101
|
de Lacy N, McCauley E, Kutz JN, Calhoun VD. Multilevel Mapping of Sexual Dimorphism in Intrinsic Functional Brain Networks. Front Neurosci 2019; 13:332. [PMID: 31024243 PMCID: PMC6460937 DOI: 10.3389/fnins.2019.00332] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 03/21/2019] [Indexed: 12/17/2022] Open
Abstract
Differences in cognitive performance between males and females are well-described, most commonly in certain spatial and language tasks. Sex-related differences in cognition are relevant to the study of the neurotypical brain and to neuropsychiatric disorders, which exhibit prominent disparities in the incidence, prevalence and severity of symptoms between men and women. While structural dimorphism in the human brain is well-described, controversy exists regarding the existence and degree of sex-related differences in brain function. We analyzed resting-state functional MRI from 650 neurotypical young adults matched for age and sex to determine the degree of sexual dimorphism present in intrinsic functional networks. Multilevel modeling was pursued to create 8-, 24-, and 51-network models of whole-brain data to quantify sex-related effects in network activity with increasing resolution. We determined that sexual dimorphism is present in the majority of intrinsic brain networks and affects ∼0.5-2% of brain locations surveyed in the three whole-brain network models. It is particularly common in task-positive control networks and is pervasive among default mode networks. The size of sex-related effects varied by network but can be moderate or even large in size. Female > male effects were on average larger, but male > female effects spread across greater network territory. Using a novel methodology, we mapped dimorphic locations to meta-analytic association test maps derived from task fMRI, demonstrating that the neurocognitive footprint of intrinsic neural correlates is much larger in males. All results were replicated in a motion-matched sub-sample. Our findings argue that sex is an important biological variable in human brain function and suggest that observed differences in neurocognitive performance have identifiable intrinsic neural correlates.
Collapse
Affiliation(s)
- Nina de Lacy
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| | - Elizabeth McCauley
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| | - J. Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, WA, United States
| | - Vince D. Calhoun
- Mind Research Network, Albuquerque, NM, United States
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
102
|
van Erp TGM, Walton E, Hibar DP, Schmaal L, Jiang W, Glahn DC, Pearlson GD, Yao N, Fukunaga M, Hashimoto R, Okada N, Yamamori H, Clark VP, Mueller BA, de Zwarte SMC, Ophoff RA, van Haren NEM, Andreassen OA, Gurholt TP, Gruber O, Kraemer B, Richter A, Calhoun VD, Crespo-Facorro B, Roiz-Santiañez R, Tordesillas-Gutiérrez D, Loughland C, Catts S, Fullerton JM, Green MJ, Henskens F, Jablensky A, Mowry BJ, Pantelis C, Quidé Y, Schall U, Scott RJ, Cairns MJ, Seal M, Tooney PA, Rasser PE, Cooper G, Weickert CS, Weickert TW, Hong E, Kochunov P, Gur RE, Gur RC, Ford JM, Macciardi F, Mathalon DH, Potkin SG, Preda A, Fan F, Ehrlich S, King MD, De Haan L, Veltman DJ, Assogna F, Banaj N, de Rossi P, Iorio M, Piras F, Spalletta G, Pomarol-Clotet E, Kelly S, Ciufolini S, Radua J, Murray R, Marques TR, Simmons A, Borgwardt S, Schönborn-Harrisberger F, Riecher-Rössler A, Smieskova R, Alpert KI, Bertolino A, Bonvino A, Di Giorgio A, Neilson E, Mayer AR, Yun JY, Cannon DM, Lebedeva I, Tomyshev AS, Akhadov T, Kaleda V, Fatouros-Bergman H, Flyckt L, Karolinska Schizophrenia Project (KaSP), Rosa PGP, Serpa MH, Zanetti MV, Hoschl C, Skoch A, Spaniel F, Tomecek D, McIntosh AM, Whalley HC, Knöchel C, et alvan Erp TGM, Walton E, Hibar DP, Schmaal L, Jiang W, Glahn DC, Pearlson GD, Yao N, Fukunaga M, Hashimoto R, Okada N, Yamamori H, Clark VP, Mueller BA, de Zwarte SMC, Ophoff RA, van Haren NEM, Andreassen OA, Gurholt TP, Gruber O, Kraemer B, Richter A, Calhoun VD, Crespo-Facorro B, Roiz-Santiañez R, Tordesillas-Gutiérrez D, Loughland C, Catts S, Fullerton JM, Green MJ, Henskens F, Jablensky A, Mowry BJ, Pantelis C, Quidé Y, Schall U, Scott RJ, Cairns MJ, Seal M, Tooney PA, Rasser PE, Cooper G, Weickert CS, Weickert TW, Hong E, Kochunov P, Gur RE, Gur RC, Ford JM, Macciardi F, Mathalon DH, Potkin SG, Preda A, Fan F, Ehrlich S, King MD, De Haan L, Veltman DJ, Assogna F, Banaj N, de Rossi P, Iorio M, Piras F, Spalletta G, Pomarol-Clotet E, Kelly S, Ciufolini S, Radua J, Murray R, Marques TR, Simmons A, Borgwardt S, Schönborn-Harrisberger F, Riecher-Rössler A, Smieskova R, Alpert KI, Bertolino A, Bonvino A, Di Giorgio A, Neilson E, Mayer AR, Yun JY, Cannon DM, Lebedeva I, Tomyshev AS, Akhadov T, Kaleda V, Fatouros-Bergman H, Flyckt L, Karolinska Schizophrenia Project (KaSP), Rosa PGP, Serpa MH, Zanetti MV, Hoschl C, Skoch A, Spaniel F, Tomecek D, McIntosh AM, Whalley HC, Knöchel C, Oertel-Knöchel V, Howells FM, Stein DJ, Temmingh HS, Uhlmann A, Lopez-Jaramillo C, Dima D, Faskowitz JI, Gutman BA, Jahanshad N, Thompson PM, Turner JA. Reply to: New Meta- and Mega-analyses of Magnetic Resonance Imaging Findings in Schizophrenia: Do They Really Increase Our Knowledge About the Nature of the Disease Process? Biol Psychiatry 2019; 85:e35-e39. [PMID: 30470561 PMCID: PMC7041557 DOI: 10.1016/j.biopsych.2018.10.003] [Show More Authors] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Theo GM van Erp
- Department of Psychiatry and Human Behavior, University of
California, Irvine, Irvine, CA, USA,Corresponding Author: Theo G.M. van Erp, Clinical
Translational Neuroscience Laboratory, Department of Psychiatry and Human
Behavior, School of Medicine, University of California Irvine, 5251 California
Avenue, Suite 240, Irvine, CA 92617, voice: (949) 824-3331,
| | - Esther Walton
- Medical Research Council Integrative Epidemiology Unit and
Bristol Medical School, Population Health Sciences, University of Bristol, United
Kingdom
| | - Derrek P Hibar
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging
& Informatics Institute, Keck School of Medicine of the University of Southern
California, Marina del Rey, CA, USA,Janssen Research & Development, San Diego, CA,
USA
| | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental
Health, Melbourne, VIC, Australia,Centre for Youth Mental Health, The University of
Melbourne, Melbourne, VIC, Australia,Department of Psychiatry and Amsterdam Neuroscience, VU
University Medical Center, Amsterdam, The Netherlands
| | - Wenhao Jiang
- Department of Psychology, Georgia State University,
Atlanta, GA, USA
| | - David C Glahn
- Department of Psychiatry, Yale University, New Haven, CT,
USA,Olin Neuropsychiatric Research Center, Institute of
Living, Hartford Hospital, Hartford, CT, USA
| | - Godfrey D Pearlson
- Department of Psychiatry, Yale University, New Haven, CT,
USA,Olin Neuropsychiatric Research Center, Institute of
Living, Hartford Hospital, Hartford, CT, USA
| | - Nailin Yao
- Department of Psychiatry, Yale University, New Haven, CT,
USA,Olin Neuropsychiatric Research Center, Institute of
Living, Hartford Hospital, Hartford, CT, USA
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for
Physiological Sciences, Okazaki, Aichi, Japan
| | - Ryota Hashimoto
- Molecular Research Center for Children's Mental
Development, United Graduate School of Child Development, Osaka University, Suita,
Osaka, Japan,Department of Psychiatry, Osaka University Graduate
School of Medicine, Suita, Osaka, Japan
| | - Naohiro Okada
- Department of Neuropsychiatry, Graduate school of
Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate
School of Medicine, Suita, Osaka, Japan
| | - Vincent P Clark
- University of New Mexico, Albuquerque, NM, USA,Mind Research Network, Albuquerque, NM, USA
| | - Bryon A Mueller
- Department of Psychiatry, University of Minnesota,
Minneapolis, MN, USA
| | - Sonja MC de Zwarte
- Department of Psychiatry and Brain Center Rudolf Magnus,
University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roel A Ophoff
- Department of Psychiatry and Brain Center Rudolf Magnus,
University Medical Center Utrecht, Utrecht, The Netherlands,University of California Los Angeles Center for
Neurobehavioral Genetics, Los Angeles, CA, USA
| | - Neeltje EM van Haren
- Department of Psychiatry and Brain Center Rudolf Magnus,
University Medical Center Utrecht, Utrecht, The Netherlands,Department of child and adolescent
psychiatry/psychology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT),
K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine,
University of Oslo, Oslo, Norway,Norwegian Centre for Mental Disorders Research (NORMENT),
