-1 and the senescence markers p53, p21 and p16 were evaluated alongside nitrotyrosine abundance and eNOS Ser1177 phosphorylation. RESULTS FMD was positively associated with eNOS Ser1177 phosphorylation (r = 0.290, P = 0.037), and protein content of p21 (r = 0.307, P = 0.027) and p16 (r = 0.426, P = 0.002). No associations were found between FMD and markers of oxidative stress, vasoconstriction or inflammation. In contrast to FMD, HE% was not associated with any of the EC proteins. CONCLUSION These data revealed a difference in the regulation of endothelium-dependent vasodilation measured in vivo between patients with CAD compared to previously reported data in subjects without a clinical diagnosis, suggesting that eNOS Ser1177 phosphorylation may be the key to maintain vasodilation in CAD patients.
Collapse
|
102
|
Shcheblykin DV, Bolgov AA, Pokrovskii MV, Stepenko JV, Tsuverkalova JM, Shcheblykina OV, Golubinskaya PA, Korokina LV. Endothelial dysfunction: developmental mechanisms and therapeutic strategies. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.80376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: Every year the importance of the normal functioning of the endothelial layer of the vascular wall in maintaining the health of the body becomes more and more obvious.
The physiological role of the endothelium: The endothelium is a metabolically active organ actively involved in the regulation of hemostasis, modulation of inflammation, maintenance of hemovascular homeostasis, regulation of angiogenesis, vascular tone, and permeability.
Risk factors for the development of endothelial dysfunction: Currently, insufficient bioavailability of nitric oxide is considered the most significant risk factor for endothelial dysfunction.
Mechanisms of development of endothelial dysfunction: The genesis of endothelial dysfunction is a multifactorial process. Among various complex mechanisms, this review examines oxidative stress, inflammation, hyperglycemia, vitamin D deficiency, dyslipidemia, excess visceral fat, hyperhomocysteinemia, hyperuricemia, as well as primary genetic defect of endotheliocytes, as the most common causes in the population underlying the development of endothelial dysfunction.
Markers of endothelial dysfunction in various diseases: This article discusses the main biomarkers of endothelial dysfunction currently used, as well as promising biomarkers in the future for laboratory diagnosis of this pathology.
Therapeutic strategies: Therapeutic approaches to the endothelium in order to prevent or reduce a degree of damage to the vascular wall are briefly described.
Conclusion: Endothelial dysfunction is a typical pathological process involved in the pathogenesis of many diseases. Thus, pharmacological agents with endothelioprotective properties can provide more therapeutic benefits than a drug without such an effect.
Collapse
|
103
|
Zhou H, Wang S, Zhao C, He H. Effect of exercise on vascular function in hypertension patients: A meta-analysis of randomized controlled trials. Front Cardiovasc Med 2022; 9:1013490. [PMID: 36620631 PMCID: PMC9812646 DOI: 10.3389/fcvm.2022.1013490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Objective The purpose of this study was to systematically evaluate the effect of exercise on vascular function in patients with pre- and hypertension. Methods A systematic review of articles retrieved via the PubMed, Embase, EBSCO, and Web of Science databases was conducted. All the randomized controlled trials published between the establishment of the databases and October 2022 were included. Studies that evaluated the effects of exercise intervention on vascular function in patients with pre- and hypertension were selected. Results A total of 717 subjects were included in 12 randomized controlled trials. The meta-analysis showed that in patients with pre- and hypertension, exercise can significantly reduce systolic blood pressure (SBP) (MD = -4.89; 95% CI, -7.05 to -2.73; P < 0.00001) and diastolic blood pressure (DBP) (MD = -3.74; 95% CI, -5.18 to -2.29; P < 0.00001) and can improve endothelium-dependent flow-mediated dilatation (MD = 2.14; 95% CI, 1.71-2.61; P < 0.00001), and exercise did not reduce pulse wave velocity (PWV) (MD = 0.03, 95% CI, -0.45-0.50; P = 0.92). Regression analysis showed that changes in exercise-related vascular function were independent of subject medication status, baseline SBP, age and duration of intervention. Conclusion Aerobic, resistance, and high-intensity intermittent exercise all significantly improved SBP, DBP, and FMD in pre- and hypertensive patients, however, they were not effective in reducing PWV, and this effect was independent of the subject's medication status, baseline SBP, age and duration of intervention. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022302646.
Collapse
Affiliation(s)
- Huayi Zhou
- College of Sport and Human Science, Beijing Sport University, Beijing, China
| | - Shengya Wang
- College of Sport and Human Science, Beijing Sport University, Beijing, China
| | - Changtao Zhao
- Department of Physical Health and Arts Education, Ministry of Education, Beijing, China
| | - Hui He
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China,*Correspondence: Hui He,
| |
Collapse
|
104
|
Correlation between Blunted Nocturnal Decrease in Diastolic Blood Pressure and Oxidative Stress: An Observational Study. Antioxidants (Basel) 2022; 11:antiox11122430. [PMID: 36552638 PMCID: PMC9774450 DOI: 10.3390/antiox11122430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
An impaired nocturnal decrease in diastolic blood pressure (DBP) increases the blood pressure (BP) load, which is a main factor in endothelial dysfunction, atherosclerosis, and arterial stiffness. We aimed to quantify some markers of oxidative stress in hypertensive patients, to compare their levels between individuals with dipper and non-dipper DBP profiles, and to assess their correlation with the nocturnal DBP (nDBP) dipping. It was an observational study that included patients older than 18 years with a diagnosis of essential hypertension who consented to participate. The collected variables were some indices of 24-h ambulatory blood pressure monitoring, demographic, epidemiological, clinical, and laboratory variables. Plasma thiobarbituric acid reactive substances (TBARS) and reduced thiols, together with serum vitamin E, vitamin A, copper (Cu), and zinc (Zn) levels were assessed as oxidative stress markers. We recruited 248 patients with a median age of 56 years (56% women). The percentage of nDBP dipping showed a weak positive correlation with reduced thiol, vitamin E, and vitamin A levels; and a weak negative correlation with Cu levels. We also found a negative correlation between nDBP dipping and the TBARS/Thiol, TBARS/Vitamin E, and TBARS/Vitamin A ratios. After multivariate analysis, we found that increased TBARS/Thiol ratio and serum Cu levels were associated with a higher risk of a non-dipper DBP profile. As in other situations of increased cardiovascular risk, an impaired nDBP decrease may coincide with abnormalities in redox status.
Collapse
|
105
|
Maiuolo J, Oppedisano F, Carresi C, Gliozzi M, Musolino V, Macrì R, Scarano F, Coppoletta A, Cardamone A, Bosco F, Mollace R, Muscoli C, Palma E, Mollace V. The Generation of Nitric Oxide from Aldehyde Dehydrogenase-2: The Role of Dietary Nitrates and Their Implication in Cardiovascular Disease Management. Int J Mol Sci 2022; 23:ijms232415454. [PMID: 36555095 PMCID: PMC9779284 DOI: 10.3390/ijms232415454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Reduced bioavailability of the nitric oxide (NO) signaling molecule has been associated with the onset of cardiovascular disease. One of the better-known and effective therapies for cardiovascular disorders is the use of organic nitrates, such as glyceryl trinitrate (GTN), which increases the concentration of NO. Unfortunately, chronic use of this therapy can induce a phenomenon known as "nitrate tolerance", which is defined as the loss of hemodynamic effects and a reduction in therapeutic effects. As such, a higher dosage of GTN is required in order to achieve the same vasodilatory and antiplatelet effects. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a cardioprotective enzyme that catalyzes the bio-activation of GTN to NO. Nitrate tolerance is accompanied by an increase in oxidative stress, endothelial dysfunction, and sympathetic activation, as well as a loss of the catalytic activity of ALDH2 itself. On the basis of current knowledge, nitrate intake in the diet would guarantee a concentration of NO such as to avoid (or at least reduce) treatment with GTN and the consequent onset of nitrate tolerance in the course of cardiovascular diseases, so as not to make necessary the increase in GTN concentrations and the possible inhibition/alteration of ALDH2, which aggravates the problem of a positive feedback mechanism. Therefore, the purpose of this review is to summarize data relating to the introduction into the diet of some natural products that could assist pharmacological therapy in order to provide the NO necessary to reduce the intake of GTN and the phenomenon of nitrate tolerance and to ensure the correct catalytic activity of ALDH2.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Pharmaceutical Biology Laboratory, in Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (J.M.); (F.O.)
| | - Francesca Oppedisano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: (J.M.); (F.O.)
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, in Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Annarita Coppoletta
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| |
Collapse
|
106
|
Ribeiro JVV, Graziani D, Carvalho JHM, Mendonça MM, Naves LM, Oliveira HF, Campos HM, Fioravanti MCS, Pacheco LF, Ferreira PM, Pedrino GR, Ghedini PC, Fernandes KF, Batista KDA, Xavier CH. A peptide fraction from hardened common beans ( Phaseolus vulgaris) induces endothelium-dependent antihypertensive and renal effects in rats. Curr Res Food Sci 2022; 6:100410. [PMID: 36545514 PMCID: PMC9762200 DOI: 10.1016/j.crfs.2022.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/31/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Beans reached the research spotlight as a source of bioactive compounds capable of modulating different functions. Recently, we reported antioxidant and oxidonitrergic effect of a low molecular weight peptide fraction (<3 kDa) from hardened bean (Phaseolus vulgaris) in vitro and ex vivo, which necessitate further in vivo assessments. This work aimed to evaluate the hypotensive effect and the involved physiological mechanisms of the hardened common bean peptide (Phaseolus vulgaris) in normotensive (Wistar) and hypertensive (SHR) animals. Bean flour was combined with a solution containing acetonitrile, water and formic acid (25: 24: 1). Protein extract (PV3) was fractioned (3 kDa membrane). We assessed PV3 effects on renal function and hemodynamics of wistar (WT-normotensive) and spontaneously hypertensive rats (SHR) and measured systemic arterial pressure and flow in aortic and renal beds. The potential endothelial and oxidonitrergic involvements were tested in isolated renal artery rings. As results, we found that PV3: I) decreased food consumption in SHR, increased water intake and urinary volume in WT, increased glomerular filtration rate in WT and SHR, caused natriuresis in SHR; II) caused NO- and endothelium-dependent vasorelaxation in renal artery rings; III) reduced arterial pressure and resistance in aortic and renal vascular beds; IV) caused antihypertensive effects in a dose-dependent manner. Current findings support PV3 as a source of bioactive peptides and raise the potential of composing nutraceutical formulations to treat renal and cardiovascular diseases.
Collapse
Key Words
- ABF, Aortic blood flow
- AVR, Aortic vascular resistance
- Bioactive peptides
- Common beans
- GFR, Glomerular filtration rate
- HTC, Hard-to-Cook effects
- Hard-to-cook
- Hydroelectrolytic balance
- Hypertension
- L-NAME, nitroarginine methyl ester
- NO, Nitric oxide
- PV3, Phaseolus vulgaris extract with peptides smaller than 3 kDa
- Phaseolus vulgaris
- RBF, Renal blood flow
- RVR, Renal vascular resistance
- Renal function
- SHR, Spontaneously hypertensive rat
- WT, Wistar rat
Collapse
Affiliation(s)
| | - Daniel Graziani
- Systems Neurobiology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | | | | | - Lara Marques Naves
- Center of Neuroscience and Cardiovascular Research, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | - Helton Freires Oliveira
- Molecule, Cell and Tissue Analysis Laboratory, School of Veterinary and Animal Science, Federal University of Goiás, Brazil
| | - Hericles Mesquita Campos
- Biochemical and Molecular Pharmacology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | | | | | - Patricia Maria Ferreira
- Systems Neurobiology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | - Gustavo Rodrigues Pedrino
- Center of Neuroscience and Cardiovascular Research, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | - Paulo César Ghedini
- Biochemical and Molecular Pharmacology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil
| | - Kátia Flávia Fernandes
- Polymer Chemistry Laboratory, Institute of Biological of Sciences, Federal University of Goiás, Brazil
| | | | - Carlos Henrique Xavier
- Systems Neurobiology Laboratory, Institute of Biological Sciences, Federal University of Goiás, Brazil,Corresponding author. Systems Neurobiology Laboratory. Department of Physiological Sciences, room 203, Institute of Biological Sciences. Federal University of Goiás, Esperança Avenue, Campus II, Goiania, GO, 74690-900, Brazil.
| |
Collapse
|
107
|
Liu L, Hu J, Mao Q, Liu C, He H, Hui X, Yang G, Qu P, Lian W, Duan L, Dong Y, Pan J, Liu Y, He Q, Li J, Wang J. Functional compounds of ginseng and ginseng-containing medicine for treating cardiovascular diseases. Front Pharmacol 2022; 13:1034870. [PMID: 36532771 PMCID: PMC9755186 DOI: 10.3389/fphar.2022.1034870] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/24/2022] [Indexed: 10/29/2023] Open
Abstract
Ginseng (Panax ginseng C.A.Mey.) is the dry root and rhizome of the Araliaceae ginseng plant. It has always been used as a tonic in China for strengthening the body. Cardiovascular disease is still the main cause of death in the world. Some studies have shown that the functional components of ginseng can regulate the pathological process of various cardiovascular diseases through different mechanisms, and its formulation also plays an irreplaceable role in the clinical treatment of cardiovascular diseases. Therefore, this paper elaborates the current pharmacological effects of ginseng functional components in treating cardiovascular diseases, summarizes the adverse reactions of ginseng, and sorts out the Chinese patent medicines containing ginseng formula which can treat cardiovascular diseases.
