101
|
Rosch M, Lucas K, Al-Gousous J, Pöschl U, Langguth P. Formulation and Characterization of an Effervescent Hydrogen-Generating Tablet. Pharmaceuticals (Basel) 2021; 14:1327. [PMID: 34959728 PMCID: PMC8707073 DOI: 10.3390/ph14121327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022] Open
Abstract
Hydrogen, as a medical gas, is a promising emerging treatment for many diseases related to inflammation and oxidative stress. Molecular hydrogen can be generated through hydrogen ion reduction by a metal, and magnesium-containing effervescent tablets constitute an attractive formulation strategy for oral delivery. In this regard, saccharide-based excipients represent an important class of potential fillers with high water solubility and sweet taste. In this study, we investigated the effect of different saccharides on the morphological and mechanical properties and the disintegration of hydrogen-generating effervescent tablets prepared by dry granulation. Mannitol was found to be superior to other investigated saccharides and promoted far more rapid hydrogen generation combined with acceptable mechanical properties. In further product optimization involving investigation of lubricant effects, adipic acid was selected for the optimized tablet, due to regulatory considerations.
Collapse
Affiliation(s)
- Moritz Rosch
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany; (K.L.); (U.P.)
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
| | - Kurt Lucas
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany; (K.L.); (U.P.)
| | - Jozef Al-Gousous
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany; (K.L.); (U.P.)
| | - Peter Langguth
- Department of Biopharmaceutics and Pharmaceutical Technology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
| |
Collapse
|
102
|
Nadeem A, Ahmad SF, Al-Harbi NO, Al-Ayadhi LY, Sarawi W, Attia SM, Bakheet SA, Alqarni SA, Ali N, AsSobeai HM. Imbalance in pro-inflammatory and anti-inflammatory cytokines milieu in B cells of children with autism. Mol Immunol 2021; 141:297-304. [PMID: 34915269 DOI: 10.1016/j.molimm.2021.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
B cells play multiple roles in preservation of healthy immune system including management of immune responses by expression of pro- and anti-inflammatory cytokines. Several earlier studies have documented that B cells express both pro-inflammatory cytokines such as IL-6, TNF-α as well as anti-inflammatory cytokines such as IL-10. However, it is yet to be examined whether these pro-/anti-inflammatory cytokines are expressed in B cells of children with autism spectrum disorder (ASD). Pathophysiology of ASD begins in early childhood and is characterized by repetitive/restricted behavioral patterns, and dysfunction in communal/communication skills. ASD pathophysiology also has a strong component of immune dysfunction which has been highlighted in numerous earlier publications. In this study, we specifically explored pro-/anti-inflammatory cytokines (IL-6, IL-17A, IFN-γ, TNF-α, IL-10) in B cells of ASD subjects and compared them typically developing control (TDC) children. Present study shows that inflammatory cytokines such as IL-6 and TNF-α are elevated in B cells of ASD subjects, while anti-inflammatory cytokine, IL-10 is decreased in ASD group when compared to TDC group. Further, TLR4 activation by its ligand, lipopolysaccharide (LPS) further upregulates inflammatory potential of B cells from ASD group by increasing IL-6 expression, whereas LPS has no significant effect on IL-10 expression in ASD group. Furthermore, LPS-induced inflammatory signaling of IL-6 in B cells of ASD subjects was partially mitigated by the pretreatment with NF-kB inhibitor. Present study propounds the idea that B cells could be crucial players in causing immune dysfunction in ASD subjects through an imbalance in expression of pro-/anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Autism Research and Treatment Center, AL-Amodi Autism Research Chair, Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Wedad Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Homood M AsSobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
103
|
Zhao B, Zhang Q, Liang X, Xie J, Sun Q. Quercetin reduces inflammation in a rat model of diabetic peripheral neuropathy by regulating the TLR4/MyD88/NF-κB signalling pathway. Eur J Pharmacol 2021; 912:174607. [PMID: 34743981 DOI: 10.1016/j.ejphar.2021.174607] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/01/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022]
Abstract
Neuroinflammation contributes significantly to the pathogenesis of diabetic peripheral neuropathy (DPN). Quercetin reportedly exerts neuroprotective effects in DPN. Here, we aimed to evaluate the potential anti-inflammatory effects of quercetin in a DPN rat model. Eight weeks after streptozotocin administration, diabetic rats were treated with quercetin (30 and 60 mg/kg/day orally) for 6 weeks. We assessed the mechanical withdrawal threshold (MWT), nerve conduction velocity (NCV) and morphological changes in sciatic nerves. Additionally, we measured the levels of tumour necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6 by ELISA and the expression of TLR4, MyD88, and NF-κB in sciatic nerves by western blotting and immunohistochemical assays. Our results revealed that blood glucose levels and body weight were unaltered following quercetin treatment. However, quercetin improved MWT (p < 0.05), NCV (p < 0.05), and pathological changes in the sciatic nerves of DPN rats. Quercetin significantly alleviated the increased expression of TNF-α (p < 0.05) and IL-1β (p < 0.001). Furthermore, high-dose quercetin administration significantly downregulated the expression of TLR4 (p < 0.001), MyD88 (p < 0.001), and NF-κB (p < 0.001) in sciatic nerves of DPN rats. Our findings revealed that quercetin could reduce the levels of inflammatory factors in DPN rats, possibly mediated via the downregulation of the TLR4/MyD88/NF-κB signalling pathway. Collectively, these results suggest that although quercetin did not decreased blood glucose levels or reversed the reduced body weight, it showed anti-inflammatory and neuroprotective effects, which was beneficial for the treatment of DPN.
Collapse
Affiliation(s)
- Bingjia Zhao
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Qian Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Xiaochun Liang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China.
| | - Jun Xie
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Qing Sun
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
104
|
Hao R, Jiang Y, Li F, Sun-Waterhouse D, Li D. MiR-182-5p/TLR4/NF-κB axis contributes to the protective effect of caffeic acid phenethyl ester against cadmium-induced spleen toxicity and associated damage in mice. Food Chem Toxicol 2021; 158:112654. [PMID: 34743973 DOI: 10.1016/j.fct.2021.112654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 01/17/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal pollutant that can be accumulated in organs including the spleen, thereby threatening human health. In this study, the effect of caffeic acid phenethyl ester (CAPE, a bioactive component of honeybee propolis) on CdCl2-induced spleen toxicity and underlying mechanisms were examined in mice. Histological examinations revealed that CAPE (10 μmol/kg/day b.w.) could mitigate spleen damage induced by CdCl2 (1.5 mg/kg/day b.w.) in mice. Compared to the mice treated only by CdCl2, CAPE administration increased the body weight while decreasing the spleen weight, spleen Cd content and spleen to body ratio of the CdCl2-treated mice. Western blot and ELISA tests revealed that CAPE suppressed CdCl2-induced inflammation (indicated by the decreases in the levels of inflammatory indictors). TUNEL and Western blot results showed that CAPE suppressed CdCl2-induced apoptosis through reducing the percentage of TUNEL-positive cells and regulating apoptosis factors. The antagonistic effect of CAPE against CdCl2-induced spleen toxicity was realized by increasing miR-182-5p expression to regulate the TLR4/NF-κB pathway. Therefore, CAPE could be a food-derived spleen protector to counteract Cd-induced spleen toxicity through alleviating apoptosis and inflammation via the miR-182-5p/TLR4/NF-κB axis.
Collapse
Affiliation(s)
- Rili Hao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China
| | - Yang Jiang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China; School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China.
| |
Collapse
|
105
|
Varesi A, Deumer US, Ananth S, Ricevuti G. The Emerging Role of Gut Microbiota in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): Current Evidence and Potential Therapeutic Applications. J Clin Med 2021; 10:jcm10215077. [PMID: 34768601 PMCID: PMC8584653 DOI: 10.3390/jcm10215077] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
The well-known symptoms of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) are chronic pain, cognitive dysfunction, post-exertional malaise and severe fatigue. Another class of symptoms commonly reported in the context of ME/CFS are gastrointestinal (GI) problems. These may occur due to comorbidities such as Crohn's disease or irritable bowel syndrome (IBS), or as a symptom of ME/CFS itself due to an interruption of the complex interplay between the gut microbiota (GM) and the host GI tract. An altered composition and overall decrease in diversity of GM has been observed in ME/CFS cases compared to controls. In this review, we reflect on genetics, infections, and other influences that may factor into the alterations seen in the GM of ME/CFS individuals, we discuss consequences arising from these changes, and we contemplate the therapeutic potential of treating the gut to alleviate ME/CFS symptoms holistically.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
- Correspondence: (A.V.); (G.R.)
| | - Undine-Sophie Deumer
- Department of Biological Sciences, Faculty of Natural Sciences and Mathematics, University of Cologne, 50674 Cologne, Germany;
| | - Sanjana Ananth
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Giovanni Ricevuti
- Department of Drug Sciences, School of Pharmacy, University of Pavia, 27100 Pavia, Italy
- Correspondence: (A.V.); (G.R.)
| |
Collapse
|
106
|
Gram-Negative Bacterial Lipopolysaccharide Promotes Tumor Cell Proliferation in Breast Implant-Associated Anaplastic Large-Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13215298. [PMID: 34771464 PMCID: PMC8582399 DOI: 10.3390/cancers13215298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 01/04/2023] Open
Abstract
Breast implant-associated anaplastic large-cell lymphoma (BIA-ALCL) is a distinct malignancy associated with textured breast implants. We investigated whether bacteria could trigger the activation and multiplication of BIA-ALCL cells in vitro. BIA-ALCL patient-derived BIA-ALCL tumor cells, BIA-ALCL cell lines, cutaneous ALCL cell lines, an immortal T-cell line (MT-4), and peripheral blood mononuclear cells (PBMC) from BIA-ALCL, capsular contracture, and primary augmentation patients were studied. Cells were subjected to various mitogenic stimulation assays including plant phytohemagglutinin (PHA), Gram-negative bacterial lipopolysaccharide (LPS), Staphylococcal superantigens enterotoxin A (SEA), toxic shock syndrome toxin-1 (TSST-1), or sterilized implant shells. Patient-derived BIA-ALCL tumor cells and BIA-ALCL cell lines showed a unique response to LPS stimulation. This response was dampened significantly in the presence of a Toll-like receptor 4 (TLR4) inhibitor peptide. In contrast, cutaneous ALCL cells, MT-4, and PBMC cells from all patients responded significantly more to PHA, SEA, and TSST-1 than to LPS. Breast implant shells of all surface grades alone did not produce a proliferative response of BIA-ALCL cells, indicating the breast implant does not act as a pro-inflammatory stimulant. These findings indicate a possible novel pathway for LPS to promote BIA-ALCL cell proliferation via a TLR4 receptor-mediated bacterial transformation of T-cells into malignancy.
Collapse
|
107
|
Deumer US, Varesi A, Floris V, Savioli G, Mantovani E, López-Carrasco P, Rosati GM, Prasad S, Ricevuti G. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): An Overview. J Clin Med 2021; 10:4786. [PMID: 34682909 PMCID: PMC8538807 DOI: 10.3390/jcm10204786] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic systemic disease that manifests via various symptoms such as chronic fatigue, post-exertional malaise, and cognitive impairment described as "brain fog". These symptoms often prevent patients from keeping up their pre-disease onset lifestyle, as extended periods of physical or mental activity become almost impossible. However, the disease presents heterogeneously with varying severity across patients. Therefore, consensus criteria have been designed to provide a diagnosis based on symptoms. To date, no biomarker-based tests or diagnoses are available, since the molecular changes observed also largely differ from patient to patient. In this review, we discuss the infectious, genetic, and hormonal components that may be involved in CFS pathogenesis, we scrutinize the role of gut microbiota in disease progression, we highlight the potential of non-coding RNA (ncRNA) for the development of diagnostic tools and briefly mention the possibility of SARS-CoV-2 infection causing CFS.
