101
|
Kozhevnikova OS, Fursova AZ, Derbeneva AS, Nikulich IF, Tarasov MS, Devyatkin VA, Rumyantseva YV, Telegina DV, Kolosova NG. Association between Polymorphisms in CFH, ARMS2, CFI, and C3 Genes and Response to Anti-VEGF Treatment in Neovascular Age-Related Macular Degeneration. Biomedicines 2022; 10:biomedicines10071658. [PMID: 35884963 PMCID: PMC9312436 DOI: 10.3390/biomedicines10071658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/30/2022] [Accepted: 07/08/2022] [Indexed: 12/16/2022] Open
Abstract
Neovascular age-related macular degeneration (nAMD) is the leading cause of vision loss in the elderly. The gold standard of nAMD treatment is intravitreal injections of vascular endothelial growth factor (VEGF) inhibitors. Genetic factors may influence the response to anti-VEGF therapy and result in a high degree of response variability. The aim of the study was to evaluate the association of the polymorphisms in genes related to the complement system (rs2285714-CFI, rs10490924-ARMS2, rs2230199-C3, rs800292-CFH, and rs6677604-CFH) with nAMD its clinical features and optical coherent tomography (OCT) biomarkers of treatment response to anti-VEGF therapy. Genotyping by allele-specific PCR was performed in 193 AMD patients and 147 age-matched controls. A prospective study of the dynamics of changes in OCT biomarkers during aflibercept treatment included 110 treatment-naive patients. Allele T rs10490924 was associated with the increased risk of nAMD. For both rs800292 and rs6677604, carriage of the A allele was protective and decreased the nAMD risk. Associations of rs2230199 with central retinal thickness (CRT) and intraretinal cysts were revealed. The height of pigment epithelium detachment and the height of neuroretinal detachment were significantly higher in carriers of the minor allele of rs2285714, both at baseline and during treatment. The reduction of CRT was associated with higher CRT at baseline and the presence of the T allele of rs2285714. By the end of one-year follow-up the patients homozygous for the minor allele rs2285714 had significantly higher odds of the presence of anastomoses and loops and active neovascular membrane. Furthermore, minor allele carriers had decreased levels of complement factor I level in aqueous humor but not in the plasma, which may be due to the influence of rs2285714 on tissue-specific splicing. Our results suggest that the severity of AMD macular lesions is associated with rs2285714 and rs2230199 polymorphisms, which could be explained by their high regulatory potential. Patients with the minor allele of rs2285714 respond worse to antiangiogenic therapy.
Collapse
Affiliation(s)
- Oyuna S. Kozhevnikova
- Federal Research Center Institute of Cytology and Genetics SB RAS, Pr. Lavrentiev, 10, 630090 Novosibirsk, Russia; (A.Z.F.); (A.S.D.); (M.S.T.); (V.A.D.); (Y.V.R.); (D.V.T.); (N.G.K.)
- Correspondence:
| | - Anzhella Zh. Fursova
- Federal Research Center Institute of Cytology and Genetics SB RAS, Pr. Lavrentiev, 10, 630090 Novosibirsk, Russia; (A.Z.F.); (A.S.D.); (M.S.T.); (V.A.D.); (Y.V.R.); (D.V.T.); (N.G.K.)
- State Novosibirsk Regional Clinical Hospital, St. Nemirovich-Danchenko, 130, 630087 Novosibirsk, Russia;
- Department of Ophthalmology, Novosibirsk State Medical University, Pr. Krasny, 52, 630091 Novosibirsk, Russia
| | - Anna S. Derbeneva
- Federal Research Center Institute of Cytology and Genetics SB RAS, Pr. Lavrentiev, 10, 630090 Novosibirsk, Russia; (A.Z.F.); (A.S.D.); (M.S.T.); (V.A.D.); (Y.V.R.); (D.V.T.); (N.G.K.)
- State Novosibirsk Regional Clinical Hospital, St. Nemirovich-Danchenko, 130, 630087 Novosibirsk, Russia;
- Department of Ophthalmology, Novosibirsk State Medical University, Pr. Krasny, 52, 630091 Novosibirsk, Russia
| | - Ida F. Nikulich
- State Novosibirsk Regional Clinical Hospital, St. Nemirovich-Danchenko, 130, 630087 Novosibirsk, Russia;
- Department of Ophthalmology, Novosibirsk State Medical University, Pr. Krasny, 52, 630091 Novosibirsk, Russia
| | - Mikhail S. Tarasov
- Federal Research Center Institute of Cytology and Genetics SB RAS, Pr. Lavrentiev, 10, 630090 Novosibirsk, Russia; (A.Z.F.); (A.S.D.); (M.S.T.); (V.A.D.); (Y.V.R.); (D.V.T.); (N.G.K.)
- State Novosibirsk Regional Clinical Hospital, St. Nemirovich-Danchenko, 130, 630087 Novosibirsk, Russia;
- Department of Ophthalmology, Novosibirsk State Medical University, Pr. Krasny, 52, 630091 Novosibirsk, Russia
| | - Vasiliy A. Devyatkin
- Federal Research Center Institute of Cytology and Genetics SB RAS, Pr. Lavrentiev, 10, 630090 Novosibirsk, Russia; (A.Z.F.); (A.S.D.); (M.S.T.); (V.A.D.); (Y.V.R.); (D.V.T.); (N.G.K.)
| | - Yulia V. Rumyantseva
- Federal Research Center Institute of Cytology and Genetics SB RAS, Pr. Lavrentiev, 10, 630090 Novosibirsk, Russia; (A.Z.F.); (A.S.D.); (M.S.T.); (V.A.D.); (Y.V.R.); (D.V.T.); (N.G.K.)
| | - Darya V. Telegina
- Federal Research Center Institute of Cytology and Genetics SB RAS, Pr. Lavrentiev, 10, 630090 Novosibirsk, Russia; (A.Z.F.); (A.S.D.); (M.S.T.); (V.A.D.); (Y.V.R.); (D.V.T.); (N.G.K.)
| | - Nataliya G. Kolosova
- Federal Research Center Institute of Cytology and Genetics SB RAS, Pr. Lavrentiev, 10, 630090 Novosibirsk, Russia; (A.Z.F.); (A.S.D.); (M.S.T.); (V.A.D.); (Y.V.R.); (D.V.T.); (N.G.K.)