K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction,
Oslo University Hospital, Oslo, Norway
| | - Tiril P Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT),
K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine,
University of Oslo, Oslo, Norway,Department of Psychiatric Research, Diakonhjemmet
Hospital, Oslo, Norway
| | - Oliver Gruber
- Section for Experimental Psychopathology and
Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital,
Heidelberg, Germany,Center for Translational Research in Systems Neuroscience
and Psychiatry, Department of Psychiatry, Georg August University, Göttingen,
Germany
| | - Bernd Kraemer
- Section for Experimental Psychopathology and
Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital,
Heidelberg, Germany,Center for Translational Research in Systems Neuroscience
and Psychiatry, Department of Psychiatry, Georg August University, Göttingen,
Germany
| | - Anja Richter
- Section for Experimental Psychopathology and
Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital,
Heidelberg, Germany,Center for Translational Research in Systems Neuroscience
and Psychiatry, Department of Psychiatry, Georg August University, Göttingen,
Germany
| | - Vince D Calhoun
- University of New Mexico, Albuquerque, NM, USA,Mind Research Network, Albuquerque, NM, USA
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, University Hospital
Marqués de Valdecilla, School of Medicine, University of Cantabria-Valdecilla
Biomedical Research Institute, Marqués de Valdecilla Research Institute
(IDIVAL), Santander, Spain,Centro Investigación Biomédica en Red de
Salud Mental (CIBERSAM), Santander, Spain
| | - Roberto Roiz-Santiañez
- Department of Psychiatry, University Hospital
Marqués de Valdecilla, School of Medicine, University of Cantabria-Valdecilla
Biomedical Research Institute, Marqués de Valdecilla Research Institute
(IDIVAL), Santander, Spain,Centro Investigación Biomédica en Red de
Salud Mental (CIBERSAM), Santander, Spain
| | - Diana Tordesillas-Gutiérrez
- Department of Psychiatry, University Hospital
Marqués de Valdecilla, School of Medicine, University of Cantabria-Valdecilla
Biomedical Research Institute, Marqués de Valdecilla Research Institute
(IDIVAL), Santander, Spain,Centro Investigación Biomédica en Red de
Salud Mental (CIBERSAM), Santander, Spain,Neuroimaging Unit.Technological Facilities, Valdecilla
Biomedical Research Institute IDIVAL, Santander, Cantabria, Spain Dresden, Dresden,
Germany
| | - Carmel Loughland
- Hunter Medical Research Institute, Newcastle, NSW,
Australia,Priority Research Centre for Brain & Mental Health,
The University of Newcastle, Newcastle, NSW, Australia,Hunter New England Local Health District, Newcastle,
NSW, Australia
| | | | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, NSW,
Australia,School of Medical Sciences, University of New South
Wales, Sydney, NSW, Australia
| | - Melissa J Green
- School of Psychiatry, University of New South Wales,
Sydney, NSW, Australia,Neuroscience Research Australia, Sydney, NSW,
Australia
| | - Frans Henskens
- Priority Research Center for Health Behaviour, The
University of Newcastle, Newcastle, NSW, Australia,Hunter Medical Research Institute, Newcastle, NSW,
Australia,School of Medicine and Public Health, The University of
Newcastle, Newcastle, NSW, Australia
| | | | - Bryan J Mowry
- Queensland Brain Institute, The University of Queensland,
Brisbane, QLD, Australia,Queensland Centre for Mental Health Research, The
University of Queensland, Brisbane, QLD, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, University of Melbourne
& Melbourne Health, Melbourne, VIC, Australia,Florey Institute of Neuroscience and Mental Health,
University of Melbourne, VIC, Australia
| | - Yann Quidé
- School of Psychiatry, University of New South Wales,
Sydney, NSW, Australia,Neuroscience Research Australia, Sydney, NSW,
Australia
| | - Ulrich Schall
- Priority Research Centres for Brain & Mental Health
and Grow Up Well, The University of Newcastle, Newcastle, NSW, Australia,Hunter Medical Research Institute, Newcastle, NSW,
Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, The
University of Newcastle, Newcastle, NSW, Australia,Hunter Medical Research Institute, Newcastle, NSW,
Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The
University of Newcastle, Newcastle, NSW, Australia,Hunter Medical Research Institute, Newcastle, NSW,
Australia
| | - Marc Seal
- Murdoch Children's Research Institute, Melbourne,
VIC, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, The
University of Newcastle, Newcastle, NSW, Australia,Hunter Medical Research Institute, Newcastle, NSW,
Australia,Priority Research Centre for Brain & Mental Health,
The University of Newcastle, Newcastle, NSW, Australia
| | - Paul E Rasser
- Priority Research Centre for Brain & Mental Health,
The University of Newcastle, Newcastle, NSW, Australia
| | - Gavin Cooper
- Priority Research Centre for Brain & Mental Health,
The University of Newcastle, Newcastle, NSW, Australia
| | - Cynthia Shannon Weickert
- School of Psychiatry, University of New South Wales,
Sydney, NSW, Australia,Neuroscience Research Australia, Sydney, NSW,
Australia
| | - Thomas W Weickert
- School of Psychiatry, University of New South Wales,
Sydney, NSW, Australia,Neuroscience Research Australia, Sydney, NSW,
Australia
| | - Elliot Hong
- Maryland Psychiatric Research Center, University of
Maryland School of Medicine, Baltimore, MD, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, University of
Maryland School of Medicine, Baltimore, MD, USA
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania,
Philadelphia, PA, USA
| | - Ruben C Gur
- Department of Psychiatry, University of Pennsylvania,
Philadelphia, PA, USA
| | - Judith M Ford
- Department of Psychiatry, University of California, San
Francisco, San Francisco, CA, USA,San Francisco VA Medical Center, San Francisco, CA,
USA
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of
California, Irvine, Irvine, CA, USA
| | - Daniel H Mathalon
- Department of Psychiatry, University of California, San
Francisco, San Francisco, CA, USA,San Francisco VA Medical Center, San Francisco, CA,
USA
| | - Steven G Potkin
- Department of Psychiatry and Human Behavior, University of
California, Irvine, Irvine, CA, USA
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of
California, Irvine, Irvine, CA, USA
| | - Fengmei Fan
- Psychiatry Research Center, Beijing Huilongguan Hospital,
Beijing, China
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and
Developmental Neurosciences, Faculty of Medicine, TU Dresden, Germany, Dresden,
Germany,Massachusetts General Hospital/ Harvard Medical School,
Athinoula A. Martinos Center for Biomedical Imaging, Psychiatric Neuroimaging
Research Program
| | | | - Lieuwe De Haan
- Department of psychiatry, Academic Medical Center,
University of Amsterdam, Amsterdam, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Vrije Universiteit Medical
Center, Amsterdam, The Netherlands
| | - Francesca Assogna
- Laboratory of Neuropsychiatry, Department of Clinical and
Behavioral Neurology, Istituto Di Ricovero e Cura a Carattere Scientifico Santa
Lucia Foundation, Rome, Italy,Centro Fermi - Museo Storico della Fisica e Centro Studi
e Ricerche “Enrico Fermi”, Rome, Italy
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Department of Clinical and
Behavioral Neurology, Istituto Di Ricovero e Cura a Carattere Scientifico Santa
Lucia Foundation, Rome, Italy
| | - Pietro de Rossi
- Laboratory of Neuropsychiatry, Department of Clinical and
Behavioral Neurology, Istituto Di Ricovero e Cura a Carattere Scientifico Santa
Lucia Foundation, Rome, Italy,Dipartimento di Neuroscienze, Salute Mentale e Organi di
Senso (NESMOS) Department, Faculty of Medicine and Psychology, University
“Sapienza” of Rome, Rome, Italy,Department of Neurology and Psychiatry, Sapienza
University of Rome, Rome, Italy
| | - Mariangela Iorio
- Laboratory of Neuropsychiatry, Department of Clinical and
Behavioral Neurology, Istituto Di Ricovero e Cura a Carattere Scientifico Santa
Lucia Foundation, Rome, Italy
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Department of Clinical and
Behavioral Neurology, Istituto Di Ricovero e Cura a Carattere Scientifico Santa
Lucia Foundation, Rome, Italy,Centro Fermi - Museo Storico della Fisica e Centro Studi
e Ricerche “Enrico Fermi”, Rome, Italy
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and
Behavioral Neurology, Istituto Di Ricovero e Cura a Carattere Scientifico Santa
Lucia Foundation, Rome, Italy,Beth K. and Stuart C. Yudofsky Division of
Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor
College of Medicine, Houston, Tx USA