Collapse
Affiliation(s)
- Undine-Sophie Deumer
- Department of Biological Sciences, Faculty of Natural Sciences and Mathematics, University of Cologne, 50674 Cologne, Germany;
| | - Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Valentina Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy;
| | - Gabriele Savioli
- Emergency Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Elisa Mantovani
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurology Section, University of Verona, 37129 Verona, Italy;
| | - Paulina López-Carrasco
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
| | | | - Sakshi Prasad
- National Pirogov Memorial Medical University, 21018 Vinnytsya, Ukraine;
| | - Giovanni Ricevuti
- School of Pharmacy, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
108
|
Kong L, Wang Z, Xiao C, Zhu Q, Song Z. Glycerol Monolaurate Ameliorated Intestinal Barrier and Immunity in Broilers by Regulating Intestinal Inflammation, Antioxidant Balance, and Intestinal Microbiota. Front Immunol 2021; 12:713485. [PMID: 34630388 PMCID: PMC8496679 DOI: 10.3389/fimmu.2021.713485] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
This study was conducted to investigate the impact of glycerol monolaurate (GML) on performance, immunity, intestinal barrier, and cecal microbiota in broiler chicks. A total of 360 one-day-old broilers (Arbor Acres) with an average weight of 45.7 g were randomly allocated to five dietary groups as follows: basal diet and basal diets complemented with 300, 600, 900, or 1200 mg/kg GML. Samples were collected at 7 and 14 days of age. Results revealed that feed intake increased (P < 0.05) after 900 and 1200 mg/kg GML were administered during the entire 14-day experiment period. Dietary GML decreased (P < 0.05) crypt depth and increased the villus height-to-crypt depth ratio of the jejunum. In the serum and jejunum, supplementation with more than 600 mg/kg GML reduced (P < 0.05) interleukin-1β, tumor necrosis factor-α, and malondialdehyde levels and increased (P < 0.05) the levels of immunoglobulin G, jejunal mucin 2, total antioxidant capacity, and total superoxide dismutase. GML down-regulate (P < 0.05) jejunal interleukin-1β and interferon-γ expression and increased (P < 0.05) the mRNA level of zonula occludens 1 and occludin. A reduced (P < 0.05) expression of toll-like receptor 4 and nuclear factor kappa-B was shown in GML-treated groups. In addition, GML modulated the composition of the cecal microbiota of the broilers, improved (P < 0.05) microbial diversity, and increased (P < 0.05) the abundance of butyrate-producing bacteria. Spearman’s correlation analysis revealed that the genera Barnesiella, Coprobacter, Lachnospiraceae, Faecalibacterium, Bacteroides, Odoriacter, and Parabacteroides were related to inflammation and intestinal integrity. In conclusion, GML ameliorated intestinal morphology and barrier function in broiler chicks probably by regulating intestinal immune and antioxidant balance, as well as intestinal microbiota.
Collapse
Affiliation(s)
- Linglian Kong
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Zhenhua Wang
- Center for Mitochondria and Healthy Ageing, College of Life Sciences, Yantai University, Yantai, China
| | - Chuanpi Xiao
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Qidong Zhu
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Zhigang Song
- Department of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
109
|
Tian C, Chang Y, Wang R, Kang Z, Wang Q, Tong Z, Zhou A, Cui C, Liu M. Optimization of ultrasound extraction of Tribulus terrestris L. leaves saponins and their HPLC-DAD-ESI-MS n profiling, anti-inflammatory activity and mechanism in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114225. [PMID: 34038799 DOI: 10.1016/j.jep.2021.114225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tribulus terrestris L., as an annual herb plant from Zygophyllaceae, exhibits many biological activities, and its main chemical constituents are saponins. However, the extraction process, chemical compositions, anti-inflammatory effect and mechanism of total saponins from Tribulus terrestris L. leaves are still unclear. AIM OF THE STUDY The present study extensively evaluated the extraction process, major components, anti-inflammatory action and mechanism of Tribulus terrestris L. leaves saponins. MATERIALS AND METHODS The ultrasonic extraction and response surface methods were adopted for optimization of extraction technology of total saponins from Tribulus terrestris L. leaves, and its compositions were detected with LC-MSn method. The anti-inflammatory activity of total saponins was studied by lipopolysaccharide induced RAW 264.7 cells and acute lung injury mice models. RESULTS The ultrasonic extraction parameters of saponins fraction, including ethanol concentration 30%, extraction time 55 min, ratio of solvent to material 35:1 ml/g and extraction temperature 46 °C, were screened by response surface method with the extracting rate 5.49%, and thirty compositions were detected with LC-MSn method. Moreover, saponins fraction can play a stronger anti-inflammatory effect by reducing the phagocytic activity and pulmonary edema, and protection of morphology of RAW 264.7 cells and lung tissues, and decreasing the content of NO and TNF-α. Moreover, it was revealed that total saponins extract can exert the anti-inflammatory action by the inhibition of the activation of the TLR4-TRAF6-NF-κB signalling pathway. CONCLUSION These studies imply that Tribulus terrestris L. leaves saponins may be an important anti-inflammatory drug in clinic.
Collapse
Affiliation(s)
- Chunlian Tian
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist., 110866, Shenyang Liaoning Prov., People's Republic of China; Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, 264005, Yantai Shangdong Prov., People's Republic of China
| | - Yu Chang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist., 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Ruxia Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist., 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Zhiruo Kang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist., 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Qi Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist., 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Zhifan Tong
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist., 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Aohua Zhou
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist., 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Cancan Cui
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist., 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Mingchun Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist., 110866, Shenyang Liaoning Prov., People's Republic of China.
| |
Collapse
|
110
|
YG-1 Extract Improves Acute Pulmonary Inflammation by Inducing Bronchodilation and Inhibiting Inflammatory Cytokines. Nutrients 2021; 13:nu13103414. [PMID: 34684415 PMCID: PMC8537401 DOI: 10.3390/nu13103414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022] Open
Abstract
YG-1 extract used in this study is a mixture of Lonicera japonica, Arctic Fructus, and Scutellariae Radix. The present study was designed to investigate the effect of YG-1 extract on bronchodilatation (ex vivo) and acute bronchial and pulmonary inflammation relief (in vivo). Ex vivo: The bronchodilation reaction was confirmed by treatment with YG-1 concentration-accumulation (0.01, 0.03, 0.1, 0.3, and 1 mg/mL) in the bronchial tissue ring pre-contracted by acetylcholine (10 μM). As a result, YG-1 extract is considered to affect bronchodilation by increased cyclic adenosine monophosphate, cAMP) levels through the β2-adrenergic receptor. In vivo: experiments were performed in C57BL/6 mice were divided into the following groups: control group; PM2.5 (fine particulate matter)-exposed group (PM2.5, 200 μg/kg/mL saline); and PM2.5-exposed + YG-1 extract (200 mg/kg/day) group. The PM2.5 (200 μg/kg/mL saline) was exposed for 1 h for 5 days using an ultrasonic nebulizer aerosol chamber to instill fine dust in the bronchi and lungs, thereby inducing acute lung and bronchial inflammation. From two days before PM2.5 exposure, YG-1 extract (200 mg/kg/day) was administered orally for 7 days. The PM2.5 exposure was involved in airway remodeling and inflammation, suggesting that YG-1 treatment improves acute bronchial and pulmonary inflammation by inhibiting the inflammatory cytokines (NLRP3/caspase-1 pathway). The application of YG-1 extract with broncho-dilating effect to acute bronchial and pulmonary inflammation animal models has great significance in developing therapeutic agents for respiratory diseases. Therefore, these results can provide essential data for the development of novel respiratory symptom relievers. Our study provides strong evidence that YG-1 extracts reduce the prevalence of respiratory symptoms and the incidence of non-specific lung diseases and improve bronchial and lung function.
Collapse
|
111
|
Aldakheel FM, Abrar A, Munir S, Aslam S, Allemailem KS, Khurshid M, Ashfaq UA. Proteome-Wide Mapping and Reverse Vaccinology Approaches to Design a Multi-Epitope Vaccine against Clostridium perfringens. Vaccines (Basel) 2021; 9:1079. [PMID: 34696187 PMCID: PMC8539331 DOI: 10.3390/vaccines9101079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/30/2022] Open
Abstract
C. perfringens is a highly versatile bacteria of livestock and humans, causing enteritis (a common food-borne illness in humans), enterotoxaemia (in which toxins are formed in the intestine which damage and destroy organs, i.e., the brain), and gangrene (wound infection). There is no particular cure for the toxins of C. perfringens. Supportive care (medical control of pain, intravenous fluids) is the standard treatment. Therefore, a multiple-epitope vaccine (MEV) should be designed to battle against C. perfringens infection. Furthermore, the main objective of this in silico investigation is to design an MEV that targets C. perfringens. For this purpose, we selected the top three proteins that were highly antigenic using immuno-informatics approaches, including molecular docking. B-cells, IFN-gamma, and T cells for target proteins were predicted and the most conserved epitopes were selected for further investigation. For the development of the final MEV, epitopes of LBL5, CTL17, and HTL13 were linked to GPGPG, AAY, and KK linkers. The vaccine N-end was joined to an adjuvant through an EAAK linker to improve immunogenicity. After the attachment of linkers and adjuvants, the final construct was 415 amino acids. B-cell and IFN-gamma epitopes demonstrate that the model structure is enhanced for humoral and cellular immune responses. To validate the immunogenicity and safety of the final construct, various physicochemical properties, and other properties such as antigenicity and non-allergens, were evaluated. Furthermore, molecular docking was carried out for verification of vaccine compatibility with the receptor, evaluated in silico. Also, in silico cloning was employed for the verification of the proper expression and credibility of the construct.
Collapse
Affiliation(s)
- Fahad M. Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11564, Saudi Arabia;
| | - Amna Abrar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (A.A.); (S.M.); (S.A.)
| | - Samman Munir
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (A.A.); (S.M.); (S.A.)
| | - Sehar Aslam
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (A.A.); (S.M.); (S.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad 38000, Pakistan;
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; (A.A.); (S.M.); (S.A.)
| |
Collapse
|
112
|
Razavi SM, Khayatan D, Arab ZN, Momtaz S, Zare K, Jafari RM, Dehpour AR, Abdolghaffari AH. Licofelone, a potent COX/5-LOX inhibitor and a novel option for treatment of neurological disorders. Prostaglandins Other Lipid Mediat 2021; 157:106587. [PMID: 34517113 DOI: 10.1016/j.prostaglandins.2021.106587] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Accepted: 09/04/2021] [Indexed: 12/13/2022]
Abstract
Neurological disorders result in disability and morbidity. Neuroinflammation is a key factor involved in progression or resolution of a series of neurological disorders like Huntington disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD), Spinal Cord Injury (SCI), and Seizure. Thereby, anti-inflammatory drugs have been developed to improve the neurodegenerative impairments. Licofelone is an approved osteoarthritis drug that inhibits both the COX (cyclooxygenase) and 5-LOX (lipoxygenase) pathways. Licofelone has pain-relieving and anti-inflammatory effects and it was shown to have neuroprotective properties in the central nervous system, which is implicated in its regulatory effect on the COX/5-LOX pathway, inflammatory cytokines, and immune responses. In this study, we briefly review the various features of neurological disorders and the function of COX/LOX in their flare up and current pharmacological products for their management. Moreover, this review attempts to summarize potential therapeutics that target the immune responses within the central nervous system. A better understanding of the interactions between Licofelone and the nervous systems will be crucial to demonstrate the possible efficacy of Licofelone in neurological disorders.