| |
Collapse
|
102
|
Dobó J, Kocsis A, Dani R, Gál P. Proprotein Convertases and the Complement System. Front Immunol 2022; 13:958121. [PMID: 35874789 PMCID: PMC9296861 DOI: 10.3389/fimmu.2022.958121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/27/2022] Open
Abstract
Proteins destined for secretion - after removal of the signal sequence - often undergo further proteolytic processing by proprotein convertases (PCs). Prohormones are typically processed in the regulated secretory pathway, while most plasma proteins travel though the constitutive pathway. The complement system is a major proteolytic cascade in the blood, serving as a first line of defense against microbes and also contributing to the immune homeostasis. Several complement components, namely C3, C4, C5 and factor I (FI), are multi-chain proteins that are apparently processed by PCs intracellularly. Cleavage occurs at consecutive basic residues and probably also involves the action of carboxypeptidases. The most likely candidate for the intracellular processing of complement proteins is furin, however, because of the overlapping specificities of basic amino acid residue-specific proprotein convertases, other PCs might be involved. To our surprise, we have recently discovered that processing of another complement protein, mannan-binding lectin-associated serine protease-3 (MASP-3) occurs in the blood by PCSK6 (PACE4). A similar mechanism had been described for the membrane protease corin, which is also activated extracellularly by PCSK6. In this review we intend to point out that the proper functioning of the complement system intimately depends on the action of proprotein convertases. In addition to the non-enzymatic components (C3, C4, C5), two constitutively active complement proteases are directly activated by PCs either intracellularly (FI), or extracellularly (MASP-3), moreover indirectly, through the constitutive activation of pro-factor D by MASP-3, the activity of the alternative pathway also depends on a PC present in the blood.
Collapse
Affiliation(s)
| | | | | | - Péter Gál
- *Correspondence: József Dobó, ; Péter Gál,
| |
Collapse
|
103
|
Szilágyi Á, Csuka D, Geier CB, Prohászka Z. Complement Genetics for the Practicing Allergist Immunologist: Focus on Complement Deficiencies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1703-1711. [PMID: 35272074 DOI: 10.1016/j.jaip.2022.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Complement deficiencies have been considered to be rare for many decades, but this assumption is changing year by year. Recognition of these conditions significantly increases thanks to the availability of different testing approaches and due to clinical awareness. Furthermore, sequencing technologies (including Sanger sequencing, targeted gene panels, and whole exome/genome sequencing) may facilitate the identification of the underlying disease-causing genetic background. On the other hand, functional characterization of the identified possibly pathogenic variations and performing family studies, as illustrated by some of our cases, remain similarly important to establish a precise clinical diagnosis facilitating the most appropriate management. Here, we present 4 illustrative cases with complement deficiencies of diverse etiologies and also provide an educative, step-by-step description on how to identify the underlying cause of complement deficiency based on the results of complement laboratory testing.
Collapse
Affiliation(s)
- Ágnes Szilágyi
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Dorottya Csuka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Christoph B Geier
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary; Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary.
| |
Collapse
|
104
|
Mallik S, Grodstein F, Bennett DA, Vavvas DG, Lemos B. Novel Epigenetic Clock Biomarkers of Age-Related Macular Degeneration. Front Med (Lausanne) 2022; 9:856853. [PMID: 35783640 PMCID: PMC9244395 DOI: 10.3389/fmed.2022.856853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/19/2022] [Indexed: 01/05/2023] Open
Abstract
Age-Related Macular Degeneration (AMD) is a bilateral ocular condition resulting in irreversible vision impairment caused by the progressive loss of photoreceptors in the macula, a region at the center of the retina. The progressive loss of photoreceptor is a key feature of dry AMD but not always wet AMD, though both forms of AMD can lead to loss of vision. Regression-based biological age clocks are one of the most promising biomarkers of aging but have not yet been used in AMD. Here we conducted analyses to identify regression-based biological age clocks for the retina and explored their use in AMD using transcriptomic data consisting of a total of 453 retina samples including 105 Minnesota Grading System (MGS) level 1 samples, 175 MGS level 2, 112 MGS level 3 and 61 MGS level 4 samples, as well as 167 fibroblast samples. The clocks yielded good separation among AMD samples with increasing severity score viz., MGS1-4, regardless of whether clocks were trained in retina tissue, dermal fibroblasts, or in combined datasets. Clock application to cultured fibroblasts, embryonic stem cells, and induced Pluripotent Stem Cells (iPSCs) were consistent with age reprograming in iPSCs. Moreover, clock application to in vitro neuronal differentiation suggests broader applications. Interesting, many of the age clock genes identified include known targets mechanistically linked to AMD and aging, such as GDF11, C16ORF72, and FBN2. This study provides new observations for retina age clocks and suggests new applications for monitoring in vitro neuronal differentiation. These clocks could provide useful markers for AMD monitoring and possible intervention, as well as potential targets for in vitro screens.
Collapse
Affiliation(s)
- Saurav Mallik
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Fran Grodstein
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, United States
| | - Demetrios G. Vavvas
- Ines and Frederick Yeatts Retina Research Laboratory, Retina Service, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
| |
Collapse
|
105
|
Szczepan M, Llorián-Salvador M, Chen M, Xu H. Immune Cells in Subretinal Wound Healing and Fibrosis. Front Cell Neurosci 2022; 16:916719. [PMID: 35755781 PMCID: PMC9226489 DOI: 10.3389/fncel.2022.916719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022] Open
Abstract
The subretinal space is devoid of any immune cells under normal conditions and is an immune privileged site. When photoreceptors and/or retinal pigment epithelial cells suffer from an injury, a wound healing process will be initiated. Retinal microglia and the complement system, as the first line of retinal defense, are activated to participate in the wound healing process. If the injury is severe or persists for a prolonged period, they may fail to heal the damage and circulating immune cells will be summoned leading to chronic inflammation and abnormal wound healing, i.e., subretinal or intraretinal fibrosis, a sight-threatening condition frequently observed in rhematogenous retinal detachment, age-related macular degeneration and recurrent uveoretinitis. Here, we discussed the principles of subretinal wound healing with a strong focus on the conditions whereby the damage is beyond the healing capacity of the retinal defense system and highlighted the roles of circulating immune cells in subretinal wound healing and fibrosis.