| | - Edith Pomarol-Clotet
- Fundación para la Investigación y Docencia
Maria Angustias Giménez (FIDMAG) Germanes Hospitalaries Research Foundation,
Barcelona, Spain,Centro Investigación Biomédica en Red de
Salud Mental (CIBERSAM), Barcelona, Spain
| | - Sinead Kelly
- Department of Psychiatry, Beth Israel Deaconess Medical
Center, Harvard Medical School, Boston, MA, USA,Psychiatry Neuroimaging Laboratory, Brigham and
Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simone Ciufolini
- Department of Psychosis Studies, Institute of Psychiatry,
Psychology and Neuroscience, King's College London, London, United
Kingdom
| | - Joaquim Radua
- Department of Clinical Neuroscience, Centre for
Psychiatric Research, Karolinska Institutet, Stockholm, Sweden,Fundación para la Investigación y Docencia
Maria Angustias Giménez (FIDMAG) Germanes Hospitalaries Research Foundation,
Barcelona, Spain,Centro Investigación Biomédica en Red de
Salud Mental (CIBERSAM), Barcelona, Spain,Department of Psychosis Studies, Institute of Psychiatry,
Psychology and Neuroscience, King's College London, London, United
Kingdom,Institut d'Investigacions Biomediques August Pi i
Sunyer (IDIBAPS), Barcelona, Spain
| | - Robin Murray
- Department of Psychosis Studies, Institute of Psychiatry,
Psychology and Neuroscience, King's College London, London, United
Kingdom
| | - Tiago Reis Marques
- Department of Psychosis Studies, Institute of Psychiatry,
Psychology and Neuroscience, King's College London, London, United
Kingdom
| | - Andrew Simmons
- Department of Psychosis Studies, Institute of Psychiatry,
Psychology and Neuroscience, King's College London, London, United
Kingdom
| | | | | | | | | | - Kathryn I Alpert
- Department of Psychiatry and Behavioral Sciences,
Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and
Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Aurora Bonvino
- Istituto Di Ricovero e Cura a Carattere Scientifico Casa
Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Annabella Di Giorgio
- Istituto Di Ricovero e Cura a Carattere Scientifico Casa
Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Emma Neilson
- Division of Psychiatry, University of Edinburgh,
Edinburgh, United Kingdom
| | | | - Je-Yeon Yun
- Seoul National University Hospital, Seoul, Republic of
Korea,Yeongeon Student Support Center, Seoul National
University College of Medicine, Seoul, Republic of Korea
| | - Dara M Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG),
Clinical Neuroimaging Laboratory, National Centre for Biomedical Engineering Galway
Neuroscience Centre, College of Medicine Nursing and Health Sciences, National
University of Ireland Galway, H91 TK33 Galway, Ireland
| | | | | | - Tolibjohn Akhadov
- Children's Clinical and Research Institute of
Emergency Surgery and Trauma, Moscow, Russia
| | | | - Helena Fatouros-Bergman
- Centre for Psychiatry Research, Department of Clinical
Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm
County Council, Stockholm, Sweden
| | - Lena Flyckt
- Centre for Psychiatry Research, Department of Clinical
Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm
County Council, Stockholm, Sweden
| | | | - Pedro GP Rosa
- Laboratory of Psychiatric Neuroimaging (LIM 21),
Department of Psychiatry, Faculty of Medicine, University of São Paulo,
São Paulo, Brazil,Center for Interdisciplinary Research on Applied
Neurosciences (NAPNA), University of São Paulo, São Paulo,
Brazil
| | - Mauricio H Serpa
- Laboratory of Psychiatric Neuroimaging (LIM 21),
Department of Psychiatry, Faculty of Medicine, University of São Paulo,
São Paulo, Brazil,Center for Interdisciplinary Research on Applied
Neurosciences (NAPNA), University of São Paulo, São Paulo,
Brazil
| | - Marcus V Zanetti
- Laboratory of Psychiatric Neuroimaging (LIM 21),
Department of Psychiatry, Faculty of Medicine, University of São Paulo,
São Paulo, Brazil,Center for Interdisciplinary Research on Applied
Neurosciences (NAPNA), University of São Paulo, São Paulo,
Brazil
| | - Cyril Hoschl
- National Institute of Mental Health, Klecany, Czech
Republic
| | - Antonin Skoch
- National Institute of Mental Health, Klecany, Czech
Republic,MR Unit, Department of Diagnostic and Interventional
Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech
Republic
| | - Filip Spaniel
- National Institute of Mental Health, Klecany, Czech
Republic
| | - David Tomecek
- National Institute of Mental Health, Klecany, Czech
Republic,Institute of Computer Science, Czech Academy of
Sciences, Prague, Czech Republic,Faculty of Electrical Engineering, Czech Technical
University in Prague, Prague, Czech Republic
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh,
Edinburgh, United Kingdom,Centre for Cognitive Ageing and Cognitive Epidemiology,
University of Edinburgh, Edinburgh, United Kingdom
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh,
Edinburgh, United Kingdom
| | - Christian Knöchel
- Department of Psychiatry, Psychosomatic Medicine and
Psychotherapy, University Hospital Frankfurt, Goethe University Frankfurt,
Frankfurt, Germany
| | - Viola Oertel-Knöchel
- Department of Psychiatry, Psychosomatic Medicine and
Psychotherapy, University Hospital Frankfurt, Goethe University Frankfurt,
Frankfurt, Germany
| | - Fleur M Howells
- University of Cape Town Dept of Psychiatry, Groote
Schuur Hospital (J2), Cape Town South Africa
| | - Dan J Stein
- University of Cape Town Dept of Psychiatry, Groote
Schuur Hospital (J2), Cape Town South Africa,Medical Research Council Unit on Risk & Resilience
in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town,
South Africa
| | - Henk S Temmingh
- University of Cape Town Dept of Psychiatry, Groote
Schuur Hospital (J2), Cape Town South Africa
| | - Anne Uhlmann
- University of Cape Town Dept of Psychiatry, Groote
Schuur Hospital (J2), Cape Town South Africa,MRC Unit on Risk & Resilience in Mental Disorders,
Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Carlos Lopez-Jaramillo
- Research Group in Psychiatry, Department of Psychiatry,
Faculty of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Danai Dima
- Department of Psychology, City, University of London,
London, United Kingdom,Department of Neuroimaging, IOPPN, King's College
London, London, United Kingdom
| | - Joshua I Faskowitz
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging
& Informatics Institute, Keck School of Medicine of the University of Southern
California, Marina del Rey, CA, USA
| | - Boris A Gutman
- Department of Biomedical Engineering, Illinois Institute
of Technology, Chicago, Illinois
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging
& Informatics Institute, Keck School of Medicine of the University of Southern
California, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging
& Informatics Institute, Keck School of Medicine of the University of Southern
California, Marina del Rey, CA, USA
| | - Jessica A Turner
- Mind Research Network, Albuquerque, NM, USA,Imaging Genetics and Neuroinformatics Lab, Department of
Psychology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
103
|
Esteves M, Moreira PS, Marques P, Castanho TC, Magalhães R, Amorim L, Portugal‐Nunes C, Soares JM, Coelho A, Almeida A, Santos NC, Sousa N, Leite‐Almeida H. Asymmetrical subcortical plasticity entails cognitive progression in older individuals. Aging Cell 2019; 18:e12857. [PMID: 30578611 PMCID: PMC6351824 DOI: 10.1111/acel.12857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/05/2018] [Accepted: 09/15/2018] [Indexed: 01/05/2023] Open
Abstract
Structural brain asymmetries have been associated with cognition. However, it is not known to what extent neuropsychological parameters and structural laterality covary with aging. Seventy‐five subjects drawn from a larger normal aging cohort were evaluated in terms of MRI and neuropsychological parameters at two moments (M1 and M2), 18 months apart. In this time frame, asymmetry as measured by structural laterality index (ΔLI) was stable regarding both direction and magnitude in all areas. However, a significantly higher dispersion for this variation was observed in subcortical over cortical areas. Subjects with extreme increase in rightward lateralization of the caudate revealed increased M1 to M2 Stroop interference scores, but also a worsening of general cognition (MMSE). In contrast, subjects showing extreme increase in leftward lateralization of the thalamus presented higher increase in Stroop interference scores. In conclusion, while a decline in cognitive function was observed in the entire sample, regional brain asymmetries were relatively stable. Neuropsychological trajectories were associated with laterality changes in subcortical regions.