Collapse
Affiliation(s)
- Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kimia Zare
- School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
113
|
Dai Y, Liu X, Gao Y. Aberrant miR-219-5p is correlated with TLR4 and serves as a novel biomarker in patients with multiple organ dysfunction syndrome caused by acute paraquat poisoning. Int J Immunopathol Pharmacol 2021; 34:2058738420974888. [PMID: 33233960 PMCID: PMC7691899 DOI: 10.1177/2058738420974888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This study aimed to investigate the clinical significance of serum
microRNA-219-5p (miR-219-5p) in patients with multiple organ dysfunction
syndrome (MODS) caused by acute paraquat (PQ) poisoning, and its correlation
with Toll-like Receptor 4 (TLR4). Luciferase reporter assay was used to
investigate in vitro the correlation of miR-219-5p with TLR4. Serum miR-219-5p
levels were evaluated by quantitative real-time polymerase chain reaction. Serum
levels of TLR4, IL-1β, and TNF-α were measured by Enzyme-linked immune sorbent
assay (ELISA). ROC analysis was performed to assess the diagnostic significance,
Kaplan-Meier survival curves and Cox regression analysis were used to evaluate
the prognostic value of miR-219-5p in MODS patients. TLR4 was a target gene of
miR-219-5p and was increased in MODS patients. Serum miR-219-5p level was
decreased and negatively correlated with TLR4 level in MODS patients
(r = −0.660, P < 0.001), which had
important diagnostic value and negatively correlated with APACHE II score in
MODS patients. The miR-219-5p expression was markedly associated with the WBC,
ALT, AST, PaCO2, Lac, and APACHE II score. Non-survivals had more
patients with low miR-219-5p expression. Patients with low miR-219-5p expression
had shorter survival time. MiR-219-5p and APACHE II score were two independently
prognostic factors for 28-day survival. MiR-219-5p was negatively correlated
with, while TLR4 was positively correlated with the levels of IL-1β and TNF-α.
The serum miR-219-5p level may be a potential biomarker for acute PQ-induced
MODS diagnosis and prognosis. Furthermore, miR-219-5p may be associated with the
progression of MODS by regulating TLR4-related inflammatory response.
Collapse
Affiliation(s)
- Yunxiang Dai
- Emergency Department, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong, China
| | - Xia Liu
- Radiology Department, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong, China
| | - Yuming Gao
- Emergency Department, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong, China
| |
Collapse
|
114
|
Yao ZA, Xu L, Jin LM, Wang BX, Fu CZ, Bai Y, Wu HG. κ-Carrageenan Oligosaccharides Inhibit the Inflammation of Lipopolysaccharide-Activated Microglia Via TLR4/NF-κB and p38/JNK MAPKs Pathways. Neurochem Res 2021; 47:295-304. [PMID: 34491516 DOI: 10.1007/s11064-021-03443-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Microglial inflammation plays an essential role in neurodegenerative disease. Our previous studies had shown that κ-carrageenan oligosaccharides (KOS) could inhibit the excessive activation of microglia that induced by LPS, while the interrelated mechanisms were still indistinct. Therefore, we detected the inflammatory signaling pathway on LPS-activated microglia that pretreat by different content of KOS to reveal the mechanism on KOS's inhibition of microglia inflammatory response. ELISA was used to detect the effects of KOS on the secretion of interleukin-1 (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and prostaglandin E2 (PG-2) by LPS-activated microglia, respectively. The production of reactive oxygen species (ROS) and nitric oxide (NO) in microglia cells was detected by flow cytometry, and the protein expression of immunoinflammation-related signaling pathways were detected by Western Blot. The results showed that KOS could significantly protected the microglia from the over-activated inflammatory by inhibiting the release of inflammatory cytokines and the oxidative stress response. And KOS could reduce the expression of the protein that related to the TLR4/NF-κB and p38/JNK MAPKs pathways activated by LPS in microglia. However, there may be no specific target of KOS in cells. Therefore, KOS, a natural algal source oligosaccharide, has immunomodulatory effects and can be used as a potential intervention therapy for inflammatory related neurodegenerative diseases.
Collapse
Affiliation(s)
- Zi-Ang Yao
- College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
| | - Ling Xu
- Department of Clinical Laboratory, Xinhua Hospital Affiliated to Dalian University, Dalian, 116021, Liaoning, China
| | - Li-Ming Jin
- College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
| | - Bai-Xiang Wang
- College of Life Science and Technology, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, Liaoning, China
| | - Cheng-Zhu Fu
- College of Life Science and Technology, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, Liaoning, China
| | - Ying Bai
- Department of Clinical Laboratory, Xinhua Hospital Affiliated to Dalian University, Dalian, 116021, Liaoning, China
| | - Hai-Ge Wu
- College of Life Science and Technology, Dalian University, No. 10 Xuefu Street, Dalian Economic and Technological Development Zone, Dalian, 116622, Liaoning, China.
| |
Collapse
|
115
|
Xuemei L, Qiu S, Chen G, Liu M. Myrtenol alleviates oxidative stress and inflammation in diabetic pregnant rats via TLR4/MyD88/NF-κB signaling pathway. J Biochem Mol Toxicol 2021; 35:e22904. [PMID: 34477272 DOI: 10.1002/jbt.22904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 01/17/2023]
Abstract
Gestational diabetes mellitus (GDM) is a special kind of diabetes that arises only during pregnancy. A woman with GDM has a higher risk of developing type-2 diabetes and other metabolic diseases. In this exploration, we intended to scrutinize the therapeutic actions of Myrtenol against the streptozotocin (STZ)-provoked GDM in rats. GDM was provoked in the pregnant rats via injecting the 1% of STZ (25 mg/kg) and then treated with the 50 mg/kg of myrtenol. The glucose level and bodyweight of animals were noted. The lipid profile, that is, total cholesterol, triglycerides, low-density lipoprotein, and high-density lipoprotein (HDL) was determined by respective kits. The lipid peroxidation and antioxidants status were examined using assay kits. The status of proinflammatory markers was investigated by assay kits. The messenger RNA (mRNA) expressions of TLR4/MyD88/NF-κB signaling proteins were studied by reverse transcription polymerase chain reaction analysis. The hepatic and pancreatic tissues were examined microscopically. Myrtenol treatment notably decreased the status of blood glucose and lipid profile and improved the HDL in the GDM rats. The status of lipid peroxidation and inflammatory markers were substantially reduced by the myrtenol and it enhanced the antioxidants status of GDM animals. Myrtenol treatment remarkably downregulated the mRNA expressions of TLR4/MyD88/NF-κB signaling proteins. The histological findings also proved the therapeutic actions of myrtenol. Altogether, the findings of this investigation unveiled the therapeutic actions of the myrtenol against the STZ-provoked GDM in rats. Myrtenol could be a promising therapeutic agent to treat GDM in the future.
Collapse
Affiliation(s)
- Liu Xuemei
- Department of Gynaecology and Obstetrics, Jinan City People's Hospital, Jinan, China
| | - Shengjie Qiu
- Department of Clinical Laboratory, People's Hospital of Jiulongpo District, Chongqing, China
| | - Guiying Chen
- Department of Obstetrics and Gynecology, Tai'an Central Hospital, Tai'an, China
| | - Mingyuan Liu
- Department of Obstetrics, Jinan Maternal and Child Health Care Hospital, Jinan, China
| |
Collapse
|
116
|
Zheng S, Fu W, Ma R, Huang Q, Gu J, Zhou J, Lu K, Guo G. Suppression of MD2 inhibits breast cancer in vitro and in vivo. Clin Transl Oncol 2021; 23:1811-1817. [PMID: 33733435 PMCID: PMC8310507 DOI: 10.1007/s12094-021-02587-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/07/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE To explore the effects of the intervening measure targeting myeloid differentiation 2 (MD2) on breast cancer progression in vitro and in vivo. METHODS The expression of MD2 in normal breast cells (Hs 578Bst) and three kinds of breast carcinoma cell lines (MCF-7, MDA-MB-231 s and 4T1) were detected by western blot. MTT assay was used to detect the proliferation of 4T1 cells treated by L6H21, cell migration and invasion was measured by wound healing assay and trans-well matrigel invasion assay, respectively. In addition, to further study the role of MD2 in tumor progression, we assessed the effects of inhibition of MD2 on the progression of xenograft tumors in vivo. RESULTS The expression of MD2 is much higher in MDA-MB-231 s and 4T1cells than that in normal breast cells (Hs 578Bst) or MCF-7 cells (p < 0.05). In vitro, suppression of MD2 by L6H21 has a significant inhibition of proliferation, migration and invasion in 4T1 cells in dose-dependent manner. In vivo, L6H21 pretreatment significantly improved survival of 4T1-bearing mice (p < 0.05). Additionally, we also observed that none of the mice died from the toxic effect of 10 mg kg-1 L6H21 in 60 days. CONCLUSION Overall, this work indicates that suppression of MD2 shows progression inhibition in vitro and significantly prolong survival in vivo. These findings provide the potential experimental evidence for using MD2 as a therapeutic target of breast carcinoma.
Collapse
Affiliation(s)
- S Zheng
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - W Fu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - R Ma
- Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Lucheng District, Wenzhou, 325000, Zhejiang, China
| | - Q Huang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - J Gu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - J Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - K Lu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - G Guo
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
117
|
Recent advances in immunotherapy, immunoadjuvant, and nanomaterial-based combination immunotherapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
118
|
Perrelli A, Retta SF. Polymorphisms in genes related to oxidative stress and inflammation: Emerging links with the pathogenesis and severity of Cerebral Cavernous Malformation disease. Free Radic Biol Med 2021; 172:403-417. [PMID: 34175437 DOI: 10.1016/j.freeradbiomed.2021.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Cerebral Cavernous Malformation (CCM) is a cerebrovascular disease of genetic origin affecting 0.5% of the population and characterized by abnormally enlarged and leaky capillaries that predispose to seizures, neurological deficits, and intracerebral hemorrhage (ICH). CCM occurs sporadically or is inherited as dominant condition with incomplete penetrance and highly variable expressivity. Three disease genes have been identified: KRIT1 (CCM1), CCM2 and CCM3. Previous results demonstrated that loss-of-function mutations of CCM genes cause pleiotropic effects, including defective autophagy, altered reactive oxygen species (ROS) homeostasis, and enhanced sensitivity to oxidative stress and inflammatory events, suggesting a novel unifying pathogenetic mechanism, and raising the possibility that CCM disease onset and severity are influenced by the presence of susceptibility and modifier genes. Consistently, genome-wide association studies (GWAS) in large and homogeneous cohorts of patients sharing the familial form of CCM disease and identical mutations in CCM genes have led to the discovery of distinct genetic modifiers of major disease severity phenotypes, such as development of numerous and large CCM lesions, and susceptibility to ICH. This review deals with the identification of genetic modifiers with a significant impact on inter-individual variability in CCM disease onset and severity, including highly polymorphic genes involved in oxidative stress, inflammatory and immune responses, such as cytochrome P450 monooxygenases (CYP), matrix metalloproteinases (MMP), and Toll-like receptors (TLR), pointing to their emerging prognostic value, and opening up new perspectives for risk stratification and personalized medicine strategies.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy; CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy.
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy; CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Torino, Italy.
| |
Collapse
|
119
|
Xue Q, Liu X, Chen C, Zhang X, Xie P, Liu Y, Zhou S, Tang J. Erlotinib protests against LPS-induced parthanatos through inhibiting macrophage surface TLR4 expression. Cell Death Discov 2021; 7:181. [PMID: 34282120 PMCID: PMC8290014 DOI: 10.1038/s41420-021-00571-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/05/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022] Open
Abstract
Sepsis is a life-threatening cascading systemic inflammatory response syndrome on account of serve infection. In inflamed tissues, activated macrophages generate large amounts of inflammatory cytokines reactive species, and are exposed to the damaging effects of reactive species. However, comparing with necroptosis and pyroptosis, so far, there are few studies focusing on the overproduction-related cell death, such as parthanatos in macrophage during sepsis. In LPS-treated macrophage, we observed PARP-1 activation, PAR formation and AIF translocation. All these phenomena could be inhibited by both erlotinib and 3-AB, indicating the presence of parthanatos in endotoxemia. We further found that LPS induced the increase of cell surface TLR4 expression responsible for the production of ROS and subsequent parthanatos in endotoxemia. All these results shed a new light on how TLR4 regulating the activation of PARP-1 by LPS in macrophage.