Collapse
Affiliation(s)
- Manon Szczepan
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - María Llorián-Salvador
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Mei Chen
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Heping Xu
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom,Aier Institute of Optometry and Vision Science, Changsha, China,*Correspondence: Heping Xu,
| |
Collapse
|
106
|
Genetic Variants of Complement Factor H Y402H (rs1061170), C2 R102G (rs2230199), and C3 E318D (rs9332739) and Response to Intravitreal Anti-VEGF Treatment in Patients with Exudative Age-Related Macular Degeneration. Medicina (B Aires) 2022; 58:medicina58050658. [PMID: 35630075 PMCID: PMC9145696 DOI: 10.3390/medicina58050658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 12/25/2022] Open
Abstract
Background and Objectives: To assess the association between the single nucleotide polymorphisms (SNPs) in the genes encoding complement factors CFH, C2, and C3 (Y402H rs1061170, R102G rs2230199, and E318D rs9332739, respectively) and response to intravitreal anti-vascular endothelial growth factor (VEGF) therapy in patients with exudative age-related macular degeneration (AMD). Materials and Methods: The study included 111 patients with exudative AMD treated with intravitreal bevacizumab or ranibizumab injections. Response to therapy was assessed on the basis of best-corrected visual acuity (BCVA) and central retinal thickness (CRT) measured every 4 weeks for 12 months. The control group included 58 individuals without AMD. The SNPs were genotyped by a real-time polymerase chain reaction in genomic DNA isolated from peripheral blood samples. Results: The CC genotype in SNP rs1061170 of the CFH gene was more frequent in patients with AMD than in controls (p = 0.0058). It was also more common among the 28 patients (25.2%) with poor response to therapy compared with good responders (p = 0.0002). Poor responders, especially those without this genotype, benefited from switching to another anti-VEGF drug. At the last follow-up assessment, carriers of this genotype had significantly worse BCVA (p = 0.0350) and greater CRT (p = 0.0168) than noncarriers. TT genotype carriers showed improved BCVA (p = 0.0467) and reduced CRT compared with CC and CT genotype carriers (p = 0.0194). No associations with AMD or anti-VEGF therapy outcomes for SNP rs9332739 in the C2 gene and SNP rs2230199 in the C3 gene were found. Conclusions: The CC genotype for SNP rs1061170 in the CFH gene was associated with AMD in our population. Additionally, it promoted a poor response to anti-VEGF therapy. On the other hand, TT genotype carriers showed better functional and anatomical response to anti-VEGF therapy at 12 months than carriers of the other genotypes for this SNP.
Collapse
|
107
|
Bućan I, Škunca Herman J, Jerončić Tomić I, Gornik O, Vatavuk Z, Bućan K, Lauc G, Polašek O. N-Glycosylation Patterns across the Age-Related Macular Degeneration Spectrum. Molecules 2022; 27:molecules27061774. [PMID: 35335137 PMCID: PMC8949900 DOI: 10.3390/molecules27061774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023] Open
Abstract
The pathogenesis of age-related macular degeneration (AMD) remains elusive, despite numerous research studies. Therefore, we aimed to investigate the changes of plasma and IgG-specific N-glycosylation across the disease severity spectrum. We examined 2835 subjects from the 10.001 Dalmatians project, originating from the isolated Croatian islands of Vis and Korčula. All subjects were classified into four groups, namely (i) bilateral AMD, (ii) unilateral AMD, (iii) early-onset drusen, and (iv) controls. We analysed plasma and IgG N-glycans measured by HPLC and their association with retinal fundus photographs. There were 106 (3.7%) detected cases of AMD; 66 of them were bilateral. In addition, 45 (0.9%) subjects were recorded as having early-onset retinal drusen. We detected several interesting differences across the analysed groups, suggesting that N-glycans can be used as a biomarker for AMD. Multivariate analysis suggested a significant decrease in the immunomodulatory bi-antennary glycan structures in unilateral AMD (adjusted odds ratio 0.43 (95% confidence interval 0.22–0.79)). We also detected a substantial increase in the pro-inflammatory tetra-antennary plasma glycans in bilateral AMD (7.90 (2.94–20.95)). Notably, some of these associations were not identified in the aggregated analysis, where all three disease stages were collapsed into a single category, suggesting the need for better-refined phenotypes and the use of disease severity stages in the analysis of more complex diseases. Age-related macular degeneration progression is characterised by the complex interplay of various mechanisms, some of which can be detected by measuring plasma and IgG N-glycans. As opposed to a simple case-control study, more advanced and refined study designs are needed to understand the pathogenesis of complex diseases.
Collapse
Affiliation(s)
- Ivona Bućan
- Clinical Hospital Centre Split, 21000 Split, Croatia; (I.B.); (K.B.)
| | - Jelena Škunca Herman
- Clinical Hospital Centre Sisters of Mercy, 10000 Zagreb, Croatia; (J.Š.H.); (Z.V.)
| | - Iris Jerončić Tomić
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia;
| | - Olga Gornik
- Department of Ophthalmology, University of Split School of Medicine, 21000 Split, Croatia;
- Genos Ltd., 10000 Zagreb, Croatia;
| | - Zoran Vatavuk
- Clinical Hospital Centre Sisters of Mercy, 10000 Zagreb, Croatia; (J.Š.H.); (Z.V.)
| | - Kajo Bućan
- Clinical Hospital Centre Split, 21000 Split, Croatia; (I.B.); (K.B.)
- Department of Ophthalmology, University of Split School of Medicine, 21000 Split, Croatia;
| | - Gordan Lauc
- Genos Ltd., 10000 Zagreb, Croatia;
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Ozren Polašek
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia;
- Algebra LAB, Algebra University College, Ilica 242, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-91-5163443
| |
Collapse
|
108
|
Santos FM, Mesquita J, Castro-de-Sousa JP, Ciordia S, Paradela A, Tomaz CT. Vitreous Humor Proteome: Targeting Oxidative Stress, Inflammation, and Neurodegeneration in Vitreoretinal Diseases. Antioxidants (Basel) 2022; 11:505. [PMID: 35326156 PMCID: PMC8944522 DOI: 10.3390/antiox11030505] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is defined as an unbalance between pro-oxidants and antioxidants, as evidenced by an increase in reactive oxygen and reactive nitrogen species production over time. It is important in the pathophysiology of retinal disorders such as diabetic retinopathy, age-related macular degeneration, retinal detachment, and proliferative vitreoretinopathy, which are the focus of this article. Although the human organism's defense mechanisms correct autoxidation caused by endogenous or exogenous factors, this may be insufficient, causing an imbalance in favor of excessive ROS production or a weakening of the endogenous antioxidant system, resulting in molecular and cellular damage. Furthermore, modern lifestyles and environmental factors contribute to increased chemical exposure and stress induction, resulting in oxidative stress. In this review, we discuss the current information about oxidative stress and the vitreous proteome with a special focus on vitreoretinal diseases. Additionally, we explore therapies using antioxidants in an attempt to rescue the body from oxidation, restore balance, and maximize healthy body function, as well as new investigational therapies that have shown significant therapeutic potential in preclinical studies and clinical trial outcomes, along with their goals and strategic approaches to combat oxidative stress.
Collapse
Affiliation(s)
- Fátima Milhano Santos
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.P.)
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501 Covilhã, Portugal
| | - Joana Mesquita
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
| | - João Paulo Castro-de-Sousa
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
- Department of Ophthalmology, Centro Hospitalar de Leiria, 2410-197 Leiria, Portugal
| | - Sergio Ciordia
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.P.)
| | - Alberto Paradela
- Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.P.)
| | - Cândida Teixeira Tomaz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6201-001 Covilhã, Portugal; or (J.P.C.-d.-S.)