Collapse
Affiliation(s)
- Lanchun Liu
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Hu
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiyuan Mao
- Departmen of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chao Liu
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoqiang He
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoshan Hui
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guang Yang
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peirong Qu
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjing Lian
- Beijing University of Chinese Medicine, Beijing, China
| | - Lian Duan
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Dong
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juhua Pan
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongmei Liu
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyong He
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Li
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Wang
- Departmen of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
108
|
Chen Z, Wu M, Huang H, Tao H, Zou L, Luo Q. Plasma Exosomal miR-199a-5p Derived from Preeclampsia with Severe Features Impairs Endothelial Cell Function via Targeting SIRT1. Reprod Sci 2022; 29:3413-3424. [PMID: 36071344 DOI: 10.1007/s43032-022-00977-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022]
Abstract
Preeclampsia (PE) is a pregnancy complication with high maternal and fetal morbidity and mortality rates. During pregnancy, the concentration of exosomes in the maternal blood circulation would increase, establishing that plasma exosomes play a role in the development of pregnancy. Our previous study implied the important role of exosomal miR-199a-5p in preeclampsia with severe features (sPE). This study aims to reveal the role of exosomal miR-199a-5p in contribution to the development of sPE. The results showed that the expression of miR-199a-5p was significantly higher in plasma exosomes and placenta tissue from patients with sPE than that in normal pregnant women. Additionally, hydrogen peroxide (H2O2) could upregulate the expression of miR-199a-5p in BeWo cells and cell-derived exosomes. In terms of the regulatory effect, exosomal miR-199a-5p was observed to inhibit the expression of SIRT1 in human umbilical venous endothelial cells (HUVECs). Moreover, the treatment of both miR-199a-5p-overexpressed exosomes and SIRT1 inhibitor EX527 could decrease the nitric oxide production, elevate the intracellular reactive oxygen species level, and enhance the expressions of ICAM-1 and VCAM-1 of HUVECs. Thus, our findings suggest that the upregulated plasma exosomal miR-199a-5p in sPE might result from the trophoblast of the impaired placenta under oxidative stress. Furthermore, exosomal miR-199a-5p could impair the endothelial cell function via targeting SIRT1, contributing to the development of preeclampsia.
Collapse
Affiliation(s)
- Zhirui Chen
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Mengying Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Haixia Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Hui Tao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China.
| | - Qingqing Luo
- Department of Obstetrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
109
|
Ushida T, Cotechini T, Protopapas N, Atallah A, Collyer C, Toews AJ, Macdonald-Goodfellow SK, Tse MY, Winn LM, Pang SC, Adams MA, Othman M, Kotani T, Kajiyama H, Graham CH. Aberrant inflammation in rat pregnancy leads to cardiometabolic alterations in the offspring and intrauterine growth restriction in the F2 generation. J Dev Orig Health Dis 2022; 13:706-718. [PMID: 35593438 DOI: 10.1017/s2040174422000265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Children of women with pre-eclampsia have increased risk of cardiovascular (CV) and metabolic disease in adult life. Furthermore, the risk of pregnancy complications is higher in daughters born to women affected by pre-eclampsia than in daughters born after uncomplicated pregnancies. While aberrant inflammation contributes to the pathophysiology of pregnancy complications, including pre-eclampsia, the contribution of maternal inflammation to subsequent risk of CV and metabolic disease as well as pregnancy complications in the offspring remains unclear. Here, we demonstrate that 24-week-old female rats (F1) born to dams (F0) exposed to lipopolysaccharide (LPS) during pregnancy (to induce inflammation) exhibited mild systolic dysfunction, increased cardiac growth-related gene expression, altered glucose tolerance, and coagulopathy; whereas male F1 offspring exhibited altered glucose tolerance and increased visceral fat accumulation compared with F1 sex-matched offspring born to saline-treated dams. Both male and female F1 offspring born to LPS-treated dams had evidence of anemia. Fetuses (F2) from F1 females born to LPS-treated dams were growth restricted, and this reduction in fetal growth was associated with increased CD68 positivity (indicative of macrophage presence) and decreased expression of glucose transporter-1 in their utero-placental units. These results indicate that abnormal maternal inflammation can contribute to increased risk of CV and metabolic disease in the offspring, and that the effects of inflammation may cross generations. Our findings provide evidence in support of early screening for CV and metabolic disease, as well as pregnancy complications in offspring affected by pre-eclampsia or other pregnancy complications associated with aberrant inflammation.
Collapse
Affiliation(s)
- Takafumi Ushida
- Department of Gynecology and Obstetrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tiziana Cotechini
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Nicole Protopapas
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Aline Atallah
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Charlotte Collyer
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Alexa J Toews
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | - M Yat Tse
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Stephen C Pang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Michael A Adams
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Maha Othman
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- School of Baccalaureate Nursing, St. Lawrence College, Kingston, Ontario, Canada
| | - Tomomi Kotani
- Department of Gynecology and Obstetrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Gynecology and Obstetrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Charles H Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
110
|
Zhu J, Yang L, Jia Y, Balistrieri A, Fraidenburg DR, Wang J, Tang H, Yuan JXJ. Pathogenic Mechanisms of Pulmonary Arterial Hypertension: Homeostasis Imbalance of Endothelium-Derived Relaxing and Contracting Factors. JACC. ASIA 2022; 2:787-802. [PMID: 36713766 PMCID: PMC9877237 DOI: 10.1016/j.jacasi.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/29/2022] [Accepted: 09/14/2022] [Indexed: 12/23/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal disease. Sustained pulmonary vasoconstriction and concentric pulmonary vascular remodeling contribute to the elevated pulmonary vascular resistance and pulmonary artery pressure in PAH. Endothelial cells regulate vascular tension by producing endothelium-derived relaxing factors (EDRFs) and endothelium-derived contracting factors (EDCFs). Homeostasis of EDRF and EDCF production has been identified as a marker of the endothelium integrity. Impaired synthesis or release of EDRFs induces persistent vascular contraction and pulmonary artery remodeling, which subsequently leads to the development and progression of PAH. In this review, the authors summarize how EDRFs and EDCFs affect pulmonary vascular homeostasis, with special attention to the recently published novel mechanisms related to endothelial dysfunction in PAH and drugs associated with EDRFs and EDCFs.
Collapse
Key Words
- 5-HT, 5-hydroxytryptamine
- ACE, angiotensin-converting enzyme
- EC, endothelial cell
- EDCF, endothelium-derived contracting factor
- EDRF, endothelium-derived relaxing factor
- ET, endothelin
- PAH, pulmonary arterial hypertension
- PASMC, pulmonary artery smooth muscle cell
- PG, prostaglandin
- TPH, tryptophan hydroxylase
- TXA2, thromboxane A2
- cGMP, cyclic guanosine monophosphate
- endothelial dysfunction
- endothelium-derived relaxing factor
- pulmonary arterial hypertension
- vascular homeostasis
Collapse
Affiliation(s)
- Jinsheng Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lei Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yangfan Jia
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Dustin R. Fraidenburg
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
111
|
Kanbay M, Ureche C, Copur S, Covic AM, Tanriover C, Sekmen M, Covic A. Kidney transplantation: is it a solution to endothelial dysfunction? Int Urol Nephrol 2022; 55:1183-1191. [PMID: 36396804 DOI: 10.1007/s11255-022-03415-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Endothelial dysfunction is associated with elevated cardiovascular risk in patients with end-stage renal disease (ESRD). Kidney transplantation has demonstrated significant ability in reducing mortality and improving quality of life in recipients. Recent studies have also reported improvements in endothelial function following kidney transplantation; however, current literature is limited. METHODS We performed a systematic review of PubMed/Medline, Web of Science, Scopus, Cochrane Library, and CINAHL databases for prospective cohort studies that assessed endothelial function prior to and following kidney transplantation via various clinical markers. Follow-up duration ranged from 1 month to 1 year. A meta-analysis of pooled data was conducted using random-effect models for four key markers: brachial artery flow-mediated dilatation (FMD), high-sensitivity C-reactive protein (hsCRP), nitroglycerin-mediated dilation (NMD), and adiponectin. RESULTS We included nine studies in our final analysis with a total of 524 patients. Significant improvement of all four biomarkers was observed after transplantation. The mean difference was 2.81% (95% CI 1.92-3.71, p < 0.00001) for FMD, 17.27 mg/L (95% CI 5.82-28.72, p = 0.003) for hsCRP, 1.05%, (95% CI 0.56-1.54, p < 0.0001) for NMD, and 9.27 µg/mL (95% CI 5.96-12.57, p < 0.00001) for adiponectin. CONCLUSION There is an immediate reversal of endothelial dysfunction in ESRD patients who undergo kidney transplantation, which may explain observed improvements in cardiovascular morbidity in transplant recipients. Future longitudinal studies are needed to understand possible re-emergence of endothelial dysfunction in the long-term postoperative period.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Section of Nephrology, Koc University School of Medicine, 34010, Istanbul, Turkey.
| | - Carina Ureche
- Cardiovascular Diseases Institute, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Alexandra M Covic
- Department of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Mert Sekmen
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| |
Collapse
|
112
|
Graton ME, Ferreira BHSH, Troiano JA, Potje SR, Vale GT, Nakamune ACMS, Tirapelli CR, Miller FJ, Ximenes VF, Antoniali C. Comparative study between apocynin and protocatechuic acid regarding antioxidant capacity and vascular effects. Front Physiol 2022; 13:1047916. [PMID: 36457305 PMCID: PMC9707364 DOI: 10.3389/fphys.2022.1047916] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/18/2022] [Indexed: 03/14/2024] Open
Abstract
Reactive oxygen species (ROS) derived from NOX enzymes activity play an important role in the development of cardiovascular diseases. Compounds able to decrease oxidative stress damage are potential candidates as drugs and/or supplements for hypertension treatment. Here, we aimed to compare in vitro ROS scavenging potency, effective NOX inhibition and effects on vascular reactivity of apocynin to another phenolic compound, protocatechuic acid, in vascular cells from spontaneously hypertensive rat (SHR), where redox signaling is altered and contributes to the development and/or maintenance of hypertension. We evaluated the in vitro antioxidant capacity and free radical scavenging capacity of both phenolic compounds. Moreover, we investigated the effect of both compounds on lipid peroxidation, lucigenin chemiluminescence, nitric oxide (NO•) levels and ROS concentration in vascular cells of SHR or human umbilical vein endothelial cell (HUVEC). Apocynin and protocatechuic acid presented antioxidant capacity and ability as free radical scavengers, decreased thiobarbituric acid reactive substances (TBARS) in aortic cells from SHR, and increased NO• concentration in isolated HUVEC. Both compounds were able to reduce lucigenin chemiluminescence and increased the potency of acetylcholine in aorta of SHR. However, in SHR aortas, only apocynin diminished the contraction induced by phenylephrine. In conclusion, these results strongly reinforce the potential application of substances such as apocynin and protocatechuic acid that combine abilities as scavenging and/or prevention of ROS generation, establishment of NO bioactivity and modulation of vascular reactivity. Due to its phytochemical origin and low toxicity, its potential therapeutic use in vascular diseases should be considered.
Collapse
Affiliation(s)
- Murilo E. Graton
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Bruno H. S. H. Ferreira
- Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Jéssica A. Troiano
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
- Fundação Dracenense de Educação e Cultura (FUNDEC), Faculdades de Dracena (UNIFADRA), Dracena, São Paulo, Brazil
| | - Simone R. Potje
- Department of Biosciences, Minas Gerais State University (UEMG), Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel T. Vale
- Department of Biosciences, Minas Gerais State University (UEMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ana Cláudia M. S. Nakamune
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Carlos R. Tirapelli
- Department of Psychiatry Nursing and Human Sciences, College of Nursing of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Francis J. Miller
- Nashville VA Medical Center, Vanderbilt University, Nashville, TN, United States
| | - Valdecir F. Ximenes
- Department of Chemistry, Faculty of Sciences, São Paulo State University (UNESP), Bauru, São Paulo, Brazil
| | - Cristina Antoniali
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| |
Collapse
|
113
|
Podzolkova NM, Skvortsova MY, Denisova YV, Denisova TV. Is high normotension a norm or a risk factor for perinatal complications: prospective cohort study. CONSILIUM MEDICUM 2022. [DOI: 10.26442/20751753.2022.7.201785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Aim. Comparative assessment of the effect of high normotension and hypertension 12nd stage on the risk of gestational and perinatal complications.
Materials and methods. A prospective cohort study (n=110) assessing the effect of high normotension on the risk of gestational complications and pregnancy outcomes was conducted. The main group (n=70) included 30 patients with high normotension subgroup A, and 40 patients with hypertension 12nd stage subgroup B. The comparison group included 40 patients with "white coat hypertension".
Results. The most frequent complications in the 2nd and 3rd trimesters of pregnancy were toxaemia, threatened miscarriage, edema (detected in more than half of patients with high normotension and hypertension 12nd stage) and well as threatened preterm labor (p0.05). The frequency of pre-eclampsia development in subgroups A and B did not differ significantly, however, in patients with high normotension in the 3rd trimester during a test of endothelium-dependent vasodilation were detected signs of endothelial dysfunction, which may be one of the mechanisms for the subsequent formation of hypertension in these patients. Placental insufficiency of varying severity was detected only in subgroups A and B. Placental insufficiency, along with intrauterine fetal hypoxia of different etiologies, were the most frequent causes of emergency caesarean section, occurring only in the main group 3 (75.0%) in subgroup A and 6 (66.67%) in subgroup B and associated with blood pressure above 130/85 mm Hg.
