101
|
Gravotta L, Gavrila AM, Hood S, Amir S. Global depletion of dopamine using intracerebroventricular 6-hydroxydopamine injection disrupts normal circadian wheel-running patterns and PERIOD2 expression in the rat forebrain. J Mol Neurosci 2011; 45:162-71. [PMID: 21484443 DOI: 10.1007/s12031-011-9520-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
Abstract
Normal circadian rhythms of behavior are disrupted in disorders involving the dopamine (DA) system, such as Parkinson's disease. We have reported previously using unilateral injections of the catecholamine toxin, 6-hydroxydopamine (6-OHDA), into the medial forebrain bundle that DA signaling regulates daily expression of the clock protein, PERIOD2 (PER2), in the dorsal striatum of the rat. In the present study, we made widespread lesions of DA fibers using large injections of 6-OHDA into the third ventricle to determine the involvement of DA in normal daily rhythms of wheel-running activity and PER2 patterns in the suprachiasmatic nucleus (SCN) and several regions of the limbic forebrain. Rats injected with 6-OHDA and housed in constant darkness were less active in the wheel and showed a disorganized pattern of activity in which wheel running was not confined to a specific phase over 24 h. The 6-OHDA injection had no effect on the daily PER2 pattern in the SCN, but blunted the normal rise in PER2 in the dorsal striatum. 6-OHDA also blunted PER2 expression in the periventricular nucleus of the hypothalamus, a region in which a daily PER2 pattern has not been previously reported in male rats, and in the oval nucleus of the bed nucleus of the stria terminalis, but not in the central nucleus of the amygdala. These results indicate that DA plays a prominent role in regulating circadian activity at both behavioral and molecular levels.
Collapse
Affiliation(s)
- Luciana Gravotta
- Center for Studies in Behavioral Neurobiology/Centre de Recherche en Neurobiologie Comportementale, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada
| | | | | | | |
Collapse
|
102
|
Brown ZJ, Nobrega JN, Erb S. Central injections of noradrenaline induce reinstatement of cocaine seeking and increase c-fos mRNA expression in the extended amygdala. Behav Brain Res 2011; 217:472-6. [DOI: 10.1016/j.bbr.2010.09.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/21/2010] [Accepted: 09/22/2010] [Indexed: 02/08/2023]
|
103
|
Yamada H, Bruijnzeel AW. Stimulation of α2-adrenergic receptors in the central nucleus of the amygdala attenuates stress-induced reinstatement of nicotine seeking in rats. Neuropharmacology 2011; 60:303-11. [PMID: 20854830 PMCID: PMC3014445 DOI: 10.1016/j.neuropharm.2010.09.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 10/19/2022]
Abstract
Tobacco addiction is a chronic disorder that is characterized by craving for tobacco products, withdrawal upon smoking cessation, and relapse after periods of abstinence. Previous studies demonstrated that systemic administration of α2-adrenergic receptor agonists attenuates stress-induced reinstatement of drug seeking in rats. The aim of the present experiments was to investigate the role of noradrenergic transmission in the central nucleus of amygdala (CeA) in stress-induced reinstatement of nicotine seeking. Rats self-administered nicotine for 14-16 days and then nicotine seeking was extinguished by substituting saline for nicotine. The effect of the intra-CeA infusion of the α2-adrenergic receptor agonists clonidine and dexmedetomidine, the nonselective β1/β2-adrenergic receptor antagonist propranolol, and the α1-adrenergic receptor antagonist prazosin on stress-induced reinstatement of nicotine seeking was investigated. In all the experiments, exposure to footshocks reinstated extinguished nicotine seeking. The administration of clonidine or dexmedetomidine into the CeA attenuated stress-induced reinstatement of nicotine seeking. The administration of propranolol or prazosin into the CeA did not affect stress-induced reinstatement of nicotine seeking. Furthermore, intra-CeA administration of clonidine or dexmedetomidine did not affect operant responding for food pellets. This suggests that the effects of clonidine and dexmedetomidine on stress-induced reinstatement of nicotine seeking were not mediated by motor impairments or sedation. Taken together, these findings indicate that stimulation of α2-adrenergic receptors, but not blockade of α1 or β-adrenergic receptors, in the CeA attenuates stress-induced reinstatement of nicotine seeking. These findings suggest that α2-adrenergic receptor agonists may at least partly attenuate stress-induced reinstatement of nicotine seeking by stimulating α2-adrenergic receptors in the CeA.
Collapse
MESH Headings
- Adrenergic alpha-2 Receptor Agonists/pharmacology
- Adrenergic alpha-2 Receptor Agonists/therapeutic use
- Amygdala/drug effects
- Amygdala/metabolism
- Animals
- Behavior, Addictive/etiology
- Behavior, Addictive/metabolism
- Behavior, Addictive/prevention & control
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Male
- Nicotine/administration & dosage
- Rats
- Rats, Wistar
- Receptors, Adrenergic, alpha-2/metabolism
- Self Administration
- Stress, Psychological/complications
- Stress, Psychological/drug therapy
- Stress, Psychological/metabolism
- Tobacco Use Disorder/etiology
- Tobacco Use Disorder/metabolism
- Tobacco Use Disorder/prevention & control
Collapse
Affiliation(s)
- Hidetaka Yamada
- Department of Psychiatry, McKnight Brain Institute, University of Florida, 100 S Newell Dr, Gainesville, FL 32610, USA
| | | |
Collapse
|
104
|
Giardino WJ, Pastor R, Anacker AM, Spangler E, Cote DM, Li J, Stenzel-Poore M, Phillips TJ, Ryabinin AE. Dissection of corticotropin-releasing factor system involvement in locomotor sensitivity to methamphetamine. GENES, BRAIN, AND BEHAVIOR 2011; 10:78-89. [PMID: 20731720 PMCID: PMC3025045 DOI: 10.1111/j.1601-183x.2010.00641.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensitivity to the euphoric and locomotor-activating effects of drugs of abuse may contribute to risk for excessive use and addiction. Repeated administration of psychostimulants such as methamphetamine (MA) can result in neuroadaptive consequences that manifest behaviorally as a progressive escalation of locomotor activation, termed psychomotor sensitization. The present studies addressed the involvement of specific components of the corticotropin-releasing factor (CRF) system in locomotor activation and psychomotor sensitization induced by MA (1, 2 mg/kg) by utilizing pharmacological approaches, as well as a series of genetic knockout (KO) mice, each deficient for a single component of the CRF system: CRF-R1, CRF-R2, CRF, or the CRF-related peptide Urocortin 1 (Ucn1). CRF-R1 KO mice did not differ from wild-type mice in sensitization to MA, and pharmacological blockade of CRF-R1 with CP-154,526 (15, 30 mg/kg) in DBA/2J mice did not selectively attenuate either the acquisition or expression of MA-induced sensitization. Deletion of either of the endogenous ligands of CRF-R1 (CRF, Ucn1) either enhanced or had no effect on MA-induced sensitization, providing further evidence against a role for CRF-R1 signaling. Interestingly, deletion of CRF-R2 attenuated MA-induced locomotor activation, elucidating a novel contribution of the CRF system to MA sensitivity, and suggesting the participation of the endogenous urocortin peptides Ucn2 and Ucn3. Immunohistochemistry for Fos was used to visualize neural activation underlying CRF-R2-dependent sensitivity to MA, identifying the basolateral and central nuclei of the amygdala as neural substrates involved in this response. Our results support further examination of CRF-R2 involvement in neural processes associated with MA addiction.
Collapse
Affiliation(s)
- William J. Giardino
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Raúl Pastor
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
- Area de Psicobiología, Universitat Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Allison M.J. Anacker
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Erika Spangler
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Dawn M. Cote
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Ju Li
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Mary Stenzel-Poore
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
- Portland Veterans Affairs Medical Center, Research Service, R&D32, 3710 SW US Veteran’s Hospital Road, Portland, OR 97239
| | - Andrey E. Ryabinin
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239
| |
Collapse
|
105
|
Krawczyk M, Georges F, Sharma R, Mason X, Berthet A, Bézard E, Dumont EC. Double-dissociation of the catecholaminergic modulation of synaptic transmission in the oval bed nucleus of the stria terminalis. J Neurophysiol 2011; 105:145-53. [PMID: 21047935 PMCID: PMC4011827 DOI: 10.1152/jn.00710.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The bed nucleus of the stria terminalis (BST) is a cluster of nuclei within the extended amygdala, a forebrain macrostructure with extensive projection to motor nuclei of the hindbrain. The subnuclei of the BST coordinate autonomic, neuroendocrine, and somato-motor functions and receive robust neuromodulatory monoaminergic afferents, including 5-HT-, noradrenaline (NA)-, and dopamine (DA)-containing terminals. In contrast to 5-HT and NA, little is known about how DA modulates neuronal activity or synaptic transmission in the BST. DA-containing afferents to the BST originate in the ventral tegmental area, the periaqueducal gray, and the retrorubral field. They form a fairly diffuse input to the dorsolateral BST with dense terminal fields in the oval (ovBST) and juxtacapsular (jxBST) nuclei. The efferent-afferent connectivity of the BST suggests that it may play a key role in motivated behaviors, consistent with recent evidence that the dorsolateral BST is a target for drugs of abuse. This study describes the effects of DA on synaptic transmission in the ovBST. Whole cell voltage clamp recordings were performed on ovBST neurons in brain slices from adult rats in the presence or absence of exogenous DA and receptor-targeted agonists and antagonists. The results showed that DA selectively and exclusively reduced inhibitory synaptic transmission in the ovBST in a dose-dependent and D2-like dopamine receptor-dependent manner. DA also modulated excitatory synaptic transmission in a dose-dependent dependent manner. However, this effect was mediated by α2-noradrenergic receptors. Thus these data reveal a double dissociation in catecholaminergic regulation of excitatory and inhibitory synaptic transmission in the ovBST and may shed light on the mechanisms involved in neuropathological behaviors such as stress-induced relapse to consumption of drugs of abuse.