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501 Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
109
|
Zhao TT, Wen-Fei W, Kun G, Si-Ming L, Ye J, Yang ZF, Jian-Nan L, Yan-Li W, Shao-Min P. Fibroblast growth factor-21 alleviates phenotypic characteristics of dry age-related macular degeneration in mice. Exp Eye Res 2022; 218:109014. [PMID: 35245515 DOI: 10.1016/j.exer.2022.109014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/13/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
Age-related macular degeneration (AMD) is the main cause of blindness in elderly individuals. As a metabolic regulator, fibroblast growth factor 21 (FGF-21) has been proven indicated to have an effect on wet AMD, but whether this cytokine has a therapeutic effect on dry AMD is unclear. The current study aimed to evaluate the preventive effects of FGF-21 against retinal degeneration in mice and provide mechanistic insights. FGF-21-/- mice were raised to 10 months of age. Then, the morphological changes in the retinal pigment epithelium (RPE)/choroid of the mice were observed by transmission electron microscopy (TEM), and iTRAQ was used to detect the variations in the protein profile. Next, FGF-21-/- and wild-type mice of the same age were fed hydroquinone to generate a dry AMD mouse model to examine whether exogenous FGF-21 can interfere with the occurrence and development of dry AMD. In vivo studies revealed that following FGF-21 knockout, there was an increase in the expression of complement in the RPE/choroid concomitant with the occurrence of dry AMD-like pathological changes. Furthermore, exogenous FGF-21 administration effectively reversed this phenomenon. FGF-21 also demonstrated strong anti-inflammatory effects in the RPE/choroid by inhibiting the NF-κB pathway. In conclusion, the present study demonstrates that FGF-21 treatment presents a novel therapeutic approach for the prevention and development of dry AMD by reducing complement.
Collapse
Affiliation(s)
- Ting-Ting Zhao
- Aier School of Ophthalmology, Central South University, Changsha, 410015, China; Harbin Aier Eye Hospital, Harbin, 150016, China.
| | - Wang Wen-Fei
- School of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Gao Kun
- School of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Li Si-Ming
- Harbin University of Commerce, Harbin, 150076, China.
| | - Jiang Ye
- School of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Zhi-Feng Yang
- School of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Liu Jian-Nan
- Aier School of Ophthalmology, Central South University, Changsha, 410015, China; Harbin Aier Eye Hospital, Harbin, 150016, China.
| | - Wang Yan-Li
- School of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Peng Shao-Min
- Aier School of Ophthalmology, Central South University, Changsha, 410015, China; Harbin Aier Eye Hospital, Harbin, 150016, China; Aier Retina Institute, Changsha, 410015, China.
| |
Collapse
|
110
|
Zelek WM, Morgan BP. Targeting complement in neurodegeneration: challenges, risks, and strategies. Trends Pharmacol Sci 2022; 43:615-628. [DOI: 10.1016/j.tips.2022.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
|
111
|
Noble K, Brown L, Elvis P, Lang H. Cochlear Immune Response in Presbyacusis: a Focus on Dysregulation of Macrophage Activity. J Assoc Res Otolaryngol 2022; 23:1-16. [PMID: 34642854 PMCID: PMC8782976 DOI: 10.1007/s10162-021-00819-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/25/2021] [Indexed: 02/03/2023] Open
Abstract
Age-related hearing loss, or presbyacusis, is a prominent chronic degenerative disorder that affects many older people. Based on presbyacusis pathology, the degeneration occurs in both sensory and non-sensory cells, along with changes in the cochlear microenvironment. The progression of age-related neurodegenerative diseases is associated with an altered microenvironment that reflects chronic inflammatory signaling. Under these conditions, resident and recruited immune cells, such as microglia/macrophages, have aberrant activity that contributes to chronic neuroinflammation and neural cell degeneration. Recently, researchers identified and characterized macrophages in human cochleae (including those from older donors). Along with the age-related changes in cochlear macrophages in animal models, these studies revealed that macrophages, an underappreciated group of immune cells, may play a critical role in maintaining the functional integrity of the cochlea. Although several studies deciphered the molecular mechanisms that regulate microglia/macrophage dysfunction in multiple neurodegenerative diseases, limited studies have assessed the mechanisms underlying macrophage dysfunction in aged cochleae. In this review, we highlight the age-related changes in cochlear macrophage activities in mouse and human temporal bones. We focus on how complement dysregulation and the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 inflammasome could affect macrophage activity in the aged peripheral auditory system. By understanding the molecular mechanisms that underlie these regulatory systems, we may uncover therapeutic strategies to treat presbyacusis and other forms of sensorineural hearing loss.
Collapse
Affiliation(s)
- Kenyaria Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Akouos, Inc, Boston, MA, 02210, USA
| | - LaShardai Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Biology, Winthrop University, Rock Hill, SD, 29733, USA
| | - Phillip Elvis
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
112
|
Stravalaci M, Ferrara M, Pathak V, Davi F, Bottazzi B, Mantovani A, Medina RJ, Romano MR, Inforzato A. The Long Pentraxin PTX3 as a New Biomarker and Pharmacological Target in Age-Related Macular Degeneration and Diabetic Retinopathy. Front Pharmacol 2022; 12:811344. [PMID: 35069222 PMCID: PMC8776640 DOI: 10.3389/fphar.2021.811344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Age related macular degeneration (AMD) and diabetic retinopathy (DR) are multifactorial, neurodegenerative and inflammatory diseases of the eye primarily involving cellular and molecular components of the outer and inner blood-retina barriers (BRB), respectively. Largely contributed by genetic factors, particularly polymorphisms in complement genes, AMD is a paradigm of retinal immune dysregulation. DR, a major complication of diabetes mellitus, typically presents with increased vascular permeability and occlusion of the retinal vasculature that leads, in the proliferative form of the disease, to neovascularization, a pathogenic trait shared with advanced AMD. In spite of distinct etiology and clinical manifestations, both pathologies share common drivers, such as chronic inflammation, either of immune (in AMD) or metabolic (in DR) origin, which initiates and propagates degeneration of the neural retina, yet the underlying mechanisms are still unclear. As a soluble pattern recognition molecule with complement regulatory functions and a marker of vascular damage, long pentraxin 3 (PTX3) is emerging as a novel player in ocular homeostasis and a potential pharmacological target in neurodegenerative disorders of the retina. Physiologically present in the human eye and induced in inflammatory conditions, this protein is strategically positioned at the BRB interface, where it acts as a “molecular trap” for complement, and modulates inflammation both in homeostatic and pathological conditions. Here, we discuss current viewpoints on PTX3 and retinal diseases, with a focus on AMD and DR, the roles therein proposed for this pentraxin, and their implications for the development of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Varun Pathak
- School of Medicine, Dentistry, and Biomedical Sciences, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | | | | | - Alberto Mantovani
- IRCCS Humanitas Research Hospital, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Rozzano, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Reinhold J Medina
- School of Medicine, Dentistry, and Biomedical Sciences, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Mario R Romano
- Eye Center, Humanitas Gavazzeni-Castelli, Bergamo, Italy.,Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Antonio Inforzato
- IRCCS Humanitas Research Hospital, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| |
Collapse
|
113
|
Sajovic J, Meglič A, Glavač D, Markelj Š, Hawlina M, Fakin A. The Role of Vitamin A in Retinal Diseases. Int J Mol Sci 2022; 23:1014. [PMID: 35162940 PMCID: PMC8835581 DOI: 10.3390/ijms23031014] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Vitamin A is an essential fat-soluble vitamin that occurs in various chemical forms. It is essential for several physiological processes. Either hyper- or hypovitaminosis can be harmful. One of the most important vitamin A functions is its involvement in visual phototransduction, where it serves as the crucial part of photopigment, the first molecule in the process of transforming photons of light into electrical signals. In this process, large quantities of vitamin A in the form of 11-cis-retinal are being isomerized to all-trans-retinal and then quickly recycled back to 11-cis-retinal. Complex machinery of transporters and enzymes is involved in this process (i.e., the visual cycle). Any fault in the machinery may not only reduce the efficiency of visual detection but also cause the accumulation of toxic chemicals in the retina. This review provides a comprehensive overview of diseases that are directly or indirectly connected with vitamin A pathways in the retina. It includes the pathophysiological background and clinical presentation of each disease and summarizes the already existing therapeutic and prospective interventions.
