101
|
Abstract
In the recent past, epidemics and pandemics caused by viral infections have had extraordinary effects on human life, leading to severe social and financial challenges. One such event related to the outbreak of the SARS-CoV-2 virus has already taken more than 917,417 lives globally (as of September 13, 2020). The nosocomial route of viral transmission has also been playing a significant role in the community spreading of viruses. Unfortunately, none of the existing strategies are apt for preventing the spread of viral infections. In order to contain the viral transmission, the principal target would be to stop the virus from reaching the otherwise healthy individuals. Nanomaterials, due to its unique physical and chemical properties, have been used to develop novel antiviral agents. In this review, we have discussed several nanotechnological strategies that can be used as an antiviral coating to inhibit viral transmission by preventing viral entry into the host cells.
Collapse
|
102
|
Hsieh TH, Tsai TT, Chen CL, Shen TJ, Jhan MK, Tseng PC, Lin CF. Senescence in Monocytes Facilitates Dengue Virus Infection by Increasing Infectivity. Front Cell Infect Microbiol 2020; 10:375. [PMID: 32850477 PMCID: PMC7399640 DOI: 10.3389/fcimb.2020.00375] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/18/2020] [Indexed: 01/09/2023] Open
Abstract
Aging and chronic condition increase the incidence of dengue virus (DENV) infection, generally through a mechanism involving immunosenescence; however, the alternative effects of cellular senescence, which alters cell susceptibility to viral infection, remain unknown. Human monocytic THP-1 cells (ATCC TIB-202) treated with D-galactose to induce cellular senescence were susceptible to DENV infection. These senescent cells showed increased viral entry/binding, gene/protein expression, and dsRNA replication. The use of a replicon system showed that pharmacologically induced senescence did not enhance the effects on viral protein translation. By examining viral receptor expression, we found increased expression of CD209 (DC-SIGN) in the senescent cells. Interleukin (IL)-10 was aberrantly produced at high levels by the senescent cells, and the expression of the DENV receptor DC-SIGN was increased in these senescent cells, partially via IL-10-mediated regulation of the JAK2-STAT3 signaling pathway. The results demonstrate that a senescent phenotype facilitates DENV infection, probably by increasing DC-SIGN expression.
Collapse
Affiliation(s)
- Tzu-Han Hsieh
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Ting Tsai
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-Jing Shen
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Kai Jhan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Chun Tseng
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Core Laboratory of Immune Monitoring, Office of Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Core Laboratory of Immune Monitoring, Office of Research and Development, Taipei Medical University, Taipei, Taiwan.,Center of Infectious Diseases and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
103
|
Teixeira SC, Borges BC, Oliveira VQ, Carregosa LS, Bastos LA, Santos IA, Jardim ACG, Melo FF, Freitas LM, Rodrigues VM, Lopes DS. Insights into the antiviral activity of phospholipases A 2 (PLA 2s) from snake venoms. Int J Biol Macromol 2020; 164:616-625. [PMID: 32698062 PMCID: PMC7368918 DOI: 10.1016/j.ijbiomac.2020.07.178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022]
Abstract
Viruses are associated with several human diseases that infect a large number of individuals, hence directly affecting global health and economy. Owing to the lack of efficient vaccines, antiviral therapy and emerging resistance strains, many viruses are considered as a potential threat to public health. Therefore, researches have been developed to identify new drug candidates for future treatments. Among them, antiviral research based on natural molecules is a promising approach. Phospholipases A2 (PLA2s) isolated from snake venom have shown significant antiviral activity against some viruses such as Dengue virus, Human Immunodeficiency virus, Hepatitis C virus and Yellow fever virus, and have emerged as an attractive alternative strategy for the development of novel antiviral therapy. Thus, this review provides an overview of remarkable findings involving PLA2s from snake venom that possess antiviral activity, and discusses the mechanisms of action mediated by PLA2s against different stages of virus replication cycle. Additionally, molecular docking simulations were performed by interacting between phospholipids from Dengue virus envelope and PLA2s from Bothrops asper snake venom. Studies on snake venom PLA2s highlight the potential use of these proteins for the development of broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- S C Teixeira
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - B C Borges
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - V Q Oliveira
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - L S Carregosa
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - L A Bastos
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - I A Santos
- Laboratory of Virology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - A C G Jardim
- Laboratory of Virology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - F F Melo
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - L M Freitas
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil
| | - V M Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - D S Lopes
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia, Vitória da Conquista, BA, Brazil; Institute of Health Sciences, Department of Bio-Function, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
104
|
Izmirly AM, Alturki SO, Alturki SO, Connors J, Haddad EK. Challenges in Dengue Vaccines Development: Pre-existing Infections and Cross-Reactivity. Front Immunol 2020; 11:1055. [PMID: 32655548 PMCID: PMC7325873 DOI: 10.3389/fimmu.2020.01055] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/01/2020] [Indexed: 12/31/2022] Open
Abstract
Dengue is one of the most frequently transmitted mosquito-borne diseases in the world, which creates a significant public health concern globally, especially in tropical and subtropical countries. It is estimated that more than 390 million people are infected with dengue virus each year and around 96 million develop clinical pathologies. Dengue infections are not only a health problem but also a substantial economic burden. To date, there are no effective antiviral therapies and there is only one licensed dengue vaccine that only demonstrated protection in the seropositive (Immune), naturally infected with dengue, but not dengue seronegative (Naïve) vaccines. In this review, we address several immune components and their interplay with the dengue virus. Additionally, we summarize the literature pertaining to current dengue vaccine development and advances. Moreover, we review some of the factors affecting vaccine responses, such as the pre-vaccination environment, and provide an overview of the significant challenges that face the development of an efficient/protective dengue vaccine including the presence of multiple serotypes, antibody-dependent enhancement (ADE), as well as cross-reactivity with other flaviviruses. Finally, we discuss targeting T follicular helper cells (Tfh), a significant cell population that is essential for the production of high-affinity antibodies, which might be one of the elements needed to be specifically targeted to enhance vaccine precision to dengue regardless of dengue serostatus.
Collapse
Affiliation(s)
- Abdullah M Izmirly
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medical Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sana O Alturki
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medical Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sawsan O Alturki
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medical Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jennifer Connors
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Elias K Haddad
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
105
|
Lai YC, Chao CH, Yeh TM. Roles of Macrophage Migration Inhibitory Factor in Dengue Pathogenesis: From Pathogenic Factor to Therapeutic Target. Microorganisms 2020; 8:microorganisms8060891. [PMID: 32545679 PMCID: PMC7356240 DOI: 10.3390/microorganisms8060891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022] Open
Abstract
Dengue virus (DENV) infection is the most prevalent mosquito-borne viral infection and can lead to severe dengue hemorrhagic fever (DHF) and even life-threatening dengue shock syndrome (DSS). Although the cytokine storm has been revealed as a critical factor in dengue disease, the limited understanding of dengue immunopathogenesis hinders the development of effective treatments. Macrophage migration inhibitory factor (MIF) is a pleiotropic proinflammatory cytokine that mediates diverse immune responses, and the serum level of MIF positively correlates with disease severity in patients with dengue. MIF is involved in DENV replication and many pathological changes, such as vascular leakage, during DENV infection. In this paper, the pathogenic roles of MIF and the regulation of MIF secretion during DENV infection are reviewed. Furthermore, whether MIF is a potential therapeutic target against DENV infection is also discussed.
Collapse
Affiliation(s)
- Yen-Chung Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-C.L.); (C.-H.C.)
| | - Chiao-Hsuan Chao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-C.L.); (C.-H.C.)
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: ; Tel.: +886-6-2353535 (ext. 5778)
| |
Collapse
|
106
|
Saviola AJ, Negrão F, Yates JR. Proteomics of Select Neglected Tropical Diseases. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:315-336. [PMID: 32109150 DOI: 10.1146/annurev-anchem-091619-093003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Technological advances in mass spectrometry have enabled the extensive identification, characterization, and quantification of proteins in any biological system. In disease processes proteins are often altered in response to external stimuli; therefore, proteomics, the large-scale study of proteins and their functions, represents an invaluable tool for understanding the molecular basis of disease. This review highlights the use of mass spectrometry-based proteomics to study the pathogenesis, etiology, and pathology of several neglected tropical diseases (NTDs), a diverse group of disabling diseases primarily associated with poverty in tropical and subtropical regions of the world. While numerous NTDs have been the subject of proteomic studies, this review focuses on Buruli ulcer, dengue, leishmaniasis, and snakebite envenoming. The proteomic studies highlighted provide substantial information on the pathogenic mechanisms driving these diseases; they also identify molecular targets for drug discovery and development and uncover promising biomarkers that can assist in early diagnosis.
Collapse
Affiliation(s)
- Anthony J Saviola
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA;
| | - Fernanda Negrão
- Department of Biosciences and Technology of Bioactive Products, Institute of Biology, University of Campinas, São Paulo 13083-862, Brazil
| | - John R Yates
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA;
| |
Collapse
|
107
|
Dwivedi VD, Arya A, Yadav P, Kumar R, Kumar V, Raghava GPS. DenvInD: dengue virus inhibitors database for clinical and molecular research. Brief Bioinform 2020; 22:5854403. [PMID: 32510549 DOI: 10.1093/bib/bbaa098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/28/2022] Open
Abstract
Dengue virus (DENV) researchers often face challenges with the highly time-consuming process of collecting and curating information on known inhibitors during the standard drug discovery process. To this end, however, required collective information is not yet available on a single platform. Hence, we have developed the DenvInD database for experimentally validated DENV inhibitors against its known targets presently hosted at https://webs.iiitd.edu.in/raghava/denvind/. This database provides comprehensive information, i.e. PubChem IDs, SMILES, IC50, EC50, CC50, and wherever available Ki values of the 484 compounds in vitro validated as inhibitors against respective drug targets of DENV. Also, the DenvInD database has been linked to the user-friendly web-based interface and accessibility features, such as simple search, advanced search and data browsing. All the required data curation was conducted manually from the reported scientific literature and PubChem. The collected information was then organized into the DenvInD database using sequence query language under user interface by hypertext markup language. DenvInD is the first useful repository of its kind which would augment the DENV drug discovery research by providing essential information on known DENV inhibitors for molecular docking, computational screening, pharmacophore modeling and quantitative structure-activity relationship modeling.
Collapse
|
108
|
Sanborn MA, Li T, Victor K, Siegfried H, Fung C, Rothman AL, Srikiatkhachorn A, Fernandez S, Ellison D, Jarman RG, Friberg H, Maljkovic Berry I, Currier JR, Waickman AT. Analysis of cell-associated DENV RNA by oligo(dT) primed 5' capture scRNAseq. Sci Rep 2020; 10:9047. [PMID: 32493997 PMCID: PMC7270085 DOI: 10.1038/s41598-020-65939-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/12/2020] [Indexed: 01/12/2023] Open
Abstract
Dengue is one of the most widespread vector-borne viral diseases in the world. However, the size, heterogeneity, and temporal dynamics of the cell-associated viral reservoir during acute dengue virus (DENV) infection remains unclear. In this study, we analyzed cells infected in vitro with DENV and PBMC from an individual experiencing a natural DENV infection utilizing 5’ capture single cell RNA sequencing (scRNAseq). Both positive- and negative-sense DENV RNA was detected in reactions containing either an oligo(dT) primer alone, or in reactions supplemented with a DENV-specific primer. The addition of a DENV-specific primer did not increase the total amount of DENV RNA captured or the fraction of cells identified as containing DENV RNA. However, inclusion of a DENV-specific cDNA primer did increase the viral genome coverage immediately 5’ to the primer binding site. Furthermore, while the majority of intracellular DENV sequence captured in this analysis mapped to the 5’ end of the viral genome, distinct patterns of enhanced coverage within the DENV polyprotein coding region were observed. The 5’ capture scRNAseq analysis of PBMC not only recapitulated previously published reports by detecting virally infected memory and naïve B cells, but also identified cell-associated genomic variants not observed in contemporaneous serum samples. These results demonstrate that oligo(dT) primed 5’ capture scRNAseq can detect DENV RNA and quantify virus-infected cells in physiologically relevant conditions, and provides insight into viral sequence variability within infected cells.