Collapse
Affiliation(s)
- Michal Krawczyk
- Department of Anesthesiology and Perioperative Medicine and Center for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | |
Collapse
|
106
|
Ronan PJ, Summers CH. Molecular Signaling and Translational Significance of the Corticotropin Releasing Factor System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:235-92. [DOI: 10.1016/b978-0-12-385506-0.00006-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
107
|
Brown RM, Short JL, Lawrence AJ. Identification of brain nuclei implicated in cocaine-primed reinstatement of conditioned place preference: a behaviour dissociable from sensitization. PLoS One 2010; 5:e15889. [PMID: 21209913 PMCID: PMC3012115 DOI: 10.1371/journal.pone.0015889] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/26/2010] [Indexed: 11/18/2022] Open
Abstract
Relapse prevention represents the primary therapeutic challenge in the treatment of drug addiction. As with humans, drug-seeking behaviour can be precipitated in laboratory animals by exposure to a small dose of the drug (prime). The aim of this study was to identify brain nuclei implicated in the cocaine-primed reinstatement of a conditioned place preference (CPP). Thus, a group of mice were conditioned to cocaine, had this place preference extinguished and were then tested for primed reinstatement of the original place preference. There was no correlation between the extent of drug-seeking upon reinstatement and the extent of behavioural sensitization, the extent of original CPP or the extinction profile of mice, suggesting a dissociation of these components of addictive behaviour with a drug-primed reinstatement. Expression of the protein product of the neuronal activity marker c-fos was assessed in a number of brain regions of mice that exhibited reinstatement (R mice) versus those which did not (NR mice). Reinstatement generally conferred greater Fos expression in cortical and limbic structures previously implicated in drug-seeking behaviour, though a number of regions not typically associated with drug-seeking were also activated. In addition, positive correlations were found between neural activation of a number of brain regions and reinstatement behaviour. The most significant result was the activation of the lateral habenula and its positive correlation with reinstatement behaviour. The findings of this study question the relationship between primed reinstatement of a previously extinguished place preference for cocaine and behavioural sensitization. They also implicate activation patterns of discrete brain nuclei as differentiators between reinstating and non-reinstating mice.
Collapse
Affiliation(s)
- Robyn Mary Brown
- Florey Neuroscience Institutes, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
108
|
Briand LA, Vassoler FM, Pierce RC, Valentino RJ, Blendy JA. Ventral tegmental afferents in stress-induced reinstatement: the role of cAMP response element-binding protein. J Neurosci 2010; 30:16149-59. [PMID: 21123561 PMCID: PMC3075606 DOI: 10.1523/jneurosci.2827-10.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/24/2010] [Accepted: 09/24/2010] [Indexed: 12/13/2022] Open
Abstract
The transcription factor cAMP response element-binding protein (CREB) is required for stress- but not drug-induced reinstatement of cocaine conditioned place preference. To reveal the neural circuitry associated with this CREB dependence, we injected a retrograde tracer into the ventral tegmental area (VTA) and identified afferents that were activated after stress or cocaine exposure in both naive and cocaine-conditioned mice. Neuronal activation, as assessed by Fos expression, was greatly reduced in the dorsal and ventral bed nucleus of the stria terminalis (BNST), lateral septum, and nucleus accumbens shell in mice lacking CREB (CREBαΔ mice) after a 6 min swim stress but not after cocaine exposure (20 mg/kg). Additionally, activation of VTA afferent neurons in the ventral BNST and the infralimbic cortex in CREBαΔ mice was blunted in response to stress. This pattern of neuronal activation persisted in mice that were conditioned to a cocaine place preference procedure before stress exposure. Furthermore, lidocaine inactivation (0.4 μl, 4%) studies demonstrated the necessity of BNST activation for swim-stress-induced reinstatement of cocaine-conditioned reward. Together, the present studies demonstrate that CREB is required for the activation of a unique circuit that converges on the dopamine reward pathway to elicit reinstatement of drug reward and points to the BNST as a key intersection between stress and reward circuits.
Collapse
Affiliation(s)
| | - Fair M. Vassoler
- Psychiatry, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - R. Christopher Pierce
- Psychiatry, The University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Rita J. Valentino
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
109
|
Variations in daily expression of the circadian clock protein, PER2, in the rat limbic forebrain during stable entrainment to a long light cycle. J Mol Neurosci 2010; 45:154-61. [PMID: 21063915 DOI: 10.1007/s12031-010-9469-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
Abstract
The circadian clock in the mammalian suprachiasmatic nucleus (SCN) can be entrained by light cycles longer than the normal 24-h light/dark (LD) cycle, but little is known about the effect of such cycles on circadian clocks outside the SCN. Here we examined the effect of exposure to a 26-h T cycle (T26, 1 h:25 h LD) on patterns of expression of the clock protein, PERIOD2 (PER2), in the SCN and in four regions of the limbic forebrain known to exhibit robust circadian oscillations in PER2: the oval nucleus of the bed nucleus of the stria terminalis (BNSTov), central nucleus of the amygdala (CEA), basolateral amygdala (BLA), and dentate gyrus (DG). All rats showed stable entrainment of running wheel activity rhythms to the T26 cycle. As previously shown, PER2 expression in the SCN was stably entrained, peaking around the onset of locomotor activity. In contrast, exposure to the T26 cycle uncoupled the rhythms of PER2 expression in the BNSTov and CEA from that of the SCN, whereas PER2 rhythms in the BLA and DG were unaffected. These results show that exposure to long light cycles can uncouple circadian oscillators in select nuclei of the limbic forebrain from the SCN clock and suggest that such cycles may be used to study the functional consequences of coupling and uncoupling of brain circadian oscillators.
Collapse
|
110
|
Moran-Santa Maria MM, McRae-Clark AL, Back SE, DeSantis SM, Baker NL, Spratt EG, Simpson AN, Brady KT. Influence of cocaine dependence and early life stress on pituitary-adrenal axis responses to CRH and the Trier social stressor. Psychoneuroendocrinology 2010; 35:1492-500. [PMID: 20570051 PMCID: PMC2945624 DOI: 10.1016/j.psyneuen.2010.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 04/12/2010] [Accepted: 05/05/2010] [Indexed: 11/19/2022]
Abstract
Long-term changes in the hypothalamic-pituitary-adrenal (HPA) axis as a result of early life stress could be related to the development of substance use disorders during adulthood. In this study, the neuroendocrine, physiologic (HR), and subjective responses to corticotropin releasing hormone (CRH) and the Trier Social Stress Task (TSST) in individuals with cocaine dependence, with (n=21)/without early life stress (n=21), non-dependent individuals with early life stress (n=22), and a control group were examined (n=21). CRH increased cortisol and ACTH levels in all groups. However, a significant effect of early life stress on ACTH was observed indicating that the increase in ACTH was greatest in subjects with a history of childhood stress. Post hoc analysis indicated the early life stress/non-cocaine dependent individuals exhibited significantly higher levels of ACTH as compared to the early life stress/cocaine-dependent group. Despite the elevated ACTH response there was no difference between the groups in the cortisol response to CRH. The TSST produced a significant elevation in ACTH and cortisol all study groups. No significant group differences were observed. The subjective stress and peak heart rate responses to the TSST were greatest in cocaine-dependent subjects without early life stress. In response to CRH, subjective stress and craving were positively correlated in cocaine-dependent subjects regardless of early life stress history, while stress and craving following the TSST were correlated only in cocaine-dependent subjects without a history of early life stress. Findings support previous studies demonstrating that subjects with a history of childhood adversity exhibit elevated ACTH and blunted cortisol levels in response to stress. In contrast, HR and subjective stress in response to the TSST were greatest in cocaine-dependent subjects without a history of early life stress, suggesting that childhood adversity may desensitize autonomic and subjective responding to social stress in adults with cocaine dependence.
Collapse
Affiliation(s)
- Megan M Moran-Santa Maria
- Department of Psychiatry and Behavioral Sciences, Clinical Neuroscience Division, Medical University of South Carolina, 67 President Street, Charleston, SC 29425, United States.
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Mantsch JR, Weyer A, Vranjkovic O, Beyer CE, Baker DA, Caretta H. Involvement of noradrenergic neurotransmission in the stress- but not cocaine-induced reinstatement of extinguished cocaine-induced conditioned place preference in mice: role for β-2 adrenergic receptors. Neuropsychopharmacology 2010; 35:2165-78. [PMID: 20613718 PMCID: PMC2939933 DOI: 10.1038/npp.2010.86] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 05/20/2010] [Accepted: 05/20/2010] [Indexed: 11/09/2022]
Abstract
The responsiveness of central noradrenergic systems to stressors and cocaine poses norepinephrine as a potential common mechanism through which drug re-exposure and stressful stimuli promote relapse. This study investigated the role of noradrenergic systems in the reinstatement of extinguished cocaine-induced conditioned place preference by cocaine and stress in male C57BL/6 mice. Cocaine- (15 mg/kg, i.p.) induced conditioned place preference was extinguished by repeated exposure to the apparatus in the absence of drug and reestablished by a cocaine challenge (15 mg/kg), exposure to a stressor (6-min forced swim (FS); 20-25°C water), or administration of the α-2 adrenergic receptor (AR) antagonists yohimbine (2 mg/kg, i.p.) or BRL44408 (5, 10 mg/kg, i.p.). To investigate the role of ARs, mice were administered the nonselective β-AR antagonist, propranolol (5, 10 mg/kg, i.p.), the α-1 AR antagonist, prazosin (1, 2 mg/kg, i.p.), or the α-2 AR agonist, clonidine (0.03, 0.3 mg/kg, i.p.) before reinstatement testing. Clonidine, prazosin, and propranolol failed to block cocaine-induced reinstatement. The low (0.03 mg/kg) but not high (0.3 mg/kg) clonidine dose fully blocked FS-induced reinstatement but not reinstatement by yohimbine. Propranolol, but not prazosin, blocked reinstatement by both yohimbine and FS, suggesting the involvement of β-ARs. The β-2 AR antagonist ICI-118551 (1 mg/kg, i.p.), but not the β-1 AR antagonist betaxolol (10 mg/kg, i.p.), also blocked FS-induced reinstatement. These findings suggest that stress-induced reinstatement requires noradrenergic signaling through β-2 ARs and that cocaine-induced reinstatement does not require AR activation, even though stimulation of central noradrenergic neurotransmission is sufficient to reinstate.
Collapse
MESH Headings
- Adrenergic Antagonists/pharmacology
- Animals
- Behavior, Addictive/physiopathology
- Behavior, Addictive/psychology
- Cocaine/administration & dosage
- Conditioning, Psychological/drug effects
- Conditioning, Psychological/physiology
- Extinction, Psychological/drug effects
- Extinction, Psychological/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Norepinephrine/physiology
- Receptors, Adrenergic, beta-2/physiology
- Stress, Psychological/physiopathology
- Stress, Psychological/psychology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- John R Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201, USA.
| | | | | | | | | | | |
Collapse
|
112
|
Conrad KL, McCutcheon JE, Cotterly LM, Ford KA, Beales M, Marinelli M. Persistent increases in cocaine-seeking behavior after acute exposure to cold swim stress. Biol Psychiatry 2010; 68:303-5. [PMID: 20494337 PMCID: PMC2907460 DOI: 10.1016/j.biopsych.2010.03.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 03/26/2010] [Accepted: 03/28/2010] [Indexed: 02/06/2023]
Abstract
BACKGROUND Acute and chronic stress reinstates drug-seeking behavior. Current animal models show that these effects are contingent (temporally, contextually, or both) on the drug-conditioning environment. To date, no paradigm exists to model the common human situation in which stressors that are distinct from the experience of drugs can lead to relapse. METHODS Rats were allowed to self-administer cocaine or saline over 8 days. They then underwent extinction training, during which responding was not reinforced with drug infusions. After 16 days of extinction, rats were submitted to a brief cold swim stress and then tested for seeking behavior (responding not reinforced with drug infusions) for 4 days. RESULTS All rats developed self-administration behavior. Following extinction, cold swim stress induced reinstatement of drug-seeking behavior in cocaine-trained rats, an effect that was still present 3 days after stress exposure. CONCLUSIONS This study indicates that cold swim stress can have long-term effects on drug-seeking behavior and may provide us with a suitable model to study the latent effects of stress on relapse to drug abuse.