Collapse
Affiliation(s)
- Madalena Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Pedro S. Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Paulo Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Teresa C. Castanho
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Liliana Amorim
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Carlos Portugal‐Nunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - José M. Soares
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Ana Coelho
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Nadine C. Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| | - Hugo Leite‐Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine University of Minho Braga Portugal
- ICVS/3B’s ‐ PT Government Associate Laboratory Braga/Guimarães Portugal
- Clinical Academic Center – Braga Braga Portugal
| |
Collapse
|
104
|
Abstract
Although the neural correlates of the appreciation of aesthetic qualities have been the target of much research in the past decade, few experiments have explored the hemispheric asymmetries in underlying processes. In this study, we used a divided visual field paradigm to test for hemispheric asymmetries in men and women's preference for abstract and representational artworks. Both male and female participants liked representational paintings more when presented in the right visual field, whereas preference for abstract paintings was unaffected by presentation hemifield. We hypothesize that this result reflects a facilitation of the sort of visual processes relevant to laypeople's liking for art-specifically, local processing of highly informative object features-when artworks are presented in the right visual field, given the left hemisphere's advantage in processing such features.
Collapse
|
105
|
Peyre H, Hoertel N, Bernard JY, Rouffignac C, Forhan A, Taine M, Heude B, Ramus F. Sex differences in psychomotor development during the preschool period: A longitudinal study of the effects of environmental factors and of emotional, behavioral, and social functioning. J Exp Child Psychol 2018; 178:369-384. [PMID: 30292567 DOI: 10.1016/j.jecp.2018.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 01/01/2023]
Abstract
We sought to determine the extent to which sex differences in psychomotor development during the preschool period can be explained by differential exposure to environmental factors and/or differences in emotional, behavioral, or social functioning. Children from the EDEN mother-child cohort were assessed for language, gross motor, and fine motor skills at 2, 3, and 5-6 years of age using parental questionnaires and neuropsychological tests. Structural equation models examining the associations between sex and language, gross motor, and fine motor skills at 2, 3, and 5-6 years were performed while adjusting for a broad range of pre- and postnatal environmental factors as well as emotional, behavioral and socialization difficulties. Girls (n = 492) showed better fine motor skills than boys (n = 563) at 2 years (Cohen's d = 0.67 in the fully adjusted models), at 3 years (d = 0.72), and to a lesser extent at 5-6 years (d = 0.29). Girls also showed better language skills at 2 years (d = 0.36) and 3 years (d = 0.37) but not at 5-6 years (d = 0.04). We found no significant differences between girls and boys in gross motor skills at 2, 3, or 5-6 years. Similar results were found in the models unadjusted and adjusted for pre- and postnatal environmental factors as well as emotional, behavioral, and socialization difficulties. Our findings are consistent with the idea that sex differences in fine motor and language skills at 2 and 3 years of age are not explained by differential exposure to environmental factors or by sex differences in emotional, behavioral, or social functioning.
Collapse
Affiliation(s)
- Hugo Peyre
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, l'Assistance Publique-Hôpitaux de Paris (AP-HP), 75019 Paris, France; Laboratoire de Sciences Cognitives et Psycholinguistique, Dept d'Etudes Cognitives, ENS, PSL University, EHESS, CNRS, France.
| | - Nicolas Hoertel
- Department of Psychiatry, Corentin Celton Hospital, AP-HP, 92130 Issy-les-Moulineaux, France; Paris Descartes University, Pôles de Recherche et D'enseignement Supérieur (PRES), Sorbonne Paris Cité, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 894, Psychiatry and Neurosciences Center, Paris Descartes University, PRES Sorbonne Paris Cité, 75006 Paris, France
| | - Jonathan Y Bernard
- INSERM UMR 1153, Center of Research in Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Developmental Origins of Health and Disease (ORCHAD) Team, 94807 Villejuif, France; Paris Descartes University, 75006 Paris, France
| | - Chloe Rouffignac
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, l'Assistance Publique-Hôpitaux de Paris (AP-HP), 75019 Paris, France
| | - Anne Forhan
- INSERM UMR 1153, Center of Research in Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Developmental Origins of Health and Disease (ORCHAD) Team, 94807 Villejuif, France; Paris Descartes University, 75006 Paris, France
| | - Marion Taine
- INSERM UMR 1153, Center of Research in Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Developmental Origins of Health and Disease (ORCHAD) Team, 94807 Villejuif, France; Paris Descartes University, 75006 Paris, France
| | - Barbara Heude
- INSERM UMR 1153, Center of Research in Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Developmental Origins of Health and Disease (ORCHAD) Team, 94807 Villejuif, France; Paris Descartes University, 75006 Paris, France
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique, Dept d'Etudes Cognitives, ENS, PSL University, EHESS, CNRS, France
| | | |
Collapse
|
106
|
Wachinger C, Nho K, Saykin AJ, Reuter M, Rieckmann A. A Longitudinal Imaging Genetics Study of Neuroanatomical Asymmetry in Alzheimer's Disease. Biol Psychiatry 2018; 84:522-530. [PMID: 29885764 PMCID: PMC6123250 DOI: 10.1016/j.biopsych.2018.04.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Contralateral brain structures represent a unique, within-patient reference element for disease, and asymmetries can provide a personalized measure of the accumulation of past disease processes. Neuroanatomical shape asymmetries have recently been associated with the progression of Alzheimer's disease (AD), but the biological basis of asymmetric brain changes in AD remains unknown. METHODS We investigated genetic influences on brain asymmetry by identifying associations between magnetic resonance imaging-derived measures of asymmetry and candidate single nucleotide polymorphisms (SNPs) that have previously been identified in genome-wide association studies for AD diagnosis and for brain subcortical volumes. For analyzing longitudinal neuroimaging data (1241 individuals, 6395 scans), we used a mixed effects model with interaction between genotype and diagnosis. RESULTS Significant associations between asymmetry of the amygdala, hippocampus, and putamen and SNPs in the genes BIN1, CD2AP, ZCWPW1, ABCA7, TNKS, and DLG2 were found. CONCLUSIONS The associations between SNPs in the genes TNKS and DLG2 and AD-related increases in shape asymmetry are of particular interest; these SNPs have previously been associated with subcortical volumes of amygdala and putamen but have not yet been associated with AD pathology. For AD candidate SNPs, we extend previous work to show that their effects on subcortical brain structures are asymmetric. This provides novel evidence about the biological underpinnings of brain asymmetry as a disease marker.