Collapse
Affiliation(s)
- Mark A Sanborn
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Tao Li
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kaitlin Victor
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Hayden Siegfried
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Christian Fung
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Alan L Rothman
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| | - Anon Srikiatkhachorn
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA.,Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Damon Ellison
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Adam T Waickman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
109
|
Zhao D, Zhang L, Han K, Liu Q, Yang J, Huang X, Liu Y, Li Y, Zhao P. Peptide inhibitors of tembusu virus infection derived from the envelope protein. Vet Microbiol 2020; 245:108708. [PMID: 32456819 PMCID: PMC7204726 DOI: 10.1016/j.vetmic.2020.108708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 01/30/2023]
Abstract
The outbreak and spread of Tembusu virus (TMUV) has caused very large losses in the waterfowl-breeding industry since 2010. The viral envelope (E) protein, the principal surface protein of viral particles, plays a vital role in viral entry and fusion. In this study, two peptides derived from domain II (DII) and the stem of the TMUV envelope protein, TP1 and TP2, respectively, were tested for their antiviral activity. TP1 and TP2 inhibited TMUV infection in BHK-21 cells, and their 50% inhibitory concentrations (IC50) were 14.19 mg/L and 7.64 mg/L, respectively. Viral inhibition assays in different cell lines of avian origin showed that the inhibitory effects of TP1 and TP2 are not cell type dependent. Moreover, TP2 also exhibited inhibitory activity against Japanese encephalitis virus (JEV) infection. The two peptides inhibited antibody-mediated TMUV infection of duck peripheral blood lymphocytes. Co-immunoprecipitation assays and indirect enzyme-linked immunosorbent assays (ELISAs) indicated that both peptides interact with the surface of the TMUV virion. RNase digestion assays confirmed the release of viral RNA following incubation with TP1, while incubation with TP1 or TP2 interfered with the binding between TMUV and cells. Taken together, these results show that TP1 and TP2 may be developed into antiviral treatments against TMUV infection.
Collapse
Affiliation(s)
- Dongmin Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, PR China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, PR China
| | - Lijiao Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, PR China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, PR China
| | - Kaikai Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, PR China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, PR China
| | - Qingtao Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, PR China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, PR China
| | - Jing Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, PR China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, PR China
| | - Xinmei Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, PR China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, PR China
| | - Yuzhuo Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, PR China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, PR China
| | - Yin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, PR China; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, PR China.
| | - Peng Zhao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong province, PR China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong, PR China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong, PR China.
| |
Collapse
|
110
|
Zitzmann C, Schmid B, Ruggieri A, Perelson AS, Binder M, Bartenschlager R, Kaderali L. A Coupled Mathematical Model of the Intracellular Replication of Dengue Virus and the Host Cell Immune Response to Infection. Front Microbiol 2020; 11:725. [PMID: 32411105 PMCID: PMC7200986 DOI: 10.3389/fmicb.2020.00725] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Dengue virus (DV) is a positive-strand RNA virus of the Flavivirus genus. It is one of the most prevalent mosquito-borne viruses, infecting globally 390 million individuals per year. The clinical spectrum of DV infection ranges from an asymptomatic course to severe complications such as dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), the latter because of severe plasma leakage. Given that the outcome of infection is likely determined by the kinetics of viral replication and the antiviral host cell immune response (HIR) it is of importance to understand the interaction between these two parameters. In this study, we use mathematical modeling to characterize and understand the complex interplay between intracellular DV replication and the host cells' defense mechanisms. We first measured viral RNA, viral protein, and virus particle production in Huh7 cells, which exhibit a notoriously weak intrinsic antiviral response. Based on these measurements, we developed a detailed intracellular DV replication model. We then measured replication in IFN competent A549 cells and used this data to couple the replication model with a model describing IFN activation and production of IFN stimulated genes (ISGs), as well as their interplay with DV replication. By comparing the cell line specific DV replication, we found that host factors involved in replication complex formation and virus particle production are crucial for replication efficiency. Regarding possible modes of action of the HIR, our model fits suggest that the HIR mainly affects DV RNA translation initiation, cytosolic DV RNA degradation, and naïve cell infection. We further analyzed the potential of direct acting antiviral drugs targeting different processes of the DV lifecycle in silico and found that targeting RNA synthesis and virus assembly and release are the most promising anti-DV drug targets.
Collapse
Affiliation(s)
- Carolin Zitzmann
- Center for Functional Genomics of Microbes, Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Bianca Schmid
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Marco Binder
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Lars Kaderali
- Center for Functional Genomics of Microbes, Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
111
|
Waickman AT, Gromowski GD, Rutvisuttinunt W, Li T, Siegfried H, Victor K, Kuklis C, Gomootsukavadee M, McCracken MK, Gabriel B, Mathew A, Grinyo I Escuer A, Fouch ME, Liang J, Fernandez S, Davidson E, Doranz BJ, Srikiatkhachorn A, Endy T, Thomas SJ, Ellison D, Rothman AL, Jarman RG, Currier JR, Friberg H. Transcriptional and clonal characterization of B cell plasmablast diversity following primary and secondary natural DENV infection. EBioMedicine 2020; 54:102733. [PMID: 32315970 PMCID: PMC7170960 DOI: 10.1016/j.ebiom.2020.102733] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/19/2020] [Accepted: 03/10/2020] [Indexed: 01/06/2023] Open
Abstract
Antibody-mediated humoral immunity is thought to play a central role in mediating the immunopathogenesis of acute DENV infection, but limited data are available on the diversity, specificity, and functionality of the antibody response at the molecular level elicited by primary or secondary DENV infection. In order to close this functional gap in our understanding of DENV-specific humoral immunity, we utilized high-throughput single cell RNA sequencing to investigate B cells circulating in both primary and secondary natural DENV infections. We captured full-length paired immunoglobulin receptor sequence data from 9,027 B cells from a total of 6 subjects, including 2,717 plasmablasts. In addition to IgG and IgM class-switched cells, we unexpectedly found a high proportion of the DENV-elicited plasmablasts expressing IgA, principally in individuals with primary DENV infections. These IgA class-switched cells were extensively hypermutated even in individuals with a serologically confirmed primary DENV infection. Utilizing a combination of conventional biochemical assays and high-throughput shotgun mutagenesis, we determined that DENV-reactive IgA class-switched antibodies represent a significant fraction of DENV-reactive Igs generated in response to DENV infection, and that they exhibit a comparable epitope specificity to DENV-reactive IgG antibodies. These results provide insight into the molecular-level diversity of DENV-elicited humoral immunity and identify a heretofore unappreciated IgA plasmablast response to DENV infection.
Collapse
Affiliation(s)
- Adam T Waickman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States.
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Wiriya Rutvisuttinunt
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Tao Li
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Hayden Siegfried
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Kaitlin Victor
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Caitlin Kuklis
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Methee Gomootsukavadee
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Michael K McCracken
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Benjamin Gabriel
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Anuja Mathew
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | | | | | - Jenny Liang
- Integral Molecular, Philadelphia, PA, United States
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | | - Anon Srikiatkhachorn
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States; Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Timothy Endy
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Stephen J Thomas
- Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Damon Ellison
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Alan L Rothman
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Heather Friberg
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
112
|
Echavarria-Consuegra L, Smit JM, Reggiori F. Role of autophagy during the replication and pathogenesis of common mosquito-borne flavi- and alphaviruses. Open Biol 2020; 9:190009. [PMID: 30862253 PMCID: PMC6451359 DOI: 10.1098/rsob.190009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Arboviruses that are transmitted to humans by mosquitoes represent one of the most important causes of febrile illness worldwide. In recent decades, we have witnessed a dramatic re-emergence of several mosquito-borne arboviruses, including dengue virus (DENV), West Nile virus (WNV), chikungunya virus (CHIKV) and Zika virus (ZIKV). DENV is currently the most common mosquito-borne arbovirus, with an estimated 390 million infections worldwide annually. Despite a global effort, no specific therapeutic strategies are available to combat the diseases caused by these viruses. Multiple cellular pathways modulate the outcome of infection by either promoting or hampering viral replication and/or pathogenesis, and autophagy appears to be one of them. Autophagy is a degradative pathway generally induced to counteract viral infection. Viruses, however, have evolved strategies to subvert this pathway and to hijack autophagy components for their own benefit. In this review, we will focus on the role of autophagy in mosquito-borne arboviruses with emphasis on DENV, CHIKV, WNV and ZIKV, due to their epidemiological importance and high disease burden.
Collapse
Affiliation(s)
- Liliana Echavarria-Consuegra
- 1 Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen , Groningen , The Netherlands
| | - Jolanda M Smit
- 1 Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen , Groningen , The Netherlands
| | - Fulvio Reggiori
- 2 Department of Cell Biology, University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| |
Collapse
|
113
|
A multi-target approach for discovery of antiviral compounds against dengue virus from green tea. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s13721-020-0222-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
114
|
A Mapping Review on Urban Landscape Factors of Dengue Retrieved from Earth Observation Data, GIS Techniques, and Survey Questionnaires. REMOTE SENSING 2020. [DOI: 10.3390/rs12060932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To date, there is no effective treatment to cure dengue fever, a mosquito-borne disease which has a major impact on human populations in tropical and sub-tropical regions. Although the characteristics of dengue infection are well known, factors associated with landscape are highly scale dependent in time and space, and therefore difficult to monitor. We propose here a mapping review based on 78 articles that study the relationships between landscape factors and urban dengue cases considering household, neighborhood and administrative levels. Landscape factors were retrieved from survey questionnaires, Geographic Information Systems (GIS), and remote sensing (RS) techniques. We structured these into groups composed of land cover, land use, and housing type and characteristics, as well as subgroups referring to construction material, urban typology, and infrastructure level. We mapped the co-occurrence networks associated with these factors, and analyzed their relevance according to a three-valued interpretation (positive, negative, non significant). From a methodological perspective, coupling RS and GIS techniques with field surveys including entomological observations should be systematically considered, as none digital land use or land cover variables appears to be an univocal determinant of dengue occurrences. Remote sensing urban mapping is however of interest to provide a geographical frame to distribute human population and movement in relation to their activities in the city, and as spatialized input variables for epidemiological and entomological models.