Collapse
Affiliation(s)
- Kelly L. Conrad
- Department of Neuroscience, The Chicago Medical School, 3333 Green Bay Rd, North Chicago, IL 60064
| | - James E. McCutcheon
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Rd, North Chicago, IL 60064
| | - Lindsay M. Cotterly
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Rd, North Chicago, IL 60064
| | - Kerstin A. Ford
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Rd, North Chicago, IL 60064
| | - Mitch Beales
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Rd, North Chicago, IL 60064
| | - Michela Marinelli
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Rd, North Chicago, IL 60064
| |
Collapse
|
113
|
Erb S. Evaluation of the relationship between anxiety during withdrawal and stress-induced reinstatement of cocaine seeking. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:798-807. [PMID: 19969038 DOI: 10.1016/j.pnpbp.2009.11.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 11/13/2009] [Accepted: 11/30/2009] [Indexed: 01/30/2023]
Abstract
The initial termination of cocaine consumption in human addicts is associated with heightened anxiety states and low levels of craving. Craving, however, tends to increase progressively over time, remains high for extended periods of time, and can be exacerbated by stressors, leading to relapse. Laboratory rats, likewise, exhibit heightened states of anxiety after withdrawal from drug, and follow a time course of cocaine seeking that parallels the time course of craving reported in humans. In addition, laboratory rats show heightened susceptibility to relapse when exposed to stressors after extended periods of withdrawal, and exhibit persistent and heightened expressions of stress-induced anxiety. The general objective of this paper is to consider the relationship between anxiety states after withdrawal from cocaine and stress-induced reinstatement of cocaine seeking in laboratory rats, and to identify the neural substrates involved. The focus of the review is on studies addressing the roles of corticotropin-releasing factor (CRF) and noradrenaline pathways of the extended amygdala circuitry, and their direct or indirect interactions with the mesocorticolimbic dopamine system, in anxiety after withdrawal from cocaine and stress-induced reinstatement of cocaine seeking. Furthermore, the effects of time after withdrawal from cocaine and amount of cocaine exposure during self-administration on the activity of CRF, noradrenaline, and dopamine pathways of the extended amygdala and mesocorticolimbic systems will be considered. The review will highlight how changing levels of activity within these systems may serve to alter the nature of the relationship between anxiety and stress-induced reinstatement of cocaine seeking at different times after withdrawal from cocaine.
Collapse
Affiliation(s)
- Suzanne Erb
- Center for Neurobiology of Stress, Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada M1C 1A4.
| |
Collapse
|
114
|
Krishnan B, Centeno M, Pollandt S, Fu Y, Genzer K, Liu J, Gallagher JP, Shinnick-Gallagher P. Dopamine receptor mechanisms mediate corticotropin-releasing factor-induced long-term potentiation in the rat amygdala following cocaine withdrawal. Eur J Neurosci 2010; 31:1027-42. [PMID: 20377617 PMCID: PMC3118420 DOI: 10.1111/j.1460-9568.2010.07148.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Corticotropin-releasing factor (CRF) in the amygdala is involved in stress responses. Moreover, dopaminergic neurotransmission in the brain reward system including the amygdala plays a significant role in the pathology of cocaine addiction. The present study analysed CRF-induced synaptic plasticity, its pharmacological sensitivity and interactions with the dopamine (DA) system in the basolateral to lateral capsula central amygdala (lcCeA) pathway after a 2-week withdrawal from repeated cocaine administration. A physiologically relevant CRF concentration (25 nm) induced long-term potentiation (LTP) that was enhanced after cocaine withdrawal. In saline-treated rats, CRF-induced LTP was mediated through N-methyl-d-aspartate (NMDA) receptors, L-type voltage-gated calcium channels (L-VGCCs) and CRF(1) receptors. However, in cocaine-withdrawn animals, activation of CRF(1) and CRF(2) receptors was found to enhance LTP. This enhanced CRF-induced LTP after cocaine withdrawal was mediated through endogenous activation of both D1- and D2-like receptors. Furthermore, expression of the D1 receptor (D1R) but not the D2R, D3R, D4R or D5R was significantly increased after cocaine withdrawal. CRF(1) but not CRF(2) protein expression was increased, suggesting that elevated levels of these proteins contributed to the enhancement of CRF-induced LTP during cocaine withdrawal. CRF interactions with the DA system in the amygdala may represent a fundamental neurochemical and cellular mechanism linking stress to cocaine-induced neuronal plasticity.
Collapse
Affiliation(s)
- Balaji Krishnan
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Bruchas MR, Land BB, Chavkin C. The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors. Brain Res 2010; 1314:44-55. [PMID: 19716811 PMCID: PMC2819621 DOI: 10.1016/j.brainres.2009.08.062] [Citation(s) in RCA: 398] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/08/2009] [Accepted: 08/14/2009] [Indexed: 12/31/2022]
Abstract
Stress is a complex experience that carries both aversive and motivating properties. Chronic stress causes an increase in the risk of depression, is well known to increase relapse of drug seeking behavior, and can adversely impact health. Several brain systems have been demonstrated to be critical in mediating the negative affect associated with stress, and recent evidence directly links the actions of the endogenous opioid neuropeptide dynorphin in modulating mood and increasing the rewarding effects of abused drugs. These results suggest that activation of the dynorphin/kappa opioid receptor (KOR) system is likely to play a major role in the pro-addictive effects of stress. This review explores the relationship between dynorphin and corticotropin-releasing factor (CRF) in the induction of dysphoria, the potentiation of drug seeking, and stress-induced reinstatement. We also provide an overview of the signal transduction events responsible for CRF and dynorphin/KOR-dependent behaviors. Understanding the recent work linking activation of CRF and dynorphin/KOR systems and their specific roles in brain stress systems and behavioral models of addiction provides novel insight to neuropeptide systems that regulate affective state.
Collapse
Affiliation(s)
- M R Bruchas
- University of Washington, Department of Pharmacology, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
116
|
Shalev U, Erb S, Shaham Y. Role of CRF and other neuropeptides in stress-induced reinstatement of drug seeking. Brain Res 2010; 1314:15-28. [PMID: 19631614 PMCID: PMC2819550 DOI: 10.1016/j.brainres.2009.07.028] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/03/2009] [Accepted: 07/11/2009] [Indexed: 11/17/2022]
Abstract
A central problem in the treatment of drug addiction is high rates of relapse to drug use after periods of forced or self-imposed abstinence. This relapse is often provoked by exposure to stress. Stress-induced relapse to drug seeking can be modeled in laboratory animals using a reinstatement procedure. In this procedure, drug-taking behaviors are extinguished and then reinstated by acute exposure to stressors like intermittent unpredictable footshock, restraint, food deprivation, and systemic injections of yohimbine, an alpha-2 adrenoceptor antagonist that induces stress-like responses in humans and nonhumans. For this special issue entitled "The role of neuropeptides in stress and addiction", we review results from studies on the role of corticotropin-releasing factor (CRF) and several other peptides in stress-induced reinstatement of drug seeking in laboratory animals. The results of the studies reviewed indicate that extrahypothalamic CRF plays a critical role in stress-induced reinstatement of drug seeking; this role is largely independent of drug class, experimental procedure, and type of stressor. There is also limited evidence for the role of dynorphins, hypocretins (orexins), nociceptin (orphanin FQ), and leptin in stress-induced reinstatement of drug seeking.
Collapse
Affiliation(s)
- Uri Shalev
- Department of Psychology, Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Concordia University, Montreal, Quebec, Canada
| | - Suzanne Erb
- Center for Neurobiology of Stress, Department of Psychology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Yavin Shaham
- Behavioral Neuroscience Branch, NIDA/IRP, NIH, Baltimore, MD, USA
| |
Collapse
|
117
|
Martin-Fardon R, Zorrilla EP, Ciccocioppo R, Weiss F. Role of innate and drug-induced dysregulation of brain stress and arousal systems in addiction: Focus on corticotropin-releasing factor, nociceptin/orphanin FQ, and orexin/hypocretin. Brain Res 2010; 1314:145-61. [PMID: 20026088 PMCID: PMC2819635 DOI: 10.1016/j.brainres.2009.12.027] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 12/09/2009] [Accepted: 12/10/2009] [Indexed: 11/25/2022]
Abstract
Stress-like symptoms are an integral part of acute and protracted drug withdrawal, and several lines of evidence have shown that dysregulation of brain stress systems, including the extrahypothalamic corticotropin-releasing factor (CRF) system, following long-term drug use is of major importance in maintaining drug and alcohol addiction. Recently, two other neuropeptide systems have attracted interest, the nociceptin/orphanin FQ (N/OFQ) and orexin/hypocretin (Orx/Hcrt) systems. N/OFQ participates in a wide range of physiological responses, and the hypothalamic Orx/Hcrt system helps regulate several physiological processes, including feeding, energy metabolism, and arousal. Moreover, these two systems have been suggested to participate in psychiatric disorders, including anxiety and drug addiction. Dysregulation of these systems by chronic drug exposure has been hypothesized to play a role in the maintenance of addiction and dependence. Recent evidence demonstrated that interactions between CRF-N/OFQ and CRF-Orx/Hcrt systems may be functionally relevant for the control of stress-related addictive behavior. The present review discusses recent findings that support the hypotheses of the participation and dysregulation of these systems in drug addiction and evaluates the current understanding of interactions among these stress-regulatory peptides.