Collapse
Affiliation(s)
- Qiong Xue
- The Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaolei Liu
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Cuiping Chen
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xuedi Zhang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Pengyun Xie
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yupin Liu
- Department of Medical Iconography, The Second Affiliated Hospital University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Shuangnan Zhou
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Jing Tang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
120
|
Polymorphism of CD14 Gene Is Associated with Adverse Outcome among Patients Suffering from Cardiovascular Disease. Mediators Inflamm 2021; 2021:3002439. [PMID: 34305452 PMCID: PMC8282382 DOI: 10.1155/2021/3002439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background The biological link between severe periodontitis and cardiovascular disease is well established. Both complex inflammatory diseases are influenced by genetic background. Therefore, the impact of genetic variations of receptors of the innate immune system-(Toll-like receptors (TLRs)) TLR2, TLR4, cluster of differentiation 14 (CD14), and the transcription factor nuclear factor-κΒ (NF-κB)-was investigated. Materials and Methods In this study (ClinicalTrials.gov identifier: NCT01045070), 1002 cardiovascular (CV) patients were included. In a 3-year follow-up period, new vascular events were assessed. SNPs in CD14 (rs2569190), NF-κΒ (rs28362491), TLR2 (rs5743708), and TLR4 (rs4986790) were genotyped. The impact of these genetic variants on severe periodontitis as well as on CV outcome was assessed. Results All investigated genetic variants were not associated with preexisting CV events or severe periodontitis in CV patients. In Kaplan-Meier survival analyses, the CT genotype of CD14 single-nucleotide polymorphism (SNP) rs2569190 was shown to be an independent predictor for combined CV endpoint (log rank: p = 0.035; cox regression; hazard ratio: 1.572; p = 0.044) as well as cardiovascular death (log rank: p = 0.019; cox regression; hazard ratio: 1.585; p = 0.040) after three years of follow-up. Conclusions SNPs in CD14, NF-κΒ, TLR2, and TLR4 are no risk modulators for preexisting CV events or severe periodontitis in CV patients. The CT genotype of CD14 SNP rs2569190 provides prognostic value for further CV events within 3 years of follow-up.
Collapse
|
121
|
Treadmill exercise alleviates neuronal damage by suppressing NLRP3 inflammasome and microglial activation in the MPTP mouse model of Parkinson's disease. Brain Res Bull 2021; 174:349-358. [PMID: 34224819 DOI: 10.1016/j.brainresbull.2021.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022]
Abstract
Treadmill exercise has been recognized as an effectively therapeutic strategy for Parkinson's disease (PD). However, its exact molecular mechanism of promoting PD remain unclear. Recently, the NLRP3 inflammasome is considered to play a critical role in the pathogenesis of PD. In this study, we investigated whether NLRP3 inflammasome was involved in treadmill exercise-induced neuroprotection and anti-inflammation effect in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. 8-week-old male mice (C57BL/6 strain) were divided into four groups: Control, MPTP, MPTP + EX and EX. MPTP was intraperitoneally injected into mice to establish chronic PD model. The open-field test and pole test were used to assess motor function. The results showed that treadmill exercise significantly alleviated motor dysfunction and dopaminergic neuron degeneration induced by MPTP. In addition, we also found that treadmill exercise suppressed MPTP-triggered microglia activation and the co-localization of NLRP3+/Iba-1+ cells in the substantia nigra. These effects were associated with suppression NLRP3 inflammasome via down-regulation of TLR4/MyD88/NF-κB pathway. Overall, our study demonstrated that treadmill exercise could effectively alleviates neuronal damage via inhibition of NLRP3 inflammasome and microglial activation in MPTP-induced PD mouse model.
Collapse
|
122
|
Conte C. Possible Link between SARS-CoV-2 Infection and Parkinson's Disease: The Role of Toll-Like Receptor 4. Int J Mol Sci 2021; 22:7135. [PMID: 34281186 PMCID: PMC8269350 DOI: 10.3390/ijms22137135] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative motor disorder characterized by selective degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the midbrain, depletion of dopamine (DA), and impaired nigrostriatal pathway. The pathological hallmark of PD includes the aggregation and accumulation α-synuclein (α-SYN). Although the precise mechanisms underlying the pathogenesis of PD are still unknown, the activation of toll-like receptors (TLRs), mainly TLR4 and subsequent neuroinflammatory immune response, seem to play a significant role. Mounting evidence suggests that viral infection can concur with the precipitation of PD or parkinsonism. The recently identified coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of ongoing pandemic coronavirus disease 2019 (COVID-19), responsible for 160 million cases that led to the death of more than three million individuals worldwide. Studies have reported that many patients with COVID-19 display several neurological manifestations, including acute cerebrovascular diseases, conscious disturbance, and typical motor and non-motor symptoms accompanying PD. In this review, the neurotropic potential of SARS-CoV-2 and its possible involvement in the pathogenesis of PD are discussed. Specifically, the involvement of the TLR4 signaling pathway in mediating the virus entry, as well as the massive immune and inflammatory response in COVID-19 patients is explored. The binding of SARS-CoV-2 spike (S) protein to TLR4 and the possible interaction between SARS-CoV-2 and α-SYN as contributing factors to neuronal death are also considered.
Collapse
Affiliation(s)
- Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, via Fabretti, 06123 Perugia, Italy
| |
Collapse
|
123
|
Maes M, Vojdani A, Sirivichayakul S, Barbosa DS, Kanchanatawan B. Inflammatory and Oxidative Pathways Are New Drug Targets in Multiple Episode Schizophrenia and Leaky Gut, Klebsiella pneumoniae, and C1q Immune Complexes Are Additional Drug Targets in First Episode Schizophrenia. Mol Neurobiol 2021; 58:3319-3334. [PMID: 33675500 DOI: 10.1007/s12035-021-02343-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022]
Abstract
Breakdown of paracellular and vascular pathways and activated neuroimmune and oxidative pathways was established in (deficit) schizophrenia. The aim of this study was to delineate (a) the differences in these pathways between stable-phase, first (FES) and multiple (MES) episode schizophrenia and (b) the pathways that determine the behavioral-cognitive-physical-psychosocial (BCPS) deterioration in FES/MES. This study included 21 FES and 58 FES patients and 40 healthy controls and measured indicants of serum C1q circulating immune complexes (CIC), leaky gut, immune activation, and oxidative stress toxicity (OSTOX). We constructed a BCPS-worsening index by extracting a latent vector from symptomatic, neurocognitive, and quality of life data. FES was associated with higher IgA CIC-C1q, IgA directed to cadherin, catenin, and plasmalemma vesicle-associated protein, and IgA/IgM to Gram-negative bacteria as compared with FES and controls. In FES patients, the BCPS-worsening score was predicted (48.7%) by IgA to Klebsiella pneumoniae and lowered paraoxonase 1 activity. In MES patients, the BCPS-worsening score was explained (42.7%) by increased tumor necrosis factor-α, OSTOX, and number of episodes. In schizophrenia, 34.0% of the variance in the BCPS-worsening score was explained by IgA to K. pneumoniae, OSTOX, and number of episodes. Increased IgA to K. pneumoniae was the single best predictor of residual psychotic symptoms in FES and MES. This study delineated different mechanistic processes in FES, including breakdown of adherens junctions, bacterial translocation, and IgA CIC-C1q formation, and MES, including immune and oxidative neurotoxic pathways. FES and MES comprise different staging subtypes, i.e., FES and MES with and without worsening.
Collapse
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
- IMPACT Strategic Research Center, Deakin University, Vic, Geelong, Australia.
| | - Aristo Vojdani
- Immunosciences Lab., Inc., Los Angeles, CA, USA
- Cyrex Labs, LLC, Phoenix, AZ, USA
- Department of Preventive Medicine, Loma Linda University, Loma Linda, CA, USA
| | | | - Decio S Barbosa
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, PR, Brazil
| | - Buranee Kanchanatawan
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
124
|
Aryal A, Harmon AC, Dugas TR. Particulate matter air pollutants and cardiovascular disease: Strategies for intervention. Pharmacol Ther 2021; 223:107890. [PMID: 33992684 PMCID: PMC8216045 DOI: 10.1016/j.pharmthera.2021.107890] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Air pollution is consistently linked with elevations in cardiovascular disease (CVD) and CVD-related mortality. Particulate matter (PM) is a critical factor in air pollution-associated CVD. PM forms in the air during the combustion of fuels as solid particles and liquid droplets and the sources of airborne PM range from dust and dirt to soot and smoke. The health impacts of PM inhalation are well documented. In the US, where CVD is already the leading cause of death, it is estimated that PM2.5 (PM < 2.5 μm in size) is responsible for nearly 200,000 premature deaths annually. Despite the public health data, definitive mechanisms underlying PM-associated CVD are elusive. However, evidence to-date implicates mechanisms involving oxidative stress, inflammation, metabolic dysfunction and dyslipidemia, contributing to vascular dysfunction and atherosclerosis, along with autonomic dysfunction and hypertension. For the benefit of susceptible individuals and individuals who live in areas where PM levels exceed the National Ambient Air Quality Standard, interventional strategies for mitigating PM-associated CVD are necessary. This review will highlight current state of knowledge with respect to mechanisms for PM-dependent CVD. Based upon these mechanisms, strategies for intervention will be outlined. Citing data from animal models and human subjects, these highlighted strategies include: 1) antioxidants, such as vitamins E and C, carnosine, sulforaphane and resveratrol, to reduce oxidative stress and systemic inflammation; 2) omega-3 fatty acids, to inhibit inflammation and autonomic dysfunction; 3) statins, to decrease cholesterol accumulation and inflammation; 4) melatonin, to regulate the immune-pineal axis and 5) metformin, to address PM-associated metabolic dysfunction. Each of these will be discussed with respect to its potential role in limiting PM-associated CVD.
Collapse
Affiliation(s)
- Ankit Aryal
- Louisiana State University School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Skip Bertman Drive, Baton Rouge, Louisiana 70803, United States of America
| | - Ashlyn C Harmon
- Louisiana State University School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Skip Bertman Drive, Baton Rouge, Louisiana 70803, United States of America
| | - Tammy R Dugas
- Louisiana State University School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Skip Bertman Drive, Baton Rouge, Louisiana 70803, United States of America.