Collapse
|
115
|
Omar NAS, Fen YW, Abdullah J, Mustapha Kamil Y, Daniyal WMEMM, Sadrolhosseini AR, Mahdi MA. Sensitive Detection of Dengue Virus Type 2 E-Proteins Signals Using Self-Assembled Monolayers/Reduced Graphene Oxide-PAMAM Dendrimer Thin Film-SPR Optical Sensor. Sci Rep 2020; 10:2374. [PMID: 32047209 PMCID: PMC7012912 DOI: 10.1038/s41598-020-59388-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/08/2020] [Indexed: 02/03/2023] Open
Abstract
In this work, sensitive detection of dengue virus type 2 E-proteins (DENV-2 E-proteins) was performed in the range of 0.08 pM to 0.5 pM. The successful DENV detection at very low concentration is a matter of concern for targeting the early detection after the onset of dengue symptoms. Here, we developed a SPR sensor based on self-assembled monolayer/reduced graphene oxide-polyamidoamine dendrimer (SAM/NH2rGO/PAMAM) thin film to detect DENV-2 E-proteins. Surface characterizations involving X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) confirms the incorporation of NH2rGO-PAMAM nanoparticles in the prepared sensor films. The specificity, sensitivity, binding affinity, and selectivity of the SPR sensor were then evaluated. Results indicated that the variation of the sensing layer due to different spin speed, time incubation, and concentration provided a better interaction between the analyte and sensing layer. The linear dependence of the SPR sensor showed good linearity (R2 = 0.92) with the lowest detection of 0.08 pM DENV-2 E-proteins. By using the Langmuir model, the equilibrium association constant was obtained at very high value of 6.6844 TM−1 (R2 = 0.99). High selectivity of the SPR sensor towards DENV-2 E-proteins was achieved in the presence of other competitors.
Collapse
Affiliation(s)
- Nur Alia Sheh Omar
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yap Wing Fen
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Jaafar Abdullah
- Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yasmin Mustapha Kamil
- inLAZER Dynamics Sdn Bhd, InnoHub Unit, Putra Science Park, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Amir Reza Sadrolhosseini
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Adzir Mahdi
- Wireless and Photonics Network Research Centre, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
116
|
Chen WC, Simanjuntak Y, Chu LW, Ping YH, Lee YL, Lin YL, Li WS. Benzenesulfonamide Derivatives as Calcium/Calmodulin-Dependent Protein Kinase Inhibitors and Antiviral Agents against Dengue and Zika Virus Infections. J Med Chem 2020; 63:1313-1327. [PMID: 31972088 DOI: 10.1021/acs.jmedchem.9b01779] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Emerging and resurging mosquito-borne flaviviruses are an important public health challenge. The increased prevalence of dengue virus (DENV) infection has had a significant socioeconomic impact on epidemic countries. The recent outbreak of Zika virus (ZIKV) has created an international public health emergency because ZIKV infection has been linked to congenital defects and Guillain-Barré syndrome. To develop potentially prophylactic antiviral drugs for combating these acute infectious diseases, we have targeted the host calcium/calmodulin-dependent kinase II (CaMKII) for inhibition. By using CaMKII structure-guided inhibitor design, we generated four families of benzenesulfonamide (BSA) derivatives for SAR analysis. Among these substances, N-(4-cycloheptyl-4-oxobutyl)-4-methoxy-N-phenylbenzenesulfonamide (9) showed superior properties as a lead CaMKII inhibitor and antiviral agent. BSA 9 inhibited CaMKII activity with an IC50 value of 0.79 μM and displayed EC50 values of 1.52 μM and 1.91 μM against DENV and ZIKV infections of human neuronal BE(2)C cells, respectively. Notably, 9 significantly reduced the viremia level and increased animal survival time in mouse-challenge models.
Collapse
Affiliation(s)
- Wei-Chia Chen
- Department of Chemistry , National Taiwan Normal University , Taipei 11677 , Taiwan.,Institute of Chemistry , Academia Sinica , Taipei 11529 , Taiwan
| | - Yogy Simanjuntak
- Institute of Biomedical Sciences , Academia Sinica , Taipei 11529 , Taiwan
| | - Li-Wei Chu
- Institute of Biophotonics , National Yang-Ming University , Taipei 11221 , Taiwan.,Reseach Center for Applied Sciences , Academia Sinica , Taipei 11529 , Taiwan
| | - Yueh-Hsin Ping
- Institute of Biophotonics , National Yang-Ming University , Taipei 11221 , Taiwan.,Department and Institute of Pharmacology , National Yang-Ming University , Taipei 11221 , Taiwan
| | - Yi-Ling Lee
- Institute of Biomedical Sciences , Academia Sinica , Taipei 11529 , Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences , Academia Sinica , Taipei 11529 , Taiwan.,Genomic Research Center , Academia Sinica , Taipei 11529 , Taiwan
| | - Wen-Shan Li
- Institute of Chemistry , Academia Sinica , Taipei 11529 , Taiwan.,Doctoral Degree Program in Marine Biotechnology , National Sun Yat-Sen University , Kaohsiung 80424 , Taiwan.,Ph.D Program in Biotechnology Research and Development , Taipei Medical University , Taipei 11031 , Taiwan.,Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 80708 , Taiwan
| |
Collapse
|
117
|
Lee HR, Lee GY, You DG, Kim HK, Yoo YD. Hepatitis C Virus p7 Induces Membrane Permeabilization by Interacting with Phosphatidylserine. Int J Mol Sci 2020; 21:ijms21030897. [PMID: 32019133 PMCID: PMC7037181 DOI: 10.3390/ijms21030897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 11/16/2022] Open
Abstract
Hepatitis C virus (HCV) p7 is known to be a nonselective cation channel for HCV maturation. Because the interaction of HCV proteins with host lipids in the endoplasmic reticulum membrane is crucial for the budding process, the identification of p7–lipid interactions could be important for understanding the HCV life cycle. Here, we report that p7 interacts with phosphatidylserine (PS) to induce membrane permeabilization. The interaction of p7 with PS was not inhibited by Gd3+ ions, which have been known to interact with negatively charged lipids, but channel activity and p7-induced mitochondrial depolarization were inhibited by Gd3+ ions. From the present results, we suggest that the p7–PS interaction plays an essential role in regulating its ion channel function and could be a potential molecular target for anti-HCV therapy.
Collapse
Affiliation(s)
- Hye-Ra Lee
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul 02841, Korea; (H.-R.L.); (G.Y.L.)
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Gi Young Lee
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul 02841, Korea; (H.-R.L.); (G.Y.L.)
| | - Deok-Gyun You
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul 02841, Korea; (H.-R.L.); (G.Y.L.)
| | - Hong Kyu Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Young Do Yoo
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul 02841, Korea; (H.-R.L.); (G.Y.L.)
- Correspondence:
| |
Collapse
|
118
|
Humanized Mice in Dengue Research: A Comparison with Other Mouse Models. Vaccines (Basel) 2020; 8:vaccines8010039. [PMID: 31979145 PMCID: PMC7157640 DOI: 10.3390/vaccines8010039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Dengue virus (DENV) is an arbovirus of the Flaviviridae family and is an enveloped virion containing a positive sense single-stranded RNA genome. DENV causes dengue fever (DF) which is characterized by an undifferentiated syndrome accompanied by fever, fatigue, dizziness, muscle aches, and in severe cases, patients can deteriorate and develop life-threatening vascular leakage, bleeding, and multi-organ failure. DF is the most prevalent mosquito-borne disease affecting more than 390 million people per year with a mortality rate close to 1% in the general population but especially high among children. There is no specific treatment and there is only one licensed vaccine with restricted application. Clinical and experimental evidence advocate the role of the humoral and T-cell responses in protection against DF, as well as a role in the disease pathogenesis. A lot of pro-inflammatory factors induced during the infectious process are involved in increased severity in dengue disease. The advances in DF research have been hampered by the lack of an animal model that recreates all the characteristics of this disease. Experiments in nonhuman primates (NHP) had failed to reproduce all clinical signs of DF disease and during the past decade, humanized mouse models have demonstrated several benefits in the study of viral diseases affecting humans. In DENV studies, some of these models recapitulate specific signs of disease that are useful to test drugs or vaccine candidates. However, there is still a need for a more complete model mimicking the full spectrum of DENV. This review focuses on describing the advances in this area of research.
Collapse
|
119
|
Lin CK, Tseng CK, Wu YH, Lin CY, Huang CH, Wang WH, Liaw CC, Chen YH, Lee JC. Prostasin Impairs Epithelial Growth Factor Receptor Activation to Suppress Dengue Virus Propagation. J Infect Dis 2020; 219:1377-1388. [PMID: 30476206 DOI: 10.1093/infdis/jiy677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dengue virus (DENV), a common and widely spread arbovirus, causes life-threatening diseases, such as dengue hemorrhagic fever or dengue shock syndrome. There is currently no effective therapeutic or preventive treatment for DENV infection. METHODS Next-generation sequencing analysis revealed that prostasin expression was decreased upon DENV infection. Prostasin expression levels were confirmed by real-time quantitative polymerase chain reaction in patients with dengue fever and a DENV-infected mice model. Short hairpin RNA against EGFR and LY294002 were used to investigate the molecular mechanism. RESULTS Based on clinical studies, we first found relatively low expression of prostasin, a glycosylphosphatidyl inositol-anchored membrane protease, in blood samples from patients with dengue fever compared with healthy individuals and a high correlation of prostasin expression and DENV-2 RNA copy number. DENV infection significantly decreased prostasin RNA levels of in vivo and in vitro models. By contrast, exogenous expression of prostasin could protect ICR suckling mice from life-threatening DENV-2 infection. Mechanistic studies showed that inhibition of DENV propagation by prostasin was due to reducing expression of epithelial growth factor receptor, leading to suppression of the Akt/NF-κB-mediated cyclooxygenase-2 signaling pathway. CONCLUSION Our results demonstrate that prostasin expression is a noteworthy clinical feature and a potential therapeutic target against DENV infection.
Collapse
Affiliation(s)
- Chun-Kuang Lin
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chin-Kai Tseng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsuan Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Yu Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center for Dengue Fever Control and Research, Kaohsiung Medical University, Taiwan
| | - Chung-Hao Huang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center for Dengue Fever Control and Research, Kaohsiung Medical University, Taiwan
| | - Weng-Hung Wang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
| | - Chih-Chuang Liaw
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center for Dengue Fever Control and Research, Kaohsiung Medical University, Taiwan.,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu.,Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Taiwan
| | - Jin-Ching Lee
- Department of Medical Research, Kaohsiung Medical University Hospital, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan.,PhD program in Life Sciences, College of Life Science, Kaohsiung Medical University, Taiwan
| |
Collapse
|
120
|
Labyrinthopeptins Exert Broad-Spectrum Antiviral Activity through Lipid-Binding-Mediated Virolysis. J Virol 2020; 94:JVI.01471-19. [PMID: 31666384 DOI: 10.1128/jvi.01471-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
To counteract the serious health threat posed by known and novel viral pathogens, drugs that target a variety of viruses through a common mechanism have attracted recent attention due to their potential in treating (re)emerging infections, for which direct-acting antivirals are not available. We found that labyrinthopeptins A1 and A2, the prototype congeners of carbacyclic lanthipeptides, inhibit the proliferation of diverse enveloped viruses, including dengue virus, Zika virus, West Nile virus, hepatitis C virus, chikungunya virus, Kaposi's sarcoma-associated herpesvirus, cytomegalovirus, and herpes simplex virus, in the low micromolar to nanomolar range. Mechanistic studies on viral particles revealed that labyrinthopeptins induce a virolytic effect through binding to the viral membrane lipid phosphatidylethanolamine (PE). These effects are enhanced by a combined equimolar application of both labyrinthopeptins, and a clear synergism was observed across a concentration range corresponding to 10% to 90% inhibitory concentrations of the compounds. Time-resolved experiments with large unilamellar vesicles (LUVs) reveal that membrane lipid raft compositions (phosphatidylcholine [PC]/PE/cholesterol/sphingomyelin at 17:10:33:40) are particularly sensitive to labyrinthopeptins in comparison to PC/PE (90:10) LUVs, even though the overall PE amount remains constant. Labyrinthopeptins exhibited low cytotoxicity and had favorable pharmacokinetic properties in mice (half-life [t 1/2] = 10.0 h), which designates them promising antiviral compounds acting by an unusual viral lipid targeting mechanism.IMPORTANCE For many viral infections, current treatment options are insufficient. Because the development of each antiviral drug is time-consuming and expensive, the prospect of finding broad-spectrum antivirals that can fight multiple, diverse viruses-well-known viruses as well as (re)emerging species-has gained attention, especially for the treatment of viral coinfections. While most known broad-spectrum agents address processes in the host cell, we found that targeting lipids of the free virus outside the host cell with the natural products labyrinthopeptin A1 and A2 is a viable strategy to inhibit the proliferation of a broad range of viruses from different families, including chikungunya virus, dengue virus, Zika virus, Kaposi's sarcoma-associated herpesvirus, and cytomegalovirus. Labyrinthopeptins bind to viral phosphatidylethanolamine and induce virolysis without exerting cytotoxicity on host cells. This represents a novel and unusual mechanism to tackle medically relevant viral infections.