Collapse
Affiliation(s)
- Rémi Martin-Fardon
- The Scripps Research Institute, Molecular and Integrative Neurosciences Department, SP30-2120, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
118
|
Davis M, Walker DL, Miles L, Grillon C. Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology 2010; 35:105-35. [PMID: 19693004 PMCID: PMC2795099 DOI: 10.1038/npp.2009.109] [Citation(s) in RCA: 1054] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/26/2009] [Accepted: 07/14/2009] [Indexed: 01/11/2023]
Abstract
Data will be reviewed using the acoustic startle reflex in rats and humans based on our attempts to operationally define fear vs anxiety. Although the symptoms of fear and anxiety are very similar, they also differ. Fear is a generally adaptive state of apprehension that begins rapidly and dissipates quickly once the threat is removed (phasic fear). Anxiety is elicited by less specific and less predictable threats, or by those that are physically or psychologically more distant. Thus, anxiety is a more long-lasting state of apprehension (sustained fear). Rodent studies suggest that phasic fear is mediated by the amygdala, which sends outputs to the hypothalamus and brainstem to produce symptoms of fear. Sustained fear is also mediated by the amygdala, which releases corticotropin-releasing factor, a stress hormone that acts on receptors in the bed nucleus of the stria terminalis (BNST), a part of the so-called 'extended amygdala.' The amygdala and BNST send outputs to the same hypothalamic and brainstem targets to produce phasic and sustained fear, respectively. In rats, sustained fear is more sensitive to anxiolytic drugs. In humans, symptoms of clinical anxiety are better detected in sustained rather than phasic fear paradigms.
Collapse
Affiliation(s)
- Michael Davis
- Department of Psychiatry, Yerkes National Primate Center, Emory University, and the Center for Behavioral Neuroscience, Atlanta, GA 30329, USA.
| | | | | | | |
Collapse
|
119
|
Jalabert M, Aston-Jones G, Herzog E, Manzoni O, Georges F. Role of the bed nucleus of the stria terminalis in the control of ventral tegmental area dopamine neurons. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1336-46. [PMID: 19616054 PMCID: PMC3635540 DOI: 10.1016/j.pnpbp.2009.07.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 07/04/2009] [Accepted: 07/08/2009] [Indexed: 11/25/2022]
Abstract
Projections from neurons of the bed nucleus of the stria terminalis (BST) to the ventral tegmental area (VTA) are crucial to behaviors related to reward and motivation. Over the past few years, we have undertaken a series of studies to understand: 1) how excitatory inputs regulate in vivo excitable properties of BST neurons, and 2) how BST inputs in turn modulate neuronal activity of dopamine neurons in VTA. Using in vivo extracellular recording techniques in anesthetized rats and tract-tracing approaches, we have demonstrated that inputs from the infralimbic cortex and the ventral subiculum exert a strong excitatory influence on BST neurons projecting to the VTA. Thus, the BST is uniquely positioned to receive emotional and learning-associated informations and to integrate these into the reward/motivation circuitry. We will discuss how changes in the activity of BST neurons projecting to the VTA could participate in the development or exacerbation of psychiatric conditions such as drug addiction.
Collapse
Affiliation(s)
- Marion Jalabert
- INSERM, U862, Neurocentre Magendie, Pathophysiology of synaptic plasticity group, Bordeaux, F-33000, France,Université de Bordeaux, Bordeaux, F-33000, France
| | - Gary Aston-Jones
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Ave., Suite 403 BSB, MSC 510, Charleston, SC 29425-5100, USA
| | - Etienne Herzog
- INSERM U952, 9 Quai St Bernard, 75005, Paris, France,CNRS UMR 7224, 9 Quai St Bernard, 75005, Paris, France,Université Pierre et Marie Curie (UPMC), Paris 06, Paris, France
| | - Olivier Manzoni
- INSERM, U862, Neurocentre Magendie, Pathophysiology of synaptic plasticity group, Bordeaux, F-33000, France,Université de Bordeaux, Bordeaux, F-33000, France
| | - François Georges
- INSERM, U862, Neurocentre Magendie, Pathophysiology of synaptic plasticity group, Bordeaux, F-33000, France,Université de Bordeaux, Bordeaux, F-33000, France,Authors for correspondence at above address: Phone: +33 557-57-40-99, Fax: +33 557-57-37-76,
| |
Collapse
|
120
|
Corticotropin releasing factor and neuroplasticity in cocaine addiction. Life Sci 2009; 86:1-9. [PMID: 19914260 DOI: 10.1016/j.lfs.2009.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 08/28/2009] [Accepted: 09/02/2009] [Indexed: 11/20/2022]
Abstract
Corticotropin releasing factor (CRF), one of the major effectors of stress, plays a major role in the natural course of drug addiction by accelerating the acquisition of psychostimulant self-administration and increasing incentive motivation for the drug itself and for drug-associated stimuli. Stress-induced CRF is also considered a predictor of relapse and is responsible for feelings of anxiety and distress during cocaine withdrawal. Despite this knowledge, the role of CRF has not been explored in the context of recent research on reward-related learning, built on the hypothesis that neuroplastic changes in the mesocorticolimbic circuitry underlie addiction. The present review explores the effects of stress on the pattern of interaction between CRF, dopamine and glutamate in distinct structures of the mesocorticolimbic circuitry, including the ventral tegmental area (VTA), amygdala, bed nucleus of stria terminalis (BNST) and the prefrontal cortex (PFC), after acute and chronic cocaine consumption as well as in early withdrawal and protracted abstinence. A better knowledge of the neurochemical and cellular mechanisms involved in these interactions would be useful to elucidate the role of CRF in cocaine-induced neuronal plasticity, which could be useful in developing new pharmacological strategies for the treatment of cocaine addiction.
Collapse
|
121
|
Walker DL, Miles LA, Davis M. Selective participation of the bed nucleus of the stria terminalis and CRF in sustained anxiety-like versus phasic fear-like responses. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1291-308. [PMID: 19595731 PMCID: PMC2783512 DOI: 10.1016/j.pnpbp.2009.06.022] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 01/09/2023]
Abstract
The medial division of the central nucleus of the amygdala (CeA(M)) and the lateral division of the bed nucleus of the stria terminalis (BNST(L)) are closely related. Both receive projections from the basolateral amygdala (BLA) and both project to brain areas that mediate fear-influenced behaviors. In contrast to CeA(M) however, initial attempts to implicate the BNST in conditioned fear responses were largely unsuccessful. More recent studies have shown that the BNST does participate in some types of anxiety and stress responses. Here, we review evidence suggesting that the CeA(M) and BNST(L) are functionally complementary, with CeA(M) mediating short- but not long-duration threat responses (i.e., phasic fear) and BNST(L) mediating long- but not short-duration responses (sustained fear or 'anxiety'). We also review findings implicating the stress-related peptide corticotropin-releasing factor (CRF) in sustained but not phasic threat responses, and attempt to integrate these findings into a neural circuit model which accounts for these and related observations.
Collapse
Affiliation(s)
- D L Walker
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA 30329, USA.
| | | | | |
Collapse
|
122
|
Amir S, Stewart J. Behavioral and hormonal regulation of expression of the clock protein, PER2, in the central extended amygdala. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1321-8. [PMID: 19376186 DOI: 10.1016/j.pnpbp.2009.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 04/01/2009] [Indexed: 11/30/2022]
Abstract
PER2, a key molecular component of the mammalian circadian clock, is expressed rhythmically in many brain areas and peripheral tissues in mammals. Here we review findings from our work on the nature and regulation of rhythms of expression of PER2 in two anatomically and neurochemically defined subregions of the central extended amygdala, the oval nucleus of the bed nucleus of the stria terminalis (BNSTov) and the central nucleus of the amygdala (CEA). Daily rhythms in the expression of PER2 in these regions are coupled to those of the master circadian pacemaker, the suprachiasmatic nucleus (SCN) but, importantly, they are sensitive to homeostatic perturbations and to hormonal states that directly influence motivated behavior.
Collapse
Affiliation(s)
- Shimon Amir
- Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Department of Psychology, Concordia University, Montreal, QC, Canada.
| | | |
Collapse
|
123
|
Briand LA, Blendy JA. Molecular and genetic substrates linking stress and addiction. Brain Res 2009; 1314:219-34. [PMID: 19900417 DOI: 10.1016/j.brainres.2009.11.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 12/19/2022]
Abstract
Drug addiction is one of the top three health concerns in the United States in terms of economic and health care costs. Despite this, there are very few effective treatment options available. Therefore, understanding the causes and molecular mechanisms underlying the transition from casual drug use to compulsive drug addiction could aid in the development of treatment options. Studies in humans and animal models indicate that stress can lead to both vulnerability to develop addiction, and increased drug taking and relapse in addicted individuals. Exposure to stress or drugs of abuse results in long-term adaptations in the brain that are likely to involve persistent alterations in gene expression or activation of transcription factors, such as the cAMP Response Element Binding (CREB) protein. The signaling pathways controlled by CREB have been strongly implicated in drug addiction and stress. Many potential CREB target genes have been identified based on the presence of a CRE element in promoter DNA sequences. These include, but are not limited to CRF, BDNF, and dynorphin. These genes have been associated with initiation or reinstatement of drug reward and are altered in one direction or the other following stress. While many reviews have examined the interactions between stress and addiction, the goal of this review was to focus on specific molecules that play key roles in both stress and addiction and are therefore posed to mediate the interaction between the two. Focus on these molecules could provide us with new targets for pharmacological treatments for addiction.
Collapse
Affiliation(s)
- Lisa A Briand
- Department of Pharmacology, The University of Pennsylvania School of Medicine, TRL, 125 South 31(st) Street, USA
| | | |
Collapse
|
124
|
Abstract
Circadian rhythms in mammalian behaviour and physiology rely on daily oscillations in the expression of canonical clock genes. Circadian rhythms in clock gene expression are observed in the master circadian clock, the suprachiasmatic nucleus but are also observed in many other brain regions that have diverse roles, including influences on motivational and emotional state, learning, hormone release and feeding. Increasingly, important links between circadian rhythms and metabolism are being uncovered. In particular, restricted feeding (RF) schedules which limit food availability to a single meal each day lead to the induction and entrainment of circadian rhythms in food-anticipatory activities in rodents. Food-anticipatory activities include increases in core body temperature, activity and hormone release in the hours leading up to the predictable mealtime. Crucially, RF schedules and the accompanying food-anticipatory activities are also associated with shifts in the daily oscillation of clock gene expression in diverse brain areas involved in feeding, energy balance, learning and memory, and motivation. Moreover, lesions of specific brain nuclei can affect the way rats will respond to RF, but have generally failed to eliminate all food-anticipatory activities. As a consequence, it is likely that a distributed neural system underlies the generation and regulation of food-anticipatory activities under RF. Thus, in the future, we would suggest that a more comprehensive approach should be taken, one that investigates the interactions between multiple circadian oscillators in the brain and body, and starts to report on potential neural systems rather than individual and discrete brain areas.