| |
Collapse
|
125
|
Morris G, Berk M, Walder K, O'Neil A, Maes M, Puri BK. The lipid paradox in neuroprogressive disorders: Causes and consequences. Neurosci Biobehav Rev 2021; 128:35-57. [PMID: 34118292 DOI: 10.1016/j.neubiorev.2021.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 04/27/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Chronic systemic inflammation is associated with an increased risk of cardiovascular disease in an environment of low low-density lipoprotein (LDL) and low total cholesterol and with the pathophysiology of neuroprogressive disorders. The causes and consequences of this lipid paradox are explored. Circulating activated neutrophils can release inflammatory molecules such as myeloperoxidase and the pro-inflammatory cytokines interleukin-1 beta, interleukin-6 and tumour necrosis factor-alpha. Since activated neutrophils are associated with atherosclerosis and cardiovascular disease and with major depressive disorder, bipolar disorder and schizophrenia, it seems reasonable to hypothesise that the inflammatory molecules released by them may act as mediators of the link between systemic inflammation and the development of atherosclerosis in neuroprogressive disorders. This hypothesis is tested by considering the association at a molecular level of systemic inflammation with increased LDL oxidation; increased small dense LDL levels; increased lipoprotein (a) concentration; secretory phospholipase A2 activation; cytosolic phospholipase A2 activation; increased platelet activation; decreased apolipoprotein A1 levels and function; decreased paroxonase-1 activity; hyperhomocysteinaemia; and metabolic endotoxaemia. These molecular mechanisms suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand
| | | |
Collapse
|
126
|
Cao XY, Qian X, Liu GD, Wang YH. Bioinformatics-based Identification of Key Pathways and Hub Genes of Traumatic Brain Injury in a Rat Model. Curr Med Sci 2021; 41:610-617. [PMID: 34047944 DOI: 10.1007/s11596-021-2365-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/04/2020] [Indexed: 01/05/2023]
Abstract
Traumatic brain injury (TBI) is a common injury caused by external forces that lead to damaged brain function or pathological changes in the brain tissue. To explore the molecular mechanism and the hub genes of TBI, we downloaded gene expression profiles of the TBI model of rat and the sham control for the subsequent gene set enrichment analysis, pathway analysis and protein-protein interactions analysis. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis indicated that multiple biological pathways, including immune response, inflammatory response and cellular response to interleukin-1, as well as signaling pathways, such as tumor necrosis factor signaling pathway, chemokine signaling pathway, cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway and nuclear factor kappa B signaling pathway were implicated in the TBI. In conclusion, this study provides insights into the molecular mechanism of TBI by screening the differentially expressed genes and hub genes that can be used as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Xin-Yi Cao
- Wuxi Clinical College of Anhui Medical University (904th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army), Wuxi, 214000, China
| | - Xiao Qian
- Wuxi Clinical College of Anhui Medical University (904th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army), Wuxi, 214000, China
| | - Guo-Dong Liu
- Wuxi Clinical College of Anhui Medical University (904th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army), Wuxi, 214000, China
| | - Yu-Hai Wang
- Wuxi Clinical College of Anhui Medical University (904th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army), Wuxi, 214000, China.
| |
Collapse
|
127
|
Pandey A, Kulshrestha R, Bansal SK. Dynamic role of LMW-hyaluronan fragments and Toll-like receptors 2,4 in progression of bleomycin induced lung parenchymal injury to fibrosis. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2021. [PMCID: PMC8138115 DOI: 10.1186/s43168-021-00073-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Pulmonary fibrosis (PF) is a progressive and lethal lung disease of elderly whose incidence has been increasing following the Covid-19 pandemic caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). PF immunopathogenesis involves progressive alveolar epithelial cell damage, release of damage-associated molecular patterns (DAMPs), and extracellular matrix (ECM) injury. We assessed the dynamic role of LMW-hyaluronan (LMW-HA) as DAMP in initiation of host immune TLR-2,4 responses and as determinant in progression of ECM injury to fibrosis. Male Wistar rats were divided into Group I (saline control, n = 24) and Group II (intratracheal bleomycin, 7 U/kg/animal, n = 24). Animals were euthanized on 0, 7, 14, and 28 days. The time course of release of LMW-HA, TLR-2,4 mRNA and protein levels, and NF-κB-p65 levels after bleomycin injury were correlated with the development of parenchymal inflammation, remodelling, and fibrosis. Results Acute lung injury caused by bleomycin significantly increases the pro-inflammatory LMW-HA levels and elevates TLR-2,4 levels on day 7. Subsequently, TLR-2 upregulation, TLR-4 downregulation, and NF-κB signalling follow on days 14 and 28. This results in progressive tissue inflammation, alveolar and interstitial macrophage accumulation, and fibrosis. Conclusions LMW-HA significantly increases in PF caused by non-infectious and infectious (Covid-19) etiologies. The accumulating HA fragments function as endogenous DAMPs and trigger inflammatory responses, through differential TLR2 and TLR4 signalling, thus promoting inflammation and macrophage influx. LMW-HA are reflective of the state of ongoing tissue inflammation and may be considered as a natural biosensor for fibrotic lung diseases and as potential therapeutic targets.
Collapse
|
128
|
Shouman MM, Abdelsalam RM, Tawfick MM, Kenawy SA, El-Naa MM. Antisense Tissue Factor Oligodeoxynucleotides Protected Diethyl Nitrosamine/Carbon Tetrachloride-Induced Liver Fibrosis Through Toll Like Receptor4-Tissue Factor-Protease Activated Receptor1 Pathway. Front Pharmacol 2021; 12:676608. [PMID: 34045968 PMCID: PMC8144514 DOI: 10.3389/fphar.2021.676608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Tissue factor (TF) is a blood coagulation factor that has several roles in many non-coagulant pathways involved in different pathological conditions such as angiogenesis, inflammation and fibrogenesis. Coagulation and inflammation are crosslinked with liver fibrosis where protease-activated receptor1 (PAR1) and toll-like receptor4 (TLR4) play a key role. Antisense oligodeoxynucleotides are strong modulators of gene expression. In the present study, antisense TF oligodeoxynucleotides (TFAS) was evaluated in treating liver fibrosis via suppression of TF gene expression. Liver fibrosis was induced in rats by a single administration of N-diethyl nitrosamine (DEN, 200 mg/kg; i. p.) followed by carbon tetrachloride (CCl4, 3 ml/kg; s. c.) once weekly for 6 weeks. Following fibrosis induction, liver TF expression was significantly upregulated along with liver enzymes activities and liver histopathological deterioration. Alpha smooth muscle actin (α-SMA) and transforming growth factor-1beta (TGF-1β) expression, tumor necrosis factor-alpha (TNF-α) and hydroxyproline content and collagen deposition were significantly elevated in the liver. Blocking of TF expression by TFAS injection (2.8 mg/kg; s. c.) once weekly for 6 weeks significantly restored liver enzymes activities and improved histopathological features along with decreasing the elevated α-SMA, TGF-1β, TNF-α, hydroxyproline and collagen. Moreover, TFAS decreased the expression of both PAR1 and TLR4 that were induced by liver fibrosis. In conclusion, we reported that blockage of TF expression by TFAS improved inflammatory and fibrotic changes associated with CCl4+DEN intoxication. In addition, we explored the potential crosslink between the TF, PAR1 and TLR4 in liver fibrogenesis. These findings offer a platform on which recovery from liver fibrosis could be mediated through targeting TF expression.
Collapse
Affiliation(s)
- Maha M Shouman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern Sciences and Arts University (MSA), Giza, Egypt
| | - Rania M Abdelsalam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Biology, Faculty of Pharmacy, New Giza University, Giza, Egypt
| | - Mahmoud M Tawfick
- Department of Microbiology and Immunology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Sanaa A Kenawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona M El-Naa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
129
|
Pastille E, Faßnacht T, Adamczyk A, Ngo Thi Phuong N, Buer J, Westendorf AM. Inhibition of TLR4 Signaling Impedes Tumor Growth in Colitis-Associated Colon Cancer. Front Immunol 2021; 12:669747. [PMID: 34025672 PMCID: PMC8138317 DOI: 10.3389/fimmu.2021.669747] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/20/2021] [Indexed: 01/06/2023] Open
Abstract
Patients suffering from ulcerative colitis are at increased risk of developing colorectal cancer. Although the exact underlying mechanisms of inflammation-associated carcinogenesis remain unknown, the intestinal microbiota as well as pathogenic bacteria are discussed as contributors to inflammation and colitis-associated colon cancer (CAC). In the present study, we analyzed the impact of TLR4, the receptor for Gram-negative bacteria derived lipopolysaccharides, on intestinal inflammation and tumorigenesis in a murine model of CAC. During the inflammatory phases of CAC development, we observed a strong upregulation of Tlr4 expression in colonic tissues. Blocking of TLR4 signaling by a small-molecule-specific inhibitor during the inflammatory phases of CAC strongly diminished the development and progression of colonic tumors, which was accompanied by decreased numbers of infiltrating macrophages and reduced colonic pro-inflammatory cytokine levels compared to CAC control mice. Interestingly, inhibiting bacterial signaling by antibiotic treatment during the inflammatory phases of CAC also protected mice from severe intestinal inflammation and almost completely prevented tumor growth. Nevertheless, application of antibiotics involved rapid and severe body weight loss and might have unwanted side effects. Our results indicate that bacterial activation of TLR4 on innate immune cells in the colon triggers inflammation and promotes tumor growth. Thus, the inhibition of the TLR4 signaling during intestinal inflammation might be a novel approach to impede CAC development.
Collapse
Affiliation(s)
| | | | | | | | | | - Astrid M. Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
130
|
Lin R, Wang Z, Cao J, Gao T, Dong Y, Chen Y. Role of melatonin in murine "restraint stress"-induced dysfunction of colonic microbiota. J Microbiol 2021; 59:500-512. [PMID: 33630247 DOI: 10.1007/s12275-021-0305-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
Intestinal diseases caused by physiological stress have become a severe public health threat worldwide. Disturbances in the gut microbiota-host relationship have been associated with irritable bowel disease (IBD), while melatonin (MT) has anti-inflammatory and antioxidant effects. The objective of this study was to investigate the mechanisms by which MT-mediated protection mitigated stress-induced intestinal microbiota dysbiosis and inflammation. We successfully established a murine restraint stress model with and without MT supplementation. Mice subjected to restraint stress had significantly elevated corticosterone (CORT) levels, decreased MT levels in their plasma, elevated colonic ROS levels and increased bacterial abundance, including Bacteroides and Tyzzerella, in their colon tract, which led to elevated expression of Toll-like receptor (TLR) 2/4, p-P65 and p-IKB. In contrast, supplementation with 20 mg/kg MT reversed the elevation of the plasma CORT levels, downregulated the colon ROS levels and inhibited the changes in the intestinal microbiota induced by restraint stress. These effects, in turn, inhibited the activities of TLR2 and TLR4, p-P65 and p-IκB, and decreased the inflammatory reaction induced by restraint stress. Our results suggested that MT may mitigate "restraint stress"-induced colonic microbiota dysbiosis and intestinal inflammation by inhibiting the activation of the NF-κB pathway.
Collapse
Affiliation(s)
- Rutao Lin
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Zixu Wang
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Jing Cao
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Ting Gao
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China
| | - Yulan Dong
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China.
| | - Yaoxing Chen
- Neurobiology Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
131
|
da Silveira Cruz-Machado S, Guissoni Campos LM, Fadini CC, Anderson G, Markus RP, Pinato L. Disrupted nocturnal melatonin in autism: Association with tumor necrosis factor and sleep disturbances. J Pineal Res 2021; 70:e12715. [PMID: 33421193 DOI: 10.1111/jpi.12715] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
Sleep disturbances, abnormal melatonin secretion, and increased inflammation are aspects of autism spectrum disorder (ASD) pathophysiology. The present study evaluated the daily urinary 6-sulfatoxymelatonin (aMT6s) excretion profile and the salivary levels of tumor necrosis factor (TNF) and interleukin-6 (IL-6) in 20 controls and 20 ASD participants, as well as correlating these measures with sleep disturbances. Although 60% of ASD participants showed a significant night-time rise in aMT6s excretion, this rise was significantly attenuated, compared to controls (P < .05). The remaining 40% of ASD individuals showed no significant increase in nocturnal aMT6s. ASD individuals showed higher nocturnal levels of saliva TNF, but not IL-6. Dysfunction in the initiation and maintenance of sleep, as indicated by the Sleep Disturbance Scale for Children, correlated with night-time aMT6s excretion (r = -.28, P < .05). Dysfunction in sleep breathing was inversely correlated with aMT6s (r = -.31, P < .05) and positively associated with TNF level (r = .42, P < .01). Overall such data indicate immune-pineal axis activation, with elevated TNF but not IL-6 levels associated with disrupted pineal melatonin release and sleep dysfunction in ASD. It is proposed that circadian dysregulation in ASD is intimately linked to heightened immune-inflammatory activity. Such two-way interactions of the immune-pineal axis may underpin many aspects of ASD pathophysiology, including sleep disturbances, as well as cognitive and behavioral alterations.