Collapse
|
121
|
Abstract
Dengue virus (DENV) belongs to the family Flaviviridae, genus Flavivirus. It is a single-stranded positive-sense ribonucleic acid virus with 10,700 bases. The genus Flavivirus includes other arthropod borne viruses such as yellow fever virus, West Nile virus, Zika virus, tick-borne encephalitis virus. It infects ~50–200 million people annually, putting over 3.6 billion people living in tropical regions at risk and causing ~20,000 deaths annually. The expansion of dengue is attributed to factors such as the modern dynamics of climate change, globalization, travel, trade, socioeconomics, settlement, and also viral evolution. There are four antigenically different serotypes of DENV based on the differences in their viral structural and nonstructural proteins. DENV infection causes a spectrum of illness ranging from asymptomatic to dengue fever to severe dengue shock syndrome. Infection with one serotype confers lifelong immunity against that serotype, but heterologus infection leads to severe dengue hemorrhagic fever due to antibody-dependent enhancement. Diagnosis of dengue infections is based mainly on serological detection of either antigen in acute cases or antibodies in both acute and chronic infection. Viral detection and real-time PCR detection though helpful is not feasible in resource poor setup. Treatment of dengue depends on symptomatic management along with fluid resuscitation and may require platelet transfusion. Although vaccine development is in late stages of development, developing a single vaccine against four serotypes often causes serious challenges to researchers; hence, the main stay of prevention is vector control and management.
Collapse
|
122
|
Ahn J, Barber GN. STING signaling and host defense against microbial infection. Exp Mol Med 2019; 51:1-10. [PMID: 31827069 PMCID: PMC6906460 DOI: 10.1038/s12276-019-0333-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
The first line of host defense against infectious agents involves activation of innate immune signaling pathways that recognize specific pathogen-associated molecular patterns (PAMPs). Key triggers of innate immune signaling are now known to include microbial-specific nucleic acid, which is rapidly detected in the cytosol of the cell. For example, RIG-I-like receptors (RLRs) have evolved to detect viral RNA species and to activate the production of host defense molecules and cytokines that stimulate adaptive immune responses. In addition, host defense countermeasures, including the production of type I interferons (IFNs), can also be triggered by microbial DNA from bacteria, viruses and perhaps parasites and are regulated by the cytosolic sensor, stimulator of interferon genes (STING). STING-dependent signaling is initiated by cyclic dinucleotides (CDNs) generated by intracellular bacteria following infection. CDNs can also be synthesized by a cellular synthase, cGAS, following interaction with invasive cytosolic self-DNA or microbial DNA species. The importance of STING signaling in host defense is evident since numerous pathogens have developed strategies to prevent STING function. Here, we review the relevance of STING-controlled innate immune signaling in host defense against pathogen invasion, including microbial endeavors to subvert this critical process.
Collapse
Affiliation(s)
- Jeonghyun Ahn
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Glen N Barber
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
123
|
Blight J, Alves E, Reyes-Sandoval A. Considering Genomic and Immunological Correlates of Protection for a Dengue Intervention. Vaccines (Basel) 2019; 7:E203. [PMID: 31816907 PMCID: PMC6963661 DOI: 10.3390/vaccines7040203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 01/18/2023] Open
Abstract
Over three billion are at risk of dengue infection with more than 100 million a year presenting with symptoms that can lead to deadly haemorrhagic disease. There are however no treatments available and the only licensed vaccine shows limited efficacy and is able to enhance the disease in some cases. These failures have mainly been due to the complex pathology and lack of understanding of the correlates of protection for dengue virus (DENV) infection. With increasing data suggesting both a protective and detrimental effect for antibodies and CD8 T-cells whilst having complex environmental dynamics. This review discusses the roles of genomic and immunological aspects of DENV infection, providing both a historical interpretation and fresh discussion on how this information can be used for the next generation of dengue interventions.
Collapse
Affiliation(s)
- Joshua Blight
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK; (J.B.); (E.A.)
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Eduardo Alves
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK; (J.B.); (E.A.)
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Arturo Reyes-Sandoval
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
124
|
Montes-Grajales D, Puerta-Guardo H, Espinosa DA, Harris E, Caicedo-Torres W, Olivero-Verbel J, Martínez-Romero E. In silico drug repurposing for the identification of potential candidate molecules against arboviruses infection. Antiviral Res 2019; 173:104668. [PMID: 31786251 DOI: 10.1016/j.antiviral.2019.104668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 01/09/2023]
Abstract
Arboviral diseases caused by dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) viruses represent a major public health problem worldwide, especially in tropical areas where millions of infections occur every year. The aim of this research was to identify candidate molecules for the treatment of these diseases among the drugs currently available in the market, through in silico screening and subsequent in vitro evaluation with cell culture models of DENV and ZIKV infections. Numerous pharmaceutical compounds from antibiotics to chemotherapeutic agents presented high in silico binding affinity for the viral proteins, including ergotamine, antrafenine, natamycin, pranlukast, nilotinib, itraconazole, conivaptan and novobiocin. These five last compounds were tested in vitro, being pranlukast the one that exhibited the best antiviral activity. Further in vitro assays for this compound showed a significant inhibitory effect on DENV and ZIKV infection of human monocytic cells and human hepatocytes (Huh-7 cells) with potential abrogation of virus entry. Finally, intrinsic fluorescence analyses suggest that pranlukast may have some level of interaction with three viral proteins of DENV: envelope, capsid, and NS1. Due to its promising results, suitable accessibility in the market and reduced restrictions compared to other pharmaceuticals; the anti-asthmatic pranlukast is proposed as a drug candidate against DENV, ZIKV, and CHIKV, supporting further in vitro and in vivo assessment of the potential of this and other lead compounds that exhibited good affinity scores in silico as therapeutic agents or scaffolds for the development of new drugs against arboviral diseases.
Collapse
Affiliation(s)
- Diana Montes-Grajales
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130015, Colombia.
| | - Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Diego A Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720-3370, USA
| | - William Caicedo-Torres
- Grupo de Investigación de Tecnologías Aplicadas y Sistemas de Información, School of Engineering, Universidad Tecnológica de Bolívar, Cartagena, 130010, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130015, Colombia
| | - Esperanza Martínez-Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca-Morelos 565-A, Mexico
| |
Collapse
|
125
|
Trujillo-Correa AI, Quintero-Gil DC, Diaz-Castillo F, Quiñones W, Robledo SM, Martinez-Gutierrez M. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:298. [PMID: 31694638 PMCID: PMC6836419 DOI: 10.1186/s12906-019-2695-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 09/25/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND For decades, bioprospecting has proven to be useful for the identification of compounds with pharmacological potential. Considering the great diversity of Colombian plants and the serious worldwide public health problem of dengue-a disease caused by the dengue virus (DENV)-in the present study, we evaluated the anti-DENV effects of 12 ethanolic extracts derived from plants collected in the Colombian Caribbean coast, and 5 fractions and 5 compounds derived from Psidium guajava. METHODS The cytotoxicity and antiviral effect of 12 ethanolic extracts derived from plants collected in the Colombian Caribbean coast was evaluated in epithelial VERO cells. Five fractions were obtained by open column chromatography from the ethanolic extract with the highest selectivity index (SI) (derived from P. guajava, SI: 128.2). From the fraction with the highest selectivity (Pg-YP-I-22C, SI: 35.5), five compounds were identified by one- and two-dimensional nuclear magnetic resonance spectroscopy. The antiviral effect in vitro of the fractions and compounds was evaluated by different experimental strategies (Pre- and post-treatment) using non-toxic concentrations calculated by MTT method. The DENV inhibition was evaluated by plate focus assay. The results were analyzed by means of statistical analysis using Student's t-test. Finally the antiviral effect in Silico was evaluated by molecular docking. RESULTS In vitro evaluation of these compounds showed that three of them (gallic acid, quercetin, and catechin) were promising antivirals as they inhibit the production of infectious viral particles via different experimental strategies, with the best antiviral being catechin (100% inhibition with a pre-treatment strategy and 91.8% with a post-treatment strategy). When testing the interactions of these compounds with the viral envelope protein in silico by docking, only naringin and hesperidin had better scores than the theoretical threshold of - 7.0 kcal/mol (- 8.0 kcal/mol and - 8.2 kcal/mol, respectively). All ligands tested except gallic acid showed higher affinity to the NS5 protein than the theoretical threshold. CONCLUSION Even though bioprospecting has recently been replaced by more targeted tools for identifying compounds with pharmacological potential, our results show it is still useful for this purpose. Additionally, combining in vitro and in silico evaluations allowed us to identify promising antivirals as well as their possible mechanisms of action.
Collapse
|
126
|
Chang YJ, Pong LY, Hassan SS, Choo WS. Antiviral activity of betacyanins from red pitahaya ( Hylocereus polyrhizus) and red spinach ( Amaranthus dubius) against dengue virus type 2 (GenBank accession no. MH488959). Access Microbiol 2019; 2:acmi000073. [PMID: 33062932 PMCID: PMC7525058 DOI: 10.1099/acmi.0.000073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/03/2019] [Indexed: 02/04/2023] Open
Abstract
This study investigated the antiviral activity of betacyanins from red pitahaya (Hylocereus polyrhizus) and red spinach (Amaranthus dubius) against dengue virus type 2 (DENV-2). The pulp of red pitahaya and the leaves of red spinach were extracted using methanol followed by sub-fractionation and Amberlite XAD16N column chromatography to obtain betacyanin fractions. The half maximum cytotoxicity concentration for betacyanin fractions from red pitahaya and red spinach on Vero cells were 4.346 and 2.287 mg ml-1, respectively. The half-maximal inhibitory concentration (IC50) of betacyanin fraction from red pitahaya was 125.8 μg ml-1 with selectivity index (SI) of 5.8. For betacyanin fraction from red spinach, the IC50 value was 14.62 µg ml-1 with SI of 28.51. Using the maximum non-toxic betacyanin concentration, direct virucidal effect against DENV-2 was obtained from betacyanin fraction from red pitahaya (IC50 of 126.70 μg ml-1; 95.0 % virus inhibition) and red spinach (IC50 value of 106.80 μg ml-1; 65.9 % of virus inhibition). Betacyanin fractions from red pitahaya and red spinach inhibited DENV-2 in vitro.