Conclusion. The importance of preventing blood pressure increase to high normal rate is explained by the development of endothelial dysfunction at late gestation, which can serve as the mechanisms of hypertension formation in this category of pregnant women.
Collapse
|
114
|
Nunes Filho JCC, Camurça DS, Rocha GA, Oliveira ABTD, Marinho GCP, Santos SGM, Pereira DCBHG, Meneses GC, Daher EDF. Campanha de prevenção de doença renal crônica: relação entre proteinúria e idosos. J Bras Nefrol 2022. [DOI: 10.1590/2175-8239-jbn-2022-0028pt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Resumo Objetivo: Verificar a relação entre a presença de proteinúria como marcador de lesão renal em idosos sem histórico de hipertensão arterial sistêmica e doenças cardiovasculares. Um estudo transversal foi desenvolvido de Janeiro de 2014 a Dezembro de 2019, por meio de campanhas de prevenção a doenças renais promovidas pela Universidade Federal do Ceará, na cidade de Fortaleza. Métodos: A amostra foi composta por 417 idosos. Um questionário foi usado para caracterizar indivíduos e avaliar doenças prévias, e foram utilizadas tiras reagentes de urinálise para avaliar proteinúria. Resultados: Diferenças estatisticamente significativas (p < 0,05) e tamanhos de efeito moderados foram encontrados para níveis de pressão arterial (IC 0,53-0,93), pressão arterial sistólica e pressão arterial diastólica (IC 0,21-0,61). Também foram encontradas diferenças significativas na glicemia capilar entre grupos (p = 0,033), mas com um tamanho de efeito baixo (0,02–0,42). O grupo com comorbidades apresentou 2,94 vezes mais probabilidade de ter proteinúria do que aqueles sem comorbidades (OR 2,94; IC 1,55-4,01; p < 0,05). No grupo sem doença cardiovascular/hipertensão, foi encontrada uma associação estatisticamente significativa para diabetes anterior e proteinúria (p = 0,037), apresentando risco 2,68 vezes maior de proteinúria naqueles com diabetes mellitus (OR 2,68; IC 1,05-6,85). Também foi encontrada uma associação significativa entre faixas etárias, com o grupo mais velho apresentando risco 2,69 vezes maior de desenvolver proteinúria (75 a 90 em comparação com 60 a 74 anos) (IC 1,01-7,16; p = 0,045). Conclusão: Mesmo sem hipertensão arterial sistêmica ou doença cardiovascular, o diabetes e a idade avançada podem ser considerados fatores de alto risco para proteinúria.
Collapse
|
115
|
Chilukuri N, Bustamante-Helfrich B, Ji Y, Wang G, Hong X, Cheng TL, Wang X. Maternal folate status and placental vascular malperfusion: Findings from a high-risk US minority birth cohort. Placenta 2022; 129:87-93. [PMID: 36274480 DOI: 10.1016/j.placenta.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Maternal folate deficiency was associated with preeclampsia (PE) and PE was associated with placental maternal vascular malperfusion (MVM). However, no study has examined the association of maternal folate status with placental MVM. METHODS We examined the association of maternal folate status and placental MVM in the Boston Birth Cohort. Primary exposure variables were maternal self-reported multivitamin supplement (<2, 3-5, >5 times/week) per trimester; and plasma folate levels (nmol/L) after birth. Primary outcome was presence/absence of placental MVM defined by the Amsterdam Placental Workshop Group standard classification. Covariates included demographics, chronic hypertension, clinically diagnosed PE, eclampsia and HELLP syndrome, gestational and pre-gestational diabetes, overweight/obesity, maternal cigarette smoking and alcohol use. Associations between folate and placental MVM were evaluated using multivariate logistic regressions. RESULTS Of 3001 mothers in this study, 18.8% of mothers had PE, 37.5% had MVM. Mothers with the lowest self-reported frequency of folate intake had the highest risk of MVM (OR 1.45, 95% CI 1.03-2.05), after adjusting for the covariates. Consistently, among a subset of 939 mothers with plasma folate levels, folate insufficiency was associated with increased risk of MVM (OR 1.65, 95% CI 1.03-2.63), after adjusting for the covariables. As expected, mothers with low folate and placental MVM had highest rates of PE compared to those of high folate and no MVM (p < 0.001). DISCUSSION In this high-risk birth cohort, low maternal folate status was associated with increased risk of placental MVM. Further investigation should explore the association between folate status, placental findings and the great obstetrical syndrome.
Collapse
Affiliation(s)
- Nymisha Chilukuri
- Department of Pediatrics, Johns Hopkins University School of Medicine, 200 North Wolfe Street, Suite 2088, Baltimore, MD, 21287, United States.
| | - Blandine Bustamante-Helfrich
- University of the Incarnate Word School of Osteopathic Medicine, 7615 Kennedy Hill, San Antonio, TX, 78235, United States.
| | - Yuelong Ji
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, United States.
| | - Guoying Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, United States.
| | - Xiumei Hong
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, United States.
| | - Tina L Cheng
- University of Cincinnati, Cincinnati Children's Research Foundation, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue MLC 3016, Cincinnati, OH, 45229-3026, United States.
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, United States.
| |
Collapse
|
116
|
Wang F, Wang Y, Wang Y, Jia T, Chang L, Ding J, Zhou L. Urinary polycyclic aromatic hydrocarbon metabolites were associated with hypertension in US adults: data from NHANES 2009-2016. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80491-80501. [PMID: 35716300 DOI: 10.1007/s11356-022-21391-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widely existing organic pollutants in the environment, and their persistence in the environment makes us have to pay continuous attention to their health effects. However, since the American Heart Association updated its definition of hypertension in 2017, few studies have explored the relationship. This study aimed to investigate the relationship between PAH exposure and hypertension after the updated definition of hypertension and explore whether body mass index (BMI) moderates this relationship. A total of 6332 adult participants from the 2009-2016 National Health and Nutrition Examination Survey (NHANES) were examined. Multiple logistic regression and restricted cubic splines were used to analyze the association between urinary polycyclic aromatic hydrocarbon metabolites and hypertension, and the dose-response relationship. Weighted quantile sum (WQS) regression was applied to blood pressure to reveal multiple exposure effects and the relative weights of each PAH. The prevalence of hypertension in the study population was 48.52%. There was a positive dose-response relationship between high exposure to 1-hydroxynaphthalene, 2&3-hydroxyphenanthrene, and the risk of hypertension. Naphthalene metabolites accounted for the most significant proportion of systolic blood pressure, and phenanthrene metabolites accounted for the most significant proportion of diastolic blood pressure. Obese individuals with high PAH exposure were at greater risk for hypertension than individuals with low PAH exposure and normal BMI. Higher prevalence rate and stronger association of metabolites with outcomes were obtained in the general population of the USA under the new guideline. High levels of exposure to PAHs were positively associated with the risk of hypertension, and these effects were modified by BMI.
Collapse
Affiliation(s)
- Fang Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, China.
| | - Yuying Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, China
| | - Yu Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, China
| | - Teng Jia
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, China
| | - Li Chang
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, China
| | - Jie Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, China
| | - Li Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, China
| |
Collapse
|
117
|
Jesus RLC, Silva ILP, Araújo FA, Moraes RA, Silva LB, Brito DS, Lima GBC, Alves QL, Silva DF. 7-Hydroxycoumarin Induces Vasorelaxation in Animals with Essential Hypertension: Focus on Potassium Channels and Intracellular Ca 2+ Mobilization. Molecules 2022; 27:7324. [PMID: 36364149 PMCID: PMC9655823 DOI: 10.3390/molecules27217324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 12/01/2022] Open
Abstract
Cardiovascular diseases (CVD) are the deadliest noncommunicable disease worldwide. Hypertension is the most prevalent risk factor for the development of CVD. Although there is a wide range of antihypertensive drugs, there still remains a lack of blood pressure control options for hypertensive patients. Additionally, natural products remain crucial to the design of new drugs. The natural product 7-hydroxycoumarin (7-HC) exhibits pharmacological properties linked to antihypertensive mechanisms of action. This study aimed to evaluate the vascular effects of 7-HC in an experimental model of essential hypertension. The isometric tension measurements assessed the relaxant effect induced by 7-HC (0.001 μM-300 μM) in superior mesenteric arteries isolated from hypertensive rats (SHR, 200-300 g). Our results suggest that the relaxant effect induced by 7-HC rely on K+-channels (KATP, BKCa, and, to a lesser extent, Kv) activation and also on Ca2+ influx from sarcolemma and sarcoplasmic reticulum mobilization (inositol 1,4,5-triphosphate (IP3) and ryanodine receptors). Moreover, 7-HC diminishes the mesenteric artery's responsiveness to α1-adrenergic agonist challenge and improves the actions of the muscarinic agonist and NO donor. The present work demonstrated that the relaxant mechanism of 7-HC in SHR involves endothelium-independent vasorelaxant factors. Additionally, 7-HC reduced vasoconstriction of the sympathetic agonist while improving vascular endothelium-dependent and independent relaxation.
Collapse
Affiliation(s)
- Rafael L. C. Jesus
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Isnar L. P. Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Fênix A. Araújo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation—FIOCRUZ, Salvador 40296-710, Brazil
| | - Raiana A. Moraes
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation—FIOCRUZ, Salvador 40296-710, Brazil
| | - Liliane B. Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Daniele S. Brito
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Gabriela B. C. Lima
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Quiara L. Alves
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Darizy F. Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador 40110-902, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation—FIOCRUZ, Salvador 40296-710, Brazil
| |
Collapse
|
118
|
Song W, Yuan Y, Tan X, Gu Y, Zeng J, Song W, Xin Z, Fang D, Guan R. Icariside II induces rapid phosphorylation of endothelial nitric oxide synthase via multiple signaling pathways. PeerJ 2022; 10:e14192. [PMID: 36312762 PMCID: PMC9615964 DOI: 10.7717/peerj.14192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/15/2022] [Indexed: 01/24/2023] Open
Abstract
Icariside II, as a favonoid compound derived from epimedium, has been proved to involed in a variety of biological and pharmacological effects such as anti-inflammatory, anti-osteoporosis, anti-oxidation, anti-aging, and anti-cancer but its mechanism is unclear, especially in terms of its effect on post-transcriptional modification of endothelial nitric oxide synthase (eNOS). Phosphorylation of eNOS plays an important role in the synthesis of nitric oxide in endothelial cells, which is closely related to erectile dysfunction, atherosclerosis, Alzheimer's disease, and other diseases. Our study aims to investigate the effect and mechanism of Icariside II on the rapid phosphorylation of eNOS. In this study, human umbilical vein endothelial cells (HUVECs) were stimulated with Icariside II in the presence or absence of multiple inhibitors (1 µM), including LY294002 (PI3K-inhibitor), MK-2206 (AKT-inhibitor), Bisindolylmaleimide X (AMPK-inhibitor), H-89 (CaMKII-inhibitor), KN-62 (PKA-inhibitor), Dorsomorphin (PKC-inhibitor). The proliferation of HUVECs was assessed using cell counting kit-8 (CCK-8). The release of nitric oxide (NO) within HUVECs was detected via fluorescence probe (DAF-FM). Western blot was used to examine the effect of Icariside II on the expression of eNOS, phosphorylation of eNOS, and common signaling pathways proteins. In this study, Icariside II was found to promote the cell proliferation and rapid NO release in HUVECs. The phosphorylation of eNOS-Ser1177 was significantly increased after Icariside II stimulation and reached a peak at 10 min (p < 0.05). Meanwhile, the phosphorylation of eNOS-Thr495 was significantly decreased after 45 min of stimulation (p < 0.05). Following the intervention with multiple inhibitors, it was found that MK-2206 (AKT inhibitor), LY294002 (PI3K inhibitor), KN-62 (AMPK inhibitor), and Bisindolylmaleimide X (PKC inhibitor) could significantly inhibit the phosphorylation of eNOS-Ser1177 caused by Icariside II (p < 0.05), while MK-2206, LY294002, and Bisindolylmaleimide X reversed the alleviated phosphorylation of eNOS-Thr495. We concluded that Icariside can regulate rapid phosphorylation of eNOS- Ser1177 and eNOS-Thr495 via multiple signaling pathways, resulting in the up-regulation of eNOS and the increased release of NO.
Collapse
Affiliation(s)
- Wenpeng Song
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China,Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yiming Yuan
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Xiaohui Tan
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Yangyang Gu
- Department of Urology, Peking University First Hospital, Beijing, China,Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianyu Zeng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Weidong Song
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Zhongcheng Xin
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| | - Ruili Guan
- Department of Urology, Peking University First Hospital, Beijing, China,Institute of Urology, Peking University, Beijing, China,Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing, China
| |
Collapse
|
119
|
Wan C, Zong RY, Chen XS. The new mechanism of cognitive decline induced by hypertension: High homocysteine-mediated aberrant DNA methylation. Front Cardiovasc Med 2022; 9:928701. [PMID: 36352848 PMCID: PMC9637555 DOI: 10.3389/fcvm.2022.928701] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
The prevalence and severity of hypertension-induced cognitive impairment increase with the prolonging of hypertension. The mechanisms of cognitive impairment induced by hypertension primarily include cerebral blood flow perfusion imbalance, white and gray matter injury with blood-brain barrier disruption, neuroinflammation and amyloid-beta deposition, genetic polymorphisms and variants, and instability of blood pressure. High homocysteine (HHcy) is an independent risk factor for hypertension that also increases the risk of developing early cognitive impairment. Homocysteine (Hcy) levels increase in patients with cognitive impairment induced by hypertension. This review summarizes a new mechanism whereby HHcy-mediated aberrant DNA methylation and exacerbate hypertension. It involves changes in Hcy-dependent DNA methylation products, such as methionine adenosyltransferase, DNA methyltransferases, S-adenosylmethionine, S-adenosylhomocysteine, and methylenetetrahydrofolate reductase (MTHFR). The mechanism also involves DNA methylation changes in the genes of hypertension patients, such as brain-derived neurotrophic factor, apolipoprotein E4, and estrogen receptor alpha, which contribute to learning, memory, and attention deficits. Studies have shown that methionine (Met) induces hypertension in mice. Moreover, DNA hypermethylation leads to cognitive behavioral changes alongside oligodendroglial and/or myelin deficits in Met-induced mice. Taken together, these studies demonstrate that DNA methylation regulates cognitive dysfunction in patients with hypertension. A better understanding of the function and mechanism underlying the effect of Hcy-dependent DNA methylation on hypertension-induced cognitive impairment will be valuable for early diagnosis, interventions, and prevention of further cognitive defects induced by hypertension.