Collapse
Affiliation(s)
- Christian Wachinger
- Laboratory for Artificial Intelligence in Medical Imaging, Klinik für Kinder- und Jugendpsychiatrie, Klinikum der Universität München, Ludwig-Maximilians-Universität München, München, Germany.
| | - Kwangsik Nho
- Center for Neuroimaging and Indiana Alzheimer Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrew J Saykin
- Center for Neuroimaging and Indiana Alzheimer Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Martin Reuter
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts; Deutsches Zentrum für Neurodegenerative Erkrankungen, Bonn, Germany
| | - Anna Rieckmann
- Umeå Center for Functional Brain Imaging, Department of Radiation Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
107
|
de Kovel CGF, Lisgo SN, Fisher SE, Francks C. Subtle left-right asymmetry of gene expression profiles in embryonic and foetal human brains. Sci Rep 2018; 8:12606. [PMID: 30181561 PMCID: PMC6123426 DOI: 10.1038/s41598-018-29496-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022] Open
Abstract
Left-right laterality is an important aspect of human -and in fact all vertebrate- brain organization for which the genetic basis is poorly understood. Using RNA sequencing data we contrasted gene expression in left- and right-sided samples from several structures of the anterior central nervous systems of post mortem human embryos and foetuses. While few individual genes stood out as significantly lateralized, most structures showed evidence of laterality of their overall transcriptomic profiles. These left-right differences showed overlap with age-dependent changes in expression, indicating lateralized maturation rates, but not consistently in left-right orientation over all structures. Brain asymmetry may therefore originate in multiple locations, or if there is a single origin, it is earlier than 5 weeks post conception, with structure-specific lateralized processes already underway by this age. This pattern is broadly consistent with the weak correlations reported between various aspects of adult brain laterality, such as language dominance and handedness.
Collapse
Affiliation(s)
- Carolien G F de Kovel
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Steven N Lisgo
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| |
Collapse
|
108
|
Bocchetta M, Gordon E, Cardoso MJ, Modat M, Ourselin S, Warren JD, Rohrer JD. Thalamic atrophy in frontotemporal dementia - Not just a C9orf72 problem. Neuroimage Clin 2018; 18:675-681. [PMID: 29876259 PMCID: PMC5988457 DOI: 10.1016/j.nicl.2018.02.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/07/2018] [Accepted: 02/21/2018] [Indexed: 12/12/2022]
Abstract
Background Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder associated with frontal and temporal atrophy. Subcortical involvement has been described as well, with early thalamic atrophy most commonly associated with the C9orf72 expansion. However thalamic involvement has not been comprehensively investigated across the FTD spectrum. Methods We investigated thalamic volumes in a sample of 341 FTD patients (age: mean(standard deviation) 64.2(8.5) years; disease duration: 4.6(2.7) years) compared with 99 age-matched controls (age: 61.9(11.4) years). We performed a parcellation of T1 MRIs using an atlas propagation and label fusion approach to extract left and right thalamus volumes, which were corrected for total intracranial volumes. We assessed subgroups stratified by clinical diagnosis (141 behavioural variant FTD (bvFTD), 76 semantic dementia (SD), 103 progressive nonfluent aphasia (PNFA), 7 with associated motor neurone disease (FTD-MND) and 14 primary progressive aphasia not otherwise specified (PPA-NOS), genetic diagnosis (24 with MAPT, 24 with C9orf72, and 15 with GRN mutations), and pathological diagnosis (40 tauopathy, 61 TDP-43opathy, 3 FUSopathy). We assessed the diagnostic accuracy based on thalamic volume. Results Overall, FTD patients had smaller thalami than controls (8% difference in volume, p < 0.0005, ANCOVA). Stratifying by genetics, C9orf72 group had the smallest thalami (14% difference from controls, p < 0.0005). However, the thalami were also smaller than controls in the other genetic groups: GRN and MAPT groups showed a difference of 11% and 9% respectively (p < 0.0005). ROC analysis showed a relatively poor ability to separate C9orf72 from MAPT (AUC = 0.651, p = 0.073) and from GRN cases (AUC = 0.644, p = 0.133) using thalamic volume. All clinical subtypes had significantly smaller thalami than controls (p < 0.0005), with the FTD-MND group having the smallest (15%), followed by bvFTD (9%), PNFA (8%), PPA-NOS (7%), and lastly SD (5%). In the pathological groups, the TDP-43opathies had an 11% difference from controls, and tauopathies 9%, while the FUSopathies showed only 2% of difference from controls (p < 0.0005). GRN, PPA-NOS and SD were the subgroups showing the highest asymmetry in volumes. Conclusions The thalamus was most affected in C9orf72 genetically, TDP-43opathies pathologically and FTD-MND clinically. However, thalamic atrophy is a common feature across all FTD groups.
Collapse
Affiliation(s)
- Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
| | - Elizabeth Gordon
- Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
| | - M Jorge Cardoso
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Marc Modat
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Jason D Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
109
|
Schweser F, Raffaini Duarte Martins AL, Hagemeier J, Lin F, Hanspach J, Weinstock-Guttman B, Hametner S, Bergsland N, Dwyer MG, Zivadinov R. Mapping of thalamic magnetic susceptibility in multiple sclerosis indicates decreasing iron with disease duration: A proposed mechanistic relationship between inflammation and oligodendrocyte vitality. Neuroimage 2018; 167:438-452. [PMID: 29097315 PMCID: PMC5845810 DOI: 10.1016/j.neuroimage.2017.10.063] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022] Open
Abstract
Recent advances in susceptibility MRI have dramatically improved the visualization of deep gray matter brain regions and the quantification of their magnetic properties in vivo, providing a novel tool to study the poorly understood iron homeostasis in the human brain. In this study, we used an advanced combination of the recent quantitative susceptibility mapping technique with dedicated analysis methods to study intra-thalamic tissue alterations in patients with clinically isolated syndrome (CIS) and multiple sclerosis (MS). Thalamic pathology is one of the earliest hallmarks of MS and has been shown to correlate with cognitive dysfunction and fatigue, but the mechanisms underlying the thalamic pathology are poorly understood. We enrolled a total of 120 patients, 40 with CIS, 40 with Relapsing Remitting MS (RRMS), and 40 with Secondary Progressive MS (SPMS). For each of the three patient groups, we recruited 40 controls, group matched for age- and sex (120 total). We acquired quantitative susceptibility maps using a single-echo gradient echo MRI pulse sequence at 3 T. Group differences were studied by voxel-based analysis as well as with a custom thalamus atlas. We used threshold-free cluster enhancement (TFCE) and multiple regression analyses, respectively. We found significantly reduced magnetic susceptibility compared to controls in focal thalamic subregions of patients with RRMS (whole thalamus excluding the pulvinar nucleus) and SPMS (primarily pulvinar nucleus), but not in patients with CIS. Susceptibility reduction was significantly associated with disease duration in the pulvinar, the left lateral nuclear region, and the global thalamus. Susceptibility reduction indicates a decrease in tissue iron concentration suggesting an involvement of chronic microglia activation in the depletion of iron from oligodendrocytes in this central and integrative brain region. Not necessarily specific to MS, inflammation-mediated iron release may lead to a vicious circle that reduces the protection of axons and neuronal repair.