Collapse
Affiliation(s)
- Ying Jun Chang
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Lian Yih Pong
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Sharifah S. Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
- Infectious Diseases and Health Cluster, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
127
|
Rodriguez AK, Muñoz AL, Segura NA, Rangel HR, Bello F. Molecular characteristics and replication mechanism of dengue, zika and chikungunya arboviruses, and their treatments with natural extracts from plants: An updated review. EXCLI JOURNAL 2019; 18:988-1006. [PMID: 31762724 PMCID: PMC6868920 DOI: 10.17179/excli2019-1825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Viruses transmitted by arthropods (arboviruses) are the etiological agents of several human diseases with worldwide distribution; including dengue (DENV), zika (ZIKV), yellow fever (YFV), and chikungunya (CHIKV) viruses. These viruses are especially important in tropical and subtropical regions; where, ZIKV and CHIKV are involved in epidemics worldwide, while the DENV remains as the biggest problem in public health. Factors, such as, environmental conditions promote the distribution of vectors, deficiencies in health services, and lack of effective vaccines, guarantee the presence of these vector-borne diseases. Treatment against these viral diseases is only palliative since available therapies formulated lack to demonstrate specific antiviral activity and vaccine candidates fail to demonstrate enough effectiveness. The use of natural products, as therapeutic tools, is an ancestral practice in different cultures. According to WHO 80 % of the population of some countries from Africa and Asia depend on the use of traditional medicines to deal with some diseases. Molecular characteristics of these viruses are important in determining its cellular pathogenesis, emergence, and dispersion mechanisms, as well as for the development of new antivirals and vaccines to control strategies. In this review, we summarize the current knowledge of the molecular structure and replication mechanisms of selected arboviruses, as well as their mechanism of entry into host cells, and a brief overview about the potential targets accessed to inhibit these viruses in vitro and a summary about their treatment with natural extracts from plants.
Collapse
Affiliation(s)
| | - Ana Luisa Muñoz
- Faculty of Science, Universidad Antonio Nariño (UAN), Bogotá, 110231, Colombia
| | - Nidya Alexandra Segura
- Faculty of Science, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Héctor Rafael Rangel
- Laboratory of Molecular Virology, Instituto Venezolano de Investigaciones Científicas, Caracas, 1204, Venezuela
| | - Felio Bello
- Faculty of Agricultural and Livestock Sciences, Program of Veterinary Medicine, Universidad de La Salle, Bogotá, 110131, Colombia
| |
Collapse
|
128
|
Yellow Fever: Integrating Current Knowledge with Technological Innovations to Identify Strategies for Controlling a Re-Emerging Virus. Viruses 2019; 11:v11100960. [PMID: 31627415 PMCID: PMC6832525 DOI: 10.3390/v11100960] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 01/17/2023] Open
Abstract
Yellow fever virus (YFV) represents a re-emerging zoonotic pathogen, transmitted by mosquito vectors to humans from primate reservoirs. Sporadic outbreaks of YFV occur in endemic tropical regions, causing a viral hemorrhagic fever (VHF) associated with high mortality rates. Despite a highly effective vaccine, no antiviral treatments currently exist. Therefore, YFV represents a neglected tropical disease and is chronically understudied, with many aspects of YFV biology incompletely defined including host range, host–virus interactions and correlates of host immunity and pathogenicity. In this article, we review the current state of YFV research, focusing on the viral lifecycle, host responses to infection, species tropism and the success and associated limitations of the YFV-17D vaccine. In addition, we highlight the current lack of available treatments and use publicly available sequence and structural data to assess global patterns of YFV sequence diversity and identify potential drug targets. Finally, we discuss how technological advances, including real-time epidemiological monitoring of outbreaks using next-generation sequencing and CRISPR/Cas9 modification of vector species, could be utilized in future battles against this re-emerging pathogen which continues to cause devastating disease.
Collapse
|
129
|
Detection of dengue using PAMAM dendrimer integrated tapered optical fiber sensor. Sci Rep 2019; 9:13483. [PMID: 31530893 PMCID: PMC6748962 DOI: 10.1038/s41598-019-49891-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/31/2019] [Indexed: 11/08/2022] Open
Abstract
The exponential escalation of dengue cases has indeed become a global health crisis. This work elaborates on the development of a biofunctionalized tapered optical fiber (TOF) based sensor with the integration of polyamidoamine (PAMAM) dendrimer for the detection of dengue E protein. The dimension of the TOF generated an evanescent field that was sensitive to any changes in the external medium while the integration of PAMAM promoted more adhesion of bio-recognition molecules; anti-DENV II E protein antibodies; that were complementary to the targeted protein. This in return created more active sites for the absorption of DENV II E proteins onto the tapered region. The resolution and detection limit of the sensor are 19.53 nm/nM and 1 pM, respectively with Kd = 1.02 × 10-10 M.
Collapse
|
130
|
Kuczera D, Assolini JP, Tomiotto-Pellissier F, Pavanelli WR, Silveira GF. Highlights for Dengue Immunopathogenesis: Antibody-Dependent Enhancement, Cytokine Storm, and Beyond. J Interferon Cytokine Res 2019; 38:69-80. [PMID: 29443656 DOI: 10.1089/jir.2017.0037] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Infection with dengue virus (DENV) can lead to a wide spectrum of clinical presentations, ranging from asymptomatic infection to death. It is estimated that the disease manifests only in 90 million cases out of the total 390 million yearly infections. Even though research has not yet elucidated which are the precise pathophysiological mechanisms that trigger severe forms of dengue, the infection elicits a critical immune response significant for dengue pathogenesis development. Understanding how the immune response to DENV is established and how it can resolve the infection or turn into an immunopathology is of great importance in DENV research. Currently, studies have extensively debated 2 hypotheses involving immune response: antibody-dependent enhancement and cytokine storm. However, despite its undeniable importance in severe forms of the disease, these 2 hypotheses are based on a primed immune status resulting from previous heterologous infection, abstaining them from explaining the severe forms of dengue in naive immune subjects, for example. Thus, it seems that a more intricate arrangement of causes and conditions must be achieved to severe dengue to occur. Among them, the cytokine network signature elicited, in association with viral aspects deserves special attention regarding the establishment of infection and evolution to pathogenesis. In this work, we intend to shed light on how those elements contribute to severe dengue development.
Collapse
Affiliation(s)
- Diogo Kuczera
- 1 Laboratório de Virologia Molecular, Instituto Carlos Chagas , ICC/Fiocruz/PR, Curitiba, Brazil
| | - João Paulo Assolini
- 2 Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina, Londrina, Brazil
| | - Fernanda Tomiotto-Pellissier
- 2 Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina, Londrina, Brazil
| | - Wander Rogério Pavanelli
- 2 Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina, Londrina, Brazil
| | | |
Collapse
|
131
|
McClure RS, Wendler JP, Adkins JN, Swanstrom J, Baric R, Kaiser BLD, Oxford KL, Waters KM, McDermott JE. Unified feature association networks through integration of transcriptomic and proteomic data. PLoS Comput Biol 2019; 15:e1007241. [PMID: 31527878 PMCID: PMC6748406 DOI: 10.1371/journal.pcbi.1007241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 07/02/2019] [Indexed: 11/18/2022] Open
Abstract
High-throughput multi-omics studies and corresponding network analyses of multi-omic data have rapidly expanded their impact over the last 10 years. As biological features of different types (e.g. transcripts, proteins, metabolites) interact within cellular systems, the greatest amount of knowledge can be gained from networks that incorporate multiple types of -omic data. However, biological and technical sources of variation diminish the ability to detect cross-type associations, yielding networks dominated by communities comprised of nodes of the same type. We describe here network building methods that can maximize edges between nodes of different data types leading to integrated networks, networks that have a large number of edges that link nodes of different-omic types (transcripts, proteins, lipids etc). We systematically rank several network inference methods and demonstrate that, in many cases, using a random forest method, GENIE3, produces the most integrated networks. This increase in integration does not come at the cost of accuracy as GENIE3 produces networks of approximately the same quality as the other network inference methods tested here. Using GENIE3, we also infer networks representing antibody-mediated Dengue virus cell invasion and receptor-mediated Dengue virus invasion. A number of functional pathways showed centrality differences between the two networks including genes responding to both GM-CSF and IL-4, which had a higher centrality value in an antibody-mediated vs. receptor-mediated Dengue network. Because a biological system involves the interplay of many different types of molecules, incorporating multiple data types into networks will improve their use as models of biological systems. The methods explored here are some of the first to specifically highlight and address the challenges associated with how such multi-omic networks can be assembled and how the greatest number of interactions can be inferred from different data types. The resulting networks can lead to the discovery of new host response patterns and interactions during viral infection, generate new hypotheses of pathogenic mechanisms and confirm mechanisms of disease.
Collapse
Affiliation(s)
- Ryan S. McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA, United States of America
| | - Jason P. Wendler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA, United States of America
| | - Joshua N. Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA, United States of America
| | - Jesica Swanstrom
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| | - Ralph Baric
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| | - Brooke L. Deatherage Kaiser
- Signatures Science and Technology Division, Pacific Northwest National Laboratory, Richland WA, United States of America
| | - Kristie L. Oxford
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA, United States of America
| | - Katrina M. Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA, United States of America
| | - Jason E. McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA, United States of America
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, OR, United States of America
| |
Collapse
|
132
|
Ahammad F, Tengku Abd Rashid TR, Mohamed M, Tanbin S, Ahmad Fuad FA. Contemporary Strategies and Current Trends in Designing Antiviral Drugs against Dengue Fever via Targeting Host-Based Approaches. Microorganisms 2019; 7:E296. [PMID: 31466307 PMCID: PMC6780377 DOI: 10.3390/microorganisms7090296] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Dengue virus (DENV) is an arboviral human pathogen transmitted through mosquito bite that infects an estimated ~400 million humans (~5% of the global population) annually. To date, no specific therapeutics have been developed that can prevent or treat infections resulting from this pathogen. DENV utilizes numerous host molecules and factors for transcribing the single-stranded ~11 kb positive-sense RNA genome. For example, the glycosylation machinery of the host is required for viral particles to assemble in the endoplasmic reticulum. Since a variety of host factors seem to be utilized by the pathogens, targeting these factors may result in DENV inhibitors, and will play an important role in attenuating the rapid emergence of other flaviviruses. Many experimental studies have yielded findings indicating that host factors facilitate infection, indicating that the focus should be given to targeting the processes contributing to pathogenesis along with many other immune responses. Here, we provide an extensive literature review in order to elucidate the progress made in the development of host-based approaches for DENV viral infections, focusing on host cellular mechanisms and factors responsible for viral replication, aiming to aid the potential development of host-dependent antiviral therapeutics.