Collapse
Affiliation(s)
- Chong Wan
- Department of Military Medical Geography, Army Medical Training Base, Army Medical University (Third Military Medical University), Chongqing, China
- College of Basic Medicine, Army Medical University, Chongqing, China
| | - Rui-Yi Zong
- Department of Military Medical Geography, Army Medical Training Base, Army Medical University (Third Military Medical University), Chongqing, China
- NCO School, Army Medical University, Shijiazhuang, China
| | - Xing-Shu Chen
- Department of Military Medical Geography, Army Medical Training Base, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
120
|
Ramis TR, Boeno FP, Leal-Menezes R, Munhoz SV, Farinha JB, Ribeiro JL, Reischak-Oliveira A. Effects of exercise modalities on decreased blood pressure in patients with hypertension. Front Physiol 2022; 13:993258. [PMID: 36311227 PMCID: PMC9614347 DOI: 10.3389/fphys.2022.993258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
This study aimed to evaluate the acute effects of aerobic and resistance exercises on blood pressure and endothelial blood markers. We also correlated post-exercise blood pressure response with baseline cardiovascular parameters in middle-aged patients with hypertension. This cross-sectional study randomized 54 volunteers into the aerobic exercise group (AG, n = 27; 45.6 ± 7.7 years) or dynamic resistance exercise group (RG, n = 27; 45.8 ± 8.4 years). Blood marker evaluation, cardiopulmonary exercise tests, resting blood pressure monitoring, ambulatory blood pressure monitoring (ABPM), flow-mediated dilatation monitoring, and body composition evaluation were carried out. Exercise sessions were performed to evaluate post-exercise hypotension (PEH) and endothelial marker responses, in addition to post-exercise ABPM (ABPMex). This study is an arm of the study which was approved by the local ethics committee (No. 69373217.3.0000.5347) in accordance with the Helsinki Declaration and was registered at ClinicalTrials.gov (NCT03282942). The AG performed walking/running at 60% of the reserve heart rate, while the RG performed 10 exercises with two sets of 15-20 repetitions. The mean 24 h ABPM and ABPMex values showed no significant statistical differences. Systolic and diastolic blood pressure hypotension after aerobic and dynamic resistance were -10.59 ± 5.24/-6.15 ± 6.41 mmHg and -5.56 ± 7.61/-6.20 ± 8.25 mmHg, respectively. For an up-to-7 h assessment of resting pressure, there was a positive effect in the aerobic group. The concentrations of nitrites/nitrates (NOx) and endothelin-1 (ET-1) did not change during hypotension. Moreover, PEH and ABPMex were significantly correlated with baseline health variables. Thus, when middle-aged patients with hypertension perform aerobic or resistance exercise, the NOx/ET-1 pathway does not provide the best explanation for PEH. Finally, we found associations between baseline cardiovascular variables and endothelial vasoconstrictors with PEH.
Collapse
Affiliation(s)
- Thiago Rozales Ramis
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Franccesco Pinto Boeno
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Rodrigo Leal-Menezes
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Samuel Vargas Munhoz
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Juliano Boufleur Farinha
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jerri Luiz Ribeiro
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alvaro Reischak-Oliveira
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
121
|
Diesel exhaust particles induce human umbilical vein endothelial cells apoptosis by accumulation of autophagosomes and caspase-8 activation. Sci Rep 2022; 12:16492. [PMID: 36192481 PMCID: PMC9529885 DOI: 10.1038/s41598-022-21044-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Diesel exhaust particles (DEP) are risk factors for endothelial cells (ECs) dysfunction. However, the mechanism by which DEP induce ECs apoptosis remains unclear. Here, we investigated how DEP induce death of human umbilical vein ECs (HUVECs), with a focus on the autophagy-mediated apoptotic pathway. DEP induced dose-dependent HUVECs death and exposure to the IC50 concentration of DEP (70 µg/ml) led to apoptosis. DEP phosphorylated Beclin-1 (Ser93) and increased protein levels of p62 and LC3BII and the number of LC3B puncta, indicating autophagy initiation. DEP increased expression of pro- and mature forms of cathepsin D, which increases lysosomal activity. However, DEP suppressed expression of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins (STX17, VAMP8, SNAP29, YKT6, and STX7) to inhibit autolysosome formation, resulting in accumulation of autophagosomes. LC3B, p62, and caspase-8 form a tertiary complex in accumulated autophagosomes, which is known to serve as a platform for caspase-8 activation. Indeed, DEP activates caspase-8 and pretreatment with a caspase-8 inhibitor suppressed DEP-induced apoptosis. Furthermore, depletion of p62 decreased caspase-8 and caspase-3 activation and inhibited the DEP-induced apoptosis. Taken together, these findings demonstrated that DEP induced HUVECs apoptosis by inhibiting autophagosome maturation and identified caspase-8 as a novel mediator of DEP-induced ECs apoptosis.
Collapse
|
122
|
Grujić-Milanović J, Jaćević V, Miloradović Z, Milanović SD, Jovović D, Ivanov M, Karanović D, Vajić UJ, Mihailović-Stanojević N. Resveratrol improved kidney function and structure in malignantly hypertensive rats by restoration of antioxidant capacity and nitric oxide bioavailability. Biomed Pharmacother 2022; 154:113642. [PMID: 36942598 DOI: 10.1016/j.biopha.2022.113642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The main cause of death among patients with malignant hypertension is a kidney failure. The promising field in essential and malignant hypertension therapy could be centered on the amelioration of oxidative stress using antioxidant molecules like resveratrol. Resveratrol is a potent antioxidative agent naturally occurred in many plants that possess health-promoting properties. METHODS In the present study, we investigated the therapeutic potential of resveratrol, a polyphenol with anti-oxidative activity, in NG-L-Arginine Methyl Ester (L-NAME) treated spontaneously hypertensive rats (SHR) - malignantly hypertensive rats (MHR). RESULTS Resveratrol significantly improves oxidative damages by modulation of antioxidant enzymes and suppression of prooxidant factors in the kidney tissue of MHR. Enhanced antioxidant defense in the kidney improves renal function and ameliorates the morphological changes in this target organ. Besides, protective properties of resveratrol are followed by the restoration of the nitrogen oxide (NO) pathway. 4) Conclusion: Antioxidant therapy with resveratrol could represent promising therapeutical approach in hypertension, especially malignant, against kidney damage.
Collapse
Affiliation(s)
- Jelica Grujić-Milanović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Vesna Jaćević
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, Belgrade, Serbia; Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia.
| | - Zoran Miloradović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Sladjan D Milanović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Biomechanics, biomedical engineering and physics of complex systems, Belgrade, Serbia.
| | - Djurdjica Jovović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Milan Ivanov
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Danijela Karanović
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Una-Jovana Vajić
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| | - Nevena Mihailović-Stanojević
- University of Belgrade, Institute for Medical Research, National Institute of the Republic of Serbia, Department for Cardiovascular Research, Belgrade, Serbia.
| |
Collapse
|
123
|
Terço Leite PR, Lorençone BR, Moreno KGT, Lopes KS, Marques AAM, Fortini CS, Palozi RAC, Dalmagro M, Kassuya CAL, Dos Santos AC, Salvador MJ, Gasparotto Junior A. The NO-cGMP-K+ Channel Pathway Participates in Diuretic and Cardioprotective Effects of Blutaparon portulacoides in Spontaneously Hypertensive Rats. PLANTA MEDICA 2022; 88:1152-1162. [PMID: 35299274 DOI: 10.1055/a-1690-3566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Blutaparon portulacoides is a Brazilian plant species that is widely used in folk medicine. The present study investigated the role of an aqueous extract of B. portulacoides against hypertension in spontaneously hypertensive rats. The aqueous extract of B. portulacoides was obtained from the whole plant. Its chemical profile was analyzed by ultraperformance liquid chromatography-tandem mass spectrometry. The acute toxicity of the aqueous extract of B. portulacoides was evaluated in female Wistar rats. Male 6-month-old spontaneously hypertensive rats then received the aqueous extract of B. portulacoides (30, 100, and 300 mg/kg), hydrochlorothiazide (25 mg/kg), or vehicle once daily for 28 days. On days 1, 14, and 28, the diuretic effects of the aqueous extract of B. portulacoides were evaluated. The role of prostaglandins and the nitric oxide-cyclic guanosine monophosphate-potassium channel pathway in the diuretic activity of the aqueous extract of B. portulacoides was also investigated. At the end of the treatment, hepatic and renal biochemical markers, serum nitrotyrosine, malondialdehyde, nitrite, and aldosterone levels, and angiotensin-converting enzyme activity were measured. The electrocardiographic profile, blood pressure, and renal vascular reactivity were also assessed. The heart, kidneys, and liver were collected to determine relative organ weight, histopathology, and cardiac morphometry. Caffeic acid, ferulic acid, and several flavonoids were identified in the aqueous extract of B. portulacoides. No signs of toxicity were observed. Prolonged treatment with the aqueous extract of B. portulacoides (300 mg/kg) induced significant diuretic activity by activating the nitric oxide-cyclic guanosine monophosphate-potassium channel pathway. These effects reduced blood pressure and oxidative stress and prevented renal vascular dysfunction and left ventricular hypertrophy that was induced by hypertension. Overall, the present data suggest that the aqueous extract of B. portulacoides has important diuretic and cardioprotective effects by activation of the nitric oxide-cyclic guanosine monophosphate-potassium channel pathway.
Collapse
Affiliation(s)
- Patrícia Regina Terço Leite
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Bethânia Rosa Lorençone
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Karyne Garcia Tafarelo Moreno
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Katiana Simões Lopes
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Aline Aparecida Macedo Marques
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Clara Soligo Fortini
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Rhanany Alan Calloi Palozi
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Mariana Dalmagro
- Postgraduate Program in Biotechnology Applied to Agriculture, Paranaense University, Umuarama, Paraná, Brazil
| | - Cândida Aparecida Leite Kassuya
- Laboratory of Immunoinflammation and Cell Culture, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Ariany Carvalho Dos Santos
- Laboratory of Histology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Marcos José Salvador
- Institute of Biology, Department of Plant Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
124
|
Chu Y, Zuo J, Zhang Y, Gao G, Hu X, Han R, Liu C, Zhou H, Li M, Peng W, Wang Y. Co-culture with chorionic villous mesenchymal stem cells promotes endothelial cell proliferation and angiogenesis via ABCA9-AKT pathway. FASEB J 2022; 36:e22568. [PMID: 36165221 DOI: 10.1096/fj.202101316rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/03/2022] [Accepted: 09/14/2022] [Indexed: 11/11/2022]
Abstract
Human chorionic villous mesenchymal stem cells (CV-MSCs) are a promising and effective therapeutic option for tissue injury. Vascular dysfunction during pregnancies is significantly involved in the pathogenesis of preeclampsia (PE). This work aims to investigate how CV-MSCs regulate the function of vascular endothelial cells. In this study, RNA-seq analysis was used to examine the changes in HUVECs treated with CV-MSC conditioned medium (CM). We examined the levels of ABCA9 and AKT signaling in human umbilical vein endothelial cells (HUVECs) by immunohistochemistry, western blotting, and qRT-PCR assays. CCK-8, colony formation, and tube formation assays were used to understand the role of ABCA9 in HUVEC proliferation and angiogenesis mediated by CV-MSCs. The CV-MSC treatment significantly enhanced the HUVEC proliferation and angiogenesis. Furthermore, a significant increase in the ABCA9 expression and AKT pathway activation was observed in CV-MSCs -treated HUVECs. Consistent with these findings, ABCA9 overexpression exhibited the same proliferation-and angiogenesis-promoting effect in HUVECs as induced by CV-MSC CM, also accompanied the AKT signaling activation. In addition, inhibition of ABCA9 inactivated the AKT signaling in HUVECs and reduced the HUVEC proliferation and angiogenesis. Importantly, the elevation of proliferation and angiogenesis induced by ABCA9 overexpression in HUVECs could be reversed by AKT pathway inhibition. Our results suggest that ABCA9-dependent AKT signaling activation mediated by CV-MSCs could promote HUVEC proliferation and angiogenesis.