Collapse
Affiliation(s)
- Sanseray da Silveira Cruz-Machado
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Cintia Cristina Fadini
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), Marilia, Brazil
| | | | - Regina P Markus
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo (USP), São Paulo, Brazil
| | - Luciana Pinato
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), Marilia, Brazil
| |
Collapse
|
132
|
Lorente-Picón M, Laguna A. New Avenues for Parkinson's Disease Therapeutics: Disease-Modifying Strategies Based on the Gut Microbiota. Biomolecules 2021; 11:433. [PMID: 33804226 PMCID: PMC7998286 DOI: 10.3390/biom11030433] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a multifactorial neurodegenerative disorder that currently affects 1% of the population over the age of 60 years, and for which no disease-modifying treatments exist. Neurodegeneration and neuropathology in different brain areas are manifested as both motor and non-motor symptoms in patients. Recent interest in the gut-brain axis has led to increasing research into the gut microbiota changes in PD patients and their impact on disease pathophysiology. As evidence is piling up on the effects of gut microbiota in disease development and progression, another front of action has opened up in relation to the potential usage of microbiota-based therapeutic strategies in treating gastrointestinal alterations and possibly also motor symptoms in PD. This review provides status on the different strategies that are in the front line (i.e., antibiotics; probiotics; prebiotics; synbiotics; dietary interventions; fecal microbiota transplantation, live biotherapeutic products), and discusses the opportunities and challenges the field of microbiome research in PD is facing.
Collapse
Affiliation(s)
- Marina Lorente-Picón
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
133
|
Xiao L, Yan J, Feng D, Ye S, Yang T, Wei H, Li T, Sun W, Chen J. Critical Role of TLR4 on the Microglia Activation Induced by Maternal LPS Exposure Leading to ASD-Like Behavior of Offspring. Front Cell Dev Biol 2021; 9:634837. [PMID: 33748121 PMCID: PMC7969707 DOI: 10.3389/fcell.2021.634837] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/15/2021] [Indexed: 12/28/2022] Open
Abstract
Objective: To investigate the role of TLR4 on the microglia activation in the pre-frontal cortex, which leads to autism-like behavior of the offspring induced by maternal lipopolysaccharide (LPS) exposure. Methods: Pregnant TLR4-/- (knockout, KO) and WT (wild type, WT) dams were intraperitoneally injected with LPS or PBS, respectively. The levels of TNFα, IL-1β, and IL-6 in the maternal serum and fetal brain were assessed with ELISA following LPS exposure. The gestation period, litter size and weight of the offspring were evaluated. Three-chamber sociability test, open field test and olfactory habituation/dishabituation test were used to assess the offspring's autism-like behavior at 7 weeks of age. Western blotting was performed to examine the levels of TLR4, Phospho-NFκB p65, IKKα, IBA-1, iNOS, Arg-1, C3, CR3A, NMDAR2A, and Syn-1 expression in the pre-frontal cortex. The morphological changes in the microglia, the distribution and expression of TLR4 were observed by immunofluorescence staining. Golgi-Cox staining was conducted to evaluate the dendritic length and spine density of the neurons in 2-week-old offspring. Results: Maternal LPS stimulation increased serum TNFα and IL-6, as well as fetal brain TNFα in the WT mice. The litter size and the weight of the WT offspring were significantly reduced following maternal LPS treatment. LPS-treated WT offspring had lower social and self-exploration behavior, and greater anxiety and repetitive behaviors. The protein expression levels of TLR4 signaling pathways, including TLR4, Phospho-NFκB p65, IKKα, and IBA-1, iNOS expression were increased in the LPS-treated WT offspring, whereas Arg-1 was decreased. Maternal LPS treatment resulted in the significant reduction in the levels of the synaptic pruning-related proteins, C3 and CR3A. Moreover, the neuronal dendritic length and spine density, as well as the expression levels of the synaptic plasticity-related proteins, NMDAR2A and Syn-1 were reduced in the WT offspring; however, gestational LPS exposure had no effect on the TLR4-/- offspring. Conclusion: Activation of TLR4 signaling pathway following maternal LPS exposure induced the abnormal activation of microglia, which in turn was involved in excessive synaptic pruning to decrease synaptic plasticity in the offspring. This may be one of the reasons for the autism-like behavior in the offspring mice.
Collapse
Affiliation(s)
- Lu Xiao
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Junyan Yan
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Di Feng
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Shasha Ye
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Ting Yang
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Hua Wei
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Tingyu Li
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Wuqing Sun
- Information Technological Service Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Chen
- Chongqing Key Laboratory of Childhood Nutrition and Health, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| |
Collapse
|
134
|
Mahmood M, Javaid A, Shahid F, Ashfaq UA. Rational design of multimeric based subunit vaccine against Mycoplasma pneumonia: Subtractive proteomics with immunoinformatics framework. INFECTION GENETICS AND EVOLUTION 2021; 91:104795. [PMID: 33667723 DOI: 10.1016/j.meegid.2021.104795] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/14/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023]
Abstract
Mycoplasma pneumoniae is the prevalent cause of acquired respiratory infections around the globe. A multi-epitope vaccine (MEV) must be developed to combat infections of M. pneumoniae because there is no specific disease-modifying treatment or vaccination is present. The objective of this research is to design a vaccine that targets M. pneumoniae top five highly antigenic proteins using a combination of immunological techniques and molecular docking. T-cell (HTL & CTL), B-cell, and IFN-γ of target proteins were forecasted and highly conservative epitopes were chosen for further study. For designing of final vaccine, 4LBL, 7CTL, and 5HTL epitopes were joined by linkers of KK, AAY, and GPGPG. The N-end of the vaccine was linked to an adjuvant (Cholera enterotoxin subunit B) with a linker named EAAAK to enhance immunogenicity. After the addition of adjuvants and linkers, the size of the construct was 395 amino acids. The epitopes of IFN-γ and B-cells illustrate that the model construct is optimized for cell-mediated immune or humoral responses. To ensure that the final design is safer and immunogenic, properties like non-allergens, antigenicity, and various physicochemical properties were evaluated. Molecular docking of the vaccine with the toll-like receptor 4 (TLR4) was conducted to check the compatibility of the vaccine with the receptor. Besides, in-silico cloning was utilized for validation of the credibility and proper expression of the vaccine. Furthermore, to confirm that the multi-epitope vaccine created is protective and immunogenic, this research requires experimental validation.
Collapse
Affiliation(s)
- Marvah Mahmood
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Anam Javaid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
135
|
Emerging role of Gut-microbiota-brain axis in depression and therapeutic implication. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110138. [PMID: 33075447 DOI: 10.1016/j.pnpbp.2020.110138] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/19/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
The human body can be considered a superorganism in which it's eukaryotic cells and prokaryotic microorganisms coexist. Almost every organ system of the body lives a symbiotic life with these commensal bacteria. Intestinal microbiota has an important role in shaping, organizing and maintaining mental functions from as early as the intrauterine period. Microbiota-based approaches are becoming more prominent in understanding and treating the etiopathogenesis of neuropsychiatric disorders, especially depression. Antidepressant drugs, which are the first-line option in the treatment of depression today, also contain antimicrobial and immunomodulatory mechanisms of action. Treatment options for directly modifying the microbiota composition include prebiotics, probiotics (psychobiotics) and fecal microbiota transplantation. There are few preclinical and clinical studies on the efficacy and reliability of these treatment options in depression. This article will review pertinent studies on the role of intestinal microbiota in depression and discuss the treatment potential of altering ones gut microbiome.
Collapse
|
136
|
Grape seed extract ameliorates PhIP-induced colonic injury by modulating gut microbiota, lipid metabolism, and NF-κB signaling pathway in rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
137
|
Ying Y, Sun CB, Zhang SQ, Chen BJ, Yu JZ, Liu FY, Wen J, Hou J, Han SS, Yan JY, Yang ZS, Xiong L. Induction of autophagy via the TLR4/NF-κB signaling pathway by astragaloside Ⅳ contributes to the amelioration of inflammation in RAW264.7 cells. Biomed Pharmacother 2021; 137:111271. [PMID: 33561643 DOI: 10.1016/j.biopha.2021.111271] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/17/2020] [Accepted: 12/26/2020] [Indexed: 12/31/2022] Open
Abstract
Cigarette smoking-related lung injury is one of the most common and fatal etiologies of many respiratory diseases, for which no effective interventions are available. Astragaloside Ⅳ (ASⅣ) is an active component extracted from Astragalus membranaceus. It is prescribed as a treatment for upper respiratory tract infections. Here, we report the potential anti-inflammatory effects and mechanisms of ASⅣ on cigarette smoking extract- (CSE)-exposed RAW264.7 cells. Murine macrophages were exposed to CSE, followed by administration of ASⅣ at 25-100 μg/mL for 24 h. ASⅣ significantly rescued CSE-induced cell death by inhibition of release pro-inflammatory cytokines. We measured autophagy as an intracellular scavenger by analyzing autophagic flux using tandem mRFP-GFP-LC3 fluorescence microscopy. Following administration with ASⅣ in CSE-exposed RAW264.7 cells, there was a notable increase in autophagosomes and a range of autophagic vacuoles were generated, as seen with transmission electron microscopy. Loss of autophagy following transfection siRNA aggravated inflammatory injury and release of inflammatory cytokines. Mechanistically, ASⅣ-triggered autophagy is mediated by the TLR4/NF-κB signaling pathway to reduce inflammation. Taken together, our findings suggest that ASⅣ acts stimulates autophagy, and that ASⅣ induces autophagy by inhibiting the TLR4/NF-κB signaling pathway, contributing to alleviation of inflammation.
Collapse
Affiliation(s)
- Yi Ying
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chun-Bin Sun
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Si-Qi Zhang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bo-Jun Chen
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China; The First Clinical Medicine College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing-Ze Yu
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin, China
| | - Fei-Yu Liu
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jing Wen
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jiong Hou
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Si-Si Han
- PingHu Hospital Shenzhen University, Shenzhen University, Shenzhen, Guangdong, China
| | - Jin-Yuan Yan
- Central Laboratory, Kunming Medical University Second Hospital, Kunming, Yunnan, China.
| | - Zhong-Shan Yang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China; Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming, Yunnan University of Chinese Medicine, Yunnan, China.
| | - Lei Xiong
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China; The First Clinical Medicine College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
138
|
Chen X, Deng T, Huo T, Dong F, Deng J. MiR-140-5p/TLR4 /NF-κB signaling pathway: Crucial role in inflammatory response in 16HBE cells induced by dust fall PM 2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111414. [PMID: 33080424 DOI: 10.1016/j.ecoenv.2020.111414] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Fine atmospheric particles with a diameter of 2.5 µm or less (PM2.5) have a large specific surface area, and carry a variety of organic matter, heavy metals, minerals and bacteria. They are an important risk factor in human non-communicable disease. To explore the molecular regulatory mechanism of the airway inflammation caused by PM2.5, an in vitro human bronchial epithelial (16HBE) cells poisoning model was deployed. Results showed that PM2.5 had a strong inhibitory effect on cells viability, and induced cells to secrete high levels of IL-6 and CXCL 8. These two biomarkers of inflammation were significantly reduced in the presence of TAK 242. TLR4, MyD88, IKK, and p-p65 proteins were highly expressed on exposure to PM2.5. Pretreatment with TAK 242 interfered with the activation of the TLR4 signaling pathway. By detecting the presence of lipopolysaccharides (LPS) in PM2.5 which had been autoclaved, it was speculated that the activation of the TLR4/NF-κB signaling pathway may be mediated by LPS. It was demonstrated using gain- and loss- function experiments that miR-140-5p negatively regulated TLR4 to mediate inflammation in 16HBE cells. The dual-luciferase reporter assay confirmed that miR-140-5p directly binds to the 3' untranslated region (3' UTR) of TLR4 to initiate biological activity. In conclusion, this study revealed a new mechanism by which the miR-140-5p/TLR4 signaling pathway mediated the inflammatory response of 16HBE cells induced by PM2.5. Differential expression of miRNA, and the activation of the TLR4/NF-κB signaling pathway induced by PM2.5 implicates PM2.5 in the pathogenesis of airway inflammation.