Collapse
Affiliation(s)
- Foysal Ahammad
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| | | | - Maizan Mohamed
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Locked Bag 36, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Suriyea Tanbin
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| | - Fazia Adyani Ahmad Fuad
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia.
| |
Collapse
|
133
|
Verçoza BR, Bernardo RR, Pentón-Madrigal A, Sinnecker JP, Rodrigues JC, S de Oliveira LA. Therapeutic potential of low-cost nanocarriers produced by green synthesis: macrophage uptake of superparamagnetic iron oxide nanoparticles. Nanomedicine (Lond) 2019; 14:2293-2313. [PMID: 31414612 DOI: 10.2217/nnm-2018-0500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: The primary goal of this work was to synthesize low-cost superparamagnetic iron oxide nanoparticles (SPIONs) with the aid of coconut water and evaluate the ability of macrophages to internalize them. Our motivation was to determine potential therapeutic applications in drug-delivery systems associated with magnetic hyperthermia. Materials & methods: We used the following characterization techniques: x-ray and electron diffractions, electron microscopy, spectrometry and magnetometry. Results: The synthesized SPIONs, roughly 4 nm in diameter, were internalized by macrophages, likely via endocytic/phagocytic pathways. They were randomly distributed throughout the cytoplasm and mainly located in membrane-bound compartments. Conclusion: Nanoparticles presented an elevated intrinsic loss power value and were not cytotoxic to mammalian cells. Thus, we suggest that low-cost SPIONs have great therapeutic potential.
Collapse
Affiliation(s)
- Brunno Rf Verçoza
- Núcleo Multidisciplinar de Pesquisas em Biologia, Campus Prof. Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rodovia Washington Luiz, km 105. 25240-005, Duque de Caxias, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, 21941-902, Brazil.,Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, 21941-170, Brazil
| | - Robson R Bernardo
- Núcleo Multidisciplinar de Pesquisas em Biologia, Campus Prof. Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rodovia Washington Luiz, km 105. 25240-005, Duque de Caxias, RJ, Brazil.,Núcleo Multidisciplinar de Pesquisas em Nanotecnologia, Campus Prof. Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rodovia Washington Luiz, km 105. 25240-005, Duque de Caxias, RJ, Brazil
| | - Arbélio Pentón-Madrigal
- Facultad de Física, IMRE, Universidad de La Habana, San Lazaro y L, C. Habana, CP 10400, Cuba
| | - João P Sinnecker
- Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, Rio de Janeiro, RJ, 22290-180, Brazil
| | - Juliany Cf Rodrigues
- Núcleo Multidisciplinar de Pesquisas em Biologia, Campus Prof. Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rodovia Washington Luiz, km 105. 25240-005, Duque de Caxias, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, 21941-902, Brazil.,Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, 21941-170, Brazil
| | - Luiz Augusto S de Oliveira
- Núcleo Multidisciplinar de Pesquisas em Biologia, Campus Prof. Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rodovia Washington Luiz, km 105. 25240-005, Duque de Caxias, RJ, Brazil.,Núcleo Multidisciplinar de Pesquisas em Nanotecnologia, Campus Prof. Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rodovia Washington Luiz, km 105. 25240-005, Duque de Caxias, RJ, Brazil
| |
Collapse
|
134
|
El-Bitar AMH, Sarhan M, Abdel-Rahman MA, Quintero-Hernandez V, Aoki-Utsubo C, Moustafa MA, Possani LD, Hotta H. Smp76, a Scorpine-Like Peptide Isolated from the Venom of the Scorpion Scorpio maurus palmatus, with a Potent Antiviral Activity Against Hepatitis C Virus and Dengue Virus. Int J Pept Res Ther 2019; 26:811-821. [PMID: 32435168 PMCID: PMC7223391 DOI: 10.1007/s10989-019-09888-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2019] [Indexed: 12/17/2022]
Abstract
Growing global viral infections have been a serious public health problem in recent years. This current situation emphasizes the importance of developing more therapeutic antiviral compounds. Hepatitis C virus (HCV) and dengue virus (DENV) belong to the Flaviviridae family and are an increasing global health threat. Our previous study reported that the crude venom of Scorpio maurus palmatus possessed anti-HCV and anti-DENV activities in vitro. We report here the characterization of a natural antiviral peptide (scorpion-like peptide Smp76) that prevents HCV and DENV infection. Smp76 was purified from S. m. palmatus venom and contains 76 amino acids with six residues of cysteine. Smp76 antiviral activity was evaluated using a cell culture technique utilizing Huh7it-1, Vero/SLAM, HCV (JFH1, genotype 2a) and DENV (Trinidad 1751, type 2). A potential antiviral activity of Smp76 was detected in culture cells with an approximate IC50 of 0.01 μg/ml. Moreover, Smp76 prevents HCV infection and suppresses secondary infection, by inactivating extra-cellular infectious particles without affecting viral replication. Interestingly, Smp76 is neither toxic nor hemolytic in vitro at a concentration 1000-fold higher than that required for antiviral activity. Conclusively, this report highlights novel anti-HCV and anti-DENV activities of Smp76, which may lay the foundation for developing a new therapeutic intervention against these flaviviruses.
Collapse
Affiliation(s)
- Alaa M H El-Bitar
- 1Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt.,2Department of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Moustafa Sarhan
- 1Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt.,2Department of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | | | - Veronica Quintero-Hernandez
- 5Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, 62210 Cuernavaca, Morelos Mexico.,6CONACYT-Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas-Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, C.P. 72570 Puebla, Mexico
| | - Chie Aoki-Utsubo
- 3Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142 Japan
| | - Mohsen A Moustafa
- 1Zoology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Lourival D Possani
- 5Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Colonia Chamilpa, Apartado Postal 510-3, 62210 Cuernavaca, Morelos Mexico
| | - Hak Hotta
- 2Department of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan.,3Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142 Japan
| |
Collapse
|
135
|
Lee T, Kim GH, Kim SM, Hong K, Kim Y, Park C, Sohn H, Min J. Label-free localized surface plasmon resonance biosensor composed of multi-functional DNA 3 way junction on hollow Au spike-like nanoparticles (HAuSN) for avian influenza virus detection. Colloids Surf B Biointerfaces 2019; 182:110341. [PMID: 31284148 PMCID: PMC7185628 DOI: 10.1016/j.colsurfb.2019.06.070] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/18/2022]
Abstract
In the present study, we fabricated a label-free avian influenza (AIV H5N1) detection biosensor composed of a multi-functional DNA 3 way-Junction (3 W J) on a hollow Au spike-like nanoparticle (hAuSN) using a localized surface plasmon resonance (LSPR) method. To construct the multi-functional DNA (MF-DNA) as a bioprobe, the 3 W J was introduced. The proposed AIV detection bioprobe should contain three functionalities: target recognition, signal amplification, and connection to substrate. To achieve this goal, each piece of the DNA 3 W J was tailored to a hemagglutinin (HA) binding aptamer, FAM dye and thiol group, respectively. The assembly of each DNA 3 W J functional fragment was then confirmed by TBM-Native PAGE. Moreover, the hAuSN was immobilized on the indium-tin-oxide (ITO) substrate for LSPR measurement. The DNA 3 W J was immobilized onto the hAuSN electrode through the thiol-group of DNA 3 W J. The fabricated DNA 3 W J/hAuSN heterolayer on the ITO substrate was investigated by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). LSPR experiments were conducted to confirm HA protein binding to the DNA 3 W J/ hAuSN -modified electrode. The proposed biosensor can detected the HA protein in PBS buffer (LOD: 1 pM) as well as in the diluted chicken serum (LOD: 1 pM). The present study details a label-free, simple fabrication method consisted of DNA 3 W J/ hAuSN heterolayer that uses easy-to-tailor elements to detect not only AIV but also various viruses detection platform easily.
Collapse
Affiliation(s)
- Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Republic of Korea.
| | - Ga Hyeon Kim
- Department of Chemical Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Republic of Korea
| | - Soo Min Kim
- Department of Chemical Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Republic of Korea
| | - Keonyoung Hong
- Department of Chemical Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Republic of Korea
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Republic of Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Republic of Korea
| | - Hiesang Sohn
- Department of Chemical Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Republic of Korea.
| | - Junhong Min
- School of Integrative Engineering Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
136
|
Naranjo-Gómez JS, Castillo-Ramírez JA, Velilla-Hernández PA, Castaño-Monsalve DM. Inmunopatología del dengue: importancia y participación de los monocitos y sus subpoblaciones. IATREIA 2019. [DOI: 10.17533/udea.iatreia.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
El dengue es una infección viral aguda transmitida por la picadura de mosquitos del género Aedes, la cual produce hasta 100 millones de infecciones anuales en el mundo. Una gran proporción de individuos infectados con el virus presentan infecciones asintomáticas. Sin embargo, de los individuos que desarrollan la enfermedad, el 95 % presentan signos y síntomas similares a una virosis común, que por lo general se autoresuelven (dengue con y sin signos de alarma). El 5 % restante puede evolucionar a manifestaciones graves, caracterizadas por hemorragias, daño orgánico, choque hipovolémico e incluso la muerte (dengue grave).Los monocitos son uno de los blancos principales de la infección producida por el virus del dengue (DENV), los cuales participan en la replicación del mismo y en la producción de una gran variedad de citoquinas que contribuyen con el daño de diferentes tejidos y órganos en respuesta a la infección. Los monocitos se dividen en tres subpoblaciones: clásica (CD14++CD16-), no clásica (CD14+CD16++) e intermedia (CD14++CD16+), las cuales poseen respuestas funcionales contrastantes en diferentes procesos inflamatorios, en cuanto a la producción de mediadores solubles e interacción con el endotelio. Los monocitos no clásicos parecen ser los principales productores de mediadores inflamatorios como el TNF-α y la IL-1β en respuesta a la infección por DENV. Por lo tanto, se propone que cada subpoblación de monocitos debe tener un papel diferencial en la inmunopatología de la enfermedad.En esta revisión se recopilan los principales aspectos de la replicación viral y la inmunopatología del dengue, así como los principales hallazgos referentes al papel de los monocitos en esta infección y además, se propone un papel potencial y diferencial de las subpoblaciones de monocitos.
Collapse
|
137
|
Mast cell stabilizing effect of a geranyl acetophenone in dengue virus infection using in vitro model of DENV3-induced RBL-2H3 cells. Biosci Rep 2019; 39:BSR20181273. [PMID: 31110077 PMCID: PMC6549089 DOI: 10.1042/bsr20181273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 05/01/2019] [Accepted: 05/16/2019] [Indexed: 12/30/2022] Open
Abstract
Mast cells (MCs), a type of immune effector cell, have recently become recognized for their ability to cause vascular leakage during dengue virus (DENV) infection. Although MC stabilizers have been reported to attenuate DENV induced infection in animal studies, there are limited in vitro studies on the use of MC stabilizers against DENV induced MC degranulation. 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA) has been reported to be a potential MC stabilizer by inhibiting IgE-mediated MC activation in both cellular and animal models. The present study aims to establish an in vitro model of DENV3-induced RBL-2H3 cells using ketotifen fumarate as a control drug, as well as to determine the effect of tHGA on the release of MC mediators upon DENV infection. Our results demonstrated that the optimal multiplicities of infection (MOI) were 0.4 × 10-2 and 0.8 × 10-2 focus forming units (FFU)/cell. Ketotifen fumarate was proven to attenuate DENV3-induced RBL-2H3 cells degranulation in this in vitro model. In contrast, tHGA was unable to attenuate the release of both β-hexosaminidase and tumor necrosis factor (TNF)-α. Nonetheless, our study has successfully established an in vitro model of DENV3-induced RBL-2H3 cells, which might be useful for the screening of potential MC stabilizers for anti-dengue therapies.