Collapse
Affiliation(s)
- Yijing Chu
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianxin Zuo
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Zhang
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guoqiang Gao
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyu Hu
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Rendong Han
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chong Liu
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huansheng Zhou
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Min Li
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Peng
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Wang
- Department of Spinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
125
|
T Lymphocyte-Derived Exosomes Transport MEK1/2 and ERK1/2 and Induce NOX4-Dependent Oxidative Stress in Cardiac Microvascular Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2457687. [PMID: 36211827 PMCID: PMC9534701 DOI: 10.1155/2022/2457687] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 08/23/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
Background Activation of endothelial cells by inflammatory mediators secreted by CD4+ T lymphocytes plays a key role in the inflammatory response. Exosomes represent a specific class of signaling cues transporting a mixture of proteins, nucleic acids, and other biomolecules. So far, the impact of exosomes shed by T lymphocytes on cardiac endothelial cells remained unknown. Methods and Results Supernatants of CD4+ T cells activated with anti-CD3/CD28 beads were used to isolate exosomes by differential centrifugation. Activation of CD4+ T cells enhanced exosome production, and these exosomes (CD4-exosomes) induced oxidative stress in cardiac microvascular endothelial cells (cMVECs) without affecting their adhesive properties. Furthermore, CD4-exosome treatment aggravated the generation of mitochondrial reactive oxygen species (ROS), reduced nitric oxide (NO) levels, and enhanced the proliferation of cMVECs. These effects were reversed by adding the antioxidant apocynin. On the molecular level, CD4-exosomes increased NOX2, NOX4, ERK1/2, and MEK1/2 in cMVECs, and ERK1/2 and MEK1/2 proteins were found in CD4-exosomes. Inhibition of either MEK/ERK with U0126 or ERK with FR180204 successfully protected cMVECs from increased ROS levels and reduced NO bioavailability. Treatment with NOX1/4 inhibitor GKT136901 effectively blocked excessive ROS and superoxide production, reversed impaired NO levels, and reversed enhanced cMVEC proliferation triggered by CD4-exosomes. The siRNA-mediated silencing of Nox4 in cMVECs confirmed the key role of NOX4 in CD4-exosome-induced oxidative stress. To address the properties of exosomes under inflammatory conditions, we used the mouse model of CD4+ T cell-dependent experimental autoimmune myocarditis. In contrast to exosomes obtained from control hearts, exosomes obtained from inflamed hearts upregulated NOX2, NOX4, ERK1/2, MEK1/2, increased ROS and superoxide levels, and reduced NO bioavailability in treated cMVECs, and these changes were reversed by apocynin. Conclusion Our results point to exosomes as a novel class of bioactive factors secreted by CD4+ T cells in immune response and represent potential important triggers of NOX4-dependent endothelial dysfunction. Neutralization of the prooxidative aspect of CD4-exosomes could open perspectives for the development of new therapeutic strategies in inflammatory cardiovascular diseases.
Collapse
|
126
|
Lakshmanan AP, Murugesan S, Al Khodor S, Terranegra A. The potential impact of a probiotic: Akkermansia muciniphila in the regulation of blood pressure—the current facts and evidence. Lab Invest 2022; 20:430. [PMID: 36153618 PMCID: PMC9509630 DOI: 10.1186/s12967-022-03631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
Akkermansia muciniphila (A. muciniphila) is present in the human gut microbiota from infancy and gradually increases in adulthood. The potential impact of the abundance of A. muciniphila has been studied in major cardiovascular diseases including elevated blood pressure or hypertension (HTN). HTN is a major factor in premature death worldwide, and approximately 1.28 billion adults aged 30–79 years have hypertension. A. muciniphila is being considered a next-generation probiotic and though numerous studies had highlighted the positive role of A. muciniphila in lowering/controlling the HTN, however, few studies had highlighted the negative impact of increased abundance of A. muciniphila in the management of HTN. Thus, in the review, we aimed to discuss the current facts, evidence, and controversy about the role of A. muciniphila in the pathophysiology of HTN and its potential effect on HTN management/regulation, which could be beneficial in identifying the drug target for the management of HTN.
Collapse
|
127
|
Kampa RP, Flori L, Sęk A, Spezzini J, Brogi S, Szewczyk A, Calderone V, Bednarczyk P, Testai L. Luteolin-Induced Activation of Mitochondrial BK Ca Channels: Undisclosed Mechanism of Cytoprotection. Antioxidants (Basel) 2022; 11:1892. [PMID: 36290615 PMCID: PMC9598376 DOI: 10.3390/antiox11101892] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 09/29/2023] Open
Abstract
Luteolin (LUT) is a well-known flavonoid that exhibits a number of beneficial properties. Among these, it shows cardioprotective effects, as confirmed by numerous studies. However, its effect on mitochondrial potassium channels, the activation of which is related to cytoprotection, as well as on heart ischemia/reperfusion (I/R) damage prevention, has not yet been investigated. The large conductance calcium-regulated potassium channel (mitoBKCa) has been identified in both the mitochondria of the vascular endothelial cells, which plays a significant role in the functioning of the cardiovascular system under oxidative stress-related conditions, and in the mitochondria of cardiomyocytes, where it is deeply involved in cardiac protection against I/R injury. Therefore, the aim of this study was to explore the role of the mitoBKCa channel in luteolin-induced cytoprotection. A number of in vitro, in vivo, ex vivo and in silico studies have confirmed that luteolin activates this channel in the mitochondria of cardiomyocytes and endothelial cells, which in turn leads to the protection of the endothelium and a significant reduction in the extent of damage resulting from myocardial infarction, where this effect was partially abolished by the mitoBKCa channel blocker paxilline. In conclusion, these results suggest that luteolin has cardioprotective effects, at least in part, through the activation of the mitoBKCa channel, shedding light on a new putative mechanism of action.
Collapse
Affiliation(s)
- Rafał P. Kampa
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
- Department of Pharmacology, Faculty of Pharmacy, University of Pisa, 6 via Bonanno Pisano, 56120 Pisa, Italy
| | - Lorenzo Flori
- Department of Pharmacology, Faculty of Pharmacy, University of Pisa, 6 via Bonanno Pisano, 56120 Pisa, Italy
| | - Aleksandra Sęk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Jacopo Spezzini
- Department of Pharmacology, Faculty of Pharmacy, University of Pisa, 6 via Bonanno Pisano, 56120 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacology, Faculty of Pharmacy, University of Pisa, 6 via Bonanno Pisano, 56120 Pisa, Italy
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland
| | - Vincenzo Calderone
- Department of Pharmacology, Faculty of Pharmacy, University of Pisa, 6 via Bonanno Pisano, 56120 Pisa, Italy
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences–SGGW (WULS-SGGW), 159 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Lara Testai
- Department of Pharmacology, Faculty of Pharmacy, University of Pisa, 6 via Bonanno Pisano, 56120 Pisa, Italy
| |
Collapse
|
128
|
Lambadiari V, Korakas E, Oikonomou E, Bletsa E, Kountouri A, Goliopoulou A, Ikonomidis I, Siasos G. COVID-19, Endothelium and the Cardiometabolic Patient: A Possible Role for Capillary Leak Syndrome. Biomedicines 2022; 10:biomedicines10102379. [PMID: 36289641 PMCID: PMC9598505 DOI: 10.3390/biomedicines10102379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 12/05/2022] Open
Abstract
Capillary leak syndrome is an under-diagnosed condition leading to serious hypoalbuminemia with diffuse edema, pulmonary edema, severe hypotension, and possibly death. Sepsis leading to hemophagocytic lymphohistiocytosis (HLH) is a major risk factor; however, capillary hyper-permeability is the core underlying pathophysiological mechanism. Endothelial dysfunction plays a major role in cardiometabolic disease through insulin resistance, lipotoxicity, and, eventually, oxidative stress and chronic inflammation. We review the literature concerning the aforementioned mechanisms as well-established risk factors for adverse COVID-19 outcomes. We especially focus on data regarding the underlying endothelial effects of SARS-CoV-2 infection, including direct damage and increased vascular leakage through a hyper-inflammatory cascade and diminished nitric oxide bioavailability. Interestingly, an increased incidence of hypoalbuminemia has been observed in patients with severe COVID-19, especially those with underlying cardiometabolic disease. Importantly, low albumin levels present a strong, positive association with poor disease outcomes. Therefore, in this review article, we highlight the important role of cardiovascular risk factors on endothelium integrity and the possible link of endothelial damage in the hypoalbuminemia-associated adverse prognosis of COVID-19 patients.
Collapse
Affiliation(s)
- Vaia Lambadiari
- 2nd Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, 12462 Athens, Greece
| | - Emmanouil Korakas
- 2nd Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, 12462 Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Cardiometabolic Disease Unit, 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Correspondence:
| | - Evanthia Bletsa
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Cardiometabolic Disease Unit, 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Aikaterini Kountouri
- 2nd Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, 12462 Athens, Greece
| | - Athina Goliopoulou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Cardiometabolic Disease Unit, 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Ignatios Ikonomidis
- Laboratory of Preventive Cardiology, Second Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, 12462 Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Cardiometabolic Disease Unit, 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| |
Collapse
|
129
|
Li N, Hang W, Shu H, Wen Z, Ceesay BM, Zhou N. Salvianolic Acid Ameliorates Pressure Overload-Induced Cardiac Endothelial Dysfunction via Activating HIF1[Formula: see text]/HSF1/CD31 Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1869-1885. [PMID: 36121714 DOI: 10.1142/s0192415x22500793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pressure overload is a major risk factor for various cardiovascular diseases. Disorders of the endothelium are involved in the pathological mechanisms of pressure, and maintaining endothelial function is a practical strategy to alleviate pressure overload-induced cardiac injury. In this study, we provided evidence that salvianolic acid, the active component of Danshen, a traditional Chinese herb medicine, preserved pressure overload-induced cardiac dysfunction via protecting endothelium. Male C57BL/6J mice were imposed with transverse aortic constriction to mimic pressure overload and treated with salvianolic acid (200[Formula: see text]mg/kg/day) or vehicle for 6 weeks. The hemodynamic and cardiac functional parameters were detected by the cardiac catheter and transthoracic echocardiography. The pathological measurements were conducted by heart hematoxylin-eosin, wheat germ agglutinin staining, Masson's trichrome staining, and immunofluorescence staining. Endothelial cell (EC) proliferation was estimated using the Cell Counting Kit-8, EC migration was evaluated by scratched assay, and EC integrity was observed by electron microscope. Salvianolic acid notably inhibited cardiac chamber enlargement, restrained cardiac contractile dysfunction, and repressed cardiac fibrosis caused by chronic pressure overload. Salvianolic acid maintained endothelial tight junction integrity by boosting the expression of CD31. Furthermore, the endothelial protective effect of salvianolic acid against pressure overload is dependent on the activation of hypoxia-inducible factor 1[Formula: see text], which consequently activated heat shock factor 1 and promoted CD31 expression. Our study uncovered that salvianolic acid protected cardiac ECs against pressure overload via a HIF1[Formula: see text]/HSF1/CD31 pathway, indicating a potential appliance of salvianolic acid in hypertensive heart disease.
Collapse
Affiliation(s)
- Na Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, P. R. China
| | - Weijian Hang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, P. R. China
| | - Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, P. R. China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, P. R. China
| | - Bala Musa Ceesay
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, P. R. China
| | - Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, P. R. China
| |
Collapse
|
130
|
Chen M, Xiao J, El-Seedi HR, Woźniak KS, Daglia M, Little PJ, Weng J, Xu S. Kaempferol and atherosclerosis: From mechanism to medicine. Crit Rev Food Sci Nutr 2022; 64:2157-2175. [PMID: 36099317 DOI: 10.1080/10408398.2022.2121261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Natural products possess pleiotropic cardiovascular protective effects owing to their anti-oxidation, anti-inflammation and anti-thrombotic properties. Kaempferol, (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one), is a kind of naturally occurring flavonoid existing in many common fruits and vegetables (e.g., onions, broccoli, strawberries and grapes) and particularly in traditional Chinese medicine as exemplified by Ginkgo biloba. Epidemiological, preclinical and clinical studies have revealed an inverse association between the consumption of kaempferol-containing foods and medicines and the risk of developing cardiovascular diseases. Numerous translational studies in experimental animal models and cultured cells have demonstrated a wide range of pharmacological activities of kaempferol. In this article, we reviewed the antioxidant, anti-inflammatory and cardio-protective activities of kaempferol and elucidated the potential molecular basis of the therapeutic capacity of kaempferol by focusing on its anti-atherosclerotic effects. Overall, the review presents the health benefits of kaempferol-containing plants and medicines and reflects on the potential of kaempferol as a possible drug candidate to prevent and treat atherosclerosis, the underlying pathology of most cardiovascular diseases.
Collapse
Affiliation(s)
- Meijie Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, University of Vigo, Vigo, Spain
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | | | - Maria Daglia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
131
|
Han WW, Wang XR, He YF, Zhang HS, Cong X, Xiang RL, Wu LL, Yu GY, Liu LM, Zhang Y. Soluble epoxide hydrolase inhibitor, t-AUCB, improves salivary gland function by ameliorating endothelial injury. Life Sci 2022; 308:120942. [PMID: 36096247 DOI: 10.1016/j.lfs.2022.120942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 10/31/2022]
Abstract
AIMS Inhibitor of soluble epoxide hydrolase (t-AUCB) has been used in the experimental therapy of hypertension. This study aimed to investigate whether the secretion of submandibular glands (SMGs) altered in renal hypertensive rats, and to explore whether t-AUCB could improve the salivary secretion. MAIN METHODS 2-kidney 1-clip Sprague-Dawley rats were used as renal hypertensive animals. t-AUCB treatment was given for 1 week after 8 weeks modeling. Blood pressure, blood perfusion and the secretion of SMGs, and endothelium-dependent relaxation of external maxillary artery were measured to investigate the effects of t-AUCB on the vascular tone and the secretion of SMGs in renal hypertensive rats. SMGs were collected for histological evaluation and the internal arteries were dissected for primary endothelial cells culture. KEY FINDINGS The blood perfusion and flow rate of SMGs in the renal hypertensive rats were significantly lower than those in the controls. Endothelium-dependent relaxation of the external maxillary artery and AMPK/Akt/eNOS signaling was impaired in hypertensive rats. The glandular morphology and the concentration of salivary ions did not change obviously. t-AUCB treatment ameliorated the secretion of SMGs, the blood perfusion, and the dysfunction of endothelium-dependent relaxation of the external maxillary artery by activating the AMPK/Akt/eNOS pathway in hypertensive rats. SIGNIFICANCE t-AUCB increases the blood perfusion through ameliorating dysfunction of endothelium-dependent relaxation of SMGs arteries and thus improves the hyposecretion of SMGs in hypertensive rats.