Collapse
Affiliation(s)
- Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| | - Ana Luiza Raffaini Duarte Martins
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Jesper Hagemeier
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Fuchun Lin
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Jannis Hanspach
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Bianca Weinstock-Guttman
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Simon Hametner
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
110
|
van Putten MJAM, Olbrich S, Arns M. Predicting sex from brain rhythms with deep learning. Sci Rep 2018; 8:3069. [PMID: 29449649 PMCID: PMC5814426 DOI: 10.1038/s41598-018-21495-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/06/2018] [Indexed: 11/12/2022] Open
Abstract
We have excellent skills to extract sex from visual assessment of human faces, but assessing sex from human brain rhythms seems impossible. Using deep convolutional neural networks, with unique potential to find subtle differences in apparent similar patterns, we explore if brain rhythms from either sex contain sex specific information. Here we show, in a ground truth scenario, that a deep neural net can predict sex from scalp electroencephalograms with an accuracy of >80% (p < 10-5), revealing that brain rhythms are sex specific. Further, we extracted sex-specific features from the deep net filter layers, showing that fast beta activity (20-25 Hz) and its spatial distribution is a main distinctive attribute. This demonstrates the ability of deep nets to detect features in spatiotemporal data unnoticed by visual assessment, and to assist in knowledge discovery. We anticipate that this approach may also be successfully applied to other specialties where spatiotemporal data is abundant, including neurology, cardiology and neuropsychology.
Collapse
Affiliation(s)
- Michel J A M van Putten
- Department of Clinical Neurophysiology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente & Medisch Spectrum Twente, Enschede, The Netherlands.
| | - Sebastian Olbrich
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Martijn Arns
- Research Institute Brainclinics, Nijmegen & Dept. of Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
111
|
Kurth F, Thompson PM, Luders E. Investigating the differential contributions of sex and brain size to gray matter asymmetry. Cortex 2017; 99:235-242. [PMID: 29287244 DOI: 10.1016/j.cortex.2017.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 09/05/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022]
Abstract
Scientific reports of sex differences in brain asymmetry - the difference between the two hemispheres - are rather inconsistent. Some studies report no sex differences whatsoever, others reveal striking sex effects, with large discrepancies across studies in the magnitude, direction, and location of the observed effects. One reason for the lack of consistency in findings may be the confounding effects of brain size as male brains are usually larger than female brains. Thus, the goal of this study was to investigate the differential contributions of sex and brain size to asymmetry with a particular focus on gray matter. For this purpose, we applied a well-validated workflow for voxel-wise gray matter asymmetry analyses in a sample of 96 participants (48 males/48 females), in which a subsample of brains (24 males/24 females) were matched for size. By comparing outcomes based on three different contrasts - all males versus all females; all large brains versus all small brains; matched males versus matched females - we were able to disentangle the contributing effects of sex and brain size, to reveal true (size-independent) sex differences in gray matter asymmetry: Males show a significantly stronger rightward asymmetry than females within the cerebellum, specifically in lobules VII, VIII, and IX. This finding agrees closely with prior research suggesting sex differences in sensorimotor, cognitive and emotional function, which are all moderated by the respective cerebellar sections. No other significant sex effects on gray matter were detected across the remainder of the brain.
Collapse
Affiliation(s)
- Florian Kurth
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, Los Angeles, USA.
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, Keck USC School of Medicine, Marina Del Rey, CA, USA
| | - Eileen Luders
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, Los Angeles, USA
| |
Collapse
|
112
|
Cuesta MJ, Lecumberri P, Cabada T, Moreno-Izco L, Ribeiro M, López-Ilundain JM, Peralta V, Lorente-Omeñaca R, Sánchez-Torres AM, Gómez M. Basal ganglia and ventricle volume in first-episode psychosis. A family and clinical study. Psychiatry Res Neuroimaging 2017; 269:90-96. [PMID: 28963912 DOI: 10.1016/j.pscychresns.2017.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/07/2017] [Accepted: 09/12/2017] [Indexed: 01/05/2023]
Abstract
Patients with first-episode psychosis (FEP) exhibit considerable heterogeneity in subcortical brain volumes. We sought to compare ventricle and basal ganglia volumes in FEP patients (n = 50) with those in unaffected relatives (n = 21) and healthy controls (n = 24). Participants were assessed with a semistructured interview and underwent structural magnetic resonance imaging (MRI). Patients had significantly larger left lateral, right lateral and third ventricle volumes than their siblings and larger third ventricle volumes than controls. Additionally, they showed a trend toward significance by having larger right caudate nuclei than controls. Moreover, FEP patients showed lower caudate and putamen laterality indexes (leftward shifts) than healthy controls but not regarding their siblings. Besides, negative dimension was directly associated with lateral and third ventricle volumes and positive dimension with thalamus and ventral diencephalon nuclei. Our findings added evidence to the associations between early enlargement of brain ventricles and negative symptoms, and between early enlargement of thalamic and ventral-diencephalon nuclei and positive symptoms. Moreover, the cumulative exposition to antipsychotics in FEP patients might be related to enlargement of certain subcortical structures, such as the right nucleus accumbens and third ventricle.
Collapse
Affiliation(s)
- Manuel J Cuesta
- Department of Psychiatry, Complejo Hospitalario de Navarra, c/ Irunlarrea, 4, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| | - Pablo Lecumberri
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Department of Mathematics, Universidad Pública de Navarra, Pamplona, Spain
| | - Teresa Cabada
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Department of Neuroradiology, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Lucia Moreno-Izco
- Department of Psychiatry, Complejo Hospitalario de Navarra, c/ Irunlarrea, 4, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María Ribeiro
- Department of Psychiatry, Complejo Hospitalario de Navarra, c/ Irunlarrea, 4, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Jose M López-Ilundain
- Department of Psychiatry, Complejo Hospitalario de Navarra, c/ Irunlarrea, 4, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Victor Peralta
- Department of Psychiatry, Complejo Hospitalario de Navarra, c/ Irunlarrea, 4, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Ruth Lorente-Omeñaca
- Department of Psychiatry, Complejo Hospitalario de Navarra, c/ Irunlarrea, 4, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Ana Maria Sánchez-Torres
- Department of Psychiatry, Complejo Hospitalario de Navarra, c/ Irunlarrea, 4, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Marisol Gómez
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; Department of Mathematics, Universidad Pública de Navarra, Pamplona, Spain
| |
Collapse
|
113
|
Cunha AM, Esteves M, das Neves SP, Borges S, Guimarães MR, Sousa N, Almeida A, Leite-Almeida H. Pawedness Trait Test (PaTRaT)-A New Paradigm to Evaluate Paw Preference and Dexterity in Rats. Front Behav Neurosci 2017; 11:192. [PMID: 29089877 PMCID: PMC5651527 DOI: 10.3389/fnbeh.2017.00192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/30/2017] [Indexed: 01/05/2023] Open
Abstract
In rodents, dexterity is commonly analyzed in preference paradigms in which animals are given the chance to use either the left or the right front paws to manipulate food. However, paw preference and dexterity at population and individual levels are controversial as results are incongruent across paradigms. We have therefore developed a semi-quantitative method—the pawdeness trait test (PaTRaT)—to evaluate paw preference degree in rats. The PaTRaT consists in a classification system, ranging from +4 to −4 where increasingly positive and negative values reflect the bias for left or right paw use, respectively. Sprague-Dawley male rats were confined into a metal rectangular mesh cylinder, from which they can see, smell and reach sugared rewards with their paws. Due to its size, the reward could only cross the mesh if aligned with its diagonal, imposing additional coordination. Animals were allowed to retrieve 10 rewards per session in a total of four sessions while their behavior was recorded. PaTRaT was repeated 4 and 8 weeks after the first evaluation. To exclude potential bias, rats were also tested for paw fine movement and general locomotion in other behavioral paradigms as well as impulsivity (variable delay-to-signal, VDS), memory and cognitive flexibility (water maze). At the population level 54% of the animals presented a rightward bias. Individually, all animals presented marked side-preferences, >2 and <−2 for left- and right-sided bias, respectively, and this preference was stable across the three evaluations. Inter-rater consistency was very high between two experienced raters and substantial when two additional inexperienced raters were included. Left- and right-biased animals presented no differences in the ability to perform fine movements with any of the forelimbs (staircase) and general locomotor performance. Additionally, these groups performed similarly in executive function and memory tasks. In conclusion, PaTRaT is able to reliably classify rats’ pawedness direction and degree.