Collapse
|
138
|
Corzo-Gómez J, García-Cordero J, Montes Gómez AE, Bernal-Siria K, Namorado-Tónix K, Gutierrez-Castañeda B, Cedillo-Barrón L. Expression and purification of domain III proteins from Dengue and Zika viruses. Protein Expr Purif 2019; 162:38-43. [PMID: 31112759 DOI: 10.1016/j.pep.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 11/28/2022]
Abstract
The envelope (E) protein from Dengue and Zika viruses comprises three functional and structural domains (DI, DII, and DIII). Domain III induces most of the neutralizing antibodies and, as such, is considered as having the highest antigenic potential for the evaluation of population-level surveillance and for detecting past infections in both Dengue and Zika patients. The present study aimed to clone and express recombinant proteins of domain III from Dengue virus serotype 2 and from Zika virus in a prokaryotic system, as well as evaluate their immunogenicity and cross-reactivity. Both antigens were successfully purified and their antigenicity was assessed in mice. The antibodies elicited by domain III of Zika and Dengue virus antigens recognized specifically the native proteins in infected cells. Furthermore, the antigens showed a more specific immunogenic response than that of domain III proteins from Dengue virus. The generated recombinant proteins can be potentially used in subunit vaccines or for surveillance studies.
Collapse
Affiliation(s)
- Josselin Corzo-Gómez
- Departamento de Biomedicina Molecular CINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, 07360, México City, Mexico
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular CINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, 07360, México City, Mexico
| | - Alfredo E Montes Gómez
- Departamento de Biomedicina Molecular CINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, 07360, México City, Mexico
| | - Karen Bernal-Siria
- Departamento de Biomedicina Molecular CINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, 07360, México City, Mexico
| | - Karime Namorado-Tónix
- Departamento de Biomedicina Molecular CINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, 07360, México City, Mexico
| | - Benito Gutierrez-Castañeda
- Immunology Department (UMF) Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autonoma de México, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, 54090, Edo. de México, Mexico
| | - Leticia Cedillo-Barrón
- Departamento de Biomedicina Molecular CINVESTAV IPN, Av. IPN # 2508 Col, San Pedro Zacatenco, 07360, México City, Mexico.
| |
Collapse
|
139
|
Wang R, Ongagna-Yhombi SY, Lu Z, Centeno-Tablante E, Colt S, Cao X, Ren Y, Cárdenas WB, Mehta S, Erickson D. Rapid Diagnostic Platform for Colorimetric Differential Detection of Dengue and Chikungunya Viral Infections. Anal Chem 2019; 91:5415-5423. [PMID: 30896928 PMCID: PMC7719054 DOI: 10.1021/acs.analchem.9b00704] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this work, we demonstrate a rapid diagnostic platform with potential to transform clinical diagnosis of acute febrile illnesses in resource-limited settings. Acute febrile illnesses such as dengue and chikungunya, which pose high burdens of disease in tropical regions, share many nonspecific symptoms and are difficult to diagnose based on clinical history alone in the absence of accessible laboratory diagnostics. Through a unique color-mixing encoding and readout strategy, our platform enabled consistent and accurate multiplexed detection of dengue and chikungunya IgM/IgG antibodies in human clinical samples within 30 min. Our multiplex assay offers several advantages over conventional rapid diagnostic tests deployed in resource-limited settings, including a low sample volume requirement and the ability to concurrently detect four analytes. Our platform is a step toward multiplexed diagnostics that will be transformative for disease management in resource-limited settings by enabling informed treatment decisions through accessible evidence-based diagnosis.
Collapse
Affiliation(s)
- Ruisheng Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Serge Y. Ongagna-Yhombi
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Zhengda Lu
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Susannah Colt
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Xiangkun Cao
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yue Ren
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Saurabh Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, United States
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
140
|
Sun X, Liu E, Iqbal A, Wang T, Wang X, Haseeb A, Ahmed N, Yang P, Chen Q. The dynamic distribution of duck Tembusu virus in the spleen of infected shelducks. BMC Vet Res 2019; 15:112. [PMID: 30975151 PMCID: PMC6460551 DOI: 10.1186/s12917-019-1860-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/03/2019] [Indexed: 11/10/2022] Open
Abstract
Background Duck Tembusu virus (DTMUV) is a novel member of Flavivirus. The isolated and purified DTMUV strain XZ-2012 was used as a strain model, to intramuscularly inject the six-month egg-laying shelducks with the infective dose of 104TCID50. The dynamic distribution of the virus in spleen at different time post-infection (pi) was studied using RT-PCR, RT-qPCR, ELISA, immunofluorescence and transmission electron microscopy (TEM). Result The results showed that the virus occurred in the spleen after 2 hpi and lasted up to 18 dpi. The registered viral load increased from 2 hpi to 3 dpi, and then it diminished from 6 dpi to 18 dpi with a slight rise at 12 dpi. From 2 hpi to 6 dpi the DTMUV particles were mostly distributed in the periellipsoidal lymphatic sheath (PELS) of spleen white pulp, few being found in the sheathed capillary. From 9 dpi to 18 dpi, the DTMUV particles were migrating into periarterial lymphatic sheaths (PALS) around the central artery through the red pulp. Under TEM, the virus particles could be observed mostly in lymphocytes and macrophages. Conclusion It was suggested that DTMUV invaded lymphocytes and macrophages of the spleen at 2 hpi and replicated significantly from 1 dpi to 3 dpi, being eliminated from 9 dpi to 18 dpi. This is the first study on the dynamic distribution of DTMUV from invasion to elimination in duck spleen conducted by molecular and morphological methods. It could provide theoretical basis for the occurrence, development and detoxification of the virus in the organs of the immune system.
Collapse
Affiliation(s)
- Xuejing Sun
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang No.1, Nanjing, 210095, Jiangsu Province, China
| | - Enxue Liu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang No.1, Nanjing, 210095, Jiangsu Province, China
| | - Adeela Iqbal
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang No.1, Nanjing, 210095, Jiangsu Province, China
| | - Taozhi Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang No.1, Nanjing, 210095, Jiangsu Province, China
| | - Xindong Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang No.1, Nanjing, 210095, Jiangsu Province, China
| | - Abdul Haseeb
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang No.1, Nanjing, 210095, Jiangsu Province, China
| | - Nisar Ahmed
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang No.1, Nanjing, 210095, Jiangsu Province, China
| | - Ping Yang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang No.1, Nanjing, 210095, Jiangsu Province, China
| | - Qiusheng Chen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Wei gang No.1, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
141
|
Zhang L, Shen H, Gong Y, Pang X, Yi M, Guo L, Li J, Arroyo S, Lu X, Ovchinnikov S, Cheng G, Liu X, Jiang X, Feng S, Deng H. Development of a dual-functional conjugate of antigenic peptide and Fc-III mimetics (DCAF) for targeted antibody blocking. Chem Sci 2019; 10:3271-3280. [PMID: 30996912 PMCID: PMC6429600 DOI: 10.1039/c8sc05273e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/28/2019] [Indexed: 01/12/2023] Open
Abstract
Targeted antibody blocking enables characterization of binding sites on immunoglobulin G (IgG), and can efficiently eliminate harmful antibodies from organisms. In this report, we present a novel peptide-denoted as a dual-functional conjugate of antigenic peptide and Fc-III mimetics (DCAF)-for targeted blocking of antibodies. Synthesis of DCAF was achieved by native chemical ligation, and the molecule consists of three functional parts: a specific antigenic peptide, a linker and the Fc-III mimetic peptide, which has a high affinity toward the Fc region of IgG molecules. We demonstrate that DCAF binds the cognate antibody with high selectivity by simultaneously binding to the Fab and Fc regions of IgG. Animal experiments revealed that DCAF molecules diminish the antibody-dependent enhancement effect in a dengue virus infection model, and rescue the acetylcholine receptor by inhibiting the complement cascade in a myasthenia gravis model. These results suggest that DCAFs could have utility in the development of new therapeutics against harmful antibodies.
Collapse
Affiliation(s)
- Lin Zhang
- MOE Key Laboratory of Bioinformatics , Center for Synthetic and Systems Biology , School of Life Sciences , Tsinghua University , Beijing , China .
| | - Hao Shen
- Institute for Protein Design , Department of Biochemistry , University of Washington , Seattle , WA , USA
| | - Yiyi Gong
- Central Research Laboratory , Peking Union Medical College Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Xiaojing Pang
- Tsinghua-Peking Center for Life Sciences , School of Medicine , Tsinghua University , Beijing , China
| | - Meiqi Yi
- MOE Key Laboratory of Bioinformatics , Center for Synthetic and Systems Biology , School of Life Sciences , Tsinghua University , Beijing , China .
| | - Lin Guo
- MOE Key Laboratory of Bioinformatics , Center for Synthetic and Systems Biology , School of Life Sciences , Tsinghua University , Beijing , China .
| | - Jin Li
- MOE Key Laboratory of Bioinformatics , Center for Synthetic and Systems Biology , School of Life Sciences , Tsinghua University , Beijing , China .
| | - Sam Arroyo
- Department of Biological Sciences , University of Notre Dame , South Bend , IN , USA
| | - Xin Lu
- Department of Biological Sciences , University of Notre Dame , South Bend , IN , USA
| | - Sergey Ovchinnikov
- Institute for Protein Design , Department of Biochemistry , University of Washington , Seattle , WA , USA
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences , School of Medicine , Tsinghua University , Beijing , China
| | - Xudong Liu
- Central Research Laboratory , Peking Union Medical College Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Xu Jiang
- Central Research Laboratory , Peking Union Medical College Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Shan Feng
- Mass Spectrometry Facility , Westlake Lake University , Hangzhou , Zhejiang Province , China .
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics , Center for Synthetic and Systems Biology , School of Life Sciences , Tsinghua University , Beijing , China .
| |
Collapse
|
142
|
Zou C, Huang C, Zhang J, Wu Q, Ni X, Sun J, Dai J. Virulence difference of five type I dengue viruses and the intrinsic molecular mechanism. PLoS Negl Trop Dis 2019; 13:e0007202. [PMID: 30830907 PMCID: PMC6417740 DOI: 10.1371/journal.pntd.0007202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/14/2019] [Accepted: 01/30/2019] [Indexed: 12/23/2022] Open
Abstract
Dengue virus (DENV) is the most important vector-borne virus globally. The safe and effective vaccines are still under development and there are no antiviral drugs for DENV induced diseases. In this study, we obtained five DENV1 isolates (DENV1 A to E) from the outbreak of dengue fever in 2014 of Guangzhou, China, and analyzed their replication efficiency and virulence in vitro and in vivo. The results suggested that among the five DENV1 strains, DENV1 B has the highest replication efficiency in both human and mosquito cells in vitro, also causes the highest mortality to suckling mice. Further study suggested that nonstructural proteins from DENV1B have higher capacity to suppress host interferon signaling. In addition, the NS2B3 protease from DENV1B has higher enzymatic activity compared with that from DENV1 E. Finally, we identified that the 64th amino acid of NS2A and the 55th amino acid of NS2B were two virulence determining sites for DENV1. This study provided new evidences of the molecular mechanisms of DENV virulence. Dengue is the most important vector-borne viral infection that endangers an estimated 2.5 billion people globally. The recently licensed dengue vaccine has major weaknesses and there are no antiviral drugs for the treatment of dengue related diseases. Identifying the virulence determinants is important for understanding the molecule bases of viral life cycle, also contributing to vaccine design and development. In this study, we analyzed the virulence differences among five DENV1 strains that obtained from the 2014 DENV outbreak in Guangzhou, China, and identified two novel virulence determining sites for DENV1. This study provides new ideas for investigation of DENV protein function, pathogenic mechanism and novel attenuated vaccine.