Collapse
Affiliation(s)
- Wen-Wen Han
- Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Xiao-Rui Wang
- Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Yu-Feng He
- Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Han-Shu Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Xin Cong
- Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Ruo-Lan Xiang
- Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China.
| | - Guang-Yan Yu
- Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Li-Mei Liu
- Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China.
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China.
| |
Collapse
|
132
|
Silybin induces endothelium-dependent vasodilation via TRPV4 channels in mouse mesenteric arteries. Hypertens Res 2022; 45:1954-1963. [PMID: 36056206 DOI: 10.1038/s41440-022-01000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/08/2022]
Abstract
Silybin is a flavonolignan extracted from the seeds of Silybum marianum that has been used as a dietary supplement for treating hepatic diseases and components of metabolic syndrome such as diabetes, obesity and hypertension. Transient receptor potential vanilloid 4 (TRPV4) channels are Ca2+-permeable, nonselective cation channels that regulate vascular endothelial function and blood flow. However, the relationship between silybin and TRPV4 channels in small mesenteric arteries remains unknown. In our study, we carried out a molecular docking experiment by using Discovery Studio v3.5 to predict the binding of silybin to TRPV4. Activation of TRPV4 with silybin was detected via intracellular Ca2+ concentration ([Ca2+]i) measurement and patch clamp experiments. The molecular docking results showed that silybin was likely to bind to the ankyrin repeat domain of TPRV4. [Ca2+]i measurements in mesenteric arterial endothelial cells (MAECs) and TRPV4-overexpressing HEK293 (TRPV4-HEK293) cells demonstrated that silybin induced Ca2+ influx by activating TRPV4 channels. The patch clamp experiments indicated that in TRPV4-HEK293 cells, silybin induced TRPV4-mediated cation currents. In addition, in high-salt-induced hypertensive mice, oral administration of silybin decreased systolic blood pressure (SBP) and significantly improved the arterial dilatory response to acetylcholine. Our findings provide the first evidence that silybin could induce mesenteric endothelium-dependent vasodilation and reduce blood pressure in high-salt-induced hypertensive mice via TRPV4 channels, thereby revealing the potential effect of silybin on preventing endothelial dysfunction-related cardiovascular diseases.
Collapse
|
133
|
Zhang Y, Zhong DL, Zheng YL, Li YX, Huang YJ, Jiang YJ, Jin RJ, Li J. Influence of electroacupuncture on ghrelin and the phosphoinositide 3-kinase/protein kinase B/endothelial nitric oxide synthase signaling pathway in spontaneously hypertensive rats. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:432-441. [PMID: 35850968 DOI: 10.1016/j.joim.2022.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To investigate the influence of electroacupuncture (EA) on ghrelin and the phosphoinositide 3-kinase/protein kinase B/endothelial nitric oxide synthase (PI3K/Akt/eNOS) signaling pathway in spontaneously hypertensive rats (SHRs). METHODS Eight Wistar-Kyoto rats were used as the healthy blood pressure (BP) control (normal group), and 32 SHRs were randomized into model group, EA group, EA plus ghrelin group (EA + G group), and EA plus PF04628935 group (a potent ghrelin receptor blocker; EA + P group) using a random number table. Rats in the normal group and model group did not receive treatment, but were immobilized for 20 min per day, 5 times a week, for 4 continuous weeks. SHRs in the EA group, EA + G group and EA + P group were immobilized and given EA treatment in 20 min sessions, 5 times per week, for 4 weeks. Additionally, 1 h before EA, SHRs in the EA + G group and EA + P group were intraperitoneally injected with ghrelin or PF04628935, respectively, for 4 weeks. The tail-cuff method was used to measure BP. After the 4-week intervention, the rats were sacrificed by cervical dislocation, and pathological morphology of the abdominal aorta was observed using hematoxylin-eosin (HE) staining. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of ghrelin, nitric oxide (NO), endothelin-1 (ET-1) and thromboxane A2 (TXA2) in the serum. Isolated thoracic aortic ring experiment was performed to evaluate vasorelaxation. Western blot was used to measure the expression of PI3K, Akt, phosphorylated Akt (p-Akt) and eNOS proteins in the abdominal aorta. Further, quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to measure the relative levels of mRNA expression for PI3K, Akt and eNOS in the abdominal aorta. RESULTS EA significantly reduced the systolic BP (SBP) and diastolic BP (DBP) (P < 0.05). HE staining showed that EA improved the morphology of the vascular endothelium to some extent. Results of ELISA indicated that higher concentrations of ghrelin and NO, and lower concentrations of ET-1 and TXA2 were presented in the EA group (P < 0.05). The isolated thoracic aortic ring experiment demonstrated that the vasodilation capacity of the thoracic aorta increased in the EA group. Results of Western blot and qRT-PCR showed that EA increased the abundance of PI3K, p-Akt/Akt and eNOS proteins, as well as expression levels of PI3K, Akt and eNOS mRNAs (P < 0.05). In the EA + G group, SBP and DBP decreased (P < 0.05), ghrelin concentrations increased (P < 0.05), and the concentrations of ET-1 and TXA2 decreased (P < 0.05), relative to the EA group. In addition, the levels of PI3K and eNOS proteins, the p-Akt/Akt ratio, and the expression of PI3K, Akt and eNOS mRNAs increased significantly in the EA + G group (P < 0.05), while PF04628935 reversed these effects. CONCLUSION EA effectively reduced BP and protected the vascular endothelium, and these effects may be linked to promoting the release of ghrelin and activation of the PI3K/Akt/eNOS signaling pathway.
Collapse
Affiliation(s)
- Yue Zhang
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Dong-Ling Zhong
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Ya-Ling Zheng
- Department of Rehabilitation Medicine, The Second People's Hospital of Chengdu, Chengdu 610017, Sichuan Province, China
| | - Yu-Xi Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Yi-Jie Huang
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, Guangdong Province, China
| | - Yi-Jing Jiang
- Department of Rehabilitation Medicine, Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, Fujian Province, China
| | - Rong-Jiang Jin
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Juan Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China.
| |
Collapse
|
134
|
Highlights of mechanisms and treatment of obesity-related hypertension. J Hum Hypertens 2022; 36:785-793. [PMID: 35001082 DOI: 10.1038/s41371-021-00644-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022]
Abstract
The prevalence of obesity has increased two to three times from 1975 to 2015. Large-scale epidemiological and longitudinal prospective studies link obesity with hypertension. Research suggests that excessive weight gain, particularly when associated with visceral adiposity, may account for as much as 65% to 75% of the risk of incident hypertension. Also, exercise and bariatric/metabolic surgery significantly lowers blood pressure, whereas weight gain increases blood pressure, thus establishing a firm link between these two factors. The mechanisms underpinning obesity-related hypertension are complex and multifaceted, and include, but are not limited to, renin-angiotensin-aldosterone system/sympathetic nervous system overactivation, overstimulation of adipokines, insulin resistance, immune dysfunction, structural/functional renal, cardiac, and adipocyte changes. Though weight loss is the mainstay of treatment for obesity-related hypertension, it is often not a feasible long-term solution. Therefore, it is recommended that aggressive treatment with multiple antihypertensive medications combined with diet and exercise be used to lower blood pressure and prevent complications. The research regarding the mechanisms and treatment of obesity-related hypertension has moved at a blistering pace over the past ten years. Therefore, the purpose of this expert review is two-fold: to discuss the pathophysiological mechanisms underlying obesity-related hypertension, and to revisit pharmacotherapies that have been shown to be efficacious in patients with obesity-related hypertension.
Collapse
|
135
|
Cui J, Wang P, Yan S, Liang Y, Liu D, Ren S. Perfluorooctane Sulfonate Induces Dysfunction of Human Umbilical Vein Endothelial Cells via Ferroptosis Pathway. TOXICS 2022; 10:503. [PMID: 36136468 PMCID: PMC9500952 DOI: 10.3390/toxics10090503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
(1) Background: Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant, and it is receiving increasing attention regarding its human health risks due to its extensive use. Endothelial dysfunction is a mark of cardiovascular disease, but the basic mechanism of PFOS-induced endothelial dysfunction is still not fully understood. Ferroptosis is a newly defined regulatory cell death driven by cellular metabolism and iron-dependent lipid peroxidation. Although ferroptosis has been shown to be involved in the pathogenesis of cardiovascular diseases, the involvement of ferroptosis in the pathogenesis of endothelial dysfunction caused by PFOS remains unclear. (2) Purpose: To explore the role of ferroptosis in the dysfunction of endothelial cells and underlying mechanisms. (3) Methods: Human umbilical vein endothelial cells (HUVECs) were exposed to PFOS or PFOS and Fer-1. The viability, morphology change under electronic microscope, lipid-reactive oxygen species (lipid-ROS), and production of nitric oxide (NO) were determined. The expression of glutathione peroxidase 4(GPX4), ferritin heavy chain protein 1 (FTH1), heme oxygenase 1 (HO-1) and Acyl-CoA synthetase long-chain family member 4 (ACSL4) were analyzed via Western blot analysis. (4) Results: PFOS was shown to cause a decrease in viability and morphological changes of mitochondria, and well as an increase in lipid droplets. The expression of GPX4, FTH1 and HO-1 was decreased, and that of ACSL4 was increased after exposure to PFOS. In addition to the above-mentioned ferroptosis-related manifestations, there was also a reduction in NO content. (5) Conclusions: PFOS induces ferroptosis by regulating the GPX4 and ACSL4 pathways, which leads to HUVEC dysfunction.
Collapse
|
136
|
Rodor J, Chen SH, Scanlon JP, Monteiro JP, Caudrillier A, Sweta S, Stewart KR, Shmakova A, Dobie R, Henderson BEP, Stewart K, Hadoke PWF, Southwood M, Moore SD, Upton PD, Morrell NW, Li Z, Chan SY, Handen A, Lafyatis R, de Rooij LPMH, Henderson NC, Carmeliet P, Spiroski AM, Brittan M, Baker AH. Single-cell RNA sequencing profiling of mouse endothelial cells in response to pulmonary arterial hypertension. Cardiovasc Res 2022; 118:2519-2534. [PMID: 34528097 PMCID: PMC9400412 DOI: 10.1093/cvr/cvab296] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
AIMS Endothelial cell (EC) dysfunction drives the initiation and pathogenesis of pulmonary arterial hypertension (PAH). We aimed to characterize EC dynamics in PAH at single-cell resolution. METHODS AND RESULTS We carried out single-cell RNA sequencing (scRNA-seq) of lung ECs isolated from an EC lineage-tracing mouse model in Control and SU5416/hypoxia-induced PAH conditions. EC populations corresponding to distinct lung vessel types, including two discrete capillary populations, were identified in both Control and PAH mice. Differential gene expression analysis revealed global PAH-induced EC changes that were confirmed by bulk RNA-seq. This included upregulation of the major histocompatibility complex class II pathway, supporting a role for ECs in the inflammatory response in PAH. We also identified a PAH response specific to the second capillary EC population including upregulation of genes involved in cell death, cell motility, and angiogenesis. Interestingly, four genes with genetic variants associated with PAH were dysregulated in mouse ECs in PAH. To compare relevance across PAH models and species, we performed a detailed analysis of EC heterogeneity and response to PAH in rats and humans through whole-lung PAH scRNA-seq datasets, revealing that 51% of up-regulated mouse genes were also up-regulated in rat or human PAH. We identified promising new candidates to target endothelial dysfunction including CD74, the knockdown of which regulates EC proliferation and barrier integrity in vitro. Finally, with an in silico cell ordering approach, we identified zonation-dependent changes across the arteriovenous axis in mouse PAH and showed upregulation of the Serine/threonine-protein kinase Sgk1 at the junction between the macro- and microvasculature. CONCLUSION This study uncovers PAH-induced EC transcriptomic changes at a high resolution, revealing novel targets for potential therapeutic candidate development.