Collapse
Affiliation(s)
- Xiangwa Chen
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Tao Deng
- Southwest University of Science and Technology, Mianyang 621010, China
| | - Tingting Huo
- Southwest University of Science and Technology, Mianyang 621010, China
| | - Faqin Dong
- Southwest University of Science and Technology, Mianyang 621010, China.
| | - Jianjun Deng
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Mianyang 404 Hospital, Mianyang 621000, China.
| |
Collapse
|
139
|
Dong Q, Li Y, Chen J, Wang N. Azilsartan Suppressed LPS-Induced Inflammation in U937 Macrophages through Suppressing Oxidative Stress and Inhibiting the TLR2/MyD88 Signal Pathway. ACS OMEGA 2021; 6:113-118. [PMID: 33458464 PMCID: PMC7807478 DOI: 10.1021/acsomega.0c03655] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/17/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND PURPOSE Lipopolysaccharide (LPS) is an important factor that induce severe inflammation, resulting in multiple types of diseases. It is reported that LPS-induced inflammation is related to the activation of the NF-κB signal pathway and reactive oxygen species (ROS)-induced oxidative stress. Azilsartan, an angiotensin II type 1 (AT1) receptor blocker, has been licensed as a new generation of Sartan antihypertensive drugs. However, the effects of azilsartan in LPS-induced inflammation have not been reported before. The present study aims to investigate the anti-inflammatory effects of azilsartan on LPS-stimulated macrophages and explore the underlying mechanism. METHODS The release of lactic dehydrogenase (LDH), secretion of HMGB-1, and concentrations of IL-6, IL-1β, MCP-1, MMP-2, MMP-9, and PGE2 were evaluated using the enzyme-linked immunosorbent assay (ELISA). The gene expression levels of IL-6, IL-1β, MCP-1, MMP-2, MMP-9, and COX-2 were determined by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Western blot analysis was used to detect the protein expression level of COX-2, Nrf2, TLR2, MyD-88, and NF-κB. The level of ROS was determined using the dihydroethidium (DHE) staining assay. The activity of NF-κB was evaluated using the luciferase activity assay. RESULTS The release of LDH, HMGB-1, IL-6, IL-1β, MCP-1, MMP-2, MMP-9, and PGE2 was significantly promoted by LPS stimulation, whereas it was greatly suppressed by azilsartan. The upregulated COX-2, TLR2, MyD-88, and NF-κB in the LPS-treated macrophages were significantly downregulated by azilsartan. Interestingly, the expression level of Nrf2 was elevated by azilsartan. On the contrary, ROS levels were greatly increased by LPS but suppressed by azilsartan. Mechanistically, it was found that azilsartan suppressed LPS-induced activation of the TLR2/Myd-88/NF-κB signaling pathway. CONCLUSION Azilsartan might suppress LPS-induced inflammation in U937 macrophages through suppressing oxidative stress and inhibiting the TLR/MyD88 signal pathway.
Collapse
Affiliation(s)
- Qinglian Dong
- Department
of Critical Medicine, Dongying People’s
Hospital, No. 317, Nanyi
Road, Dongying 257091, Shandong, China
| | - Yongxia Li
- Department
of Stomatology, Dongying People’s
Hospital, No. 317, Nanyi
Road, Dongying 257091, Shandong, China
| | - Juan Chen
- Department
of Critical Medicine, Dongying People’s
Hospital, No. 317, Nanyi
Road, Dongying 257091, Shandong, China
| | - Nan Wang
- Department
of Nephrology, Dongying People’s
Hospital, No. 317, Nanyi
Road, Dongying 257091, Shandong, China
- . Tel/Fax:+86-546-8331536
| |
Collapse
|
140
|
Lucas K, Fröhlich-Nowoisky J, Oppitz N, Ackermann M. Cinnamon and Hop Extracts as Potential Immunomodulators for Severe COVID-19 Cases. FRONTIERS IN PLANT SCIENCE 2021; 12:589783. [PMID: 33719281 PMCID: PMC7952639 DOI: 10.3389/fpls.2021.589783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/02/2021] [Indexed: 05/08/2023]
Affiliation(s)
- Kurt Lucas
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
- *Correspondence: Kurt Lucas
| | | | - Nicole Oppitz
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Maximilian Ackermann
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
141
|
Reiter RJ, Sharma R. Central and peripheral actions of melatonin on reproduction in seasonal and continuous breeding mammals. Gen Comp Endocrinol 2021; 300:113620. [PMID: 32950582 DOI: 10.1016/j.ygcen.2020.113620] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/13/2020] [Indexed: 02/08/2023]
Abstract
Under field conditions, especially for mammals that inhabit high latitudes, the regulation of seasonal breeding activity to ensure delivery of the young at the time most conducive to their survival is essential. This is most frequently accomplished by the annual reproductive cycle being linked to seasonal photoperiod changes which determine the nocturnal duration of the pineal melatonin signal. Mating can occur during any season that ensures spring/early summer delivery of the offspring. Thus, the season of mating is determined by the duration of pregnancy. The precise hormonal control of the annual cycle of reproduction by melatonin is accomplished at the level of the hypothalamo-pituitary axis which, in turn, determines the physiological state of the gonad and adnexa due to the regulation of pituitary gonadotrophin release. Many species are continuous rather than seasonal breeders. In these species, melatonin has a minor hormonal influence on the central regulation of reproduction but, nevertheless, its antioxidant functions at the level of the gonads support optimal reproductive physiology. Possibly like all cells, those in the ovary, e.g., granulosa cells and oocytes (less is known about melatonin synthesis by the testes or spermatogenic cells), synthesize melatonin which is used locally to combat free radicals and reactive nitrogen species which would otherwise cause oxidative/nitrosative stress to these critically important cells. Oxidative damage to the oocyte, zygote, blastocyst, etc., results in an abnormal fetus which is either sloughed or gives rise to an unhealthy offspring. The importance of the protection of the gametes (both oocytes and sperm) from oxidative molecular mutilation cannot be overstated. Fortunately, as a highly effective free radical scavenger and indirect antioxidant (by upregulating antioxidant enzyme), locally-produced melatonin is in the optimal location to protect the reproductive system from such damage.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, United States.
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
142
|
Horn DL, Bettcher LF, Navarro SL, Pascua V, Neto FC, Cuschieri J, Raftery D, O'Keefe GE. Persistent metabolomic alterations characterize chronic critical illness after severe trauma. J Trauma Acute Care Surg 2021; 90:35-45. [PMID: 33017357 PMCID: PMC8011937 DOI: 10.1097/ta.0000000000002952] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Following trauma, persistent inflammation, immunosuppression, and catabolism may characterize delayed recovery or failure to recover. Understanding the metabolic response associated with these adverse outcomes may facilitate earlier identification and intervention. We characterized the metabolic profiles of trauma victims who died or developed chronic critical illness (CCI) and hypothesized that differences would be evident within 1-week postinjury. METHODS Venous blood samples from trauma victims with shock who survived at least 7 days were analyzed using mass spectrometry. Subjects who died or developed CCI (intensive care unit length of stay of ≥14 days with persistent organ dysfunction) were compared with subjects who recovered rapidly (intensive care unit length of stay, ≤7 days) and uninjured controls. We used partial least squares discriminant analysis, t tests, linear mixed effects regression, and pathway enrichment analyses to make broad comparisons and identify differences in metabolite concentrations and pathways. RESULTS We identified 27 patients who died or developed CCI and 33 who recovered rapidly. Subjects were predominantly male (65%) with a median age of 53 years and Injury Severity Score of 36. Healthy controls (n = 48) had similar age and sex distributions. Overall, from the 163 metabolites detected in the samples, 56 metabolites and 21 pathways differed between injury outcome groups, and partial least squares discriminant analysis models distinguished injury outcome groups as early as 1-day postinjury. Differences were observed in tryptophan, phenylalanine, and tyrosine metabolism; metabolites associated with oxidative stress via methionine metabolism; inflammatory mediators including kynurenine, arachidonate, and glucuronic acid; and products of the gut microbiome including indole-3-propionate. CONCLUSIONS The metabolic profiles in subjects who ultimately die or develop CCI differ from those who have recovered. In particular, we have identified differences in markers of inflammation, oxidative stress, amino acid metabolism, and alterations in the gut microbiome. Targeted metabolomics has the potential to identify important metabolic changes postinjury to improve early diagnosis and targeted intervention. LEVEL OF EVIDENCE Prognostic/epidemiologic, level III.
Collapse
Affiliation(s)
- Dara L Horn
- From the Department of Surgery (D.L.H.), and Department of Anesthesiology and Pain Medicine (L.F.B., V.P., F.C.N., D.R.), University of Washington; Fred Hutchinson Cancer Research Center (S.L.N., D.R.); and Division of Trauma and Critical Care, Department of Surgery (J.C., G.E.O.), Harborview Medical Center, Seattle, Washington
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Kibel A, Lukinac AM, Dambic V, Juric I, Selthofer-Relatic K. Oxidative Stress in Ischemic Heart Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6627144. [PMID: 33456670 PMCID: PMC7785350 DOI: 10.1155/2020/6627144] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
One of the novel interesting topics in the study of cardiovascular disease is the role of the oxidation system, since inflammation and oxidative stress are known to lead to cardiovascular diseases, their progression and complications. During decades of research, many complex interactions between agents of oxidative stress, oxidation, and antioxidant systems have been elucidated, and numerous important pathophysiological links to na number of disorders and diseases have been established. This review article will present the most relevant knowledge linking oxidative stress to vascular dysfunction and disease. The review will focus on the role of oxidative stress in endotheleial dysfunction, atherosclerosis, and other pathogenetic processes and mechanisms that contribute to the development of ischemic heart disease.
Collapse
Affiliation(s)
- Aleksandar Kibel
- Department for Heart and Vascular Diseases, Osijek University Hospital, Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine, University J.J. Strossmayer in Osijek, Osijek, Croatia
| | - Ana Marija Lukinac
- Department of Rheumatology and Clinical Immunology, Osijek University Hospital, Osijek, Croatia
- Faculty of Medicine, University J.J. Strossmayer in Osijek, Osijek, Croatia
| | - Vedran Dambic
- Faculty of Medicine, University J.J. Strossmayer in Osijek, Osijek, Croatia
- Department for Emergency Medical Services of the Osijek-Baranja county, Osijek, Croatia
| | - Iva Juric
- Department for Heart and Vascular Diseases, Osijek University Hospital, Osijek, Croatia
- Department of Internal Medicine, Faculty of Medicine, University J.J. Strossmayer in Osijek, Osijek, Croatia
| | - Kristina Selthofer-Relatic
- Department for Heart and Vascular Diseases, Osijek University Hospital, Osijek, Croatia
- Department of Internal Medicine, Faculty of Medicine, University J.J. Strossmayer in Osijek, Osijek, Croatia
| |
Collapse
|
144
|
Lucas K, Rosch M, Langguth P. Molecular hydrogen (H 2 ) as a potential treatment for acute and chronic fatigue. Arch Pharm (Weinheim) 2020; 354:e2000378. [PMID: 33368699 DOI: 10.1002/ardp.202000378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
Many diseases as well as acute conditions can lead to fatigue, which can be either temporary or chronic in nature. Acute fatigue develops frequently after physical exercise or after alcohol hangover, whereas microbial infections such as influenza or COVID-19 and chronic diseases like Parkinson's disease or multiple sclerosis are often associated with chronic fatigue. Oxidative stress and a resulting disturbance of mitochondrial function are likely to be common denominators for many forms of fatigue, and antioxidant treatments have been shown to be effective in alleviating the symptoms of fatigue. In this study, we review the role of reactive oxygen and nitrogen species in fatigue and the antioxidant effects of the intake of molecular hydrogen. We propose that molecular hydrogen is well suited for the treatment of temporary and chronic forms of oxidative stress-associated fatigue.