Collapse
Affiliation(s)
- M Verwey
- Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Department of Psychology, Concordia University, SP-244, 7141 Sherbrooke St West, Montreal, QC, Canada
| | | |
Collapse
|
125
|
Footshock stress potentiates cue-induced cocaine-seeking in an animal model of relapse. Physiol Behav 2009; 98:614-7. [PMID: 19800355 DOI: 10.1016/j.physbeh.2009.09.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/14/2009] [Accepted: 09/18/2009] [Indexed: 11/22/2022]
Abstract
Drug-associated cues and stress increase craving and lead to greater risk of relapse in abstinent drug addicts. This risk may be increased when these factors occur simultaneously. The current study examined whether the presentation of three different levels of intermittent footshock would trigger reinstatement or potentiate reinstatement of cocaine-seeking caused by conditioned cues. Male, Long Evans rats underwent daily i.v. cocaine self-administration, followed by extinction of lever responding in the absence of previously cocaine-paired cues. Reinstatement of cocaine-seeking was measured during presentation of cocaine-paired cues, following pretreatment with three levels of intermittent footshock (0.25, 0.5, and 0.75 mA), or after the combination of footshock and cues. Footshock at the 0.5 and 0.75 mA levels led to significant reinstatement when presented alone, and also potentiated the reinstatement triggered by the presentation of conditioned cues. These results demonstrate that while stress and drug-paired cues reinstate drug-seeking when presented in isolation, their interaction leads to potentiated reinstatement. Dual targeting of stress and cues is thus a critical consideration for treatment intervention in abstinent drug users.
Collapse
|
126
|
Jaferi A, Lane DA, Pickel VM. Subcellular plasticity of the corticotropin-releasing factor receptor in dendrites of the mouse bed nucleus of the stria terminalis following chronic opiate exposure. Neuroscience 2009; 163:143-54. [PMID: 19539724 PMCID: PMC2740727 DOI: 10.1016/j.neuroscience.2009.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/24/2009] [Accepted: 06/12/2009] [Indexed: 10/20/2022]
Abstract
Chronic opiate administration alters the expression levels of the stress-responsive peptide, corticotropin-releasing factor (CRF), in the bed nucleus of the stria terminalis (BNST). This brain region contains CRF receptors that drive drug-seeking behavior exacerbated by stress. We used electron microscopy to quantitatively compare immunolabeling of the corticotropin-releasing factor receptor (CRFr) and CRF in the anterolateral bed nucleus of the stria terminalis (BSTal) of mice injected with saline or morphine in escalating doses for 14 days. We also compared the results with those in non-injected control mice. The tissue was processed for CRFr immunogold and CRF immunoperoxidase labeling. The non-injected controls had a significantly lower plasmalemmal density of CRFr immunogold particles in dendrites compared with mice receiving saline, but not those receiving morphine, injections. Compared with saline, however, mice receiving chronic morphine showed a significantly lower plasmalemmal, and greater cytoplasmic, density of CRFr immunogold in dendrites. Within the cytoplasmic compartment of somata and dendrites of the BSTal, the proportion of CRFr gold particles associated with mitochondria was three times as great in mice receiving morphine compared with saline. This subcellular distribution is consistent with morphine,- and CRFr-associated modulation of intracellular calcium release or oxidative stress. The between-group changes occurred without effect on the total number of dendritic CRFr immunogold particles, suggesting that chronic morphine enhances internalization or decreases delivery of the CRFr to the plasma membrane, a trafficking effect that is also affected by the stress of daily injections. In contrast, saline and morphine treatment groups showed no significant differences in the total number of CRF-immunoreactive axon terminals, or the frequency with which these terminals contacted CRFr-containing dendrites. This suggests that morphine does not influence axonal availability of CRF in the BSTal. The results have important implications for drug-associated adaptations in brain stress systems that may contribute to the motivation to continue drug use during dependence.
Collapse
Affiliation(s)
- A Jaferi
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 407 East 61st Street, New York, NY 10065, USA.
| | | | | |
Collapse
|
127
|
Voluntary nicotine consumption triggers in vivo potentiation of cortical excitatory drives to midbrain dopaminergic neurons. J Neurosci 2009; 29:10410-5. [PMID: 19692616 DOI: 10.1523/jneurosci.2950-09.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Active response to either natural or pharmacological reward causes synaptic modifications to excitatory synapses on dopamine (DA) neurons of the ventral tegmental area (VTA). Here, we examine these modifications using nicotine, the main addictive component of tobacco, which is a potent regulator of VTA DA neurons. Using an in vivo electrophysiological technique, we investigated the role of key components of the limbic circuit, the infralimbic cortex (ILCx) and the bed nucleus of the stria terminalis (BNST), in operant behaviors related to nicotine reward. Our results indicated that nicotine self-administration in rats, but not passive delivery, triggers hyperactivity of VTA DA neurons. The data suggest that potentiation of the ILCx-BNST excitatory pathway is involved in these modifications in VTA DA neurons. Thus, recruitment of these specific excitatory inputs to VTA DA neurons may be a neural correlate for the learned association between active responding and the reward experience.
Collapse
|
128
|
Bruijnzeel AW, Prado M, Isaac S. Corticotropin-releasing factor-1 receptor activation mediates nicotine withdrawal-induced deficit in brain reward function and stress-induced relapse. Biol Psychiatry 2009; 66:110-7. [PMID: 19217073 PMCID: PMC2822665 DOI: 10.1016/j.biopsych.2009.01.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 11/27/2008] [Accepted: 01/06/2009] [Indexed: 10/21/2022]
Abstract
BACKGROUND Tobacco addiction is a chronic brain disorder that is characterized by a negative affective state upon smoking cessation and relapse after periods of abstinence. Previous research has shown that blockade of corticotropin-releasing factor (CRF) receptors with a nonspecific CRF1/CRF2 receptor antagonist prevents the deficit in brain reward function associated with nicotine withdrawal and stress-induced reinstatement of extinguished nicotine-seeking in rats. The aim of these studies was to investigate the role of CRF1 and CRF2 receptors in the deficit in brain reward function associated with precipitated nicotine withdrawal and stress-induced reinstatement of nicotine-seeking. METHODS The intracranial self-stimulation (ICSS) procedure was used to assess the negative affective state of nicotine withdrawal. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. Stress-induced reinstatement of nicotine-seeking was investigated in animals in which responding for intravenously infused nicotine was extinguished by substituting saline for nicotine. RESULTS In the ICSS experiments, the nicotinic receptor antagonist mecamylamine elevated the brain reward thresholds of the nicotine-dependent rats but not those of the control rats. The CRF1 receptor antagonist R278995/CRA0450 but not the CRF2 receptor antagonist astressin-2B prevented the elevations in brain reward thresholds associated with precipitated nicotine withdrawal. Furthermore, R278995/CRA0450 but not astressin-2B prevented stress-induced reinstatement of extinguished nicotine-seeking. Neither R278995/CRA0450 nor astressin-2B affected operant responding for chocolate-flavored food pellets. CONCLUSIONS These studies indicate that CRF(1) receptors but not CRF(2) receptors play an important role in the anhedonic-state associated with acute nicotine withdrawal and stress-induced reinstatement of nicotine-seeking.
Collapse
Affiliation(s)
- Adrie W Bruijnzeel
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA.
| | | | | |
Collapse
|
129
|
Lovejoy DA, Rotzinger S, Barsyte-Lovejoy D. Evolution of complementary peptide systems: teneurin C-terminal-associated peptides and corticotropin-releasing factor superfamilies. Ann N Y Acad Sci 2009; 1163:215-20. [PMID: 19456342 DOI: 10.1111/j.1749-6632.2008.03629.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In chordates, the corticotropin-releasing factor (CRF) family of peptides consists of four paralogous lineages that include CRF, urocortin/urotensin-I, urocortin 2, and urocortin 3. Related to the CRF peptide family is the diuretic hormone family found in insects. This family consists of a number of paralogous lineages within the Insecta. The teneurin C-terminal-associated peptides (TCAP) are a recently described family of peptides with evolutionary origins around the same time as the CRF family. This family consists of four independent lineages in chordates that are orthologous to peptides in the Insecta. Like CRF, the peptides are 40 or 41 amino acids in length and share about 20% sequence identity to the CRF family members. Each of the four TCAP peptides is encoded by an exon that is closely associated with the teneurin gene. Recent studies indicate that TCAP can block CRF-mediated c-fos expression in the brain and modulate CRF-mediated behaviors. Thus, the TCAP family may act, in part, to modulate the physiological actions of the CRF family.
Collapse
Affiliation(s)
- David A Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|
130
|
Amir S, Stewart J. Motivational Modulation of Rhythms of the Expression of the Clock Protein PER2 in the Limbic Forebrain. Biol Psychiatry 2009; 65:829-34. [PMID: 19200536 DOI: 10.1016/j.biopsych.2008.12.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 12/19/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022]
Abstract
Key molecular components of the mammalian circadian clock are expressed rhythmically in many brain areas and peripheral tissues in mammals. Here we review findings from our work on rhythms of expression of the clock protein Period2 (PER2) in four regions of the limbic forebrain known to be important in the regulation of motivational and emotional states. These regions include the oval nucleus of the bed nucleus of the stria terminalis (BNSTov), the central nucleus of the amygdala (CEA), the basolateral amygdala (BLA), and the dentate gyrus (DG). Daily rhythms in the expression of PER2 in these regions are controlled by the master circadian pacemaker, the suprachiasmatic nucleus (SCN), but, importantly, they are also sensitive to homeostatic perturbations and to hormonal states that directly influence motivated behavior. Thus, circadian information from the SCN and homeostatic signals are integrated in these regions of the limbic forebrain to affect the temporal organization of motivational and emotional processes.
Collapse
Affiliation(s)
- Shimon Amir
- Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada.
| | | |
Collapse
|
131
|
Foster MT, Warne JP, Ginsberg AB, Horneman HF, Pecoraro NC, Akana SF, Dallman MF. Palatable foods, stress, and energy stores sculpt corticotropin-releasing factor, adrenocorticotropin, and corticosterone concentrations after restraint. Endocrinology 2009; 150:2325-33. [PMID: 19106219 PMCID: PMC2671911 DOI: 10.1210/en.2008-1426] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Previous studies have shown reduced hypothalamo-pituitary-adrenal responses to both acute and chronic restraint stressors in rats allowed to ingest highly palatable foods (32% sucrose +/- lard) prior to restraint. In this study we tested the effects of prior access (7 d) to chow-only, sucrose/chow, lard/chow, or sucrose/lard/chow diets on central corticotropin-releasing factor (CRF) expression in rats studied in two experiments, 15 and 240 min after onset of restraint. Fat depot, particularly intraabdominal fat, weights were increased by prior access to palatable food, and circulating leptin concentrations were elevated in all groups. Metabolite concentrations were appropriate for values obtained after stressors. For unknown reasons, the 15-min experiment did not replicate previous results. In the 240-min experiment, ACTH and corticosterone responses were inhibited, as previously, and CRF mRNA in the hypothalamus and oval nucleus of the bed nuclei of the stria terminalis were reduced by palatable foods, suggesting strongly that both neuroendocrine and autonomic outflows are decreased by increased caloric deposition and palatable food. In the central nucleus of the amygdala, CRF was increased in the sucrose-drinking group and decreased in the sucrose/lard group, suggesting that the consequence of ingestion of sucrose uses different neural networks from the ingestion of lard. The results suggest strongly that ingestion of highly palatable foods reduces activity in the central stress response network, perhaps reducing the feeling of stressors.