Collapse
Affiliation(s)
- Jana Sajovic
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Andrej Meglič
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Špela Markelj
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Marko Hawlina
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| | - Ana Fakin
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia
| |
Collapse
|
114
|
Kumari D, Singh K. Exploring the paradox of defense between host and Leishmania parasite. Int Immunopharmacol 2021; 102:108400. [PMID: 34890999 DOI: 10.1016/j.intimp.2021.108400] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 01/04/2023]
Abstract
Leishmaniasis, a neglected tropical disease, still remains a global concern for the healthcare sector. The primary causative agents of the disease comprise diverse leishmanial species, leading to recurring failures in disease diagnosis and delaying the initiation of appropriate chemotherapy. Various species of the Leishmania parasite cause diverse clinical manifestations ranging from skin ulcers to systemic infections. Therefore, host immunity in response to different forms of infecting species of Leishmania becomes pivotal in disease progression or regression. Thus, understanding the paradox of immune arsenals during host and parasite interface becomes crucial to eliminate this deadly disease. In the present review, we have elaborated on the immunological perspectives of the disease and discussed primary host immune cells that form a defense line to counteract parasite infection. Furthermore, we also have shed light on the immune cells and effector molecules responsible for parasite survival in host lethal milieu/ environment. Next, we have highlighted recent molecules/compounds showing potent leishmanicidal activities pertaining to their pro-oxidant and immuno-modulatory mechanisms. This review addresses an immuno-biological overview of the factors influencing the parasitic disease, as this knowledge can aid in the unraveling/ identification of potential biomarkers, novel therapeutics, and vaccine candidates against leishmaniasis.
Collapse
Affiliation(s)
- Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
115
|
Tamminen T, Koskela A, Toropainen E, Gurubaran IS, Winiarczyk M, Liukkonen M, Paterno JJ, Lackman P, Sadeghi A, Viiri J, Hyttinen JMT, Koskelainen A, Kaarniranta K. Pinosylvin Extract Retinari™ Sustains Electrophysiological Function, Prevents Thinning of Retina, and Enhances Cellular Response to Oxidative Stress in NFE2L2 Knockout Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8028427. [PMID: 34917233 PMCID: PMC8670936 DOI: 10.1155/2021/8028427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022]
Abstract
Chronic oxidative stress eventually leads to protein aggregation in combination with impaired autophagy, which has been observed in age-related macular degeneration. We have previously shown an effective age-related macular degeneration disease model in mice with nuclear factor-erythroid 2-related factor-2 (NFE2L2) knockout. We have also shown pinosylvin, a polyphenol abundant in bark waste, to increase human retinal pigment epithelium cell viability in vitro. In this work, the effects of commercial natural pinosylvin extract, Retinari™, were studied on the electroretinogram, optical coherence tomogram, autophagic activity, antioxidant capacity, and inflammation markers. Wild-type and NFE2L2 knockout mice were raised until the age of 14.8 ± 3.8 months. They were fed with either regular or Retinari™ chow (141 ± 17.0 mg/kg/day of pinosylvin) for 10 weeks before the assays. Retinari™ treatment preserved significant retinal function with significantly preserved a- and b-wave amplitudes in the electroretinogram responses. Additionally, the treatment prevented thinning of the retina in the NFE2L2 knockout mice. The NFE2L2 knockout mice showed reduced ubiquitin-tagged protein accumulation in addition to local upregulation of complement factor H and antioxidant enzymes superoxide dismutase 1 and catalase. Therefore, the treatment in the NFE2L2 KO disease model led to reduced chronic oxidative stress and sustained retinal function and morphology. Our results demonstrate that pinosylvin supplementation could potentially lower the risk of age-related macular degeneration onset and slow down its progression.
Collapse
Affiliation(s)
- Toni Tamminen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ali Koskela
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Elisa Toropainen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Iswariyaraja Sridevi Gurubaran
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mateusz Winiarczyk
- Department of Vitreoretinal Surgery, Medical University of Lublin, Poland
| | - Mikko Liukkonen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Jussi J. Paterno
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS Kuopio, Finland
| | | | - Amir Sadeghi
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Johanna Viiri
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Juha M. T. Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ari Koskelainen
- Department of Neuroscience and Biomedical Engineering, Aalto University, FI-00067 Aalto, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS Kuopio, Finland
| |
Collapse
|
116
|
Merle DA, Provenzano F, Jarboui MA, Kilger E, Clark SJ, Deleidi M, Armento A, Ueffing M. mTOR Inhibition via Rapamycin Treatment Partially Reverts the Deficit in Energy Metabolism Caused by FH Loss in RPE Cells. Antioxidants (Basel) 2021; 10:1944. [PMID: 34943047 PMCID: PMC8750186 DOI: 10.3390/antiox10121944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex degenerative disease of the retina with multiple risk-modifying factors, including aging, genetics, and lifestyle choices. The combination of these factors leads to oxidative stress, inflammation, and metabolic failure in the retinal pigment epithelium (RPE) with subsequent degeneration of photoreceptors in the retina. The alternative complement pathway is tightly linked to AMD. In particular, the genetic variant in the complement factor H gene (CFH), which leads to the Y402H polymorphism in the factor H protein (FH), confers the second highest risk for the development and progression of AMD. Although the association between the FH Y402H variant and increased complement system activation is known, recent studies have uncovered novel FH functions not tied to this activity and highlighted functional relevance for intracellular FH. In our previous studies, we show that loss of CFH expression in RPE cells causes profound disturbances in cellular metabolism, increases the vulnerability towards oxidative stress, and modulates the activation of pro-inflammatory signaling pathways, most importantly the NF-kB pathway. Here, we silenced CFH in hTERT-RPE1 cells to investigate the mechanism by which intracellular FH regulates RPE cell homeostasis. We found that silencing of CFH results in hyperactivation of mTOR signaling along with decreased mitochondrial respiration and that mTOR inhibition via rapamycin can partially rescue these metabolic defects. To obtain mechanistic insight into the function of intracellular FH in hTERT-RPE1 cells, we analyzed the interactome of FH via immunoprecipitation followed by mass spectrometry-based analysis. We found that FH interacts with essential components of the ubiquitin-proteasomal pathway (UPS) as well as with factors associated with RB1/E2F signalling in a complement-pathway independent manner. Moreover, we found that FH silencing affects mRNA levels of the E3 Ubiquitin-Protein Ligase Parkin and PTEN induced putative kinase (Pink1), both of which are associated with UPS. As inhibition of mTORC1 was previously shown to result in increased overall protein degradation via UPS and as FH mRNA and protein levels were shown to be affected by inhibition of UPS, our data stress a potential regulatory link between endogenous FH activity and the UPS.