Collapse
Affiliation(s)
- Julie Rodor
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Shiau Haln Chen
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Jessica P Scanlon
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - João P Monteiro
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Axelle Caudrillier
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Sweta Sweta
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Katherine Ross Stewart
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Alena Shmakova
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Ross Dobie
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Beth E P Henderson
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Kevin Stewart
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Patrick W F Hadoke
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Mark Southwood
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Stephen D Moore
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Paul D Upton
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Nick W Morrell
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Ziwen Li
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Stephen Y Chan
- Divisions of Cardiology and Rheumatology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Adam Handen
- Divisions of Cardiology and Rheumatology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Robert Lafyatis
- Divisions of Cardiology and Rheumatology, Department of Medicine, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Laura P M H de Rooij
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Center for Cancer Biology, Leuven Cancer Institute (LKI), VIB and KU Leuven, Leuven 3000, Belgium
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Center for Cancer Biology, Leuven Cancer Institute (LKI), VIB and KU Leuven, Leuven 3000, Belgium
| | - Ana Mishel Spiroski
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Andrew H Baker
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
137
|
Estrogen normalizes maternal HFD-induced vascular dysfunction in offspring by regulating ATR. Hypertens Res 2022; 45:1743-1753. [PMID: 35999282 DOI: 10.1038/s41440-022-01002-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 07/15/2022] [Indexed: 12/26/2022]
Abstract
Previous studies have shown that female offspring are resistant to fetal high-fat diet (HFD)-induced programming of heightened vascular contraction; however, the underlying mechanisms remain unclear. The present study tested the hypothesis that estrogen plays a key role in protecting females from fetal programming of increased vascular contraction induced by maternal HFD exposure. Pregnant rats were fed a normal diet (ND) or HFD (60% kcal from fat). Ovariectomy (OVX) and 17β-estradiol (E2) replacement were performed on 8-week-old female offspring. Aortas were isolated from adult female offspring. Maternal HFD exposure increased angiotensin II (Ang II)-induced contractions of the aorta in adult OVX offspring, which was abrogated by E2 replacement. The AT1 receptor (AT1R) antagonist losartan (10 μM), but not the AT2 receptor (AT2R) antagonist PD123319 (10 μM), completely blocked Ang II-induced contractions in both ND and HFD offspring. In addition, HFD exposure caused a decrease in endothelium-dependent relaxations induced by acetylcholine (ACh) in adult OVX but not OVX-E2 offspring. However, it had no effect on sodium nitroprusside (SNP)-induced endothelium-independent aorta relaxation in any of the six groups. Maternal HFD feeding increased AT1R, but not AT2R, leading to an increased AT1R/AT2R ratio in HFD-exposed OVX offspring, associated with selective decreases in DNA methylation at the AT1aR promoter, which was ameliorated by E2 replacement. Our results indicated that estrogen play a key role in sex differences of maternal HFD-induced vascular dysfunction and development of hypertensive phenotype in adulthood by differently regulating vascular AT1R and AT2R gene expression through a DNA methylation mechanism.
Collapse
|
138
|
An integral perspective of canonical cigarette and e-cigarette-related cardiovascular toxicity based on the adverse outcome pathway framework. J Adv Res 2022:S2090-1232(22)00193-X. [PMID: 35998874 DOI: 10.1016/j.jare.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Nowadays, cigarette smoking remains the leading cause of chronic disease and premature death, especially cardiovascular disease. As an emerging tobacco product, e-cigarettes have been advocated as alternatives to canonical cigarettes, and thus may be an aid to promote smoking cessation. However, recent studies indicated that e-cigarettes should not be completely harmless to the cardiovascular system. AIM OF REVIEW This review aimed to build up an integral perspective of cigarettes and e-cigarettes-related cardiovascular toxicity. KEY SCIENTIFIC CONCEPTS OF REVIEW This review adopted the adverse outcome pathway (AOP) framework as a pivotal tool and aimed to elucidate the association between the molecular initiating events (MIEs) induced by cigarette and e-cigarette exposure to the cardiovascular adverse outcome. Since the excessive generation of reactive oxygen species (ROS) has been widely approved to play a critical role in cigarette smoke-related CVD and may also be involved in e-cigarette-induced toxic effects, the ROS overproduction and subsequent oxidative stress are regarded as essential parts of this framework. As far as we know, this should be the first AOP framework focusing on cigarette and e-cigarette-related cardiovascular toxicity, and we hope our work to be a guide in exploring the biomarkers and novel therapies for cardiovascular injury.
Collapse
|
139
|
Kawaguchi H, Kanagawa T, Yamamoto R, Sasahara J, Okamoto Y, Mitsuda N, Ishii K. Efficacy of discontinuing the use of low‐dose aspirin at 28 weeks of gestation for preventing preeclampsia. J Obstet Gynaecol Res 2022; 48:2790-2797. [DOI: 10.1111/jog.15395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/29/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Haruna Kawaguchi
- Department of Maternal Fetal Medicine Osaka Women's and Children's Hospital Osaka Japan
| | - Takeshi Kanagawa
- Department of Maternal Fetal Medicine Osaka Women's and Children's Hospital Osaka Japan
| | - Ryo Yamamoto
- Department of Maternal Fetal Medicine Osaka Women's and Children's Hospital Osaka Japan
| | - Jun Sasahara
- Department of Maternal Fetal Medicine Osaka Women's and Children's Hospital Osaka Japan
| | - Yoko Okamoto
- Department of Maternal Fetal Medicine Osaka Women's and Children's Hospital Osaka Japan
| | - Nobuaki Mitsuda
- Department of Maternal Fetal Medicine Osaka Women's and Children's Hospital Osaka Japan
| | - Keisuke Ishii
- Department of Maternal Fetal Medicine Osaka Women's and Children's Hospital Osaka Japan
| |
Collapse
|
140
|
Molaei A, Molaei E, Sadeghnia H, Hayes AW, Karimi G. LKB1: An emerging therapeutic target for cardiovascular diseases. Life Sci 2022; 306:120844. [PMID: 35907495 DOI: 10.1016/j.lfs.2022.120844] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
Cardiovascular diseases (CVDs) are currently the most common cause of morbidity and mortality worldwide. Experimental studies suggest that liver kinase B1 (LKB1) plays an important role in the heart. Several studies have shown that cardiomyocyte-specific LKB1 deletion leads to hypertrophic cardiomyopathy, left ventricular contractile dysfunction, and an increased risk of atrial fibrillation. In addition, the cardioprotective effects of several medicines and natural compounds, including metformin, empagliflozin, bexarotene, and resveratrol, have been reported to be associated with LKB1 activity. LKB1 limits the size of the damaged myocardial area by modifying cellular metabolism, enhancing the antioxidant system, suppressing hypertrophic signals, and inducing mild autophagy, which are all primarily mediated by the AMP-activated protein kinase (AMPK) energy sensor. LKB1 also improves myocardial efficiency by modulating the function of contractile proteins, regulating the expression of electrical channels, and increasing vascular dilatation. Considering these properties, stimulation of LKB1 signaling offers a promising approach in the prevention and treatment of heart diseases.
Collapse
Affiliation(s)
- Ali Molaei
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamidreza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
141
|
Maternal High-Fat Diet and Offspring Hypertension. Int J Mol Sci 2022; 23:ijms23158179. [PMID: 35897755 PMCID: PMC9332200 DOI: 10.3390/ijms23158179] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 12/11/2022] Open
Abstract
The incidence of hypertension has increased to epidemic levels in the past decades. Increasing evidence reveals that maternal dietary habits play a crucial role in the development of hypertension in adult offspring. In humans, increased fat consumption has been considered responsible for obesity and associated diseases. Maternal diets rich in saturated fats have been widely employed in animal models to study various adverse offspring outcomes. In this review, we discussed current evidence linking maternal high-fat diet to offspring hypertension. We also provided an in-depth overview of the potential mechanisms underlying hypertension of developmental origins that are programmed by maternal high-fat intake from animal studies. Furthermore, this review also presented an overview of how reprogramming interventions can prevent maternal high-fat-diet-induced hypertension in adult offspring. Overall, recent advances in understanding mechanisms behind programming and reprogramming of maternal high-fat diet on hypertension of developmental origins might provide the answers to curtail this epidemic. Still, more research is needed to translate research findings into practice.
Collapse
|
142
|
Zou XY, Yang N, Cai W, Niu XL, Wei MT, Zhang X, Li YM. The relationship between high-normal blood pressure in the first half of pregnancy and the risk of hypertensive disease of pregnancy. J Clin Hypertens (Greenwich) 2022; 24:1079-1085. [PMID: 35857707 PMCID: PMC9380145 DOI: 10.1111/jch.14551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
Abstract
Early warning of hypertensive disorder in pregnancy (HDP) can improve maternal and infant outcomes. However, few studies had evaluated the warning value of high–normal blood pressure (BP) before the onset of HDP. This was a prospective cohort study to investigate the relationship between high‐normal BP in the first half of pregnancy and the risk of HDP. According to the maximum BP measured before 20+6 weeks of gestation, the cohort was divided into three groups: optimal BP (SBP < 120 mmHg and DBP < 80 mmHg), normal BP (120 mmHg ≤ SBP < 130 mmHg or 80 mmHg ≤ DBP < 85 mmHg), and high–normal BP (130 mmHg ≤ SBP < 140 mmHg or 85 mmHg ≤ DBP < 90 mmHg). The relationship between different BP levels in the first half of pregnancy and HDP risk was assessed by general linear models. Ten thousand one hundred and ninety‐three normotensive pregnant women with complete information were finally included for data analysis. Among them, 532 pregnant women were diagnosed with HDP, with a total HDP incidence of 5.2%. The incidences in the optimal, normal, and high–normal BP groups were 2.4%, 6.0%, and 21.8%, respectively. Compared to women with optimal BP in the first half of pregnancy, women with high‐normal BP had a 445% increased risk of HDP (aRR: 5.45, 95% CI: 4.24–7.00), and even women with normal BP had a 107% increased risk of HDP (aRR: 2.07, 95% CI: 1.68–2.56). This study demonstrated that among low‐risk healthy women, women with high–normal BP in the first half of pregnancy had a significantly higher risk of HDP.
Collapse
Affiliation(s)
- Xiao-Yi Zou
- Department of Cardiology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, R. P. China.,Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Characteristic Medical Center of PAP, Tianjin, R. P. China
| | - Ning Yang
- Department of Hypertension, Tianjin Economic-Technological Development Area (TEDA) International Cardiovascular Hospital, Tianjin, R.P. China
| | - Wei Cai
- Department of Prevention and Therapy of Cardiovascular Diseases in Alpine Environment of Plateau, Characteristic Medical Center of PAP, Tianjin, R.P. China
| | - Xiu-Long Niu
- Department of Prevention and Therapy of Skin Disease in the Security Environment, Characteristic Medical Center of PAP, Tianjin, R.P. China
| | - Mao-Ti Wei
- Center of Clinical Epidemiology, Tianjin Economic-Technological Development Area (TEDA) International Cardiovascular Hospital, Tianjin, R.P. China
| | - Xin Zhang
- Department of Cardiology, Characteristic Medical Center of PAP, Tianjin, R.P. China
| | - Yu-Ming Li
- Department of Cardiology, Tianjin Economic-Technological Development Area (TEDA) International Cardiovascular Hospital, Tianjin, R.P. China
| |
Collapse
|
143
|
Imperatrice M, Cuijpers I, Troost FJ, Sthijns MMJPE. Hesperidin Functions as an Ergogenic Aid by Increasing Endothelial Function and Decreasing Exercise-Induced Oxidative Stress and Inflammation, Thereby Contributing to Improved Exercise Performance. Nutrients 2022; 14:nu14142955. [PMID: 35889917 PMCID: PMC9316530 DOI: 10.3390/nu14142955] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
The regulation of blood flow to peripheral muscles is crucial for proper skeletal muscle functioning and exercise performance. During exercise, increased mitochondrial oxidative phosphorylation leads to increased electron leakage and consequently induces an increase in ROS formation, contributing to DNA, lipid, and protein damage. Moreover, exercise may increase blood- and intramuscular inflammatory factors leading to a deterioration in endurance performance. The aim of this review is to investigate the potential mechanisms through which the polyphenol hesperidin could lead to enhanced exercise performance, namely improved endothelial function, reduced exercise-induced oxidative stress, and inflammation. We selected in vivo RCTs, animal studies, and in vitro studies in which hesperidin, its aglycone form hesperetin, hesperetin-metabolites, or orange juice are supplemented at any dosage and where the parameters related to endothelial function, oxidative stress, and/or inflammation have been measured. The results collected in this review show that hesperidin improves endothelial function (via increased NO availability), inhibits ROS production, decreases production and plasma levels of pro-inflammatory markers, and improves anaerobic exercise outcomes (e.g., power, speed, energy). For elite and recreational athletes, hesperidin could be used as an ergogenic aid to enhance muscle recovery between training sessions, optimize oxygen and nutrient supplies to the muscles, and improve anaerobic performance.
Collapse
Affiliation(s)
- Maria Imperatrice
- BioActor BV, Gaetano Martinolaan 50, 6229 GS Maastricht, The Netherlands
- Correspondence: (M.I.); (I.C.)
| | - Iris Cuijpers
- Food Innovation and Health, Department of Human Biology, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.J.T.); (M.M.J.P.E.S.)
- Correspondence: (M.I.); (I.C.)
| | - Freddy J. Troost
- Food Innovation and Health, Department of Human Biology, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.J.T.); (M.M.J.P.E.S.)
| | - Mireille M. J. P. E. Sthijns
- Food Innovation and Health, Department of Human Biology, Maastricht University, 6200 MD Maastricht, The Netherlands; (F.J.T.); (M.M.J.P.E.S.)
| |
Collapse
|
144
|
Wang C, Qu K, Wang J, Qin R, Li B, Qiu J, Wang G. Biomechanical regulation of planar cell polarity in endothelial cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166495. [PMID: 35850177 DOI: 10.1016/j.bbadis.2022.166495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023]
Abstract
Cell polarity refers to the uneven distribution of certain cytoplasmic components in a cell with a spatial order. The planar cell polarity (PCP), the cell aligns perpendicular to the polar plane, in endothelial cells (ECs) has become a research hot spot. The planar polarity of ECs has a positive significance on the regulation of cardiovascular dysfunction, pathological angiogenesis, and ischemic stroke. The endothelial polarity is stimulated and regulated by biomechanical force. Mechanical stimuli promote endothelial polarization and make ECs produce PCP to maintain the normal physiological and biochemical functions. Here, we overview recent advances in understanding the interplay and mechanism between PCP and ECs function involved in mechanical forces, with a focus on PCP signaling pathways and organelles in regulating the polarity of ECs. And then showed the related diseases caused by ECs polarity dysfunction. This study provides new ideas and therapeutic targets for the treatment of endothelial PCP-related diseases.