Collapse
Affiliation(s)
- Ana M Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Madalena Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Sofia P das Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Sónia Borges
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Marco R Guimarães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Hugo Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
114
|
Jang M, Patted T, Gil Y, Garijo D, Ratnakar V, Ji J, Wang P, McMahon A, Thompson PM, Jahanshad N. Towards Automatic Generation of Portions of Scientific Papers for Large Multi-Institutional Collaborations Based on Semantic Metadata. CEUR WORKSHOP PROCEEDINGS 2017; 1931:63-70. [PMID: 30034319 PMCID: PMC6053267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Scientific collaborations involving multiple institutions are increasingly commonplace. It is not unusual for publications to have dozens or hundreds of authors, in some cases even a few thousands. Gathering the information for such papers may be very time consuming, since the author list must include authors who made different kinds of contributions and whose affiliations are hard to track. Similarly, when datasets are contributed by multiple institutions, the collection and processing details may also be hard to assemble due to the many individuals involved. We present our work to date on automatically generating author lists and other portions of scientific papers for multi-institutional collaborations based on the metadata created to represent the people, data, and activities involved. Our initial focus is ENIGMA, a large international collaboration for neuroimaging genetics.
Collapse
Affiliation(s)
| | - Tejal Patted
- Department of Computer Science, University of Southern California
| | - Yolanda Gil
- Department of Computer Science, University of Southern California
- Information Sciences Institute, University of Southern California
| | - Daniel Garijo
- Information Sciences Institute, University of Southern California
| | - Varun Ratnakar
- Information Sciences Institute, University of Southern California
| | - Jie Ji
- Department of Computer Science, University of Southern California
| | | | - Aggie McMahon
- Imaging Genetics Center, University of Southern California
| | | | - Neda Jahanshad
- Imaging Genetics Center, University of Southern California
| |
Collapse
|
115
|
Núñez C, Theofanopoulou C, Senior C, Cambra MR, Usall J, Stephan-Otto C, Brébion G. A large-scale study on the effects of sex on gray matter asymmetry. Brain Struct Funct 2017; 223:183-193. [DOI: 10.1007/s00429-017-1481-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/20/2017] [Indexed: 12/27/2022]
|
116
|
Narvacan K, Treit S, Camicioli R, Martin W, Beaulieu C. Evolution of deep gray matter volume across the human lifespan. Hum Brain Mapp 2017; 38:3771-3790. [PMID: 28548250 DOI: 10.1002/hbm.23604] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance imaging of subcortical gray matter structures, which mediate behavior, cognition and the pathophysiology of several diseases, is crucial for establishing typical maturation patterns across the human lifespan. This single site study examines T1-weighted MPRAGE images of 3 healthy cohorts: (i) a cross-sectional cohort of 406 subjects aged 5-83 years; (ii) a longitudinal neurodevelopment cohort of 84 subjects scanned twice approximately 4 years apart, aged 5-27 years at first scan; and (iii) a longitudinal aging cohort of 55 subjects scanned twice approximately 3 years apart, aged 46-83 years at first scan. First scans from longitudinal subjects were included in the cross-sectional analysis. Age-dependent changes in thalamus, caudate, putamen, globus pallidus, nucleus accumbens, hippocampus, and amygdala volumes were tested with Poisson, quadratic, and linear models in the cross-sectional cohort, and quadratic and linear models in the longitudinal cohorts. Most deep gray matter structures best fit to Poisson regressions in the cross-sectional cohort and quadratic curves in the young longitudinal cohort, whereas the volume of all structures except the caudate and globus pallidus decreased linearly in the longitudinal aging cohort. Males had larger volumes than females for all subcortical structures, but sex differences in trajectories of change with age were not significant. Within subject analysis showed that 65%-80% of 13-17 year olds underwent a longitudinal decrease in volume between scans (∼4 years apart) for the putamen, globus pallidus, and hippocampus, suggesting unique developmental processes during adolescence. This lifespan study of healthy participants will form a basis for comparison to neurological and psychiatric disorders. Hum Brain Mapp 38:3771-3790, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Karl Narvacan
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah Treit
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Camicioli
- Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Wayne Martin
- Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Christian Beaulieu
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
117
|
Muntané G, Santpere G, Verendeev A, Seeley WW, Jacobs B, Hopkins WD, Navarro A, Sherwood CC. Interhemispheric gene expression differences in the cerebral cortex of humans and macaque monkeys. Brain Struct Funct 2017; 222:3241-3254. [PMID: 28317062 DOI: 10.1007/s00429-017-1401-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/05/2017] [Indexed: 11/25/2022]
Abstract
Handedness and language are two well-studied examples of asymmetrical brain function in humans. Approximately 90% of humans exhibit a right-hand preference, and the vast majority shows left-hemisphere dominance for language function. Although genetic models of human handedness and language have been proposed, the actual gene expression differences between cerebral hemispheres in humans remain to be fully defined. In the present study, gene expression profiles were examined in both hemispheres of three cortical regions involved in handedness and language in humans and their homologues in rhesus macaques: ventrolateral prefrontal cortex, posterior superior temporal cortex (STC), and primary motor cortex. Although the overall pattern of gene expression was very similar between hemispheres in both humans and macaques, weighted gene correlation network analysis revealed gene co-expression modules associated with hemisphere, which are different among the three cortical regions examined. Notably, a receptor-enriched gene module in STC was particularly associated with hemisphere and showed different expression levels between hemispheres only in humans.
Collapse
Affiliation(s)
- Gerard Muntané
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, 20052, USA.
- Institut Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, 08003, Barcelona, Spain.
| | - Gabriel Santpere
- Institut Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, 08003, Barcelona, Spain
| | - Andrey Verendeev
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, 20052, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, 94158, USA
| | - Bob Jacobs
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, CO, 80903, USA
| | - William D Hopkins
- Neuroscience Institute and the Language Research Center, Georgia State University, Atlanta, GA, 30302, USA
| | - Arcadi Navarro
- Institut Biologia Evolutiva, Universitat Pompeu Fabra-CSIC, 08003, Barcelona, Spain
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
118
|
Thompson PM, Andreassen OA, Arias-Vasquez A, Bearden CE, Boedhoe PS, Brouwer RM, Buckner RL, Buitelaar JK, Bulayeva KB, Cannon DM, Cohen RA, Conrod PJ, Dale AM, Deary IJ, Dennis EL, de Reus MA, Desrivieres S, Dima D, Donohoe G, Fisher SE, Fouche JP, Francks C, Frangou S, Franke B, Ganjgahi H, Garavan H, Glahn DC, Grabe HJ, Guadalupe T, Gutman BA, Hashimoto R, Hibar DP, Holland D, Hoogman M, Hulshoff Pol HE, Hosten N, Jahanshad N, Kelly S, Kochunov P, Kremen WS, Lee PH, Mackey S, Martin NG, Mazoyer B, McDonald C, Medland SE, Morey RA, Nichols TE, Paus T, Pausova Z, Schmaal L, Schumann G, Shen L, Sisodiya SM, Smit DJA, Smoller JW, Stein DJ, Stein JL, Toro R, Turner JA, van den Heuvel MP, van den Heuvel OL, van Erp TGM, van Rooij D, Veltman DJ, Walter H, Wang Y, Wardlaw JM, Whelan CD, Wright MJ, Ye J. ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide. Neuroimage 2017; 145:389-408. [PMID: 26658930 PMCID: PMC4893347 DOI: 10.1016/j.neuroimage.2015.11.057] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/16/2015] [Accepted: 11/23/2015] [Indexed: 11/22/2022] Open
Abstract
In this review, we discuss recent work by the ENIGMA Consortium (http://enigma.ini.usc.edu) - a global alliance of over 500 scientists spread across 200 institutions in 35 countries collectively analyzing brain imaging, clinical, and genetic data. Initially formed to detect genetic influences on brain measures, ENIGMA has grown to over 30 working groups studying 12 major brain diseases by pooling and comparing brain data. In some of the largest neuroimaging studies to date - of schizophrenia and major depression - ENIGMA has found replicable disease effects on the brain that are consistent worldwide, as well as factors that modulate disease effects. In partnership with other consortia including ADNI, CHARGE, IMAGEN and others1, ENIGMA's genomic screens - now numbering over 30,000 MRI scans - have revealed at least 8 genetic loci that affect brain volumes. Downstream of gene findings, ENIGMA has revealed how these individual variants - and genetic variants in general - may affect both the brain and risk for a range of diseases. The ENIGMA consortium is discovering factors that consistently affect brain structure and function that will serve as future predictors linking individual brain scans and genomic data. It is generating vast pools of normative data on brain measures - from tens of thousands of people - that may help detect deviations from normal development or aging in specific groups of subjects. We discuss challenges and opportunities in applying these predictors to individual subjects and new cohorts, as well as lessons we have learned in ENIGMA's efforts so far.