Collapse
Affiliation(s)
- Chunling Zou
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, P. R. China
| | - Chenxiao Huang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, P. R. China
| | - Jinyu Zhang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, P. R. China
| | - Qihan Wu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, P.R. China
| | - Xiaohua Ni
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, P.R. China
- * E-mail: (XN) ; (JS) ; (JD)
| | - Jiufeng Sun
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, P.R. China
- * E-mail: (XN) ; (JS) ; (JD)
| | - Jianfeng Dai
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, P. R. China
- * E-mail: (XN) ; (JS) ; (JD)
| |
Collapse
|
143
|
Rawarak N, Suttitheptumrong A, Reamtong O, Boonnak K, Pattanakitsakul SN. Protein Disulfide Isomerase Inhibitor Suppresses Viral Replication and Production during Antibody-Dependent Enhancement of Dengue Virus Infection in Human Monocytic Cells. Viruses 2019; 11:v11020155. [PMID: 30781856 PMCID: PMC6410196 DOI: 10.3390/v11020155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
One of several mechanisms that leads to the development of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) is called antibody-dependent enhancement (ADE). Monocytes can be infected by the ADE phenomenon, which occurs in dengue secondary infection. This study aimed to investigate the proteins involved in ADE of DENV infection in the human monocytic cell line U937. The phosphoproteins were used to perform and analyze for protein expression using mass spectrometry (GeLC-MS/MS). The differential phosphoproteins revealed 1131 altered proteins compared between isotype- and DENV-specific antibody-treated monocytes. The altered proteins revealed 558 upregulated proteins and 573 downregulated proteins. Protein disulfide isomerase (PDI), which is an enzyme that had a high-ranking fold change and that catalyzes the formation, breakage, and rearrangement of disulfide bonds within a protein molecule, was selected for further study. PDI was found to be important for dengue virus infectivity during the ADE model. The effect of PDI inhibition was also shown to be involved in the early stage of life cycle by time-of-drug-addition assay. These results suggest that PDI is important for protein translation and virion assembly of dengue virus during infection in human monocytes, and it may play a significant role as a chaperone to stabilize dengue protein synthesis.
Collapse
Affiliation(s)
- Nantapon Rawarak
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Aroonroong Suttitheptumrong
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Kobporn Boonnak
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Sa-Nga Pattanakitsakul
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
144
|
Tahir Ul Qamar M, Maryam A, Muneer I, Xing F, Ashfaq UA, Khan FA, Anwar F, Geesi MH, Khalid RR, Rauf SA, Siddiqi AR. Computational screening of medicinal plant phytochemicals to discover potent pan-serotype inhibitors against dengue virus. Sci Rep 2019; 9:1433. [PMID: 30723263 PMCID: PMC6363786 DOI: 10.1038/s41598-018-38450-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 12/19/2018] [Indexed: 02/07/2023] Open
Abstract
Emergence of Dengue as one of the deadliest viral diseases prompts the need for development of effective therapeutic agents. Dengue virus (DV) exists in four different serotypes and infection caused by one serotype predisposes its host to another DV serotype heterotypic re-infection. We undertook virtual ligand screening (VLS) to filter compounds against DV that may inhibit inclusively all of its serotypes. Conserved non-structural DV protein targets such as NS1, NS3/NS2B and NS5, which play crucial role in viral replication, infection cycle and host interaction, were selected for screening of vital antiviral drug leads. A dataset of plant based natural antiviral derivatives was developed. Molecular docking was performed to estimate the spatial affinity of target compounds for the active sites of DV’s NS1, NS3/NS2B and NS5 proteins. The drug likeliness of the screened compounds was followed by ADMET analysis whereas the binding behaviors were further elucidated through molecular dynamics (MD) simulation experiments. VLS screened three potential compounds including Canthin-6-one 9-O-beta-glucopyranoside, Kushenol W and Kushenol K which exhibited optimal binding with all the three conserved DV proteins. This study brings forth novel scaffolds against DV serotypes to serve as lead molecules for further optimization and drug development against all DV serotypes with equal effect against multiple disease causing DV proteins. We therefore anticipate that the insights given in the current study could be regarded valuable towards exploration and development of a broad-spectrum natural anti-dengue therapy.
Collapse
Affiliation(s)
| | - Arooma Maryam
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Iqra Muneer
- School of Life Sciences, University of Science and Technology of China, Hefei, P.R. China
| | - Feng Xing
- College of Informatics, Huazhong Agricultural University, Wuhan, P.R. China
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Faheem Ahmed Khan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education China, Huazhong Agricultural University, Wuhan, P.R. China
| | - Farooq Anwar
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Mohammed H Geesi
- Department of Chemistry, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia.
| | - Rana Rehan Khalid
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sadaf Abdul Rauf
- Department of Computer Science, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Abdul Rauf Siddiqi
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan.
| |
Collapse
|
145
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
146
|
In vitro analysis of synthetic peptides in blocking the entry of dengue virus. Virus Res 2019; 260:142-150. [DOI: 10.1016/j.virusres.2018.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022]
|
147
|
Maheshwari V, Kumar S, Kumar A, Kumar A. Spontaneous Subdural Hematoma of Dorsal Spine Secondary to Dengue Fever: A Rare Case Report with Review of Literature. Asian J Neurosurg 2019; 14:550-552. [PMID: 31143280 PMCID: PMC6516024 DOI: 10.4103/ajns.ajns_228_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A 54-year-old female patient had a sudden onset of febrile illness following which she developed low backache and sudden onset paraplegia with urinary retention. Her hemogram, biochemistry, and coagulation profile was within normal limits. Her dengue serology was positive for IgG antibodies but negative for NS1 Ag. Magnetic resonance imaging of dorsolumbar spine revealed extensive subdural bleed from D6–D12 with cord compression. She underwent emergency laminectomy D6–D12 along with complete evacuation of hematoma. There was complete recovery of sensations in the immediate postoperative period though her motor weakness showed only marginal improvement.
Collapse
Affiliation(s)
| | - Sanjay Kumar
- Department of Neurosurgery, AFMC, Pune, Maharashtra, India
| | - Arun Kumar
- Department of Neurosurgery, AFMC, Pune, Maharashtra, India
| | - Ashok Kumar
- Department of Neurosurgery, AFMC, Pune, Maharashtra, India
| |
Collapse
|
148
|
Qiu J, Shang Y, Ji Z, Qiu T. In-silico Antigenicity Determination and Clustering of Dengue Virus Serotypes. Front Genet 2018; 9:621. [PMID: 30581453 PMCID: PMC6292942 DOI: 10.3389/fgene.2018.00621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/23/2018] [Indexed: 11/13/2022] Open
Abstract
Emerging or re-emerging dengue virus (DENV) causes dengue fever epidemics globally. Current DENV serotypes are defined based on genetic clustering, while discrepancies are frequently observed between the genetic clustering and the antigenicity experiments. Rapid antigenicity determination of DENV mutants in high-throughput way is critical for vaccine selection and epidemic prevention during early outbreaks, where accurate prediction methods are seldom reported for DENV. Here, a highly accurate and efficient in-silico model was set up for DENV based on possible antigenicity-dominant positions (ADPs) of envelope (E) protein. Independent testing showed a high performance of our model with AUC-value of 0.937 and accuracy of 0.896 through quantitative Linear Regression (LR) model. More importantly, our model can successfully detect those cross-reactions between inter-serotype strains, while current genetic clustering failed. Prediction cluster of 1,143 historical strains showed new DENV clusters, and we proposed DENV2 should be further classified into two subgroups. Thus, the DENV serotyping may be re-considered antigenetically rather than genetically. As the first algorithm tailor-made for DENV antigenicity measurement based on mutated sequences, our model may provide fast-responding opportunity for the antigenicity surveillance on DENV variants and potential vaccine study.
Collapse
Affiliation(s)
- Jingxuan Qiu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuxuan Shang
- Shanghai Qibao Dwight High School, Shanghai, China
| | - Zhiliang Ji
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tianyi Qiu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical School, Fudan University, Shanghai, China
| |
Collapse
|
149
|
Sun X, Li W, Liu E, Huang H, Wang T, Wang X, Shi Y, Yang P, Chen Q. In vivo cellular and molecular study on duck spleen infected by duck Tembusu virus. Vet Microbiol 2018; 230:32-44. [PMID: 30827402 DOI: 10.1016/j.vetmic.2018.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 01/17/2023]
Abstract
Duck Tembusu virus (DTMUV) is a novel member of flavivirus with the highest viral loads in the spleen. Six-month egg-laying shelducks were intramuscularly injected with DTMUV strain XZ-2012. Morphological analysis revealed the presence of vacuolar degeneration in the periellipsoidal lymphatic sheaths (PELS) of spleen white pulp following infection, especially from 12 hpi to 3 dpi. Ultrastructural images showed an obvious swelling of cells and their mitochondria and endoplasmic reticulum. Using RNA-seq analysis, the expression levels of RIG-I like receptors (RLRs), downstream IRF7 and proinflammatory cytokines IL-6 from RIG-I signaling pathway were non-apparently upregulated at 2 hpi and apparently at 3 dpi, while MHC-II expression was obviously downregulated at 2 hpi. The expression levels of downstream antiviral cytokines type-I IFNs, anti-inflammatory cytokines IL-10, cell adhesion molecules (CAMs), chemokines and their receptors associated with lymphocyte homing were significantly upregulated at 3 dpi. The population of lymphocyte was increased at 6 dpi. The immune function of spleen was recovered starting from 9 dpi. These findings of this study suggest that DTMUV invaded into the spleen via RIG-I signaling pathway and enhanced immune evasion by inhibiting MHC-II expression during the early stage of infection. Additionally, DTMUV induced PELS lesions through activating IL-6 expression. Furthermore, DTMUV increased the expression levels of RLRs, antiviral type-I IFNs, lymphocyte homing-related genes and proteins as well as the number of lymphocytes in the infected duck spleen. Taken altogether, this study provides new insights into the cellular and molecular mechanisms of DTMUV infection in duck spleen.
Collapse
Affiliation(s)
- Xuejing Sun
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Wenqian Li
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Enxue Liu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Haixiang Huang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Taozhi Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Xindong Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Yonghong Shi
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Ping Yang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Qiusheng Chen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China.
| |
Collapse
|
150
|
Development of a NS2B/NS3 protease inhibition assay using AlphaScreen ® beads for screening of anti-dengue activities. Heliyon 2018; 4:e01023. [PMID: 30560214 PMCID: PMC6289942 DOI: 10.1016/j.heliyon.2018.e01023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/27/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
Background Dengue infection is an endemic infectious disease and it can lead to dengue fever, dengue hemorrhagic fever, and/or dengue shock syndromes. Dengue NS2B/NS3 protease complex is essential for viral replication and is a primary target for anti-dengue drug development. In this study, a NS2B/NS3 protease inhibition assay was developed using AlphaScreen® beads and was used to screen compounds for their protease inhibition activities. Methods The assay system utilized a known NS2B/NS3 peptide substrate, a recombinant of NS2B/NS3 protease with proprietary StrepTactin® donor and nickel chelate acceptor beads in 384-well format. Results The optimized assay to screen for NS2B/NS3 protease inhibitors was demonstrated to be potentially useful with reasonable zʹ factor, coefficient variance and signal to background ratio. However, screening of synthesized thioguanine derivatives using the optimized AlphaScreen® assay revealed weak NS2B/NS3 inhibition activities. Conclusion The AlphaScreen® assay to screen for NS2B/NS3 protease inhibitors is potentially applicable for high throughput screening.
Collapse
|