Collapse
Affiliation(s)
- Michelle T Foster
- Department of Physiology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, California 94143-0444, USA
| | | | | | | | | | | | | |
Collapse
|
132
|
Neuropeptide S reinstates cocaine-seeking behavior and increases locomotor activity through corticotropin-releasing factor receptor 1 in mice. J Neurosci 2009; 29:4155-61. [PMID: 19339610 DOI: 10.1523/jneurosci.5256-08.2009] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuropeptide S (NPS) is a recently discovered neuropeptide that increases arousal and wakefulness while decreasing anxiety-like behavior. Here, we used a self-administration paradigm to demonstrate that intracerebroventricular infusion of NPS reinstates extinguished cocaine-seeking behavior in a dose-dependent manner in mice. The highest dose of NPS (0.45 nM) increased active lever pressing in the absence of cocaine to levels that were equivalent to those observed during self-administration. In addition, we examined the role of the corticotropin-releasing factor receptor 1 (CRF(1)) in this behavior as well as locomotor stimulation and anxiolysis. CRF(1) knock-out mice did not respond to either the locomotor stimulant or cocaine reinstatement effects of NPS, but still responded to its anxiolytic effect. The CRF(1) antagonist antalarmin also blocked the increase in active lever responding in the reinstatement model and the locomotor activating properties of NPS without affecting its anxiolytic actions. Our results suggest that NPS receptors may be an important target for drug abuse research and treatment and that CRF(1) mediates the cocaine-seeking and locomotor stimulant effects of NPS, but not its effects on anxiety-like behavior.
Collapse
|
133
|
Peters J, Kalivas PW, Quirk GJ. Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Mem 2009; 16:279-88. [PMID: 19380710 DOI: 10.1101/lm.1041309] [Citation(s) in RCA: 584] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Extinction is a form of inhibitory learning that suppresses a previously conditioned response. Both fear and drug seeking are conditioned responses that can lead to maladaptive behavior when expressed inappropriately, manifesting as anxiety disorders and addiction, respectively. Recent evidence indicates that the medial prefrontal cortex (mPFC) is critical for the extinction of both fear and drug-seeking behaviors. Moreover, a dorsal-ventral distinction is apparent within the mPFC, such that the prelimbic (PL-mPFC) cortex drives the expression of fear and drug seeking, whereas the infralimbic (IL-mPFC) cortex suppresses these behaviors after extinction. For conditioned fear, the dorsal-ventral dichotomy is accomplished via divergent projections to different subregions of the amygdala, whereas for drug seeking, it is accomplished via divergent projections to the subregions of the nucleus accumbens. Given that the mPFC represents a common node in the extinction circuit for these behaviors, treatments that target this region may help alleviate symptoms of both anxiety and addictive disorders by enhancing extinction memory.
Collapse
Affiliation(s)
- Jamie Peters
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico 00936.
| | | | | |
Collapse
|
134
|
Rudoy CA, Reyes ARS, Van Bockstaele EJ. Evidence for beta1-adrenergic receptor involvement in amygdalar corticotropin-releasing factor gene expression: implications for cocaine withdrawal. Neuropsychopharmacology 2009; 34:1135-48. [PMID: 18596687 PMCID: PMC3660858 DOI: 10.1038/npp.2008.102] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We previously showed that betaxolol, a selective beta(1)-adrenergic receptor antagonist, administered during early phases of cocaine abstinence, ameliorated withdrawal-induced anxiety and blocked increases in amygdalar beta(1)-adrenergic receptor expression in rats. Here, we report the efficacy of betaxolol in reducing increases in gene expression of amygdalar corticotropin-releasing factor (CRF), a peptide known to be involved in mediating 'anxiety-like' behaviors during initial phases of cocaine abstinence. We also demonstrate attenuation of an amygdalar beta(1)-adrenergic receptor-mediated cell-signaling pathway following this treatment. Male rats were administered betaxolol at 24 and 44 h following chronic cocaine administration. Animals were euthanized at the 48-h time point and the amygdala was microdissected and processed for quantitative reverse transcriptase-polymerase chain reaction and/or western blot analysis. Results showed that betaxolol treatment during early cocaine withdrawal attenuated increases in amygdalar CRF gene expression and cyclic adenosine monophosphate-dependent protein kinase regulatory and catalytic subunit (nuclear fraction) protein expression. Our data also reveal that beta(1)-adrenergic receptors are on amygdalar neurons, which are immunoreactive for CRF. The present findings suggest that the efficacy of betaxolol treatment on cocaine withdrawal-induced anxiety may be related, in part, to its effect on amygdalar beta(1)-adrenergic receptor, modulation of its downstream cell-signaling elements and CRF gene expression.
Collapse
Affiliation(s)
- Carla A Rudoy
- Department of Neurosurgery, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
135
|
Andersen SL, Teicher MH. Desperately driven and no brakes: developmental stress exposure and subsequent risk for substance abuse. Neurosci Biobehav Rev 2009; 33:516-24. [PMID: 18938197 PMCID: PMC2688959 DOI: 10.1016/j.neubiorev.2008.09.009] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 09/15/2008] [Accepted: 09/17/2008] [Indexed: 11/29/2022]
Abstract
Adverse life events are associated with a wide range of psychopathology, including an increased risk for substance abuse. In this review, we focus on the inter-relationship between exposure to adversity and brain development, and relate this to enhanced windows of vulnerability. This review encompasses clinical and preclinical data, drawing evidence from epidemiological studies, morphometric and functional imaging studies, and molecular biology and genetics. The interaction of exposure during a sensitive period and maturational events produces a cascade that leads to the initiation of substance use at younger ages, and increases the likelihood of addiction by adolescence or early adulthood. A stress-incubation/corticolimbic dysfunction model is proposed based on the interplay of stress exposure, development stage, and neuromaturational events that may explain the seeking of specific classes of drugs later in life. Three main factors contribute to this age-based progression of increased drug use: (1) a sensitized stress response system; (2) sensitive periods of vulnerability; and (3) maturational processes during adolescence. Together, these factors may explain why exposure to early adversity increases risk to abuse substances during adolescence.
Collapse
Affiliation(s)
- Susan L Andersen
- Developmental Biopsychiatry Research Program, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA.
| | | |
Collapse
|
136
|
Jaferi A, Pickel VM. Mu-opioid and corticotropin-releasing-factor receptors show largely postsynaptic co-expression, and separate presynaptic distributions, in the mouse central amygdala and bed nucleus of the stria terminalis. Neuroscience 2009; 159:526-39. [PMID: 19166913 PMCID: PMC2678868 DOI: 10.1016/j.neuroscience.2008.12.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/03/2008] [Accepted: 12/29/2008] [Indexed: 10/21/2022]
Abstract
The anxiolytic effects of opiates active at the mu-opioid receptor (mu-OR) may be ascribed, in part, to suppression of neurons that are responsive to the stress-associated peptide, corticotropin releasing factor (CRF), in the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST). The corticotropin releasing factor receptor (CRFr) and mu-OR are expressed in both the CeA and BNST, but their subcellular relationship to each other is not known in either region. To address this question, we used dual electron microscopic immunolabeling of mu-OR and CRFr in the mouse lateral CeA and anterolateral BNST. Immunolabeling for each receptor was detected in the same as well as in separate somatic, dendritic and axonal profiles of neurons in each region. CRFr had a plasmalemmal or cytoplasmic distribution in many dendrites, including those co-expressing mu-OR. The co-expression of CRFr and mu-OR also was seen near excitatory-type synapses on dendritic spines. In both the CeA and BNST, over 50% of the CRFr-labeled dendritic profiles (dendrites and spines) contained immunoreactivity for the mu-OR. However, less than 25% of the dendritic profiles containing the mu-OR were labeled for CRFr in either region, suggesting that opiate activation of the mu-OR affects many neurons in addition to those responsive to CRF. The dendritic profiles containing CRFr and/or mu-OR received asymmetric, excitatory-type synapses from unlabeled or CRFr-labeled axon terminals. In contrast, the mu-OR was identified in terminals forming symmetric, inhibitory-type synapses. Thus, in both the CeA and BNST, mu-OR and CRFr have strategic locations for mediation of CRF and opioid effects on the postsynaptic excitability of single neurons, and on the respective presynaptic release of excitatory and inhibitory neurotransmitters. The commonalities in the synaptic location of both receptors in the CeA and BNST suggest that this is a fundamental cellular association of relevance to both drug addiction and stress-induced disorders.
Collapse
Affiliation(s)
- A Jaferi
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 407 East 61st Street, New York, NY 10065, USA.
| | | |
Collapse
|
137
|
Exposure to acute restraint stress reinstates nicotine-induced place preference in rats. Behav Pharmacol 2009; 20:109-13. [PMID: 19179854 DOI: 10.1097/fbp.0b013e3283242f41] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tobacco addiction is associated with high rates of relapse to drug use even after prolonged periods of abstinence. Relapse can occur upon reexposure to the drug of abuse, exposure to stress or to stimuli associated with drug consumption. The reinstatement of conditioning place preference (CPP) provides a simple and easy approach to investigate the mechanisms for drug relapse. We evaluated whether exposure to restraint stress could reinstate nicotine-induced CPP 1 or 15 days after its extinction. Nicotine produced place preference to the compartment paired with its injections during conditioning (0.16 mg/kg, subcutaneous; four drug sessions). Once established, nicotine CPP was extinguished by alternate exposure to each compartment after a saline injection (four exposures to each compartment). After this extinction phase, the reinstatement of place conditioning was investigated. For this purpose, rats were exposed to 30-min restraint stress 1 or 15 days after the extinction test, then immediately tested for reinstatement of CPP. Our results show that exposure to restraint stress reinstated CPP 1 and 15 days after extinction. Our study indicates for the first time that the vulnerability to stress-induced reinstatement of nicotine CPP is long-lasting, corroborating clinical studies showing that stress is positively associated with relapse to tobacco use even after a long period of nicotine withdrawal.