Collapse
Affiliation(s)
- Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine of the University of Southern California, Marina del Rey 90292, USA; Departments of Neurosciences, Radiology, Psychiatry, and Cognitive Science, University of California, San Diego 92093, CA, USA
| | - Ole A Andreassen
- NORMENT-KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo 0315, Norway; NORMENT-KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0315, Norway
| | - Alejandro Arias-Vasquez
- Donders Center for Cognitive Neuroscience, Departments of Psychiatry, Human Genetics & Cognitive Neuroscience, Radboud University Medical Center, Nijmegen 6525, The Netherlands
| | - Carrie E Bearden
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, CA 90095, USA; Dept. of Psychology, University of California, Los Angeles, CA 90095, USA; Brain Research Institute, University of California, Los Angeles, CA 90095, USA
| | - Premika S Boedhoe
- Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands; Department of Psychiatry, VU University Medical Center (VUMC), Amsterdam, The Netherlands; Neuroscience Campus Amsterdam, VU/VUMC, Amsterdam, The Netherlands
| | - Rachel M Brouwer
- Brain Center Rudolf Magnus, Department of Psychiatry, UMC Utrecht, Utrecht 3584 CX, The Netherlands
| | - Randy L Buckner
- Department of Psychiatry, Massachusetts General Hospital, Boston 02114, USA
| | - Jan K Buitelaar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands; Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Kazima B Bulayeva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin str. 3, Moscow 119991, Russia
| | - Dara M Cannon
- National Institute of Mental Health Intramural Research Program, Bethesda 20892, USA; Neuroimaging & Cognitive Genomics Centre (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Ronald A Cohen
- Institute on Aging, University of Florida, Gainesville, FL 32611, USA
| | - Patricia J Conrod
- Department of Psychological Medicine and Psychiatry, Section of Addiction, King's College London, University of London, UK
| | - Anders M Dale
- Departments of Neurosciences, Radiology, Psychiatry, and Cognitive Science, University of California, San Diego, La Jolla, CA 92093-0841, USA
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Emily L Dennis
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine of the University of Southern California, Marina del Rey 90292, USA
| | - Marcel A de Reus
- Brain Center Rudolf Magnus, Department of Psychiatry, UMC Utrecht, Utrecht 3584 CX, The Netherlands
| | - Sylvane Desrivieres
- MRC-SGDP Centre, Institute of Psychiatry, King's College London, London SE5 8AF, UK
| | - Danai Dima
- Institute of Psychiatry, Psychology and Neuroscience, King׳s College London, UK; Clinical Neuroscience Studies (CNS) Center, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, USA
| | - Gary Donohoe
- Neuroimaging and Cognitive Genomics center (NICOG), School of Psychology, National University of Ireland, Galway, Ireland
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Jean-Paul Fouche
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Sophia Frangou
- Clinical Neuroscience Studies (CNS) Center, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, USA
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525, The Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen 6525, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Habib Ganjgahi
- Department of Statistics, The University of Warwick, Coventry, UK
| | - Hugh Garavan
- Psychiatry Department, University of Vermont, VT, USA
| | - David C Glahn
- Department of Psychiatry, Yale University, New Haven, CT 06511, USA; Olin Neuropsychiatric Research Center, Hartford, CT 06114, USA
| | - Hans J Grabe
- Department of Psychiatry, University Medicine Greifswald, Greifswald 17489, Germany; Department of Psychiatry and Psychotherapy, HELIOS Hospital, Stralsund 18435, Germany
| | - Tulio Guadalupe
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525 XD, The Netherlands; International Max Planck Research School for Language Sciences, Nijmegen 6525 XD, The Netherlands
| | - Boris A Gutman
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine of the University of Southern California, Marina del Rey 90292, USA
| | - Ryota Hashimoto
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Japan
| | - Derrek P Hibar
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine of the University of Southern California, Marina del Rey 90292, USA
| | - Dominic Holland
- Departments of Neurosciences, Radiology, Psychiatry, and Cognitive Science, University of California, San Diego, La Jolla, CA 92093-0841, USA
| | - Martine Hoogman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen 6525, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Hilleke E Hulshoff Pol
- Brain Center Rudolf Magnus, Department of Psychiatry, UMC Utrecht, Utrecht 3584 CX, The Netherlands
| | - Norbert Hosten
- Department of Radiology University Medicine Greifswald, Greifswald 17475, Germany
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine of the University of Southern California, Marina del Rey 90292, USA
| | - Sinead Kelly
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine of the University of Southern California, Marina del Rey 90292, USA
| | - Peter Kochunov
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Phil H Lee
- Center for Human Genetic Research, Massachusetts General Hospital, USA; Department of Psychiatry, Harvard Medical School, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, USA
| | - Scott Mackey
- Department of Psychiatry, University of Vermont, Burlington 05401, VT, USA
| | | | - Bernard Mazoyer
- Groupe d'imagerie Neurofonctionnelle, UMR5296 CNRS CEA Université de Bordeaux, France
| | - Colm McDonald
- Neuroimaging & Cognitive Genomics Centre (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Rajendra A Morey
- Duke Institute for Brain Sciences, Duke University, NC 27710, USA
| | - Thomas E Nichols
- Department of Statistics & WMG, University of Warwick, Coventry CV4 7AL, UK; FMRIB Centre, University of Oxford, Oxford OX3 9DU, UK
| | - Tomas Paus
- Rotman Research Institute, Baycrest, Toronto, ON, Canada; Departments of Psychology and Psychiatry, University of Toronto, Toronto, Canada; Child Mind Institute, NY, USA
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, Canada; Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Lianne Schmaal
- Department of Psychiatry, VU University Medical Center (VUMC), Amsterdam, The Netherlands; Neuroscience Campus Amsterdam, VU/VUMC, Amsterdam, The Netherlands
| | - Gunter Schumann
- MRC-SGDP Centre, Institute of Psychiatry, King's College London, London SE5 8AF, UK
| | - Li Shen
- Center for Neuroimaging, Dept. of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W. 16th Street, Suite 4100, Indianapolis, IN 46202, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 355 W. 16th Street, Suite 4100, Indianapolis, IN 46202, USA
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London WC1N 3BG, UK and Epilepsy Society, Bucks, UK
| | - Dirk J A Smit
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands; Neuroscience Campus Amsterdam, VU/VUMC, Amsterdam, The Netherlands
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, USA
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa; MRC Research Unit on Anxiety & Stress Disorders, South Africa
| | - Jason L Stein
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine of the University of Southern California, Marina del Rey 90292, USA; Neurogenetics Program, Department of Neurology, UCLA School of Medicine, Los Angeles 90095, USA
| | | | - Jessica A Turner
- Departments of Psychology and Neuroscience, Georgia State University, Atlanta, GA 30302, USA
| | - Martijn P van den Heuvel
- Brain Center Rudolf Magnus, Department of Psychiatry, UMC Utrecht, Utrecht 3584 CX, The Netherlands
| | - Odile L van den Heuvel
- Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands; Department of Psychiatry, VU University Medical Center (VUMC), Amsterdam, The Netherlands; Neuroscience Campus Amsterdam, VU/VUMC, Amsterdam, The Netherlands
| | - Theo G M van Erp
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92617, USA
| | - Daan van Rooij
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Dick J Veltman
- Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands; Department of Psychiatry, VU University Medical Center (VUMC), Amsterdam, The Netherlands; Neuroscience Campus Amsterdam, VU/VUMC, Amsterdam, The Netherlands
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, CCM, Berlin 10117, Germany
| | - Yalin Wang
- School of Computing, Informatics and Decision Systems Engineering, Arizona State University, AZ 85281, USA
| | - Joanna M Wardlaw
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh EH4 2XU, UK; Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Christopher D Whelan
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine of the University of Southern California, Marina del Rey 90292, USA
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane 4072, Australia
| | - Jieping Ye
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|