Collapse
Affiliation(s)
- David A. Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Department of Ophthalmology, Medical University of Graz, 8036 Graz, Austria
| | - Francesca Provenzano
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany; (F.P.); (M.D.)
| | - Mohamed Ali Jarboui
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, Eberhard-Karls University of Tuebingen, 72076 Tübingen, Germany
| | - Ellen Kilger
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - Simon J. Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Michela Deleidi
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany; (F.P.); (M.D.)
| | - Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany; (F.P.); (M.D.)
| |
Collapse
|
117
|
Complement as a powerful "influencer" in the brain during development, adulthood and neurological disorders. Adv Immunol 2021; 152:157-222. [PMID: 34844709 DOI: 10.1016/bs.ai.2021.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complement system was long considered as only a powerful effector arm of the immune system that, while critically protective, could lead to inflammation and cell death if overactivated, even in the central nervous system (CNS). However, in the past decade it has been recognized as playing critical roles in key physiological processes in the CNS, including neurogenesis and synaptic remodeling in the developing and adult brain. Inherent in these processes are the interactions with cells in the brain, and the cascade of interactions and functional consequences that ensue. As a result, investigations of therapeutic approaches for both suppressing excessive complement driven neurotoxicity and aberrant sculpting of neuronal circuits, require broad (and deep) knowledge of the functional activities of multiple components of this highly evolved and regulated system to avoid unintended negative consequences in the clinic. Advances in basic science are beginning to provide a roadmap for translation to therapeutics, with both small molecule and biologics. Here, we present examples of the critical roles of proper complement function in the development and sculpting of the nervous system, and in enabling rapid protection from infection and clearance of dying cells. Microglia are highlighted as important command centers that integrate signals from the complement system and other innate sensors that are programed to provide support and protection, but that direct detrimental responses to aberrant activation and/or regulation of the system. Finally, we present promising research areas that may lead to effective and precision strategies for complement targeted interventions to promote neurological health.
Collapse
|
118
|
Yang B, Li G, Liu J, Li X, Zhang S, Sun F, Liu W. Nanotechnology for Age-Related Macular Degeneration. Pharmaceutics 2021; 13:pharmaceutics13122035. [PMID: 34959316 PMCID: PMC8705006 DOI: 10.3390/pharmaceutics13122035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 01/12/2023] Open
Abstract
Age-related macular degeneration (AMD) is a degenerative eye disease that is the leading cause of irreversible vision loss in people 50 years and older. Today, the most common treatment for AMD involves repeated intravitreal injections of anti-vascular endothelial growth factor (VEGF) drugs. However, the existing expensive therapies not only cannot cure this disease, they also produce a variety of side effects. For example, the number of injections increases the cumulative risk of endophthalmitis and other complications. Today, a single intravitreal injection of gene therapy products can greatly reduce the burden of treatment and improve visual effects. In addition, the latest innovations in nanotherapy provide the best drug delivery alternative for the treatment of AMD. In this review, we discuss the development of nano-drug delivery systems and gene therapy strategies for AMD in recent years. In addition, we discuss some novel targeting strategies and the potential application of these delivery methods in the treatment of AMD. Finally, we also propose that the combination of CRISPR/Cas9 technology with a new non-viral delivery system may be promising as a therapeutic strategy for the treatment of AMD.
Collapse
Affiliation(s)
- Bo Yang
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun 130012, China;
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Ge Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Jiaxin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Xiangyu Li
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Shixin Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Fengying Sun
- School of Life Sciences, Jilin University, Changchun 130012, China; (G.L.); (J.L.); (X.L.); (S.Z.); (F.S.)
| | - Wenhua Liu
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun 130012, China;
- Correspondence:
| |
Collapse
|
119
|
Goenka S, Simon SR. Effects of E-Cigarette Refill Liquid Flavorings with and without Nicotine on Human Retinal Pigment Epithelial Cells: A Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11655. [PMID: 34770169 PMCID: PMC8582700 DOI: 10.3390/ijerph182111655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023]
Abstract
Smoking is an etiologic factor for age-related macular degeneration (AMD). Although cigarette smoke has been extensively researched for retinal pigment epithelial (RPE) cell degeneration, the potential for adverse effects on the retinal epithelium following exposure to flavored e-cigarette refill liquid has never been explored. In this preliminary study, we have examined the effects of 20 e-liquids (10 different flavored nicotine-free and 10 nicotine-rich e-liquids) used in e-cigarettes on the metabolic activity, membrane integrity, and mitochondrial membrane potential of RPE cells. Our results showed that of the flavors studied over the concentration range: 0.5, 1, and 2% v/v for a duration of 48 h, cinnamon was the most toxic and menthol was the second most toxic, while other flavors showed lesser or no cytotoxicity. The presence of nicotine augmented cytotoxicity for cinnamon, menthol, strawberry, vanilla, and banana while for other flavors there was no synergism. Together, our results demonstrate that exposure of RPE to flavored e-cigarette refill liquids caused significant cytotoxicity and may be a risk factor for the development of retinal pathogenesis, although further in-depth studies are necessary.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA;
- Department of Biochemistry and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Sanford R. Simon
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA;
- Department of Biochemistry and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
120
|
Armento A, Murali A, Marzi J, Almansa-Garcia AC, Arango-Gonzalez B, Kilger E, Clark SJ, Schenke-Layland K, Ramlogan-Steel CA, Steel JC, Ueffing M. Complement Factor H Loss in RPE Cells Causes Retinal Degeneration in a Human RPE-Porcine Retinal Explant Co-Culture Model. Biomolecules 2021; 11:1621. [PMID: 34827622 PMCID: PMC8615889 DOI: 10.3390/biom11111621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022] Open
Abstract
Age-related Macular degeneration (AMD) is a degenerative disease of the macula affecting the elderly population. Treatment options are limited, partly due to the lack of understanding of AMD pathology and the lack of suitable research models that replicate the complexity of the human macula and the intricate interplay of the genetic, aging and lifestyle risk factors contributing to AMD. One of the main genetic risks associated with AMD is located on the Complement Factor H (CFH) gene, leading to an amino acid substitution in the Factor H (FH) protein (Y402H). However, the mechanism of how this FH variant promotes the onset of AMD remains unclear. Previously, we have shown that FH deprivation in RPE cells, via CFH silencing, leads to increased inflammation, metabolic impairment and vulnerability toward oxidative stress. In this study, we established a novel co-culture model comprising CFH silenced RPE cells and porcine retinal explants derived from the visual streak of porcine eyes, which closely resemble the human macula. We show that retinae exposed to FH-deprived RPE cells show signs of retinal degeneration, with rod cells being the first cells to undergo degeneration. Moreover, via Raman analyses, we observed changes involving the mitochondria and lipid composition of the co-cultured retinae upon FH loss. Interestingly, the detrimental effects of FH loss in RPE cells on the neuroretina were independent of glial cell activation and external complement sources. Moreover, we show that the co-culture model is also suitable for human retinal explants, and we observed a similar trend when RPE cells deprived of FH were co-cultured with human retinal explants from a single donor eye. Our findings highlight the importance of RPE-derived FH for retinal homeostasis and provide a valuable model for AMD research.