Collapse
Affiliation(s)
- Kurt Lucas
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Moritz Rosch
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.,Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Peter Langguth
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
145
|
Tranilast ameliorated subchronic silver nanoparticles-induced cerebral toxicity in rats: Effect on TLR4/NLRP3 and Nrf-2. Neurotoxicology 2020; 82:167-176. [PMID: 33352273 DOI: 10.1016/j.neuro.2020.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022]
Abstract
Silver nanoparticles (AgNPs) are widely applied in various aspects of life. However, recent studies reported their potential toxicity both on environment and human health. The present study aimed to unravel the underlying molecular mechanisms involved in AgNPs-induced brain toxicity. Moreover, chemopreventive effect of tranilast, an analogue of tryptophan metabolite and a mast cell membrane stabilizer was evaluated. Thirty Sprague Dawley rats were enrolled equally into Normal control group, AgNPs-intoxicated group (50 mg/kg, 3 times/week) and tranilast (300 mg/kg, 3 times/week)+AgNPs group. AgNPs administration triggered brain oxidative stress as depicted by reduced Nrf-2 expression, decreased TAC and GSH as well as upregulated brain lipid peroxidation. The apparent brain oxidative damage was accompanied by elevated levels of inflammatory cytokines (IL-1β, IL-6 and TNF-α). Moreover, brain levels of TLR4, NLRP3 and caspase-1 were up-regulated. Additionally, histological study indicated marked cellular injury in cerebrum and cerebellum specimens. This was concomitant with elevated serum CK activity and CK-BB level. On the other hand, tanilast administration remarkably alleviated AgNPs-induced brain toxicity. The present study shed the light on implication of TLR4/NLRP3 axis and NrF2 in AgNPs-induced brain toxicity. In addition, it explored the potential protective effect of tranilast on AgNPs-induced brain injury via antioxidant and anti-inflammatory efficacies.
Collapse
|
146
|
Expression of Toll-Like Receptors in the Animal Model of Bladder Outlet Obstruction. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6632359. [PMID: 33381567 PMCID: PMC7749780 DOI: 10.1155/2020/6632359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 11/18/2022]
Abstract
Introduction Bladder outlet obstruction (BOO) occurs in more than 20 percent of the adult population and may lead to changes in the structure and function of the bladder. The main objective of the study was to evaluate the expression of Toll-like receptor 4 (TLR 4) and Toll-like receptor 9 (TLR 9) in the animal model of BOO as potential triggers of the inflammation phase in the bladder. In addition, the modulating effect of alpha-1 adrenergic antagonist (tamsulosin) on TLR 4 and TLR 9 expression and inflammatory markers was assessed. Material and Methods. Thirty-two male, 9-week-old Sprague Dawley rats were randomly divided into 4 groups: SOP—sham-operated rats with a placebo (water); SOB—sham-operated rats with an alpha-1 adrenergic antagonist; BOOP—rats with BOO and a placebo; and BOOB—rats with BOO and an alpha-1 adrenergic antagonist. The rats were given a placebo or alpha-1 adrenergic antagonist for 15 days. Next, urine and the bladder were collected from the rats for histopathological and biochemical study. Results Histopathological analysis showed chronic inflammation without acute inflammation in the bladder. TLR 4 showed positive cytoplasmic reactivity in the urothelium and the smooth muscles of the bladder. TLR 9 showed positive cytoplasmic reactivity only in the urothelium. BOO caused an increase in TLR 4 and TLR 9 expression. Furthermore, treatment with an alpha-1 adrenergic antagonist had no significant effect on TLR 4 and TLR 9 expression in rats with BOO. BOO caused a significant increase in urine concentration of interleukin 6 (IL-6), while alpha-1 antagonist reduced the urine concentration of IL-6 and the concentration of interleukin 18 (IL-18). Conclusions The results suggest the participation of TLR 4 and TLR 9 receptors in the induction of inflammation in the bladder, which is the first phase in the development of pathophysiological changes in BOO.
Collapse
|
147
|
Sun H, Feng J, Tang L. Function of TREM1 and TREM2 in Liver-Related Diseases. Cells 2020; 9:2626. [PMID: 33297569 PMCID: PMC7762355 DOI: 10.3390/cells9122626] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
TREM1 and TREM2 are members of the triggering receptors expressed on myeloid cells (TREM) family. Both TREM1 and TREM2 are immunoglobulin superfamily receptors. Their main function is to identify foreign antigens and toxic substances, thereby adjusting the inflammatory response. In the liver, TREM1 and TREM2 are expressed on non-parenchymal cells, such as liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells, and cells which infiltrate the liver in response to injury including monocyte-derived macrophages and neutrophils. The function of TREM1 and TREM2 in inflammatory response depends on Toll-like receptor 4. TREM1 mainly augments inflammation during acute inflammation, while TREM2 mainly inhibits chronic inflammation to protect the liver from pathological changes. Chronic inflammation often induces metabolic abnormalities, fibrosis, and tumorigenesis. The above physiological changes lead to liver-related diseases, such as liver injury, nonalcoholic steatohepatitis, hepatic fibrosis, and hepatocellular carcinoma. Here, we review the function of TREM1 and TREM2 in different liver diseases based on inflammation, providing a more comprehensive perspective for the treatment of liver-related diseases.
Collapse
Affiliation(s)
- Huifang Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China;
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China;
| |
Collapse
|
148
|
Kwon M, Lee J, Park S, Kwon OH, Seo J, Roh S. Exopolysaccharide Isolated from Lactobacillus plantarum L-14 Has Anti-Inflammatory Effects via the Toll-Like Receptor 4 Pathway in LPS-Induced RAW 264.7 Cells. Int J Mol Sci 2020; 21:E9283. [PMID: 33291425 PMCID: PMC7730553 DOI: 10.3390/ijms21239283] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a biological response of the immune system to defend the body from negative stimulation. However, the excessive inflammatory response can damage host tissues and pose serious threats. Exopolysaccharide (EPS), one of the postbiotics, is secreted from lactic acid bacteria. Although many studies have described the beneficial effects of EPS, such as its anti-inflammatory and anti-oxidant effects, its underlying mechanisms have remained to be poorly understood. Thus, we identified that EPS obtained from Lactobacillus plantarum L-14 was a homogeneous polysaccharide primarily comprised of glucose. To examine these anti-inflammatory effects, an inflammatory response was induced by lipopolysaccharide (LPS) administration to mouse macrophage RAW 264.7 cells that were pretreated with EPS. The anti-inflammatory effects of EPS were identified by analyzing the changes within inflammatory markers at the molecular level. We demonstrate here that EPS suppressed proinflammatory mediators, such as cyclooxygenase-2, interleukin-6, tumor necrosis factor-α, and interleukin-1β, and downregulated the expression of an inducible nitric oxide synthase known to lead to oxidative stress. It was also confirmed that EPS had anti-inflammatory effects by blocking the interaction of LPS with Toll-like receptor 4 (TLR4), as demonstrated by using the known TLR4 inhibitor TAK-242. In addition, we found that EPS itself could suppress the expression of TLR4. Consequently, our data suggest that EPS can be a potential target for the development of natural product-derived medicine for treating inflammatory diseases related to TLR4.
Collapse
Affiliation(s)
- Mijin Kwon
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea; (M.K.); (S.P.)
| | - Jaehoon Lee
- Biomedical Research Institute, NeoRegen Biotech Co., Ltd., Gyeonggi-do 16614, Korea; (J.L.); (O.-H.K.)
| | - Sangkyu Park
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea; (M.K.); (S.P.)
- Biomedical Research Institute, NeoRegen Biotech Co., Ltd., Gyeonggi-do 16614, Korea; (J.L.); (O.-H.K.)
| | - Oh-Hee Kwon
- Biomedical Research Institute, NeoRegen Biotech Co., Ltd., Gyeonggi-do 16614, Korea; (J.L.); (O.-H.K.)
| | - Jeongmin Seo
- Biomedical Research Institute, NeoRegen Biotech Co., Ltd., Gyeonggi-do 16614, Korea; (J.L.); (O.-H.K.)
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Korea; (M.K.); (S.P.)
| |
Collapse
|
149
|
Helicobacter pylori-Mediated Immunity and Signaling Transduction in Gastric Cancer. J Clin Med 2020; 9:jcm9113699. [PMID: 33217986 PMCID: PMC7698755 DOI: 10.3390/jcm9113699] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori infection is a leading cause of gastric cancer, which is the second-most common cancer-related death in the world. The chronic inflammatory environment in the gastric mucosal epithelia during H. pylori infection stimulates intracellular signaling pathways, namely inflammatory signals, which may lead to the promotion and progression of cancer cells. We herein report two important signal transduction pathways, the LPS-TLR4 and CagA-MET pathways. Upon H. pylori stimulation, lipopolysaccharide (LPS) binds to toll-like receptor 4 (TLR4) mainly on macrophages and gastric epithelial cells. This induces an inflammatory response in the gastric epithelia to upregulate transcription factors, such as NF-κB, AP-1, and IRFs, all of which contribute to the initiation and progression of gastric cancer cells. Compared with other bacterial LPSs, H. pylori LPS has a unique function of inhibiting the mononuclear cell (MNC)-based production of IL-12 and IFN-γ. While this mechanism reduces the degree of inflammatory reaction of immune cells, it also promotes the survival of gastric cancer cells. The HGF/SF-MET signaling plays a major role in promoting cellular proliferation, motility, migration, survival, and angiogenesis, all of which are essential factors for cancer progression. H. pylori infection may facilitate MET downstream signaling in gastric cancer cells through its CagA protein via phosphorylation-dependent and/or phosphorylation-independent pathways. Other signaling pathways involved in H. pylori infection include EGFR, FAK, and Wnt/β-Catenin. These pathways function in the inflammatory process of gastric epithelial mucosa, as well as the progression of gastric cancer cells. Thus, H. pylori infection-mediated chronic inflammation plays an important role in the development and progression of gastric cancer.
Collapse
|
150
|
Zhang Q, Xiao X, Zheng J, Li M, Yu M, Ping F, Wang T, Wang X. Maternal sitagliptin treatment attenuates offspring glucose metabolism and intestinal proinflammatory cytokines IL-6 and TNF-α expression in male rats. PeerJ 2020; 8:e10310. [PMID: 33240638 PMCID: PMC7666563 DOI: 10.7717/peerj.10310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence shows that maternal overnutrition may increase the risk of diabetes in offspring. We hypothesized that maternal sitagliptin intervention may improve glucose intolerance through gut targeting. Female Sprague-Dawley (SD) rats were fed a normal diet (ND) or a high-fat diet (HFD) for 4 weeks before mating. ND pregnant rats were divided into two subgroups: ND group (ND alone) and the ND-sitagliptin group (ND combined with 10 mg/kg/day sitagliptin treatment). HFD pregnant rats were randomized to one of two groups: HFD group (HFD alone) and the HFD-sitagliptin group (HFD combined with 10 mg/kg/day sitagliptin treatment) during pregnancy and lactation. Glucose metabolism was assessed in offspring at weaning. Intestinal gene expression levels were investigated. Maternal sitagliptin intervention moderated glucose intolerance and insulin resistance in male pups. Moreover, maternal sitagliptin treatment inhibited offspring disordered intestinal expression of proinflammatory markers, including interleukin-6 (Il6), ll1b, and tumor necrosis factor (Tnf), at weaning and reduced intestinal IL-6, TNF-α expression by immunohistochemical staining and serum IL-6, TNF-α levels. However, maternal sitagliptin intervention did not affect offspring serum anti-inflammatory cytokine IL-10 level. Our results are the first to show that maternal sitagliptin intervention moderated glucose metabolism in male offspring. It may be involved with moderating intestinal IL-6 and TNF-α expression in male rat offspring.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Zheng
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Li
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Fan Ping
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tong Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaojing Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|