Collapse
|
138
|
Interaction between noradrenaline and corticotrophin-releasing factor in the reinstatement of cocaine seeking in the rat. Psychopharmacology (Berl) 2009; 203:121-30. [PMID: 18985323 DOI: 10.1007/s00213-008-1376-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Accepted: 10/10/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Corticotropin-releasing factor (CRF) and noradrenaline (NA) have been shown in independent studies to mediate stress-induced reinstatement of drug seeking. To date, however, a functional interaction between the systems in reinstatement has not been demonstrated. OBJECTIVES The objectives of this study were to determine whether CRF and NA systems can interact to influence reinstatement responding and, if so, in what direction the interaction occurs. MATERIALS AND METHODS Rats were trained to self-administer cocaine (0.23 mg/kg per infusion) for 8-10 days. Subsequently, responding for drug was extinguished, and tests for reinstatement were conducted following: (1) pretreatment with the CRF receptor antagonist, D: -Phe CRF(12-41) [1 microg, intracerebroventricular (i.c.v.)], prior to i.c.v. injections of NA (10 microg; Experiment 1); (2) pretreatment with the alpha(2) adrenoceptor agonist, clonidine (40 microg/kg, i.p.), prior to i.c.v. injections of CRF (0.5 microg; Experiment 2); (3) pretreatment with D: -Phe (1, 5 microg, i.c.v.), prior to systemic injections of the alpha(2) adrenoceptor antagonist, yohimbine (1.25 mg/kg; Experiment 3A); or (4) pretreatment with clonidine (40 microg/kg, i.p.) prior to systemic injections of yohimbine (0.625 mg/kg, 1.25 mg/kg; Experiment 3B). RESULTS NA reliably induced reinstatement, an effect that was blocked by pretreatment with D: -Phe. In contrast, CRF-induced reinstatement was not attenuated by pretreatment with clonidine. Pretreatment with neither D: -Phe nor clonidine was effective in blocking yohimbine-induced reinstatement. CONCLUSION Together, the present findings suggest a functional interaction between NA and CRF systems in mediating stress-induced reinstatement of cocaine seeking, whereby activation of CRF receptors occurs subsequent to, and downstream of, the sites of action of NA.
Collapse
|
139
|
Tobin S, Newman AH, Quinn T, Shalev U. A role for dopamine D1-like receptors in acute food deprivation-induced reinstatement of heroin seeking in rats. Int J Neuropsychopharmacol 2009; 12:217-26. [PMID: 18405418 PMCID: PMC2678570 DOI: 10.1017/s1461145708008778] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dopamine has a critical role in drug reinforcement and the reinstatement of drug seeking due to priming or exposure to drug-associated cues. In contrast, the role of dopamine in stress-induced reinstatement is not clear. We have previously demonstrated that acute food deprivation, a clinically relevant stressor, reinstates heroin seeking in rats via a leptin-dependent mechanism. Recent reports have suggested a modulating role for leptin on dopamine transmission and drug-related behaviours. Thus, here we investigated the role of dopamine in acute food deprivation-induced reinstatement of heroin seeking. Rats were trained to self-administer heroin (0.05 mg/kg per infusion) for 10 d. Following training, heroin seeking was extinguished and rats were tested for 48-h food deprivation-induced reinstatement while pretreated with the dopamine D1-, D2-, or D3-like receptor antagonists: SCH 23390 (0.0, 5.0 or 10.0 microg/kg), raclopride (0.0, 50.0 or 100.0 microg/kg) or NGB 2904 (0.0, 0.1 or 5.0 mg/kg), respectively. The dopamine D1-like receptor antagonist, SCH 23390, but neither of the other antagonists, showed a dose-dependent attenuation of food deprivation-induced reinstatement. Our results suggest that acute food deprivation-induced reinstatement may be mediated, at least in part, by activation of the dopamine D1-like receptor.
Collapse
Affiliation(s)
- Stephanie Tobin
- Department of Psychology, Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
140
|
Treweek JB, Jaferi A, Colago EE, Zhou P, Pickel VM. Electron microscopic localization of corticotropin-releasing factor (CRF) and CRF receptor in rat and mouse central nucleus of the amygdala. J Comp Neurol 2009; 512:323-35. [PMID: 19003957 PMCID: PMC2873768 DOI: 10.1002/cne.21884] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Corticotrophin-releasing factor (CRF) is expressed in the central nucleus of the amygdala (CeA), where the CRF receptor (CRFr) plays an important role in anxiety- and stress-related behaviors. To determine the subcellular sites of CRFr activation in this region, we examined the electron microscopic immunolabeling of antisera recognizing CRF or CRFr. The ultrastructural analysis was principally conducted in the lateral subdivision of the rat CeA, with comparisons being made in mice so as to optimally utilize mutant mice in control experiments. The CRFr labeling was seen in many small dendrites and dendritic spines as well as in a few somata, large dendrites, axons, and axon terminals or more rarely in glial processes. Approximately 35% of the CRFr-labeled dendrites contained CRF immunoreactivity, which was distributed diffusely throughout the cytoplasm, or specifically affiliated with either endomembranes or large dense-core vesicles. The CRF-immunoreactive vesicles also were present in somata and axon terminals with or without CRFr labeling. The CRF immunoreactivity was usually absent from both terminals and dendrites joined by asymmetric, excitatory-type synapses, where a postsynaptic location of the CRFr was commonly observed. Numerous terminals containing both CRF and CRFr were seen, however, within the neuropil and sometimes apposing the excitatory synapses. These results provide ultrastructural evidence for a primary involvement of CRF receptors in modulation of the postsynaptic excitability of CeA neurons, an effect that may be limited by the availability of CRF. The findings have important implications for understanding CRF mediation of rapid responses to stress.
Collapse
Affiliation(s)
- Jennifer B. Treweek
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021
| | - Azra Jaferi
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021
| | - Eric E. Colago
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021
| | - Ping Zhou
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021
| | - Virginia M. Pickel
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021
| |
Collapse
|
141
|
Cleck JN, Ecke LE, Blendy JA. Endocrine and gene expression changes following forced swim stress exposure during cocaine abstinence in mice. Psychopharmacology (Berl) 2008; 201:15-28. [PMID: 18677617 PMCID: PMC4010951 DOI: 10.1007/s00213-008-1243-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 06/13/2008] [Indexed: 11/28/2022]
Abstract
RATIONALE Stress can reinstate previous cocaine-seeking long after drug is no longer present. However, little is known regarding the effect of chronic drug exposure and subsequent drug abstinence on responsivity to stress. OBJECTIVE To determine the effect of acute (24-h) and prolonged (14-day) drug-free periods in cocaine-experienced mice on behavioral, endocrine, and molecular outputs following stress exposure. MATERIALS AND METHODS Mice were administered a cocaine binge (15 mg/kg, every hour for 3h) for 2 weeks. Following a 24-h or 14-day drug-free period, stress responsivity, along with levels of anxiety, were measured using the forced swim test and elevated zero maze, respectively. In addition, alterations in the levels of plasma corticosterone, corticotrophin-releasing factor (CRF) mRNA, brain-derived neurotrophic factor (BDNF) mRNA, and histone acetylation at their respective promoters were examined following stress exposure. RESULTS At both acute and prolonged abstinence time points, behavioral measures were essentially unaltered; however, cocaine-experienced mice exhibited an augmented corticosterone response to the forced swim stress compared to saline-treated mice. Stress exposure increased BDNF mRNA levels in the ventral tegmental area (VTA) and nucleus accumbens (NAc) only in cocaine-experienced mice following a prolonged, but not acute, drug-free period. Increased BDNF mRNA in the NAc was associated with an increase in acetylated histone 3 (AcH3) at the BDNF I promoter. CRF mRNA levels were increased in the amygdala (AMYG); however, this was not associated with alterations in histone acetylation at the promoter. CONCLUSION These results demonstrate that drug history and prolonged abstinence can alter the endocrine and molecular responses to stress, which may facilitate the reinstatement of drug-seeking behaviors.
Collapse
Affiliation(s)
- Jessica N Cleck
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
142
|
Cannabinoid receptors in the bed nucleus of the stria terminalis control cortical excitation of midbrain dopamine cells in vivo. J Neurosci 2008; 28:10496-508. [PMID: 18923026 DOI: 10.1523/jneurosci.2291-08.2008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The endocannabinoid system is involved in multiple physiological functions including reward. Cannabinoids potently control the activity of midbrain dopamine cells, but the contribution of cortical projections in this phenomenon is unclear. We show that the bed nucleus of the stria terminalis (BNST) efficient relays cortical excitation to dopamine neurons of the ventral tegmental area (VTA). Anatomical and in vivo electrophysiological evidence demonstrate that excitatory projections arising exclusively from the infralimbic cortex converge on BNST neurons, which in turn project to and excite >80% VTA dopamine cells. At the ultrastructural level, cannabinoid type 1 receptors are detected within the BNST on axon terminals arising from the infralimbic cortex. We found that intra-BNST infusion of a cannabinoid agonist inhibits the firing of dopamine cells evoked by stimulation of the infralimbic cortex. Our data identify a new neuronal substrate for the actions of cannabinoids in the reward pathway.
Collapse
|
143
|
Ma DY, Xu MY, Yang HC, Yang LZ. Effect of Inhibition of the Central Nucleus of the Amygdala and Drug Experience on the Regions Underlying Footshock-Induced Reinstatement of Morphine Seeking. J Int Med Res 2008; 36:992-1000. [PMID: 18831893 DOI: 10.1177/147323000803600516] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study assessed the effect of inhibition of the central nucleus of the amygdala (CeA) and drug experience on brain regions underlying footshock-induced reinstatement of morphine-seeking behaviour in rats. The difference in time spent in two chambers of a place-preference apparatus was used to measure morphine-conditioned place preference. Fos was measured as a marker of neuronal activation in the ventral bed nucleus of the stria terminalis (BNSTv) and ventral tegmental area (VTA). Footshock was found to enhance Fos expression in the BNSTv regardless of drug experience. In the VTA, morphine and footshock had an interactive effect on the increase in Fos expression. Inhibition of the CeA decreased Fos expression in the BNSTv regardless of drug experience, whereas in the VTA this effect only occurred in morphine-treated rats. These results suggest that drug experience has no differential effect on the BNSTv however morphine produces footshock sensitization in the VTA. CeA inhibition modulates the footshock-induced activity of these regions of the brain and attenuates reinstatement of drug seeking behaviour.