Collapse
Affiliation(s)
- Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (A.M.); (A.C.A.-G.); (B.A.-G.); (E.K.); (S.J.C.)
| | - Aparna Murali
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (A.M.); (A.C.A.-G.); (B.A.-G.); (E.K.); (S.J.C.)
- Faculty of Medicine, University of Queensland, Herston, QLD 4006, Australia; (C.A.R.-S.); (J.C.S.)
| | - Julia Marzi
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (J.M.); (K.S.-L.)
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Ana C Almansa-Garcia
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (A.M.); (A.C.A.-G.); (B.A.-G.); (E.K.); (S.J.C.)
| | - Blanca Arango-Gonzalez
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (A.M.); (A.C.A.-G.); (B.A.-G.); (E.K.); (S.J.C.)
| | - Ellen Kilger
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (A.M.); (A.C.A.-G.); (B.A.-G.); (E.K.); (S.J.C.)
| | - Simon J Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (A.M.); (A.C.A.-G.); (B.A.-G.); (E.K.); (S.J.C.)
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (J.M.); (K.S.-L.)
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Charmaine A Ramlogan-Steel
- Faculty of Medicine, University of Queensland, Herston, QLD 4006, Australia; (C.A.R.-S.); (J.C.S.)
- School of Health, Medical and Applied Sciences, Central Queensland University, Brisbane, QLD 4000, Australia
| | - Jason C Steel
- Faculty of Medicine, University of Queensland, Herston, QLD 4006, Australia; (C.A.R.-S.); (J.C.S.)
- School of Health, Medical and Applied Sciences, Central Queensland University, Brisbane, QLD 4000, Australia
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (A.M.); (A.C.A.-G.); (B.A.-G.); (E.K.); (S.J.C.)
| |
Collapse
|
121
|
Frazer-Abel A, Kirschfink M, Prohászka Z. Expanding Horizons in Complement Analysis and Quality Control. Front Immunol 2021; 12:697313. [PMID: 34434189 PMCID: PMC8381195 DOI: 10.3389/fimmu.2021.697313] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/19/2021] [Indexed: 01/09/2023] Open
Abstract
Complement not only plays a key role in host microbial defense but also modulates the adaptive immune response through modification of T- and B-cell reactivity. Moreover, a normally functioning complement system participates in hematopoiesis, reproduction, lipid metabolism, and tissue regeneration. Because of its powerful inflammatory potential, multiple regulatory proteins are needed to prevent potential tissue damage. In clinical practice, dysregulation and overactivation of the complement system are major causes of a variety of inflammatory and autoimmune diseases ranging from nephropathies, age-related macular degeneration (AMD), and systemic lupus erythematosus (SLE) to graft rejection, sepsis, and multi-organ failure. The clinical importance is reflected by the recent development of multiple drugs targeting complement with a broad spectrum of indications. The recognition of the role of complement in diverse diseases and the advent of complement therapeutics has increased the number of laboratories and suppliers entering the field. This has highlighted the need for reliable complement testing. The relatively rapid expansion in complement testing has presented challenges for a previously niche field. This is exemplified by the issue of cross-reactivity of complement-directed antibodies and by the challenges of the poor stability of many of the complement analytes. The complex nature of complement testing and increasing clinical demand has been met in the last decade by efforts to improve the standardization among laboratories. Initiated by the IUIS/ICS Committee for the Standardization and Quality Assessment in Complement Measurements 14 rounds of external quality assessment since 2010 resulted in improvements in the consistency of testing across participating institutions, while extending the global reach of the efforts to more than 200 laboratories in 30 countries. Worldwide trends of assay availability, usage, and analytical performance are summarized based on the past years’ experiences. Progress in complement analysis has been facilitated by the quality assessment and standardization efforts that now allow complement testing to provide a comprehensive insight into deficiencies and the activation state of the system. This in turn enables clinicians to better define disease severity, evolution, and response to therapy.
Collapse
Affiliation(s)
| | | | - Zoltán Prohászka
- Department of Medicine and Hematology, Research Laboratory Semmelweis University, Budapest, Hungary
| |
Collapse
|
122
|
Armento A, Schmidt TL, Sonntag I, Merle DA, Jarboui MA, Kilger E, Clark SJ, Ueffing M. CFH Loss in Human RPE Cells Leads to Inflammation and Complement System Dysregulation via the NF-κB Pathway. Int J Mol Sci 2021; 22:ijms22168727. [PMID: 34445430 PMCID: PMC8396051 DOI: 10.3390/ijms22168727] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD), the leading cause of vision loss in the elderly, is a degenerative disease of the macula, where retinal pigment epithelium (RPE) cells are damaged in the early stages of the disease, and chronic inflammatory processes may be involved. Besides aging and lifestyle factors as drivers of AMD, a strong genetic association to AMD is found in genes of the complement system, with a single polymorphism in the complement factor H gene (CFH), accounting for the majority of AMD risk. However, the exact mechanism of CFH dysregulation confers such a great risk for AMD and its role in RPE cell homeostasis is unclear. To explore the role of endogenous CFH locally in RPE cells, we silenced CFH in human hTERT-RPE1 cells. We demonstrate that endogenously expressed CFH in RPE cells modulates inflammatory cytokine production and complement regulation, independent of external complement sources, or stressors. We show that loss of the factor H protein (FH) results in increased levels of inflammatory mediators (e.g., IL-6, IL-8, GM-CSF) and altered levels of complement proteins (e.g., C3, CFB upregulation, and C5 downregulation) that are known to play a role in AMD. Moreover, our results identify the NF-κB pathway as the major pathway involved in regulating these inflammatory and complement factors. Our findings suggest that in RPE cells, FH and the NF-κB pathway work in synergy to maintain inflammatory and complement balance, and in case either one of them is dysregulated, the RPE microenvironment changes towards a proinflammatory AMD-like phenotype.