Collapse
Affiliation(s)
- Caihong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Rui Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bingyi Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
145
|
Current Evidence of Watermelon ( Citrullus lanatus) Ingestion on Vascular Health: A Food Science and Technology Perspective. Nutrients 2022; 14:nu14142913. [PMID: 35889869 PMCID: PMC9318495 DOI: 10.3390/nu14142913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 01/09/2023] Open
Abstract
The amino acid L-arginine is crucial for nitric oxide (NO) synthesis, an important molecule regulating vascular tone. Considering that vascular dysfunction precedes cardiovascular disease, supplementation with precursors of NO synthesis (e.g., L-arginine) is warranted. However, supplementation of L-citrulline is recommended instead of L-arginine since most L-arginine is catabolized during its course to the endothelium. Given that L-citrulline, found mainly in watermelon, can be converted to L-arginine, watermelon supplementation seems to be effective in increasing plasma L-arginine and improving vascular function. Nonetheless, there are divergent findings when investigating the effect of watermelon supplementation on vascular function, which may be explained by the L-citrulline dose in watermelon products. In some instances, offering a sufficient amount of L-citrulline can be impaired by the greater volume (>700 mL) of watermelon needed to reach a proper dose of L-citrulline. Thus, food technology can be applied to reduce the watermelon volume and make supplementation more convenient. Therefore, this narrative review aims to discuss the current evidence showing the effects of watermelon ingestion on vascular health parameters, exploring the critical relevance of food technology for acceptable L-citrulline content in these products. Watermelon-derived L-citrulline appears as a supplementation that can improve vascular function, including arterial stiffness and blood pressure. Applying food technologies to concentrate bioactive compounds in a reduced volume is warranted so that its ingestion can be more convenient, improving the adherence of those who want to ingest watermelon products daily.
Collapse
|
146
|
Diao H, Cheng J, Huang X, Huang B, Shao X, Zhao J, Lan D, Zhu Q, Yan M, Zhang Y, Rong X, Guo J. The Chinese medicine Fufang Zhenzhu Tiaozhi capsule protects against atherosclerosis by suppressing EndMT via modulating Akt1/β-catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115261. [PMID: 35447198 DOI: 10.1016/j.jep.2022.115261] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang Zhenzhu Tiaozhi (FTZ) is a traditional Chinese herbal prescription that has been used to treat dyslipidemia, nonalcoholic fatty liver disease, atherosclerosis, diabetes and its complications in the clinic for almost ten years. Endothelial-mesenchymal transition (EndMT) is the key driver of atherosclerosis. However, the effects of FTZ on endothelial dysfunction and EndMT remain unknown. AIM OF THE STUDY To evaluate the therapeutic effects of FTZ against EndMT and the underlying mechanisms. MATERIALS AND METHODS An in vivo model of atherosclerosis was established by feeding ApoE-/- mice with a high-fat diet (HFD). The body weight, lipid levels, plaque area, lipid deposition and EndMT were evaluated using standard assays 12 weeks after intragastric administration of FTZ and simvastatin. Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL) to simulate EndMT in vitro. The degree of EndMT was assessed after treating the cells with FTZ or transfection with si-Akt1. The expression levels of genes involved in EndMT were quantified by real-time PCR or western blotting. RESULTS FTZ ameliorated dyslipidemia and endothelial dysfunction in the atherosclerotic mice. In addition, FTZ reduced body weight and the total cholesterol, triglycerides and low-density lipoprotein levels, and increased that of high-density lipoproteins. FTZ also upregulated the expression of endothelial markers (CD31 and VE-cadherin) and decreased that of mesenchymal markers (ɑ-SMA and FSP1), indicating that it inhibits EndMT. Knocking down Akt1 exacerbated EndMT and reversed the therapeutic effect of FTZ. CONCLUSION FTZ delayed atherosclerosis by inhibiting EndMT via the Akt1/β-catenin pathway.
Collapse
Affiliation(s)
- Hongtao Diao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jiawen Cheng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xueying Huang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Bingying Huang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xiaoqi Shao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jingjing Zhao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Dingming Lan
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Qing Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Meiling Yan
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Yue Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| |
Collapse
|
147
|
Soluble Epoxide Hydrolase Inhibitor t-AUCB Ameliorates Vascular Endothelial Dysfunction by Influencing the NF-κB/miR-155-5p/eNOS/NO/IκB Cycle in Hypertensive Rats. Antioxidants (Basel) 2022; 11:antiox11071372. [PMID: 35883863 PMCID: PMC9311992 DOI: 10.3390/antiox11071372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs), angiogenic mediators degraded by soluble epoxide hydrolase (sEH), have been shown to exert beneficial effects on the cardiovascular system. The current study assessed the impact of increased EETs with an sEH inhibitor, t-AUCB, on two-kidney-one-clip (2K1C)-induced renovascular endothelial dysfunction, associated with hypertension, in rats. The hypertensive rats exhibited increased systolic blood pressure, reduced renal blood flow, impaired endothelium-dependent relaxation and eNOS phosphorylation in the renal arteries, elevated ROS production in the endothelium of the renal arteries, and decreased EET levels in plasma, the renal arteries, and endothelial cells; however, t-AUCB reversed all the deleterious effects. Moreover, we found that the stimulation of AMPK/UCP2 scavenged ROS and restored endothelial function in the renal arteries of hypertensive rats undergoing therapy with t-AUCB. In addition, we were the first to reveal the potential role of miR-155-5p in the occurrence and development of vascular endothelial dysfunction in hypertension. Importantly, t-AUCB recovered NO bioavailability by regulating the NF-κB/miR-155-5p/eNOS/NO/IκB cycle after the activation of AMPK/UCP2 and the subsequent inhibition of ROS in hypertensive rat renal artery endothelial cells. This study will provide evidence for this additional new mechanism, underlying the benefits of EETs and the related agents against hypertensive vasculopathy.
Collapse
|
148
|
Role of Posttranslational Modifications of Proteins in Cardiovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3137329. [PMID: 35855865 PMCID: PMC9288287 DOI: 10.1155/2022/3137329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/23/2022] [Indexed: 01/03/2023]
Abstract
Cardiovascular disease (CVD) has become a leading cause of mortality and morbidity globally, making it an urgent concern. Although some studies have been performed on CVD, its molecular mechanism remains largely unknown for all types of CVD. However, recent in vivo and in vitro studies have successfully identified the important roles of posttranslational modifications (PTMs) in various diseases, including CVD. Protein modification, also known as PTMs, refers to the chemical modification of specific amino acid residues after protein biosynthesis, which is a key process that can influence the activity or expression level of proteins. Studies on PTMs have contributed directly to improving the therapeutic strategies for CVD. In this review, we examined recent progress on PTMs and highlighted their importance in both physiological and pathological conditions of the cardiovascular system. Overall, the findings of this review contribute to the understanding of PTMs and their potential roles in the treatment of CVD.
Collapse
|
149
|
Cheng W, Zhuang J, Chen S. Dyslipidemia and the Prevalence of Hypertension: A Cross-Sectional Study Based on Chinese Adults Without Type 2 Diabetes Mellitus. Front Cardiovasc Med 2022; 9:938363. [PMID: 35872884 PMCID: PMC9300889 DOI: 10.3389/fcvm.2022.938363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundIn clinical practice, it is frequently observed that patients with hypertension often coexist with dyslipidemia. However, studies on atherosclerotic indices and the prevalence of hypertension are still limited. The purpose of this study was to assess the relationship between atherosclerotic indices and the prevalence of hypertension in Chinese adults without type 2 diabetes mellitus.MethodsIn this paper, a cross-sectional study was conducted based on 117,056 adults in 11 Chinese cities (Shanghai, Beijing, Wuhan, Suzhou, Shenzhen, Changzhou, Nantong, Guangzhou, Hefei, Nanjing, and Chengdu) from 2010 to 2016. Besides, the raw data was obtained from the public database (www.Datadryad.org), while eight atherosclerosis indices namely the atherogenic coefficient (AC), Castelli's risk index I (CRI-I) and II (CRI-II), the atherogenic index of plasma (AIP), the cholesterol index, the lipoprotein combined index (LCI), non-high-density lipoprotein cholesterol (non-HDL-C) and triglycerides/high-density lipoprotein cholesterol (TG/HDL-C) were analyzed in this study. Apart from that, two groups of continuous variables were measured using the Mann-Whitney test, and categorical variables were analyzed using the Chi-square test. Differences between multiple groups of continuous variables were investigated using Kruskal-Wallis one-way analysis of variance (ANOVA) and Dunn's test. Furthermore, Spearman correlation analysis and multivariate logistic regression analyses were performed to assess the relationship between atherosclerotic indices and blood pressure levels, and the prevalence of hypertension, respectively. The results of multivariate logistic regression analyses were expressed as the odds ratio (OR) and their corresponding 95% confidence intervals (CIs). Moreover, the receiver operating characteristic (ROC) curve was depicted to further analyze the predictive value of the atherosclerotic indices on the prevalence of hypertension.ResultsThe atherosclerosis indices were higher in the hypertensive population compared to those in the normotensive population. Meanwhile, systolic blood pressure (SBP) and diastolic blood pressure (DBP) were linearly and positively correlated with atherosclerotic indices. In addition, multivariate logistic regression analysis showed that the cholesterol index and non-HDL-C were observed to be positively associated with the prevalence of hypertension (p for trend < 0.05). Moreover, the prevalence of hypertension increased by 3.7% (OR: 1.037; 95% CI: 1.009-1.065; p = 0.009) and 6.1% (OR: 1.06; 95% CI: 1.033–1.091; p < 0.001), respectively, as per 1-standard deviation (SD) increase in the cholesterol index and non-HDL-C. Beyond that, ROC analysis demonstrated that the cholesterol index and non-HDL-C have a good predictive value for the prevalence of hypertension in women, with under the ROC curve (AUC) of 0.659 and 0.684 and cut-off values of 47.94 and 134.34 mg/dl, accordingly.ConclusionsIn Chinese adults without type 2 diabetes mellitus, atherosclerotic indices were significantly higher in hypertensive populations compared with those in normotensive populations, regardless of hypertension levels. Meanwhile, SBP and DBP were linearly and positively related to atherosclerotic indices. Besides, the cholesterol index and non-HDL-C were independent risk factors for the prevalence of hypertension, and they could be adopted for effectively predicting the prevalence of hypertension in women.
Collapse
Affiliation(s)
- Wenke Cheng
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jingqi Zhuang
- Department of Admission and Follow-Up, Lintong Rehabilitation and Recuperation Center, Xian, China
| | - Siwei Chen
- Department of Cardiovascular Medicine, The Third Hospital of Nanchang, Nanchang, China
- *Correspondence: Siwei Chen
| |
Collapse
|
150
|
Akdu S, Can U, Polat E. Investigation of serum phoenixin levels in patients with hypertension. Rev Assoc Med Bras (1992) 2022; 68:814-819. [PMID: 35766697 PMCID: PMC9575894 DOI: 10.1590/1806-9282.20220153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/26/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE: Hypertension is a major modifiable risk factor for cardiovascular disease and
premature death worldwide. Phoenixin is a newly identified neuropeptide with
multiple bioactivity. However, there was no published data about phoenixin
levels in hypertension. The aim of this study was to evaluate the
relationship between phoenixin and hypertension. METHODS: This study was performed in 36 patients with hypertension and 36 healthy
controls. Serum phoenixin-14 and phoenixin-20 levels were determined by
Enzyme-Linked ImmunoSorbent Assay method. RESULTS: Serum phoenixin-14 and phoenixin-20 values were significantly lower in
hypertension patients compared with the control group (p<0.001). The
levels of phoenixin-14 were negatively correlated with weight (r=-0.376;
p<0.005), body mass index (r=-0.407; p<0.001), systolic blood pressure
(r=-0.586; p<0.001), and diastolic blood pressure (r=-0.319; p<0.01).
There was a negative correlation between serum phoenixin-20 and weight
(r=-0.378; p<0.005), body mass index (r=-0.383; p<0.005), systolic
blood pressure (r=-0.551; p<0.001), and diastolic blood pressure
(r=-0.306; p<0.01). We used receiver operating characteristic curve
analyses to compare the diagnosis value of Phoenixin-14 and Phoenixin-20
levels in hypertensive patients. We found that Phoenixin-14 value is an area
under the curve of 0.87 (cutoff value 404.7 ng/L, sensitivity 92%,
specificity 72%) and Phoenixin-20 value is an area under the curve of 0.83
(cutoff value 209.9 ng/L, sensitivity 86%, specificity 75%). Phoenixin-14
did nearly show equally compared to phoenixin-20 in predicting
hypertension. CONCLUSION: Serum phoenixin-14 and phoenixin-20 may be related to the pathogenesis of
hypertension. Our findings indicated that serum phoenixin-14 and
phoenixin-20 may serve as a novel biomarker for the diagnosis of
hypertension.
Collapse
Affiliation(s)
- Sadinaz Akdu
- Fethiye State Hospital, Department of Biochemistry - Muğla, Turkey
| | - Ummugulsum Can
- Konya City Hospital, Department of Biochemistry - Konya, Turkey
| | - Esra Polat
- Fethiye State Hospital, Department of Cardiology - Muğla, Turkey
| |
Collapse
|