Collapse
Affiliation(s)
- DY Ma
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - MY Xu
- Department of Physiology, Harbin Medical University, Harbin, China
| | - HC Yang
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - LZ Yang
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
144
|
Grueter BA, McElligott ZA, Robison AJ, Mathews GC, Winder DG. In vivo metabotropic glutamate receptor 5 (mGluR5) antagonism prevents cocaine-induced disruption of postsynaptically maintained mGluR5-dependent long-term depression. J Neurosci 2008; 28:9261-70. [PMID: 18784306 PMCID: PMC2562219 DOI: 10.1523/jneurosci.2886-08.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/03/2008] [Accepted: 08/10/2008] [Indexed: 11/21/2022] Open
Abstract
Metabotropic glutamate receptor 5 (mGluR5) plays a critical role in psychostimulant-induced behavior, yet it is unclear whether mGluR5 is activated by psychostimulant administration, or whether its role is constitutive. We previously reported that activation of mGluR5 with the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) can induce a long-term depression (DHPG-LTD) of glutamatergic transmission in the bed nucleus of the stria terminalis (BNST), and that ex vivo induction of this LTD is disrupted by repeated in vivo administration of cocaine. Here we demonstrate that DHPG-LTD is not maintained by alterations in glutamate release, and that postsynaptic endocytosis is necessary. Furthermore, we find that a single administration of cocaine produces a transient disruption of DHPG-LTD, and the duration of this disruption was increased by repeated days of cocaine administration. The disruption produced by cocaine was not permanent, because DHPG-LTD could be induced 10 d after cocaine administration. To test the role of mGluR5 in vivo in the cocaine-induced disruption of DHPG-LTD, we injected mice with the mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine before cocaine. mGluR5 antagonism during in vivo cocaine administration rescued subsequent ex vivo induction of DHPG-LTD. The effects of in vivo cocaine could be mimicked by application of cocaine to BNST-containing slices, suggesting that the actions of cocaine are local. Thus, using a novel strategy of in vivo antagonist-induced rescue of ex vivo agonist effects for the same receptor, we provide evidence suggesting that mGluR5 activation is actively recruited by in vivo cocaine.
Collapse
Affiliation(s)
| | - Zoe A. McElligott
- Neuroscience Graduate Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615
| | | | | | - Danny G. Winder
- Department of Molecular Physiology and Biophysics
- Center for Molecular Neuroscience
- J. F. Kennedy Center for Research on Human Development, and
| |
Collapse
|
145
|
Redila VA, Chavkin C. Stress-induced reinstatement of cocaine seeking is mediated by the kappa opioid system. Psychopharmacology (Berl) 2008; 200:59-70. [PMID: 18575850 PMCID: PMC2680147 DOI: 10.1007/s00213-008-1122-y] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 02/19/2008] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Prior activation of the kappa opioid system by repeated stress or agonist administration has been previously shown to potentiate the rewarding properties of subsequently administered cocaine. In the present study, intermittent and uncontrollable footshock, a single session of forced swim, or acute administration of the kappa agonist U50,488 (5 mg/kg) were found to reinstate place preference in mice previously conditioned with cocaine (15 mg/kg) and subsequently extinguished by repeated training sessions without drug. RESULTS AND DISCUSSION Stress-induced reinstatement did not occur for mice pretreated with the kappa opioid receptor antagonist norbinaltorphimine (10 mg/kg) and did not occur in mice lacking either kappa opioid receptors (KOR -/-) or prodynorphin (Dyn -/-). In contrast, the initial cocaine conditioning and extinction rates were not significantly affected by disruption of the kappa opioid system. Cocaine-injection also reinstated conditioned place preference in extinguished mice; however, cocaine-primed reinstatement was not blocked by kappa opioid system disruption. CONCLUSION The results suggest that stress-induced drug craving in mice may require activation of the dynorphin/kappa opioid system.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Animals
- Behavior, Animal/drug effects
- Cocaine-Related Disorders/physiopathology
- Conditioning, Operant/drug effects
- Disease Models, Animal
- Enkephalins/genetics
- Extinction, Psychological
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Protein Precursors/genetics
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/genetics
- Stress, Psychological/physiopathology
- Swimming
Collapse
Affiliation(s)
- Van A. Redila
- Department of Pharmacology, University of Washington, 1959 NE Pacific St., Seattle, WA 98185-7280, USA, e-mail:
| | - Charles Chavkin
- Department of Pharmacology, University of Washington, 1959 NE Pacific St., Seattle, WA 98185-7280, USA, e-mail:
| |
Collapse
|
146
|
Smith RJ, Aston-Jones G. Noradrenergic transmission in the extended amygdala: role in increased drug-seeking and relapse during protracted drug abstinence. Brain Struct Funct 2008; 213:43-61. [PMID: 18651175 DOI: 10.1007/s00429-008-0191-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 07/02/2008] [Indexed: 12/19/2022]
Abstract
Studies reviewed here implicate the extended amygdala in the negative affective states and increased drug-seeking that occur during protracted abstinence from chronic drug exposure. Norepinephrine (NE) and corticotropin-releasing factor (CRF) signaling in the extended amygdala, including the bed nucleus of the stria terminalis, shell of the nucleus accumbens, and central nucleus of the amygdala, are generally involved in behavioral responses to environmental and internal stressors. Hyperactivity of stress response systems during addiction drives many negative components of drug abstinence. In particular, NE signaling from the nucleus tractus solitarius (NTS) to the extended amygdala, along with increased CRF transmission within the extended amygdala, are critical for the aversiveness of acute opiate withdrawal as well as stress-induced relapse of drug-seeking for opiates, cocaine, ethanol, and nicotine. NE and CRF transmission in the extended amygdala are also implicated in the increased anxiety that occurs during prolonged abstinence from chronic opiates, cocaine, ethanol, and cannabinoids. Many of these stress-associated behaviors are reversed by NE or CRF antagonists given systemically or locally within the extended amygdala. Finally, increased Fos activation in the extended amygdala and NTS is associated with the enhanced preference for drugs and decreased preference for natural rewards observed during protracted abstinence from opiates and cocaine, indicating that these areas are involved in the altered reward processing associated with addiction. Together, these findings suggest that involvement of the extended amygdala and its noradrenergic afferents in anxiety, stress-induced relapse, and altered reward processing reflects a common function for these circuits in stress modulation of drug-seeking.
Collapse
Affiliation(s)
- Rachel J Smith
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Ave., Suite 403 BSB, MSC 510, Charleston, SC 29425-5100, USA
| | | |
Collapse
|
147
|
Abstract
Drug addiction is a chronically relapsing disorder characterized by compulsion to seek and take drugs and has been linked to dysregulation of brain regions that mediate reward and stress. Activation of brain stress systems is hypothesized to be key to the negative emotional state produced by dependence that drives drug seeking through negative reinforcement mechanisms. This review explores the role of brain stress systems (corticotropin-releasing factor, norepinephrine, orexin [hypocretin], vasopressin, dynorphin) and brain antistress systems (neuropeptide Y, nociceptin [orphanin FQ]) in drug dependence, with emphasis on the neuropharmacological function of extrahypothalamic systems in the extended amygdala. The brain stress and antistress systems may play a key role in the transition to and maintenance of drug dependence once initiated. Understanding the role of brain stress and antistress systems in addiction provides novel targets for treatment and prevention of addiction and insights into the organization and function of basic brain emotional circuitry.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
148
|
Aujla H, Martin-Fardon R, Weiss F. Rats with extended access to cocaine exhibit increased stress reactivity and sensitivity to the anxiolytic-like effects of the mGluR 2/3 agonist LY379268 during abstinence. Neuropsychopharmacology 2008; 33:1818-26. [PMID: 17895914 DOI: 10.1038/sj.npp.1301588] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic glutamate 2/3 receptors (mGluR2/3) are emerging targets for the reduction of stress that contributes to drug relapse. The effect of a history of cocaine escalation on stress reactivity during abstinence and the role of mGlu2/3 receptors in stress in these animals were tested. Experiment 1-Rats trained to self-administer cocaine, under short (ShA, 1-h) or long (LgA, 6-h) access conditions, or noncaloric food pellets (Ctrl, 1-h), were tested for stress reactivity in the shock-probe defensive burying test following 1, 14, 42, or 84 days of abstinence. Experiment 2-Experimentally naive rats receiving the mGlu2/3 receptor agonist LY379268 (0, 0.3, 1.0, or 3.0 mg/kg) were tested in the defensive burying test to establish the anxiolytic efficacy of this compound in this model. Experiment 3-Rats with a history of ShA vs LgA cocaine self-administration, or a history of operant responding reinforced by noncaloric food pellets, were tested in the defensive burying test, following administration of LY379268 (0.3, 1.0, or 3.0 mg/kg) at 14 days of abstinence. LgA rats exhibited a two- to threefold increase in defensive burying at 1, 14, and 42 days of abstinence compared to ShA or control animals. LY379268 (3.0 mg/kg) reduced burying in all groups, whereas the 1.0-mg/kg dose reduced burying only in the LgA group. A robust and enduring increase in stress reactivity developed in rats with a history of daily 6-h access to cocaine. The anxiolytic-like effects of LY379268 identify mGlu2/3 receptors as targets for ameliorating stress-associated relapse risk, and point toward the possibility that a history of cocaine escalation in rats may modify glutamatergic function.
Collapse
Affiliation(s)
- Harinder Aujla
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
149
|
Walker DL, Davis M. Role of the extended amygdala in short-duration versus sustained fear: a tribute to Dr. Lennart Heimer. Brain Struct Funct 2008; 213:29-42. [DOI: 10.1007/s00429-008-0183-3] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 05/15/2008] [Indexed: 10/22/2022]
|
150
|
Fletcher PJ, Rizos Z, Sinyard J, Tampakeras M, Higgins GA. The 5-HT2C receptor agonist Ro60-0175 reduces cocaine self-administration and reinstatement induced by the stressor yohimbine, and contextual cues. Neuropsychopharmacology 2008; 33:1402-12. [PMID: 17653111 DOI: 10.1038/sj.npp.1301509] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previously, we showed that the 5-HT2C receptor agonist Ro60-0175 reduces cocaine self-administration, and the ability of cocaine to reinstate responding after extinction of drug-seeking behavior. The present experiments extended these findings further by determining whether the effects of Ro60-0175 on self-administration were sustained with repeated treatment, and whether Ro60-0175 altered reinstatement induced by the pharmacological stressor yohimbine, or by the context in which self-administration occurred. In Experiment 1, Ro60-0175 (1 mg/kg, s.c.) reduced cocaine (0.25 mg/infusion) self-administration maintained by a progressive ratio schedule. This reduction was sustained over eight daily injections. In Experiment 2, rats self-administered cocaine in daily 2 h sessions for 15 days on a FR1 schedule. Following extinction, yohimbine (1 mg/kg, i.p.) reinstated responding, and this effect was reduced dose dependently by Ro60-0175 (0.3-3 mg/kg, s.c.). In Experiment 3, rats were trained to respond for cocaine on a FR1 schedule in a distinct environmental context (A); responding was then extinguished in a different context (B). Reinstatement tests occurred in either context A or B. Responding was reinstated only when rats were tested in the original self-administration context (A). This reinstatement was reduced dose dependently by Ro60-0175. All effects of Ro60-0175 were blocked by the 5-HT2C receptor antagonist SB242084. Thus, Ro60-0175, acting via 5-HT2C receptors, reduces cocaine self-administration and cocaine-seeking triggered by a stressor and by drug-associated cues. The effects of Ro60-0175 do not exhibit tolerance within the 8-day test period. These results indicate that selective 5-HT2C receptor agonists may be a useful pharmacological strategy for treatment of drug abuse.
Collapse
Affiliation(s)
- Paul J Fletcher
- Section of Biopsychology, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | | | | | | | | |
Collapse
|