Collapse
Affiliation(s)
- Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Correspondence: (A.A.); (M.U.); Tel.: +49-7071-29-84953 (A.A.)
| | - Tiziana L. Schmidt
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - Inga Sonntag
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - David A. Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Department of Ophthalmology, Medical University of Graz, 8036 Graz, Austria
| | - Mohamed Ali Jarboui
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - Ellen Kilger
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - Simon J. Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (T.L.S.); (I.S.); (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Correspondence: (A.A.); (M.U.); Tel.: +49-7071-29-84953 (A.A.)
| |
Collapse
|
123
|
Piotter E, McClements ME, MacLaren RE. Therapy Approaches for Stargardt Disease. Biomolecules 2021; 11:1179. [PMID: 34439845 PMCID: PMC8393614 DOI: 10.3390/biom11081179] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Despite being the most prevalent cause of inherited blindness in children, Stargardt disease is yet to achieve the same clinical trial success as has been achieved for other inherited retinal diseases. With an early age of onset and continual progression of disease over the life course of an individual, Stargardt disease appears to lend itself to therapeutic intervention. However, the aetiology provides issues not encountered with the likes of choroideremia and X-linked retinitis pigmentosa and this has led to a spectrum of treatment strategies that approach the problem from different aspects. These include therapeutics ranging from small molecules and anti-sense oligonucleotides to viral gene supplementation and cell replacement. The advancing development of CRISPR-based molecular tools is also likely to contribute to future therapies by way of genome editing. In this we review, we consider the most recent pre-clinical and clinical trial data relating to the different strategies being applied to the problem of generating a treatment for the large cohort of Stargardt disease patients worldwide.
Collapse
Affiliation(s)
- Elena Piotter
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (E.P.); (M.E.M.)
- Oxford University Hospitals NHS Foundation Trust NIHR Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (E.P.); (M.E.M.)
- Oxford University Hospitals NHS Foundation Trust NIHR Biomedical Research Centre, Oxford OX3 9DU, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; (E.P.); (M.E.M.)
- Oxford University Hospitals NHS Foundation Trust NIHR Biomedical Research Centre, Oxford OX3 9DU, UK
| |
Collapse
|
124
|
Complement Inhibitors in Age-Related Macular Degeneration: A Potential Therapeutic Option. J Immunol Res 2021; 2021:9945725. [PMID: 34368372 PMCID: PMC8346298 DOI: 10.1155/2021/9945725] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
Age-related macular degeneration (AMD) is a multifactorial disease, which can culminate in irreversible vision loss and blindness in elderly. Nowadays, there is a big gap between dry AMD and wet AMD on treatment. Accounting for nearly 90% of AMD, dry AMD still lacks effective treatment. Numerous genetic and molecular researches have confirmed the significant role of the complement system in the pathogenesis of AMD, leading to a deeper exploration of complement inhibitors in the treatment of AMD. To date, at least 14 different complement inhibitors have been or are being explored in AMD in almost 40 clinical trials. While most complement inhibitors fail to treat AMD successfully, two of them are effective in inhibiting the rate of GA progression in phase II clinical trials, and both of them successfully entered phase III trials. Furthermore, recently emerging complement gene therapy and combination therapy also offer new opportunities to treat AMD in the future. In this review, we aim to introduce genetic and molecular associations between the complement system and AMD, provide the updated progress in complement inhibitors in AMD on clinical trials, and discuss the challenges and prospects of complement therapeutic strategies in AMD.
Collapse
|
125
|
Interlink between Inflammation and Oxidative Stress in Age-Related Macular Degeneration: Role of Complement Factor H. Biomedicines 2021; 9:biomedicines9070763. [PMID: 34209418 PMCID: PMC8301356 DOI: 10.3390/biomedicines9070763] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022] Open
Abstract
Age-related macular degeneration (AMD) heads the list of legal blindness among the elderly population in developed countries. Due to the complex nature of the retina and the variety of risk factors and mechanisms involved, the molecular pathways underlying AMD are not yet fully defined. Persistent low-grade inflammation and oxidative stress eventually lead to retinal pigment epithelium dysfunction and outer blood-retinal barrier (oBRB) breakdown. The identification of AMD susceptibility genes encoding complement factors, and the presence of inflammatory mediators in drusen, the hallmark deposits of AMD, supports the notion that immune-mediated processes are major drivers of AMD pathobiology. Complement factor H (FH), the main regulator of the alternative pathway of the complement system, may have a key contribution in the pathogenesis of AMD as it is able to regulate both inflammatory and oxidative stress responses in the oBRB. Indeed, genetic variants in the CFH gene account for the strongest genetic risk factors for AMD. In this review, we focus on the roles of inflammation and oxidative stress and their connection with FH and related proteins as regulators of both phenomena in the context of AMD.
Collapse
|
126
|
Park YG, Park YS, Kim IB. Complement System and Potential Therapeutics in Age-Related Macular Degeneration. Int J Mol Sci 2021; 22:ijms22136851. [PMID: 34202223 PMCID: PMC8269056 DOI: 10.3390/ijms22136851] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex multifactorial disease characterized in its late form by neovascularization (wet type) or geographic atrophy of the retinal pigment epithelium cell layer (dry type). The complement system is an intrinsic component of innate immunity. There has been growing evidence that the complement system plays an integral role in maintaining immune surveillance and homeostasis in AMD. Based on the association between the genotypes of complement variants and AMD occurrence and the presence of complement in drusen from AMD patients, the complement system has become a therapeutic target for AMD. However, the mechanism of complement disease propagation in AMD has not been fully understood. This concise review focuses on an overall understanding of the role of the complement system in AMD and its ongoing clinical trials. It provides further insights into a strategy for the treatment of AMD targeting the complement system.
Collapse
Affiliation(s)
- Young Gun Park
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Yong Soo Park
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - In-Beom Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Catholic Institute for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-7263
| |
Collapse
|
127
|
Hwang JS, Shin YJ. Role of Choline in Ocular Diseases. Int J Mol Sci 2021; 22:4733. [PMID: 33946979 PMCID: PMC8124599 DOI: 10.3390/ijms22094733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
Choline is essential for maintaining the structure and function of cells in humans. Choline plays an important role in eye health and disease. It is a precursor of acetylcholine, a neurotransmitter of the parasympathetic nervous system, and it is involved in the production and secretion of tears by the lacrimal glands. It also contributes to the stability of the cells and tears on the ocular surface and is involved in retinal development and differentiation. Choline deficiency is associated with retinal hemorrhage, glaucoma, and dry eye syndrome. Choline supplementation may be effective for treating these diseases.
Collapse
Affiliation(s)
| | - Young-Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Korea;
| |
Collapse
|